

1 Effects of neural noise on predictive model updating across 2 the adult lifespan

3 Ina Bornkessel-Schlesewsky *¹, Phillip M. Alday ², Andrew W. Corcoran ³, Erica
4 M. Wilkinson ^{1,4}, Isabella Sharrad ¹, Reinhold Kliegl ⁵, Richard L. Lewis ^{6,7},
5 Steven L. Small ⁸, and Matthias Schlesewsky ¹

6 ¹Cognitive Neuroscience Laboratory, Australian Research Centre for Interactive and Virtual Environments,
7 University of South Australia, Adelaide, SA, Australia

8 ²Beacon Biosignals, Boston, MA, United States

9 ³Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, VIC, Australia

10 ⁴Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide,
11 SA, Australia

12 ⁵Division of Training and Movement Science, University of Potsdam, Potsdam, Germany

13 ⁶Department of Psychology, University of Michigan, Ann Arbor, MI, United States

14 ⁷Weinberg Institute for Cognitive Science, University of Michigan, Ann Arbor, MI, United States

15 ⁸School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States

*Ina.Bornkessel-Schlesewsky@unisa.edu.au

16

Abstract

17

In the perceptual and sensorimotor domains, ageing is accompanied by a stronger reliance on top-down predictive model information and reduced sensory learning, thus promoting simpler, more efficient internal models in older adults. Here, we demonstrate analogous effects in higher-order language processing. One-hundred and twenty adults ranging in age from 18 to 83 years listened to short auditory passages containing manipulations of adjective order, with order probabilities varying between two speakers. As a measure of model adaptation, we examined attunement of the N400 event-related potential, a measure of precision-weighted prediction errors in language, to a trial-by-trial measure of speaker-based adjective order expectedness (“speaker-based surprisal”) across the course of the experiment. Adaptation was strongest for young adults, weaker for middle-aged adults, and absent for older adults. Over and above age-related differences, we observed individual differences in model adaptation, with aperiodic (1/f) slope and intercept metrics derived from resting-state EEG showing the most pronounced modulations. We suggest that age-related changes in aperiodic slope, which have been linked to neural noise, may be associated with individual differences in the magnitude of stimulus-related prediction error signals. By contrast, changes in aperiodic intercept, which reflects aggregate population spiking, may relate to an individual’s updating of inferences regarding stimulus precision. These two mechanisms jointly contribute to age-related changes in the precision-weighting of prediction errors and the degree of sensory learning.

36

37

Keywords: language, ageing, predictive coding, precision, EEG, aperiodic slope, individual alpha frequency, idea density

39 1 Introduction

40 Ageing is associated with increasingly noisy information processing in the human brain. In ad-
41 dition to being reflected in higher intra- and inter-individual variability of behavioural responses,
42 this has been linked to less effective neuromodulation (e.g. Li et al., 2001) and a concomitant
43 attenuation of neural gain (Aston-Jones & Cohen, 2005; Eldar et al., 2013; Li et al., 2000; Li &
44 Sikström, 2002). Gain modulation shapes the activation function of a neuron, with higher gain
45 increasing the unit's response to a relevant stimulus and decreasing its response to an irrelevant
46 stimulus, thus resulting in a more binary response function and stronger stimulus discriminabil-
47 ity (Aston-Jones & Cohen, 2005). Increases in gain result from the release of catecholamines
48 (dopamine, noradrenaline) (Servan-Schreiber et al., 1990), neuromodulatory systems which de-
49 cline with age and which have been linked to age-related changes in information processing
50 (see Li & Rieckmann, 2014, for a review). Computational modelling has demonstrated that
51 neuromodulation-induced changes in neural gain can account for a wide range of age-related
52 changes in cognition, including in learning rate, interference susceptibility and complexity cost
53 (Li et al., 2000), as well as decreases in processing fidelity / increases in processing variability
54 (Li & Rieckmann, 2014).

55 Somewhat more recent approaches have linked neural noise in ageing to changes in aperiodic
56 (1/f) activity of the human electroencephalogram (EEG; Voytek et al., 2015). In contrast to neural
57 oscillations in frequency bands such as alpha (~ 8-12 Hz), theta (~ 4-7 Hz) and beta (~ 15-30
58 Hz), aperiodic activity defines the overall shape of the EEG's power spectral density (PSD). Log-
59 transformed aperiodic activity approximates a 1/f power law (He, 2014), the functional form of
60 which can be summarised with a linear model defined by two parameters: the aperiodic *offset*
61 or *intercept*, which reflects the amount of power predicted for the lowest frequency bin included
62 in the fitted model; and the aperiodic *slope* or (negative) *exponent*, which reflects the steepness
63 of the power decay from lower to higher frequencies (Donoghue et al., 2020; Voytek & Knight,
64 2015).

65 Flatter aperiodic slopes are thought to reflect less synchronous ("noisier") neural activity, due
66 to increased levels of aberrant or background firing not tied to an oscillatory carrier frequency
67 (Voytek et al., 2015; Voytek & Knight, 2015). As argued by Voytek and Knight (2015), a certain
68 level of neural noise is beneficial, serving as a control mechanism to protect against hyper-
69 synchronisation (Radman et al., 2007), which can result when lower frequency oscillations bias

70 spiking activity through phase-amplitude coupling (Canolty & Knight, 2010), thus leading to
71 increases in local population firing rate and elevated local field potentials (LFPs). From this
72 perspective, neural noise is defined as temporally decorrelated spiking during non-preferred
73 oscillatory phases. While very low levels of neural noise can result in an exaggerated state
74 of overcoupling in pathological cases (e.g. in Parkinson's disease), too much neural noise is
75 also detrimental to information processing (e.g. in schizophrenia or autism) (see Voytek &
76 Knight, 2015, for further details). Changes in aperiodic slope may also reflect a shift in the
77 balance between excitatory and inhibitory activity (Gao et al., 2017), which is in line with the
78 proposal that individuals with autism and schizophrenia show altered excitation-to-inhibition
79 ratios (Rubenstein & Merzenich, 2003) and aperiodic slope characteristics (Manyukhina et al.,
80 2022; Molina et al., 2020) in comparison to neurotypical individuals. In contrast to the ape-
81 riodic slope, the aperiodic intercept has been shown to reflect aggregate population spiking
82 activity across widespread brain regions (Manning et al., 2009) and correlates with the fMRI
83 BOLD response (Winawer et al., 2013).

84 Returning to the relationship between age and aperiodic activity, ageing is associated with a
85 flattening of the aperiodic slope and a downshifting of the aperiodic offset (Donoghue et al.,
86 2020; Merkin et al., 2023; Voytek et al., 2015; Waschke et al., 2017). Flatter aperiodic slopes in
87 older adults correlate with decreased behavioural performance in visual working memory tasks
88 (Voytek et al., 2015), less consistent neurophysiological responses (peak alpha inter-trial coher-
89 ence, ITC) to visual stimuli (Tran et al., 2020) and higher irregularity (entropy) of EEG activity in
90 an auditory discrimination task (Waschke et al., 2017). Thus, as for the gain-related perspective
91 on neural noise, higher levels of neural noise as measured by an age-related flattening of the
92 aperiodic slope are accompanied by increasing deficits in perceptual and cognitive process-
93 ing.

94 Recent research in fact points to a compelling link between the gain-related and aperiodic-
95 activity-related perspectives on neural noise and ageing. Pertermann et al. (2019) demon-
96 strated a strong correlation between on-task changes in aperiodic slope and pupil dilation, an
97 established marker of noradrenergic activity, when response inhibition was required during a
98 Go/NoGo task. This could be taken to suggest that the lower neural gain associated with higher
99 neural noise leads to a less effective discrimination of relevant versus irrelevant information,
100 with potential implications for a wide range of behavioural tasks (cf. Bornkessel-Schlesewsky

101 et al., 2022).

102 A possible implication of these neurophysiological correlates of ageing that has hitherto not
103 been examined is that they may be accompanied by systematic age-related changes in predic-
104 tive model updating. Recent work on individual differences in predictive processing in young
105 adults suggests that individuals with steeper resting aperiodic slopes adapt their predictive
106 models more rapidly to novel input during language comprehension (Bornkessel-Schlesewsky et
107 al., 2022). Steeper on-task aperiodic slopes have likewise been argued to accompany stronger
108 predictive language processing in both younger and older adults (Dave et al., 2018) and to be
109 conducive for language learning in adulthood (Cross et al., 2022). These findings provide an
110 initial indication of how the results on neural noise, aperiodic slope and gain control could be
111 linked to the prominent literature on predictive coding and active inference as a possible unified
112 theory of sentient behaviour (Friston, 2005, 2009; Parr et al., 2022). On this view, perception is
113 underwritten by unconscious inference, whereby the brain inverts an internal (generative) model
114 to infer the hidden causes of its sensory states. The goal is to maximise model evidence (i.e.
115 the marginal likelihood of sensory data) by minimising the discrepancy between predicted and
116 observed sensory input (i.e. prediction error) in an approximately Bayes-optimal fashion. This
117 is accomplished by propagating prediction errors from lower to higher levels of a hierarchically-
118 organised cortical architecture and using these error signals to continuously update beliefs at
119 higher levels.

120 Crucially, the propagation of prediction errors up the cortical hierarchy is determined by prior
121 beliefs about the *precision* (inverse variance) of sensory input. Informative sources of sen-
122 sory data are accorded greater precision than ambiguous or unreliable sources of input, thus
123 compelling stronger updates of prior beliefs. Notably, evidence suggests that older adults give
124 greater weight to top-down model predictions vis-à-vis incoming sensory evidence (Chan et al.,
125 2021; Moran et al., 2014; Wolpe et al., 2016), thus reducing the extent to which new information
126 is assimilated within the model. Moran et al. (2014) suggest that this age-related shift away from
127 sensory learning reflects an optimisation of the neural architecture for predictive modelling: by
128 relying more strongly on established internal models of the world that have been refined over
129 the course of a lifetime, older adults avoid excessive model complexity and overfitting. This may
130 be beneficial for dealing with input that is noisier in older adulthood due to sensory degra-
131 dation, and for avoiding the complexity cost that is associated with model updating (Zénon et al.,

132 2019).

133 We propose that the flattening of aperiodic slope may provide a neurophysiological mechanism
134 to underpin this age-related change in cognitive processing. The reduction of neural gain that
135 accompanies a flattened slope prevents overly rapid model updating, thereby serving a protec-
136 tive function against exaggerated model complexity and overfitting in old age. This proposal
137 thus posits a cognitive counterpart to the potential protective physiological function of neural
138 noise as discussed by Voytek and Knight (2015).

139 Here, we test the hypothesis that older adults adapt their predictive models more slowly to novel
140 input environments and examine how this relates to aperiodic activity. We employed the same
141 design as in Bornkessel-Schlesewsky et al. (2022, Experiment 2) with a sample of 120 partic-
142 ipants spanning the adult lifespan (18 to 83 years of age). Participants listened to 150 short
143 (4-5 sentence) passages recorded by two male speakers. Embedded in each passage were two
144 two-adjective noun phrases (e.g. “huge grey elephant”), with one speaker producing a higher
145 (70:30%) ratio of expected-to-unexpected adjective orders (“huge grey” vs. “grey huge”) and
146 the ratio being reversed for the other speaker. Using a novel measure of “speaker-based sur-
147 prisal” first introduced in Bornkessel-Schlesewsky et al. (2022), we tracked the expectedness
148 of adjective orders within the experiment as they unfolded on a trial-by-trial basis. As in our
149 previous study, our primary outcome measure was the N400 event-related potential (ERP) as
150 a presumed index of precision-weighted prediction error in language processing (Bornkessel-
151 Schlesewsky & Schlesewsky, 2019). We interpret the extent to which N400 amplitude at the po-
152 sition of the critical second adjective attuned to speaker-based surprisal across the experiment
153 (i.e. the strength of the relationship between N400 amplitude and speaker-based surprisal) as
154 an indicator of predictive model adaptation to the novel linguistic environment provided by the
155 experimental context.

156 We predicted that the attunement of N400 amplitude to speaker-based surprisal over the course
157 of the experiment would be reduced with increasing age. We further expected that the rela-
158 tionship between the N400 and speaker-based surprisal would be additionally modulated by
159 aperiodic activity, such that older adults with a steeper aperiodic slope would show stronger
160 model adaptation effects than those with a flatter slope.

161 2 Results

162 In addition to the main language processing task, participants were exposed to a passive au-
163 ditory oddball paradigm. The mismatch negativity (MMN) elicited in such paradigms has been
164 discussed extensively in relation to predictive model updating (e.g. Garrido et al., 2009) and
165 associated changes across the adult lifespan (Moran et al., 2014). We thus utilised ERP esti-
166 mates derived from the oddball paradigm as individual differences measures for the language
167 processing task, supplementing resting-state aperiodic slope and intercept as our main indi-
168 vidual differences measures of interest. We also examined peak alpha frequency (Individual
169 Alpha Frequency, IAF) and Idea Density (ID), to allow for comparisons with our previous work
170 on young adults (Bornkessel-Schlesewsky et al., 2022), as well as measures of cognitive ability
171 and language proficiency.

172 In the following, we first discuss the individual differences measures, before turning to the
173 results for the main language processing task.

174 2.1 Individual differences measures

175 2.1.1 Auditory oddball paradigm

176 In a first step, we analysed the MMN and P3 ERP components elicited within the passive auditory
177 oddball paradigm. The main rationale for doing so was to use these as individual differences
178 measures for the magnitude of predictive auditory model updating (MMN) and neural gain con-
179 trol (P3), respectively. The MMN has been linked to precision-weighted prediction error signals
180 in auditory processing (Todd et al., 2014; Todd et al., 2011; Todd et al., 2013) and was used by
181 Moran et al. (2014) in their analysis of changes in predictive model updating across the adult
182 lifespan. By contrast, the P3 has been associated with activation of the noradrenergic system
183 and can thus serve as a proxy for phasic changes in gain control engendered by the release
184 of noradrenaline from the brainstem locus coeruleus (Nieuwenhuis et al., 2005). Note that, ac-
185 cording to Nieuwenhuis et al. (2005), this is the case for both the target-related, posteriorly
186 distributed P3b and the more anterior P3a elicited in a passive oddball paradigm such as the
187 one employed here.

188 Grand average ERPs for the oddball paradigm are shown in Figure 1. The figure shows the
189 expected biphasic MMN-P3 pattern for oddball versus standard tones across all three age

190 groups.

Auditory oddball paradigm ROI-based average by age group

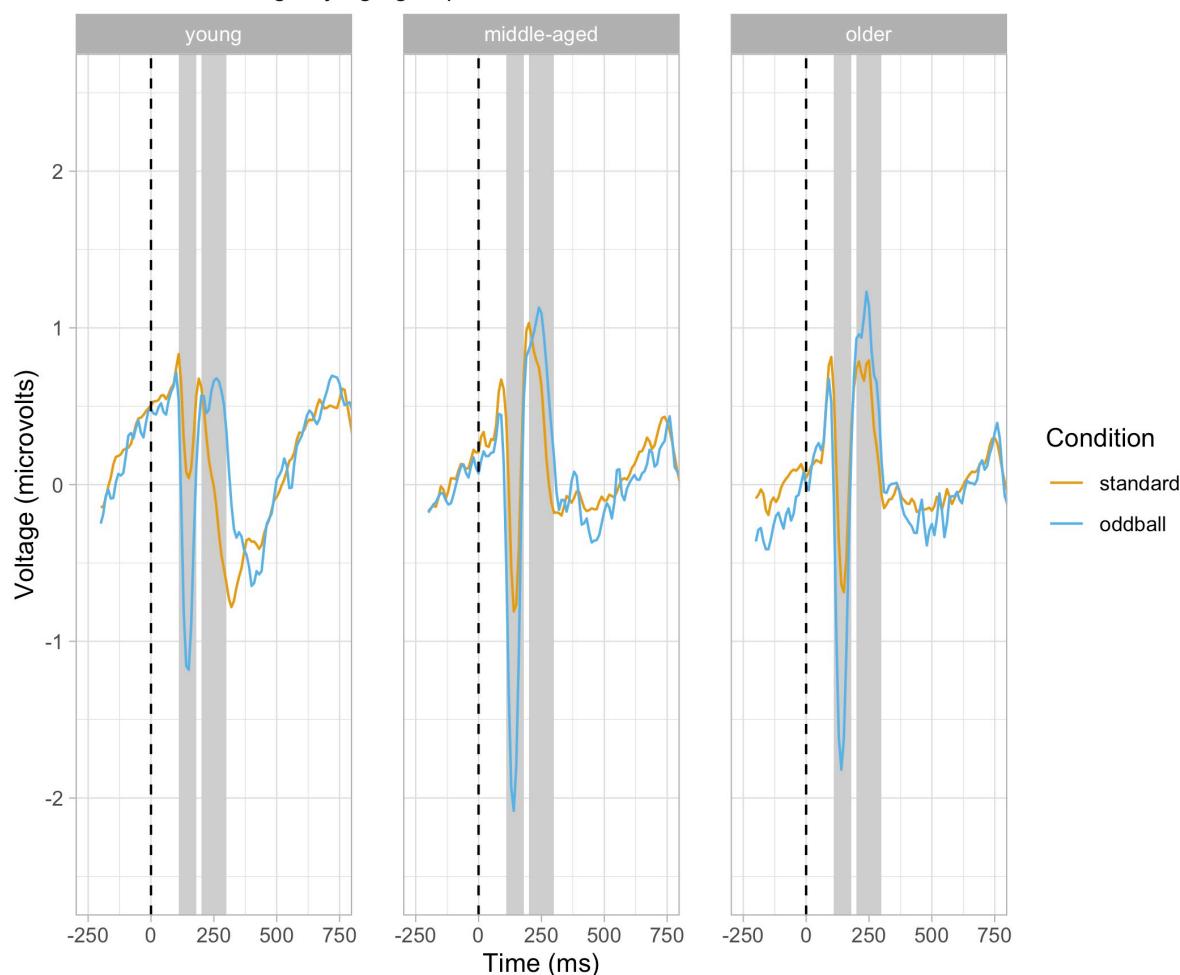


Figure 1: Grand average ERPs elicited by the passive auditory oddball tasks. ERP traces are averaged within the fronto-central region of interest (ROI) used for analysis. Tone onset occurred at the dashed vertical line and positivity is plotted upwards. Facets show the ERP responses by age group. Grey shaded areas indicate the time windows selected for analysis of the MMN and the P3, respectively.

191 For the analysis of the oddball data, we first examined the behaviour of the MMN and the P3
192 by investigating effects of Age and Epoch (as a proxy for time on task). To this end, we calcu-
193 lated linear mixed-effects models (LMMs) with fixed effects of Prestimulus amplitude, Condition
194 (standard vs. oddball), Age, Epoch, and their interaction. Random effects structures were de-
195 termined using the parsimonious model selection procedure described in section 4.8.1.
196 For the MMN, the final model included random intercepts by Participant and Channel as well as
197 by-participant random slopes of Prestimulus Amplitude and Condition. This model revealed an

198 interaction of Condition x Epoch x Age (Estimate = 0.0452, Std. Error = 0.0150, $z = 3.03, p =$
199 0.0025), which is visualised in the left-hand panel of Figure 2.

200 For the P3, the final model included random intercepts by Participant and Channel as well as
201 by-participant random slopes of Prestimulus Amplitude and Condition and by-channel random
202 slopes of Prestimulus Amplitude. Again, there was a significant interaction of Condition x Epoch
203 x Age (Estimate = 0.0429, Std. Error = 0.0155, $z = 2.76, p = 0.0058$). This interaction is
204 visualised in the right-hand panel of Figure 2.

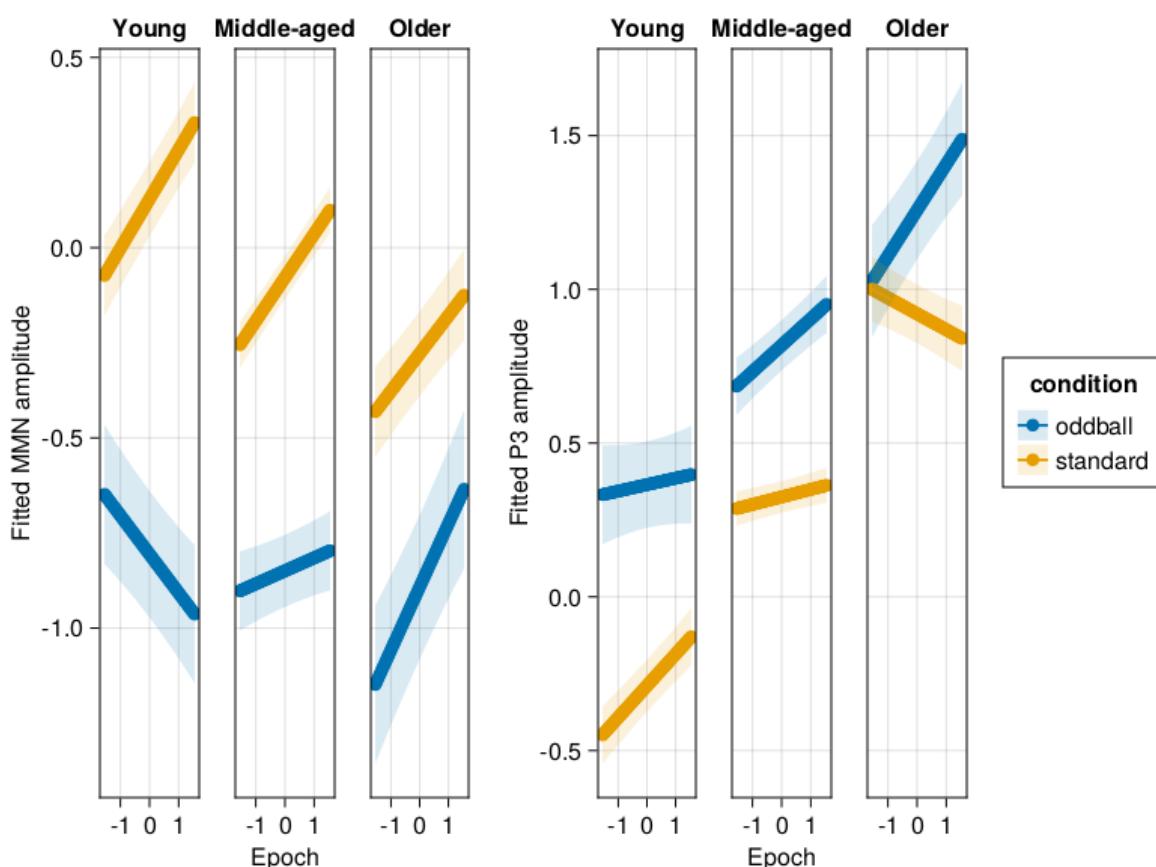


Figure 2: Effects of age and epoch on MMN (left panel) and P3 (right panel) amplitude in the auditory oddball task as modelled. The facets show fitted effects for young adults (estimated for age 18), middle-aged adults (estimated for age 51) and older adults (estimated for age 83), respectively. Note that the trichotomisation of age is for visualisation purposes only, with age included in the statistical models as a (standardised) continuous predictor. Shaded ribbons signify standard errors.

205 To extract by-participant MMN and P3 effect estimates as individual differences predictors,
206 we ran mixed models on amplitudes averaged over the electrodes in the ROI of interest and
207 over epoch for the MMN and P3 time windows, respectively. Prestimulus amplitude, Condition

208 and their interaction were included as fixed effects. The final, parsimoniously selected random
209 effects structure included a random intercept of participant and by-participant random slopes
210 of Prestimulus amplitude and Condition. We extracted individual fitted MMN and P3 effects
211 from this analysis for inclusion in the main mixed model analysis.

212 **2.1.2 Distribution of and correlations between individual differences measures**

213 The distribution of (z-transformed) individual differences variables is visualised in Figure 3.

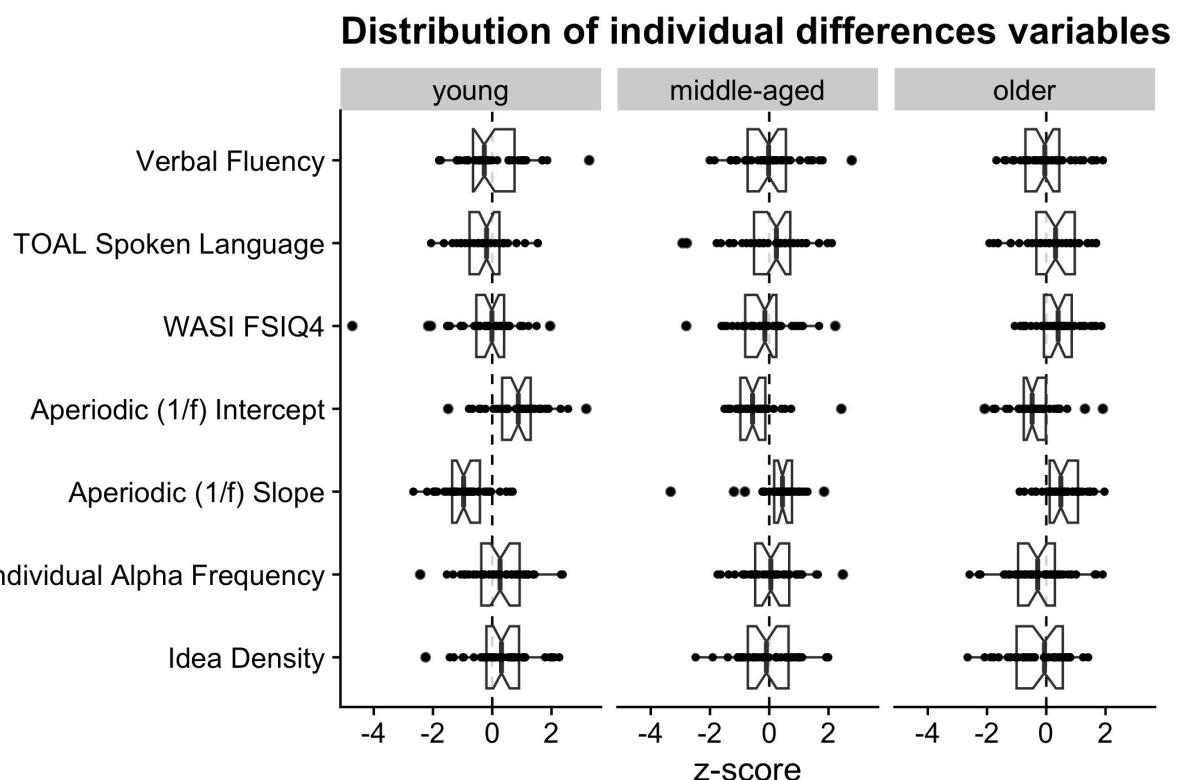


Figure 3: Distribution of the (z-transformed) resting-state EEG-based and behavioural individual differences metrics by age group.

214 Correlations between the individual differences measures collected as part of this experiment
215 are visualised in Figure 4.

216 As expected, age showed a correlation with a number of the metrics of interest. Replicating
217 previous results, older age was associated with a downshifting of the aperiodic intercept, a
218 shallower aperiodic slope (note that steeper slopes are denoted by more negative values, hence
219 the negative correlation here), a lower individual alpha peak frequency (IAF) and lower Idea
220 Density (ID). The relationship between age and the aperiodic intercept and slope parameters

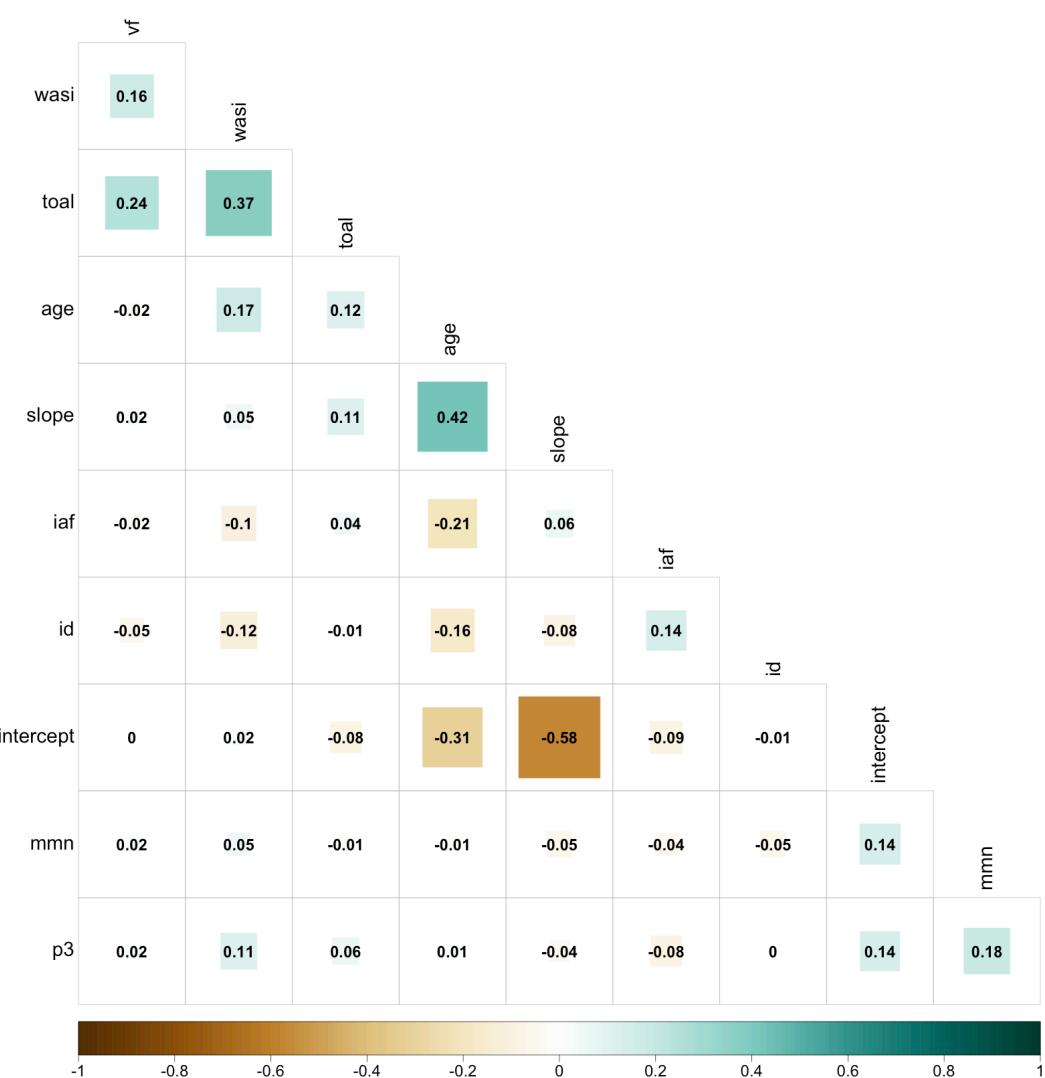


Figure 4: Visualisation of the correlation coefficients (Kendall's τ) between individual differences predictors for the present study.

