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Abstract

Understanding how the spatial variation in species composition (beta-diversity) varies with biotic

and abiotic conditions is one of the ultimate goals in biology. Theory predicts that beta-diversity is a

consequence of two factors, species-level di昀昀erences (de昀椀ned as the variations among species in the

probabilities that species are present in the landscape) and spatial heterogeneity (de昀椀ned as the di昀昀erence,

between two sites, in the probabilities with which species are present). At present, however, the importance

of each factor is unclear. Here, we take a probabilistic and combinatorial approach to examine the e昀昀ects

of species di昀昀erences and spatial heterogeneity on the degree to which species assemblages in two spatial

locations di昀昀er in species compositions. We 昀椀rst derived analytical and approximation formulae of the

expectation and variance of the pairwise beta-diversity, based on the assumption that the presence

probabilities of species are independent of each other. We found that, contrary to the intuitive claim

that di昀昀erences among species lead to greater beta-diversity, our method predicts that the reverse is also

likely under some, though not all, circumstances. Strikingly, when space is homogeneous, beta-diversity

decreases with species di昀昀erences. This suggests that policy making for increasing species di昀昀erences

would, without the e昀昀ort to maintaining environmental heterogeneity, induce biotic homogeneization.

These 昀椀ndings suggest that maintaining beta-diversity as a conservation target may lead to undesired

outcome unless species traits and environmental homogenization are monitored and adequately managed.

Second, we illustrate our method using data from 昀椀ve woodpecker species in Switzerland, showing that

the woodpecker species’ joint distributions change considerably with time, and also that such changes

are basically explained by the changes in the incidences of some of the species. The new framework can

improve our understanding of how pairwise beta-diversity responds to species di昀昀erences and spatial

heterogeneity.

1 Introduction1

Beta-diversity (the spatial variation in species compositions) links diversity across scales (Whittaker 1972;2

Anderson et al. 2010; Chase et al. 2019; Poggiato et al. 2021). Beta-diversity varies with fundamental processes3

such as dispersal, environmental 昀椀ltering and species interactions (Vellend 2010; Anderson et al. 2010;4

Socolar et al. 2016; Maynard et al. 2017; Legendre 2019; Thompson et al. 2020). Understanding the patterns5

of beta-diversity is thus considered as one of the ultimate goals in ecology. Reductions in beta-diversity,6

known as biotic homogenization (Olden & Po昀昀 2003; Olden & Rooney 2006; Olden et al. 2018), have been7

caused by various types of global changes, such as urbanization (McKinney 2006), species invasion (Powell8

et al. 2013), climate change (Veech & Crist 2007), land-use change (Vellend et al. 2007), and interactions9

thereof (Karp et al. 2017). A consequence of biotic homogenization is the reduction of ecosystem functioning10

across the globe (Hautier et al. 2017; Mori et al. 2018; Albrecht et al. 2021; Wang et al. 2021). Understanding11

how beta-diversity changes in response to variations in biotic and abiotic conditions should lead to better12

management, conservation, and urban planning in our modern society (Crowther et al. 2015).13

Beta-diversity is o昀琀en measured by using pairwise indices based on empirical presence-absence (inci-14

dence) data (Kole昀昀 et al. 2003), but even for such simple, incidence-based beta-diversity, how biotic and15

abiotic variables in昀氀uence the beta-diversity has not been conceptually established. That is, we know little16

about “beta-diversity patterns”, the dependence of beta-diversity on biotic and abiotic factors. Indeed,17

results from previous work on beta-diversity patterns have been mixed. For example, theory shows that18

dispersal, which is one of the fundamental processes, tends to homogenize local communities and thereby19

reduce beta-diversity (Loreau 2000; Mouquet & Loreau 2003; Thompson et al. 2020), or to have rather20

opposing e昀昀ects (Lu et al. 2019; Lu 2021). Meanwhile, experimental work suggests that dispersal may21

promote beta-diversity (Vannette & Fukami 2017). Disturbance like 昀椀re is also suggested to have opposing22

e昀昀ects on beta-diversity (Altermatt et al. 2011; Myers et al. 2015; Ojima & Jiang 2016). To better interpret23

complicated beta-diversity patterns, it is necessary to establish a general framework that can incorporate24

variable biotic and abiotic conditions.25

Among other factors, species di昀昀erences and spatial heterogeneity both have profound e昀昀ects on26

beta-diversity (Peres-Neto et al. 2001). As well as spatial heterogeneity (Veech & Crist 2007; Báldi 2008;27
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Jankowski et al. 2009; Allouche et al. 2012; Bar-Massada & Wood 2013; Heino et al. 2013; Pomara et al. 2013;28

Astorga et al. 2014; Heino et al. 2014; Bar-Massada 2015a,b; Royan et al. 2015; Bar-Massada & Belmaker29

