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Abstract

Understanding how the spatial variation in species composition (beta-diversity) varies with biotic
and abiotic conditions is one of the ultimate goals in biology. Theory predicts that beta-diversity is a
consequence of two factors, species-level differences (defined as the variations among species in the
probabilities that species are present in the landscape) and spatial heterogeneity (defined as the difference,
between two sites, in the probabilities with which species are present). At present, however, the importance
of each factor is unclear. Here, we take a probabilistic and combinatorial approach to examine the effects
of species differences and spatial heterogeneity on the degree to which species assemblages in two spatial
locations differ in species compositions. We first derived analytical and approximation formulae of the
expectation and variance of the pairwise beta-diversity, based on the assumption that the presence
probabilities of species are independent of each other. We found that, contrary to the intuitive claim
that differences among species lead to greater beta-diversity, our method predicts that the reverse is also
likely under some, though not all, circumstances. Strikingly, when space is homogeneous, beta-diversity
decreases with species differences. This suggests that policy making for increasing species differences
would, without the effort to maintaining environmental heterogeneity, induce biotic homogeneization.
These findings suggest that maintaining beta-diversity as a conservation target may lead to undesired
outcome unless species traits and environmental homogenization are monitored and adequately managed.
Second, we illustrate our method using data from five woodpecker species in Switzerland, showing that
the woodpecker species’ joint distributions change considerably with time, and also that such changes
are basically explained by the changes in the incidences of some of the species. The new framework can
improve our understanding of how pairwise beta-diversity responds to species differences and spatial
heterogeneity.

1 Introduction

Beta-diversity (the spatial variation in species compositions) links diversity across scales (Whittaker|1972;
Anderson et al. 2010; Chase et al.|2019; Poggiato et al. 2021). Beta-diversity varies with fundamental processes
such as dispersal, environmental filtering and species interactions (Vellend [2010; Anderson et al. 2010;
Socolar et al. 2016; Maynard et al.|2017; Legendre 2019; Thompson et al.|2020). Understanding the patterns
of beta-diversity is thus considered as one of the ultimate goals in ecology. Reductions in beta-diversity,
known as biotic homogenization (Olden & Poff 2003; Olden & Rooney[2006; Olden et al.|2018), have been
caused by various types of global changes, such as urbanization (McKinney|2006), species invasion (Powell
et al. 2013), climate change (Veech & Crist|[2007), land-use change (Vellend et al. 2007), and interactions
thereof (Karp et al.[2017). A consequence of biotic homogenization is the reduction of ecosystem functioning
across the globe (Hautier et al. |2017; Mori et al.|2018; Albrecht et al. [2021; Wang et al. [2021). Understanding
how beta-diversity changes in response to variations in biotic and abiotic conditions should lead to better
management, conservation, and urban planning in our modern society (Crowther et al. 2015).

Beta-diversity is often measured by using pairwise indices based on empirical presence-absence (inci-
dence) data (Koleff et al.|2003), but even for such simple, incidence-based beta-diversity, how biotic and
abiotic variables influence the beta-diversity has not been conceptually established. That is, we know little
about “beta-diversity patterns”, the dependence of beta-diversity on biotic and abiotic factors. Indeed,
results from previous work on beta-diversity patterns have been mixed. For example, theory shows that
dispersal, which is one of the fundamental processes, tends to homogenize local communities and thereby
reduce beta-diversity (Loreau 2000; Mouquet & Loreau [2003; Thompson et al. [2020), or to have rather
opposing effects (Lu et al. 2019; Lu 2021). Meanwhile, experimental work suggests that dispersal may
promote beta-diversity (Vannette & Fukami|2017). Disturbance like fire is also suggested to have opposing
effects on beta-diversity (Altermatt et al. 2011} Myers et al. 2015; Ojima & Jiang|2016). To better interpret
complicated beta-diversity patterns, it is necessary to establish a general framework that can incorporate
variable biotic and abiotic conditions.

Among other factors, species differences and spatial heterogeneity both have profound effects on
beta-diversity (Peres-Neto et al. 2001). As well as spatial heterogeneity (Veech & Crist|2007; Bdldi[2008;
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Jankowski et al. |2009; Allouche et al. 2012; Bar-Massada & Wood [2013; Heino ef al. 2013} Pomara et al. [2013;
Astorga et al.|2014; Heino et al. |2014; Bar-Massada |2015a,b; Royan et al.|[2015; Bar-Massada & Belmaker
2017 Zorzal-Almeida et al.|2017; Ben-Hur & Kadmon [2020}; Shinohara et al.|2022), species differences can
strongly influence beta-diversity. For example, dispersal mode (passive vs. active) and body size (small
vs. large) are both strong determinants of beta-diversity patterns as revealed by meta-analyses (Soininen
et al. 2007; De Bie et al. 2012). Similarly, Cao et al. (2021) showed that beta-diversity may co-vary with
niche-related characteristics. It is of great importance to take species differences and spatial heterogeneity
both into account (Peres-Neto et al.|2001; Gotelli & Ulrich|2011). However, there is no established theoretical
prediction for the effects of species differences and spatial heterogeneity.

To discern beta-diversity patterns under variable conditions, it is of great use to regard incidence-data
and resulting beta-diversity both as stochastically changing quantities, because by doing so, we can assess
how the probability distributions of beta-diversity varies with mechanistic factors that determine species
presence probabilities. (Baroni-Urbani|1980; Real & Vargas|1996; Gotelli & Ulrich [2011; Hui & McGeoch
2014; Chung et al. [2019). In this article, we explore the details of pairwise compositional dissimilarity
between two species assemblages (Jaccard dissimilarty) under the influence of species differences and spatial
heterogeneity. The logical starting point is akin to one of the most successful null models in ecology, the
Theory of Island Biogeography (TIB; MacArthur & Wilson 1963} MacArthur & Wilson [1967). Following
recent work on TIB (Alonso et al. [2015; Ontiveros et al.2021), our work assumes that species incidences
are independent from each other both within and between sites, which nullifies any correlation between
them, the so-called species independence assumption. We thereby examine the effect of species differences
and spatial heterogeneity on the expectation of pairwise dissimilarity of species compositions (Jaccard 1908,
1912; Veech 2012} Arita|2017} Keil et al. 2021). This allows for the consideration of various realistic factors
that drive local biotas dramatically different, such as the distance to the mainland, and specific spatial niche
partitioning.

We first obtain the exact and approximated expression for the expectation and variance of Jaccard
dissimilarity under the species independence assumption. Second, we examine how the expectation
and variance in beta-diversity respond to species differences and spatial heterogeneity. Specifically, we
numerically generate species presence probabilities for a pair of sites, and assess how varying species-
differences and spatial heterogeneity influence beta-diversity patterns. We find that species differences
can have opposing effects on beta-diversity. Counterintuitively, we find that species differences result in
lower beta-diversity when site heterogeneity is scarce. While traditional analyses of beta-diversity focus on
sites censused completely, many contemporary data-sets are based on statistical models such as Species
Distribution Models (SDMs; Elith & Leathwick [2009; Guisan et al. {2017} Zurell et al. 2020). Indeed, recent
work has attempted to improve the statistical power of local species richness estimation in SDMs under
heterogeneity (Calabrese et al. 2013). We therefore examine how our approach can be applied to such
statistical models. The temporal Jaccard dissimilarity (Legendre [2019; Magurran et al. 2019; Figure
is designed to project how the local species composition across regions is expected to change with time,
particularly in response to global environmental changes. We combined our method with SDMs and assessed
the expected changes in the compositions of woodpecker species across Switzerland. We believe that the
approach be a starting point to provide further insights to the extent and intensity of future compositional

change, and to help us allocate resources for tasks such as monitoring, conservation, or restoration.
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Table 1: Summary of notation used in the main text.

Notation | Definition Note
i Species label i=1,2,..,0rS
S The total number of species in the mainland “species pool size”
j Site label, withj =1 or 2 “sites” may be spatial or temporal
Xij Incidence of species i in site j 0 (absence) or 1 (presence)
X(s.2) Incidence table of size S-by-2 Abbreviated to X
= Defining a quantity
= Identity usually with respect to “all i”
Q Set of incidences (absence 0 and presence 1) ={0,1}
Xo,j Column vector of configuration in site j
|xO J| The number of species present in site j = Zis:l Xij
Xi o Row vector of species i’s incidence in space
Pij Probability of i present in j (i.e., Prob [x;; = 1]) a;; = 1 — p;; for probability of absence
bio Probability of i present in both sites 1 and 2 Prob [x;1 = x;1 = 1]; b for “both”
dio Probability of i absent from both sites 1 and 2 Prob [xi1 = xi1 = 0]; d for “double-absence”
Px Probability that a table X is observed =1L, Hle p;}" ul-l/;xi"
Bx Jaccard dissimilarity for an incidence table X
VX The total number of species present in the landscape for table X | “Gamma-diversity”
E [,BJ] Expectation of Jaccard dissimilarity E ﬁj‘ y > 0| for conditional expectation
\% [‘BJ} Variance of Jaccard dissimilarity Std [ﬁl] = \/ V[p]
ﬁ{1 eur Approximation of E| f'| y > 0 “Heuristic approximation”
w Species difference 0 <w<2;Eqn @
h Spatial heterogeneity 0 <h <1;Eqn (6)
Lj Average presence probability in site j
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«» 2 Methods and Results

» Model

71 Jaccard dissimilarity is defined as the proportion of the number of unique species to that of present species
72 in, at least, one of the sites (Jaccard 1908} 1912), which measures a compositional difference between two
73 sites (Box 1). Since Jaccard dissimilarity is designed to measure the difference in the compositions of two
74 sites, we consider a landscape (metacommunity) consisting of two spatially or temporally segregated sites
7 (Figure[T). We consider a matrix of binary elements, in which species are listed from top to bottom (labelled
7 1=1,2,..,5), and sites are listed from left to right (from j = 1, 2). That is, an incidence table of S species
77 with 2 sites is written as X. Following Chase et al.’s (2011) definition, we define “species pool” as the
7s collection of species that can possibly inhabit either site within a reasonable time period during which the
79 incidence data census is performed, and therefore defined S as the maximum number of species that may
s be present in at least one of the sites (with a positive probability; we refer to S as “species pool size”). We do
st not consider a species that can never be present.

82 We write x;; for (i, j)-th element of an incidence table X, with x;; = 1 if species i is present in j, and x;; = 0
sz otherwise absent. The formal approach to derive Jaccard dissimilarity and their moments is encapsulated in
sa  Box 1. We write p;; for the probability that species i is present in site j (and this probabilistic approach is
ss  well-established; MacArthur & Wilson [1963; Real et al. |2016; Carmona & Pértel 2020). The key assumption
ss is that p;; may take different values depending on species i and site j but are independent of each other
&7 (the species independence assumption). The sum Zle x;;, which represents the species richness (alpha-
ss  diversity), follows the Poisson-Binomial distribution with parameters (p1 JrP2js i P S,j) . For brevity, we write:
so (i) a;j == 1—p;; for the probability that species 7 is absent in j; (ii) b; . := p;1p; 2 for the probability that species
s i1is present in both sites 1 and 2 (probability of “commonness”); (iii) d; = a;14;> for the probability that
91 species i is absent in both sites 1 and 2 (probability of “double-absence”). As a result, 1 —b; , — d; , represents
2 the probability that species 7 is unique to either site 1 or 2. Note that we do not distinguish in which sites (1
3 or 2) the unique species are present. For example, colonization ability of species, stress-tolerance of species,
s« distance from continents, and disturbance frequency all jointly influence presence probabilities.

o To analyze the probability distribution of beta-diversity, we present a novel derivation using tools from
% stochastic analyses and combinatorics. These tools allow us to exactly compute the expectation and variance
o7 of Jaccard dissimilarity expected under species-independence assumptions. The computation can take a
s¢ long time, because of combinatorial calculations associated with species-specific and site-specific presence
s probabilities (p1,1, P12, P21, - Ps1,Ps,2)- To make the formula accessible to as broad researchers as possible,

100 we deviced a fast computable approximation (below).

| Box 1: Descriptions of the formal approach and Jaccard dissimilarity

10 We write X € Q° ® Q? (with ® for a direct product between sets) to indicate that the incidence table
103 X is a matrix with S rows and 2 columns, each of whose elements is either 0 for absence or 1 for
104 presence. We also write X, ; = (x1 jrX2)is s XS ,j) T for a column vector within the incidence matrix (X)
108 in a site j, with T for transpose. Therefore, x, j € Q5. We write ’xo ,j’ = Z?:l Xij for alpha-diversity
g in asite j. In addition, we write (Xo1,Xo2) = Zle xi1%; for the number of species present in sites 1
107 and 2 both. Note that the number of species present in the landscape (gamma-diversity) is given by

108 ‘XOJ + |xo,2| — (Xo,1,Xo,2), which is integer-valued varying between 0 (no species present) and S (all

109 species present in the landscape).

o

121 Jaccard dissimilarity index (Jaccard 1908, {1912) for a given table X, denoted by ﬁl(, is defined by:
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(# unique species) B (|x0,1| - <xo,1/xo,2>) + (|xo,2| - <xo,1rxo,2>)

# species present in at least one of the sites) B }Xo,l — (X01,X0,2)

7

5x:(

(1)
which represents the proportion of the number of unique species (present only one of the two sites) to
the number of present species (present at least one of the two sites). Eqn (1) is written as a function of
stochastic variables, x;;.

