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The relationship between structural and functional connectivity in the brain is a key question in connec-
tomics. Here we quantify patterns of structure-function coupling across the neocortex, by comparing
structural connectivity estimated using diffusion MRI with functional connectivity estimated using both
neurophysiological (MEG-based) and haemodynamic (fMRI-based) recordings. We find that structure-
function coupling is heterogeneous across brain regions and frequency bands. The link between struc-
tural and functional connectivity is generally stronger in multiple MEG frequency bands compared to
resting state fMRI. Structure-function coupling is greater in slower and intermediate frequency bands
compared to faster frequency bands. We also find that structure-function coupling systematically fol-
lows the archetypal sensorimotor-association hierarchy, as well as patterns of laminar differentiation,
peaking in granular layer IV. Finally, structure-function coupling is better explained using structure-
informed inter-regional communication metrics than using structural connectivity alone. Collectively,
these results place neurophysiological and haemodynamic structure-function relationships in a com-
mon frame of reference and provide a starting point for a multi-modal understanding of structure-
function coupling in the brain.

INTRODUCTION

The relationship between brain structure and function is
a central concept in neuroscience [116, 138]. The com-
plex network of synaptic projections forms a hierarchy
of nested and increasingly polyfunctional neural circuits
that support perception, cognition and action [10]. Mod-
ern imaging technology permits high-throughput recon-
struction of neural circuits across spatiotemporal scales,
and across species [76]. These comprehensive wiring di-
agrams of the nervous system – termed structural con-
nectivity networks – represent the physical connections
between neural elements [136]. Structural connectivity
promotes electrical signaling and synchrony among dis-
tant neuronal populations, giving rise to coherent neu-
ral dynamics, measured as regional time series of elec-
tromagnetic or haemodynamic neural activity. System-
atic co-activation among pairs of regions can be used
to map functional connectivity networks [19, 50], which
exhibit reproducible and similarly organized patterns in
both task-driven and task-free paradigms [34, 107, 161].

How do we evaluate the relationship between struc-
ture and function in the human brain? The most com-
mon approach is to estimate whole-brain diffusion MRI-
derived structural connectivity and functional connectiv-
ity at a desired spatial scale, and study their correspon-
dence. Conventional models of structure-function cou-
pling typically utilize resting-state fMRI-estimated func-
tional connectivity, and compute a single, global cross-
correlation statistic between structure and function. In
these studies, the upper or lower triangle of the struc-
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tural and functional connectivity matrices are vector-
ized and correlated with each other, revealing consis-
tent but moderate correspondence between structural
and functional connectivity (R2 < 0.25 in most reports)
[33, 64, 65, 130] (see [138] for a review).

Two important limitations of this paradigm are in-
creasingly recognized. First, BOLD activity only indi-
rectly reflects the underlying patterns of electrical neu-
ral activity, mainly because of slow neurovascular cou-
pling [9, 41, 67, 73, 129]. As a result, emerging ef-
forts emphasize integration of multiple neurophysiolog-
ical modalities, particularly magnetoenecephalography
(MEG) which offers excellent temporal resolution as
well as high spatial specificity when used in conjunction
with source modeling [8, 115, 116]. Second, most cur-
rent studies model a single, globally-uniform structure-
function relationship across the brain. Recent reports,
however, suggest that structure-function coupling is re-
gionally heterogeneous, with stronger correspondence
between structural and functional connectivity in uni-
modal cortex, and weaker correspondence in transmodal
cortex [12, 108, 151, 157, 163], potentially reflect-
ing underlying molecular and cytoarchitectural gradients
[12, 13, 48, 138, 151]. Altogether, a more detailed bio-
logical understanding of structure-function relationships
– one that takes into account both neurophysiological ac-
tivity and regional heterogeneity – is necessary [138].

Here we seek to comprehensively characterize region-
specific patterns of structure-function coupling using
neurophysiological activity. We focus on functional con-
nectivity derived using MEG recordings, as this form of
connectivity has been shown to convey richer tempo-
ral features and is overall a more veridical representa-
tion of fast neurophysiological dynamics compared to
fMRI [8, 115]. Recent reports have established overall

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.14.520453doi: bioRxiv preprint 

mailto:bratislav.misic@mcgill.ca
https://doi.org/10.1101/2022.12.14.520453
http://creativecommons.org/licenses/by/4.0/


2

Figure 1 | Structural and functional matrices (a) Diffusion MRI structural connectivity (SC) and derived communication mea-
sures (Euclidean distance, shortest path length, navigation efficiency, search information, communicability, diffusion efficiency).
Structural connectivity, navigation efficiency, communicability, diffusion efficiency matrices were log-transformed for better vi-
sualization. (b) Resting-state functional MRI (BOLD) connectivity and resting-state MEG functional connectivity in 5 canonical
frequency bands (δ, θ, α, β, lo-γ, hi-γ). The colorbar covers the 2.5% to 97.5% percentile range if final values contain negatives,
and 0 to 97.5% otherwise.

similar but only partially overlapping connectivity pat-
terns between fMRI and MEG connectivity [23, 82, 127].
Initial studies linking structural connectivity and MEG
functional connectivity also showed modest but slightly
greater coupling than with fMRI connectivity, with con-
siderable variation across canonical frequency bands
[29, 91, 116, 134, 141]. Several trimodal compar-
isons of dMRI, fMRI, and MEG have confirmed these
relationships [28, 52, 90, 116, 142]. However, why
structure-function coupling is regionally heterogeneous,
and how this spatial heterogeneity differs across modal-
ities, remains unknown. Moreover, the contribution of
local cytoarchitectural variation to regional patterns of
structure-function coupling estimated from neurophysi-
ological activity is unclear [18, 62, 147].