2017; Zorzal-Almeida et al. 2017; Ben-Hur & Kadmon 2020; Shinohara et al. 2022), species di昀昀erences can30

strongly in昀氀uence beta-diversity. For example, dispersal mode (passive vs. active) and body size (small31

vs. large) are both strong determinants of beta-diversity patterns as revealed by meta-analyses (Soininen32

et al. 2007; De Bie et al. 2012). Similarly, Cao et al. (2021) showed that beta-diversity may co-vary with33

niche-related characteristics. It is of great importance to take species di昀昀erences and spatial heterogeneity34

both into account (Peres-Neto et al. 2001; Gotelli & Ulrich 2011). However, there is no established theoretical35

prediction for the e昀昀ects of species di昀昀erences and spatial heterogeneity.36

To discern beta-diversity patterns under variable conditions, it is of great use to regard incidence-data37

and resulting beta-diversity both as stochastically changing quantities, because by doing so, we can assess38

how the probability distributions of beta-diversity varies with mechanistic factors that determine species39

presence probabilities. (Baroni-Urbani 1980; Real & Vargas 1996; Gotelli & Ulrich 2011; Hui & McGeoch40

2014; Chung et al. 2019). In this article, we explore the details of pairwise compositional dissimilarity41

between two species assemblages (Jaccard dissimilarty) under the in昀氀uence of species di昀昀erences and spatial42

heterogeneity. The logical starting point is akin to one of the most successful null models in ecology, the43

Theory of Island Biogeography (TIB; MacArthur & Wilson 1963; MacArthur & Wilson 1967). Following44

recent work on TIB (Alonso et al. 2015; Ontiveros et al. 2021), our work assumes that species incidences45

are independent from each other both within and between sites, which nulli昀椀es any correlation between46

them, the so-called species independence assumption. We thereby examine the e昀昀ect of species di昀昀erences47

and spatial heterogeneity on the expectation of pairwise dissimilarity of species compositions (Jaccard 1908,48

1912; Veech 2012; Arita 2017; Keil et al. 2021). This allows for the consideration of various realistic factors49

that drive local biotas dramatically di昀昀erent, such as the distance to the mainland, and speci昀椀c spatial niche50

partitioning.51

We 昀椀rst obtain the exact and approximated expression for the expectation and variance of Jaccard52

dissimilarity under the species independence assumption. Second, we examine how the expectation53

and variance in beta-diversity respond to species di昀昀erences and spatial heterogeneity. Speci昀椀cally, we54

numerically generate species presence probabilities for a pair of sites, and assess how varying species-55

di昀昀erences and spatial heterogeneity in昀氀uence beta-diversity patterns. We 昀椀nd that species di昀昀erences56

can have opposing e昀昀ects on beta-diversity. Counterintuitively, we 昀椀nd that species di昀昀erences result in57

lower beta-diversity when site heterogeneity is scarce. While traditional analyses of beta-diversity focus on58

sites censused completely, many contemporary data-sets are based on statistical models such as Species59

Distribution Models (SDMs; Elith & Leathwick 2009; Guisan et al. 2017; Zurell et al. 2020). Indeed, recent60

work has attempted to improve the statistical power of local species richness estimation in SDMs under61

heterogeneity (Calabrese et al. 2013). We therefore examine how our approach can be applied to such62

statistical models. The temporal Jaccard dissimilarity (Legendre 2019; Magurran et al. 2019; Figure 1)63

is designed to project how the local species composition across regions is expected to change with time,64

particularly in response to global environmental changes. We combined ourmethodwith SDMs and assessed65

the expected changes in the compositions of woodpecker species across Switzerland. We believe that the66

approach be a starting point to provide further insights to the extent and intensity of future compositional67

change, and to help us allocate resources for tasks such as monitoring, conservation, or restoration.68
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Table 1: Summary of notation used in the main text.

Notation Definition Note
i Species label i = 1, 2, …, or S
S The total number of species in the mainland “species pool size”
j Site label, with j = 1 or 2 “sites” may be spatial or temporal
xi,j Incidence of species i in site j 0 (absence) or 1 (presence)

X(S,2) Incidence table of size S-by-2 Abbreviated to X
:= De昀椀ning a quantity≡ Identity usually with respect to “all i”
Ω Set of incidences (absence 0 and presence 1) := { 0, 1 }

x◦,j Column vector of con昀椀guration in site j
∣

∣x◦,j∣∣ The number of species present in site j =∑S
i=1 xi,j

xi,◦ Row vector of species i’s incidence in space
pi,j Probability of i present in j (i.e., Prob

[

xi,j = 1
]

) ai,j = 1 − pi,j for probability of absence
bi,◦ Probability of i present in both sites 1 and 2 Prob [xi,1 = xi,1 = 1]; b for “both”
di,◦ Probability of i absent from both sites 1 and 2 Prob [xi,1 = xi,1 = 0]; d for “double-absence”