We aim to evaluate the first and second moments (expectation and variance) of Jaccard dissimilarity
and assess how the moments vary with parameters of species differences and spatial heterogeneity.
If the expectation of Jaccard dissimilarity varies in a certain way with a varying parameter, then the
Jaccard dissimilarity is expected to behave accordingly and thereby forms a “beta-diversity pattern”
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Box 2: Expectations: exact
We denote the expectation of Jaccard dissimilarity by E [ﬁ]| y > 0] . We found that (Appendix A):

1 ]/1 1 bx o_d! o
Zz 1 Z yeQs }y‘ qu‘ HZ(;’z) Ko
1- Hk=l

where 5G| represents the binomial coefficient, which counts the number of ways, disregarding order,
that |y| (= 0,1,...,5) species can be chosen from S species (Van Lint & Wilson [2001). Eqn (2) is

E{ﬁj‘y>0} )

conditioned on the premise that at least one of the species is present in the landscape (which occurs
with probability 1 — Hle d;is). Note that E { p | y > 0} has a symmetry in site 1 and 2, by which
swapping (permutating) p; 1 and p;» for any species i does not change the result (Baselga 2010).

As is detailed in Appendix A, Eqn (2) recovers the formula for species-equivalence cases (Chase
et al. 2011} Lu et al. 2019). As suggested in previous studies, the species pool size S, which represents
the maximum number of species present in the landscape, has no effects on the expected Jaccard
dissimilarity conditioned of at least one of the species being present. The invariance is because species
being equivalent implies that the incidence of any species occurs equally likely and independently,
regardless of how many species can potentially inhabit the landscape.

Approximations for expectation and variance

We here present a “heuristic” approximation for the expectation of Jaccard dissimilarity, which was used in

the previous studies (Kalyuzhny_etal2021; Ontiveros et al. 2021). We write ﬁ{leur for the expectation of the

numerator divided by the expectation of the denominator; that is:

E|[# unique species|

E|lp ‘ >0|=~pl =
{ﬁ Y ] Pheus E|[# species present at least one of the sites|
S
_ 2ic1 (1 —bio - di,o)
= S
> (1 - di,O)

(the derivation and interpretation are provided in Appendix B). In the example below, we will show that

Eqn (3) provides a near-identical approximation for the conditional expectation E [ﬁj| y > 0} .

We also explored for a formula of the variance of Jaccard dissimilarity, but it involves much complication

in general, and also our main focus is on expectations. Therefore, we show the results on variance for

species-equivalence case and encapsulated the detailed analyses for general cases with species differences

in the Appendix D.

Applications
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Special case: identical species

We demonstrate a special case where the species are identical in any sense but the landscape can be
heterogeneous; that is: p;; = p,,; for eachj = 1,2, and consequently we write b,; = b and d,; = d for
commonness and double-absence (respectively; note that p, 1 and p, > may differ). Substituting those into

the expected Jaccard dissimilarity index (Eqn (2)) yields:

1-d-b

B[#]y>0 = n

species equivalence

That is, the heuristic approximation and the exact conditional expectation completely agree with each other.
Eqn (4) also recovers the results of previous studies that assume species’ presence probabilities are identical
(Chung et al. 2019; Lu et al. [2019; Lu 2021; Ontiveros et al. 2021). In other words, the sufficient condition for
the exact and approximated formulae of the expectation to be equal is that species are equal in presence
probabilities.

We investigated the dependence of the variance of Jaccard dissimilarity on the pair of presence probabil-
ities (po,1,po,2) (Figure 2B). We found that: (i) when po,1 and p, > are small, the variance tends to take large
values; (ii) when only one of p, 1 and p, > is small but the other is large, the variance is likely to take small
values, but the degree of decrease per se is very small (<0.05; Figure [2B); (iii) when both values are large, the
variance tends to be small; and (iv) when both probabilities are at intermediate values, the dependence of

the variance appears to be small.

Effects of species difference and spatial heterogeneity

We examined how species differences and spatial heterogeneity jointly influence the expectation of Jaccard
dissimilarity, by means of generating synthetic incidence patterns. For incidence probabilities (p1, ..., ps;)
with j = 1,2, we define species difference w as the sum, taken between two sites, of the average absolute
deviation in the presence probabilities across species, divided by the sum of the species-average presence
probabilities in two sites. Also, we define the spatial heterogeneity & as the average, taken among species,

of the absolute differences in the presence probabilities between two sites:

2 1 S
——> 5D lnj-u (5)

j=1 i=1

1
S NTE
i=1

Hl +H2

(6)

with p; = Zle pij for j = 1 and 2 the average presence probability in site 1 and 2 respectively (for the
definition of species difference, see Hoover index of income inequality; Hoover|1936; Chao & Ricotta 2019
and Appendix C). Note that species differences and spatial heterogeneity are functions of the presence
probabilities.

We assess how varying species difference and spatial heterogeneity jointly alter E[f']. The first possible
case is concerned with p;; = p;, for all species, that is, when two sites are homogeneous. In this case,
increasing the species difference w reduces beta diversity (Figure|3JA-1). This is the case also in the presence
of a slight difference between two sites (Figure[3]A-2). Hence, when there is at most low spatial heterogeneity,
species differences systematically reduce beta-diversity.

As the degree of site heterogeneity i becomes larger, whether species differences result in larger or
smaller beta-diversity becomes less consistent. We found both cases where species differences increase and
decrease beta-diversity (Figure[3B-1, B-2). The difference between Figure[3B-1 and B-2 is that while Figure[3B-
1 assumes that two sites are heterogeneous evenly among species me - p,',2| all equal), Figure [3B-2 uses
different values | pi1— p,-,2| (although both are on average equal). That is, the effects of species differences

on beta-diversity depend on the patterns of species differences and spatial heterogeneity.
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(A) Varying presence probabilities (B) Compositional dissimilarity for...

ﬁ pi;j=Prob|x;; = 1] ﬁ

(1) two locations

j= location location 2

pi1 Xo1= 110T Xo2 = 0117

“‘ (2) two time points
k species (i) J

calculate {

Species difference w (eqn 5)
Site heterogeneity /1 (eqn 6)

Figure 1: Schematic illustration of the framework. (A) The presence probabilities (p1,1,p1,z,p2,1, ...,ps,z) take
different values. Of our interest are the effects of the differences (measured by w) and site heterogeneity
(measured by 1) on compositional dissimilarity, both of which are computed from given p1 1, ..., ps1, p1,2, -\ Ps2-
(B) The compositional dissimilarity (defined by the Jaccard dissimilarity) can be applied to spatial and temporal
changes. When j represents a spatial site, we compute the expected Jaccard dissimilarity from the compositions
of the two site (for example 110 and 011). We can carry out the same calculation for time point labels j = 1,2.
Note the symbol T for transpose. The woodpecker pictures are from http://phylopic.org/ (CCO).

(A) Conditional expectation of Jaccard dissimilarity increases with low presence probabilities
E[B'|y>0], forS=4 E[B' | y> 0], forS =8 E[B | y> 0], forS=12
1.0 1.0

1.0

0.8

0.8

0.6 07
S
Q

0.4

0.2 0.2

0.0

0.0 .
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

Po, Poa Po

(B) Conditional standard deviation of Jaccard dissimilarity increases with low presence probabilities

Std[g’ | y>0], forS=4 Std[g’ | y>0], forS=8 std[g’ | y>0], for S =12
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Figure 2: The conditional expectation of Jaccard dissimilarity E[ﬁ]‘ y > OJ (panel A) and the conditional

standard deviation of Jaccard dissimilarity Std [ﬁ]‘ y > O} =y /V[ﬁJ] y > O] (B), plotted on p, 1 (horizontal axis),

Do, (vertical axis) for varying species pool sizes, S. (A) The expected Jaccard dissimilarity is lower when the
probability of commonness is larger (right top zones), and higher when the probability of being present in only
one of the sites is higher (left top and right bottom zones). The effect of S on the expectation is negligibly
small, and thus increasing S (from left to right panels) does not appear to change the overall trend. (B) The
standard deviation of Jaccard dissimilarity is lower when the presence probabilities take extreme values (four
corners). As S increases, the standard deviation tends to be less dependent on intermediate values of presence
probabilities, as seen from the observation that over the wide region of the rectangle, the standard deviation is
relatively unchanged with presence probabilities.
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(B-2) Sites are strongly heterogeneous = beta may increase with w
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Figure 3: The beta-diversity patterns under species differences and spatial heterogeneity. Setup: blue dashed
curves plot p;1 and orange p;, respectively (referred to as incidence gradient curves). In all panels, the average
presence probability per species per site is set one half: (yl + yz) / 2 = 0.5. Species differences and site-
heterogeneity are calculated from the incidence curves, each indicated. (A-1) When sites are completely
homogeneous (i.e., when p;; = p;» for all species i = 1,...,S), increasing species difference results in lower
beta-diversity. (A-2) When sites are weakly heterogeneous k = 0.05, species difference reduces beta-diversity,
as in (A). (B) When two sites are strongly heterogeneous with & = 0.40 in this example, increasing species
differences can either decrease (B-1) or increase (B-2) beta-diversity.
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Figure 4: Outcomes of species distribution models, using a climatic variable. We quantified the expected,
compositional dissimilarity of five woodpecker species at two time points, current and future, over the region
of Switzerland. That is, we assessed the expectation and standard deviation of temporal Jaccard dissimilarity
(Legendre Magurran et al. [2019). We used occupancy estimations for current and future climatic
conditions over Switzerland. (A) Expectation. Compositional changes are expected to be high in the upper
limit of the current distribution and lowlands. (B) Standard deviation (approximated). The standard deviation
tends to be small, which is consistent with the analytical prediction in Figure

12 Temporal Jaccard dissimilarity with Species Distribution Models

153 We provide a case application of our method using the Species Distribution Models (SDMs; Elith & Leathwick
184 Guisan et al. Zurell et al.[2020). SDMs seek to estimate the probability that each species is
185 present at a given site given information on the environment found at that site. Our approach enables
16 quantification of the changes in species distribution on a location-by-location basis, based on temporal
17 Jaccard dissimilarity (the proportion of the number of species that are present only one of two time points
188 relative to the number of species that are present in at least one of the two time points; Legendre
189 Magurran ef al. Figure[T). The details are described in Appendix E.

1% Note that the temporal data systematically comes with temporal autocorrelation (i.e., correltion between
191 compositions at two time points), but our analysis takes advantage of the site-permutation symmetry in
122 Jaccard dissimilarity so that we can omit the correlations between two compositions.

193 Based on Schmid et al. and Zurell et al. , we used data of five woodpecker
104 species, Picus viridis, P. canus, Dendrocopos major, D. minor, and Dryocopus martius in Switzerland. These
195 species have common evolutionary history but use different habitats (Benz et al. Pasinelli
196 Pons et al. . For example, P. canus and D. minor occur at lowlands, while P. viridis is more widely
197 found across Switzerland (Appendix E). The variation in geographic habitat use arguably reflects species
18 differences, making the system ideal for an application of temporal Jaccard dissimilarity. Note also that
19 Incidence-based SDMs rely on the species independence assumption and therefore are reconciled with the
200 species-independence assumption.

201 We examined how dissimilar woodpeckers metacommunity is going to be under future climatic condi-
202 tions across Switzerland (i.e., time-decay of similarity), compared with the sub-community under the current
203 climate. Our methods predicted that the expectations of temporal Jaccard dissimilarity were unexpectedly
204 high (Figure Ep, indicating significant future changes in the distribution of the woodpeckers. This result
205 was primarily explained by species dynamics in lowland sites where some species thrived and others failed:
206 P. canus, that would decrease its occupancy rate near the rivers and would increase in surrounding areas
27 (SI Figure2), and D. minor, whose occupancy is expected to increase in lowlands and valleys (SI Figure[2).
28 Dissimilarity in hillsides is expected to be moderate due to a general increment in richness (SI Figure .
200 These results are consistent with a general trend of Switzerland forest birds moving to higher grounds as a
20 response to environmental change (Maggini et al.[2014). Our results demonstrate the dramatic effects of

an climate change on temporal beta-diversity of a bird metacommunity.
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. 3 Discussion

2

3 91 We derived the formulae of the expectation and variance of Jaccard dissimilarity index as a measure

214 of compositional dissimilarity between two sites for nonidentical species in heterogeneous landscapes.
215 We showed that species differences may have nonmonotonic effects on Jaccard dissimilarity (Figure[3).
216 When sites are relatively similar in their species presence probabilities, species difference reduces Jaccard
217 dissimilarity. When sites are different in their presence probabilities, species differences can cause
218 varying effects on Jaccard dissimilarity, making robust prediction challenging. Our work allows us to
219 implement empirical incidence data of presence probabilities and assess the long term estimations for
220 Jaccard dissimilarity. In addition, our method enables quantitative comparison of predicted outcomes
221 with observed species distributions. Hence, the present work offers a powerful framework to theoretically
222 and quantitatively investigate spatial variations in species compsition.