In the present report, we comprehensively benchmark
the correspondence between dMRI-derived anatomical
connectivity and functional connectivity across resting-
state fMRI and MEG canonical frequency bands. We es-
timate regional patterns of structure-function coupling
using a multilinear regression model that takes into ac-
count communication dynamics [125, 151]. We then
explore the relationship between structure-function cou-
pling patterns and cognitive systems, network features
and cytoarchitectural profiles.

RESULTS

The results are organized as follows. We first esti-
mate structure-function coupling between dMRI-derived
structural connectivity and a number of functional con-
nectivity matrices, including resting-state band-limited
MEG connectivity and fMRI functional connectivity. We

then describe how structural-function coupling systemat-
ically varies across the neocortex from the perspective of
topological, intrinsic functional, hierarchical, and cytoar-
chitectural organization. Structural and functional con-
nectivity matrices were reconstructed using data from
the same participants in the Human Connectome Project
(HCP; dMRI, fMRI, MEG; N = 33 healthy young adults)
[148]. All data were parcellated using the Schae-
fer400x7 atlas [119].

Connectomic representations of structure and function

Fig. 1 shows the structural and functional matrices.
The sparse structural connectivity matrix was estimated
from dMRI (Fig. 1a). This matrix was then converted
to multiple “predictor” communication matrices that rep-
resent the propensity for brain regions to communicate
with each other via the structural connectivity accord-
ing to different protocols. Although not an exhaustive
list, we included measures that (a) have been studied be-
fore in the network neuroscience literature, and (b) were
biologically plausible. Measures include Euclidean dis-
tance, shortest path length, navigation efficiency, search
information, communicability and diffusion efficiency
(see Methods for definitions). These predictors can be
thought of as residing on a spectrum, from decentralized,
diffusion-like communication processes (network diffu-
sion) to centralized, routing-like communication pro-
cesses (shortest path routing) [5, 14].

The functional connectivity matrices were derived in
the same sample of participants using resting-state fMRI
and MEG (Fig. 1b). FMRI functional connectivity was
estimated using the conventional zero-lag correlation
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among regional BOLD time-series. MEG functional con-
nectivity was estimated using amplitude envelope corre-
lation (AEC) resolved in the six canonical electrophysio-
logical frequency bands, including delta (δ; 2 to 4 Hz),
theta (θ; 5 to 7 Hz), alpha (α; 8 to 12 Hz), beta (β; 15 to
29 Hz), low gamma (lo-γ; 30 to 59 Hz), and high gamma
(hi-γ; 60 to 90Hz).

Benchmarking local and global structure-function coupling

To comprehensively quantify structure-function cou-
pling both locally and globally, we estimate structure-
function coupling from four complementary perspec-
tives. Global and local coupling describes the scale at
which structure-function coupling is quantified (whole
brain versus region-wise) [151]. Global coupling is es-
timated by constructing linear regressions relating the
upper triangle of each SC predictor to the upper trian-
gle of each FC outcome. The procedure generates a
single R2 value, which is interpreted as the extent of
structure-function coupling for the whole brain. Local
coupling applies the calculation to each nodal connec-
tivity profile, relating a region’s structural connectivity
profile to its functional connectivity profile. This proce-
dure generates a vector of coupling values corresponding
to each brain region. To capture communication dynam-
ics supported by structural connectivity, we also make a
distinction between univariate and multivariate coupling
[125, 151, 163]. In the multivariate case we take into ac-
count multiple communication measures estimated from
the structural network, while in the univariate case we
only use the structural connectivity matrix as the predic-
tor (Fig. 2a).

Global univariate coupling – simply using structural
connectivity as a predictor of functional connectivity –
provides a baseline for characterizing structure-function
coupling. Fig. 2b shows evidence of positive but over-
all weak coupling for all types of functional connectiv-
ity, with greatest values for BOLD-estimated and low-
frequency MEG connectivity and smallest values for high-
frequency MEG connectivity. By comparison, local uni-
variate coupling – estimating structure-function coupling
separately for each brain region – shows considerable re-
gional heterogeneity (Fig. 2c). Notably, many regions
show much greater structure-function coupling (shown
by distributed points) compared to the corresponding
global univariate coupling (shown by the gray line).
Collectively, these results demonstrate that structure-
function coupling exhibits considerable nuance and re-
gional heterogeneity for both haemodynamic and elec-
tromagnetic networks.

We next consider global multivariate coupling, in
which multiple regression is used to predict functional
connectivity using a set of communication measure pre-
dictors derived from structural connectivity (Fig. 2d).
Inclusion of multiple communication measures into the
predictor set generally increases the estimated values
of structure-function coupling, with adjusted R2 values

ranging from 0.1 to 0.5. This increase potentially re-
flects the fact that different communication measures
encode diverse types of dynamics that could be sup-
ported by the underlying structural connectivity matrix
and therefore are better able to capture the emergent
patterns of functional connectivity. Interestingly, we now
observe the greatest structure-function coupling using
MEG-estimated functional connectivity, particularly in
the theta, alpha and beta rhythms (Fig. 2d; red line).