PX Probability that a table X is observed =∏S
i=1 ∏2

j=1 pxi,ji,j a1−xi,ji,j
βJX Jaccard dissimilarity for an incidence table X
γX The total number of species present in the landscape for table X “Gamma-diversity”

E
[

βJ
]

Expectation of Jaccard dissimilarity E
[

βJ
∣

∣

∣
γ > 0

]

for conditional expectation

V
[

βJ
]

Variance of Jaccard dissimilarity Std
[

βJ
]

:=√

V
[

βJ
]

βJheur Approximation of E
[

βJ
∣

∣

∣
γ > 0

]

“Heuristic approximation”

w Species di昀昀erence 0 ≤ w < 2; Eqn (5)
h Spatial heterogeneity 0 ≤ h ≤ 1; Eqn (6)
μj Average presence probability in site j
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2 Methods and Results69

Model70

Jaccard dissimilarity is de昀椀ned as the proportion of the number of unique species to that of present species71

in, at least, one of the sites (Jaccard 1908, 1912), which measures a compositional di昀昀erence between two72

sites (Box 1). Since Jaccard dissimilarity is designed to measure the di昀昀erence in the compositions of two73

sites, we consider a landscape (metacommunity) consisting of two spatially or temporally segregated sites74

(Figure 1). We consider a matrix of binary elements, in which species are listed from top to bottom (labelled75

i = 1, 2, …, S), and sites are listed from le昀琀 to right (from j = 1, 2). That is, an incidence table of S species76

with 2 sites is written as X. Following Chase et al.’s (2011) de昀椀nition, we de昀椀ne “species pool” as the77

collection of species that can possibly inhabit either site within a reasonable time period during which the78

incidence data census is performed, and therefore de昀椀ned S as the maximum number of species that may79

be present in at least one of the sites (with a positive probability; we refer to S as “species pool size”). We do80

not consider a species that can never be present.81

Wewrite xi,j for (i, j)-th element of an incidence table X, with xi,j = 1 if species i is present in j, and xi,j = 082

otherwise absent. The formal approach to derive Jaccard dissimilarity and their moments is encapsulated in83

Box 1. We write pi,j for the probability that species i is present in site j (and this probabilistic approach is84

well-established; MacArthur & Wilson 1963; Real et al. 2016; Carmona & Pärtel 2020). The key assumption85

is that pi,j may take di昀昀erent values depending on species i and site j but are independent of each other86

(the species independence assumption). The sum
∑S

i=1 xi,j, which represents the species richness (alpha-87

diversity), follows the Poisson-Binomial distribution with parameters
(

p1,j, p2,j, …, pS,j). For brevity, we write:88

(i) ai,j := 1−pi,j for the probability that species i is absent in j; (ii) bi,◦ := pi,1pi,2 for the probability that species89

i is present in both sites 1 and 2 (probability of “commonness”); (iii) di,◦ := ai,1ai,2 for the probability that90

species i is absent in both sites 1 and 2 (probability of “double-absence”). As a result, 1− bi,◦ − di,◦ represents91

the probability that species i is unique to either site 1 or 2. Note that we do not distinguish in which sites (192

or 2) the unique species are present. For example, colonization ability of species, stress-tolerance of species,93

distance from continents, and disturbance frequency all jointly in昀氀uence presence probabilities.94

To analyze the probability distribution of beta-diversity, we present a novel derivation using tools from95

stochastic analyses and combinatorics. These tools allow us to exactly compute the expectation and variance96

of Jaccard dissimilarity expected under species-independence assumptions. The computation can take a97

long time, because of combinatorial calculations associated with species-speci昀椀c and site-speci昀椀c presence98

probabilities (p1,1, p1,2, p2,1, …, pS,1, pS,2). To make the formula accessible to as broad researchers as possible,99

we deviced a fast computable approximation (below).100

Box 1: Descriptions of the formal approach and Jaccard dissimilarity101

We write X ∈ ΩS ⊗Ω2 (with ⊗ for a direct product between sets) to indicate that the incidence table
X is a matrix with S rows and 2 columns, each of whose elements is either 0 for absence or 1 for
presence. We also write x◦,j = (

x1,j, x2,j, …, xS,j)> for a column vector within the incidence matrix (X)
in a site j, with > for transpose. Therefore, x◦,j ∈ ΩS. We write

∣

∣x◦,j∣∣ := ∑S
i=1 xi,j for alpha-diversity

in a site j. In addition, we write 〈x◦,1, x◦,2〉 :=∑S
i=1 xi,1xi,2 for the number of species present in sites 1

and 2 both. Note that the number of species present in the landscape (gamma-diversity) is given by
∣

∣x◦,1∣∣ +∣∣x◦,2∣∣ − 〈x◦,1, x◦,2〉, which is integer-valued varying between 0 (no species present) and S (all
species present in the landscape).