23 J2 Our results suggest that knowledge of the species pool will be important for some properties but not
224 others. When all species are identical, we found that the conditional expectation of Jaccard dissimilarity
225 (given that at least one species is likely present) is independent of species pool size, as was revealed
226 in the literature (Lu et al. [2019; Lu|2021). In contrast, we found that the variance more substantially
227 depends on the species pool size even when the species presence probabilities are equal in each pair
228 of sites (Figure [2B). Specifically, the variance becomes smaller when the species pool size is larger,
229 suggesting that large species pool sizes may reduce the uncertainty in statistical inferences for Jaccard
230 dissimilarity. However, the uncertainty may become larger when the baseline presence probabilities
231 are smaller (Figure[2B), suggesting that the effect of opportunistic species (species with the presence
232 probabilities are very low but not zero) may influence the robust inference of Jaccard dissimilarity, and
233 also that rarely observed species can increase the uncertainty of estimations for Jaccard dissimilarity
234 (Wolda 1981} Colwell & Coddington [1994; Plotkin & Muller-Landau 2002; Chao ef al. [2004). These
235 predictions are consistent with the concept of dark diversity (formally defined as the number of species
236 that are absent from an ecosystem but which belong to its species pool; Partel ef al.2011; Carmona &
237 Pértel [2020), and our work suggests that dealing with the uncertainty is the key to predict the dark
238 diversity.

29 93 Comparison with simulated data showed that the approximation of the Jaccard dissimilarity agrees

240 well with the exact formula. The accuracy increases with the increasing species pool size (Appendix
241 B). Considering that calculating the exact expectation of Jaccard dissimilarity in a brute force approach
242 incurs large computational expenses, we suggest that, when the species pool size is relatively small, exact
243 evaluation of the Jaccard dissimilarity is suitable and should be compared with the approximated value
244 which can be computed faster. When the species pool size is large, we suggest using our approximations
25 and exact values both, e.g., by applying Gauf8’ fast Fourier Transforms (Cooley & Tukey|1965; Heideman
246 et al. 1984). When the species pool size is unknown, the Eqn (3) is beneficial, because the interpretation
247 is clear and the expectations in the numerator and denominator can be assessed separately.

us  J4 Using data on woodpecker distributions, we projected shifts in habitat use. This approach required
249 only information on the expectation and variance. Likely mechanisms of the species differences and
250 temporal heterogeneity in this system include colonization abilities, habitat selection, and species-specific
251 tolerance to environmental challenges. By specifying possible mechanisms, we can obtain deeper insight
252 into the processes by which biotic homogeneization occurs. For instance, partitioning beta-diversity into
253 colonization and extinction components can be of great use to better understand dynamic processes of
254 beta-diversity (Tatsumi et al.|2021). Our study can be used in conjunction with data such as SDMs for
255 better understanding and management of the spatio-temporal dynamics of biodiversity.

s I5 Our key finding is that beta-diversity increases or decreases with species differences depending on the
257 degree of spatial heterogeneity, other things being equal (Figure[3). To facilitate biological interpretations
258 for the prediction, we first list species in the descending order of presence probability in site 1 (i.e.,
259 P11 2 p21 = -+ 2 ps;1). We plotted the curve of p;; against i = 1,2, ..., S and termed this curve as
260 a “species incidence gradient” for site j. Under no spatial heterogeneity (i.e., p;1 = p;» for all species
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261 i=1,..,S, implying h = 0), the two species incidence gradients synchronize perfectly. In this case,
262 increasing species differences increases the probability of some species being either (i) double-absent or
263 (ii) present in both sites. In either case (i) or (ii), fewer species are present in only one of the sites than the
264 case with no species difference, thus leading to lower beta-diversity. Biologically, spatial homogeneity
265 tends to constrain patterns of species incidence gradients in a way that species differences cause species
266 to be either present in both sites or absent from both sites. In other words, species differences under
267 homogeneity do not foster uniquely present species. This prediction is robust against small increases
268 in spatial heterogeneity (Figure BJA-2). In a weakly heterogeneous metacommunity, beta-diversity is
269 predicted to decrease with species differences due to the synchronization of species incidence gradients
270 between two sites. Maintaining large beta-diversity under biotic homogeneization requires all species to
271 be equally likely to be present in both sites.

272 With increasing spatial heterogeneity, however, the effect of species difference on beta-diversity becomes
273 less clear (Figure[3B). This is because in the presence of spatial heterogeneity, species incidence gradients
274 tend to become asyncrhonous. When the degree of spatial heterogeneity is very large, two species
275 incidence gradients are necessarily desynchronized (or form a “nestedness” or “turnover pattern”, sensu
276 Harrison et al. 1992} by which species incidences tend to be spatially segregated). The difference between
7 Figure -1 (in which beta-diversity decreases with species difference) and B-2 (otherwise increases)
278 predicts that the variation in species-wise spatial heterogeneity ‘ pi1 — pi2| matter, though we were
279 unable to corroborate this speculation. Hence, heterogeneous environments make the prediction and
280 management of beta-diversity even more challenging.

281 §6 Our study has significant implications for conservation. Generally, beta-diversity is a key factor for

282 ecosystem functioning from local to global scales (Socolar et al.|2016; Mori et al.|2018). Local ecosystem
283 functioning may be driven by species” functional dissimilarity, e.g., in niches (Godoy et al.|2020). For
284 example, Loiseau et al. (2016) pointed out that conservation policy designed to protect taxonomic
285 diversity cannot be fully reconciled with functional diversity management. Indeed our finding predicts
286 that with the environmental homogeneity, increasing local species differences lead to lower beta-diversity
287 (Figure[3]A-1, B). Given that the species difference is associated with functional diversity (or transformed
288 quantity thereof; Palacio et al. |2022), the present prediction suggests that a conservation policy aiming
289 to maintain high beta-diversity be traded-off against the local, functional diversity. This dilemma
290 becomes more complicated when the spatial heterogeneity is strong, by which beta-diversity may or may
291 not decrease with species-differences, thereby making the prediction of beta-diversity rather difficult.
292 One promising approach is thus to identify species traits and environmental factors for maintaining a
293 balance (evenness) in the likeliness of species presence and absence, which may produce new interesting
294 questions. Moving forward, open questions include: how does incidence-based beta-diversity respond
295 to changes in functional diversity in colonization ability and extinction tolerance? How does functional
296 diversity, in turn, respond against the reduction in compositional dissimilarity (biotic homogeneization)?
207 97 To conclude, we have derived the analytic formula of the expectation and variance of Jaccard dissimilarity
298 index incorporating different species in a pair of heterogeneous sites, and revealed the opposing effects of
299 species differences on beta-diversity. Assuming that species incidences are uncorrelated with each other,
300 we found that species differences in presence probabilities may lead to a complex pattern (Figure [3).
301 This work will help researchers better understand the probabilistic, or stochastic, nature of Jaccard
302 dissimilarity (Real & Vargas[1996). Future studies may explore the effects of species associations on
303 the probabilistic properties of Jaccard dissimilarity, and also carry out occupancy dynamics analyses,
304 beyond pairwise dissimilarity analyses (MacKenzie et al. 2018). One of the most promising approaches
305 is a process-based approach (Pilowsky et al.[2022), by which we can incorporate further complications
306 that influence beta-diversity. Our method can incorporate additional realities to track and manage the
307 changes in species distributions under global changes.

12


https://doi.org/10.1101/2022.12.13.520233
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.13.520233; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

«» 4 Acknowledgement

300 The authors thank Ryosuke Nakadai, Naoto Shinohara and Akira Terui, for helpful comments. We thank
si0 JSPS-KAKENHI (grant numbers 19K22457, 19K23768, and 20K15882 to RI) for funding. The authors also
sn  thank Margarita Salas grant funded by the Spanish Ministry of Universities and the “European Union - Next
sz GenerationEU” to VJO, CRISIS (PGC2018-096577-B-100) to DA and JAC, UNIQUE (PID2021-127202NB-C21)
a3 to DA, and PRIORITY (PID2021-127202NB-C22) to JAC, all funded by MCIN/AEI/10.13039/501100011033
s and “ERDF A way of making Europe”. RI was inspired by some of the questions and answers on Cross
a5 Validated (Stack Exchange), in calculating the expectation of reciprocals (c.f., Cressie ef al. [1981; Lange
s1e 2010).

.» References

a1 Albrecht, J., Peters, M. K., Becker, J. N., Behler, C., Classen, A., Ensslin, A., Ferger, S. W., Gebert, E,,
319 Gerschlauer, F., Helbig-Bonitz, M., Kindeketa, W. ]., Kiihnel, A., Mayr, A. V., Njovu, H. K., Pabst, H.,
320 Pommer, U., Réder, J., Rutten, G., Costa, D. S., Sierra-Cornejo, N., Vogeler, A., Vollstadt, M. G. R,,
321 Dulle, H. I., Eardley, C. D., Howell, K. M., Keller, A., Peters, R. S., Kakengi, V., Hemp, C., Zhang,
322 J., Manning, P., Mueller, T., Bogner, C., Bohning-Gaese, K., Brandl, R., Hertel, D., Huwe, B., Kiese,
323 R., Kleyer, M., Leuschner, C., Kuzyakov, Y., Nauss, T., Tschapka, M., Fischer, M., Hemp, A., Steffan-

324 Dewenter, 1., & Schleuning, M. (2021). Species richness is more important for ecosystem functioning
325 than species turnover along an elevational gradient. Nature Ecology & Evolution, 5.12, pp. 1582-1593.
326 DOI:|10.1038/541559-021-01550-9| (cit. on p. .

57 Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M., & Kadmon, R. (2012). Area-heterogeneity
328 tradeoff and the diversity of ecological communities. Proceedings of the National Academy of Sciences,

329 109.43, pp. 17495-17500. DOI: |10. 1073/pnas . 1208652109 (cit. on p. .

30 Alonso, D., Pinyol-Gallemi, A., Alcoverro, T., & Arthur, R. (2015). Fish community reassembly after a coral
331 mass mortality: higher trophic groups are subject to increased rates of extinction. Ecology Letters, 18.5,
3 pp. 451-461. DOI:[10.1111/ele. 12426 (cit. on p.[3).

;3 Altermatt, F., Schreiber, S., & Holyoak, M. (2011). Interactive effects of disturbance and dispersal direc-
334 tionality on species richness and composition in metacommunities. Ecology, 92.4, pp. 859-870. DOLI:
335 10.1890/10-1095. 1 (cit. on p. [2).

a6 Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J,,
337 Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., & Swenson, N. G.
338 (2010). Navigating the multiple meanings of § diversity: a roadmap for the practicing ecologist. Ecology
339 Letters, 14.1, pp. 19-28. DOI:|10.1111/j.1461-0248.2010.01552.x (cit. on p. .

a0 Arita, H. T. (2017). Multisite and multispecies measures of overlap, co-occurrence, and co-diversity. Ecography,
341 40.6, pp. 709-718. DOI: [16. 1111/ecog. 01942 (cit. on p.[3).

32 Arnold, B. C. (2012). Majorization and the Lorenz order: A brief introduction. 43. Springer Science & Business
343 Media (cit. on p.[27).

saa Astorga, A., Death, R., Death, F., Paavola, R., Chakraborty, M., & Muotka, T. (2014). Habitat heterogeneity
245 drives the geographical distribution of beta diversity: the case of N ew Z ealand stream invertebrates.
346 Ecology and Evolution, 4.13, pp. 2693-2702. DOI: [10. 1002/ece3. 1124 (cit. on p. 3).

a7 Bdldi, A. (2008). Habitat heterogeneity overrides the species-area relationship. Journal of Biogeography, 35.4,
348 pp. 675-681. DOIL: [16. 1111/ .1365-2699.2007.01825. X/ (cit. on p.[3).

u9  Bar-Massada, A. (2015a). Complex relationships between species niches and environmental heterogeneity
350 affect species co-occurrence patterns in modelled and real communities. Proceedings of the Royal Society
351 B: Biological Sciences, 282.1813, p. 20150927. DOI:|10.1098/rspb.2015.0927 (cit. on p. .

13


https://doi.org/10.1038/s41559-021-01550-9
https://doi.org/10.1073/pnas.1208652109
https://doi.org/10.1111/ele.12426
https://doi.org/10.1890/10-1095.1
https://doi.org/10.1111/j.1461-0248.2010.01552.x
https://doi.org/10.1111/ecog.01942
https://doi.org/10.1002/ece3.1124
https://doi.org/10.1111/j.1365-2699.2007.01825.x
https://doi.org/10.1098/rspb.2015.0927
https://doi.org/10.1101/2022.12.13.520233
http://creativecommons.org/licenses/by-nc/4.0/

352

353

354

355

356

357

358

359

360

362

363

364

366

367

368

369

370

371

372

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

4

2

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.13.520233; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

Bar-Massada, A. (2015b). Immigration rates and species niche characteristics affect the relationship between
species richness and habitat heterogeneity in modeled meta-communities. Peer], 3, e832. DOI:/10.7717/
peerj.832/(cit. on p.[3).