- 221 was more substantial than that with the other predictors. Note that aperiodic slope and intercept
 222 also showed a moderate correlation such that higher intercepts were associated with steeper
 223 slopes.
- 224 The three cognitive metrics, WASI FSIQ-4 as a measure of cognitive ability, TOAL-4 as a mea-
 225 sure of spoken language proficiency, and verbal fluency, were positively correlated with one
 226 another. This is perhaps not surprising given that all involve tests of language abilities.
- 227 The two metrics derived from the auditory oddball paradigm, MMN and P3 amplitude, showed

228 a small positive correlation with one another and with aperiodic intercept.

229 **2.2 Main language processing task**

230 In the following, we report the analysis of the main language processing task. Here, we ex-
231 amined the extent to which the amplitude of the N400 ERP attuned to speaker-based surprisal
232 over the course of the experiment and how this attunement was modulated by age and individual
233 differences. We begin by focusing on effects of age only, before examining whether individual
234 differences metrics derived from neurophysiological and behavioural measures can explain vari-
235 ance in the N400 response over and above that already accounted for by age differences.

236 **2.2.1 More conservative model adaptation to novel language input in older adults**

237 In addition to Age, Speaker-based Surprisal, Epoch (as a proxy for time on task), Canonicity,
238 Word frequency and Prestimulus Amplitude (Alday, 2019), we included the follwoing control
239 variables as fixed effects: Quadratic prestimulus amplitude, Quadratic speaker-based surprisal
240 and Cubic speaker-based surprisal (see section 4.8.1 for details). The random effects struc-
241 ture was determined using a parsimonious model selection procedure, as described in section
242 4.8.1.

243 Multiple five-way interactions involving our three predictors of main interest, Speaker-based
244 Surprisal, Epoch and Age, reached significance (see the model summary in the Appendix for
245 details).

246 However, as we consider Prestimulus amplitude, Word frequency and Canonicity covariates of
247 no interest for the present analysis, we focus on the interaction of Age x Speaker-based surprisal
248 x Epoch (Estimate = 0.0484, Std. Error = 0.0115, $z = 4.20$, $p < 0.0001$), which is visualised in
249 Figure 5

250 The figure indicates that younger adults show a strong attunement to speaker-based surprisal
251 over the course of the experiment: note the strong relationship between N400 amplitude and
252 speaker-based surprisal in the right-hand facet of the figure. This attunement is reduced in
253 middle-aged adults and absent in older adults, who in fact even show a slight tendency towards
254 an inverted effect at the end of the experiment. These results support our hypothesis that
255 ageing is associated with a slowed rate of sensory learning, in this case through the novel
256 characteristics of the speakers' adjective order choices within the context of the experiment,

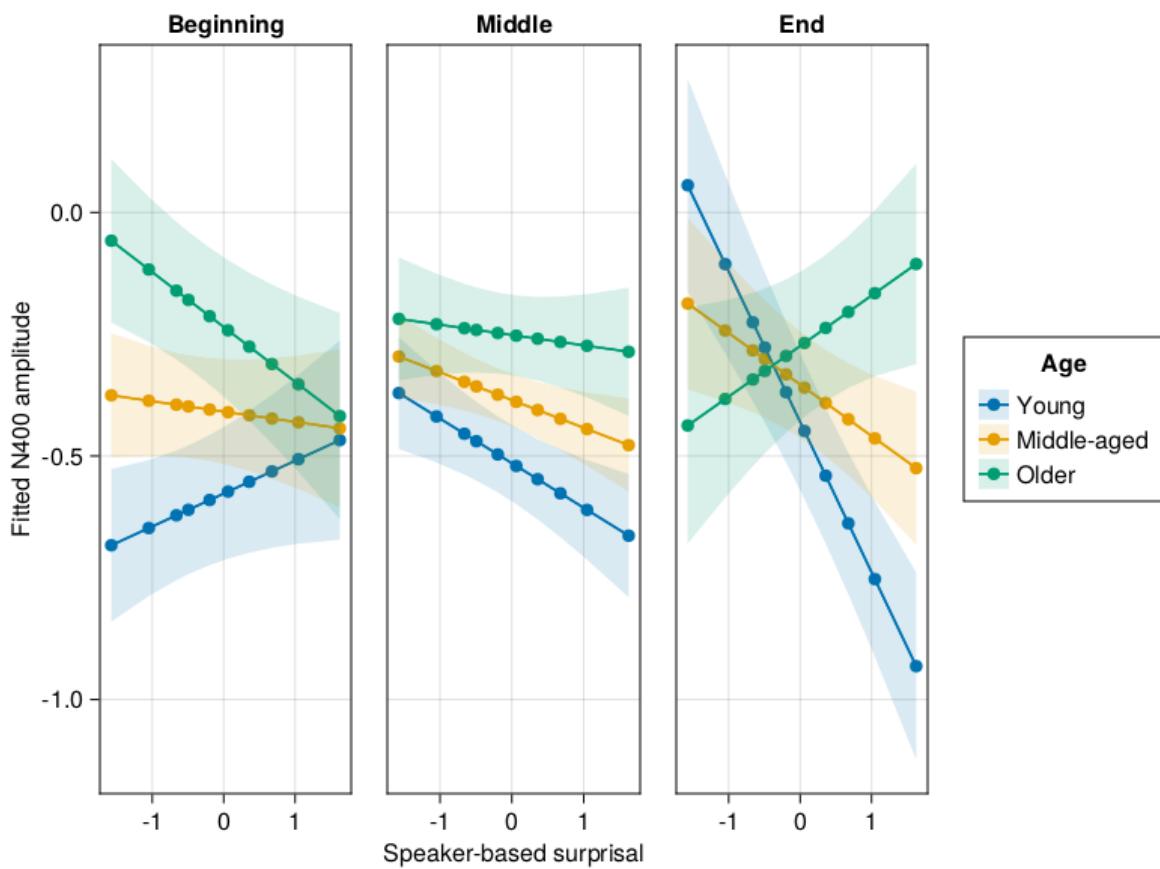


Figure 5: Effects of age on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the first quantile), middle (median) and end (last quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for the minimum, median and maximum ages in our sample) but was entered into the statistical model as a continuous predictor. Speaker-based surprisal is visualised from the 5th to the 95th quantile to remove extreme values. Shaded ribbons signify standard errors.

257 and increased reliance on established top-down predictive models.

258 **2.2.2 Individual differences in predictive language model updating beyond those of
259 age**

260 On account of the relationship between age and most of the individual differences predictors of
261 interest, the individual differences predictors were residualised on age prior to being included
262 in any LMMs of interest. To this end, linear regressions were run with the individual differences
263 predictor as the outcome variable and linear, quadratic and cubic effects of age included in
264 successive models and compared to a base model including only an intercept term. Likeli-

	model	dof	deviance	AIC	BIC
1	Age only	130	1804097	1804357	1805744
2	Slope	211	1801598	1802020	1804271
3	Intercept	202	1802574	1802978	1805133
4	IAF	202	1802493	1802897	1805052
5	ID	202	1803126	1803530	1805685
6	VF	195	1803805	1804195	1806276
7	TOAL	202	1803341	1803745	1805900
8	WASI	202	1803094	1803498	1805653

Table 1: Comparison of goodness-of-fit metrics for the LMM involving only age and the individual differences models.

265 hood ratio tests were used in a forward model selection procedure to determine the best-fitting
266 model. For a visualisation of the results, see Figure 12 in the Appendix.

267 Goodness-of-fit metrics for the individual differences models in comparison to the model with-
268 out individual differences (including only age) are shown in Table 1. All individual differences
269 measures improved model fit in terms of AIC over the model including age alone. The slope,
270 intercept and ID models also showed a better fit to the data than the base model in terms of
271 BIC, with the IAF and WASI models showing a very slight improvement in terms of BIC.

272 Full model summaries for all of the individual differences models are included in the Appendix.

273 **Aperiodic (1/f) slope** For aperiodic slope, the highest-order significant interaction was that
274 of Prestimulus Amplitude x Age x Frequency x Speaker-based Surprisal x Canonicity x Epoch
275 x Slope (Estimate = -0.1372, Std. Error = 0.0558, z = -2.46, p < 0.0139). However, in view of
276 the fact that, as noted above, Prestimulus Amplitude, Canonicity and frequency are covariates
277 of no interest in the present analysis, the interaction of main interest was Age x Speaker-based
278 Surprisal x Epoch x Slope (Estimate = -0.3335, Std. Error = 0.0746, z = -4.47, p < 0.0001).
279 This interaction is visualised in Figure 6.

280 **Aperiodic Intercept** The analysis of the aperiodic intercept data revealed several 6-way in-
281 teractions and a five-way interaction of Age x Speaker-based Surprisal x Canonicity x Epoch
282 x Intercept (Estimate = -0.07977, Std. Error = 0.01667, z = -4.79, p < 0.0001). However, the
283 main interaction not including the covariates of no interest did not reach significance: Age x
284 Speaker-based Surprisal x Epoch x Intercept (Estimate = 0.01166, Std. Error = 0.0170, z = 0.69,
285 p = 0.4930).

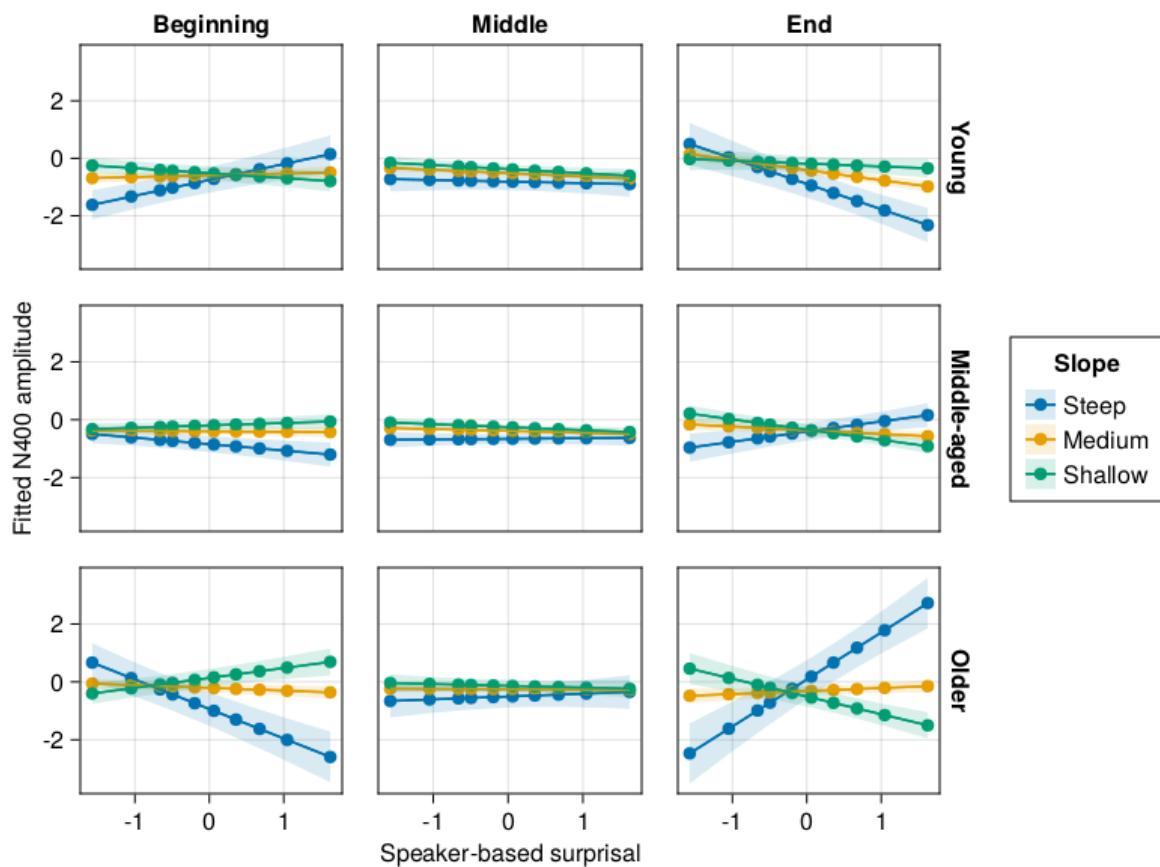


Figure 6: Effects of age and (age-residualised) aperiodic slope on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the first quantile), middle (median) and end (last quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for ages 18, 50 and 83 as the minimum, median and maximum of ages in our sample) but was entered into the statistical model as a continuous predictor. Speaker-based surprisal is visualised from the 5th to the 95th quantile to remove extreme values. Shaded ribbons signify standard errors.

286 Effects are visualised in Figure 7.

287 **Individual Alpha Frequency (IAF)** As for the aperiodic intercept, the analysis of IAF revealed
 288 several 6-way interactions, but the main interaction of interest without the covariates of no
 289 interest did not reach significance: Age x Speaker-based Surprisal x Epoch x IAF (Estimate =
 290 -0.01080 , Std. Error = 0.0179 , $z = -0.60$, $p = 0.5469$). This is reflected in the visualisation in
 291 Figure 8.

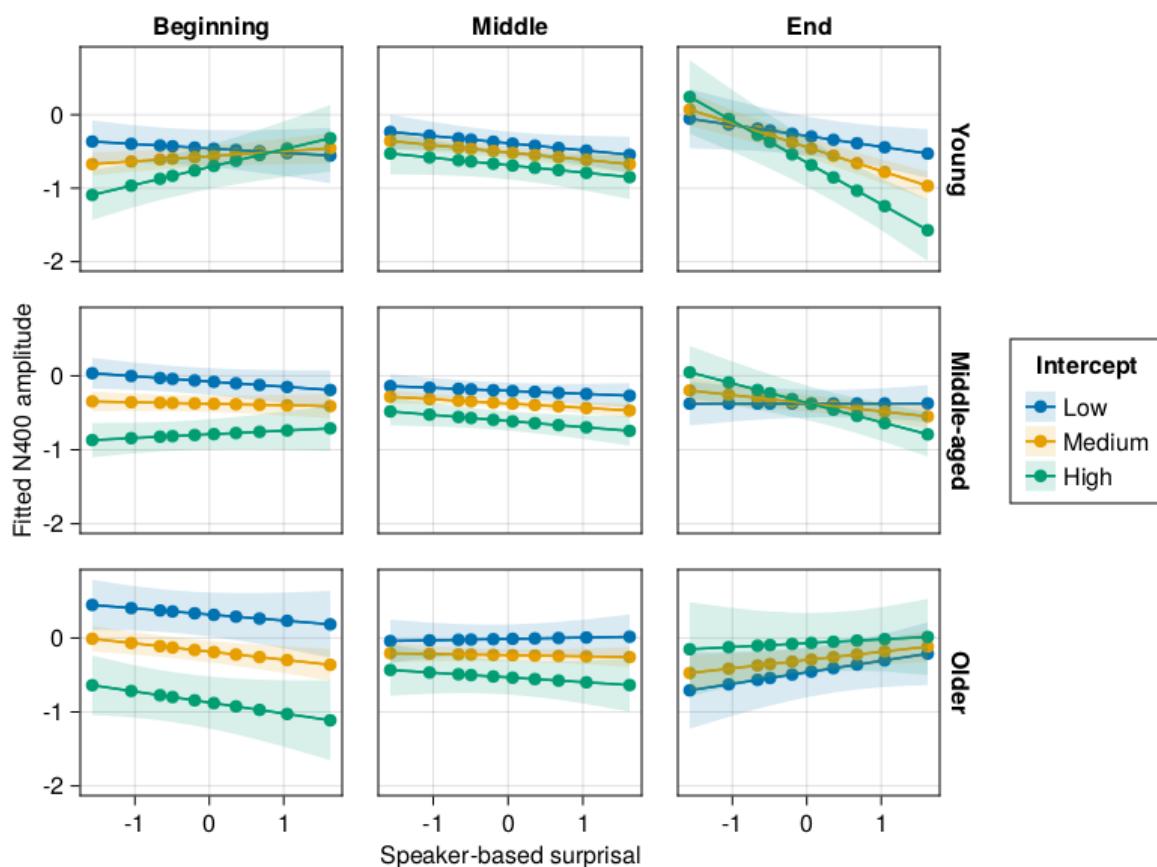


Figure 7: Effects of age and (age-residualised) aperiodic intercept on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the first quantile), middle (median) and end (last quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for ages 18, 50 and 83 as the minimum, median and maximum of ages in our sample) but was entered into the statistical model as a continuous predictor. Speaker-based surprisal is visualised from the 5th to the 95th quantile to remove extreme values. Shaded ribbons signify standard errors.

292 **Idea Density** For Idea Density, the analysis showed a significant top-level interaction of Pres-
 293 stimulus Amplitude x Age x Frequency x Speaker-based Surprisal x Epoch x Idea Density (Esti-
 294 mate = 1.4510, Std. Error = 0.3534, $z = 4.11$, $p < 0.0001$). The relevant lower-order interaction
 295 was, however, once again not significant: Age x Speaker-based Surprisal x Epoch x Idea Density
 296 (Estimate = 0.0142, Std. Error = 0.3445, $z = 0.04$, $p = 0.9672$). This is again reflected in Figure
 297 9.

Figure 8: Effects of age and (age-residualised) individual alpha frequency (IAF) on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the first quantile), middle (median) and end (last quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for ages 18, 50 and 83 as the minimum, median and maximum of ages in our sample) but was entered into the statistical model as a continuous predictor. Speaker-based surprisal is visualised from the 5th to the 95th quantile to remove extreme values. Shaded ribbons signify standard errors.

298 **Cognitive Measures** As is apparent from Table 1, the model including verbal fluency showed
 299 only very little improvement over the model only including age. AIC values for the TOAL and
 300 WASI models also indicated a worse fit for these models in comparison to the other individual
 301 differences predictors, with the exception of the IAF model, which showed similar AIC and BIC
 302 values to the WASI model.
 303 Analyses involving verbal fluency, TOAL and WASI scores as predictors did not yield very com-
 304 pelling results regarding individual differences beyond those of age. These analyses are thus
 305 reported in the Appendix (cf. Figures 13 – 15), which show extremely broad confidence intervals

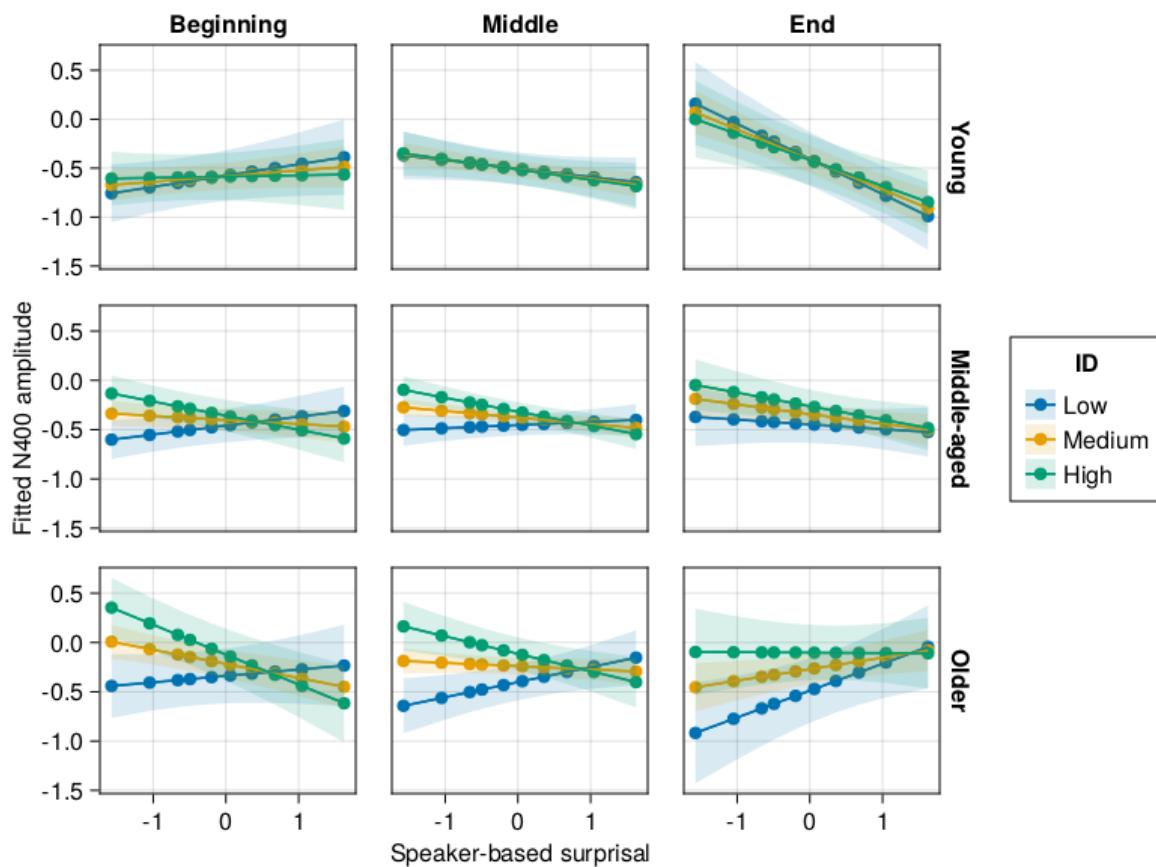


Figure 9: Effects of age and (age-residualised) Idea Density (ID) on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the 5th quantile), middle (50th quantile) and end (95th quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for ages 18, 50 and 83 as the minimum, median and maximum of ages in our sample) but was entered into the statistical model as a continuous predictor. Shaded ribbons signify standard errors.

306 and do not allow for any conclusions to be drawn for the influence of these individual differences
 307 predictors beyond the effect of age alone.

308 **MMN and P3 estimates from the auditory oddball task** By-participant fitted MMN and
 309 P3 values from the auditory oddball, again residualised against age, were used as two final
 310 individual differences predictors for the N400 analysis. These models needed to be fit to a
 311 slightly reduced sample of participants (n=114) due to missing values. Hence, to allow for a
 312 comparison with a base model only including age and no other individual-differences measures,
 313 we refit the best-fitting model without individual differences from the previous analysis to this

	model	dof	deviance	AIC	BIC
1	Age only	130	1756128	1756388	1757771
2	MMN	202	1754502	1754906	1757055
3	P3	202	1754346	1754750	1756900

Table 2: Comparison of goodness-of-fit metrics for the LMM involving only age and the individual differences models involving MMN and P3 estimates derived from the auditory oddball task.

314 reduced data set and verified that the random effects structure was motivated by the data. We
315 then proceeded to add the residualised, fitted MMN and P3 values (in separate models) as
316 for the other individual differences predictors above. Goodness-of-fit metrics for the model
317 comparison are shown in Table 2. As is apparent from the table, the MMN and P3 models
318 both improve model fit over and above the model only including age in regard to both AIC and
319 BIC.

320 For both the MMN and the P3, the analysis revealed several five-way interactions and the per-
321 tinent interaction without any covariates of no interest: Age x Speaker-based Surprisal x Epoch
322 x MMN amplitude (Estimate = 0.0566, Std. Error = 0.01698, z = 3.33, p = 0.0009); Age x
323 Speaker-based Surprisal x Epoch x P3 amplitude (Estimate = 0.0518, Std. Error = 0.0163, z =
324 3.18, p = 0.0015). These effects are visualised in Figures 10 and 11 for the MMN and the P3,
325 respectively.

326 3 Discussion

327 The present study examined lifespan changes in predictive model adaptation and the way in
328 which these are modulated by individual differences. Participants performed a naturalistic
329 auditory language comprehension task, in which we measured the adaptation of individual
330 brain responses to speakers' word order idiosyncrasies using the trial-by-trial-based measure
331 of speaker-based surprisal at the level of adjective clusters (cf. Bornkessel-Schlesewsky et al.,
332 2022). As hypothesised, the N400 ERP response's degree of attunement to speaker-based
333 surprisal was reduced with increasing age: young adults showed a strong alignment between
334 N400 amplitude and speaker-based surprisal by the end of the experimental session; this was
335 reduced for middle-aged adults and absent for older adults. All individual differences measures
336 explained additional variance in the N400 over and above that explained by age, suggesting
337 that individual differences in information processing modulate the effects of ageing. In the

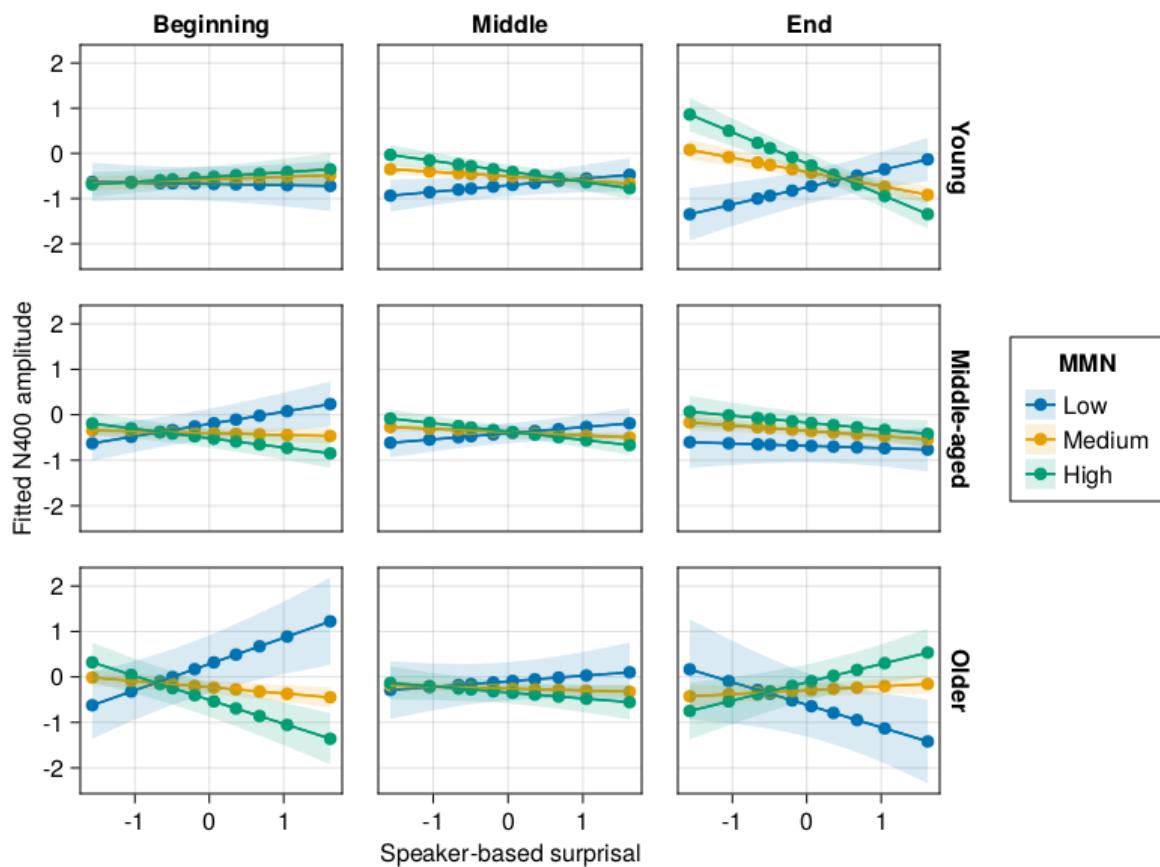


Figure 10: Effects of age and (age-residualised) fitted MMN amplitude (as derived from the auditory oddball task) on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the 5th quantile), middle (50th quantile) and end (95th quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for ages 18, 50 and 83 as the minimum, median and maximum of ages in our sample) but was entered into the statistical model as a continuous predictor. Shaded ribbons signify standard errors.

338 following sections, we first discuss the overall effects of age, before turning to an interpretation
 339 of the individual differences.