102

103

104

105

106

107

108

109

Jaccard dissimilarity index (Jaccard 1908, 1912) for a given table X, denoted by βJX, is de昀椀ned by:121
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βJX = (

# unique species
)

(

# species present in at least one of the sites
) = (

∣

∣x◦,1∣∣ − 〈x◦,1, x◦,2〉) + (

∣

∣x◦,2∣∣ − 〈x◦,1, x◦,2〉)
∣

∣x◦,1∣∣ +∣∣x◦,2∣∣ − 〈x◦,1, x◦,2〉 ,
(1)

which represents the proportion of the number of unique species (present only one of the two sites) to
the number of present species (present at least one of the two sites). Eqn (1) is written as a function of
stochastic variables, xi,j.

110

111

112

113

114

115

116

We aim to evaluate the 昀椀rst and second moments (expectation and variance) of Jaccard dissimilarity
and assess how the moments vary with parameters of species di昀昀erences and spatial heterogeneity.
If the expectation of Jaccard dissimilarity varies in a certain way with a varying parameter, then the
Jaccard dissimilarity is expected to behave accordingly and thereby forms a “beta-diversity pattern”

117

118

119

120122

Box 2: Expectations: exact123

We denote the expectation of Jaccard dissimilarity by E
[

βJ
∣

∣γ > 0
]

. We found that (Appendix A):

E
[

βJ
∣

∣

∣
γ > 0

] = ∑S
i=1∑y∈ΩS

1
∣

∣y
∣

∣

yi
(

1−bi,◦−di,◦)
SC∣∣y

∣

∣

∏S
`( 6=i) d1−y``,◦

1 −∏S
k=1 dk,◦ (2)

where SC∣∣y∣∣ represents the binomial coe昀케cient, which counts the number of ways, disregarding order,
that

∣

∣y
∣

∣ (= 0, 1, …, S) species can be chosen from S species (Van Lint & Wilson 2001). Eqn (2) is
conditioned on the premise that at least one of the species is present in the landscape (which occurs
with probability 1 − ∏S

i=1 di,◦). Note that E
[

βJ
∣

∣γ > 0
]

has a symmetry in site 1 and 2, by which
swapping (permutating) pi,1 and pi,2 for any species i does not change the result (Baselga 2010).

124

125

126

127

128

129

130

131

132

As is detailed in Appendix A, Eqn (2) recovers the formula for species-equivalence cases (Chase
et al. 2011; Lu et al. 2019). As suggested in previous studies, the species pool size S, which represents
the maximum number of species present in the landscape, has no e昀昀ects on the expected Jaccard
dissimilarity conditioned of at least one of the species being present. The invariance is because species
being equivalent implies that the incidence of any species occurs equally likely and independently,
regardless of how many species can potentially inhabit the landscape.

133

134

135

136

137

138

Approximations for expectation and variance139

We here present a “heuristic” approximation for the expectation of Jaccard dissimilarity, which was used in140

the previous studies (Kalyuzhny_etal2021; Ontiveros et al. 2021). We write βJheur for the expectation of the141

numerator divided by the expectation of the denominator; that is:142

E
[

βJ
∣

∣

∣
γ > 0

] ≈ βJheur = E
[

# unique species
]

E
[

# species present at least one of the sites
]

= ∑S
i=1 (1 − bi,◦ − di,◦)
∑S

i=1 (1 − di,◦) (3)

(the derivation and interpretation are provided in Appendix B). In the example below, we will show that143

Eqn (3) provides a near-identical approximation for the conditional expectation E
[

βJ
∣

∣γ > 0
]

.144

We also explored for a formula of the variance of Jaccard dissimilarity, but it involves much complication145

in general, and also our main focus is on expectations. Therefore, we show the results on variance for146

species-equivalence case and encapsulated the detailed analyses for general cases with species di昀昀erences147

in the Appendix D.148

Applications149
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Special case: identical species150

We demonstrate a special case where the species are identical in any sense but the landscape can be151

heterogeneous; that is: pi,j ≡ p◦,j for each j = 1, 2, and consequently we write b◦,j ≡ b and d◦,j ≡ d for152

commonness and double-absence (respectively; note that p◦,1 and p◦,2 may di昀昀er). Substituting those into153

the expected Jaccard dissimilarity index (Eqn (2)) yields:154

E
[

βJ
∣

∣

∣
γ > 0

]

∣

∣

∣

∣

∣

species equivalence

= 1 − d − b
1 − d = βJheur. (4)

That is, the heuristic approximation and the exact conditional expectation completely agree with each other.155

Eqn (4) also recovers the results of previous studies that assume species’ presence probabilities are identical156