Bar-Massada, A. & Belmaker, J. (2017). Non-stationarity in the co-occurrence patterns of species across
environmental gradients. Journal of Ecology, 105.2, pp. 391-399. DOI:10.1111/1365-2745. 12713 (cit. on
p-B).

Bar-Massada, A. & Wood, E. M. (2013). The richness-heterogeneity relationship differs between hetero-
geneity measures within and among habitats. Ecography, 37.6, pp. 528-535. DOI: 10. 1111/ . 1600+
0587.2013.00590. X (cit. on p.[3).

Baroni-Urbani, C. (1980). A statistical table for the degree of coexistence between two species. 44.3, pp. 287-
289. DOI: [16.1007/bf00545229) (cit. on p. [3).

Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology
and Biogeography, 19.1, pp. 134-143. DOI:[10.1111/j . 1466-8238.2009.00490 . x| (cit. on p.[6).

Ben-Hur, E. & Kadmon, R. (2020). Heterogeneity-diversity relationships in sessile organisms: a unified
framework. Ecology Letters, 23.1, pp. 193-207. DOI: [10.1111/ele. 13418 (cit. on p.3).

Benz, B. W., Robbins, M. B., & Peterson, A. T. (2006). Evolutionary history of woodpeckers and allies
(Aves: Picidae): Placing key taxa on the phylogenetic tree. Molecular Phylogenetics and Evolution, 40.2,
pp- 389-399. DOI: 10.1016/ j . ympev.2006.02.021 (cit. on p..

Calabrese, J. M., Certain, G., Kraan, C., & Dormann, C. F. (2013). Stacking species distribution models
and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23.1,
pp. 99-112. DOI: 10.1111/geb. 12102/ (cit. on p.[3).

Cao, K., Condit, R., Mi, X., Chen, L., Ren, H., Xu, W., Burslem, D. F. R. P., Cai, C., Cao, M., Chang,
L.-W., Chu, C., Cui, F., Du, H., Ediriweera, S., Gunatilleke, C. S. V., Gunatilleke, I. U. A. N., Hao,
Z.,Jin, G., Li, J, Li, B,, Li, Y., Liu, Y., Ni, H., O'Brien, M. J., Qiao, X., Shen, G., Tian, S., Wang, X.,
Xu, H., Xu, Y., Yang, L., Yap, S. L., Lian, J., Ye, W,, Yu, M., Su, S5.-H., Chang-Yang, C.-H., Guo, Y.,
Li, X., Zeng, F., Zhu, D., Zhu, L., Sun, L-F., Ma, K., & Svenning, J.-C. (2021). Species packing and the
latitudinal gradient in beta-diversity. Proceedings of the Royal Society B: Biological Sciences, 288.1948. DOI:
10.1098/rspb.2020.3045/ (cit. on p.3).

Carmona, C. P. & Partel, M. (2020). Estimating probabilistic site-specific species pools and dark diversity
from co-occurrence data. Global Ecology and Biogeography, 30.1, pp. 316-326. DOI:160.1111/geb. 13203
(cit. on pp.[5} [11).

Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T.-J. (2004). A new statistical approach for assessing
similarity of species composition with incidence and abundance data. Ecology Letters, 8.2, pp. 148-159.
DOI:10.1111/j.1461-0248.2004.00707 . x (cit. on p. .

Chao, A. & Ricotta, C. (2019). Quantifying evenness and linking it to diversity, beta diversity, and similarity.
Ecology, 100.12. DOL: |10.1002/ecy. 2852 (cit. on pp. [7} [28).

Chase, J. M., Kraft, N.J. B., Smith, K. G., Vellend, M., & Inouye, B. D. (2011). Using null models to disentangle
variation in community dissimilarity from variation in a-diversity. 2.2, art24. DOI: 10. 1890 /es10+
00117. 1 (cit. on pp.[5} [6).

Chase, J. M., McGill, B. J., Thompson, P. L., Antao, L. H., Bates, A. E., Blowes, S. A., Dornelas, M., Gonzalez,
A., Magurran, A. E., Supp, S. R., Winter, M., Bjorkman, A. D., Bruelheide, H., Byrnes, J. E. K., Cabral,
J. S., Elahi, R., Gomez, C., Guzman, H. M., Isbell, F., Myers-Smith, I. H., Jones, H. P., Hines, ]., Vellend,
M., Waldock, C., & O'Connor, M. (2019). Species richness change across spatial scales. Oikos, 128.8,
pp. 1079-1091. DOL: [16.1111/01k.05968| (cit. on p.[2).

Chung, N. C., Miasojedow, B., Startek, M., & Gambin, A. (2019). Jaccard/Tanimoto similarity test and
estimation methods for biological presence-absence data. 20.515. DOI:|10.1186/512859-019-3118-5
(cit. on pp. [} [7).

Colwell, R. K. & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philo-
sophical Transactions of the Royal Society of London. Series B: Biological Sciences, 345.1311, pp. 101-118

(cit. on p.[11).

14


https://doi.org/10.7717/peerj.832
https://doi.org/10.7717/peerj.832
https://doi.org/10.7717/peerj.832
https://doi.org/10.1111/1365-2745.12713
https://doi.org/10.1111/j.1600-0587.2013.00590.x
https://doi.org/10.1111/j.1600-0587.2013.00590.x
https://doi.org/10.1111/j.1600-0587.2013.00590.x
https://doi.org/10.1007/bf00545229
https://doi.org/10.1111/j.1466-8238.2009.00490.x
https://doi.org/10.1111/ele.13418
https://doi.org/10.1016/j.ympev.2006.02.021
https://doi.org/10.1111/geb.12102
https://doi.org/10.1098/rspb.2020.3045
https://doi.org/10.1111/geb.13203
https://doi.org/10.1111/j.1461-0248.2004.00707.x
https://doi.org/10.1002/ecy.2852
https://doi.org/10.1890/es10-00117.1
https://doi.org/10.1890/es10-00117.1
https://doi.org/10.1890/es10-00117.1
https://doi.org/10.1111/oik.05968
https://doi.org/10.1186/s12859-019-3118-5
https://doi.org/10.1101/2022.12.13.520233
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.13.520233; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

w2 Cooley, J. W. & Tukey, J. W. (1965). An algorithm for the machine calculation of complex Fourier series.
403 19.90, pp. 297-301. DOI: 10.1090/50025-5718-1965-0178586-1 (cit. on p.[11).

aa  Cressie, N., Davis, A. S., & Folks, J. L. (1981). The moment-generating function and negative integer moments.
405 The American Statistician, 35.3, pp. 148-150. DOI: 10.1080/00031305.1981.10479334 (cit. on p. .

a6 Crowther, T. W,, Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R,,
407 Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M.-N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani,
408 R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G.-J.,
409 Tikhonova, E., Borchardt, P., Li, C.-F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans,
410 A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., & Bradford, M. A. (2015).
411 Mapping tree density at a global scale. Nature, 525.7568, pp. 201-205. DOI: |10 . 1038 /nature14967
a2 (cit. on p.[2).

43 De Bie, T., De Meester, L., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L.,
414 Vanhecke, L., Gucht, K. Van der, et al. (2012). Body size and dispersal mode as key traits determining
415 metacommunity structure of aquatic organisms. Ecology Letters, 15.7, pp. 740-747 (cit. on p. .

a5 Elith, J. & Leathwick, J. R. (2009). Species Distribution Models: ecological explanation and prediction
47 across space and time. Annual Review of Ecology, Evolution, and Systematics, 40.1, pp. 677-697. DOI:

8 10.1146/annurev.ecolsys.110308.120159 (cit. on pp. 3} [10).

a9 Godoy, O., Gémez-Aparicio, L., Matias, L., Pérez-Ramos, I. M., & Allan, E. (2020). An excess of niche
420 differences maximizes ecosystem functioning. Nature Communications, 11.1. DOI:|10.1038/541467-020~
a 17960-5|(cit. on p. [12).

a2 Gotelli, N. J. & Ulrich, W. (2011). Statistical challenges in null model analysis. Oikos, 121.2, pp. 171-180.
423 DOI:10.1111/j.1600-0706.2011.20301. X (cit. on p. .

a2 Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: with
425 applications in R. Cambridge University Press (cit. on pp.[3} [10).

a6 Harrison, S., Ross, S. J., & Lawton, J. H. (1992). Beta diversity on geographic gradients in britain. Journal of
427 Animal Ecology, 61.1, p. 151. DOI:|10.2307/5518|(cit. on p..

48 Hautier, Y., Isbell, F., Borer, E. T., Seabloom, E. W., Harpole, W. S., Lind, E. M., MacDougall, A. S., Stevens,
429 C.J., Adler, P. B., Alberti, J., Bakker, ]. D., Brudvig, L. A., Buckley, Y. M., Cadotte, M., Caldeira, M. C,,
430 Chaneton, E. J., Chu, C., Daleo, P., Dickman, C. R., Dwyer, J. M., Eskelinen, A., Fay, P. A,, Firn, ],
431 Hagenah, N., Hillebrand, H., Iribarne, O., Kirkman, K. P., Knops, J. M. H., Pierre, K. J. L., McCulley,
432 R. L., Morgan, J. W., Partel, M., Pascual, J., Price, ]J. N., Prober, S. M., Risch, A. C., Sankaran, M.,
433 Schuetz, M., Standish, R. J., Virtanen, R., Wardle, G. M., Yahdjian, L., & Hector, A. (2017). Local loss
434 and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology &
435 Evolution, 2.1, pp. 50-56. DOI:10.1038/541559-017-0395-0 (cit. on p..

a6 Heideman, M., Johnson, D., & Burrus, C. (1984). Gauss and the history of the fast Fourier transform. 1.4,
437 pp. 14-21. DOI:|10.1109/massp. 1984. 1162257 (cit. on p. [11).

as  Heino, J., Gronroos, M., Ilmonen, J., Karhu, T., Niva, M., & Paasivirta, L. (2013). Environmental heterogeneity
439 and f diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science,
440 32.1, pp. 142-154. DOI:|10.1899/12-083. 1/ (cit. on p.[3).

a1 Heino, J., Melo, A. S., & Bini, L. M. (2014). Reconceptualising the beta diversity-environmental heterogeneity
a2 relationship in running water systems. Freshwater Biology, 60.2, pp. 223-235. DOI:[10.1111/fwb. 12502
a3 (cit. on p.[3).

as  Hijmans, R.J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated
445 climate surfaces for global land areas. International Journal of Climatology, 25.15, pp. 1965-1978. DOI:
246 10.1002/joc. 1276 (cit. on p.[32).

a7 Hoover, E. M. (1936). The Measurement of Industrial Localization. The Review of Economics and Statistics,
448 18.4, p. 162. DOI:|10.2307/1927875 (cit. on p.[7).

as  Hubbard, J. (1959). Calculation of partition functions. Physical Review Letters, 3.2, pp. 77-78. DOI:|10. 1103/
450 physrevlett.3.77|(cit. on p..

15


https://doi.org/10.1090/s0025-5718-1965-0178586-1
https://doi.org/10.1080/00031305.1981.10479334
https://doi.org/10.1038/nature14967
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1038/s41467-020-17960-5
https://doi.org/10.1038/s41467-020-17960-5
https://doi.org/10.1038/s41467-020-17960-5
https://doi.org/10.1111/j.1600-0706.2011.20301.x
https://doi.org/10.2307/5518
https://doi.org/10.1038/s41559-017-0395-0
https://doi.org/10.1109/massp.1984.1162257
https://doi.org/10.1899/12-083.1
https://doi.org/10.1111/fwb.12502
https://doi.org/10.1002/joc.1276
https://doi.org/10.2307/1927875
https://doi.org/10.1103/physrevlett.3.77
https://doi.org/10.1103/physrevlett.3.77
https://doi.org/10.1103/physrevlett.3.77
https://doi.org/10.1101/2022.12.13.520233
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.13.520233; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

a1 Hui, C. & McGeoch, M. A. (2014). Zeta diversity as a concept and metric that unifies incidence-based
452 biodiversity patterns. The American Naturalist, 184.5, pp. 684-694. DOI: 10. 1086/678125 (cit. on p. [3).
a3 Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 44, pp. 223-270
asa (cit. on pp.[3} [B).

a5 — (1912). The Distribution of the flora in the alpine zone. New Phytologist, 11.2, pp. 37-50. DOI:|10.1111/
456 j.1469-8137.1912.tb05611.x (cit. on pp. 3} ).

a7 Jankowski, J. E., Ciecka, A. L., Meyer, N. Y., & Rabenold, K. N. (2009). Beta diversity along environmental
ass gradients: implications of habitat specialization in tropical montane landscapes. Journal of Animal Ecology,
459 78.2, pp. 315-327. DOL: [16. 1111/ . 1365-2656 . 2008 . 01487 . X (cit. on p.[3).

a0 Jost, L. (2006). Entropy and diversity. Oikos, 113.2, pp. 363-375. DOI:|10.1111/].2006.0030-1299.14714.x
a6 (cit. on p.[28).

a2 — (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88.10, pp. 2427-
463 2439. DOI: 10. 1890/06-1736. 1 (cit. on p.[28).