To provide greater detail about the contribution of
each communication predictor, we additionally show a
stacked bar plot depicting their percent dominance, a
measure of each predictor’s importance (see Methods;
[7, 26]). We note two important trends. First, the great-
est contributor is usually Euclidean distance, consistent
with numerous reports showing that the prevalence and
strength of connectivity is greater among proximal neu-
ral elements and smaller among distal neural elements
[16, 43, 66, 87, 88, 93, 100, 101, 109, 137]. Second,
we find that faster frequency bands are generally bet-
ter predicted using decentralized communications mea-
sures (e.g. diffusion efficiency; shown in yellow), while
slower frequency bands and BOLD connectivity is gener-
ally better predicted by centralized communication mea-
sures (e.g. shortest path length; shown in orange). Col-
lectively, these results suggest that different forms of
haemodynamic and electromagnetic coupling may arise
from distinct communication protocols in structural net-
works.

Finally, we consider local multivariate coupling – pre-
dicting a region’s functional connectivity profile from its
communication profiles according to multiple communi-
cation measures (Fig. 2e). Regional distributions of R2

values are shown on the left for each type of functional
connectivity. A histogram of R2 values (local multivari-
ate, dark blue histogram) is shown on the right. For com-
pleteness, and to facilitate comparison, we also present
results alongside other types of coupling (global univari-
ate, light red line; global multivariate, dark red line; lo-
cal univariate, light blue histogram). As expected, we
observe overall greater structure-function coupling when
using a local multivariate model, as it explicitly allows
for both regional heterogeneity as well as multiplexed
communication, with R2 often exceeding 0.6. Consis-
tent with the results for the global multivariate model in
Fig. 2d, we observe greatest structure-function coupling
in the slower and intermediate MEG frequency bands,
notably delta, theta, alpha and beta (Fig. 2e).

We finally look at the spatial distribution of structure-
function coupling (Fig. 2e). BOLD coupling, similar
to previous reports, delineates the canonical sensory-
association axis, with greater coupling in sensory cortex
and lower coupling in association cortex. By compari-
son, regional patterns of structure-function coupling for
different MEG frequency bands tend to broadly follow
a saggital gradient, separating anterior prefrontal cor-
tex (low structure-function coupling) from posterior cor-
tex, namely superior parietal and occipital cortex (high
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Figure 2 | Local and global structure-function coupling (a) Schematics of progressively detailed structure-function coupling
measures. Structural connectivity matrix and its derivatives (shown as blue squares) are used to predict functional connectivity
(shown as red squares) in a (multi)linear regression setting. For “global” coupling, the upper triangular matrix (shown in red
triangles) is used. For “local” coupling, nodal profile (shown in blue rectangles) is used. (b) The global univariate coupling. Gray
bars show the coupling value (adjusted R2) between structural connectivity and each type of functional connectivity. (c) The local
univariate coupling. Scatters show structure-function coupling values for each node. Gray line shows the global univariate coupling
from (b) for reference. (d) The global multivariate coupling. The red line shows structure-function coupling values using multiple
predictors. Colored stacked bars show the ratio of predictor contributions calculated using dominance analysis for each regression.
(e) The local multivariate coupling. Brain plots on the left show structure-function coupling values for each region and each
functional connectivity type. Colorbar represents 2.5% to 97.5% percentile range. Distribution plots compare “global univariate”
(lighter red line), “local univariate” (lighter blue bars), “global multivariate” (darker red line), and “local multivariate” (darker
blue bars) settings. SC: structural connectivity, dist: Euclidean distance, spl: shortest path length, npe: navigation efficiency, sri:
search information, cmc: communicability, dfe: diffusion efficiency.
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structure-function coupling). This pattern is most promi-
nent in the theta, alpha and beta bands. The slower delta
band, and the faster low and high gamma bands, show a
slightly divergent pattern, in which the greater structure-
function coupling is observed in medial superior cortex
and weaker coupling elsewhere.

Topological and intrinsic functional organization

In the previous section we systematically compared
multiple coupling models. Here we examine in greater
detail the “local multivariate” model as it takes into ac-
count both regional heterogeneity and multiple types of
inter-regional signaling. We first examine whether re-
gional differences in structure-function coupling are cor-
related with overall structural connectivity, as measured
by the total weight of structural connections incident on
a node (termed weighted degree; Fig. 3a; left). The logic
is that regions with greater structural connectivity may
be more prominently involved in inter-regional commu-
nication and therefore display greater structure-function
coupling. Fig. 3a (right) shows the correlation between
regional structural weighted degree and the extent of
structure-function coupling. We observe moderate pos-
itive correlations for BOLD functional connectivity and
delta band functional connectivity, but small and non-
significant correlations for faster MEG frequency bands.
This suggests that the background influence of total
structural connectivity weight differently contributes to
different frequency bands, and may be mainly expressed
at slower time scales but not at faster time scales.