(Chung et al. 2019; Lu et al. 2019; Lu 2021; Ontiveros et al. 2021). In other words, the su昀케cient condition for157

the exact and approximated formulae of the expectation to be equal is that species are equal in presence158

probabilities.159

We investigated the dependence of the variance of Jaccard dissimilarity on the pair of presence probabil-160

ities
(

p◦,1, p◦,2) (Figure 2B). We found that: (i) when p◦,1 and p◦,2 are small, the variance tends to take large161

values; (ii) when only one of p◦,1 and p◦,2 is small but the other is large, the variance is likely to take small162

values, but the degree of decrease per se is very small (<0.05; Figure 2B); (iii) when both values are large, the163

variance tends to be small; and (iv) when both probabilities are at intermediate values, the dependence of164

the variance appears to be small.165

Effects of species difference and spatial heterogeneity166

We examined how species di昀昀erences and spatial heterogeneity jointly in昀氀uence the expectation of Jaccard
dissimilarity, by means of generating synthetic incidence patterns. For incidence probabilities

(

p1,j, …, pS,j)
with j = 1, 2, we de昀椀ne species di昀昀erence w as the sum, taken between two sites, of the average absolute
deviation in the presence probabilities across species, divided by the sum of the species-average presence
probabilities in two sites. Also, we de昀椀ne the spatial heterogeneity h as the average, taken among species,
of the absolute di昀昀erences in the presence probabilities between two sites:

w := 1
μ1 + μ2

2
∑

j=1 1
S

S
∑

i=1 ∣∣pi,j − μj∣∣ (5)

h := 1
S

S
∑

i=1 ∣∣pi,1 − pi,2∣∣, (6)

with μj := ∑S
i=1 pi,j for j = 1 and 2 the average presence probability in site 1 and 2 respectively (for the167

de昀椀nition of species di昀昀erence, see Hoover index of income inequality; Hoover 1936; Chao & Ricotta 2019168

and Appendix C). Note that species di昀昀erences and spatial heterogeneity are functions of the presence169

probabilities.170

We assess how varying species di昀昀erence and spatial heterogeneity jointly alter E
[

βJ
]

. The 昀椀rst possible171

case is concerned with pi,1 = pi,2 for all species, that is, when two sites are homogeneous. In this case,172

increasing the species di昀昀erence w reduces beta diversity (Figure 3A-1). This is the case also in the presence173

of a slight di昀昀erence between two sites (Figure 3A-2). Hence, when there is at most low spatial heterogeneity,174

species di昀昀erences systematically reduce beta-diversity.175

As the degree of site heterogeneity h becomes larger, whether species di昀昀erences result in larger or176

smaller beta-diversity becomes less consistent. We found both cases where species di昀昀erences increase and177

decrease beta-diversity (Figure 3B-1, B-2). The di昀昀erence between Figure 3B-1 and B-2 is that while Figure 3B-178

1 assumes that two sites are heterogeneous evenly among species (
∣

∣pi,1 − pi,2∣∣ all equal), Figure 3B-2 uses179

di昀昀erent values
∣

∣pi,1 − pi,2∣∣ (although both are on average equal). That is, the e昀昀ects of species di昀昀erences180

on beta-diversity depend on the patterns of species di昀昀erences and spatial heterogeneity.181
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(A) Varying presence probabilities (B) Compositional dissimilarity for…

(1) two locations

location 1j = 

xï1 = 110T

location 2

xï2 = 011T

(2) two time points

time 1j = 

xï1 = 110T

7
time 2

xï2 = 011T

pi,2 
pi,1

species (i) 

…

pi,j = Prob[xi,j = 1]

• Species diûerence w (eqn 5) 

• Site heterogeneity h (eqn 6)

calculate

Figure 1: Schematic illustration of the framework. (A) The presence probabilities
(

p1,1, p1,2, p2,1, …, pS,2) take
different values. Of our interest are the effects of the differences (measured by w) and site heterogeneity
(measured by h) on compositional dissimilarity, both of which are computed from given p1,1, …, pS,1, p1,2, …, pS,2.
(B) The compositional dissimilarity (defined by the Jaccard dissimilarity) can be applied to spatial and temporal
changes. When j represents a spatial site, we compute the expected Jaccard dissimilarity from the compositions
of the two site (for example 110 and 011). We can carry out the same calculation for time point labels j = 1, 2.
Note the symbol > for transpose. The woodpecker pictures are from http://phylopic.org/ (CC0).