340 **3.1 Stronger reliance on top-down predictive models and reduced sensory learning in older adults**

342 The observation that N400 amplitude attunement to speaker-based surprisal is reduced with
 343 increasing age supports the hypothesis that ageing leads to a stronger reliance on established
 344 predictive models and, accordingly, a lower tendency to update these models based on unex-
 345 pected sensory input. While this has previously been reported for basic auditory processing

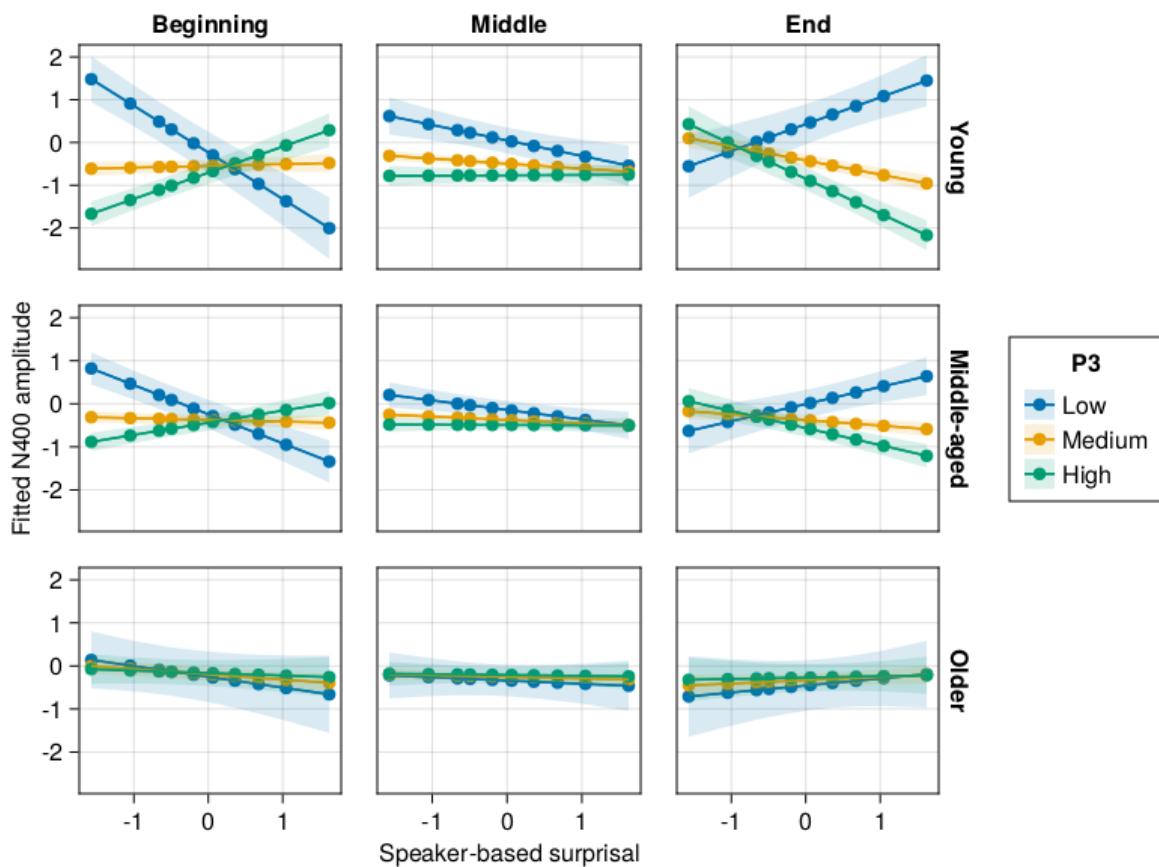


Figure 11: Effects of age and (age-residualised) fitted P3 amplitude (as derived from the auditory oddball task) on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the 5th quantile), middle (50th quantile) and end (95th quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for ages 18, 50 and 83 as the minimum, median and maximum of ages in our sample) but was entered into the statistical model as a continuous predictor. Shaded ribbons signify standard errors.

346 (Moran et al., 2014), multisensory illusions (Chan et al., 2021) and sensorimotor attenuation
 347 (Wolpe et al., 2016), the present study is the first to demonstrate that it also holds in the domain
 348 of higher-order language processing.

349 As argued by Moran et al. (2014), the stronger weighting of top-down model predictions in older
 350 adults has the functional benefit of reducing model complexity and avoiding overfitting. This
 351 is considered to reflect an optimisation of information processing over the adult lifespan. We
 352 suggest that the lower propensity for model updating may be promoted by several age-related
 353 neurophysiological changes. Older adults show higher levels of neural noise, as reflected in

354 shallower aperiodic slopes (Donoghue et al., 2020; Merkin et al., 2023; Voytek et al., 2015;
355 Waschke et al., 2017), and an age-related reduction of neural gain (Li et al., 2000; Li et al., 2001;
356 Li & Rieckmann, 2014; Li et al., 2006). Pertermann et al. (2019) recently provided empirical
357 evidence for a possible link between aperiodic activity and neural gain control. In Bornkessel-
358 Schlesewsky et al. (2022), we suggested that lower neural noise and increased neural gain may
359 allow for a more flexible deployment of precision-weighting mechanisms in predictive model
360 updating. Within such conditions, information that is more relevant in a given situation can be
361 distinguished more readily from irrelevant information, possibly leading to an increased allo-
362 cation of attention to high-precision sensory evidence (Parr & Friston, 2017). Age-related in-
363 creases in neural noise and concomitant reductions in neural gain reduce this ability for flexible
364 model adaptation, leading to decreased sensory learning and a stronger reliance on established
365 predictive (language) models (Moran et al., 2014).

366 Further support for this perspective comes from the passive auditory oddball task that our par-
367 ticipants completed in addition to the main language processing task. In contrast to younger
368 and middle-aged adults, who show a P3 effect for oddball versus standard tones across the en-
369 tire task, the P3 effect for older adults develops across the duration of the session. Older adults
370 thus require more time on task to attribute a motivationally significant status to the oddball
371 tone, as reflected by increased P3 amplitude (Nieuwenhuis et al., 2005). This is compatible
372 with the view that older adults are less readily able to distinguish between relevant and irrele-
373 vant stimuli.¹ Importantly, this result does not appear to be related to a reduced discriminability
374 of standard versus oddball tones for the older adults, as they show an MMN effect for oddball
375 versus standard tones throughout the experiment.²

376 **3.2 Individual differences in predictive model adaptation across the lifespan 377 are most pronounced for aperiodic slope and intercept**

378 While all individual differences metrics improved LMM fit over and above the inclusion of age
379 alone, the aperiodic metrics slope and intercept showed the most pronounced individual differ-
380 ences in relation to predictive model updating. Young adults with a steeper aperiodic slope and

¹Note that, given the passive nature of the oddball task, oddball stimuli were not task-relevant. Their motivational significance was thereby merely a function of their lower probability of occurrence. Importantly, Nieuwenhuis et al. (2005) explicitly extend their noradrenergic theory of P3 generation to both the target-related P3b and the novelty P3a, as observed in passive oddball tasks such as the one employed here.

²In contrast to the MMN effect for younger and middle-aged adults, older adults show a reduction of MMN amplitude over the course of the experiment. This is compatible with the findings reported by Moran et al. (2014).

381 those with a higher aperiodic intercept showed stronger model adaptation to speaker-based
382 surprisal in comparison to individuals with flatter slopes and lower intercepts (see Figures 6
383 and 7). While middle-aged adults with higher aperiodic intercepts still showed a slight ten-
384 dency towards adaptation, the analysis including intercept revealed no adaptation effects for
385 older adults. For aperiodic slope, there were no apparent effects for middle-aged adults, but a
386 “reversed” effect for older adults, with those with a steeper slope showing an anti-adaptation
387 effect of more pronounced N400 amplitudes for low vs. high speaker-based surprisal. We will
388 return to this unexpected effect below.

389 In contrast to aperiodic slope and intercept, Individual Alpha Frequency (IAF) and the models
390 based on behavioural metrics did not shed any additional light on age-related changes in model
391 adaptation. IAF did not modulate the likelihood for adaptation, with low IAF individuals show-
392 ing generally more negative N400 amplitudes across all levels of speaker-based surprisal and
393 across all ages. In the Idea Density (ID) analysis, young adults showed a general adaptation
394 effect regardless of ID, while there was no discernible adaptation effect for the middle-aged or
395 older adults: confidence intervals for the effects at the end of the experiment were so broad
396 that we cannot distinguish between ID-related groups and there appears to be a generally high
397 degree of variability (cf. Figure 9). The behavioural metrics based on cognitive ability (WASI
398 FSIQ-4), verbal fluency (VF) and spoken language proficiency (TOAL-4) did not yield any com-
399 pelling results (see Figures 13–15 in the Appendix).

400 The overall pattern of results observed in the present study is thus driven most strongly by indi-
401 vidual differences in aperiodic slope and intercept. Interestingly, these were the two measures
402 that correlated most strongly with age (see Figures 3 and 4). It is striking, however, that individ-
403 ual differences in these measures not captured by age showed an accentuation of the pattern
404 beyond the effects explained by age alone. As discussed above, we assume that the lower lev-
405 els of neural noise and increased neural gain associated with steeper aperiodic slopes facilitate
406 the ability to flexibly discriminate between relevant and irrelevant sensory information from the
407 perspective of model updating (Bornkessel-Schlesewsky et al., 2022). This enables more rapid
408 learning, possibly mediated by precision-related shift in attention (Parr & Friston, 2017), and a
409 concomitant increase in the ability to adapt predictive models to the current sensory environ-
410 ment.

411 Less is known about the role of the aperiodic intercept in ageing, beyond the basic observation

412 that the age-related downshifting of the intercept likely reflects reduced aggregate population
413 spiking (Donoghue et al., 2020; Voytek & Knight, 2015). This renders any interpretation of our
414 intercept-related results somewhat more speculative. Recall that there is a moderate corre-
415 lation between intercept and slope ($\tau = -0.58$) in the present sample, with higher intercepts
416 associated with steeper slopes. Thus, to a certain extent, the pattern observed here for aperi-
417 odic intercept may simply reflect this relationship. Note, however, that the pattern of results was
418 not entirely mirrored between the two metrics, thus suggesting at least partially differentiable
419 mechanisms.

420 We suggest that the results observed for the MMN and P3 when included as individual differ-
421 ences predictors within the N400 models could help to illuminate this putative functional disso-
422 ciation between aperiodic slope and intercept. The pattern for the MMN (Figure 10) closely mir-
423 rored that observed for the slope: larger individual MMN effects were associated with stronger
424 model adaptation to speaker-based surprisal for younger adults, while there was an inverse
425 (“anti-adaptation”) effect for older adults with more pronounced MMN amplitudes. In contrast,
426 the pattern for the P3 (Figure 11) more closely mirrored that for the intercept, with larger P3
427 effects associated with stronger model adaptation in young adults in particular. The MMN is
428 viewed as an index of sensory learning in predictive coding accounts (Garrido et al., 2009;
429 Moran et al., 2014), with the MMN effect (the amplitude difference between oddball and stan-
430 dard stimuli) thought to reflect the increasing precision of internal model predictions about the
431 standard stimulus (Friston, 2005; Todd et al., 2014; Todd et al., 2011; Todd et al., 2013). The P3,
432 by contrast, reflects the processing of motivationally significant stimuli and is associated with
433 increased neural gain through the release of noradrenaline from the locus coeruleus (Nieuwen-
434 huis et al., 2005). In the literature on the role of precision in predictive model updating, P3
435 effects have been linked to prediction errors on the probabilistic context in which stimuli ap-
436 pear – which defines stimulus precision – as opposed to prediction errors about the (content
437 of) the stimulus itself (Feldman & Friston, 2010). This distinction between inferences about the
438 content of a sensory signal and inferences about its precision has been described as akin to
439 the dissociation between first-order statistical inferences (estimating the mean) and second-
440 order statistical inferences (estimating the variance) (Hohwy, 2012). Accordingly, MMN effects
441 in the present study can be viewed as reflecting precision-weighted prediction errors about
442 each tone, while P3 effects reflect prediction errors about the precision itself (cf. Schröger et
443 al., 2015). Both aspects ultimately contribute to learning and the likelihood for model updating.

444 Building on these insights, the current results provide initial evidence to suggest that aperiodic
445 slope / neural noise may be more strongly associated with individual differences in first-order
446 inferences (content-based prediction errors), while aperiodic intercept may more closely reflect
447 individual differences in second-order inferences (context-based prediction errors).

448 This account may also offer a possible explanation for the inverse (“anti-adaptation”) N400
449 effect observed for older adults with a steeper aperiodic slope. This effect was not expected and
450 we can only speculate as to its interpretation. Assuming that individuals with steeper aperiodic
451 slopes show an amplification of precision-weighted prediction error signals for sensory input,
452 it may be the case that, rather than leading to more rapid model adaptation as in young adults,
453 the competing tendency imposed by a strong, established predictive model in older adulthood
454 leads to a change of processing strategy for these individuals. Recognising the uncertainty of
455 the sensory input presented to them in the current experimental context, these individuals may
456 have eventually refrained from updating their models in response to surprising input. As noted
457 above, however, this explanation is a mere speculation at this point and will require further
458 examination in future research.

459 **3.3 Ageing effects on predictive language model updating**

460 The present study is by no means the first to examine higher-order language comprehension in
461 older adults. Intriguingly, a common conclusion from the relatively substantial existing literature
462 on ageing and the electrophysiology of sentence comprehension has been that older adults do
463 not draw on contextual information to the same extent as younger adults and, accordingly, that
464 they rely less on predictive language processing than younger adults (e.g. DeLong et al., 2012;
465 Federmeier & Kutas, 2005; Wlotko & Federmeier, 2012). For example, Wlotko and Federmeier
466 (2012) parametrically varied word predictability inside sentence contexts presented to young
467 and older adults, with predictability operationalised via a manipulation of cloze probability from
468 0 to 100. In contrast to the graded N400 response observed in young adults as a function of
469 the degree of constraint / predictability, they argued that older adults show more of a binary
470 response: they either derive some facilitation from the context for a predictable word (though
471 this is reduced in magnitude in comparison to younger adults) or not. Likewise, DeLong et al.
472 (2012) observed an N400 effect for unexpected versus expected articles in sentences such as
473 “The day was breezy, so the boy went outside to fly an/a ...” only for young but not for older adults.

474 This design has been argued to reflect prediction in sentence comprehension to a greater
475 degree than typical N400 paradigms, as the (un-)expectedness of the article does not stem
476 from its own meaning, which is the same for “a” and “an”, and rather depends on the following
477 noun (expected in this example: “kite”). Hence, an effect at the position of the article was
478 assumed to require a prediction-based rather than an integration-based interpretation (DeLong
479 et al., 2005); however, see Nieuwland et al. (2018), who failed to observe this effect in a large-
480 scale replication study of this result for young adults as originally reported by DeLong et al.
481 (2005).

482 These results initially seem incompatible with the current study in that they have collectively
483 been taken to suggest a reduced reliance on predictive language processing by older adults.
484 This is particularly interesting in view of the fact that, like the present results, the broader pre-
485 dictive coding literature outside of language suggests a higher reliance on top-down predictive
486 models with increasing age rather than a shift away from predictive processing (Chan et al.,
487 2021; Moran et al., 2014; Wolpe et al., 2016). Note, however, that the present design differs from
488 existing ageing studies in the language literature in that prediction errors allow for learning
489 across the experimental session based on the novel adjective order patterns produced by each
490 speaker. By contrast, typical studies examining the interplay between ageing and sentence-
491 internal constraint or predictability do not contain any information that allows for learning to
492 occur across trials. Thus, an alternative interpretation of these existing results is that, in experi-
493 mental settings involving a relatively large number of unexpected continuations (as is typical in
494 traditional psycholinguistic experiments), older adults are more sensitive to the lower precision
495 of the sensory input and thus tend to update their models less strongly than younger adults.
496 Likewise, in the current experiment, older adults did not use the prediction errors elicited by
497 unexpected adjective orders to learn / update their existing predictive models as strongly as
498 younger and even middle-aged adults in spite of the fact that learning would have been possi-
499 ble across the course of the experiment here. Overall, we suggest that the data are compatible
500 with the notion that older adults show a lower precision-weighting of prediction errors during
501 language comprehension, with a concomitant reduction of internal model updating.

502 3.4 Summary and conclusions

503 By means of a moderately large lifespan sample ($n=120$; age-range: 18–83 years), the present
504 study was the first to demonstrate that older adults show a stronger reliance on top-down predic-
505 tive models and reduced learning based on sensory information during higher-order language
506 comprehension. Similar findings have previously been reported for perceptual and sensorimo-
507 tor processing. For older adults, our results showed a less pronounced adaptation of the N400
508 event-related potential to a trial-by-trial measure of adjective order expectedness within the ex-
509 perimental context given the idiosyncrasies of a particular speaker (“speaker-based surprisal”).
510 This effect was graded across the adult lifespan, with younger adults showing the most pro-
511 nounced degree of N400 amplitude adaptation, middle-aged adults showing a modest degree
512 of adaptation and older adults, as a group, showing very little apparent adaptation.
513 Age-based differences were additionally modulated by individual differences measures, with
514 resting-state derived aperiodic (1/f) slope and intercept metrics appearing to most clearly mod-
515 ulate individual model adaptability. Young participants with a steeper aperiodic slope or a
516 higher aperiodic intercept showed the strongest model adaptation within their age group, with
517 middle-aged adults with a high intercept also showing a more pronounced tendency towards
518 model adaptation than those with a lower intercept. The patterns for aperiodic slope and inter-
519 cept were mirrored by those using individual MMN and P3 amplitude estimates derived from
520 a passive auditory oddball task as predictors, respectively. Through the association with the
521 MMN and P3, we suggest that age-related changes in aperiodic slope / neural noise may be
522 associated with changes in the magnitude of precision-weighted prediction errors signals to
523 sensory input (first-order inferences), while changes in aperiodic intercept / aggregate popula-
524 tion spiking may relate to the estimation of precision itself (second-order inferences) within the
525 current environment. Together, these two mechanisms contribute to sensory learning by deter-
526 mining the precision-weighting of prediction errors, the main mechanism within the predictive
527 coding framework that determines how an internal model will be updated in the face of unex-
528 pected sensory input. Our findings suggest that it may be fruitful to examine whether these two
529 purported mechanisms are indeed separable, associated with distinct individual differences in
530 information processing, and potentially contribute jointly but dissociably to the higher reliance
531 on top-down predictive model information by older adults.

532 4 Materials and Methods

533 4.1 Participants

534 One hundred and twenty adults (88 identifying as female, 31 identifying as
535 other; mean age: 47.7 years, sd: 19.9, range: 18–83) participated in the experiment. In order to
536 ensure approximately equal sampling across the adult lifespan, 40 were young adults (under 40
537 years of age), 40 were middle aged (between 40 and 60 years of age) and 40 were older adults
538 (over 60 years of age). One hundred and nineteen participants were right-handed as assessed
539 by the Edinburgh handedness inventory (Oldfield, 1971) and 1 was left-handed. All participants
540 were native speakers of English who had not learned another language prior to starting school.
541 They reported having no diagnosis of neurological or psychiatric conditions, normal hearing and
542 normal or corrected-to-normal vision. The experimental protocol was approved by the University
543 of South Australia's Human Research Ethics Committee (protocol number 36348).

544 Three participants were excluded from the analysis of the main experimental task due to missing
545 values in one of the key individual differences predictors.

546 The data for the young adults (main language processing task; individual differences measures
547 of aperiodic slope, individual alpha frequency and idea density) were originally reported in
548 Bornkessel-Schlesewsky et al. (2022, Experiment 2) and are reanalysed here for the purposes
549 of the lifespan comparison.

550 4.2 Materials

551 The materials were identical to those in Bornkessel-Schlesewsky et al. (2022, Experiment 2).
552 Participants were presented with 150 short passages (approx. 5 sentences in length), each of
553 which contained two critical two-adjective noun phrases (NPs; e.g. “the huge grey elephant”).
554 An example passage is provided below:

555 *Example of the passages presented to participants in the current study:*

556 Florence was enjoying her long-awaited holiday in Singapore with her close friends.
557 One of the activities she was most looking forward to was visiting the zoo, where she
558 had the opportunity to ride a **huge grey elephant**. Although standing in the **warm**
559 **humid air** was dreadful, being waved to through the enclosure by the zookeeper
560 brought a smile to her face.

561 The position of the critical NPs within each passage varied so as to not be predictable. The
562 order of the prenominal adjectives either adhered to the expected sequence of “value > size
563 > dimension > various physical properties > colour” (Kemmerer et al., 2007, p.240) or did
564 not. Passages were recorded by two male speakers of Australian English with the probability
565 of adjectives in the critical NPs occurring in an expected or unexpected order manipulated
566 across speakers (~ 70%:30% vs. ~ 30%:70%). The assignment of speakers to producing more
567 expected or unexpected orders was counterbalanced across participants. To further accentuate
568 the speaker-specific characteristics, presentation of the two speakers was alternated in a block-
569 based manner: one block of the canonical speaker was followed by two blocks of the non-
570 canonical speaker and two further blocks of the canonical speaker.

571 Comprehension questions were presented after approximately 1/3 of all passages (randomly
572 distributed) to ensure attentive processing. An example comprehension question for the above
573 example is: “Did the zookeeper wave at Florence?” (correct answer = yes).

574 4.3 Language Models

575 We employed the novel measure of speaker-based surprisal, as first introduced in Bornkessel-
576 Schlesewsky et al. (2022), to examine how individuals differ in the adaptation of their predictive
577 models to the current environment during language processing. Speaker-based surprisal was
578 calculated as bigram-based surprisal for the second adjective (ADJ2) in the critical 2-adjective
579 NPs embedded in the passages. To track predictability at the level of adjective within the ex-
580 perimental environment, we established adjective clusters using pre-derived word vectors from
581 van Paridon and Thompson (2021) to determine similarities between adjectives, followed by a
582 PCA-based dimensionality reduction and k-means clustering. For the 6 adjective clusters de-
583 termined in this manner we calculated the NP-by-NP cumulative intra-experimental frequencies
584 for the ADJ1-ADJ2 bigram cluster and the ADJ1 unigram cluster and then computed surprisal
585 according as follows:

$$586 \text{surprisal(ADJ2)} = -\log\left(\frac{\text{ClusterBigramFrequency(ADJ1ADJ2)}}{\text{ClusterUnigramFrequency(ADJ1)}}\right)$$

586 Here, *ClusterBigramFrequency(ADJ1ADJ2)* refers to the frequency with which two-adjective bi-
587 grams comprising a first adjective belonging to the cluster of ADJ1 and a second adjective be-

588 longing to the cluster of ADJ2 occurred in the experiment, while *ClusterUnigramFrequency(ADJ1)*
589 refers to the frequency with which adjectives belonging to the cluster of ADJ1 occurred in the
590 experiment. To track surprisal fluctuations on an incremental, trial-by-trial basis, we calculated
591 the NP-by-NP cumulative intra-experimental frequencies for the ADJ1-ADJ2 bigram cluster and
592 the ADJ1 unigram cluster and then computed surprisal as described above. This was done
593 separately for each speaker, thus allowing us to examine to what extent participants' expec-
594 tations adapted to the distributional properties of each of the two speakers within the experi-
595 ment. Using speaker-based surprisal, we aimed to examine how participants' N400 responses
596 – as an assumed proxy for precision-weighted prediction error signals – were modulated by the
597 exposure to adjective order variations throughout the course of the experiment and by each
598 speaker.

599 For further details on the computation of speaker-based surprisal and examples of the adjec-
600 tive clusters derived using the procedure outlined above, see Bornkessel-Schlesewsky et al.
601 (2022).

602 **4.4 Behavioural individual differences measures**

603 **4.4.1 Idea density (ID)**

604 Participants were given 10 minutes to produce a written text sample of approximately 300
605 words in response to the prompt “Describe an unexpected event in your life”. From this text,
606 we calculated ID using the automated Computerized Propositional Idea Density Rater (CPIDR;
607 Brown et al., 2008).

608 **4.4.2 Cognitive tests**

609 Participants completed an additional battery of cognitive tests. These included:

- 610 • The four-subtest version of the Wechsler Abbreviated Scale of Intelligence - Second Edi-
611 tion (WASI-II; Pearson Clinical), comprising Block design, Vocabulary, Matrix reasoning
612 and Similarities tasks
- 613 • Three subtests from the Test of Adolescent and Adult Language-Fourth Edition (TOAL-4),
614 namely Word opposites, Derivations and Spoken analogies
- 615 • Semantic and phonological verbal fluency tasks

- 616 • A computer-based hearing test to measure pure-tone hearing thresholds (pure-tone au-
617 diometry)

618 **4.5 Procedure**

619 Participants completed two in-lab testing sessions: (1) a behavioural session comprising the
620 cognitive tests/text sample production, and (2) an EEG session comprising the collection of
621 resting-state EEG recordings as well as the main language comprehension task. Sessions were
622 either completed on the same day, separated by a break (approx. 30 minutes), or on two days
623 (with the second session completed within 7 days of the first session).

624 **4.5.1 Behavioural session**

625 After the consent process, participants provided demographic, language and well-being details
626 and subsequently completed the cognitive tests. The behavioural session took maximally 1.5
627 hours to complete.

628 **4.5.2 EEG session**

629 In the EEG session, participants were fitted with an EEG cap and first underwent a 2-minute
630 eyes-open and 2-minute eyes-closed resting state EEG recording. The resting-state recordings
631 were repeated at the end of the experimental session. Note that a subset of participants com-
632 pleted two (rather than one) eyes-closed resting state EEG recording sessions both before and
633 after the experiment: one in which they were instructed to relax and one in which they were
634 asked to try to keep their mind blank. For the purposes of calculating resting-state individual
635 difference metrics (IAF and 1/f slope), we used the eyes-closed recordings with the “relax” in-
636 structions, as these were comparable to the eyes-closed resting-state recordings with only a
637 single session.

638 In addition, participants completed a short (approximately 3.5 minute) passive auditory oddball
639 paradigm from the ERP Core package (Kappenman et al., 2020) prior to the main language
640 processing task (following Kurthen et al., 2020). For this task, they were presented with 290
641 1,000 Hz sine wave tones (100 ms duration) with a volume modulation: 230 standards at a
642 volume of 80 dB and 60 deviants at a volume of 70 dB. The inter-stimulus interval was jittered
643 between 450 and 550 ms.

644 In the main language processing task, trials commenced with a fixation asterisk, presented for
645 500 ms in the centre of a computer screen, followed by the auditory presentation of a passage
646 via loudspeakers. After audio offset, the fixation asterisk remained on screen for another 500
647 ms. A comprehension question followed in approximately 1/3 of all trials, with participants
648 responding “yes” or “no” via a game controller (maximal response time: 4000 ms). Assignment
649 of “yes” and “no” responses to the left and right controller buttons was counterbalanced across
650 participants. When there was no comprehension question, participants were asked to “Press
651 the YES key to proceed”. The next trial commenced after an inter-trial interval of 1500 ms.
652 Participants were asked to avoid any movements or blinks during the presentation of the fixation
653 asterisk if possible.

654 Comprehension data was not analysed in the present paper as the comprehension task was
655 merely intended to ensure attentive processing.

656 The 150 passages were presented in 5 blocks, separated by short self-paced breaks. Prior to
657 commencing the main task, participants completed a short practice session. After the main
658 task, the resting state recordings were repeated. Overall, the EEG session took approximately
659 3 hours including electrode preparation and participant clean-up.

660 **4.6 EEG recording and preprocessing**

661 The EEG was recorded from 64 electrodes mounted inside an elastic cap (actiCAP) using a Brain
662 Products actiCHamp amplifier (Brain Products GmbH, Gilching, Germany). The electrooculo-
663 gram (EOG) was recorded via electrodes placed at the outer canthi of both eyes as well as
664 above and below the left eye. The EEG recording was sampled at 500 Hz and referenced to
665 FCz.

666 Data preprocessing was undertaken using MNE Python version 1.0.3 (Gramfort et al., 2013;
667 Gramfort et al., 2014). All raw data files were first converted to the brain imaging data struc-
668 ture for electroencephalography (EEG-BIDS; Pernet et al., 2019) using the MNE-BIDS Python
669 package version 0.10 (Appelhoff et al., 2019). Subsequently, EEG data were re-referenced to
670 an average reference. EOG artefacts were corrected using an ICA-based correction procedure,
671 with independent components (ICs) found to correlate most strongly with EOG events (via the
672 `create_eog_epochs` function in MNE) excluded. Raw data were filtered using a 0.1 – 30 Hz
673 bandpass filter to exclude slow signal drifts and high frequency noise.

674 For the main language processing task, epochs were extracted in a time window from -200 to
675 1000 ms relative to critical word (ADJ2) onset and mean single-trial amplitudes were extracted
676 for the prestimulus (-200–0 ms) and N400 (300–500 ms) time windows using the `retrieve`
677 function from the `philistine` Python package (Alday, 2018).

688 For the auditory oddball task, epochs were extracted in a time window from -200 to 1000
689 ms relative to the onset of each tone and mean single-trial amplitudes were extracted for the
690 prestimulus (-200–0 ms), MMN (110–180 ms) and P3 (200–300 ms) time windows in a fronto-
691 central region of interest comprising electrodes Fz, FC1, FC2 and Cz. The ROI specification
692 and MMN time window were adopted from Kurthen et al. (2020), while the P3 time window was
693 selected via visual inspection of the grand average ERPs.

684 **4.7 Resting-state EEG-based individual differences measures: Individual alpha 685 frequency (IAF) and aperiodic (1/f) activity**

686 IAF and aperiodic slope estimates were calculated from participants' eyes-closed resting-state
687 recordings.

688 IAF (peak alpha frequency) was estimated from electrodes P1, Pz, P2, PO3, POz, PO4, O1 and O2
689 using a Python-based implementation (Alday, 2018) of the procedure described in Corcoran et
690 al. (2018) We calculated the mean of pre and post estimates for use as an individual differences
691 metric.

692 Aperiodic (1/f) intercept and slope estimates were calculated in Python using the YASA tool-
693 box (Vallat & Walker, 2021). YASA implements the irregular-resampling auto-spectral analysis
694 (IRASA) method for separating oscillatory and aperiodic activity (Wen & Liu, 2016). As for IAF,
695 by-participant intercept and slope estimates were computed as means of pre and post resting-
696 state recordings from electrodes: F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5,
697 CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO9, O1, O2, PO10, AF7, AF8, F5, F1, F2, F6, FT7, FC3, FC4,
698 FT8, C5, C1, C2, C6, TP7, CP3, CPz, CP4, TP8, P5, P1, P2, P6, PO7, PO3, POz, PO4, PO8.

699 **4.8 Data analysis**

700 Data analysis was undertaken using R (R Core Team, 2021) and Julia (Bezanson et al., 2017). For
701 data import and manipulation, we used the `tidyverse` collection of packages (Wickham et al.,
702 2019) as well as the `vroom` package (Hester & Wickham, 2021). Figures displaying the distribu-

703 tion and correlation of individual differences predictors were created in R using `ggplot2`. Other
704 packages used include `corrr` (Kuhn et al., 2020), `kableExtra` (Zhu, 2021) and `here` (Müller,
705 2020). For package version numbers, please see the analysis scripts provided with the raw
706 data (see Data Availability Statement). For R, see the html outputs in the `src/` subdirectory; for
707 Julia see the `Manifest.toml` file.

708 EEG data were analysed using linear mixed effects models (LMMs) with the `MixedModels.jl`
709 package in Julia (Bates et al., 2021). Effects plots were created in Julia using the `Effects.jl`
710 (Alday et al., 2022) and `AlgebraOfGraphics.jl` packages.