We next ask how well regional patterns of structure-
function coupling align with the canonical intrinsic func-
tional networks [119, 161] (Fig. 3b). These networks
or modules are derived from resting state fMRI BOLD
measurements and are thought to be the building blocks
of higher cognition [146]. Specifically, we compute the
mean structure-function coupling (estimated by R2) for
all regions in a particular network. Consistent with previ-
ous reports, we find greater structure-function coupling
in primary sensory and motor cortex (e.g. visual and so-
matomotor networks) and lower structure-function cou-
pling in transmodal cortex (e.g. default network). This
trend is most evident in BOLD and slower MEG fre-
quency bands. In functional networks estimated using
faster MEG rhythms, there are also deviations from this
overall pattern; notably, the extent of structure-function
coupling in the limbic network is sensitive to frequency
band, with lower structure-function coupling in the beta
band, and greater coupling in the low and high gamma
bands. Importantly, the spatial organization of MEG
structure-function coupling is reminiscent of but distinct
from BOLD, and dependent on the rhythm being consid-
ered, which suggests potentially different modes of in-
trinsic functional organization in MEG [8, 115]. Collec-
tively, these results show that structure-function coupling
is spatially highly organized and potentially depends re-
gional affiliation with macroscale functional gradients

and/or regional micro-architecture. We explore this pos-
sibility in the next subsection.

Structure-function coupling reflects cortical
micro-architecture

Given that structure-function coupling is regionally
specific and exhibits distinct topological and modular or-
ganization across frequency bands, we next seek to relate
the coupling patterns to the hierarchical organization of
the cortex. First, we apply the archetypal sensorimotor-
association axis, a composite continuous ranking scale
that combines multiple histological and imaging gradi-
ents [139] (Fig. 4a; left). Consistent with the intuition
developed in the previous subsections, we generally ob-
serve negative correlations between the hierarchical po-
sition of a region and its structure-function coupling, in-
dicating a gradual decoupling of structure and function
as one moves from unimodal to transmodal cortex. This
effect is particularly prominent in BOLD (r = −0.63)
and theta (r = −0.55), alpha (r = −0.67), and beta
(r = −0.57) MEG frequency bands. Interestingly, ef-
fect sizes gradually become smaller in higher frequencies
and, although not statistically significant, the trend is re-
versed in the high gamma regime, potentially suggesting
greater structure-function coupling in transmodal cortex.

The previous result shows that structure-function cou-
pling in both electromagnetic and haemodynamic net-
works depends on a region’s position in the cortical hier-
archy. This raises the possibility that regional differences
in structure-function coupling may reflect intrinsic dif-
ferences in a more fundamental cortical feature, namely
cytoarchitecture. Importantly, the laminar organization
of the cortex determines the spatial organization of cell
types, subcortical and cortico-cortical input and vascu-
larization. As a result, numerous studies posit that dif-
ferent electromagnetic rhythms may potentially originate
from different layers [105, 120, 121, 131]. We therefore
asked whether regional differences in structure-function
coupling could be explained by patterns of laminar dif-
ferentiation.

To address this question, we used the 3D BigBrain his-
tological atlas to estimate variations in cell density and
size at multiple cortical depths [2, 103]. Merker cell-
staining intensity profiles were sampled across 50 equiv-
olumetric surfaces from the pial surface to the white mat-
ter surface to estimate laminar variation in neuronal den-
sity and soma size (Fig. 4b; left). We then correlate layer-
specific intensity values (representing how prominent a
particular layer is in a given region) with regional values
of structure-function coupling (Fig. 4b; right). We gen-
erally observe the highest-magnitude correlations (pos-
itive or negative) in intermediate layers, corresponding
to the granular layer IV [103], suggesting that regional
differences in structure-function coupling mainly origi-
nate from this specific layer. The prominence of layer
IV is positively correlated with structure-function cou-
pling in BOLD and slower and intermediate MEG fre-
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Figure 3 | Topological and intrinsic functional organization (a) Correlation between structure-function coupling and structural
weighted degree. The structural weighted degree calculated as nodal average of the weighted structural connectivity matrix is
shown on the left. Colorbar represents 2.5% to 97.5% percentile range. Its correlation with coupling values are shown on the right
with scatters and regression lines. Pearson correlation coefficients are shown above each panel. Asterisks represent statistically
significant correlations under the “spin null” (one-sided permutation test, p < 0.05). (b) Distribution of structure-function coupling
in fMRI-derived intrinsic functional networks. Scatter brains on the left display the 7 networks from [161]. Gray scatters on the
right show the coupling values belonging to each intrinsic network and colored points represent the mean value. Vertical dashed
gray lines mark R2

= 0.4 on the x-axis. VIS: visual, SM: somatomotor, DA: dorsal attention, VA: ventral attention, LIM: limbic, FP:
fronto-parietal, DMN: default mode network.

quency bands (delta, theta, alpha and beta), potentially
because layer IV receives many feedforward projections
and has greater vascular density compared to other lay-
ers [39, 60, 123]. It is noteworthy that structure-function
coupling in faster rhythms, particularly low gamma (30
to 59 Hz), is more prominent in more superficial lay-
ers. Collectively, these results highlight how structure-
function coupling depends on laminar differentiation
and cytoarchitectural gradients.