(A) Conditional expectation of Jaccard dissimilarity increases with low presence probabilities
E[βJ | γ > 0], for S = 4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p○,1

p
○,2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E[βJ | γ > 0], for S = 8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p○,1

p
○,2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E[βJ | γ > 0], for S = 12

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p○,1

p
○,2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(B) Conditional standard deviation of Jaccard dissimilarity increases with low presence probabilities
Std[βJ | γ>0], for S = 4
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Figure 2: The conditional expectation of Jaccard dissimilarity E
[

βJ
∣

∣

∣
γ > 0

]

(panel A) and the conditional

standard deviation of Jaccard dissimilarity Std
[

βJ
∣

∣

∣
γ > 0

]

:=√

V
[

βJ
∣

∣γ > 0
]

(B), plotted on p◦,1 (horizontal axis),

p◦,2 (vertical axis) for varying species pool sizes, S. (A) The expected Jaccard dissimilarity is lower when the
probability of commonness is larger (right top zones), and higher when the probability of being present in only
one of the sites is higher (left top and right bottom zones). The effect of S on the expectation is negligibly
small, and thus increasing S (from left to right panels) does not appear to change the overall trend. (B) The
standard deviation of Jaccard dissimilarity is lower when the presence probabilities take extreme values (four
corners). As S increases, the standard deviation tends to be less dependent on intermediate values of presence
probabilities, as seen from the observation that over the wide region of the rectangle, the standard deviation is
relatively unchanged with presence probabilities.
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(A-1) Sites are homogeneous ⇒ beta decreases with species di昀昀erence w
w = 0., h = 0.
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(A-2) Sites are weakly heterogeneous ⇒ beta decreases with w
w = 0, h = 0.5
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(B-1) Sites are strongly heterogeneous ⇒ beta may decrease with w
w = 0, h = 0.5
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(B-2) Sites are strongly heterogeneous ⇒ beta may increase with w
w = 0, h = 0.5
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Figure 3: The beta-diversity patterns under species differences and spatial heterogeneity. Setup: blue dashed
curves plot pi,1 and orange pi,2 respectively (referred to as incidence gradient curves). In all panels, the average
presence probability per species per site is set one half:

(

μ1 + μ2
) ∕ 2 = 0.5. Species differences and site-

heterogeneity are calculated from the incidence curves, each indicated. (A-1) When sites are completely
homogeneous (i.e., when pi,1 = pi,2 for all species i = 1, …, S), increasing species difference results in lower
beta-diversity. (A-2) When sites are weakly heterogeneous h = 0.05, species difference reduces beta-diversity,
as in (A). (B) When two sites are strongly heterogeneous with h = 0.40 in this example, increasing species
differences can either decrease (B-1) or increase (B-2) beta-diversity.
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Figure 4: Outcomes of species distribution models, using a climatic variable. We quantified the expected,
compositional dissimilarity of five woodpecker species at two time points, current and future, over the region
of Switzerland. That is, we assessed the expectation and standard deviation of temporal Jaccard dissimilarity
(Legendre 2019; Magurran et al. 2019). We used occupancy estimations for current and future climatic
conditions over Switzerland. (A) Expectation. Compositional changes are expected to be high in the upper
limit of the current distribution and lowlands. (B) Standard deviation (approximated). The standard deviation
tends to be small, which is consistent with the analytical prediction in Figure 2.

Temporal Jaccard dissimilarity with Species Distribution Models182

We provide a case application of our method using the Species DistributionModels (SDMs; Elith & Leathwick183

2009; Guisan et al. 2017; Zurell et al. 2020). SDMs seek to estimate the probability that each species is184

present at a given site given information on the environment found at that site. Our approach enables185

quanti昀椀cation of the changes in species distribution on a location-by-location basis, based on temporal186

Jaccard dissimilarity (the proportion of the number of species that are present only one of two time points187

relative to the number of species that are present in at least one of the two time points; Legendre 2019;188

Magurran et al. 2019, Figure 1). The details are described in Appendix E.189

Note that the temporal data systematically comes with temporal autocorrelation (i.e., correltion between190

compositions at two time points), but our analysis takes advantage of the site-permutation symmetry in191

Jaccard dissimilarity so that we can omit the correlations between two compositions.192

Based on Schmid et al. (1998, 2018) and Zurell et al. (2019b, 2020), we used data of 昀椀ve woodpecker193

species, Picus viridis, P. canus, Dendrocopos major, D. minor, and Dryocopus martius in Switzerland. These194

species have common evolutionary history but use di昀昀erent habitats (Benz et al. 2006; Pasinelli 2007;195

Pons et al. 2010). For example, P. canus and D. minor occur at lowlands, while P. viridis is more widely196

found across Switzerland (Appendix E). The variation in geographic habitat use arguably re昀氀ects species197

di昀昀erences, making the system ideal for an application of temporal Jaccard dissimilarity. Note also that198

Incidence-based SDMs rely on the species independence assumption and therefore are reconciled with the199

species-independence assumption.200

We examined how dissimilar woodpeckers metacommunity is going to be under future climatic condi-201

tions across Switzerland (i.e., time-decay of similarity), compared with the sub-community under the current202

climate. Our methods predicted that the expectations of temporal Jaccard dissimilarity were unexpectedly203

high (Figure 4), indicating signi昀椀cant future changes in the distribution of the woodpeckers. This result204

was primarily explained by species dynamics in lowland sites where some species thrived and others failed:205