711 For the ERP data in the main language processing task, we examined single-trial N400 am-
712 plitude as our outcome variable of interest. As in Bornkessel-Schlesewsky et al. (2022), we
713 analysed mean EEG voltage in a time window from 300 to 500 ms post onset of the critical
714 second adjective (ADJ2) in a centro-parietal region of interest (C3, C1, Cz, C2, C4, P3, P1, Pz,
715 P2, P4, CP3, CP1, CPz, CP2, CP4).

716 4.8.1 Linear mixed modelling (LMM) approach

717 The modelling approach was analogous to that adopted in Bornkessel-Schlesewsky et al. (2022).
718 We used a parsimonious LMM selection approach (Bates et al., 2015; Matuschek et al., 2017) to
719 identify LMMs that are supported by the data and not overparameterised.

720 Fixed effects initially included log-transformed unigram frequency, speaker-based surprisal, ad-
721 jective order canonicity, epoch (as a proxy for time-on-task), mean prestimulus amplitude and
722 their interactions. Prestimulus amplitude (-200-0 ms) was included as a predictor in the model
723 as an alternative to traditional EEG baselining (see Alday, 2019). The categorical factor canon-
724 icity was encoded using sum contrasts (cf. Brehm & Alday, 2022; Schad et al., 2020) such that
725 model intercepts represent the grand mean. All continuous predictors were z-transformed prior
726 to being included in the models.

727 Although not of interest within the scope of the current paper, we modelled the main effect of
728 prestimulus amplitude with a second-order and the main effect of speaker-based surprisal with
729 a third-order polynomial trend. The inclusion of these higher-order trends was supported by the
730 data and significantly improved model fit. It further guarded against the interpretation of spuri-
731 ous interactions of their linear trends with other fixed effects (Matuschek & Kliegl, 2018).

732 The random-effect (RE) structure was selected in two steps, using likelihood-ratio tests (LRTs)
733 to check improvement in goodness of fit and random-effects PCA (rePCA) to guard against
734 overparameterisation during model selection.

735 For the N400 model including only age and no additional individual differences predictors,
736 this led to a RE structure with variance components for grand means, prestimulus amplitude
737 and prestimulus amplitude (2nd order) by subject, item and channel. In a second step, we
738 added by-subject variance components for effects of canonicity, epoch, unigram frequency and
739 speaker-based surprisal and by-item variance components for effects of epoch, unigram fre-
740 quency, speaker-based surprisal and age.

741 Using the age-only LMM (as described above) as a reference, we added, in turn, fixed-effect
742 covariates for individual differences in (1) 1/f slope, (2) 1/f intercept, (3) IAF (peak alpha fre-
743 quency), (4) Idea Density, (5) Verbal Fluency, (6) General Cognitive Ability (WASI FSIQ-4) and
744 (7) Language Proficiency (TOAL-4 composite score) to the model to check the extent to which
745 they moderate / modulate adaptation to speaker-based surprisal. In each of these additional
746 LMMs, adding the respective individual differences covariate as a by-item variance component
747 significantly improved the goodness of model fit.

748 The model selection procedure is transparently documented in Julia scripts in the Open Science
749 Framework repository for this paper (see Data Availability Statement).

750 **Funding**

751 This research was supported by an Australian Research Council Future Fellowship to IBS (FT160100437).
752 AWC acknowledges the support of the Three Springs Foundation.

753 **Acknowledgements**

754 The authors would like to thank John Ellett for help with preparing the experimental materials,
755 Alin Grecu and Casey Tonkin for recording the experimental stimuli and Nicole Vass for help with
756 data collection. Thanks are also due to Zachariah Cross for helpful comments on a previous
757 version of the manuscript.

758 **Data Availability Statement**

759 Raw data and analysis code will be made available on a public repository upon publication of
760 the manuscript.

761 References

- 762 Alday, P. M. (2018). Philistine.
- 763 Alday, P. M. (2019). How much baseline correction do we need in ERP research? Extended GLM
764 model can replace baseline correction while lifting its limits. *Psychophysiology*, 56(12).
765 <https://doi.org/10.1111/psyp.13451>
- 766 Alday, P. M., Kleinschmidt, D. F., & Arslan, A. R. (2022). Beacon-biosignals/Effects.jl: Effects Pre-
767 diction for Linear and Generalized Linear Models. Zenodo. <https://doi.org/10.5281/zenodo.7056440>
- 768 Appelhoff, S., Sanderson, M., Brooks, T., van Vliet, M., Quentin, R., Holdgraf, C., Chaumon, M.,
769 Mikulan, E., Tavabi, K., Höchenberger, R., Welke, D., Brunner, C., Rockhill, A., Larson, E.,
770 Gramfort, A., & Jas, M. (2019). MNE-BIDS: Organizing electrophysiological data into the
771 BIDS format and facilitating their analysis. *Journal of Open Source Software*, 4(44),
772 1896. <https://doi.org/10.21105/joss.01896>
- 773 Aston-Jones, G., & Cohen, J. D. (2005). Adaptive gain and the role of the locus coeruleus-
774 norepinephrine system in optimal performance. *The Journal of Comparative Neurology*,
775 493, 99–110.
- 776 Bates, D., Alday, P., Kleinschmidt, D., José Bayoán Santiago Calderón, P., Zhan, L., Noack, A.,
777 Arslan, A., Bouchet-Valat, M., Kelman, T., Baldassari, A., Ehinger, B., Karrasch, D., Saba, E.,
778 Quinn, J., Hatherly, M., Piibeleht, M., Mogensen, P. K., Babayan, S., & Gagnon, Y. L. (2021).
779 JuliaStats/MixedModels.jl: V4.4.0. <https://doi.org/10.5281/zenodo.5542701>
- 780 Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious Mixed Models. *arXiv:1506.04967*
781 [stat].
- 782 Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A Fresh Approach to Numerical
783 Computing. *SIAM Review*, 59(1), 65–98.
- 784 Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2019). Towards a neurobiologically plausible
785 model of language-related, negative event-related potentials. *Frontiers in Psychology*,
786 10(298), 1–17. <https://doi.org/10.3389/fpsyg.2019.00298>
- 787 Bornkessel-Schlesewsky, I., Sharrad, I., Howlett, C. A., Alday, P. M., Corcoran, A. W., Bellan, V.,
788 Wilkinson, E., Kliegl, R., Lewis, R. L., Small, S. L., & Schlesewsky, M. (2022). Rapid adap-
789 tation of predictive models during language comprehension: Aperiodic EEG slope, in-
790 dividual alpha frequency and idea density modulate individual differences in real-time
791

- 792 model updating. *Frontiers in Psychology*, 13, 817516. <https://doi.org/10.3389/fpsyg.2022.817516>
- 793
- 794 Brehm, L., & Alday, P. M. (2022). Contrast coding choices in a decade of mixed models. *Journal of Memory and Language*, 125, 104334. <https://doi.org/10.1016/j.jml.2022.104334>
- 795
- 796 Brown, C., Snodgrass, T., Kemper, S. J., Herman, R., & Covington, M. (2008). Automatic measurement of propositional idea density from part-of-speech tagging. *Behavior Research Methods*, 40(2), 540–545. <https://doi.org/10.3758/BRM.40.2.540>
- 797
- 798 Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. *Trends in Cognitive Sciences*, 14(11), 506–515. <https://doi.org/10.1016/j.tics.2010.09.001>
- 799
- 800 Chan, J. S., Wibral, M., Stawowsky, C., Brandl, M., Helbling, S., Naumer, M. J., Kaiser, J., & Wollstadt, P. (2021). Predictive Coding Over the Lifespan: Increased Reliance on Perceptual Priors in Older Adults—A Magnetoencephalography and Dynamic Causal Modeling Study. *Frontiers in Aging Neuroscience*, 13, 631599. <https://doi.org/10.3389/fnagi.2021.631599>
- 801
- 802 Corcoran, A. W., Alday, P. M., Schlesewsky, M., & Bornkessel-Schlesewsky, I. (2018). Toward a reliable, automated method of individual alpha frequency (IAF) quantification. *Psychophysiology*, 55(7), e13064. <https://doi.org/10.1111/psyp.13064>
- 803
- 804 Cross, Z. R., Corcoran, A. W., Schlesewsky, M., Kohler, M. J., & Bornkessel-Schlesewsky, I. (2022). Oscillatory and Aperiodic Neural Activity Jointly Predict Language Learning. *Journal of Cognitive Neuroscience*, 1–20. https://doi.org/10.1162/jocn_a_01878
- 805
- 806 Dave, S., Brothers, T., & Swaab, T. (2018). 1/f neural noise and electrophysiological indices of contextual prediction in aging. *Brain Research*, 1691, 34–43. <https://doi.org/10.1016/j.brainres.2018.04.007>
- 807
- 808 DeLong, K. A., Groppe, D. M., Urbach, T. P., & Kutas, M. (2012). Thinking ahead or not ? Natural aging and anticipation during reading. *Brain and Language*, 121(3), 226–239. <https://doi.org/10.1016/j.bandl.2012.02.006>
- 809
- 810 DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. *Nature Neuroscience*, 8, 1117–1121.
- 811
- 812 Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A. H., Wallis, J. D., Knight, R. T., Shestyuk, A., & Voytek, B. (2020). Parameterizing neural power spectra into periodic and aperiodic components. *Nature Neuroscience*, 23(12), 1655–1665. <https://doi.org/10.1038/s41593-020-00744-x>
- 813
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822
- 823

- 824 Eldar, E., Cohen, J. D., & Niv, Y. (2013). The effects of neural gain on attention and learning.
825 *Nature Neuroscience*, 16(8), 1146–1153. <https://doi.org/10.1038/nn.3428>
- 826 Federmeier, K. D., & Kutas, M. (2005). Aging in context: Age-related changes in context use
827 during language comprehension. *Psychophysiology*, 42(2), 133–141. <https://doi.org/10.1111/j.1469-8986.2005.00274.x>
- 828 Feldman, H., & Friston, K. J. (2010). Attention, Uncertainty, and Free-Energy. *Frontiers in Human*
829 *Neuroscience*, 4(215).
- 830 Friston, K. J. (2005). A theory of cortical responses. *Philosophical Transactions of the Royal*
831 *Society B: Biological Sciences*, 360, 815–836. <https://doi.org/10.1098/rstb.2005.1622>
- 832 Friston, K. J. (2009). The free-energy principle: A rough guide to the brain? *Trends in Cognitive*
833 *Sciences*, 13(7), 293–301. <https://doi.org/10.1016/j.tics.2009.04.005>
- 834 Gao, R., Peterson, E. J., & Voytek, B. (2017). Inferring synaptic excitation/inhibition balance from
835 field potentials. *NeuroImage*, 158, 70–78. <https://doi.org/10.1016/j.neuroimage.2017.06.078>
- 836 Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity:
837 A review of underlying mechanisms. *Clinical Neurophysiology*, 120(3), 453–463. <https://doi.org/10.1016/j.clinph.2008.11.029>
- 838 Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M.,
839 Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-
840 Python. *Frontiers in Neuroscience*, 7, 267. <https://doi.org/10.3389/fnins.2013.00267>
- 841 Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Parkkonen, L., &
842 Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. *NeuroImage*,
843 86, 446–460. <https://doi.org/10.1016/j.neuroimage.2013.10.027>
- 844 He, B. J. (2014). Scale-free brain activity: Past, present, and future. *Trends in Cognitive Sciences*,
845 18(9), 480–487. <https://doi.org/10.1016/j.tics.2014.04.003>
- 846 Hester, J., & Wickham, H. (2021). *Vroom: Read and Write Rectangular Text Data Quickly*. Manual.
- 847 Hohwy, J. (2012). Attention and Conscious Perception in the Hypothesis Testing Brain. *Frontiers*
848 *in Psychology*, 3. <https://doi.org/10.3389/fpsyg.2012.00096>
- 849 Kappenman, E. S., Farrens, J. L., Zhang, W., Stewart, A. X., & Luck, S. J. (2020). ERP CORE: An
850 Open Resource for Human Event-Related Potential Research. <https://doi.org/10.31234/osf.io/4azqm>

- 855 Kemmerer, D., Weber-Fox, C., Price, K., Zdanczyk, C., & Way, H. (2007). Big brown dog or brown
856 big dog? An electrophysiological study of semantic constraints on prenominal adjective
857 order. *Brain and Language*, 100(3), 238–256. <https://doi.org/10.1016/j.bandl.2005.12.002>
- 858
- 859 Kuhn, M., Jackson, S., & Cimentada, J. (2020). *Corrr: Correlations in R*. Manual.
- 860 Kurthen, I., Meyer, M., Schlesewsky, M., & Bornkessel-Schlesewsky, I. (2020). Individual Differ-
861 ences in Peripheral Hearing and Cognition Reveal Sentence Processing Differences in
862 Healthy Older Adults. *Frontiers in Neuroscience*, 14, 573513. <https://doi.org/10.3389/fnins.2020.573513>
- 863
- 864 Li, S.-C., Lindenberger, U., & Frensch, P. A. (2000). Unifying cognitive aging: From neuromod-
865 ulation to representation to cognition. *Neurocomputing*, 32–33, 879–890. [https://doi.org/10.1016/S0925-2312\(00\)00256-3](https://doi.org/10.1016/S0925-2312(00)00256-3)
- 866
- 867 Li, S.-C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From neuromodulation to
868 representation. *Trends in Cognitive Sciences*, 5(11), 479–486. [https://doi.org/10.1016/S1364-6613\(00\)01769-1](https://doi.org/10.1016/S1364-6613(00)01769-1)
- 869
- 870 Li, S.-C., & Rieckmann, A. (2014). Neuromodulation and aging: Implications of aging neuronal
871 gain control on cognition. *Current Opinion in Neurobiology*, 29, 148–158. <https://doi.org/10.1016/j.conb.2014.07.009>
- 872
- 873 Li, S.-C., & Sikström, S. (2002). Integrative neurocomputational perspectives on cognitive ag-
874 ing, neuromodulation, and representation. *Neuroscience & Biobehavioral Reviews*, 26(7),
875 795–808. [https://doi.org/10.1016/S0149-7634\(02\)00066-0](https://doi.org/10.1016/S0149-7634(02)00066-0)
- 876
- 877 Li, S.-C., von Oertzen, T., & Lindenberger, U. (2006). A neurocomputational model of stochastic
878 resonance and aging. *Neurocomputing*, 69(13–15), 1553–1560. <https://doi.org/10.1016/j.neucom.2005.06.015>
- 879
- 880 Manning, J. R., Jacobs, J., Fried, I., & Kahana, M. J. (2009). Broadband Shifts in Local Field
881 Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans. *Journal
882 of Neuroscience*, 29(43), 13613–13620. <https://doi.org/10.1523/JNEUROSCI.2041-09.2009>
- 883
- 884 Manyukhina, V. O., Prokofyev, A. O., Galuta, I. A., Goiaeva, D. E., Obukhova, T. S., Schneider-
885 man, J. F., Altukhov, D. I., Stroganova, T. A., & Orekhova, E. V. (2022). Globally elevated
886 excitation–inhibition ratio in children with autism spectrum disorder and below-average
intelligence. *Molecular Autism*, 13(1), 20. <https://doi.org/10.1186/s13229-022-00498-2>

- 887 Matuschek, H., & Kliegl, R. (2018). On the ambiguity of interaction and nonlinear main effects
888 in a regime of dependent covariates. *Behavior Research Methods*, 50(5), 1882–1894.
889 <https://doi.org/10.3758/s13428-017-0956-9>
- 890 Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and
891 power in linear mixed models. *Journal of Memory and Language*, 94, 305–315. <https://doi.org/10.1016/j.jml.2017.01.001>
- 892 Merkin, A., Sghirripa, S., Graetz, L., Smith, A. E., Hordacre, B., Harris, R., Pitcher, J., Semmler, J.,
893 Rogasch, N. C., & Goldsworthy, M. (2023). Do age-related differences in aperiodic neural
894 activity explain differences in resting EEG alpha? *Neurobiology of Aging*, 121, 78–87.
895 <https://doi.org/10.1016/j.neurobiolaging.2022.09.003>
- 896 Molina, J. L., Voytek, B., Thomas, M. L., Joshi, Y. B., Bhakta, S. G., Talledo, J. A., Swerdlow, N. R., &
897 Light, G. A. (2020). Memantine Effects on Electroencephalographic Measures of Putative
898 Excitatory/Inhibitory Balance in Schizophrenia. *Biological Psychiatry: Cognitive Neuro-*
899 *science and Neuroimaging*, 5(6), 562–568. <https://doi.org/10.1016/j.bpsc.2020.02.004>
- 900 Moran, R. J., Symmonds, M., Dolan, R. J., & Friston, K. J. (2014). The Brain Ages Optimally to
901 Model Its Environment: Evidence from Sensory Learning over the Adult Lifespan. *PLoS
902 Computational Biology*, 10(1). <https://doi.org/10.1371/journal.pcbi.1003422>
- 903 Müller, K. (2020). *Here: A Simpler Way to Find Your Files*. Manual.
- 904 Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus
905 coeruleus-norepinephrine system. *Psychological Bulletin*, 131, 510–532.
- 906 Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., Von Greb-
907 mer Zu Wolfsthurn, S., Bartolozzi, F., Kogan, V., Ito, A., Mézière, D., Barr, D. J., Rousselet,
908 G. A., Ferguson, H. J., Busch-Moreno, S., Fu, X., Tuomainen, J., Kulakova, E., Husband,
909 E. M., ... Huettig, F. (2018). Large-scale replication study reveals a limit on probabilistic
910 prediction in language comprehension. *eLife*, 7. <https://doi.org/10.7554/eLife.33468>
- 911 Oldfield, R. (1971). The assessment and analysis of handedness: The Edinburgh inventory. *Neu-
912 ropsychologia*, 9, 97–113.
- 913 Parr, T., & Friston, K. J. (2017). Working memory, attention, and salience in active inference.
914 *Scientific Reports*, 7(1), 14678. <https://doi.org/10.1038/s41598-017-15249-0>
- 915 Parr, T., Pezzulo, G., & Friston, K. J. (2022). *Active inference: The free energy principle in mind,
916 brain, and behavior*. MIT Press.

- 918 Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme, A., & Oostenveld,
919 R. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroen-
920 cephalography. *Scientific Data*, 6(1), 103. <https://doi.org/10.1038/s41597-019-0104-8>
- 921 Pertermann, M., Mückschel, M., Adelhöfer, N., Ziemssen, T., & Beste, C. (2019). On the interre-
922 lation of $1/f$ neural noise and norepinephrine system activity during motor response
923 inhibition. *Journal of Neurophysiology*, 121(5), 1633–1643. <https://doi.org/10.1152/jn.00701.2018>
- 924
- 925 R Core Team. (2021). *R: A Language and Environment for Statistical Computing*. Manual. R Foun-
926 dation for Statistical Computing. Vienna, Austria.
- 927 Radman, T., Su, Y., An, J. H., Parra, L. C., & Bikson, M. (2007). Spike Timing Amplifies the Ef-
928 fect of Electric Fields on Neurons: Implications for Endogenous Field Effects. *Journal of*
929 *Neuroscience*, 27(11), 3030–3036. <https://doi.org/10.1523/JNEUROSCI.0095-07.2007>
- 930 Rubenstein, J. L. R., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/in-
931 hibition in key neural systems: **Model of autism**. *Genes, Brain and Behavior*, 2(5), 255–
932 267. <https://doi.org/10.1034/j.1601-183X.2003.00037.x>
- 933 Schad, D. J., Vasishth, S., Hohenstein, S., & Kliegl, R. (2020). How to capitalize on a priori con-
934 trasts in linear (mixed) models: A tutorial. *Journal of Memory and Language*, 110, 104038.
935 <https://doi.org/10.1016/j.jml.2019.104038>
- 936 Schröger, E., Marzecová, A., & SanMiguel, I. (2015). Attention and prediction in human audition:
937 A lesson from cognitive psychophysiology. *European Journal of Neuroscience*, 41(5),
938 641–664. <https://doi.org/10.1111/ejn.12816>
- 939 Servan-Schreiber, D., Printz, H., & Cohen, J. D. (1990). A Network Model of Catecholamine Effects:
940 Gain, Signal-to-Noise Ratio, and Behavior. *Science*, 249(4971), 892–895. <https://doi.org/10.1126/science.2392679>
- 941
- 942 Todd, J., Heathcote, A., Mullens, D., Whitson, L. R., Provost, A., & Winkler, I. (2014). What con-
943 trols gain in gain control? Mismatch negativity (MMN), priors and system biases. *Brain*
944 *Topography*, 27(4), 578–589. <https://doi.org/10.1007/s10548-013-0344-4>
- 945 Todd, J., Provost, A., & Cooper, G. (2011). Lasting first impressions: A conservative bias in auto-
946 matic filters of the acoustic environment. *Neuropsychologia*, 49(12), 3399–3405. <https://doi.org/10.1016/j.neuropsychologia.2011.08.016>
- 947

- 948 Todd, J., Provost, A., Whitson, L. R., Cooper, G., & Heathcote, A. (2013). Not so primitive: Context-
949 sensitive meta-learning about unattended sound sequences. *Journal of Neurophysiology*, 109, 99–105.
- 950
- 951 Tran, T. T., Rolle, C. E., Gazzaley, A., & Voytek, B. (2020). Linked Sources of Neural Noise Con-
952 tribute to Age-related Cognitive Decline. *Journal of Cognitive Neuroscience*, 32(9), 1813–
953 1822. https://doi.org/10.1162/jocn_a_01584
- 954 Vallat, R., & Walker, M. P. (2021). *A universal, open-source, high-performance tool for automated*
955 *sleep staging* (Preprint). BioRxiv. <https://doi.org/10.1101/2021.05.28.446165>
- 956 van Paridon, J., & Thompson, B. (2021). Subs2vec: Word embeddings from subtitles in 55 lan-
957 guages. *Behavior Research Methods*, 53(2), 629–655. <https://doi.org/10.3758/s13428-020-01406-3>
- 958
- 959 Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight, R. T., & Gazzaley, A.
960 (2015). Age-Related Changes in 1/f Neural Electrophysiological Noise. *Journal of Neu-
961 roscience*, 35(38), 13257–13265. <https://doi.org/10.1523/JNEUROSCI.2332-14.2015>
- 962 Voytek, B., & Knight, R. T. (2015). Dynamic Network Communication as a Unifying Neural Basis for
963 Cognition, Development, Aging, and Disease. *Biological Psychiatry*, 77(12), 1089–1097.
964 <https://doi.org/10.1016/j.biopsych.2015.04.016>
- 965 Waschke, L., Wöstmann, M., & Obleser, J. (2017). States and traits of neural irregularity in the age-
966 varying human brain. *Scientific Reports*, 7(1), 17381. <https://doi.org/10.1038/s41598-017-17766-4>
- 967
- 968 Wen, H., & Liu, Z. (2016). Separating Fractal and Oscillatory Components in the Power Spectrum
969 of Neurophysiological Signal. *Brain Topography*, 29(1), 13–26. <https://doi.org/10.1007/s10548-015-0448-0>
- 970
- 971 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes,
972 A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms,
973 J., Robinson, D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019). Welcome to the tidyverse.
974 *Journal of Open Source Software*, 4(43), 1686. <https://doi.org/10.21105/joss.01686>
- 975 Winawer, J., Kay, K. N., Foster, B. L., Rauschecker, A. M., Parvizi, J., & Wandell, B. A. (2013).
976 Asynchronous Broadband Signals Are the Principal Source of the BOLD Response in
977 Human Visual Cortex. *Current Biology*, 23(13), 1145–1153. <https://doi.org/10.1016/j.cub.2013.05.001>
- 978

- 979 Wlotko, E. W., & Federmeier, K. D. (2012). Age-related changes in the impact of contextual
980 strength on multiple aspects of sentence comprehension. *Psychophysiology*, 49(6), 770–
981 785. <https://doi.org/10.1111/j.1469-8986.2012.01366.x>
- 982 Wolpe, N., Ingram, J. N., Tsvetanov, K. A., Geerligs, L., Kievit, R. A., Henson, R. N., Wolpert, D. M.,
983 Cam-CAN, & Rowe, J. B. (2016). Ageing increases reliance on sensorimotor prediction
984 through structural and functional differences in frontostriatal circuits. *Nature Communications*,
985 7(1), 13034. <https://doi.org/10.1038/ncomms13034>
- 986 Zénon, A., Solopchuk, O., & Pezzulo, G. (2019). An information-theoretic perspective on the costs
987 of cognition. *Neuropsychologia*, 123, 5–18. <https://doi.org/10.1016/j.neuropsychologia.2018.09.013>
- 988
- 989 Zhu, H. (2021). *kableExtra: Construct Complex Table with kable and Pipe Syntax*. Manual.

990 **Appendix**

991 **Appendix A: Visualisation of residualisation models**

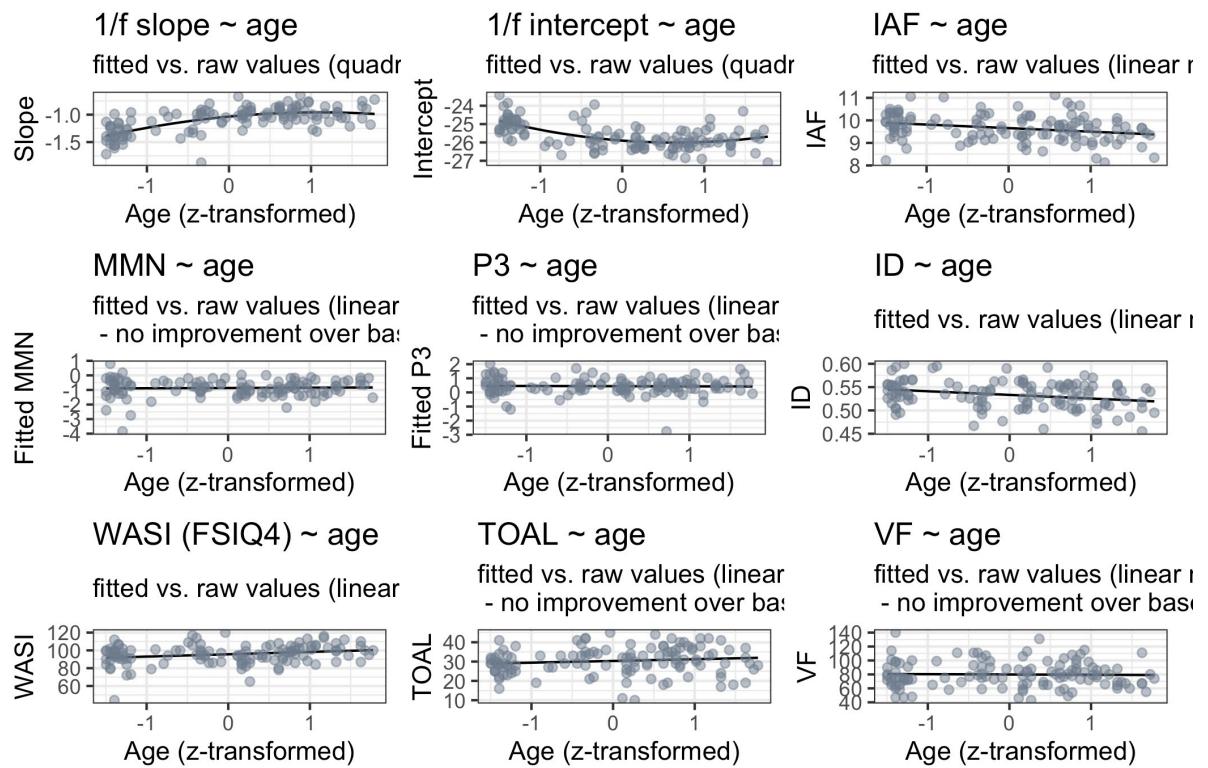


Figure 12: Visualisation of the results of the residualisation analysis for the individual differences predictors.

992 **Appendix B: Supplementary figures**

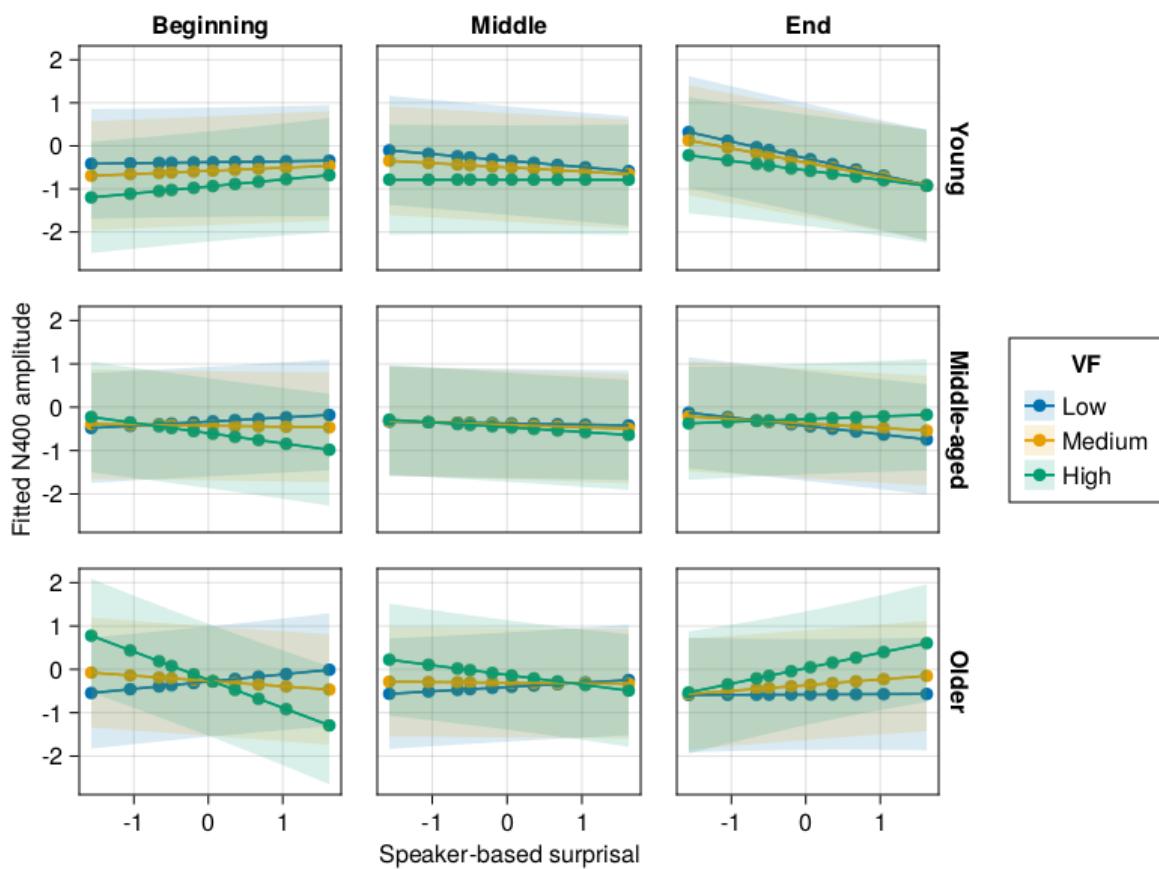


Figure 13: Effects of age and (age-residualised) Verbal Fluency (VF) on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the 5th quantile), middle (50th quantile) and end (95th quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for ages 18, 50 and 83 as the minimum, median and maximum of ages in our sample) but was entered into the statistical model as a continuous predictor. Shaded ribbons signify standard errors.