DISCUSSION

The present report comprehensively quantifies pat-
terns of structure-function coupling across the neocortex
using both MEG and fMRI. We find four principal results.
First, local models that allow for regional heterogeneity
better capture structure-function relationships. Second,
structure-function coupling is stronger in slower and in-
termediate frequency bands. Third, structure-function
coupling in different bands is better captured by different
communication models. Fourth, structure-function cou-
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Figure 4 | Hierarchical and cytoarchitectural organization (a) Correlation between structure-function coupling and the
sensorimotor-association hierarchy. The archetypal axis from [139] is shown on the left. The correlations with structure-function
coupling are shown on the right with scatters and regression lines. Pearson correlation coefficients are shown above each panel.
Asterisks represent statistically significant correlations under the “spin null” (one-sided permutation test, p < 0.05). (b) Corre-
lation between structure-function coupling and BigBrain cytoarchitectural intensity profiles. The staining intensity values from
pial to white surfaces are shown on the left, with gray lines representing different cortical regions, and red line representing the
mean. The Pearson correlation between coupling values and staining intensity at each cortical depth are shown on the right. Lines
correspond to functional connectivity types.

pling is highly organized according to the sensorimotor-
association axis and reflects patterns of laminar differen-
tiation.

The nature of the structure-function relationship re-
mains a key question in the field [138]. Multiple studies
have investigated the relationship between anatomical
connectivity and haemodynamic connectivity estimated
from resting state fMRI at the global level [116, 138].

A parallel literature looks at how anatomical pathways
support the emergence of neurophysiological oscilla-
tions and synchrony [29, 91, 115, 116, 134, 141]. In
both cases, the focus has traditionally been on global
structure-function coupling, under the assumption that
there exists a single, consistent relationship between
structural and functional connectivity across the brain.

We find that models that allow for regional hetero-
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geneity offer greater nuance and anatomical detail for lo-
cal structure-function coupling. In both BOLD functional
connectivity networks and multiple MEG frequency
bands, we find consistent patterns of greater structure-
function coupling in unimodal cortex and lower cou-
pling in transmodal cortex, tracing out the archetypal
sensorimotor-association axis [61, 83, 139]. This or-
ganization potentially suggests that emergent patterns
of inter-regional signaling gradually decouple from the
underlying macroscale anatomical connectivity in trans-
modal cortex. One hypothesis is that rapid evolution-
ary expansion of transmodal cortex “untethers” circuit
configuration from the underlying transcriptomic gradi-
ents, resulting in a broader functional repertoire [25].
Patterns of structure-function coupling, which follow the
archetypal sensorimotor-association axis, may therefore
reflect underlying micro-architectural gradients.

Indeed, we find that regional patterns of structure-
function coupling may potentially reflect patterns of cy-
toarchitecture. Namely, the magnitude of structure-
function coupling in different frequency bands depends
on regional differences in laminar differentiation, as es-
timated using the BigBrain histological atlas [2]. This
is consistent with previous reports that have established
laminar specificity for both neurophysiological rhythms
and for neurovascular coupling. For instance, studies in
both humans and animals have shown that in the visual
cortex, alpha band activity is associated with deeper cor-
tical layers like infragranular layers V to VI, while gamma
band activity is associated with superficial cortical lay-
ers like supragranular layers I to III and granular layer
IV [27, 59, 79, 80, 105, 121, 131, 135, 159]. More-
over, patterns of neurovascular coupling display a topog-
raphy that is similar to what we find, with greatest vas-
cularization density in layer IV [40, 120, 123]. At the
same time, layer IV receives the majority of feedforward
input [87, 89, 110, 152], consistent with our finding
that regions with more prominent layer IV profile tend
to display stronger coupling between macroscale struc-
tural and functional connectivity. How cortical micro-
architecture shapes the relationship between macroscale
structure and function remains an exciting question for
the field.

The relationship between network configurations re-
constructed from neurophysiology, fMRI and anatomi-
cal connectivity has received a lot of attention. For in-
stance, a consistent finding is that fMRI network con-
nectivity is mainly driven by slow oscillations [23, 37,
42, 45, 75, 82, 116, 127]. Structure-function coupling
makes it possible to compare BOLD networks and MEG
networks in a common, biologically-meaningful frame
of reference. Indeed, we find that patterns of BOLD
structure-function coupling typically resemble slower-
frequency MEG structure-function coupling. At the
same time, there are important inter-modality differ-
ences, as well as differences among the different MEG
rhythms. Namely, while BOLD and delta structure-
function coupling follows a unimodal-transmodal topog-

raphy, structure-function coupling in intermediate bands
(e.g. theta, alpha and beta) tends to follow a saggi-
tal gradient that resembles the dominant spectral power
gradient [78, 127].

What could be driving the differences among
structure-function coupling patterns in different oscilla-
tory regimes? One possibility is that different rhythms
entail different modes of signal exchange [11, 49, 71,
102]. By estimating structure-function coupling from
the perspective of a spectrum of network communica-
tion protocols, we can infer what types of communica-
tion protocols contribute most to band-specific network
configurations [5, 14, 124–126, 138, 162]. Here we
find that centralized, routing-like protocols (e.g. shortest
path length) and navigation-like protocols (e.g. distance-
based navigation) better explain structure-function cou-
pling in BOLD and slower-frequency MEG networks,
whereas decentralized, diffusion-like protocols (e.g. ran-
dom walk efficiency) better explain structure-function
coupling in faster-frequency MEG networks. Collectively,
these results suggest that the nature of signal exchange
in neural circuits depends on the time scale, and that
a spectrum of communication strategies may be im-
plemented for different neurophysiological rhythms [4–
6, 51, 56, 94, 95].