ss  Karp, D. S., Frishkoff, L. O., Echeverri, A., Zook, ., Judrez, P., & Chan, K. M. A. (2017). Agriculture erases
465 climate-driven g-diversity in Neotropical bird communities. Global Change Biology, 24.1, pp. 338-349.
a66 DOI:[10.1111/gcb. 13821 (cit. on p. 2).

a7 Keil, P., Wiegand, T., T6th, A. B., McGlinn, D. J., & Chase, J. M. (2021). Measurement and analysis of

468 interspecific spatial associations as a facet of biodiversity. Ecological Monographs, 91.3. DOI: |16.1002/
469 ecm. 1452/ (cit. on p.[3).

a0 Koleff, P., Gaston, K. J., & Lennon, J.J. (2003). Measuring beta diversity for presence-absence data. Journal
471 of Animal Ecology, 72.3, pp. 367-382. DOI: [10. 1046/ j . 1365-2656.2003.00710.x (cit. on p.[2).

a2 Lange, K. (2010). Applied Probability. 2nd ed. Springer Texts in Statistics. Springer (cit. on p. [13).

a3 Legendre, P. (2019). A temporal beta-diversity index to identify sites that have changed in exceptional ways
a7 in space-time surveys. Ecology and Evolution, 9.6, pp. 3500-3514. DOI:|10. 1002/ece3. 4984|(cit. on pp.
ars  Leinster, T. (2021). Entropy and Diversity: The Axiomatic Approach. Cambridge University Press (cit. on p.[28).
477 Loiseau, N., Legras, G., Kulbicki, M., Mérigot, B., Harmelin-Vivien, M., Mazouni, N., Galzin, R., & Gaertner,
478 J. (2016). Multi-component p-diversity approach reveals conservation dilemma between species and
479 functions of coral reef fishes. Journal of Biogeography, 44.3, pp. 537-547. DOI:|10. 1111/ jb1.12844(cit. on
w  p).

a1 Loreau, M. (2000). Are communities saturated? On the relationship between alpha, beta and gamma
482 diversity. Ecology Letters, 3.2, pp. 73-76. DOI:10.1046/j . 1461-0248.2000.00127.x (cit. on p. [2).

sz Lu, M. (2021). Complex relationships between beta diversity and dispersal in meta-community models.
484 Ecography, 44.12, pp. 1769-1780. DOI:[10. 1111/ecog. 05937 (cit. on pp. [2} [7} [11).

a5 Lu, M., Vasseur, D., & Jetz, W. (2019). Beta diversity patterns derived from island biogeography theory. The
as6 American Naturalist, 194.3, E52-E65. DOI: [10.1086/704181] (cit. on pp. [2}[6} 22).

a7 MacArthur, R. H. & Wilson, E. O. (1963). An equilibrium theory of insular zoogeography. Evolution, 17 4,
488 p. 373. DOI:|10. 2307/2407089 (cit. on pp.[3}[5).

ass MacArthur, R. H. & Wilson, E. O. (1967). The theory of island biogeography. 1. Princeton university press
450 (cit. on p.[3).

a1 MacKenzie, D. I, Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. (2018). Occupancy
492 estimation and modeling: inferring patterns and dynamics of species occurrence. 2nd ed. Elsevier (cit. on
493 p. .

44 Maggini, R., Lehmann, A., Zbinden, N., Zimmermann, N. E., Bolliger, J., Schrdder, B., Foppen, R., Schmid,
495 H., Beniston, M., & Jenni, L. (2014). Assessing species vulnerability to climate and land use change: the
496 case of the Swiss breeding birds. Diversity and Distributions, 20.6, pp. 708-719. DOI:|10.1111/dd1. 12207
a97 (cit. on p.[10).

as Magurran, A. E., Dornelas, M., Moyes, F., & Henderson, P. A. (2019). Temporal f diversity—A macroecological
499 perspective. Global Ecology and Biogeography, 28.12, pp. 1949-1960. DOI: 10.1111/geb. 13026 (cit. on

pp- 3} [10).

5

1=}
S

16


https://doi.org/10.1086/678125
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1365-2656.2008.01487.x
https://doi.org/10.1111/j.2006.0030-1299.14714.x
https://doi.org/10.1890/06-1736.1
https://doi.org/10.1111/gcb.13821
https://doi.org/10.1002/ecm.1452
https://doi.org/10.1002/ecm.1452
https://doi.org/10.1002/ecm.1452
https://doi.org/10.1046/j.1365-2656.2003.00710.x
https://doi.org/10.1002/ece3.4984
https://doi.org/10.1111/jbi.12844
https://doi.org/10.1046/j.1461-0248.2000.00127.x
https://doi.org/10.1111/ecog.05937
https://doi.org/10.1086/704181
https://doi.org/10.2307/2407089
https://doi.org/10.1111/ddi.12207
https://doi.org/10.1111/geb.13026
https://doi.org/10.1101/2022.12.13.520233
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.13.520233; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

sor  Marshall, A. W., Olkin, I., & Arnold, B. C. (1979). Inequalities: theory of majorization and its applications. 143.
502 Springer (cit. on p.[28).

sz Maynard, D. S., Crowther, T. W., & Bradford, M. A. (2017). Competitive network determines the direction
504 of the diversity-function relationship. Proceedings of the National Academy of Sciences, 114.43, pp. 11464~
505 11469. DOI: [10.1073/pnas . 1712211114 (cit. on p. [2).

sos  McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation,
507 127.3, pp. 247-260. DOI:|10.1016/j .biocon.2005.09.005| (cit. on p.[2).

sos McVinish, R. & Lester, R. J. G. (2020). Measuring aggregation in parasite populations. Journal of The Royal
509 Society Interface, 17.165, p. 20190886. DOI: [10.1098/rs1f.2019.0886 (cit. on p.[27).

sio Mori, A. S., Isbell, F., & Seidl, R. (2018). p-diversity, community assembly, and ecosystem functioning.
511 Trends in Ecology & Evolution, 33.7, pp. 549-564. DOI:10.1016/] . tree.2018.04.012/(cit. on pp. 2} [12).
sz Mouquet, N. & Loreau, M. (2003). Community Patterns in Source-Sink Metacommunities. The American
513 Naturalist, 162.5, pp. 544-557. DOI: [10. 1086/378857 (cit. on p.[2).

siu. Myers, J. A., Chase, ]J. M., Crandall, R. M., & Jiménez, 1. (2015). Disturbance alters beta-diversity but not
515 the relative importance of community assembly mechanisms. Journal of Ecology, 103.5, pp. 1291-1299.
st DOI:[10.1111/1365-2745. 12436 (cit. on p.[2).

sz Ojima, M. N. & Jiang, L. (2016). Interactive effects of disturbance and dispersal on community assembly.
518 Oikos, 126.5, pp. 682-691. DOI:10.1111/01k.03265| (cit. on p. [2).

si9. Olden, J. D., Comte, L., & Giam, X. (2018). The Homogocene: a research prospectus for the study of biotic
520 homogenisation. NeoBiota, 37, pp. 23-36. DOI: 10.3897/neobiota.37.22552 (cit. on p.[2).

sz1 Olden, J. D. & Poff, N. L. (2003). Toward a Mechanistic Understanding and Prediction of Biotic Homoge-
522 nization. The American Naturalist, 162.4, pp. 442-460. DOI:10.1086/378212 (cit. on p. [2).

523 Olden, J. D. & Rooney, T. P. (2006). On defining and quantifying biotic homogenization. Global Ecology and
524 Biogeography, 15.2, pp. 113-120. DOI:[10.1111/ . 1466-822x.2006.00214.. X (cit. on p. [2).

s Ontiveros, V. J., Capitén, J. A., Casamayor, E. O., & Alonso, D. (2021). The characteristic time of ecological
526 communities. Ecology, 102.2. DOI:10.1002/ecy. 3247 (cit. on pp. B} [6} [7} 25).

sz7  Palacio, F. X., Callaghan, C. T., Cardoso, P., Hudgins, E. J., Jarzyna, M. A., Ottaviani, G., Riva, F., Graco-
528 Roza, C., Shirey, V., & Mammola, S. (2022). A protocol for reproducible functional diversity analyses.
529 Ecography, 2022.11. DOI: [10.1111/ecog. 06287 (cit. on p.[12).

s30 Pértel, M., Szava-Kovats, R., & Zobel, M. (2011). Dark diversity: shedding light on absent species. Trends in
531 Ecology & Evolution, 26.3, pp. 124-128. DOI:[10.1016/j . tree.2010.12.004 (cit. on p.[11).

s22 Pasinelli, G. (2007). “Nest site selection in middle and great spotted woodpeckers Dendrocopos medius and
533 D. major: implications for forest management and conservation”. Topics in Biodiversity and Conservation.
534 Springer Netherlands, pp. 457-472. DOI: |10.1007/978-1-4020-6320-6_30 (cit. on p. .

s3s Peres-Neto, P. R., Olden, J. D., & Jackson, D. A. (2001). Environmentally constrained null models: site
536 suitability as occupancy criterion. Oikos, 93.1, pp. 110-120. DOI:|10. 1634/ .1600-0706.2001.930112.x
537 (cit. on p.[3).

s33 Pilowsky, J. A., Colwell, R. K., Rahbek, C., & Fordham, D. A. (2022). Process-explicit models reveal the
539 structure and dynamics of biodiversity patterns. Science Advances, 8.31. DOI:|10.1126/sciadv.abj2271
540 (cit. on p.[12).

sar Plotkin, J. B. & Muller-Landau, H. C. (2002). Sampling the species composition of a landscape. Ecology,
542 83.12, pp. 3344-3356 (cit. on p.[11).

sa3 Poggiato, G., Miinkemiiller, T., Bystrova, D., Arbel, J., Clark, J. S., & Thuiller, W. (2021). On the interpretations
544 of joint modeling in community ecology. Trends in Ecology & Evolution, 36.5, pp. 391-401. DOI:10. 1016/
545 j.tree.2021.01.002/(cit. on p.[2).

sss  Pomara, L. Y., Ruokolainen, K., & Young, K. R. (2013). Avian species composition across the Amazon
547 River: the roles of dispersal limitation and environmental heterogeneity. Journal of Biogeography, 41.4,
548 pp. 784-796. DOI:[10.1111/jb1. 12247 (cit. on p.[3).

17


https://doi.org/10.1073/pnas.1712211114
https://doi.org/10.1016/j.biocon.2005.09.005
https://doi.org/10.1098/rsif.2019.0886
https://doi.org/10.1016/j.tree.2018.04.012
https://doi.org/10.1086/378857
https://doi.org/10.1111/1365-2745.12436
https://doi.org/10.1111/oik.03265
https://doi.org/10.3897/neobiota.37.22552
https://doi.org/10.1086/378212
https://doi.org/10.1111/j.1466-822x.2006.00214.x
https://doi.org/10.1002/ecy.3247
https://doi.org/10.1111/ecog.06287
https://doi.org/10.1016/j.tree.2010.12.004
https://doi.org/10.1007/978-1-4020-6320-6_30
https://doi.org/10.1034/j.1600-0706.2001.930112.x
https://doi.org/10.1126/sciadv.abj2271
https://doi.org/10.1016/j.tree.2021.01.002
https://doi.org/10.1016/j.tree.2021.01.002
https://doi.org/10.1016/j.tree.2021.01.002
https://doi.org/10.1111/jbi.12247
https://doi.org/10.1101/2022.12.13.520233
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.13.520233; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

se9 Pons, J.-M., Olioso, G., Cruaud, C., & Fuchs, J. (2010). Phylogeography of the Eurasian green woodpecker
550 (Picus viridis). Journal of Biogeography, 38.2, pp. 311-325. DOI: |10.1111/j .1365-2699.2010.02401. x
551 (cit. on p.[10).

ss2 Powell, K. L., Chase, J. M., & Knight, T. M. (2013). Invasive plants have scale-dependent effects on diversity
553 by altering species-area relationships. Science, 339.6117, pp. 316-318. DOI:|10.1126/science. 1226817
554 (cit. on p.[2).

55 Real, R., Barbosa, A. M., & Bull, J. W. (2016). Species distributions, quantum theory, and the enhancement
556 of biodiversity measures. Systematic Biology, syw072. DOI: |10.1093/sysbio/syw072 (cit. on p.[5).