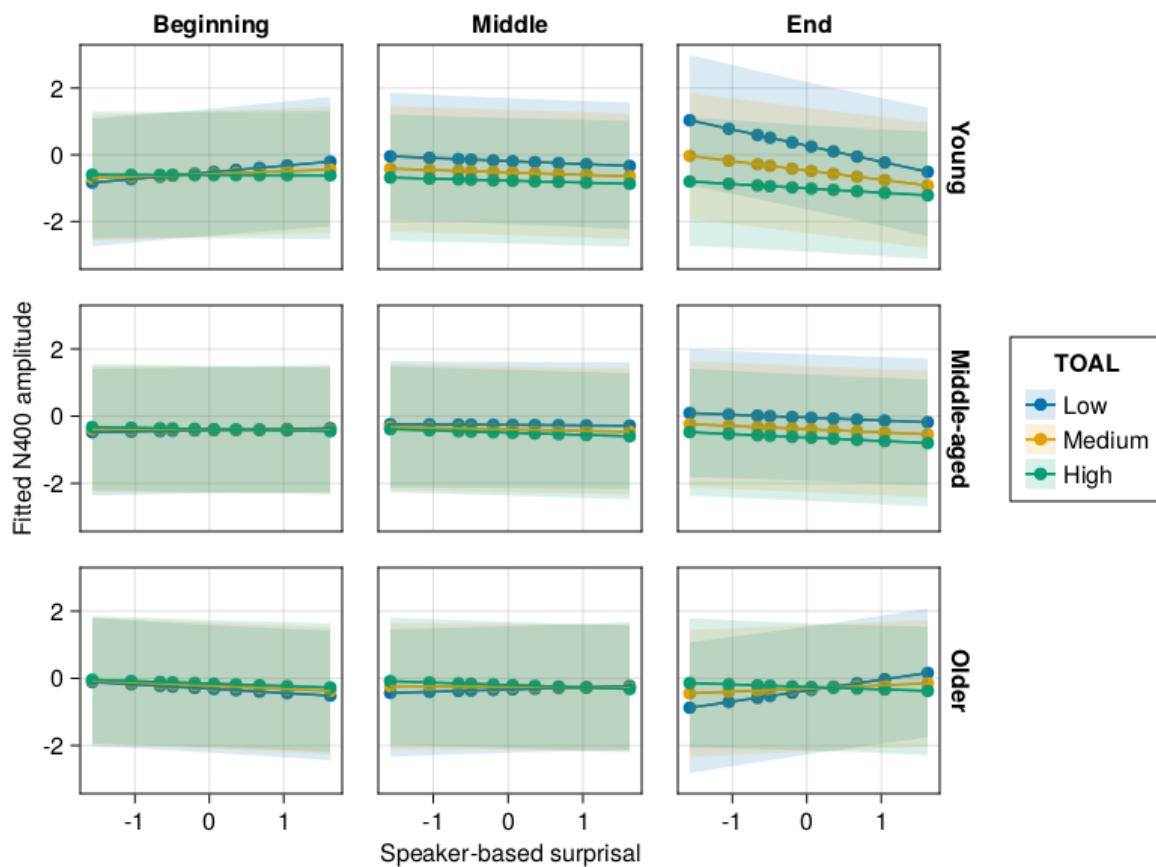


Figure 14: Effects of age and (age-residualised) oral language proficiency (TOAL-4) on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the 5th quantile), middle (50th quantile) and end (95th quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for ages 18, 50 and 83 as the minimum, median and maximum of ages in our sample) but was entered into the statistical model as a continuous predictor. Shaded ribbons signify standard errors.

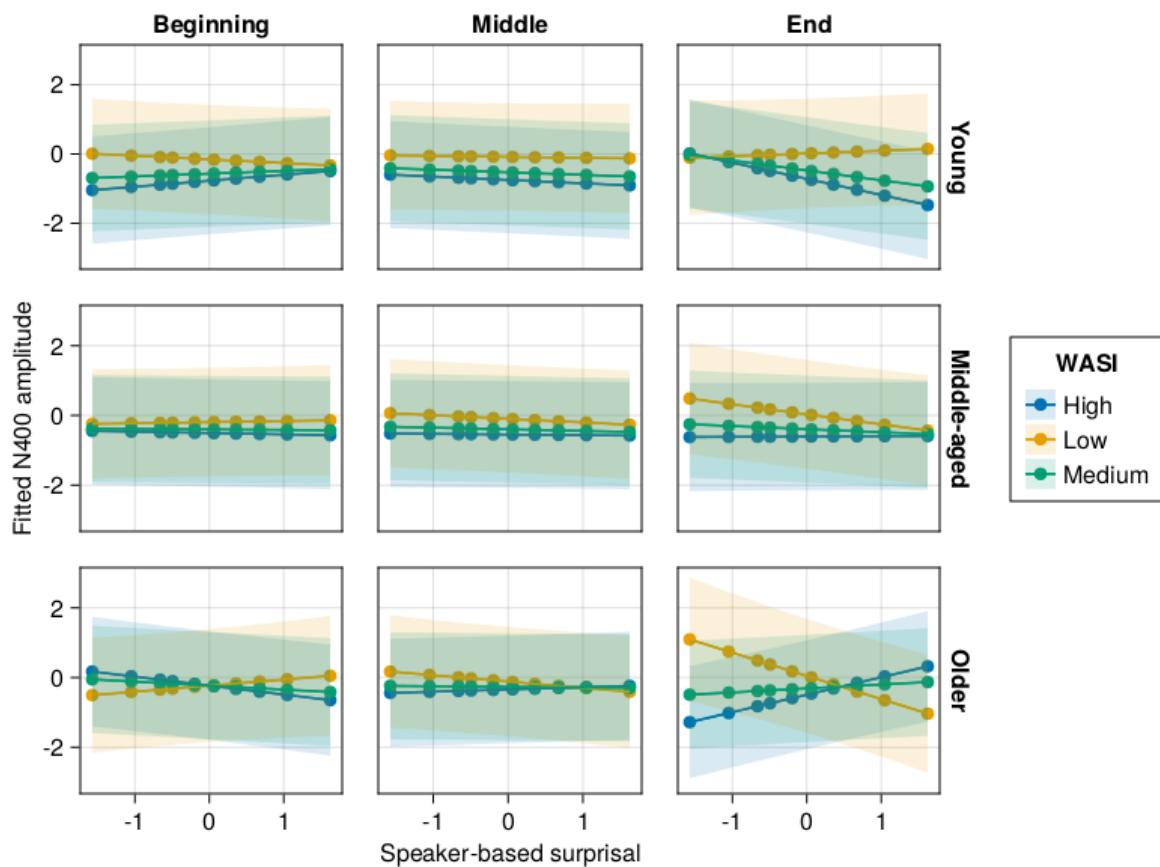


Figure 15: Effects of age and (age-residualised) general cognitive ability (WASI FSIQ-4) on changes in the relationship between speaker-based surprisal and N400 amplitude over the course of the experiment. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning (estimated for the 5th quantile), middle (50th quantile) and end (95th quantile) for visualisation purposes only; epoch was included in the model as a continuous predictor. The same holds for age, which is trichotomised for visualisation purposes (estimated for ages 18, 50 and 83 as the minimum, median and maximum of ages in our sample) but was entered into the statistical model as a continuous predictor. Shaded ribbons signify standard errors.

993 **Appendix C: Model summaries**

Table 3: **Full model summary for the best-fitting model including only age. Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal**

	Est.	SE	z	p	σ_{Item}	σ_{Subj}	$\sigma_{Channel}$
(Intercept)	-0.4183	0.0540	-7.74	<1e-14	0.5442	0.3234	0.0817
ps	3.9480	0.0917	43.07	<1e-99	0.2872	0.7885	0.1994
age(centered: 46.38 scaled: 20.13)	0.0785	0.0367	2.14	0.0326	0.3246		
fq	0.0138	0.0376	0.37	0.7136		0.1945	
ss	-0.0588	0.0453	-1.30	0.1935	0.5236	0.2238	
cn	0.0128	0.0360	0.36	0.7222	0.4636	0.1868	
ep(centered: 483.44 scaled: 285.87)	0.0214	0.0492	0.44	0.6632	0.6316	0.1870	
ps2	0.0167	0.0154	1.09	0.2757	0.1103	0.1121	0.0292
ss2	0.0082	0.0142	0.58	0.5628			
ss3	-0.0118	0.0064	-1.84	0.0654			
ps x age(centered: 46.38 scaled: 20.13)	0.1036	0.0740	1.40	0.1614			
ps x fq	0.0006	0.0114	0.05	0.9612			
age(centered: 46.38 scaled: 20.13) x fq	-0.0201	0.0220	-0.92	0.3596			
ps x ss	-0.0005	0.0107	-0.05	0.9596			
age(centered: 46.38 scaled: 20.13) x ss	0.0248	0.0242	1.03	0.3046			

fq x ss	-0.0101	0.0245	-0.41	0.6792	
ps x cn	-0.0038	0.0089	-0.42	0.6711	
age(centered: 46.38 scaled: 20.13) x cn	-0.0361	0.0200	-1.81	0.0703	
fq x cn	-0.0274	0.0334	-0.82	0.4116	
ss x cn	0.0502	0.0186	2.70	0.0070	
ps x ep(centered: 483.44 scaled: 285.87)	0.0982	0.0135	7.30	<1e-12	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0130	0.0231	-0.56	0.5747	
fq x ep(centered: 483.44 scaled: 285.87)	-0.1114	0.0323	-3.45	0.0006	
ss x ep(centered: 483.44 scaled: 285.87)	-0.0316	0.0278	-1.14	0.2557	
cn x ep(centered: 483.44 scaled: 285.87)	0.0674	0.0264	2.55	0.0107	
ps x age(centered: 46.38 scaled: 20.13) x fq	-0.0103	0.0084	-1.23	0.2190	
ps x age(centered: 46.38 scaled: 20.13) x ss	0.0152	0.0085	1.79	0.0728	
ps x fq x ss	0.0206	0.0105	1.96	0.0499	
age(centered: 46.38 scaled: 20.13) x fq x ss	0.0428	0.0107	3.98	<1e-04	
ps x age(centered: 46.38 scaled: 20.13) x cn	-0.0041	0.0083	-0.49	0.6244	
ps x fq x cn	-0.0053	0.0110	-0.48	0.6323	
age(centered: 46.38 scaled: 20.13) x fq x cn	0.0168	0.0112	1.50	0.1338	
ps x ss x cn	0.0091	0.0097	0.94	0.3458	
age(centered: 46.38 scaled: 20.13) x ss x cn	0.0149	0.0098	1.52	0.1297	
fq x ss x cn	-0.0639	0.0232	-2.75	0.0059	
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0125	0.0091	-1.37	0.1714	
ps x fq x ep(centered: 483.44 scaled: 285.87)	0.0049	0.0111	0.44	0.6599	
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	-0.0005	0.0114	-0.04	0.9642	

ps x ss x ep(centered: 483.44 scaled: 285.87)	0.0291	0.0111	2.62	0.0087
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0484	0.0115	4.20	<1e-04
fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0279	0.0224	-1.25	0.2126
ps x cn x ep(centered: 483.44 scaled: 285.87)	-0.0230	0.0101	-2.28	0.0226
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0295	0.0102	2.88	0.0039
fq x cn x ep(centered: 483.44 scaled: 285.87)	-0.0046	0.0299	-0.15	0.8779
ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0193	0.0189	-1.02	0.3087
ps x age(centered: 46.38 scaled: 20.13) x fq x ss	-0.0064	0.0088	-0.73	0.4638
ps x age(centered: 46.38 scaled: 20.13) x fq x cn	0.0072	0.0084	0.86	0.3887
ps x age(centered: 46.38 scaled: 20.13) x ss x cn	-0.0040	0.0085	-0.47	0.6357
ps x fq x ss x cn	0.0066	0.0105	0.62	0.5324
age(centered: 46.38 scaled: 20.13) x fq x ss x cn	0.0255	0.0107	2.38	0.0175
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0246	0.0090	2.74	0.0062
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0223	0.0093	2.41	0.0159
ps x fq x ss x ep(centered: 483.44 scaled: 285.87)	0.0200	0.0109	1.84	0.0652
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0297	0.0109	-2.73	0.0064
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0140	0.0088	1.59	0.1124
ps x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0063	0.0115	0.55	0.5817
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0136	0.0116	1.18	0.2392
ps x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0605	0.0106	5.74	<1e-08
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0158	0.0107	1.47	0.1405
fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0109	0.0223	0.49	0.6251
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn	-0.0090	0.0088	-1.03	0.3051

ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0130	0.0090	-1.45	0.1474	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0036	0.0089	0.40	0.6870	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0197	0.0092	2.13	0.0329	
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0425	0.0110	3.87	0.0001	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0251	0.0109	-2.30	0.0214	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0098	0.0090	1.09	0.2757	
Residual	4.1015				

Table 4: **Full model summary for the best-fitting model including aperiodic (1/f) slope. Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; rslope = aperiodic slope (residualised on age); ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal**

	Est.	SE	z	p	σ_{Item}	σ_{Subj}	σ_{CSubj}
(Intercept)	-0.4239	0.0550	-7.71	<1e-13	0.5658	0.3221	0
ps	3.9508	0.0908	43.51	<1e-99	0.2826	0.7814	0
age(centered: 46.38 scaled: 20.13)	0.0770	0.0367	2.10	0.0360	0.3252		
fq	0.0218	0.0383	0.57	0.5700		0.1972	
ss	-0.0667	0.0464	-1.44	0.1506	0.5435	0.2273	
cn	0.0099	0.0364	0.27	0.7865	0.4708	0.1857	
ep(centered: 483.44 scaled: 285.87)	0.0182	0.0510	0.36	0.7208	0.6677	0.1842	
rslope	0.3319	0.2086	1.59	0.1116	1.6329		
ps2	0.0151	0.0151	0.99	0.3198	0.1087	0.1108	0.0000
ss2	0.0148	0.0144	1.03	0.3035			
ss3	-0.0127	0.0065	-1.96	0.0499			
ps x age(centered: 46.38 scaled: 20.13)	0.1030	0.0733	1.40	0.1602			
ps x fq	-0.0014	0.0114	-0.12	0.9049			
age(centered: 46.38 scaled: 20.13) x fq	-0.0053	0.0223	-0.24	0.8124			

ps x ss		0.0059	0.0107	0.55	0.5835	
age(centered: 46.38 scaled: 20.13) x ss		0.0347	0.0246	1.41	0.1583	
fq x ss		-0.0136	0.0248	-0.55	0.5830	
ps x cn		-0.0021	0.0090	-0.24	0.8141	
age(centered: 46.38 scaled: 20.13) x cn		-0.0448	0.0199	-2.25	0.0248	
fq x cn		-0.0286	0.0340	-0.84	0.4010	
ss x cn		0.0578	0.0188	3.07	0.0021	
ps x ep(centered: 483.44 scaled: 285.87)		0.0988	0.0134	7.37	<1e-12	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)		-0.0217	0.0229	-0.95	0.3439	
fq x ep(centered: 483.44 scaled: 285.87)		-0.1207	0.0330	-3.66	0.0003	
ss x ep(centered: 483.44 scaled: 285.87)		-0.0384	0.0283	-1.36	0.1742	
cn x ep(centered: 483.44 scaled: 285.87)		0.0659	0.0268	2.46	0.0140	
ps x rslope		0.0939	0.4336	0.22	0.8286	
age(centered: 46.38 scaled: 20.13) x rslope		-0.0373	0.2263	-0.16	0.8691	1.9578
fq x rslope		0.2011	0.1315	1.53	0.1261	
ss x rslope		-0.0893	0.1445	-0.62	0.5365	
cn x rslope		-0.2481	0.1190	-2.08	0.0371	
ep(centered: 483.44 scaled: 285.87) x rslope		-0.1062	0.1346	-0.79	0.4303	
ps x age(centered: 46.38 scaled: 20.13) x fq		-0.0159	0.0085	-1.88	0.0605	
ps x age(centered: 46.38 scaled: 20.13) x ss		0.0113	0.0086	1.32	0.1881	
ps x fq x ss		0.0207	0.0105	1.96	0.0496	
age(centered: 46.38 scaled: 20.13) x fq x ss		0.0509	0.0108	4.70	<1e-05	
ps x age(centered: 46.38 scaled: 20.13) x cn		-0.0053	0.0085	-0.63	0.5306	

ps x fq x cn	-0.0071	0.0110	-0.65	0.5184
age(centered: 46.38 scaled: 20.13) x fq x cn	0.0146	0.0113	1.29	0.1954
ps x ss x cn	0.0115	0.0097	1.19	0.2323
age(centered: 46.38 scaled: 20.13) x ss x cn	0.0127	0.0099	1.28	0.2006
fq x ss x cn	-0.0602	0.0235	-2.56	0.0104
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0184	0.0092	-1.99	0.0466
ps x fq x ep(centered: 483.44 scaled: 285.87)	0.0069	0.0111	0.62	0.5379
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	-0.0102	0.0114	-0.89	0.3710
ps x ss x ep(centered: 483.44 scaled: 285.87)	0.0313	0.0111	2.82	0.0048
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0490	0.0116	4.21	<1e-04
fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0332	0.0227	-1.46	0.1434
ps x cn x ep(centered: 483.44 scaled: 285.87)	-0.0227	0.0101	-2.25	0.0242
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0296	0.0103	2.87	0.0041
fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0042	0.0306	0.14	0.8915
ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0082	0.0191	-0.43	0.6669
ps x age(centered: 46.38 scaled: 20.13) x rslope	0.4370	0.4480	0.98	0.3293
ps x fq x rslope	-0.1886	0.0519	-3.63	0.0003
age(centered: 46.38 scaled: 20.13) x fq x rslope	0.1479	0.1397	1.06	0.2897
ps x ss x rslope	-0.0898	0.0522	-1.72	0.0854
age(centered: 46.38 scaled: 20.13) x ss x rslope	-0.0515	0.1524	-0.34	0.7357
fq x ss x rslope	-0.2448	0.0644	-3.80	0.0001
ps x cn x rslope	0.0300	0.0516	0.58	0.5604
age(centered: 46.38 scaled: 20.13) x cn x rslope	-0.2135	0.1255	-1.70	0.0888

fq x cn x rslope	0.0860	0.0667	1.29	0.1972
ss x cn x rslope	0.3146	0.0590	5.33	<1e-07
ps x ep(centered: 483.44 scaled: 285.87) x rslope	0.3200	0.0574	5.58	<1e-07
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rslope	-0.1309	0.1445	-0.91	0.3649
fq x ep(centered: 483.44 scaled: 285.87) x rslope	0.0928	0.0704	1.32	0.1871
ss x ep(centered: 483.44 scaled: 285.87) x rslope	-0.1694	0.0697	-2.43	0.0151
cn x ep(centered: 483.44 scaled: 285.87) x rslope	-0.0461	0.0630	-0.73	0.4648
ps x age(centered: 46.38 scaled: 20.13) x fq x ss	-0.0077	0.0089	-0.87	0.3842
ps x age(centered: 46.38 scaled: 20.13) x fq x cn	0.0127	0.0085	1.49	0.1359
ps x age(centered: 46.38 scaled: 20.13) x ss x cn	-0.0024	0.0086	-0.28	0.7825
ps x fq x ss x cn	0.0001	0.0105	0.01	0.9928
age(centered: 46.38 scaled: 20.13) x fq x ss x cn	0.0303	0.0108	2.80	0.0051
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0299	0.0091	3.30	0.0010
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0267	0.0094	2.84	0.0045
ps x fq x ss x ep(centered: 483.44 scaled: 285.87)	0.0213	0.0109	1.96	0.0503
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0333	0.0110	-3.03	0.0025
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0079	0.0089	0.89	0.3758
ps x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0094	0.0115	0.82	0.4139
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0142	0.0117	1.21	0.2246
ps x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0613	0.0106	5.80	<1e-08
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0151	0.0108	1.40	0.1628
fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0047	0.0226	0.21	0.8346
ps x age(centered: 46.38 scaled: 20.13) x fq x rslope	-0.0002	0.0526	-0.00	0.9975

ps x age(centered: 46.38 scaled: 20.13) x ss x rslope	-0.2206	0.0532	-4.15	<1e-04
ps x fq x ss x rslope	-0.0462	0.0534	-0.87	0.3865
age(centered: 46.38 scaled: 20.13) x fq x ss x rslope	-0.0114	0.0682	-0.17	0.8667
ps x age(centered: 46.38 scaled: 20.13) x cn x rslope	-0.0750	0.0522	-1.44	0.1508
ps x fq x cn x rslope	0.0365	0.0518	0.70	0.4810
age(centered: 46.38 scaled: 20.13) x fq x cn x rslope	-0.1046	0.0730	-1.43	0.1520
ps x ss x cn x rslope	-0.0405	0.0521	-0.78	0.4362
age(centered: 46.38 scaled: 20.13) x ss x cn x rslope	-0.2490	0.0632	-3.94	<1e-04
fq x ss x cn x rslope	-0.1696	0.0641	-2.64	0.0082
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rslope	-0.0879	0.0578	-1.52	0.1286
ps x fq x ep(centered: 483.44 scaled: 285.87) x rslope	-0.1399	0.0576	-2.43	0.0152
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rslope	-0.2416	0.0745	-3.24	0.0012
ps x ss x ep(centered: 483.44 scaled: 285.87) x rslope	0.0477	0.0579	0.82	0.4106
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rslope	-0.3335	0.0746	-4.47	<1e-05
fq x ss x ep(centered: 483.44 scaled: 285.87) x rslope	0.1302	0.0681	1.91	0.0560
ps x cn x ep(centered: 483.44 scaled: 285.87) x rslope	0.1010	0.0556	1.82	0.0695
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rslope	0.2700	0.0673	4.01	<1e-04
fq x cn x ep(centered: 483.44 scaled: 285.87) x rslope	0.3705	0.0712	5.21	<1e-06
ss x cn x ep(centered: 483.44 scaled: 285.87) x rslope	-0.1124	0.0657	-1.71	0.0871
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn	-0.0071	0.0089	-0.80	0.4239
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0105	0.0091	-1.16	0.2479
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	-0.0024	0.0090	-0.27	0.7889
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0198	0.0093	2.12	0.0339

ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0468	0.0110	4.24	<1e-04
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0250	0.0110	-2.26	0.0236
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x rslope	0.1893	0.0542	3.50	0.0005
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x rslope	0.2630	0.0525	5.01	<1e-06
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x rslope	-0.0480	0.0530	-0.91	0.3651
ps x fq x ss x cn x rslope	-0.0713	0.0534	-1.34	0.1813
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rslope	-0.0628	0.0685	-0.92	0.3591
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rslope	-0.0413	0.0565	-0.73	0.4642
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rslope	0.1199	0.0589	2.04	0.0416
ps x fq x ss x ep(centered: 483.44 scaled: 285.87) x rslope	0.0746	0.0577	1.29	0.1965
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rslope	-0.4012	0.0700	-5.73	<1e-08
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rslope	-0.0622	0.0561	-1.11	0.2677
ps x fq x cn x ep(centered: 483.44 scaled: 285.87) x rslope	0.0715	0.0573	1.25	0.2119
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rslope	0.3752	0.0765	4.91	<1e-06
ps x ss x cn x ep(centered: 483.44 scaled: 285.87) x rslope	-0.1042	0.0576	-1.81	0.0705
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rslope	0.3165	0.0703	4.50	<1e-05
fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rslope	0.0788	0.0679	1.16	0.2458
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0099	0.0091	1.09	0.2739
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rslope	0.1622	0.0542	2.99	0.0027
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rslope	-0.0604	0.0556	-1.09	0.2775
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rslope	-0.3270	0.0562	-5.82	<1e-08
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rslope	0.0510	0.0585	0.87	0.3838
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rslope	-0.0196	0.0580	-0.34	0.7349

age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rslope	0.0342	0.0706	0.48	0.6283	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rslope	-0.1372	0.0558	-2.46	0.0139	
Residual	4.0782				

Table 5: **Full model summary for the best-fitting model including aperiodic (1/f) intercept. Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; rint = aperiodic intercept (residualised on age); ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal**

	Est.	SE	z	p	σ_{Item}	σ_{Subj}	σ_{Change}
(Intercept)	-0.4165	0.0546	-7.63	<1e-13	0.5588	0.3181	0.0820
ps	3.9460	0.0910	43.35	<1e-99	0.2864	0.7815	0.1920
age(centered: 46.38 scaled: 20.13)	0.0827	0.0364	2.27	0.0231	0.3236		
fq	0.0133	0.0379	0.35	0.7250		0.1920	
ss	-0.0610	0.0458	-1.33	0.1824	0.5355	0.2212	
cn	0.0083	0.0361	0.23	0.8186	0.4663	0.1838	
ep(centered: 483.44 scaled: 285.87)	0.0123	0.0506	0.24	0.8075	0.6603	0.1856	
rint	-0.1189	0.0642	-1.85	0.0641	0.5575		
ps2	0.0169	0.0153	1.10	0.2717	0.1099	0.1129	0.0220
ss2	0.0093	0.0143	0.65	0.5144			
ss3	-0.0130	0.0064	-2.01	0.0442			
ps x age(centered: 46.38 scaled: 20.13)	0.0963	0.0733	1.31	0.1890			
ps x fq	0.0019	0.0114	0.16	0.8694			
age(centered: 46.38 scaled: 20.13) x fq	-0.0152	0.0219	-0.69	0.4882			

ps x ss		0.0015	0.0108	0.14	0.8920	
age(centered: 46.38 scaled: 20.13) x ss		0.0280	0.0240	1.17	0.2435	
fq x ss		-0.0148	0.0248	-0.60	0.5504	
ps x cn		-0.0043	0.0090	-0.47	0.6355	
age(centered: 46.38 scaled: 20.13) x cn		-0.0377	0.0197	-1.91	0.0562	
fq x cn		-0.0297	0.0338	-0.88	0.3803	
ss x cn		0.0566	0.0187	3.02	0.0025	
ps x ep(centered: 483.44 scaled: 285.87)		0.1036	0.0135	7.68	<1e-13	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)		-0.0151	0.0230	-0.66	0.5114	
fq x ep(centered: 483.44 scaled: 285.87)		-0.1226	0.0328	-3.74	0.0002	
ss x ep(centered: 483.44 scaled: 285.87)		-0.0345	0.0281	-1.23	0.2196	
cn x ep(centered: 483.44 scaled: 285.87)		0.0679	0.0267	2.55	0.0109	
ps x rint		-0.1223	0.1303	-0.94	0.3481	
age(centered: 46.38 scaled: 20.13) x rint		-0.0190	0.0545	-0.35	0.7277	
fq x rint		-0.1032	0.0384	-2.69	0.0072	
ss x rint		-0.0176	0.0421	-0.42	0.6753	
cn x rint		0.0165	0.0349	0.47	0.6361	
ep(centered: 483.44 scaled: 285.87) x rint		0.0504	0.0404	1.25	0.2123	
ps x age(centered: 46.38 scaled: 20.13) x fq		-0.0133	0.0085	-1.58	0.1147	
ps x age(centered: 46.38 scaled: 20.13) x ss		0.0117	0.0086	1.36	0.1731	
ps x fq x ss		0.0179	0.0106	1.69	0.0905	
age(centered: 46.38 scaled: 20.13) x fq x ss		0.0424	0.0108	3.93	<1e-04	
ps x age(centered: 46.38 scaled: 20.13) x cn		-0.0058	0.0084	-0.69	0.4911	

ps x fq x cn		-0.0090	0.0111	-0.81	0.4156	
age(centered: 46.38 scaled: 20.13) x fq x cn		0.0192	0.0113	1.70	0.0889	
ps x ss x cn		0.0107	0.0097	1.10	0.2704	
age(centered: 46.38 scaled: 20.13) x ss x cn		0.0118	0.0099	1.19	0.2338	
fq x ss x cn		-0.0673	0.0234	-2.88	0.0040	
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)		-0.0160	0.0092	-1.74	0.0824	
ps x fq x ep(centered: 483.44 scaled: 285.87)		0.0028	0.0112	0.25	0.8034	
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)		0.0059	0.0114	0.52	0.6033	
ps x ss x ep(centered: 483.44 scaled: 285.87)		0.0315	0.0112	2.81	0.0049	
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)		0.0509	0.0116	4.40	<1e-04	
fq x ss x ep(centered: 483.44 scaled: 285.87)		-0.0298	0.0226	-1.32	0.1874	
ps x cn x ep(centered: 483.44 scaled: 285.87)		-0.0200	0.0101	-1.97	0.0486	
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)		0.0272	0.0103	2.64	0.0084	
fq x cn x ep(centered: 483.44 scaled: 285.87)		-0.0076	0.0303	-0.25	0.8012	
ss x cn x ep(centered: 483.44 scaled: 285.87)		-0.0107	0.0191	-0.56	0.5757	
ps x age(centered: 46.38 scaled: 20.13) x rint		0.1256	0.1244	1.01	0.3128	
ps x fq x rint		0.0217	0.0157	1.38	0.1668	
age(centered: 46.38 scaled: 20.13) x fq x rint		-0.0220	0.0359	-0.61	0.5397	
ps x ss x rint		0.0094	0.0158	0.59	0.5521	
age(centered: 46.38 scaled: 20.13) x ss x rint		-0.0052	0.0399	-0.13	0.8963	
fq x ss x rint		0.0842	0.0192	4.38	<1e-04	
ps x cn x rint		0.0079	0.0155	0.51	0.6117	
age(centered: 46.38 scaled: 20.13) x cn x rint		0.0046	0.0348	0.13	0.8945	

fq x cn x rint	-0.0427	0.0191	-2.24	0.0251
ss x cn x rint	-0.0709	0.0173	-4.11	<1e-04
ps x ep(centered: 483.44 scaled: 285.87) x rint	-0.0712	0.0173	-4.12	<1e-04
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rint	0.0389	0.0355	1.10	0.2729
fq x ep(centered: 483.44 scaled: 285.87) x rint	-0.0486	0.0200	-2.43	0.0152
ss x ep(centered: 483.44 scaled: 285.87) x rint	-0.0289	0.0201	-1.44	0.1511
cn x ep(centered: 483.44 scaled: 285.87) x rint	0.0041	0.0183	0.22	0.8225
ps x age(centered: 46.38 scaled: 20.13) x fq x ss	-0.0035	0.0088	-0.40	0.6894
ps x age(centered: 46.38 scaled: 20.13) x fq x cn	0.0137	0.0085	1.61	0.1067
ps x age(centered: 46.38 scaled: 20.13) x ss x cn	-0.0015	0.0086	-0.17	0.8613
ps x fq x ss x cn	0.0090	0.0105	0.85	0.3926
age(centered: 46.38 scaled: 20.13) x fq x ss x cn	0.0197	0.0108	1.83	0.0675
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0226	0.0090	2.50	0.0125
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0270	0.0094	2.89	0.0039
ps x fq x ss x ep(centered: 483.44 scaled: 285.87)	0.0172	0.0109	1.58	0.1151
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0297	0.0110	-2.71	0.0067
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0119	0.0089	1.34	0.1807
ps x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0046	0.0116	0.40	0.6921
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0173	0.0116	1.49	0.1369
ps x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0622	0.0106	5.85	<1e-08
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0138	0.0108	1.28	0.1989
fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0153	0.0225	0.68	0.4949
ps x age(centered: 46.38 scaled: 20.13) x fq x rint	0.0464	0.0148	3.14	0.0017

ps x age(centered: 46.38 scaled: 20.13) x ss x rint	0.0441	0.0149	2.97	0.0030	
ps x fq x ss x rint	-0.0486	0.0168	-2.90	0.0038	
age(centered: 46.38 scaled: 20.13) x fq x ss x rint	-0.0077	0.0160	-0.48	0.6317	
ps x age(centered: 46.38 scaled: 20.13) x cn x rint	0.0164	0.0145	1.13	0.2569	
ps x fq x cn x rint	-0.0093	0.0157	-0.59	0.5522	
age(centered: 46.38 scaled: 20.13) x fq x cn x rint	0.0564	0.0153	3.68	0.0002	
ps x ss x cn x rint	0.0285	0.0158	1.80	0.0714	
age(centered: 46.38 scaled: 20.13) x ss x cn x rint	0.0244	0.0154	1.58	0.1131	
fq x ss x cn x rint	0.0986	0.0189	5.23	<1e-06	
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rint	0.0674	0.0161	4.18	<1e-04	
ps x fq x ep(centered: 483.44 scaled: 285.87) x rint	0.0638	0.0172	3.71	0.0002	
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rint	0.1286	0.0170	7.58	<1e-13	
ps x ss x ep(centered: 483.44 scaled: 285.87) x rint	-0.0362	0.0172	-2.10	0.0356	
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rint	0.0117	0.0170	0.69	0.4930	
fq x ss x ep(centered: 483.44 scaled: 285.87) x rint	-0.0484	0.0199	-2.43	0.0153	
ps x cn x ep(centered: 483.44 scaled: 285.87) x rint	-0.0663	0.0168	-3.94	<1e-04	
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rint	-0.0448	0.0168	-2.66	0.0078	
fq x cn x ep(centered: 483.44 scaled: 285.87) x rint	-0.0537	0.0206	-2.61	0.0091	
ss x cn x ep(centered: 483.44 scaled: 285.87) x rint	0.0724	0.0192	3.78	0.0002	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn	-0.0114	0.0088	-1.29	0.1977	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0091	0.0091	-1.01	0.3129	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0012	0.0090	0.14	0.8909	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0148	0.0093	1.58	0.1133	

ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0386	0.0110	3.50	0.0005	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0283	0.0110	-2.59	0.0097	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x rint	-0.0651	0.0158	-4.12	<1e-04	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x rint	-0.0583	0.0148	-3.95	<1e-04	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x rint	0.0085	0.0149	0.57	0.5684	
ps x fq x ss x cn x rint	-0.0321	0.0168	-1.91	0.0561	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rint	-0.0288	0.0160	-1.80	0.0719	
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rint	0.0323	0.0160	2.02	0.0435	
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rint	-0.0046	0.0162	-0.28	0.7775	
ps x fq x ss x ep(centered: 483.44 scaled: 285.87) x rint	-0.0537	0.0178	-3.01	0.0026	
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rint	0.0395	0.0168	2.35	0.0186	
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rint	0.0352	0.0158	2.22	0.0261	
ps x fq x cn x ep(centered: 483.44 scaled: 285.87) x rint	-0.0080	0.0172	-0.47	0.6404	
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rint	0.0026	0.0165	0.16	0.8749	
ps x ss x cn x ep(centered: 483.44 scaled: 285.87) x rint	0.0032	0.0172	0.19	0.8522	
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rint	-0.0798	0.0167	-4.79	<1e-05	
fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rint	-0.0337	0.0200	-1.68	0.0923	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0112	0.0091	1.24	0.2166	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rint	-0.0305	0.0159	-1.92	0.0547	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rint	-0.0091	0.0163	-0.56	0.5784	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rint	0.0383	0.0160	2.40	0.0165	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rint	0.0318	0.0162	1.96	0.0500	
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rint	0.0283	0.0179	1.58	0.1135	

age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rint	-0.0551	0.0166	-3.33	0.0009		
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rint	-0.0197	0.0163	-1.21	0.2280		
Residual	4.0878					

Table 6: **Full model summary for the best-fitting model including individual alpha frequency (IAF). Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; riaf = IAF (residualised on age); ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal**

	Est.	SE	z	p	σ_{Item}	σ_{Subj}	σ_{Change}
(Intercept)	-0.4256	0.0542	-7.85	<1e-14	0.5524	0.3181	0.084
ps	3.9511	0.0904	43.69	<1e-99	0.2858	0.7736	0.194
age(centered: 46.38 scaled: 20.13)	0.0758	0.0365	2.08	0.0377	0.3233		
fq	0.0105	0.0378	0.28	0.7822		0.1944	
ss	-0.0613	0.0456	-1.34	0.1792	0.5344	0.2202	
cn	0.0207	0.0361	0.57	0.5662	0.4639	0.1879	
ep(centered: 483.44 scaled: 285.87)	0.0222	0.0499	0.44	0.6565	0.6479	0.1862	
riaf	0.0750	0.0640	1.17	0.2417	0.5658		
ps2	0.0169	0.0153	1.11	0.2688	0.1106	0.1121	0.020
ss2	0.0141	0.0143	0.98	0.3252			
ss3	-0.0137	0.0064	-2.13	0.0335			
ps x age(centered: 46.38 scaled: 20.13)	0.1128	0.0726	1.55	0.1206			
ps x fq	0.0051	0.0115	0.45	0.6549			
age(centered: 46.38 scaled: 20.13) x fq	-0.0238	0.0221	-1.08	0.2819			

ps x ss		-0.0015	0.0109	-0.14	0.8890	
age(centered: 46.38 scaled: 20.13) x ss		0.0291	0.0240	1.22	0.2243	
fq x ss		-0.0126	0.0247	-0.51	0.6112	
ps x cn		0.0003	0.0091	0.04	0.9696	
age(centered: 46.38 scaled: 20.13) x cn		-0.0362	0.0202	-1.79	0.0732	
fq x cn		-0.0280	0.0336	-0.84	0.4034	
ss x cn		0.0547	0.0187	2.92	0.0035	
ps x ep(centered: 483.44 scaled: 285.87)		0.1083	0.0135	8.00	<1e-14	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)		-0.0111	0.0231	-0.48	0.6316	
fq x ep(centered: 483.44 scaled: 285.87)		-0.1182	0.0325	-3.63	0.0003	
ss x ep(centered: 483.44 scaled: 285.87)		-0.0381	0.0280	-1.36	0.1728	
cn x ep(centered: 483.44 scaled: 285.87)		0.0639	0.0265	2.41	0.0161	
ps x riaf		0.0515	0.1272	0.41	0.6853	
age(centered: 46.38 scaled: 20.13) x riaf		0.0037	0.0564	0.06	0.9484	
fq x riaf		0.1146	0.0386	2.97	0.0030	
ss x riaf		-0.0190	0.0419	-0.45	0.6513	
cn x riaf		-0.0055	0.0353	-0.16	0.8752	
ep(centered: 483.44 scaled: 285.87) x riaf		0.0792	0.0407	1.95	0.0517	
ps x age(centered: 46.38 scaled: 20.13) x fq		-0.0088	0.0085	-1.04	0.2996	
ps x age(centered: 46.38 scaled: 20.13) x ss		0.0087	0.0086	1.01	0.3133	
ps x fq x ss		0.0149	0.0107	1.39	0.1637	
age(centered: 46.38 scaled: 20.13) x fq x ss		0.0459	0.0108	4.24	<1e-04	
ps x age(centered: 46.38 scaled: 20.13) x cn		-0.0094	0.0085	-1.10	0.2701	

ps x fq x cn	-0.0137	0.0111	-1.23	0.2170	
age(centered: 46.38 scaled: 20.13) x fq x cn	0.0138	0.0113	1.22	0.2215	
ps x ss x cn	0.0100	0.0098	1.02	0.3054	
age(centered: 46.38 scaled: 20.13) x ss x cn	0.0153	0.0099	1.54	0.1234	
fq x ss x cn	-0.0645	0.0234	-2.76	0.0057	
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0201	0.0093	-2.16	0.0306	
ps x fq x ep(centered: 483.44 scaled: 285.87)	0.0080	0.0112	0.71	0.4751	
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0009	0.0115	0.08	0.9347	
ps x ss x ep(centered: 483.44 scaled: 285.87)	0.0350	0.0113	3.10	0.0019	
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0504	0.0116	4.35	<1e-04	
fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0206	0.0225	-0.92	0.3598	
ps x cn x ep(centered: 483.44 scaled: 285.87)	-0.0168	0.0102	-1.64	0.1012	
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0229	0.0104	2.22	0.0267	
fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0025	0.0301	0.08	0.9334	
ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0258	0.0190	-1.36	0.1749	
ps x age(centered: 46.38 scaled: 20.13) x riaf	0.2484	0.1295	1.92	0.0552	
ps x fq x riaf	-0.0182	0.0146	-1.24	0.2139	
age(centered: 46.38 scaled: 20.13) x fq x riaf	0.0852	0.0374	2.28	0.0228	
ps x ss x riaf	0.0663	0.0150	4.44	<1e-05	
age(centered: 46.38 scaled: 20.13) x ss x riaf	0.0047	0.0415	0.11	0.9108	
fq x ss x riaf	-0.0878	0.0199	-4.41	<1e-04	
ps x cn x riaf	0.0114	0.0143	0.80	0.4263	
age(centered: 46.38 scaled: 20.13) x cn x riaf	0.0289	0.0364	0.79	0.4268	

fq x cn x riaf	0.0042	0.0196	0.22	0.8288	
ss x cn x riaf	0.0655	0.0175	3.73	0.0002	
ps x ep(centered: 483.44 scaled: 285.87) x riaf	0.0182	0.0163	1.12	0.2628	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x riaf	0.0199	0.0370	0.54	0.5897	
fq x ep(centered: 483.44 scaled: 285.87) x riaf	0.1413	0.0204	6.92	<1e-11	
ss x ep(centered: 483.44 scaled: 285.87) x riaf	0.0085	0.0208	0.41	0.6826	
cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0037	0.0186	0.20	0.8422	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss	-0.0037	0.0090	-0.41	0.6838	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn	0.0140	0.0085	1.65	0.0996	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn	-0.0061	0.0086	-0.71	0.4781	
ps x fq x ss x cn	0.0019	0.0107	0.18	0.8578	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn	0.0275	0.0108	2.54	0.0112	
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0282	0.0091	3.09	0.0020	
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0165	0.0095	1.75	0.0805	
ps x fq x ss x ep(centered: 483.44 scaled: 285.87)	0.0174	0.0111	1.57	0.1161	
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0277	0.0110	-2.52	0.0116	
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0052	0.0090	0.58	0.5615	
ps x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0128	0.0116	1.10	0.2693	
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0171	0.0117	1.46	0.1430	
ps x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0595	0.0107	5.54	<1e-07	
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0121	0.0108	1.12	0.2628	
fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0128	0.0224	0.57	0.5679	
ps x age(centered: 46.38 scaled: 20.13) x fq x riaf	-0.0081	0.0150	-0.54	0.5894	

ps x age(centered: 46.38 scaled: 20.13) x ss x riaf	0.0466	0.0153	3.04	0.0023	
ps x fq x ss x riaf	-0.0292	0.0160	-1.82	0.0684	
age(centered: 46.38 scaled: 20.13) x fq x ss x riaf	0.0141	0.0176	0.80	0.4229	
ps x age(centered: 46.38 scaled: 20.13) x cn x riaf	-0.0489	0.0146	-3.34	0.0008	
ps x fq x cn x riaf	-0.0117	0.0147	-0.80	0.4251	
age(centered: 46.38 scaled: 20.13) x fq x cn x riaf	-0.0304	0.0157	-1.93	0.0535	
ps x ss x cn x riaf	0.0205	0.0149	1.37	0.1708	
age(centered: 46.38 scaled: 20.13) x ss x cn x riaf	-0.0552	0.0164	-3.37	0.0007	
fq x ss x cn x riaf	-0.0658	0.0197	-3.34	0.0008	
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x riaf	-0.1032	0.0161	-6.42	<1e-09	
ps x fq x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0535	0.0163	-3.29	0.0010	
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0854	0.0174	-4.92	<1e-06	
ps x ss x ep(centered: 483.44 scaled: 285.87) x riaf	0.0291	0.0164	1.78	0.0753	
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0108	0.0179	-0.60	0.5469	
fq x ss x ep(centered: 483.44 scaled: 285.87) x riaf	0.0646	0.0209	3.09	0.0020	
ps x cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0409	0.0156	2.62	0.0087	
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0836	0.0171	4.89	<1e-05	
fq x cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0744	0.0208	3.58	0.0003	
ss x cn x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0528	0.0194	-2.73	0.0064	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn	-0.0135	0.0090	-1.51	0.1323	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0154	0.0092	-1.68	0.0937	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	-0.0007	0.0091	-0.08	0.9402	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0164	0.0094	1.75	0.0807	

ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0367	0.0112	3.28	0.0010	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0238	0.0110	-2.16	0.0308	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x riaf	0.0552	0.0165	3.35	0.0008	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x riaf	0.0754	0.0151	5.00	<1e-06	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x riaf	-0.0225	0.0153	-1.47	0.1422	
ps x fq x ss x cn x riaf	0.0358	0.0160	2.24	0.0252	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x riaf	0.0074	0.0175	0.42	0.6738	
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0085	0.0162	-0.52	0.6013	
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0175	0.0165	-1.06	0.2885	
ps x fq x ss x ep(centered: 483.44 scaled: 285.87) x riaf	0.0249	0.0172	1.45	0.1478	
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0914	0.0184	-4.98	<1e-06	
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0810	0.0156	-5.18	<1e-06	
ps x fq x cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0245	0.0162	1.51	0.1317	
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0033	0.0168	-0.19	0.8465	
ps x ss x cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0304	0.0163	1.87	0.0613	
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0700	0.0176	3.97	<1e-04	
fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0516	0.0210	2.46	0.0137	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0123	0.0092	1.34	0.1795	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x riaf	0.0115	0.0164	0.70	0.4829	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x riaf	0.0032	0.0170	0.19	0.8520	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0420	0.0162	-2.59	0.0095	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0096	0.0164	-0.59	0.5562	
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x riaf	-0.0069	0.0173	-0.40	0.6886	

age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0403	0.0182	2.21	0.0269		
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x riaf	0.0261	0.0170	1.54	0.1245		
Residual	4.0874					

Table 7: Full model summary for the best-fitting model including idea density (ID). Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; rid = ID (residualised on age); ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal

		Est.	SE	z	p	σ_{Item}	σ_{Subj}	σ_{Change}
(Intercept)		-0.4144	1.0874	-0.38	0.7031	0.5537	0.3238	4.20
ps		3.9442	0.9975	3.95	<1e-04	0.2848	0.7703	3.85
age(centered: 46.38 scaled: 20.13)		0.0767	0.0369	2.08	0.0375	0.3262		
fq		0.0149	0.0379	0.39	0.6934		0.1974	
ss		-0.0624	0.0458	-1.36	0.1726	0.5395	0.2175	
cn		0.0136	0.0359	0.38	0.7058	0.4610	0.1855	
ep(centered: 483.44 scaled: 285.87)		0.0225	0.0493	0.46	0.6486	0.6334	0.1852	
rid		0.8871	1.2498	0.71	0.4778	10.1048		
ps2		0.0162	0.1223	0.13	0.8948	0.1101	0.1110	0.470
ss2		0.0075	0.0144	0.52	0.5999			
ss3		-0.0116	0.0064	-1.80	0.0715			
ps x age(centered: 46.38 scaled: 20.13)		0.1079	0.0725	1.49	0.1366			
ps x fq		0.0030	0.0114	0.26	0.7943			
age(centered: 46.38 scaled: 20.13) x fq		-0.0232	0.0223	-1.04	0.2963			
ps x ss		-0.0027	0.0108	-0.25	0.8011			

age(centered: 46.38 scaled: 20.13) x ss	0.0260	0.0237	1.10	0.2726	
fq x ss	-0.0204	0.0248	-0.82	0.4109	
ps x cn	-0.0041	0.0090	-0.46	0.6448	
age(centered: 46.38 scaled: 20.13) x cn	-0.0383	0.0199	-1.92	0.0548	
fq x cn	-0.0305	0.0334	-0.91	0.3625	
ss x cn	0.0421	0.0188	2.24	0.0249	
ps x ep(centered: 483.44 scaled: 285.87)	0.0957	0.0135	7.08	<1e-11	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0172	0.0231	-0.74	0.4563	
fq x ep(centered: 483.44 scaled: 285.87)	-0.1227	0.0324	-3.78	0.0002	
ss x ep(centered: 483.44 scaled: 285.87)	-0.0254	0.0281	-0.90	0.3662	
cn x ep(centered: 483.44 scaled: 285.87)	0.0701	0.0266	2.64	0.0083	
ps x rid	3.6169	2.5557	1.42	0.1570	
age(centered: 46.38 scaled: 20.13) x rid	0.6852	1.1132	0.62	0.5382	
fq x rid	-0.1187	0.7727	-0.15	0.8780	
ss x rid	-1.1125	0.8228	-1.35	0.1764	
cn x rid	0.0557	0.6937	0.08	0.9360	
ep(centered: 483.44 scaled: 285.87) x rid	0.1831	0.7911	0.23	0.8169	
ps x age(centered: 46.38 scaled: 20.13) x fq	-0.0084	0.0084	-0.99	0.3201	
ps x age(centered: 46.38 scaled: 20.13) x ss	0.0150	0.0086	1.76	0.0789	
ps x fq x ss	0.0233	0.0107	2.18	0.0294	
age(centered: 46.38 scaled: 20.13) x fq x ss	0.0423	0.0108	3.91	<1e-04	
ps x age(centered: 46.38 scaled: 20.13) x cn	-0.0035	0.0084	-0.41	0.6785	
ps x fq x cn	-0.0049	0.0110	-0.45	0.6553	

age(centered: 46.38 scaled: 20.13) x fq x cn	0.0200	0.0113	1.78	0.0750
ps x ss x cn	0.0047	0.0098	0.48	0.6302
age(centered: 46.38 scaled: 20.13) x ss x cn	0.0142	0.0099	1.44	0.1506
fq x ss x cn	-0.0663	0.0234	-2.83	0.0046
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0172	0.0092	-1.86	0.0630
ps x fq x ep(centered: 483.44 scaled: 285.87)	0.0008	0.0112	0.07	0.9414
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	-0.0016	0.0114	-0.14	0.8905
ps x ss x ep(centered: 483.44 scaled: 285.87)	0.0281	0.0112	2.50	0.0123
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0507	0.0116	4.37	<1e-04
fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0324	0.0226	-1.43	0.1525
ps x cn x ep(centered: 483.44 scaled: 285.87)	-0.0187	0.0102	-1.84	0.0663
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0257	0.0103	2.50	0.0126
fq x cn x ep(centered: 483.44 scaled: 285.87)	-0.0015	0.0302	-0.05	0.9597
ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0246	0.0191	-1.29	0.1975
ps x age(centered: 46.38 scaled: 20.13) x rid	3.0547	2.5824	1.18	0.2368
ps x fq x rid	-0.5452	0.3134	-1.74	0.0820
age(centered: 46.38 scaled: 20.13) x fq x rid	0.8563	0.7352	1.16	0.2441
ps x ss x rid	0.2780	0.3159	0.88	0.3788
age(centered: 46.38 scaled: 20.13) x ss x rid	-0.7080	0.7990	-0.89	0.3756
fq x ss x rid	-0.0322	0.3814	-0.08	0.9326
ps x cn x rid	0.4932	0.3084	1.60	0.1098
age(centered: 46.38 scaled: 20.13) x cn x rid	0.0428	0.6979	0.06	0.9511
fq x cn x rid	-1.2323	0.3800	-3.24	0.0012

ss x cn x rid	0.6428	0.3405	1.89	0.0591	
ps x ep(centered: 483.44 scaled: 285.87) x rid	0.5953	0.3479	1.71	0.0871	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rid	0.0829	0.7202	0.12	0.9084	
fq x ep(centered: 483.44 scaled: 285.87) x rid	-0.5468	0.3914	-1.40	0.1624	
ss x ep(centered: 483.44 scaled: 285.87) x rid	0.2725	0.3972	0.69	0.4927	
cn x ep(centered: 483.44 scaled: 285.87) x rid	0.9110	0.3583	2.54	0.0110	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss	-0.0045	0.0089	-0.50	0.6146	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn	0.0072	0.0084	0.85	0.3942	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn	-0.0093	0.0086	-1.08	0.2780	
ps x fq x ss x cn	0.0071	0.0107	0.66	0.5087	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn	0.0221	0.0108	2.05	0.0408	
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0256	0.0091	2.83	0.0047	
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0179	0.0094	1.91	0.0558	
ps x fq x ss x ep(centered: 483.44 scaled: 285.87)	0.0209	0.0111	1.89	0.0587	
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0248	0.0110	-2.27	0.0235	
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0134	0.0089	1.51	0.1310	
ps x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0040	0.0116	0.34	0.7331	
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0139	0.0116	1.20	0.2313	
ps x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0552	0.0107	5.18	<1e-06	
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0126	0.0108	1.17	0.2424	
fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0027	0.0225	-0.12	0.9060	
ps x age(centered: 46.38 scaled: 20.13) x fq x rid	0.4619	0.3027	1.53	0.1271	
ps x age(centered: 46.38 scaled: 20.13) x ss x rid	0.6448	0.3131	2.06	0.0395	

ps x fq x ss x rid	-0.5852	0.3410	-1.72	0.0861	
age(centered: 46.38 scaled: 20.13) x fq x ss x rid	-0.4052	0.3328	-1.22	0.2234	
ps x age(centered: 46.38 scaled: 20.13) x cn x rid	-0.3007	0.2988	-1.01	0.3143	
ps x fq x cn x rid	-0.3478	0.3136	-1.11	0.2675	
age(centered: 46.38 scaled: 20.13) x fq x cn x rid	-0.1406	0.3015	-0.47	0.6410	
ps x ss x cn x rid	0.7775	0.3155	2.46	0.0137	
age(centered: 46.38 scaled: 20.13) x ss x cn x rid	0.3648	0.3129	1.17	0.2436	
fq x ss x cn x rid	-0.3492	0.3736	-0.93	0.3499	
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rid	-0.5570	0.3388	-1.64	0.1002	
ps x fq x ep(centered: 483.44 scaled: 285.87) x rid	-0.0509	0.3408	-0.15	0.8813	
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rid	1.0022	0.3351	2.99	0.0028	
ps x ss x ep(centered: 483.44 scaled: 285.87) x rid	0.5723	0.3451	1.66	0.0973	
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rid	0.0189	0.3443	0.05	0.9562	
fq x ss x ep(centered: 483.44 scaled: 285.87) x rid	0.4523	0.3879	1.17	0.2436	
ps x cn x ep(centered: 483.44 scaled: 285.87) x rid	0.0486	0.3303	0.15	0.8831	
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rid	-0.1772	0.3335	-0.53	0.5951	
fq x cn x ep(centered: 483.44 scaled: 285.87) x rid	-0.0981	0.3934	-0.25	0.8032	
ss x cn x ep(centered: 483.44 scaled: 285.87) x rid	-0.7830	0.3708	-2.11	0.0347	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn	-0.0087	0.0089	-0.97	0.3298	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0155	0.0092	-1.69	0.0904	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0042	0.0090	0.46	0.6434	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0182	0.0093	1.95	0.0506	
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0395	0.0112	3.54	0.0004	

age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0245	0.0110	-2.23	0.0257	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x rid	0.8353	0.3398	2.46	0.0140	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x rid	0.4787	0.3025	1.58	0.1135	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x rid	0.1620	0.3123	0.52	0.6038	
ps x fq x ss x cn x rid	0.2572	0.3408	0.75	0.4505	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rid	0.9374	0.3312	2.83	0.0047	
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rid	-0.0398	0.3301	-0.12	0.9040	
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rid	-0.0226	0.3411	-0.07	0.9471	
ps x fq x ss x ep(centered: 483.44 scaled: 285.87) x rid	-0.4467	0.3647	-1.22	0.2206	
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rid	0.2222	0.3469	0.64	0.5219	
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rid	-1.3262	0.3215	-4.13	<1e-04	
ps x fq x cn x ep(centered: 483.44 scaled: 285.87) x rid	-1.0206	0.3389	-3.01	0.0026	
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rid	0.0693	0.3231	0.21	0.8301	
ps x ss x cn x ep(centered: 483.44 scaled: 285.87) x rid	0.4086	0.3442	1.19	0.2351	
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rid	1.1974	0.3377	3.55	0.0004	
fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rid	-0.4006	0.3857	-1.04	0.2990	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0105	0.0091	1.15	0.2507	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rid	-0.4693	0.3400	-1.38	0.1675	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rid	0.1273	0.3538	0.36	0.7191	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rid	0.4925	0.3286	1.50	0.1339	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rid	1.2950	0.3404	3.80	0.0001	
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rid	-0.3165	0.3642	-0.87	0.3848	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rid	1.2366	0.3435	3.60	0.0003	

ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rid	1.4354	0.3534	4.06	<1e-04	
Residual	4.0906				

Table 8: **Full model summary for the best-fitting model including MMN amplitude. Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; rmmn = MMN amplitude (residualised on age); ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal**