The present results should be considered in light of
two important methodological limitations. First, struc-
tural connectivity was estimated from diffusion MRI, a
technique that is affected by systematic false positives
and false negatives [21, 30, 35, 36, 57, 58, 69, 81, 99,
111, 118, 122, 132, 143, 160, 164]. We attempted to
mitigate this issue by deriving a group consensus struc-
tural connectivity network that identifies consistent con-
nections across many participants, but improvements
in imaging technology and computational tractometry
are still necessary. Second, many measures exist for
quantifying correlations between functional time series
[15, 22, 47, 50, 63, 77]. We used the conventional zero-
lag Pearson correlation for BOLD and amplitude enve-
lope correlation (AEC; [24]) for MEG because they are
widely-used and most comparable to each other, and
will therefore facilitate comparisons with other reports
in the literature. Third, we adopted HCP-YA, which pro-
vides high-quality multimodal (MEG, fMRI and MEG)
data in the same participants but is limited in sample
size (N = 33). Future research on multimodal network
comparisons could potentially either derive population-
wide normative models using larger samples, or use pre-
cision imaging in more modalities with dense sampling
in a smaller number of participants [97, 106]. For ex-
ample, high-quality laminar-resolved functional data in
parallel to diffusion acquisition is highly desired for fur-
ther clarifying the origins and mechanism of how cortical
rhythms arise from structure.

In summary, the present report comprehensively
benchmarks patterns of structure-function coupling
across multiple MEG frequency bands and BOLD func-
tional connectivity. A consistent finding is that structure-
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function coupling is not uniform but systematically orga-
nized across the brain, and parallels variations in cytoar-
chitecture. These results set the foundation for studying
structure-function coupling as a phenotype of brain or-
ganization and open the door for multi-modal studies of
structure-function relationships.

METHODS

Data preprocessing

Structural and functional data from 33 subjects (age
range 22-35 years, no familial relationships) were ob-
tained from the Human Connectome Project (HCP; s900
release [149]), including 3T structural MRI, multi-shell
diffusion MRI, four resting-state functional MRI time se-
ries, and one resting-state MEG time series for each par-
ticipant.

Briefly, MRI data were first preprocessed using HCP
minimal preprocessing pipelines [53, 148]. Diffu-
sion MRI scans were processed using MRtrix3 package
[145]. Fiber orientation distributions were modelled us-
ing multi-shell multi-tissue constrained spherical decon-
volution algorithm [38, 68]. White matter streamlines
were then reconstructed using probabilistic tractography
[144], and optimized using SIFT2 algorithm [133] to
provide robust estimate of tract weights.

Resting-state fMRI scans (each approximately 15 min-
utes long, 4 scans for each participant) were corrected
for gradient nonlinearity, head motion, and geometric
distortions [153]. Further corrections include high-pass
filtering (>2000s FWHM) for scanner drifts and ICA-FIX
algorithm for additional noise [117, 153]. Both diffu-
sion MRI and resting-state fMRI data were parcellated
according to the Schaefer400x7 atlas [119]. Details of
MRI data preprocessing are described in [104, 128].

Resting-state MEG scans (each about 6 minutes long)
were processed with Brainstorm software [140], using a
standard pipeline including notch filter, high-pass filter,
bad channel removal, and automatic artifact removal (in-
cluding heartbeats, eye blinks, saccades, muscle move-
ments, and noisy segments). A linearly constrained min-
imum variance (LCMV) beamformer was used for source
estimation on HCP fsLR4K surface. Parcellated time se-
ries were then estimated from the first principal compo-
nent of the constituting sources’ time series according to
the Schaefer400x7 atlas to facilitate comparisons with
the MRI data [119]. Details of MEG data preprocessing
are described in [127].

Network reconstruction

Individual structural connectivity matrices were re-
constructed with normalized streamline weights. A
weighted consensus structural connectivity matrix was
derived by identifying edges that consistently occur
among multiple participants [17]. MRI functional con-
nectivity edges were estimated as a Pearson correlation

coefficient between time series for pairs of regions. A
group-level consensus matrix was calculated by averag-
ing the matrices across runs and subjects. MEG func-
tional connectivity matrices were calculated using am-
plitude envelope correlation (AEC; [24]). Potential spa-
tial leakage effects were corrected using an orthogonal-
ization process [31] (see [127] for detailed discussion).
AEC functional connectivity was derived for 6 canonical
electrophysiological bands: delta (δ; 2 to 4 Hz), theta (θ;
5 to 7 Hz), alpha (α; 8 to 12 Hz), beta (β; 15 to 29 Hz),
low gamma (lo-γ; 30 to 59 Hz), and high gamma (hi-γ;
60 to 90Hz).