P. canus, that would decrease its occupancy rate near the rivers and would increase in surrounding areas206

(SI Figure 2), and D. minor, whose occupancy is expected to increase in lowlands and valleys (SI Figure 2).207

Dissimilarity in hillsides is expected to be moderate due to a general increment in richness (SI Figure 2).208

These results are consistent with a general trend of Switzerland forest birds moving to higher grounds as a209

response to environmental change (Maggini et al. 2014). Our results demonstrate the dramatic e昀昀ects of210

climate change on temporal beta-diversity of a bird metacommunity.211
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3 Discussion212

¶1 We derived the formulae of the expectation and variance of Jaccard dissimilarity index as a measure213

of compositional dissimilarity between two sites for nonidentical species in heterogeneous landscapes.214

We showed that species di昀昀erences may have nonmonotonic e昀昀ects on Jaccard dissimilarity (Figure 3).215

When sites are relatively similar in their species presence probabilities, species di昀昀erence reduces Jaccard216

dissimilarity. When sites are di昀昀erent in their presence probabilities, species di昀昀erences can cause217

varying e昀昀ects on Jaccard dissimilarity, making robust prediction challenging. Our work allows us to218

implement empirical incidence data of presence probabilities and assess the long term estimations for219

Jaccard dissimilarity. In addition, our method enables quantitative comparison of predicted outcomes220

with observed species distributions. Hence, the present work o昀昀ers a powerful framework to theoretically221

and quantitatively investigate spatial variations in species compsition.222

¶2 Our results suggest that knowledge of the species pool will be important for some properties but not223

others. When all species are identical, we found that the conditional expectation of Jaccard dissimilarity224

(given that at least one species is likely present) is independent of species pool size, as was revealed225

in the literature (Lu et al. 2019; Lu 2021). In contrast, we found that the variance more substantially226

depends on the species pool size even when the species presence probabilities are equal in each pair227

of sites (Figure 2B). Speci昀椀cally, the variance becomes smaller when the species pool size is larger,228

suggesting that large species pool sizes may reduce the uncertainty in statistical inferences for Jaccard229

dissimilarity. However, the uncertainty may become larger when the baseline presence probabilities230

are smaller (Figure 2B), suggesting that the e昀昀ect of opportunistic species (species with the presence231

probabilities are very low but not zero) may in昀氀uence the robust inference of Jaccard dissimilarity, and232

also that rarely observed species can increase the uncertainty of estimations for Jaccard dissimilarity233

(Wolda 1981; Colwell & Coddington 1994; Plotkin & Muller-Landau 2002; Chao et al. 2004). These234

predictions are consistent with the concept of dark diversity (formally de昀椀ned as the number of species235

that are absent from an ecosystem but which belong to its species pool; Pärtel et al. 2011; Carmona &236

Pärtel 2020), and our work suggests that dealing with the uncertainty is the key to predict the dark237

diversity.238

¶3 Comparison with simulated data showed that the approximation of the Jaccard dissimilarity agrees239

well with the exact formula. The accuracy increases with the increasing species pool size (Appendix240

B). Considering that calculating the exact expectation of Jaccard dissimilarity in a brute force approach241

incurs large computational expenses, we suggest that, when the species pool size is relatively small, exact242

evaluation of the Jaccard dissimilarity is suitable and should be compared with the approximated value243

which can be computed faster. When the species pool size is large, we suggest using our approximations244

and exact values both, e.g., by applying Gauß’ fast Fourier Transforms (Cooley & Tukey 1965; Heideman245

et al. 1984). When the species pool size is unknown, the Eqn (3) is bene昀椀cial, because the interpretation246

is clear and the expectations in the numerator and denominator can be assessed separately.247

¶4 Using data on woodpecker distributions, we projected shi昀琀s in habitat use. This approach required248

only information on the expectation and variance. Likely mechanisms of the species di昀昀erences and249

temporal heterogeneity in this system include colonization abilities, habitat selection, and species-speci昀椀c250

tolerance to environmental challenges. By specifying possible mechanisms, we can obtain deeper insight251

into the processes by which biotic homogeneization occurs. For instance, partitioning beta-diversity into252

colonization and extinction components can be of great use to better understand dynamic processes of253

beta-diversity (Tatsumi et al. 2021). Our study can be used in conjunction with data such as SDMs for254

better understanding and management of the spatio-temporal dynamics of biodiversity.255