57 Real, R. & Vargas, J. M. (1996). The probabilistic basis of Jaccard’s index of similarity. Systematic Biology,
558 45.3, pp. 380-385. DOI:|10.1093/sysbi0/45.3.380 (cit. on pp. 3} [12).

ss9. Routledge, R. D. (1983). Evenness indices: are any admissible? Oikos, 40.1, p. 149. DOI: 10.2307/3544211
560 (cit. on p.[28).

sst  Royan, A., Reynolds, S. J., Hannah, D. M., Prudhomme, C., Noble, D. G., & Sadler, J. P. (2015). Shared
562 environmental responses drive co-occurrence patterns in river bird communities. Ecography, 39.8,
563 pp- 733-742. DOI:|10.1111/ecog. 01703 (cit. on p..

ssa  Schmid, H., M. Kestenholz, Knaus, P., L. Rey, & Sattler, T. (2018). The state of birds in Switzerland: special
565 issue on the breeding bird atlas 2013-2016. en. DOI: [10.13140/RG.2.2.17872.15366 (cit. on pp.[10} [32).
ss6  Schmid, H., Posse, B., & Vogelwarte, S. S. (1998). Schweizer Brutvogelatlas: Verbreitung der Brutvigel in der
567 Schweiz und im Fiirstentum Liechtenstein 1993-1996. Schweizerische Vogelwarte (cit. on pp.[10}[32).

sss  Shinohara, N., Hongo, Y., Ichinokawa, M., Nishijima, S., Sawayama, S., Kurogi, H., Uto, Y., Mita, H., Ishii,

569 M., Kusano, A., & Akimoto, S. (2022). Similar fish species composition despite larger environmental
570 heterogeneity during severe hypoxia in a coastal ecosystem. Ecology and Evolution, 12.5. DOI: |10.1002/
571 ece3.8884 (cit. on p.3).

s2 Socolar, J. B., Gilroy, J. J., Kunin, W. E., & Edwards, D. P. (2016). How should beta-diversity inform
573 biodiversity conservation? Trends in Ecology & Evolution, 31.1, pp. 67-80. DOI: 10.1016/j .tree.2015.

574 11.005/ (cit. on pp.[2} [12).

s7s  Soininen, J., Lennon, J. J., & Hillebrand, H. (2007). A multivariate analysis of beta diversity across organisms
576 and environments. Ecology, 88.11, pp. 2830-2838. DOI: 10.1890/06-1730. 1/ (cit. on p.[3).

s77 Tatsumi, S., Iritani, R., & Cadotte, M. W. (2021). Temporal changes in spatial variation: partitioning the
578 extinction and colonisation components of beta diversity. Ecology Letters, 24.5, pp. 1063-1072. DOI:
579 10.1111/ele. 13720 (cit. on p.[11).

sso  Thompson, P. L., Guzman, L. M., Meester, L. D., Horvdth, Z., Ptacnik, R., Vanschoenwinkel, B., Viana,
581 D.S., & Chase, J. M. (2020). A process-based metacommunity framework linking local and regional
582 scale community ecology. 23.9, pp. 1314-1329. DOI: |10.1111/ele. 13568 (cit. on p. .

s Van Lint, J. H. & Wilson, R. M. (2001). A course in combinatorics. Cambridge University Press (cit. on pp. [6)]
584 23).

sss Vannette, R. L. & Fukami, T. (2017). Dispersal enhances beta diversity in nectar microbes. Ecology Letters,
586 20.7, pp. 901-910. DOI: [16.1111/ele. 12787/ (cit. on p.[2).

7 Veech, J. A. (2012). A probabilistic model for analysing species co-occurrence. Global Ecology and Biogeography,
s 22.2, pp. 252-260. DOI:|16. 1111/ . 1466-8238.2012.00789. X (cit. on p.[3).

ss9 Veech, J. A. & Crist, T. O. (2007). Habitat and climate heterogeneity maintain beta-diversity of birds among
590 landscapes within ecoregions. Global Ecology and Biogeography, 16.5, pp. 650-656. DOI:/10.1111/7.1466-
so1 8238.2007.00315.x (cit. on pp.[2} B).

s2 Vellend, M. (2010). Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85.2,
593 pp. 183-206. DOI: 10. 1086/652373 (cit. on p.[2).

s« Vellend, M., Verheyen, K., Flinn, K. M., Jacquemyn, H., Kolb, A., Calster, H. van, Peterken, G., Graae, B. J.,
595 Bellemare, J., Honnay, O., Brunet, J., Wulf, M., Gerhardt, F., & Hermy, M. (2007). Homogenization of
596 forest plant communities and weakening of species? environment relationships via agricultural land use.
597 Journal of Ecology, 95.3, pp. 565-573. DOI:[10.1111/j . 1365-2745.2007.01233. X (cit. on p.[2).

18


https://doi.org/10.1111/j.1365-2699.2010.02401.x
https://doi.org/10.1126/science.1226817
https://doi.org/10.1093/sysbio/syw072
https://doi.org/10.1093/sysbio/45.3.380
https://doi.org/10.2307/3544211
https://doi.org/10.1111/ecog.01703
https://doi.org/10.13140/RG.2.2.17872.15366
https://doi.org/10.1002/ece3.8884
https://doi.org/10.1002/ece3.8884
https://doi.org/10.1002/ece3.8884
https://doi.org/10.1016/j.tree.2015.11.005
https://doi.org/10.1016/j.tree.2015.11.005
https://doi.org/10.1016/j.tree.2015.11.005
https://doi.org/10.1890/06-1730.1
https://doi.org/10.1111/ele.13720
https://doi.org/10.1111/ele.13568
https://doi.org/10.1111/ele.12787
https://doi.org/10.1111/j.1466-8238.2012.00789.x
https://doi.org/10.1111/j.1466-8238.2007.00315.x
https://doi.org/10.1111/j.1466-8238.2007.00315.x
https://doi.org/10.1111/j.1466-8238.2007.00315.x
https://doi.org/10.1086/652373
https://doi.org/10.1111/j.1365-2745.2007.01233.x
https://doi.org/10.1101/2022.12.13.520233
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.13.520233; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

sss  Wang, S., Loreau, M., Mazancourt, C., Isbell, F., Beierkuhnlein, C., Connolly, J., Deutschman, D. H., Dolezal,
599 J., Eisenhauer, N., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Leps, J., Polley, H. W., Reich, P. B.,
600 Ruijven, J., Schmid, B., Tilman, D., Wilsey, B., & Craven, D. (2021). Biotic homogenization destabilizes
601 ecosystem functioning by decreasing spatial asynchrony. Ecology, 102.6. DOI:10.1002/ecy . 3332 (cit. on
602 p. .

ss  Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21.2-3, pp. 213-251. DOL:
s0s 10.2307/1218196) (cit. on p. 2.

s Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia, 50.3, pp. 296-302 (cit. on p. .
06 Zorzal-Almeida, S., Bini, L. M., & Bicudo, D. C. (2017). Beta diversity of diatoms is driven by environmental
607 heterogeneity, spatial extent and productivity. Hydrobiologia, 800.1, pp. 7-16. DOI:|10.16007/510750+
608 017-3117-3 (cit. on p.[3).

eo Zurell, D., Franklin, J., Kénig, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera-
610 Arroita, G., Guisan, A., Lahoz-Monfort, ]. J., Leitao, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G.,
611 Schmatz, D. R., Schréder, B., Serra-Diaz, J. M., Thuiller, W., Yates, K. L., Zimmermann, N. E., & Merow,
612 C. (2020). A standard protocol for reporting species distribution models. Ecography, 43.9, pp. 1261-1277.
613 DOI:[10.1111/ecog.04960) (cit. on pp. [3} [10).

e1a Zurell, D., Zimmermann, N. E., Gross, H., Baltensweiler, A., Sattler, T., & Wiiest, R. O. (2019a). Data

615 from: Testing species assemblage predictions from stacked and joint species distribution models. en. DOI:
616 10.5061/DRYAD.K88V330) (cit. on p.[32).
s17 — (2019D). Testing species assemblage predictions from stacked and joint species distribution models.

6

8 Journal of Biogeography, 47.1, pp. 101-113. DOI:|10.1111/b1. 13608 (cit. on pp. [10} [32).

19


https://doi.org/10.1002/ecy.3332
https://doi.org/10.2307/1218190
https://doi.org/10.1007/s10750-017-3117-3
https://doi.org/10.1007/s10750-017-3117-3
https://doi.org/10.1007/s10750-017-3117-3
https://doi.org/10.1111/ecog.04960
https://doi.org/10.5061/DRYAD.K88V330
https://doi.org/10.1111/jbi.13608
https://doi.org/10.1101/2022.12.13.520233
http://creativecommons.org/licenses/by-nc/4.0/

619

620

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.13.520233; this version posted January 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

Notation

o Q:={0,1}

o S, the species pool size, defined as the number of elements { i } such that { maxj-12p;; > 0}
o x;; € Q: incidence

o Xj; € Q: logical negation, i.e., Xij = 1- Xij

o pj;: probability that x;; = 1

o a;;: probability that x;; = 0

o X € Q° ® Q?: Incidence table of size S rows and N columns

0 Xoj 1= (x1 jr s XS ,j) T (6 Qs ), referred to as “local compositional profile”

0 Xio = (Xi1, .., xin) (€ QV), referred to as “species occurrence profile”

o Px: Probability that the incidence table X realizes

0 (Xo1,Xo2) = Zf:l X172, or the inner product between local compositional profiles to count the number

of common species

(e}

|xo il = (X0, Xo): the total number of species present in a site j

o X = (Xo,1,Xo0,2) as we consider only two sites.

Appendix A Expectation of Jaccard dissimilarity

Definition of Jaccard dissimilarity

We write B} for the Jaccard dissimilarity measure for a table X, defined by:

] {xo,1| + |Xo,2| =2 (Xo,1,X0,2)

X |xo,1| +|xo,2} - <xo,1/xo,2> ’

B (A7)

For X = O (zero-matrix), we define ﬁ]o := 0, which follows from two facts: (i) two all-zero vectors are (or
axiomatically should be) completely similar, and (ii) the nullification of the denominator (which is always
larger or equal to the numerator) should imply the nullification of the numerator (which is smaller or at most
equal) as well. To avoid confusion, we suppose that numerator being zero implies the Jaccard dissimilarity
be zero (otherwise resulting in erroneous calculations). It makes sense to exclude the zero-matrix, because
zero-matrix indicates that there is no species in the landscape. Therefore we will focus on the conditional

expectation.

Step 1: express the Jaccard dissimilarity as an integral

We note that any fraction of v1 to v, (> 0) has a form of integration:

151 +eo 0
— = / —— exp(vi& —1,0)do , (A8)
V2 o 0¢& .
g=0
which yields:
ﬁ; = E exp 5 Z (X,‘J +Xi2— 2Xi,1X,'/2) exp -0 Z (XM +Xio — X,’/lxilz) de , (A9)
0 i=1 i=1 &=0

where we assign that we do not interchange the integral with the derivative unless otherwise stated, in order
to remind that the integral should be defined as zero whenever the numerator is zero. We compute the

expectation of ‘61( (which is a stochastic variable) over the distribution Px.
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s Step 2: Independence yields product

st Assuming the species independence, the probability that a given incidence table X is observed is given by:

Px = H H P, (A10)

i=1 j=1

sz as the incidence probabilities are independent across species. We can then see the following facts:

ZPXH H ST opipisa; ;" (o)
i=1

i=1 x;,,€Q?
s s (A11)
exp| Y ()] =[[exp(e)
i=1 i=1

53 Then we get the (unconditional) expectation as:
E[ﬁl} = ZPX,B;

X1, Xip 1-x;1 _1-x;
/ & H Z 111171 5a i1 1’112 *exp (5 (x,-,1 + Xi2 — 2xi,1xi,2) -0 (xi,l + Xip2 —Xi,lxi,2)> do

i=1 x;,€0? &=0
(A12)
= Step 3: Boolean thinking
s Let us evaluate the Boolean variable in the argument of exponential:
0, ifx;1 = x;» = 0 (double-absence)
& (xip +xip — 2xi1xi2) — 6 (xi1 + X2 —xi1%i2) = 4 -0, if x;1 = x;» = 1 (double-presence)  (A13)

&£ -0, otherwise (uniqueness)

; that is:

ess  Using this can allow us to expand the summation > ;

i1, Xip o 1-x;, 1 i,
>° pipE e e exp (& (i + 2 - 2x12) = 0 (xia + X2~ %i1%2)
X0 €02 (A14)
=dio+e b+ (1-bio—dio)

e7 foralli € {1,..,5}. Therefore, substituting this into Eqn (A12) results in:

(A15)

o] - [ BT (e -t 0

£=0

s Step 4: apply Leibniz rule

9 By using Leibniz rule of the derivative of a product, we can get:

92}

E[ﬁl]:/:e-GZu bio —dio) H (dh+e (1- dgo)>d. (A16)

i=1 =1,

se0 By transforming the variable z = 1 — e™® with d6 = (1 - z) dz, we can rewrite Eqn (A16) as:

1S S
E |:ﬁ]] = Z (1 - bi,o - di,o) H (1 -zZ+ Zdﬁ,o) dz. (A17)
0 =1 £=1,04i
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6

o

1 Eqn (A17) represents the general expression for the expectation of Jaccard dissimilarity provided that species

62 incidences are uncorrelated.
3 Break to check: experiments

6s Experiment1l | When S = 1, we immediately get E[ﬁ]] = 1-"b10 —dio. Thus the conditional

s=1
665 expectation is (1 —b1o— dl,o) / (1 - d1,0)~

es Experiment2 | WhenS = 2,

1
E[ﬁj} - / (1=bro—dio) (1-z+2dyo) + (1= bop —dyo) (12 +2d10) dz,
0
5=2
(A18)
667 which is (1 — bl,o - dl,o) (1 -1/2+ dz,o / 2)+(1 — bZ,O - dZ,O) (l -1/2+ dl,o / 2) Thus
668 the conditional expectation is
El:ﬁ]’)/ > O:| = ; ((1—[710 —d10> (1+d20) + (1—b20—d20) (1 +d10))
5o 2 (1 — dLOdz/o) ’ ! ’ 4 ¢ ¢

(A19)
sss Experiment 3 | When all species are equal, that is when (pi1,pi2) = (Po1,P02) With pi1pi2 = b and

670 ai14ai2 = d,
1
- 1-b-d
- o _ S5-1 — . _ 45
EM /05(1 b-d)(1-z+2d)" dz = = (1 d), (A20)
671 thus recovering Lu et al.’s (2019) results by dividing the RHS by 1 — d° the probability that
672 some species is present (y > 0).