	Est.	SE	z	p	σ_{Item}	σ_{Subj}	σ_{Cov}
(Intercept)	-0.4112	0.0546	-7.53	<1e-13	0.5544	0.3227	0.0001
ps	3.8704	0.0952	40.66	<1e-99	0.2851	0.7765	0.0001
age(centered: 46.42 scaled: 20.35)	0.0774	0.0373	2.07	0.0383	0.3306	0.0001	0.0001
fq	0.0077	0.0378	0.20	0.8378	0.0001	0.1888	0.0001
ss	-0.0691	0.0472	-1.46	0.1433	0.5575	0.2274	0.0001
cn	0.0003	0.0366	0.01	0.9936	0.4636	0.1928	0.0001
ep(centered: 484.37 scaled: 286.52)	0.0192	0.0504	0.38	0.7030	0.6591	0.1755	0.0001
rmmn	0.0149	0.0671	0.22	0.8241	0.5565	0.0001	0.0001
ps2	0.0174	0.0157	1.11	0.2678	0.1110	0.1127	0.0001
ss2	0.0015	0.0145	0.10	0.9201	0.0001	0.0001	0.0001
ss3	-0.0089	0.0065	-1.37	0.1708	0.0001	0.0001	0.0001
ps x age(centered: 46.42 scaled: 20.35)	0.1034	0.0742	1.39	0.1633	0.0001	0.0001	0.0001
ps x fq	0.0049	0.0115	0.42	0.6714	0.0001	0.0001	0.0001
age(centered: 46.42 scaled: 20.35) x fq	-0.0226	0.0220	-1.03	0.3029	0.0001	0.0001	0.0001

ps x ss		0.0032	0.0109	0.29	0.7718	
age(centered: 46.42 scaled: 20.35) x ss		0.0205	0.0249	0.82	0.4102	
fq x ss		-0.0006	0.0252	-0.02	0.9803	
ps x cn		-0.0054	0.0090	-0.60	0.5473	
age(centered: 46.42 scaled: 20.35) x cn		-0.0352	0.0209	-1.69	0.0915	
fq x cn		-0.0203	0.0337	-0.60	0.5480	
ss x cn		0.0437	0.0190	2.30	0.0213	
ps x ep(centered: 484.37 scaled: 286.52)		0.1119	0.0136	8.24	<1e-15	
age(centered: 46.42 scaled: 20.35) x ep(centered: 484.37 scaled: 286.52)		-0.0174	0.0227	-0.77	0.4437	
fq x ep(centered: 484.37 scaled: 286.52)		-0.1149	0.0329	-3.50	0.0005	
ss x ep(centered: 484.37 scaled: 286.52)		-0.0302	0.0286	-1.05	0.2917	
cn x ep(centered: 484.37 scaled: 286.52)		0.0682	0.0268	2.54	0.0110	
ps x rmmn		0.0907	0.1351	0.67	0.5022	
age(centered: 46.42 scaled: 20.35) x rmmn		-0.0366	0.0528	-0.69	0.4882	
fq x rmmn		-0.0514	0.0399	-1.29	0.1975	
ss x rmmn		-0.0738	0.0451	-1.64	0.1017	
cn x rmmn		-0.0229	0.0384	-0.60	0.5501	
ep(centered: 484.37 scaled: 286.52) x rmmn		0.0390	0.0412	0.95	0.3445	
ps x age(centered: 46.42 scaled: 20.35) x fq		-0.0102	0.0084	-1.21	0.2281	
ps x age(centered: 46.42 scaled: 20.35) x ss		0.0155	0.0085	1.82	0.0686	
ps x fq x ss		0.0296	0.0107	2.76	0.0057	
age(centered: 46.42 scaled: 20.35) x fq x ss		0.0354	0.0111	3.19	0.0014	
ps x age(centered: 46.42 scaled: 20.35) x cn		-0.0029	0.0084	-0.35	0.7298	

ps x fq x cn	-0.0008	0.0112	-0.07	0.9437
age(centered: 46.42 scaled: 20.35) x fq x cn	0.0161	0.0115	1.40	0.1601
ps x ss x cn	0.0070	0.0098	0.72	0.4732
age(centered: 46.42 scaled: 20.35) x ss x cn	0.0214	0.0101	2.12	0.0341
fq x ss x cn	-0.0595	0.0238	-2.50	0.0123
ps x age(centered: 46.42 scaled: 20.35) x ep(centered: 484.37 scaled: 286.52)	-0.0200	0.0092	-2.17	0.0300
ps x fq x ep(centered: 484.37 scaled: 286.52)	0.0139	0.0113	1.24	0.2162
age(centered: 46.42 scaled: 20.35) x fq x ep(centered: 484.37 scaled: 286.52)	-0.0023	0.0117	-0.20	0.8419
ps x ss x ep(centered: 484.37 scaled: 286.52)	0.0334	0.0113	2.97	0.0030
age(centered: 46.42 scaled: 20.35) x ss x ep(centered: 484.37 scaled: 286.52)	0.0458	0.0118	3.88	0.0001
fq x ss x ep(centered: 484.37 scaled: 286.52)	-0.0300	0.0229	-1.31	0.1894
ps x cn x ep(centered: 484.37 scaled: 286.52)	-0.0286	0.0102	-2.80	0.0050
age(centered: 46.42 scaled: 20.35) x cn x ep(centered: 484.37 scaled: 286.52)	0.0333	0.0105	3.17	0.0015
fq x cn x ep(centered: 484.37 scaled: 286.52)	-0.0121	0.0304	-0.40	0.6904
ss x cn x ep(centered: 484.37 scaled: 286.52)	-0.0119	0.0193	-0.62	0.5366
ps x age(centered: 46.42 scaled: 20.35) x rmmn	-0.1191	0.1215	-0.98	0.3269
ps x fq x rmmn	-0.0319	0.0145	-2.19	0.0283
age(centered: 46.42 scaled: 20.35) x fq x rmmn	-0.0210	0.0339	-0.62	0.5352
ps x ss x rmmn	-0.0128	0.0148	-0.86	0.3881
age(centered: 46.42 scaled: 20.35) x ss x rmmn	0.0062	0.0393	0.16	0.8752
fq x ss x rmmn	0.0869	0.0201	4.31	<1e-04
ps x cn x rmmn	0.0252	0.0142	1.77	0.0771
age(centered: 46.42 scaled: 20.35) x cn x rmmn	0.0029	0.0342	0.09	0.9313

fq x cn x rmmn	-0.0257	0.0205	-1.25	0.2100
ss x cn x rmmn	-0.0711	0.0187	-3.80	0.0001
ps x ep(centered: 484.37 scaled: 286.52) x rmmn	0.1045	0.0162	6.44	<1e-09
age(centered: 46.42 scaled: 20.35) x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0173	0.0331	0.52	0.6018
fq x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0248	0.0217	1.14	0.2545
ss x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0099	0.0220	0.45	0.6531
cn x ep(centered: 484.37 scaled: 286.52) x rmmn	-0.0614	0.0200	-3.08	0.0021
ps x age(centered: 46.42 scaled: 20.35) x fq x ss	-0.0039	0.0089	-0.44	0.6600
ps x age(centered: 46.42 scaled: 20.35) x fq x cn	0.0072	0.0085	0.86	0.3913
ps x age(centered: 46.42 scaled: 20.35) x ss x cn	-0.0001	0.0085	-0.01	0.9947
ps x fq x ss x cn	0.0066	0.0107	0.62	0.5377
age(centered: 46.42 scaled: 20.35) x fq x ss x cn	0.0190	0.0111	1.72	0.0852
ps x age(centered: 46.42 scaled: 20.35) x fq x ep(centered: 484.37 scaled: 286.52)	0.0329	0.0091	3.63	0.0003
ps x age(centered: 46.42 scaled: 20.35) x ss x ep(centered: 484.37 scaled: 286.52)	0.0191	0.0093	2.05	0.0404
ps x fq x ss x ep(centered: 484.37 scaled: 286.52)	0.0190	0.0111	1.72	0.0862
age(centered: 46.42 scaled: 20.35) x fq x ss x ep(centered: 484.37 scaled: 286.52)	-0.0387	0.0113	-3.43	0.0006
ps x age(centered: 46.42 scaled: 20.35) x cn x ep(centered: 484.37 scaled: 286.52)	0.0044	0.0089	0.50	0.6204
ps x fq x cn x ep(centered: 484.37 scaled: 286.52)	0.0031	0.0117	0.26	0.7934
age(centered: 46.42 scaled: 20.35) x fq x cn x ep(centered: 484.37 scaled: 286.52)	0.0129	0.0119	1.09	0.2752
ps x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0575	0.0107	5.36	<1e-07
age(centered: 46.42 scaled: 20.35) x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0114	0.0110	1.04	0.2992
fq x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0078	0.0228	0.34	0.7324
ps x age(centered: 46.42 scaled: 20.35) x fq x rmmn	-0.0263	0.0132	-1.99	0.0469

ps x age(centered: 46.42 scaled: 20.35) x ss x rmmn	-0.0237	0.0135	-1.76	0.0788
ps x fq x ss x rmmn	0.0065	0.0158	0.42	0.6779
age(centered: 46.42 scaled: 20.35) x fq x ss x rmmn	-0.0023	0.0158	-0.14	0.8854
ps x age(centered: 46.42 scaled: 20.35) x cn x rmmn	0.0060	0.0129	0.47	0.6404
ps x fq x cn x rmmn	-0.0106	0.0145	-0.73	0.4682
age(centered: 46.42 scaled: 20.35) x fq x cn x rmmn	0.0122	0.0146	0.84	0.4029
ps x ss x cn x rmmn	-0.0170	0.0148	-1.15	0.2492
age(centered: 46.42 scaled: 20.35) x ss x cn x rmmn	-0.0673	0.0151	-4.44	<1e-05
fq x ss x cn x rmmn	0.1146	0.0203	5.63	<1e-07
ps x age(centered: 46.42 scaled: 20.35) x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0584	0.0147	3.99	<1e-04
ps x fq x ep(centered: 484.37 scaled: 286.52) x rmmn	-0.0312	0.0163	-1.92	0.0552
age(centered: 46.42 scaled: 20.35) x fq x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0308	0.0163	1.89	0.0584
ps x ss x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0095	0.0165	0.57	0.5656
age(centered: 46.42 scaled: 20.35) x ss x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0566	0.0170	3.33	0.0009
fq x ss x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0078	0.0215	0.36	0.7171
ps x cn x ep(centered: 484.37 scaled: 286.52) x rmmn	-0.0126	0.0156	-0.81	0.4182
age(centered: 46.42 scaled: 20.35) x cn x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0204	0.0160	1.27	0.2044
fq x cn x ep(centered: 484.37 scaled: 286.52) x rmmn	-0.0151	0.0217	-0.70	0.4864
ss x cn x ep(centered: 484.37 scaled: 286.52) x rmmn	-0.0170	0.0205	-0.83	0.4067
ps x age(centered: 46.42 scaled: 20.35) x fq x ss x cn	-0.0053	0.0089	-0.60	0.5495
ps x age(centered: 46.42 scaled: 20.35) x fq x ss x ep(centered: 484.37 scaled: 286.52)	-0.0040	0.0092	-0.44	0.6633
ps x age(centered: 46.42 scaled: 20.35) x fq x cn x ep(centered: 484.37 scaled: 286.52)	0.0053	0.0090	0.58	0.5590
ps x age(centered: 46.42 scaled: 20.35) x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0211	0.0093	2.27	0.0233

ps x fq x ss x cn x ep (centered: 484.37 scaled: 286.52)	0.0369	0.0112	3.30	0.0010	
age (centered: 46.42 scaled: 20.35) x fq x ss x cn x ep (centered: 484.37 scaled: 286.52)	-0.0337	0.0113	-2.99	0.0028	
ps x age (centered: 46.42 scaled: 20.35) x fq x ss x rmmn	-0.0219	0.0142	-1.54	0.1231	
ps x age (centered: 46.42 scaled: 20.35) x fq x cn x rmmn	0.0566	0.0132	4.29	<1e-04	
ps x age (centered: 46.42 scaled: 20.35) x ss x cn x rmmn	-0.0304	0.0134	-2.28	0.0228	
ps x fq x ss x cn x rmmn	-0.0676	0.0158	-4.28	<1e-04	
age (centered: 46.42 scaled: 20.35) x fq x ss x cn x rmmn	0.0409	0.0158	2.59	0.0096	
ps x age (centered: 46.42 scaled: 20.35) x fq x ep (centered: 484.37 scaled: 286.52) x rmmn	-0.0051	0.0146	-0.35	0.7297	
ps x age (centered: 46.42 scaled: 20.35) x ss x ep (centered: 484.37 scaled: 286.52) x rmmn	0.0374	0.0150	2.50	0.0126	
ps x fq x ss x ep (centered: 484.37 scaled: 286.52) x rmmn	-0.0054	0.0173	-0.31	0.7547	
age (centered: 46.42 scaled: 20.35) x fq x ss x ep (centered: 484.37 scaled: 286.52) x rmmn	0.0039	0.0169	0.23	0.8199	
ps x age (centered: 46.42 scaled: 20.35) x cn x ep (centered: 484.37 scaled: 286.52) x rmmn	0.0208	0.0141	1.47	0.1404	
ps x fq x cn x ep (centered: 484.37 scaled: 286.52) x rmmn	-0.0842	0.0162	-5.19	<1e-06	
age (centered: 46.42 scaled: 20.35) x fq x cn x ep (centered: 484.37 scaled: 286.52) x rmmn	0.0117	0.0157	0.74	0.4568	
ps x ss x cn x ep (centered: 484.37 scaled: 286.52) x rmmn	-0.0117	0.0165	-0.70	0.4809	
age (centered: 46.42 scaled: 20.35) x ss x cn x ep (centered: 484.37 scaled: 286.52) x rmmn	0.0113	0.0166	0.68	0.4963	
fq x ss x cn x ep (centered: 484.37 scaled: 286.52) x rmmn	0.0486	0.0215	2.27	0.0235	
ps x age (centered: 46.42 scaled: 20.35) x fq x ss x cn x ep (centered: 484.37 scaled: 286.52)	0.0155	0.0092	1.68	0.0933	
ps x age (centered: 46.42 scaled: 20.35) x fq x ss x cn x rmmn	-0.0073	0.0142	-0.51	0.6083	
ps x age (centered: 46.42 scaled: 20.35) x fq x ss x ep (centered: 484.37 scaled: 286.52) x rmmn	-0.0281	0.0152	-1.85	0.0645	
ps x age (centered: 46.42 scaled: 20.35) x fq x cn x ep (centered: 484.37 scaled: 286.52) x rmmn	-0.0818	0.0146	-5.61	<1e-07	
ps x age (centered: 46.42 scaled: 20.35) x ss x cn x ep (centered: 484.37 scaled: 286.52) x rmmn	-0.0560	0.0149	-3.75	0.0002	
ps x fq x ss x cn x ep (centered: 484.37 scaled: 286.52) x rmmn	0.0123	0.0173	0.71	0.4790	

age(centered: 46.42 scaled: 20.35) x fq x ss x cn x ep(centered: 484.37 scaled: 286.52) x rmmn	0.0172	0.0168	1.02	0.3063		
ps x age(centered: 46.42 scaled: 20.35) x fq x ss x cn x ep(centered: 484.37 scaled: 286.52) x rmmn	-0.0127	0.0153	-0.83	0.4048		
Residual	4.0779					

Table 9: **Full model summary for the best-fitting model including P3 amplitude. Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; rp3 = P3 amplitude (residualised on age); ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal**

	Est.	SE	z	p	σ_{Item}	σ_{Subj}	σ_{Chanc}
(Intercept)	-0.4143	0.0546	-7.59	<1e-13	0.5705	0.3101	0.0792
ps	3.8707	0.0899	43.05	<1e-99	0.2880	0.7592	0.1802
age(centered: 46.42 scaled: 20.35)	0.0744	0.0368	2.02	0.0432	0.3379		
fq	0.0076	0.0386	0.20	0.8439		0.1911	
ss	-0.0783	0.0467	-1.68	0.0935	0.5512	0.2196	
cn	0.0009	0.0367	0.02	0.9807	0.4719	0.1866	
ep(centered: 484.37 scaled: 286.52)	0.0064	0.0513	0.13	0.9003	0.6722	0.1809	
rp3	-0.0832	0.0613	-1.36	0.1749	0.5844		
ps2	0.0176	0.0154	1.14	0.2543	0.1105	0.1108	0.0229
ss2	0.0080	0.0146	0.55	0.5835			
ss3	-0.0053	0.0066	-0.81	0.4184			
ps x age(centered: 46.42 scaled: 20.35)	0.1151	0.0727	1.58	0.1131			
ps x fq	0.0001	0.0116	0.01	0.9954			
age(centered: 46.42 scaled: 20.35) x fq	-0.0251	0.0222	-1.13	0.2584			
ps x ss	-0.0115	0.0110	-1.04	0.2978			

age(centered: 46.42 scaled: 20.35) x ss	0.0267	0.0243	1.10	0.2707	
fq x ss	-0.0053	0.0252	-0.21	0.8347	
ps x cn	-0.0040	0.0092	-0.43	0.6659	
age(centered: 46.42 scaled: 20.35) x cn	-0.0311	0.0203	-1.53	0.1269	
fq x cn	-0.0222	0.0345	-0.64	0.5191	
ss x cn	0.0568	0.0191	2.98	0.0029	
ps x ep(centered: 484.37 scaled: 286.52)	0.1226	0.0137	8.94	<1e-18	
age(centered: 46.42 scaled: 20.35) x ep(centered: 484.37 scaled: 286.52)	-0.0189	0.0232	-0.82	0.4135	
fq x ep(centered: 484.37 scaled: 286.52)	-0.1038	0.0333	-3.12	0.0018	
ss x ep(centered: 484.37 scaled: 286.52)	-0.0362	0.0287	-1.26	0.2068	
cn x ep(centered: 484.37 scaled: 286.52)	0.0617	0.0271	2.28	0.0227	
ps x rp3	-0.0847	0.1197	-0.71	0.4790	
age(centered: 46.42 scaled: 20.35) x rp3	0.0613	0.0494	1.24	0.2143	
fq x rp3	-0.0066	0.0370	-0.18	0.8577	
ss x rp3	0.0411	0.0398	1.03	0.3019	
cn x rp3	0.0328	0.0336	0.97	0.3297	
ep(centered: 484.37 scaled: 286.52) x rp3	-0.0233	0.0390	-0.60	0.5496	
ps x age(centered: 46.42 scaled: 20.35) x fq	-0.0122	0.0085	-1.44	0.1496	
ps x age(centered: 46.42 scaled: 20.35) x ss	0.0069	0.0086	0.80	0.4241	
ps x fq x ss	0.0220	0.0108	2.04	0.0416	
age(centered: 46.42 scaled: 20.35) x fq x ss	0.0405	0.0110	3.68	0.0002	
ps x age(centered: 46.42 scaled: 20.35) x cn	-0.0004	0.0084	-0.04	0.9654	
ps x fq x cn	0.0015	0.0113	0.13	0.8929	

age(centered: 46.42 scaled: 20.35) x fq x cn	0.0181	0.0115	1.58	0.1142
ps x ss x cn	0.0024	0.0099	0.24	0.8103
age(centered: 46.42 scaled: 20.35) x ss x cn	0.0151	0.0101	1.50	0.1339
fq x ss x cn	-0.0803	0.0239	-3.37	0.0008
ps x age(centered: 46.42 scaled: 20.35) x ep(centered: 484.37 scaled: 286.52)	-0.0075	0.0092	-0.81	0.4181
ps x fq x ep(centered: 484.37 scaled: 286.52)	0.0135	0.0113	1.19	0.2351
age(centered: 46.42 scaled: 20.35) x fq x ep(centered: 484.37 scaled: 286.52)	-0.0020	0.0117	-0.17	0.8665
ps x ss x ep(centered: 484.37 scaled: 286.52)	0.0255	0.0114	2.24	0.0248
age(centered: 46.42 scaled: 20.35) x ss x ep(centered: 484.37 scaled: 286.52)	0.0482	0.0118	4.09	<1e-04
fq x ss x ep(centered: 484.37 scaled: 286.52)	-0.0304	0.0230	-1.32	0.1856
ps x cn x ep(centered: 484.37 scaled: 286.52)	-0.0229	0.0103	-2.22	0.0265
age(centered: 46.42 scaled: 20.35) x cn x ep(centered: 484.37 scaled: 286.52)	0.0313	0.0105	2.99	0.0028
fq x cn x ep(centered: 484.37 scaled: 286.52)	-0.0189	0.0308	-0.61	0.5398
ss x cn x ep(centered: 484.37 scaled: 286.52)	-0.0213	0.0194	-1.10	0.2712
ps x age(centered: 46.42 scaled: 20.35) x rp3	-0.1884	0.1163	-1.62	0.1054
ps x fq x rp3	-0.0207	0.0112	-1.85	0.0638
age(centered: 46.42 scaled: 20.35) x fq x rp3	-0.0385	0.0332	-1.16	0.2460
ps x ss x rp3	-0.0682	0.0111	-6.13	<1e-09
age(centered: 46.42 scaled: 20.35) x ss x rp3	-0.0155	0.0369	-0.42	0.6742
fq x ss x rp3	-0.0142	0.0189	-0.75	0.4515
ps x cn x rp3	-0.0057	0.0108	-0.53	0.5950
age(centered: 46.42 scaled: 20.35) x cn x rp3	-0.0204	0.0321	-0.64	0.5252
fq x cn x rp3	-0.0364	0.0202	-1.80	0.0715

ss x cn x rp3	-0.0503	0.0170	-2.95	0.0031
ps x ep(centered: 484.37 scaled: 286.52) x rp3	0.0575	0.0122	4.71	<1e-05
age(centered: 46.42 scaled: 20.35) x ep(centered: 484.37 scaled: 286.52) x rp3	0.0148	0.0323	0.46	0.6477
fq x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0335	0.0211	-1.59	0.1118
ss x ep(centered: 484.37 scaled: 286.52) x rp3	-0.1041	0.0205	-5.07	<1e-06
cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0149	0.0187	-0.80	0.4253
ps x age(centered: 46.42 scaled: 20.35) x fq x ss	-0.0039	0.0089	-0.44	0.6613
ps x age(centered: 46.42 scaled: 20.35) x fq x cn	0.0051	0.0085	0.60	0.5480
ps x age(centered: 46.42 scaled: 20.35) x ss x cn	-0.0025	0.0086	-0.29	0.7714
ps x fq x ss x cn	0.0059	0.0108	0.54	0.5864
age(centered: 46.42 scaled: 20.35) x fq x ss x cn	0.0221	0.0110	2.01	0.0442
ps x age(centered: 46.42 scaled: 20.35) x fq x ep(centered: 484.37 scaled: 286.52)	0.0247	0.0091	2.72	0.0066
ps x age(centered: 46.42 scaled: 20.35) x ss x ep(centered: 484.37 scaled: 286.52)	0.0234	0.0094	2.50	0.0126
ps x fq x ss x ep(centered: 484.37 scaled: 286.52)	0.0182	0.0111	1.64	0.1012
age(centered: 46.42 scaled: 20.35) x fq x ss x ep(centered: 484.37 scaled: 286.52)	-0.0358	0.0112	-3.20	0.0014
ps x age(centered: 46.42 scaled: 20.35) x cn x ep(centered: 484.37 scaled: 286.52)	0.0072	0.0089	0.81	0.4186
ps x fq x cn x ep(centered: 484.37 scaled: 286.52)	0.0026	0.0118	0.22	0.8243
age(centered: 46.42 scaled: 20.35) x fq x cn x ep(centered: 484.37 scaled: 286.52)	0.0035	0.0119	0.30	0.7676
ps x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0461	0.0108	4.27	<1e-04
age(centered: 46.42 scaled: 20.35) x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0107	0.0110	0.98	0.3277
fq x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0139	0.0229	0.61	0.5434
ps x age(centered: 46.42 scaled: 20.35) x fq x rp3	-0.0011	0.0119	-0.09	0.9250
ps x age(centered: 46.42 scaled: 20.35) x ss x rp3	-0.0268	0.0117	-2.29	0.0220

ps x fq x ss x rp3	0.0007	0.0123	0.06	0.9532
age(centered: 46.42 scaled: 20.35) x fq x ss x rp3	-0.0312	0.0157	-1.99	0.0469
ps x age(centered: 46.42 scaled: 20.35) x cn x rp3	-0.0028	0.0114	-0.25	0.8050
ps x fq x cn x rp3	-0.0376	0.0112	-3.36	0.0008
age(centered: 46.42 scaled: 20.35) x fq x cn x rp3	-0.0144	0.0146	-0.98	0.3254
ps x ss x cn x rp3	0.0276	0.0111	2.49	0.0128
age(centered: 46.42 scaled: 20.35) x ss x cn x rp3	0.0469	0.0145	3.23	0.0013
fq x ss x cn x rp3	0.0079	0.0189	0.42	0.6753
ps x age(centered: 46.42 scaled: 20.35) x ep(centered: 484.37 scaled: 286.52) x rp3	0.0629	0.0128	4.93	<1e-06
ps x fq x ep(centered: 484.37 scaled: 286.52) x rp3	0.0082	0.0128	0.64	0.5232
age(centered: 46.42 scaled: 20.35) x fq x ep(centered: 484.37 scaled: 286.52) x rp3	0.0455	0.0161	2.82	0.0048
ps x ss x ep(centered: 484.37 scaled: 286.52) x rp3	0.0031	0.0126	0.24	0.8066
age(centered: 46.42 scaled: 20.35) x ss x ep(centered: 484.37 scaled: 286.52) x rp3	0.0518	0.0163	3.18	0.0015
fq x ss x ep(centered: 484.37 scaled: 286.52) x rp3	0.0540	0.0205	2.63	0.0085
ps x cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0453	0.0119	-3.79	0.0001
age(centered: 46.42 scaled: 20.35) x cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0084	0.0155	-0.54	0.5891
fq x cn x ep(centered: 484.37 scaled: 286.52) x rp3	0.0649	0.0217	2.99	0.0028
ss x cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0067	0.0192	-0.35	0.7290
ps x age(centered: 46.42 scaled: 20.35) x fq x ss x cn	-0.0083	0.0089	-0.93	0.3533
ps x age(centered: 46.42 scaled: 20.35) x fq x ss x ep(centered: 484.37 scaled: 286.52)	-0.0120	0.0091	-1.32	0.1864
ps x age(centered: 46.42 scaled: 20.35) x fq x cn x ep(centered: 484.37 scaled: 286.52)	-0.0045	0.0090	-0.50	0.6201
ps x age(centered: 46.42 scaled: 20.35) x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0208	0.0093	2.23	0.0261
ps x fq x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0350	0.0112	3.12	0.0018

age(centered: 46.42 scaled: 20.35) x fq x ss x cn x ep(centered: 484.37 scaled: 286.52)	-0.0236	0.0112	-2.11	0.0349	
ps x age(centered: 46.42 scaled: 20.35) x fq x ss x rp3	0.0226	0.0129	1.75	0.0796	
ps x age(centered: 46.42 scaled: 20.35) x fq x cn x rp3	0.0457	0.0120	3.82	0.0001	
ps x age(centered: 46.42 scaled: 20.35) x ss x cn x rp3	-0.0422	0.0117	-3.62	0.0003	
ps x fq x ss x cn x rp3	0.0087	0.0124	0.71	0.4800	
age(centered: 46.42 scaled: 20.35) x fq x ss x cn x rp3	-0.0212	0.0158	-1.34	0.1787	
ps x age(centered: 46.42 scaled: 20.35) x fq x ep(centered: 484.37 scaled: 286.52) x rp3	0.0093	0.0133	0.70	0.4855	
ps x age(centered: 46.42 scaled: 20.35) x ss x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0016	0.0130	-0.12	0.9008	
ps x fq x ss x ep(centered: 484.37 scaled: 286.52) x rp3	0.0054	0.0139	0.39	0.6973	
age(centered: 46.42 scaled: 20.35) x fq x ss x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0284	0.0171	-1.66	0.0960	
ps x age(centered: 46.42 scaled: 20.35) x cn x ep(centered: 484.37 scaled: 286.52) x rp3	0.0848	0.0125	6.80	<1e-10	
ps x fq x cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0592	0.0128	-4.64	<1e-05	
age(centered: 46.42 scaled: 20.35) x fq x cn x ep(centered: 484.37 scaled: 286.52) x rp3	0.0138	0.0158	0.87	0.3835	
ps x ss x cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0026	0.0126	-0.20	0.8380	
age(centered: 46.42 scaled: 20.35) x ss x cn x ep(centered: 484.37 scaled: 286.52) x rp3	0.0587	0.0160	3.66	0.0003	
fq x ss x cn x ep(centered: 484.37 scaled: 286.52) x rp3	0.0346	0.0205	1.69	0.0913	
ps x age(centered: 46.42 scaled: 20.35) x fq x ss x cn x ep(centered: 484.37 scaled: 286.52)	0.0107	0.0091	1.18	0.2385	
ps x age(centered: 46.42 scaled: 20.35) x fq x ss x cn x rp3	-0.0052	0.0130	-0.40	0.6895	
ps x age(centered: 46.42 scaled: 20.35) x fq x ss x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0068	0.0141	-0.48	0.6278	
ps x age(centered: 46.42 scaled: 20.35) x fq x cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0013	0.0132	-0.09	0.9243	
ps x age(centered: 46.42 scaled: 20.35) x ss x cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0324	0.0130	-2.49	0.0129	
ps x fq x ss x cn x ep(centered: 484.37 scaled: 286.52) x rp3	0.0084	0.0139	0.61	0.5435	
age(centered: 46.42 scaled: 20.35) x fq x ss x cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0576	0.0169	-3.40	0.0007	

ps x age(centered: 46.42 scaled: 20.35) x fq x ss x cn x ep(centered: 484.37 scaled: 286.52) x rp3	-0.0267	0.0141	-1.90	0.0578	
Residual	4.0768				

Table 10: **Full model summary for the best-fitting model including verbal fluency (VF). Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; rvf = VF (residualised on age); ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal**