Network communication measures

Multiple network communication measures were com-
puted on the sturctural connectivity matrix to estimate
inter-regional communication dynamics across multi-
ple putative communication protocols. They repre-
sent a spectrum of commonly-used measures ranging
from centralized routing to decentralized diffusion. The
network measures were implemented using the Brain
Connectivity Toolbox ([114]; https://sites.google.com/
site/bctnet), Brainconn Python Toolbox (https://github.
com/FIU-Neuro/brainconn), and Netneurotools (https:
//github.com/netneurolab/netneurotools).

Before calculating the specific measures, Euclidean
distance was taken between region centroids to represent
the physical distance between regions. For some net-
work measures, it is necessary to first define a connection
length metric to quantify the cost of travelling through
the edges. We used a monotonic weight-to-length trans-
form adapted from [125] to derive the connection length
matrix, which takes the form L = − log W

Wmax+1
. Apply-

ing the transform on the structural connectivity matri-
ces effectively turns region pairs without direct structural
connections to have infinite values in connection lengths,
thus excluding such connections from the calculation of
communication measures. For asymmetric measures, we
take the mean value of the matrix and its transpose to
make it a symmetric matrix [125]. We define the indi-
vidual network communication measures as follows.

Shortest path length

Shortest path length denotes the shortest distance
travelled between a source node and a target node [70,
74]. For weighted shortest path πs→t = {wsi, · · · , wjt},
the shortest path lengths were calculated using Floyd-
Warshall algorithm [46, 113, 158] on the connection
length matrix L, and represented as Lπs→t

= lsi+· · ·+ljt.

Network navigation

Network navigation seeks to simulate a process where
an agent or walker steps towards the neighbour node
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that is closest in distance to the target node [20, 96, 124,
126]. We used the Euclidean distance between nodes
for navigation distance metric and derived navigation
path lengths. For navigation between node s to t, if
the walker successfully reached the target, the naviga-
tion path length is Λst = dsi + · · · + djt, where dij is
Euclidean distance. If the walker fails to reach the tar-
get, then Λst = ∞. Navigation efficiency is calculated as
the inverse of navigation path length 1/Λst.

Search information

Search information measures the amount of informa-
tion necessary for a random walker to follow a given
path, instead of taking other possible detours along the
way [74, 112]. The metric was adapted to shortest paths
on weighted networks in [55, 124]. For a random walker
following the path πs→t = {wsi, · · · , wjt}, the probabil-
ity of staying on the path can be expressed as

P (πs→t) = psi × · · · × pjt,where pij =
wij∑
j wij

Search information can then be defined as

S(πs→t) = − log2(P (πs→t))

The group consensus structural connectivity matrix was
used to simulate the random walk, and the connection
length matrix was used to identify the shortest paths.

Communicability

Communicability between two nodes i and j is de-
fined as the weighted sum of all paths and walks between
those nodes [44]. For a weighted adjacency matrix W ,
communicability is calculated as

Cij = (exp(D−1/2WD−1/2))ij

where D = diag(ΣN
k=1

wik) is the diagonal matrix of the
generalized node degree matrix [3, 32, 151].

Diffusion efficiency

Diffusion efficiency is calculated as inverse of the mean
first passage time, which itself is defined as the expected
time steps for a random walker to reach the target node
from the source node [54, 98]. Modelled as a Markov
chain, the mean first passage time can be derived as fol-
lows. Let P be the transition matrix defined as D−1W ,
where W is the weighted adjacency matrix and D is the
diagonal weighted degree matrix. Let ωi be the probabil-
ity vector corresponding to the stationary solution of the
Markov process, and Ω as the column-wise probability
vector matrix containing ωi. The fundamental matrix Z

is computed as Z = (I−P+Ω)−1, where I is the identity
matrix. The ergodicity property of a Markov chain for an
undirected connected graph allows computing the mean
first passage time as

tij =
zjj − zij

ωj
, i ̸= j

Diffusion efficiency is then calculated as 1/tij . The group
consensus structural connectivity matrix was used to
simulate the random walk.

Quantifying structure-function coupling

To estimate structure-function coupling, we used a set
of linear regression models. The simplest form (“global
univariate”) is

WFC = β0 + β1WSC

where WFC denotes a consensus functional connectiv-
ity matrix from BOLD or MEG frequency bands, WSC

denotes a consensus structural connectivity matrix from
diffusion MRI, and the regression is computed by taking
the upper triangular values from each matrix. The ex-
tent of structure-function coupling is evaluated using the
adjusted R2, the goodness of fit statistic.

Taking this notion further to the level of individual
brain regions (“local univariate”), we compute a regres-
sion for the structural and functional connectivity profile
of each node

w
i
FC = βi

0 + βi
1w

i
FC

where w
i denotes connection profile for node i (i.e. the

ith column of the matrix). Diagonal elements were re-
moved during the regression.

Another way to improve the “global univariate” model
is to incorporate predictors derived from network com-
munication models to account for potentially more com-
plex processes of communication happening on the struc-
tural network, which we term “global multivariate”. The
model is implemented as

WFC = β0 +
∑

k

βkWk

where k denotes predictor matrices: Euclidean distance,
shortest path length, navigation efficiency, search infor-
mation, communicability, and diffusion efficiency.