¢s Rationale

74 First, notice that 1 —b;, — d; , represents the probability that species 7 is unique to one of the sites. Given that
675 species i is unique, we aim to identify which species are present, regardless of being unique or common. For
e76 instance, given that species i = 1 is unique, the other species i = 2,3, ..., S, each of which is either unique,
677 common or double-absent, we can count the number of present species and put it in the denominator by

s  calculating an integral of the product:

1 S
My = / [T -z+zdso) dz. (A21)
0

£>2

s79  Indeed, when S = 2, the integral results in My = (1 + dz,o) / 2, because with probability d; ., species 2
0 is absent from both sites, in which the contribution of species 1 to Jaccard dissimilarity is 1, while with
ss1  probability 1 — d, ., species 2 is present, in which case the contribution of species 1 to Jaccard dissimilarity
s2 is 1/2 (with species 2’s contribution not counted here), thus giving the expectation of (1 + da,,) / 2. When
&3 S = 3, given that species i is unique, writing 00 for double-absence of species 2 and 3 and 00 for non

ssa  double-absence of species 2 and 3,

sp2 sp3 | probability # present sp (incl 1) || species 1’s contribution to Jaccard

00 00 |dyodse 1 1

00 00 |doo(1-ds0) 2 1/2 (A22)
00 00 | (1-dao)ds0 2 1/2

00 00 | (1-dao) (1-ds0) |3 1/3
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sss  The expected contribution of species 1 to Jaccard dissimilarity, conditioned on species 1 being unique, is

s thus given by
1 2+d20+d30+2d20d30
3 6

=M;

1 1
d2,0d3,o -1+ dzlo (1 - d3,o) . E + (1 - dz/o) dgro . 5 + (1 — dzro) (1 — d3,o) .

(A23)

se7 where the second line results from calclation of M; for S = 3. From this reasoning, we can interpret

s Eqn as the sum of the conditional expectations of species’ contribution to Jaccard dissimilarity.

« Step 5: reach Beta function

0 Expanding the product in Eqn in terms of 1 — z and z, we get:

S 1 S
[ﬁl} =5 (1-bio - dio) / [ (1-z+zdeo) | dz
i=1 0 e=1-(z;zi)
. (A24)
:Z( 10_10/ (1 ZlekHdlyde
i=1 0 k=1 yeqs y| k=1 =10
s01  Using the Beta function B(k,S —k + 1) fo - k 125k dz = (k- 1)/(S—k)! / S!, we can rewrite E[f']
692  as:
s
[ﬁj}zz lo_zo/ (1 ZlekHdlde
i=1 k=1 yeQs) | kyi=1 =1,
s s (k=1)!
B SIS S SRR L=t CELI, § G (2
i=1 k=1 yeQs)y|=kyi=1 =164

)Y Y

k=1 ye Qs )y|=k,yi=1

Il
Nl
-

/'\

Il
—_

1 4

5-1 klz1l#’

63 where 5 1Cy_q (with k = |y|) represents the binomial coefficient, which counts the number of ways, dis-
s regarding order, that k — 1 species can be chosen from among S — 1 species (Van Lint & Wilson [2001).
sss  This is the exact expression of the expectation of Jaccard dissimilarity. When we consider the conditional
e expectation, we divide the unconditional expectation by 1 — Hiszl d;o. An alternative expression (displayed

s in the main text) is given by:

1 b,o—d,o 1 1/
Zl 1 ZyEQS }y‘ Sq | HZ(;/:) ‘
1- Hk:l k

se  which follows by rearranging the binomial coefficients.

E [ﬁ] ‘ y > 0} (A26)

« Shortcut method using the generating function

700 By noticing that integration is the key, one can take a shortcut approach. Let 7(zy, z,,24) = Hl.szl (ui,ozu +biozy + di,ozd)
701 be the joint generating function of the ternary distributions for species i to be common, unique, or double-
72 absent (i = 1,2, ..., S). By expanding the polynomial we get the identity:

T(zb, 2y, Z4) = Z T(ivivsia) 20 20 24 » (A27)

{iy+ip+ig=S }
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where the coefficient 7(; ; ;) represents the probability that (i) i, species are unique, (ii) 7, species are
common, and (iii) iy = S — i, — i, species are double—absentﬂ A vector i = (iy,iy,14) (With i, +i, +iy = S)
therefore represents the state, or species-implicit incidence-table, of the community, with each species

categorized as either unique, common, or double-absent. What we ought to compute is then:

o] -5 s

i

which equals:

(A29)

iu ..

E — Tzl
— lu + Ip

1 Zy=2zp=2zq¢=1

We wish to algebraically extract i, (the numerator of Jaccard dissimilarity) and the reciprocal of (i, + iy)

(the denominator of Jaccard dissimilarity). With the inspiration of integration, we can come up with:

1 1
p) S 9
E{ﬁ]} =/0 3z, Zi:T(iu,ib,z‘d)Zﬁ“ZL"ll" dz, = /0 3z (2o 20, 1)|  dzp. (A30)
Zy=2Zyp Zy=Zp
Using the original definition of the generating function, its derivative is given by:
S
aizu T(2b, Zu, Z4) = aizu H (Mi,oZu + biozp + di,ozd)
Zy=Zp i=1 Zy=2p,24=1
s
= o [ (uezo + bezo + dy) (A31)

1

1 u#)

Ui H ((1 —dyo) zo + dz,o) p
()

Il
—_

1

which thus returns us back to Eqn (A17) by integrating the last line.

Appendix B Approximations

Upper bound

Although the exact calculation of the expectation is correct, the computational speed may be too slow to
be practical, especially when S is large. Therefore we consider approximating it. We will make use of the
property of the bivariate function:
1-b-d
1-d 7
which is “almost” linear, on the feasible domain { (b,d) € [0,1]? | Vb +d <1},
We rewrite Eqn as:

J(b,d) = (B32)

1S S
/ Z (1-bio—dio) exp Z log(1 -z +zdy,) | dz. (B33)
0 =1

0=1,0

Using Jensen’s inequality,

s s
1
g llog(l—z+zdg,o) <(S-1)log 1—z+zs_1 E ‘dglo , (B34)
=1t =10

124 really is unneeded but is incorporated for symmetry.
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where the equality achieves when d s are all identical across speciesi = 1,2, ...,S. Now put:

1
hy = Z ’d@,o. (B35)

Then we get:

ﬁl /Z (1-bgo—deo) (1 z+zh\,) 521 1b'°h‘\l (1 hs):ﬁh. (B36)

RHS gives a very good approximation, because J(b, d) is almost linear and only very moderately concave.
We divide both sides by 1 — His:l d; o to get the approximation of the conditional expectation of Jaccard

dissimilarity.

Lower bound

The lower-bound approximation of the expected Jaccard dissimilarity is given by:

S 1 S
J| — 4. —
E[ﬁ] = ; (1 dis) /O Z:l;!#i (1-z+zdy,) | dz
5-1
S 1 5 1
zZ(l—b,,O—di,o)/o T-z+z [ 47| dz (B37)
i=1 =10
S
13 1-Tlyes din
= g2 (b ) - =,
1- He:l;é;zf g

where the second line follows by applying the induction, and the equality holds when d; s are all identical.
Dividing both sides by 1 — Hle d; . yields the approximation for the conditional expectation.

Heuristic approximation

The other approximation for the conditional expectation can be obtained heuristically (Ontiveros et al. 2021):

ZS:l (l - bi,o - i,o 1
=== bio, = dio B38
ﬁheur Z;S:1 (1 dl O) ; S = s ( )

which represents the expected number of unique species divided by the expected number of present species.
Deriving this formula requires quite a bit of calculations, but if we notice:

1 d S 1 S S
1-1]di0 = —/ - [[(Q-z+zdio)dz = / > (1-dio) [ (1-z+zdyo)dz, (B39)
i=1 o 9253 0 =1 0=1;0

2First, when S = 2, some convexity arguments of arithmetic and geometric means work. Second, hypothesizing that the inequality
is valid for a certain S = 2¢, it is easy to prove that the inequality holds for S = 2¢+1. Finally, hypothesizing that the inequality is
valid for a certain S, we prove the inequality is the case for S — 1, by using the binomial expansion of the product and applying the
arithmetic-geometric means relation repeatedly. The equality achieves when all d; , are equal. This completes the proof.
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733 then we get:

o=

=f012i5=1(1—d,-o bio) ot (1 -2 +2dy0) dz
D aNe d,,o)nm#,u z+2dyo) dz

S (1-dip—bie) M

) zil (1= dio) M;

(B40)

7

734 where we have put:
/ H (1-z+2zd;,) dz (B41)
0 p=104

s fori=1,2,..,S. If we replace the integral M;, which shows up in both the denominator and numerator (but
736 is multiplied by different coefficients), with (say) its average overi = 1,2, ..., S, written as M, := Z?:l M;/S,

737 then: s s
1 (1-dio—bio) M. 1 (1=dio—bio
E[ﬂ]‘ y> 0:| ~ Zz_ls( i, i ) — Zz_ls( i, i, ) _ ﬁheur, (B42)
Y (1-dio) M Yin (1-dio)
738 which thus gives the heuristic approximation. The approximation is exact when My = - - - = Mg (which is not

73 anecessary condition). This explains why the heuristic approximation works for the conditional expectation,
720 while not for the unconditional, and also explains why the heuristic approximation may be larger or smaller
741 than the exact expectation depending on the variance in M;s. We may observe that M; becomes increasingly

722 small with S larger (M., = O ( (Z, 1 d; o) )), and thus, as S increases, the contribution of the replacement

73 (M; with M,) to the difference between the exact and approximated expectation becomes smaller.

744 The heuristic approximation may, however, be either larger or smaller than the exact conditional
745 expectation, and thus the upper and lower bounds, (ﬁJJr and Bl), both may be also recommended.

746 Altogether, we obtained the three approximations:

747 o Approximation from below: gl

78 o Approximation from above: ﬁL

749 o Heuristic approximation: ﬁ{\eur

= Performances

751 We numerically compared the accuracy and precision of the approximations, in the following procedure.
72 (1) Generate two vectors (with S = 100):

P11 P12
Po1 = pz:’l Po2 = p2:'2 , (B43)
Psa Ps2
753 in which each value of p; 1 drawn from the Beta distribution with parameters 1.2 and 1.5, and p; , drawn
754 from the Beta distribution with parameters 1.6 and 0.8.

755 (2) Calculate double-presence and -absence vectors:

b1,0 P1,1P1,2 di,0 ai,141,2
b2 P2,1P2,2 dao a1z,
bo,o = . = . ’ do,o = . = . ’ (844)
bs,o Ps1Ps,2 ds,o as,14s,2
756 which can be numerically implemented with Hadamard product.
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757 (3) Compute the followings:

758 . E[‘Bw Yy > 0} using Eqn (A17);
759 - L in a brute-force approach;
760 . [3]+ in a brute-force approach;
761 . ﬁ{mur in a brute-force approach.

762 (4) Repeat the procedure 100 times and generated the probability distributions of those four quantities (but
763 note that they are stochastic variables because we used the Beta distribution to generate { p;; }).
764 (5) We plot the distribution of the expectations of Jaccard dissimilarity measures (approximations and exact

765 value).

Distribution of the expectation of the indices.

Ppof ——
E[8' 17> 0] —Q

0.50 0.55 0.60 0.65 0.70

SI Figure 1: We assessed the probability distributions of the exact and approximated Jaccard expectations.

« Appendix C Well-definedness

767 Here we clarify some concepts that have been left unspecified in the main text.

o

e  Species pool

76 We first suppose that species i is presentable in the focal metacommunity if strictly d; . < 1. The collection of
770 all presentable species is called as species pool. Its cardinality (i.e., the number of members of the species
7 pool) is referred to as species pool size and denoted as S. By defining these, we exclude never presentable

772 species from the species pool, p;1 = p;2 = 0.

7 Bounds of w and h

772 species difference

775 The species difference index is Schur-convex (Arnold 2012; McVinish & Lester 2020), thus taking the
776 minimum zero when all species are equally likely to be present in each site; that is whenever:

pl,j:"':ps,j>0 (C45)

777 fOl‘j =1 ’ 2.
778 To determine an upper bound (if any), we conventionally assume that for all species , there is a minimum
779 value of the presence probabilities p;; > ¢. Then by the property of Schur-convexity of Hoover index, the

780 largest difference (inequality) occurs when:

pii=1, pi1=e>0"i>2, (C46)
P12 = 1, Pi2 E€ > O,Vi > 2,

781 With species-wise permutation permitted for each j. Substituting this into w gives the maximum value,

782 which reads:
2(1-¢)(S-1)

S(e(S-1)+1) (can

max{w} =
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Spatial heterogeneity

If and only if p;1 = pip for each i, spatial heterogeneity h achieves the minimum of zero. If and only if
lpi1 —piz

=1 - ¢, spatial heterogeneity / achieves the maximum of 1 — ¢.