	Est.	SE	z	p	σ_{Item}	σ_{Subj}	σ_{Chann}
(Intercept)	-0.4320	0.9923	-0.44	0.6633	0.5363		3.8402
ps	3.9540	0.9595	4.12	<1e-04	0.2856	0.7711	3.7043
age(centered: 46.38 scaled: 20.13)	0.0620	0.0211	2.94	0.0033	0.3203		
fq	0.0139	0.0381	0.36	0.7152		0.2029	
ss	-0.0607	0.0453	-1.34	0.1807	0.5264	0.2229	
cn	0.0079	0.0361	0.22	0.8264	0.4702	0.1838	
ep(centered: 483.44 scaled: 285.87)	0.0252	0.0473	0.53	0.5948	0.6260	0.1826	
rvf	-0.0012	0.0011	-1.12	0.2644	0.0169		
ps2	0.0194	0.9132	0.02	0.9830	0.1117	0.1161	3.5364
ss2	0.0006	0.0142	0.04	0.9644			
ss3	-0.0133	0.0064	-2.07	0.0382			
ps x age(centered: 46.38 scaled: 20.13)	0.1087	0.0729	1.49	0.1359			
ps x fq	-0.0009	0.0114	-0.08	0.9387			
age(centered: 46.38 scaled: 20.13) x fq	-0.0212	0.0228	-0.93	0.3535			
ps x ss	0.0018	0.0108	0.17	0.8680			

age(centered: 46.38 scaled: 20.13) x ss	0.0246	0.0243	1.01	0.3109	
fq x ss	-0.0075	0.0247	-0.30	0.7613	
ps x cn	-0.0023	0.0090	-0.25	0.7991	
age(centered: 46.38 scaled: 20.13) x cn	-0.0306	0.0199	-1.54	0.1238	
fq x cn	-0.0189	0.0335	-0.56	0.5726	
ss x cn	0.0493	0.0187	2.64	0.0084	
ps x ep(centered: 483.44 scaled: 285.87)	0.0962	0.0135	7.15	<1e-12	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0204	0.0224	-0.91	0.3636	
fq x ep(centered: 483.44 scaled: 285.87)	-0.1106	0.0325	-3.40	0.0007	
ss x ep(centered: 483.44 scaled: 285.87)	-0.0275	0.0278	-0.99	0.3239	
cn x ep(centered: 483.44 scaled: 285.87)	0.0774	0.0264	2.93	0.0034	
ps x rvf	-0.0002	0.0041	-0.05	0.9604	
age(centered: 46.38 scaled: 20.13) x rvf	0.0024	0.0005	4.66	<1e-05	
fq x rvf	0.0013	0.0012	1.03	0.3015	
ss x rvf	-0.0005	0.0013	-0.41	0.6793	
cn x rvf	0.0005	0.0011	0.46	0.6432	
ep(centered: 483.44 scaled: 285.87) x rvf	0.0011	0.0012	0.90	0.3671	
ps x age(centered: 46.38 scaled: 20.13) x fq	-0.0121	0.0085	-1.42	0.1545	
ps x age(centered: 46.38 scaled: 20.13) x ss	0.0132	0.0086	1.53	0.1266	
ps x fq x ss	0.0230	0.0105	2.18	0.0295	
age(centered: 46.38 scaled: 20.13) x fq x ss	0.0360	0.0109	3.31	0.0009	
ps x age(centered: 46.38 scaled: 20.13) x cn	-0.0006	0.0085	-0.07	0.9409	
ps x fq x cn	-0.0079	0.0110	-0.72	0.4736	

age(centered: 46.38 scaled: 20.13) x fq x cn	0.0168	0.0113	1.49	0.1356
ps x ss x cn	0.0122	0.0097	1.26	0.2083
age(centered: 46.38 scaled: 20.13) x ss x cn	0.0122	0.0100	1.22	0.2226
fq x ss x cn	-0.0605	0.0232	-2.61	0.0092
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0077	0.0094	-0.82	0.4103
ps x fq x ep(centered: 483.44 scaled: 285.87)	0.0059	0.0112	0.53	0.5994
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0011	0.0115	0.09	0.9263
ps x ss x ep(centered: 483.44 scaled: 285.87)	0.0233	0.0112	2.08	0.0373
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0557	0.0117	4.77	<1e-05
fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0247	0.0225	-1.10	0.2714
ps x cn x ep(centered: 483.44 scaled: 285.87)	-0.0244	0.0101	-2.41	0.0160
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0334	0.0104	3.21	0.0013
fq x cn x ep(centered: 483.44 scaled: 285.87)	-0.0072	0.0300	-0.24	0.8110
ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0217	0.0190	-1.14	0.2543
ps x age(centered: 46.38 scaled: 20.13) x rvf	0.0001	0.0041	0.01	0.9902
ps x fq x rvf	-0.0010	0.0005	-2.14	0.0326
age(centered: 46.38 scaled: 20.13) x fq x rvf	0.0004	0.0012	0.37	0.7139
ps x ss x rvf	-0.0006	0.0005	-1.31	0.1903
age(centered: 46.38 scaled: 20.13) x ss x rvf	-0.0015	0.0013	-1.14	0.2555
fq x ss x rvf	0.0001	0.0006	0.13	0.8977
ps x cn x rvf	0.0012	0.0005	2.53	0.0114
age(centered: 46.38 scaled: 20.13) x cn x rvf	0.0011	0.0011	1.01	0.3104
fq x cn x rvf	0.0010	0.0006	1.73	0.0835

ss x cn x rvf	-0.0004	0.0005	-0.71	0.4760
ps x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0027	0.0005	-5.05	<1e-06
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rvf	0.0003	0.0011	0.24	0.8077
fq x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0008	0.0006	-1.24	0.2166
ss x ep(centered: 483.44 scaled: 285.87) x rvf	0.0013	0.0006	2.11	0.0346
cn x ep(centered: 483.44 scaled: 285.87) x rvf	0.0003	0.0006	0.56	0.5771
ps x age(centered: 46.38 scaled: 20.13) x fq x ss	-0.0134	0.0090	-1.49	0.1351
ps x age(centered: 46.38 scaled: 20.13) x fq x cn	0.0101	0.0085	1.19	0.2355
ps x age(centered: 46.38 scaled: 20.13) x ss x cn	-0.0082	0.0087	-0.95	0.3407
ps x fq x ss x cn	0.0042	0.0105	0.40	0.6900
age(centered: 46.38 scaled: 20.13) x fq x ss x cn	0.0141	0.0109	1.30	0.1944
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0260	0.0091	2.84	0.0045
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0208	0.0095	2.19	0.0282
ps x fq x ss x ep(centered: 483.44 scaled: 285.87)	0.0203	0.0109	1.86	0.0629
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0328	0.0111	-2.96	0.0030
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0200	0.0090	2.21	0.0270
ps x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0076	0.0115	0.66	0.5079
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0125	0.0117	1.07	0.2847
ps x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0587	0.0106	5.53	<1e-07
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0167	0.0109	1.53	0.1254
fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0155	0.0224	0.69	0.4882
ps x age(centered: 46.38 scaled: 20.13) x fq x rvf	-0.0006	0.0005	-1.19	0.2357
ps x age(centered: 46.38 scaled: 20.13) x ss x rvf	0.0002	0.0005	0.34	0.7352

ps x fq x ss x rvf	0.0004	0.0005	0.88	0.3798
age(centered: 46.38 scaled: 20.13) x fq x ss x rvf	0.0004	0.0005	0.72	0.4700
ps x age(centered: 46.38 scaled: 20.13) x cn x rvf	0.0017	0.0005	3.73	0.0002
ps x fq x cn x rvf	-0.0020	0.0005	-4.24	<1e-04
age(centered: 46.38 scaled: 20.13) x fq x cn x rvf	0.0004	0.0005	0.81	0.4154
ps x ss x cn x rvf	0.0007	0.0005	1.45	0.1471
age(centered: 46.38 scaled: 20.13) x ss x cn x rvf	0.0002	0.0005	0.36	0.7200
fq x ss x cn x rvf	0.0027	0.0006	4.64	<1e-05
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rvf	0.0002	0.0005	0.44	0.6566
ps x fq x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0015	0.0005	-2.91	0.0036
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rvf	0.0006	0.0005	1.19	0.2348
ps x ss x ep(centered: 483.44 scaled: 285.87) x rvf	0.0008	0.0005	1.47	0.1423
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rvf	0.0009	0.0005	1.71	0.0870
fq x ss x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0005	0.0006	-0.79	0.4318
ps x cn x ep(centered: 483.44 scaled: 285.87) x rvf	0.0007	0.0005	1.30	0.1929
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rvf	0.0005	0.0005	1.05	0.2926
fq x cn x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0012	0.0006	-1.98	0.0472
ss x cn x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0012	0.0006	-2.11	0.0348
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn	-0.0140	0.0090	-1.57	0.1173
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0133	0.0092	-1.44	0.1496
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0073	0.0091	0.80	0.4238
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0146	0.0095	1.54	0.1225
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0430	0.0110	3.90	<1e-04

age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0341	0.0111	-3.09	0.0020	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x rvf	-0.0016	0.0005	-3.08	0.0021	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x rvf	0.0009	0.0005	1.92	0.0552	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x rvf	-0.0010	0.0005	-2.11	0.0352	
ps x fq x ss x cn x rvf	0.0000	0.0005	0.05	0.9635	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rvf	-0.0027	0.0005	-5.30	<1e-06	
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rvf	0.0008	0.0005	1.57	0.1164	
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0005	0.0005	-0.97	0.3303	
ps x fq x ss x ep(centered: 483.44 scaled: 285.87) x rvf	0.0024	0.0005	4.54	<1e-05	
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0025	0.0005	-4.62	<1e-05	
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rvf	0.0012	0.0005	2.37	0.0176	
ps x fq x cn x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0010	0.0005	-1.93	0.0537	
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0002	0.0005	-0.47	0.6408	
ps x ss x cn x ep(centered: 483.44 scaled: 285.87) x rvf	0.0014	0.0005	2.61	0.0090	
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0004	0.0005	-0.71	0.4802	
fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rvf	0.0002	0.0006	0.25	0.8029	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0044	0.0092	0.47	0.6348	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rvf	-0.0008	0.0005	-1.63	0.1040	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0004	0.0005	-0.84	0.4012	
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rvf	0.0015	0.0005	2.91	0.0036	
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0002	0.0005	-0.46	0.6473	
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rvf	0.0013	0.0005	2.43	0.0149	
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0018	0.0005	-3.43	0.0006	

ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rvf	-0.0020	0.0005	-3.74	0.0002	
Residual	4.0956				

Table 11: **Full model summary for the best-fitting model including TOAL-4 score. Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; rtoal = TOAL-4 score (residualised on age); ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal**

	Est.	SE	z	p	σ_{Item}	σ_{Subj}	σ_{Chanc}
(Intercept)	-0.4227	1.1164	-0.38	0.7049	0.5340	0.3130	4.31
ps	3.9477	1.0910	3.62	0.0003	0.2884	0.8922	4.31
age(centered: 46.38 scaled: 20.13)	0.0824	0.0361	2.29	0.0223	0.3234		
fq	0.0206	0.0374	0.55	0.5819		0.1953	
ss	-0.0450	0.0452	-1.00	0.3197	0.5206	0.2275	
cn	0.0103	0.0364	0.28	0.7772	0.4710	0.1872	
ep(centered: 483.44 scaled: 285.87)	0.0098	0.0485	0.20	0.8396	0.6256	0.1796	
rtoal	-0.0080	0.0052	-1.53	0.1268	0.0398		
ps2	0.0162	1.0507	0.02	0.9877	0.1104	0.1139	4.00
ss2	0.0038	0.0142	0.27	0.7897			
ss3	-0.0141	0.0064	-2.21	0.0269			
ps x age(centered: 46.38 scaled: 20.13)	0.1122	0.0842	1.33	0.1828			
ps x fq	0.0005	0.0114	0.04	0.9674			
age(centered: 46.38 scaled: 20.13) x fq	-0.0216	0.0223	-0.97	0.3319			
ps x ss	-0.0042	0.0108	-0.39	0.6934			

age(centered: 46.38 scaled: 20.13) x ss	0.0206	0.0247	0.84	0.4037	
fq x ss	-0.0001	0.0246	-0.00	0.9964	
ps x cn	-0.0019	0.0089	-0.21	0.8319	
age(centered: 46.38 scaled: 20.13) x cn	-0.0394	0.0204	-1.93	0.0531	
fq x cn	-0.0380	0.0332	-1.14	0.2528	
ss x cn	0.0538	0.0187	2.88	0.0040	
ps x ep(centered: 483.44 scaled: 285.87)	0.1011	0.0135	7.49	<1e-13	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0125	0.0228	-0.55	0.5828	
fq x ep(centered: 483.44 scaled: 285.87)	-0.1123	0.0322	-3.48	0.0005	
ss x ep(centered: 483.44 scaled: 285.87)	-0.0317	0.0277	-1.14	0.2529	
cn x ep(centered: 483.44 scaled: 285.87)	0.0636	0.0264	2.41	0.0160	
ps x rtoal	-0.0019	0.0128	-0.15	0.8835	
age(centered: 46.38 scaled: 20.13) x rtoal	0.0064	0.0050	1.27	0.2043	
fq x rtoal	0.0035	0.0033	1.05	0.2938	
ss x rtoal	-0.0010	0.0037	-0.28	0.7785	
cn x rtoal	-0.0001	0.0031	-0.04	0.9655	
ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0047	0.0034	-1.38	0.1683	
ps x age(centered: 46.38 scaled: 20.13) x fq	-0.0124	0.0084	-1.48	0.1395	
ps x age(centered: 46.38 scaled: 20.13) x ss	0.0168	0.0085	1.97	0.0486	
ps x fq x ss	0.0255	0.0106	2.41	0.0159	
age(centered: 46.38 scaled: 20.13) x fq x ss	0.0404	0.0109	3.70	0.0002	
ps x age(centered: 46.38 scaled: 20.13) x cn	-0.0027	0.0084	-0.32	0.7454	
ps x fq x cn	-0.0029	0.0110	-0.27	0.7900	

age(centered: 46.38 scaled: 20.13) x fq x cn	0.0203	0.0114	1.78	0.0749	
ps x ss x cn	0.0090	0.0097	0.93	0.3520	
age(centered: 46.38 scaled: 20.13) x ss x cn	0.0203	0.0100	2.03	0.0422	
fq x ss x cn	-0.0610	0.0233	-2.62	0.0087	
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)	-0.0105	0.0093	-1.13	0.2585	
ps x fq x ep(centered: 483.44 scaled: 285.87)	0.0019	0.0112	0.17	0.8624	
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0082	0.0116	0.71	0.4785	
ps x ss x ep(centered: 483.44 scaled: 285.87)	0.0292	0.0111	2.62	0.0088	
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0448	0.0118	3.81	0.0001	
fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0250	0.0224	-1.12	0.2644	
ps x cn x ep(centered: 483.44 scaled: 285.87)	-0.0208	0.0101	-2.06	0.0394	
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0312	0.0104	2.99	0.0028	
fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0106	0.0298	0.35	0.7229	
ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0163	0.0190	-0.86	0.3904	
ps x age(centered: 46.38 scaled: 20.13) x rtoal	0.0126	0.0139	0.91	0.3621	
ps x fq x rtoal	0.0003	0.0012	0.21	0.8332	
age(centered: 46.38 scaled: 20.13) x fq x rtoal	-0.0006	0.0034	-0.19	0.8487	
ps x ss x rtoal	0.0024	0.0012	1.97	0.0483	
age(centered: 46.38 scaled: 20.13) x ss x rtoal	-0.0010	0.0038	-0.26	0.7968	
fq x ss x rtoal	-0.0015	0.0016	-0.94	0.3490	
ps x cn x rtoal	0.0008	0.0012	0.65	0.5151	
age(centered: 46.38 scaled: 20.13) x cn x rtoal	-0.0018	0.0033	-0.56	0.5785	
fq x cn x rtoal	-0.0051	0.0016	-3.11	0.0019	

ss x cn x rtoal	0.0015	0.0015	1.05	0.2943
ps x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0059	0.0014	-4.25	<1e-04
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0027	0.0033	0.81	0.4193
fq x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0018	0.0017	-1.02	0.3078
ss x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0009	0.0017	0.50	0.6205
cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0055	0.0016	3.42	0.0006
ps x age(centered: 46.38 scaled: 20.13) x fq x ss	-0.0074	0.0088	-0.84	0.4001
ps x age(centered: 46.38 scaled: 20.13) x fq x cn	0.0103	0.0084	1.23	0.2199
ps x age(centered: 46.38 scaled: 20.13) x ss x cn	-0.0095	0.0085	-1.11	0.2660
ps x fq x ss x cn	0.0098	0.0106	0.92	0.3550
age(centered: 46.38 scaled: 20.13) x fq x ss x cn	0.0157	0.0109	1.44	0.1498
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0231	0.0091	2.56	0.0106
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0238	0.0094	2.54	0.0112
ps x fq x ss x ep(centered: 483.44 scaled: 285.87)	0.0228	0.0109	2.09	0.0366
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0319	0.0111	-2.89	0.0039
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87)	0.0145	0.0089	1.63	0.1035
ps x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0037	0.0116	0.32	0.7456
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0315	0.0118	2.67	0.0076
ps x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0627	0.0106	5.93	<1e-08
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0203	0.0109	1.86	0.0629
fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0164	0.0223	0.73	0.4626
ps x age(centered: 46.38 scaled: 20.13) x fq x rtoal	-0.0009	0.0013	-0.67	0.5005
ps x age(centered: 46.38 scaled: 20.13) x ss x rtoal	0.0001	0.0013	0.10	0.9227

ps x fq x ss x rtoal	-0.0028	0.0013	-2.21	0.0274
age(centered: 46.38 scaled: 20.13) x fq x ss x rtoal	-0.0056	0.0015	-3.85	0.0001
ps x age(centered: 46.38 scaled: 20.13) x cn x rtoal	0.0013	0.0013	1.01	0.3131
ps x fq x cn x rtoal	-0.0013	0.0012	-1.05	0.2952
age(centered: 46.38 scaled: 20.13) x fq x cn x rtoal	0.0037	0.0014	2.65	0.0081
ps x ss x cn x rtoal	0.0048	0.0012	3.98	<1e-04
age(centered: 46.38 scaled: 20.13) x ss x cn x rtoal	0.0092	0.0014	6.52	<1e-10
fq x ss x cn x rtoal	0.0056	0.0016	3.50	0.0005
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0009	0.0015	0.63	0.5316
ps x fq x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0036	0.0014	-2.63	0.0085
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0054	0.0015	3.50	0.0005
ps x ss x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0040	0.0014	2.99	0.0028
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0022	0.0016	-1.38	0.1671
fq x ss x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0031	0.0017	-1.85	0.0650
ps x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0006	0.0013	-0.46	0.6446
age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0006	0.0015	0.42	0.6727
fq x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0038	0.0018	2.14	0.0325
ss x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0002	0.0016	0.10	0.9195
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn	-0.0109	0.0088	-1.24	0.2139
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0126	0.0091	-1.39	0.1639
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87)	0.0030	0.0090	0.33	0.7378
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0148	0.0093	1.59	0.1123
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0460	0.0110	4.16	<1e-04

age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	-0.0289	0.0111	-2.61	0.0091
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x rtoal	-0.0001	0.0014	-0.07	0.9476
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x rtoal	0.0025	0.0013	1.87	0.0617
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x rtoal	-0.0037	0.0013	-2.82	0.0049
ps x fq x ss x cn x rtoal	0.0005	0.0013	0.36	0.7216
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rtoal	-0.0111	0.0015	-7.60	<1e-13
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0020	0.0015	-1.39	0.1648
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0002	0.0015	0.11	0.9131
ps x fq x ss x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0020	0.0014	-1.48	0.1379
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0020	0.0015	1.27	0.2038
ps x age(centered: 46.38 scaled: 20.13) x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0005	0.0014	0.33	0.7421
ps x fq x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0014	0.0014	-1.03	0.3051
age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0102	0.0015	6.78	<1e-10
ps x ss x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0063	0.0013	4.65	<1e-05
age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0012	0.0016	0.79	0.4304
fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0026	0.0017	1.54	0.1235
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87)	0.0084	0.0091	0.93	0.3541
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rtoal	-0.0022	0.0014	-1.57	0.1161
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0030	0.0014	-2.10	0.0361
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	0.0003	0.0015	0.22	0.8260
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0042	0.0015	-2.80	0.0050
ps x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0043	0.0014	-3.15	0.0017
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0029	0.0015	-1.89	0.0581

ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x ep(centered: 483.44 scaled: 285.87) x rtoal	-0.0035	0.0014	-2.43	0.0152	
Residual	4.0912				

Table 12: **Full model summary for the best-fitting model including general cognitive ability (WASI FSIQ-4). Abbreviations: cn = canonicity; ep = epoch; fq = word frequency; ps = prestimulus amplitude; ps2 = quadratic prestimulus amplitude; rwasi = WASI score (residualised on age); ss = speaker-based surprisal; ss2 = quadratic speaker-based surprisal; ss3 = cubic speaker-based surprisal**

		Est.	SE	z	p	σ_{Item}	σ_{Subj}	σ_{Chanc}
	(Intercept)	-0.4249	0.9128	-0.47	0.6415	0.5611	0.3185	3.05
	ps	3.9477	0.9489	4.16	<1e-04	0.2841	0.7889	3.05
	age(centered: 46.38 scaled: 20.13)	0.0773	0.0363	2.13	0.0330	0.3262		
	fq	0.0176	0.0381	0.46	0.6440		0.1950	
	ss	-0.0477	0.0458	-1.04	0.2984	0.5372	0.2219	
	ep(centered: 483.44 scaled: 285.87)	0.0090	0.0502	0.18	0.8577	0.6543	0.1836	
	cn	0.0182	0.0365	0.50	0.6172	0.4716	0.1874	
	rwasi	-0.0067	0.0033	-2.02	0.0430	0.0268		
	ps2	0.0157	1.0463	0.01	0.9880	0.1092	0.1142	4.05
	ss2	0.0052	0.0143	0.37	0.7148			
	ss3	-0.0123	0.0064	-1.90	0.0570			
	ps x age(centered: 46.38 scaled: 20.13)	0.1022	0.0742	1.38	0.1681			
	ps x fq	0.0020	0.0114	0.18	0.8578			
	age(centered: 46.38 scaled: 20.13) x fq	-0.0173	0.0221	-0.78	0.4343			

ps x ss		-0.0028	0.0108	-0.26	0.7961	
age(centered: 46.38 scaled: 20.13) x ss		0.0194	0.0241	0.80	0.4219	
fq x ss		-0.0147	0.0248	-0.59	0.5521	
ps x ep(centered: 483.44 scaled: 285.87)		0.0982	0.0134	7.30	<1e-12	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)		-0.0120	0.0230	-0.52	0.6023	
fq x ep(centered: 483.44 scaled: 285.87)		-0.1144	0.0328	-3.49	0.0005	
ss x ep(centered: 483.44 scaled: 285.87)		-0.0291	0.0281	-1.03	0.3011	
ps x cn		-0.0032	0.0089	-0.36	0.7178	
age(centered: 46.38 scaled: 20.13) x cn		-0.0386	0.0200	-1.93	0.0538	
fq x cn		-0.0338	0.0338	-1.00	0.3174	
ss x cn		0.0535	0.0188	2.85	0.0043	
ep(centered: 483.44 scaled: 285.87) x cn		0.0638	0.0267	2.39	0.0170	
ps x rwasi		0.0036	0.0071	0.51	0.6073	
age(centered: 46.38 scaled: 20.13) x rwasi		0.0018	0.0029	0.61	0.5425	
fq x rwasi		0.0001	0.0021	0.05	0.9610	
ss x rwasi		0.0009	0.0023	0.39	0.6991	
ep(centered: 483.44 scaled: 285.87) x rwasi		-0.0011	0.0022	-0.50	0.6194	
cn x rwasi		-0.0013	0.0019	-0.68	0.4965	
ps x age(centered: 46.38 scaled: 20.13) x fq		-0.0124	0.0084	-1.48	0.1397	
ps x age(centered: 46.38 scaled: 20.13) x ss		0.0199	0.0086	2.33	0.0199	
ps x fq x ss		0.0185	0.0106	1.75	0.0805	
age(centered: 46.38 scaled: 20.13) x fq x ss		0.0435	0.0109	3.99	<1e-04	
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87)		-0.0144	0.0092	-1.57	0.1164	

ps x fq x ep(centered: 483.44 scaled: 285.87)	0.0075	0.0111	0.68	0.4994	
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0009	0.0115	0.08	0.9361	
ps x ss x ep(centered: 483.44 scaled: 285.87)	0.0321	0.0111	2.88	0.0039	
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0469	0.0117	4.01	<1e-04	
fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0390	0.0226	-1.73	0.0843	
ps x age(centered: 46.38 scaled: 20.13) x cn	-0.0063	0.0084	-0.75	0.4528	
ps x fq x cn	-0.0031	0.0110	-0.28	0.7789	
age(centered: 46.38 scaled: 20.13) x fq x cn	0.0185	0.0114	1.63	0.1028	
ps x ss x cn	0.0087	0.0097	0.90	0.3675	
age(centered: 46.38 scaled: 20.13) x ss x cn	0.0061	0.0100	0.61	0.5421	
fq x ss x cn	-0.0703	0.0234	-3.00	0.0027	
ps x ep(centered: 483.44 scaled: 285.87) x cn	-0.0244	0.0101	-2.42	0.0155	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x cn	0.0282	0.0104	2.72	0.0066	
fq x ep(centered: 483.44 scaled: 285.87) x cn	0.0089	0.0304	0.29	0.7698	
ss x ep(centered: 483.44 scaled: 285.87) x cn	-0.0193	0.0191	-1.01	0.3116	
ps x age(centered: 46.38 scaled: 20.13) x rwasi	0.0036	0.0071	0.50	0.6159	
ps x fq x rwasi	-0.0017	0.0008	-2.19	0.0288	
age(centered: 46.38 scaled: 20.13) x fq x rwasi	0.0002	0.0019	0.12	0.9042	
ps x ss x rwasi	-0.0005	0.0008	-0.66	0.5089	
age(centered: 46.38 scaled: 20.13) x ss x rwasi	0.0017	0.0022	0.77	0.4442	
fq x ss x rwasi	-0.0004	0.0010	-0.39	0.6970	
ps x ep(centered: 483.44 scaled: 285.87) x rwasi	-0.0022	0.0009	-2.49	0.0128	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rwasi	-0.0006	0.0019	-0.29	0.7712	

fq x ep(centered: 483.44 scaled: 285.87) x rwasi	-0.0012	0.0011	-1.05	0.2934
ss x ep(centered: 483.44 scaled: 285.87) x rwasi	0.0008	0.0011	0.72	0.4729
ps x cn x rwasi	0.0019	0.0008	2.51	0.0121
age(centered: 46.38 scaled: 20.13) x cn x rwasi	-0.0014	0.0018	-0.75	0.4530
fq x cn x rwasi	-0.0016	0.0011	-1.51	0.1309
ss x cn x rwasi	-0.0014	0.0009	-1.50	0.1337
ep(centered: 483.44 scaled: 285.87) x cn x rwasi	-0.0001	0.0010	-0.06	0.9538
ps x age(centered: 46.38 scaled: 20.13) x fq x ss	-0.0037	0.0089	-0.42	0.6779
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87)	0.0215	0.0090	2.38	0.0171
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87)	0.0212	0.0093	2.27	0.0232
ps x fq x ss x ep(centered: 483.44 scaled: 285.87)	0.0171	0.0109	1.57	0.1166
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0321	0.0110	-2.91	0.0036
ps x age(centered: 46.38 scaled: 20.13) x fq x cn	0.0075	0.0084	0.89	0.3721
ps x age(centered: 46.38 scaled: 20.13) x ss x cn	-0.0046	0.0085	-0.54	0.5887
ps x fq x ss x cn	0.0061	0.0106	0.58	0.5617
age(centered: 46.38 scaled: 20.13) x fq x ss x cn	0.0259	0.0109	2.38	0.0172
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x cn	0.0113	0.0088	1.28	0.1999
ps x fq x ep(centered: 483.44 scaled: 285.87) x cn	0.0097	0.0115	0.84	0.3984
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x cn	0.0197	0.0117	1.68	0.0938
ps x ss x ep(centered: 483.44 scaled: 285.87) x cn	0.0592	0.0106	5.60	<1e-07
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x cn	0.0100	0.0109	0.92	0.3591
fq x ss x ep(centered: 483.44 scaled: 285.87) x cn	0.0136	0.0225	0.60	0.5456
ps x age(centered: 46.38 scaled: 20.13) x fq x rwasi	-0.0015	0.0008	-1.77	0.0767

ps x age(centered: 46.38 scaled: 20.13) x ss x rwasi	-0.0020	0.0008	-2.39	0.0166	
ps x fq x ss x rwasi	0.0004	0.0008	0.53	0.5994	
age(centered: 46.38 scaled: 20.13) x fq x ss x rwasi	-0.0007	0.0008	-0.84	0.3990	
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x rwasi	0.0051	0.0009	5.80	<1e-08	
ps x fq x ep(centered: 483.44 scaled: 285.87) x rwasi	-0.0008	0.0009	-0.87	0.3825	
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rwasi	0.0022	0.0009	2.59	0.0095	
ps x ss x ep(centered: 483.44 scaled: 285.87) x rwasi	-0.0004	0.0009	-0.41	0.6844	
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rwasi	0.0029	0.0009	3.27	0.0011	
fq x ss x ep(centered: 483.44 scaled: 285.87) x rwasi	-0.0022	0.0011	-2.07	0.0383	
ps x age(centered: 46.38 scaled: 20.13) x cn x rwasi	0.0017	0.0008	2.06	0.0396	
ps x fq x cn x rwasi	-0.0002	0.0008	-0.22	0.8288	
age(centered: 46.38 scaled: 20.13) x fq x cn x rwasi	0.0008	0.0008	0.97	0.3316	
ps x ss x cn x rwasi	-0.0015	0.0008	-1.88	0.0600	
age(centered: 46.38 scaled: 20.13) x ss x cn x rwasi	0.0030	0.0008	3.79	0.0002	
fq x ss x cn x rwasi	-0.0010	0.0010	-0.96	0.3386	
ps x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	-0.0003	0.0009	-0.32	0.7492	
age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	-0.0013	0.0008	-1.59	0.1122	
fq x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	0.0074	0.0011	6.45	<1e-09	
ss x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	-0.0005	0.0010	-0.43	0.6645	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87)	-0.0127	0.0091	-1.40	0.1604	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn	-0.0132	0.0089	-1.49	0.1353	
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x cn	0.0013	0.0089	0.15	0.8846	
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x cn	0.0249	0.0093	2.69	0.0072	

ps x fq x ss x ep(centered: 483.44 scaled: 285.87) x cn	0.0390	0.0110	3.54	0.0004
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x cn	-0.0358	0.0110	-3.25	0.0012
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x rwasi	0.0000	0.0009	0.01	0.9916
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x rwasi	-0.0015	0.0009	-1.79	0.0731
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x rwasi	0.0030	0.0009	3.32	0.0009
ps x fq x ss x ep(centered: 483.44 scaled: 285.87) x rwasi	0.0008	0.0009	0.90	0.3669
age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rwasi	-0.0024	0.0009	-2.67	0.0077
ps x age(centered: 46.38 scaled: 20.13) x fq x cn x rwasi	0.0035	0.0008	4.29	<1e-04
ps x age(centered: 46.38 scaled: 20.13) x ss x cn x rwasi	-0.0019	0.0008	-2.27	0.0234
ps x fq x ss x cn x rwasi	0.0005	0.0008	0.57	0.5692
age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rwasi	-0.0043	0.0008	-5.06	<1e-06
ps x age(centered: 46.38 scaled: 20.13) x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	0.0038	0.0008	4.56	<1e-05
ps x fq x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	-0.0021	0.0009	-2.49	0.0128
age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	0.0047	0.0008	5.66	<1e-07
ps x ss x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	-0.0002	0.0009	-0.27	0.7897
age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	0.0033	0.0009	3.82	0.0001
fq x ss x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	0.0005	0.0011	0.45	0.6556
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x cn	0.0115	0.0090	1.27	0.2040
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x rwasi	-0.0017	0.0009	-1.99	0.0466
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x cn x rwasi	0.0000	0.0009	0.02	0.9842
ps x age(centered: 46.38 scaled: 20.13) x fq x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	0.0002	0.0008	0.28	0.7803
ps x age(centered: 46.38 scaled: 20.13) x ss x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	-0.0022	0.0009	-2.39	0.0170
ps x fq x ss x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	0.0008	0.0009	0.95	0.3428

age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	-0.0044	0.0009	-4.87	<1e-05	
ps x age(centered: 46.38 scaled: 20.13) x fq x ss x ep(centered: 483.44 scaled: 285.87) x cn x rwasi	-0.0034	0.0009	-3.91	<1e-04	
Residual	4.0892				