The final and the most complete form (“local multi-
variate”) is

w
i
FC = βi

0 +
∑

k

βi
kw

i
k

Similarly, i enumerates nodes and k enumerates predic-
tor matrices.
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Cortical annotations

We used several common cortical annotations to con-
textualize the structure-function coupling patterns. In-
trinsic functional networks are defined in [161] using
resting-state functional MRI. Archetypal sensorimotor-
association axis were defined in [139], approximating
the putative sensory-fugal cortical hierarchy [83, 92] by
fusing the ranks of 10 previously released brain maps
in different modalities. BigBrain intensity profiles were
generated using BigBrainWarp toolbox [2, 103], which
measure the cytoarchitectural feature of cell staining in-
tensity in 50 equivolumetric surfaces [154–156].

Null model

To robustly estimate the statistical significance of cor-
relation between nodal coupling and cortical annota-
tions, we used spatial autocorrelation-preserving permu-
tation null models, termed “spin tests” [1, 86, 150].
In this type of permutation test, the cortical surface
is projected to a sphere and randomly rotated, gen-
erating permuted surface maps with preserved spatial
autocorrelation. Using the spherical projection of the
fsaverage surface for Schaefer400x7 atlas, the spheri-
cal coordinates of the parcels were defined by select-
ing the vertex closest to the center-of-mass of each par-
cel. Randomly sampled rotations were then applied on
the sphere, and parcel values were reassigned based on
the closest resulting parcel. Rotations were applied for
one hemisphere and mirrored to the other. We gen-
erated 10,000 spin permutations (“Vázquez-Rodríguez”
method) using netneurotools package (https://github.
com/netneurolab/netneurotools) [151]. Details of
spatially-constrained null models in neuroimaging were
described in [86] (https://github.com/netneurolab/
markello_spatialnulls) and are implemented in neu-
romaps package [84, 85]. This particular implementa-
tion of the spin test (“Vázquez-Rodríguez” method) was

chosen based on the benchmarking results reported in
[86], which showed that the method (a) was consistently
the most conservative method in both simulations and
empirical analyses, and (b) it was designed specifically
for parcellated data and does not require discarding per-
mutations when parcels are rotated into the medial wall.

Predictor contributions

Contribution of network communication predictors
in Fig. 2d was estimated using dominance analy-
sis [7, 26], one of the procedures for interpreting
multilinear regression models. It can account for
multicollinearity and is sensitive to potential patterns
in the model [72]. We adopted “total dominance”
statistic for each predictor, which quantifies its con-
tribution to the goodness of fit of the full model. It
is estimated as the relative importance of each pre-
dictor by re-fitting all subset combinations of existing
predictors. This function is implemented in netneuro-
tools (https://github.com/netneurolab/netneurotools),
which is adapted from the Dominance-Analysis (https:
//github.com/dominance-analysis/dominance-analysis)
package.
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G., Suarez, L., and Mišić, B. (2022a). Neuromaps: Struc-
tural and functional interpretation of brain maps. Zen-
odo.

[85] Markello, R. D., Hansen, J. Y., Liu, Z.-Q., Bazinet, V.,
Shafiei, G., Suárez, L. E., Blostein, N., Seidlitz, J., Baillet,
S., Satterthwaite, T. D., Chakravarty, M. M., Raznahan,
A., and Misic, B. (2022b). Neuromaps: Structural and
functional interpretation of brain maps. Nature Methods,
pages 1–8.

[86] Markello, R. D. and Misic, B. (2021). Comparing spatial
null models for brain maps. NeuroImage, 236:118052.

[87] Markov, N. T., Ercsey-Ravasz, M., Essen, D. C. V.,
Knoblauch, K., Toroczkai, Z., and Kennedy, H. (2013a).
Cortical High-Density Counterstream Architectures. Sci-
ence, 342(6158).

[88] Markov, N. T., Ercsey-Ravasz, M., Lamy, C., Gomes, A.
R. R., Magrou, L., Misery, P., Giroud, P., Barone, P., De-
hay, C., Toroczkai, Z., Knoblauch, K., Essen, D. C. V., and
Kennedy, H. (2013b). The role of long-range connec-
tions on the specificity of the macaque interareal cortical
network. Proceedings of the National Academy of Sciences,
110(13):5187–5192.

[89] Markov, N. T., Vezoli, J., Chameau, P., Falchier, A., Quilo-
dran, R., Huissoud, C., Lamy, C., Misery, P., Giroud, P.,
Ullman, S., Barone, P., Dehay, C., Knoblauch, K., and
Kennedy, H. (2014). Anatomy of hierarchy: Feedfor-
ward and feedback pathways in macaque visual cortex.
Journal of Comparative Neurology, 522(1):225–259.

[90] Meier, J., Tewarie, P., Hillebrand, A., Douw, L., van
Dijk, B. W., Stufflebeam, S. M., and Van Mieghem, P.
(2016). A Mapping Between Structural and Functional
Brain Networks. Brain Connectivity, 6(4):298–311.

[91] Messaritaki, E., Foley, S., Schiavi, S., Magazzini, L.,
Routley, B., Jones, D. K., and Singh, K. D. (2021). Pre-
dicting MEG resting-state functional connectivity from
microstructural information. Network Neuroscience,
5(2):477–504.

[92] Mesulam, M.-M. (1998). From sensation to cognition.
Brain: A Journal of Neurology, 121(6):1013–1052.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.14.520453doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520453
http://creativecommons.org/licenses/by/4.0/


15
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