Axioms

Species difference w has to satisfy a number of axioms in order to be a “difference” measure among species,

as does /1 in order to measure heterogeneity between two sites. We adopt Routledge’s (1983), Jost’s (2006,

2007), Chao & Ricotta’s (2019), and Leinster’s (2021) approach to develop appropriate indices. Note that

the presence probabilities do not represent abundances.

requirement 1 The first requirement for w is that, if, and only if, p; s are all equal and p;, are all equal,
then w = 0.

requirement 2 Second, w is Schur-convex (or Schur-increasing; Marshall et al. 1979, Chapter 1).

requirement 3 The requirement for heterogeneity # is that it is a distance function between p,; and p. .

Appendix D Variance of Jaccard dissimilarity

Same method as the mean

To compute the variance, we use the identity for a pair of positive quantities v1,v, > 0:

2
61

+0o0 a3
—/0 I exp(vin — (v20 + £6)) dO (D43)

2
v
2 E=n=0

One may preferably differentiate the quantity before integration (otherwise, erroneous calculation is possi-
ble).

For Jaccard dissimilarity, we choose v1 = Ziszl (xi,l +xio - 2xi,1x,-,2), which represents the number
of unique species, and v, = 21‘5:1 (xﬂ + X7 — Xi,lxi,z), which represents the number of present species
(gamma diversity). That is:

S S
(Xi,1 +Xio — 2X,‘,1X1',2) exp -0 E (X,‘J + X2 — xi,lx,-,z) de
=1 i=1

Jz__/Jroo as .
X - 0 aéanz Xp 17

1

&=n=0
49)

2
The expectation of g is given by:

2 +00 83 B S
E {ﬁl } = —/ 3E9m2 e <0 H ZPX exp (T] (xﬂ +Xi2 — 2X,‘/1x,',2) -0 (x,',1 + Xi2 —x,',1xi,2)) de
0 &dn i=1 %o &=1=0
(D50)
By evaluating the Boolean variable,

0/ Xio = (Or 0)/
n-60, xi.=(0,1);

1 (i1 + X2 = 2x31%52) — 0 (xi1 + X2 — Xi1Xi2) = l (D51)
T’ - 6/ xi,O = (1/ 0)/
_6/ Xio = (1r 1)/
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s+ the resulting expression reads:

+00 33 S
E {,8]2] — _/0 aéanz =<0 H (di,o + bi,oe_e + (1 —dio - bi,o) en—e) de (D52)

i=1

&=n=0

sos  This is the most general expression for the second moment of the Jecard dissimilarity. For brevity we write
806 Ujo = 1—bjo —d;, for the probability that species 7 is unique (neither double-absent nor common); also, we
so7 write 7,(6) = dy+ (1 — dy) e7? for the moment generating function of the probability that species / is present
ss  in at least one of the sites, 1 — dy,o; write Y;(6,1) = dio + bioe™® + u; €7, thus with ¢;(0, 0) = 7;(0).

809 Leibniz rule for the second n-derivatives is given by:
32 S s s S
ﬁ HIIUZ(Q,T]) Zuloe H Tz + Zu,-loe_QZuke"e H Tz(@), (D53)
4 17=0 £(#) i=1 k=1; 6=1;
ki ik

g0 using which we get:

+00 S S S
|:ﬁ121| aag Z Ujoc€ -0 H TZ + Z Mi,oe_6 Z uke_g H T@(@) do. (D54)
() i=1 ; 0=1;
ki L1k

s We can evaluate this integral as did we before. However, the resulting equation is heavily complicated

sz (involving, e.g., Harmonic numbers) and computationally expensive.

s Approximating variance using Hubbard-Stratonovich transformation

siu Here, we take a different approach to evaluate the variance. We use the identity:

2
L / ~(rie) 4o (D55)
5 =
1% R 0
s1s  for 0 <11 < v, as well as the Hubbard-Stratonovich transformation (Hubbard [1959):
g0 - e i ¢ (D56)

VAnéD

s1s  where 1 represents the imaginary unit. Combining the identities gives:
s 2
N2 Doim1 Xi1 +Xip — 2x1%0
F) =55
Die1 Xid F Xi2 — Xi1Xip

S
o N 5 >
= —/ exp| — (xm +Xi2 — xi,lx,-lz) + E Xi1 +Xi2 — 2Xi/1X,‘/2 01| doe
0
i=1

i= i=1

5 s
(o] (o] 1 CZ
=- d@/ dCe -0 Xi1+Xi2 — Xi1Xi, e -—— -1 Xi1+Xio — 2Xi1%;,
| a0 [ acexp > (i i =xiania) | | e exp | =5 10 2 (i #3022

(D57)
g7 Let us evaluate the Boolean variable:
0 X1 =xip =0;
-0 (xi1 +xi2 —xi1xi2) —1C (X1 +Xi2 = 2Xi1%i2) = 0 =10 xj1 +xi2 = 1; (D58)
-0 xi1=xip=1;
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then we get:

2 Q[ © a1 £ o .
E|:<ﬁj) :| :_ﬁ i de [m dle 1 e g (di,0+ (1—di,o—b,‘,o)e 0 C+bi,oe 9)_ (D59)

If we approximate the product as:
s s
I1 (d, ot (1=dio—bio) e 0 + b,-,oe-f") ~ (d*,o + 10,00 07 + b*,oe‘9> ) (D60)
i=1

where the >e-subscripted quantities are the arithmetic means, over i € {1,..,5}, of the corresponding
quantities, i.e, d.o = 3 ZZ 1 Bijor b = % Ziszl bio, and 1., =1 —d, o, — b, o, then the expected value is
approximated by

2 0 © o 2 1 S
J ~_ ~ 10 —60-1C -0
E{(ﬁ) } - ag/o d6 [m dCe % TT0 (d*,o + o€+ bage ) (D61)

evaluated at £ = 0.

Interchanging the order of the derivative and the double integral, we get

2 OO m ad 1 _& Slo (d Fit, 0 070 4b e_o)
E|(p & —/ d@/ dC =— ( e 459) e OB\ Tomihe . D62
[CB) } 0 o0& \V4TEO (D62)
2 2
In the limit & — 0, the function — 3¢ ( W e‘w) = Eﬁ%e‘f@ is very peaked about C = 0. Therefore,

we expect the integrand to be nicely approximated if we substitute the logarithm by its series expansion

about C =0,
L K1K2C?
K1+ K2 2(1{1 + K2)2

log (K1 + Kze_ic) ~ log(k1 +x2) — O3, (D63)
with k1 = d.o + b, oe™? and k3 = u, ,e™?. Inserting this second approximation into Eqn (D62) we get

E[(ﬁj)z} R - /oc de (dx-o +(1- d*o)eﬁ)s 91 dge ™ ETR m)? (D64)
0 ’ ’ 0& \/4ré0 J_o

which, again, has to be evaluated at £ = 0. The integral over C can be evaluated as

1 o0 2 Sl Skyipl?

£0(x5)2

e (x1+9)7425K 1980 (D65)

2 Syl SkqrpC?
- I e~ e K1 +K
70 g 2(k1+x2)% — 1 2

1
—_— d
\VAréO [oo C \/(Kl + Kz)z + 25K1K2§9

Now, we can take the derivative with respect to ¢ and evaluate it at £ = 0 to get

_2 _, sl Sqnc?
10 g T 2(q+10)2

Sx,0 S
_ Skl + ) (D66)
=0 (k1 +x2)?

85\/@/

Therefore, inserting this expression into Eqn (D64) and replacing «1 and x, by their expressions in terms

ofd.o, bio, .o, and O, we obtain

E {(5])1 ~ Sit.o /0 " doe? (dw +bioe? + Su*,oe_e) (d*,o +(1- d*,o)e-f’)s_2 0.  (D67)

Changing to the variable z = ¢ yields

S5-2

2 1
E [(ﬁ]> } ~ Sil, o /0 dz(-logz) (duo + buoz + Sttoz) (deo + (1 —duo)z) (D68)
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. . . S-2 152 xS5-2 /52 (1-d.0) k
s We now use the binomial expansion (d.o + (1= d.0)z)” ~ = d3.2 335 (°%) (“7-22) to get

5 52 o B ko1
E (ﬁ]) = Sul, od> 2 5-2) (1-dy / dz(-1ogz) (duo + buoz + Stt.oz) 2°, (D69)
TS k oo 0 / , ,

835 which, upon evaluation of the integral, yields

2 2/5-2\ [1-d. \/ d b.o+Su
J ~ S-2 *,0 *,0 %,0 4,0
E|(9) ] = s kzo( C) () (@ Sea): (b70)

s3s  The sum above can be expressed in terms of generalized hypergeometric functions ,F, ( {A}, {B} ;Z) as

E |:(ﬁ]) 2:| ~ Us o (b*,o + SM*,O) (1 - dio) B Su*,odigl (b*,o + SM*’O)
(5-1)(1-d.o) (S—1) (1-duo)
1

+ St ods ! 3F> ({1, 1,2-S},{2,2};1- y ) .

JFy ({1,1,1 _S){2,2):1 - d1>

(D71)

87 As a consequence, we find the following approximation for the variance,

Ueo (bso + Siteo) (1 - df’,C,) St (b + Site)
(S-1)(1-d..)’ (5-1)(1-d.0)
1

2
- B . _ _ ux-,o
+SM*,od*,o 3F> ({1, 1,2 S}/ {2/ 2}/1 d*,o) (1 —d*,o> ’

V[ﬁl} ~ 2F ({1,1,1—5},{2,2};1— dl )

*,0

(D72)

s where we have approximated the expectation E[f']” with the square of our heuristic approximation,

2
W)= (Bel) ) e

i=1

s The analytical approximation obtained in Eqn (D72) yields always averaged standard deviation relative errors
a0 less than 10%. In most of the cases relative errors for the standard deviation, averaged over realizations of
sa1  incidence vectors, are only about 2%.

22  Leading term in the limit of large S

a3 In order to get more insight about the dependence with S in the limit S — oo, we have computed an
saa  asymptotic expansion of the variance to get the leading term in the series expansion on S. First let us write

845 Eqnas
% A _o _o (s—z)log(dm+(1-dm)e-9)
E (ﬁ) ~ S, | doe G(d*,o+b*,oe + St oe )e ot (1-dio)e™) (D74)
0

as  In the limit of large S, the exponential function will be very peaked at the maximum of the function
a7 log (d*,o +(1- dw)e’e). So we expect to have a good approximation in the limit S — oo if we replace the

sas  logarithm by its series expansion,

log (d +(1- d*,o)e‘9> ~—(1-d.0)0 + O(6?), (D75)
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a9 about the point at which the maximum is reached, i.e, @ = 0. Then, for large S, Eqn |} will be nicely
ss0  approximated by

2 (o]
E [(ﬁl) } ~ St o / d6e0 (d*,o +booe 0+ Su*,oefe) e (5-2(1-D)0, (D76)
0

ss1  This integral can be actually evaluated to give

2 d b.o + Su
] ~ .S o *,0 *,0 *,0
E[(ﬁ) } e (1+(5—2)(1—d*,o))2 " (2+(5—2)(1—au,0))2 b7

ss2  plus subleading terms in S. Here we observe that our approximation for E {(ﬁ] ) 2} converges to the squared

sz heuristic Jaccard measure approximation,

im e[ (7)) = (1) o7

ssa 80, in the limit of large S we find the following leading term for the variance approximation:

T u*,o ((1 - d*,o)(b*,o + d*,o) - 4d*,ou*,o)
v[p] ~ RTINS : (D79)

sss  The variance decreases as S! in the case of large number of species. This explains why our heuristic

sss  approximation works very well in that limit.

- Appendix E SDM

s Data was collected over a four-year period (1993-1996) in usually three visits per year (2 above the treeline)
sso  using a simplified territory mapping approach, and integrated in the Swiss breeding bird atlas at 1-by-1
sso  km resolution (Schmid et al. (1998} 2018). The data source we used included environmental predictor
st variables corresponding to climate, topography and vegetation structure at the same spatial scale, but
sz geographic coordinates were removed. Data can be found at Zurell et al. [2019blla. We used the whole
3 dataset to infer SDMs using only the climatic variables, as current and future values of these variables
sss  for Switzerland are available in worldclim (www.worldclim.org; Hijmans et al. 2005). For each species,
s we used an ensemble approach of, initially, four different algorithms: generalized linear models (GLMs),
sss  generalized additive models (GAMs), random forests (RFs) and boosted regression trees (BRTs). However,
s7  GLMs and GAMs produced unreliable projections and were subsequently excluded from our analyses.
sss  We then projected current and future incidences for each species in our ensemble approach. With those
so incidences, we calculated the expected dissimilarity provided by Eqn (2) at each location of Switzerland for

s70  the subcommunity of woodpeckers.
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