¶5 Our key 昀椀nding is that beta-diversity increases or decreases with species di昀昀erences depending on the256

degree of spatial heterogeneity, other things being equal (Figure 3). To facilitate biological interpretations257

for the prediction, we 昀椀rst list species in the descending order of presence probability in site 1 (i.e.,258

p1,1 ≥ p2,1 ≥ · · · ≥ pS,1). We plotted the curve of pi,j against i = 1, 2, …, S and termed this curve as259

a “species incidence gradient” for site j. Under no spatial heterogeneity (i.e., pi,1 = pi,2 for all species260
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i = 1, …, S, implying h = 0), the two species incidence gradients synchronize perfectly. In this case,261

increasing species di昀昀erences increases the probability of some species being either (i) double-absent or262

(ii) present in both sites. In either case (i) or (ii), fewer species are present in only one of the sites than the263

case with no species di昀昀erence, thus leading to lower beta-diversity. Biologically, spatial homogeneity264

tends to constrain patterns of species incidence gradients in a way that species di昀昀erences cause species265

to be either present in both sites or absent from both sites. In other words, species di昀昀erences under266

homogeneity do not foster uniquely present species. This prediction is robust against small increases267

in spatial heterogeneity (Figure 3A-2). In a weakly heterogeneous metacommunity, beta-diversity is268

predicted to decrease with species di昀昀erences due to the synchronization of species incidence gradients269

between two sites. Maintaining large beta-diversity under biotic homogeneization requires all species to270

be equally likely to be present in both sites.271

With increasing spatial heterogeneity, however, the e昀昀ect of species di昀昀erence on beta-diversity becomes272

less clear (Figure 3B). This is because in the presence of spatial heterogeneity, species incidence gradients273

tend to become asyncrhonous. When the degree of spatial heterogeneity is very large, two species274

incidence gradients are necessarily desynchronized (or form a “nestedness” or “turnover pattern”, sensu275

Harrison et al. 1992, by which species incidences tend to be spatially segregated). The di昀昀erence between276

Figure 3B-1 (in which beta-diversity decreases with species di昀昀erence) and B-2 (otherwise increases)277

predicts that the variation in species-wise spatial heterogeneity
∣

∣pi,1 − pi,2∣∣ matter, though we were278

unable to corroborate this speculation. Hence, heterogeneous environments make the prediction and279

management of beta-diversity even more challenging.280

¶6 Our study has signi昀椀cant implications for conservation. Generally, beta-diversity is a key factor for281

ecosystem functioning from local to global scales (Socolar et al. 2016; Mori et al. 2018). Local ecosystem282

functioning may be driven by species’ functional dissimilarity, e.g., in niches (Godoy et al. 2020). For283

example, Loiseau et al. (2016) pointed out that conservation policy designed to protect taxonomic284

diversity cannot be fully reconciled with functional diversity management. Indeed our 昀椀nding predicts285

that with the environmental homogeneity, increasing local species di昀昀erences lead to lower beta-diversity286

(Figure 3A-1, B). Given that the species di昀昀erence is associated with functional diversity (or transformed287

quantity thereof; Palacio et al. 2022), the present prediction suggests that a conservation policy aiming288

to maintain high beta-diversity be traded-o昀昀 against the local, functional diversity. This dilemma289

becomes more complicated when the spatial heterogeneity is strong, by which beta-diversity may or may290

not decrease with species-di昀昀erences, thereby making the prediction of beta-diversity rather di昀케cult.291

One promising approach is thus to identify species traits and environmental factors for maintaining a292

balance (evenness) in the likeliness of species presence and absence, which may produce new interesting293

questions. Moving forward, open questions include: how does incidence-based beta-diversity respond294

to changes in functional diversity in colonization ability and extinction tolerance? How does functional295

diversity, in turn, respond against the reduction in compositional dissimilarity (biotic homogeneization)?296

¶7 To conclude, we have derived the analytic formula of the expectation and variance of Jaccard dissimilarity297

index incorporating di昀昀erent species in a pair of heterogeneous sites, and revealed the opposing e昀昀ects of298

species di昀昀erences on beta-diversity. Assuming that species incidences are uncorrelated with each other,299

we found that species di昀昀erences in presence probabilities may lead to a complex pattern (Figure 3).300

This work will help researchers better understand the probabilistic, or stochastic, nature of Jaccard301

dissimilarity (Real & Vargas 1996). Future studies may explore the e昀昀ects of species associations on302

the probabilistic properties of Jaccard dissimilarity, and also carry out occupancy dynamics analyses,303

beyond pairwise dissimilarity analyses (MacKenzie et al. 2018). One of the most promising approaches304

is a process-based approach (Pilowsky et al. 2022), by which we can incorporate further complications305

that in昀氀uence beta-diversity. Our method can incorporate additional realities to track and manage the306

changes in species distributions under global changes.307
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Notation619

◦ Ω := { 0, 1 }620

◦ S, the species pool size, de昀椀ned as the number of elements { i } such that {maxj=1,2 pi,j > 0 }621

◦ xi,j ∈ Ω: incidence622

◦ xi,j ∈ Ω: logical negation, i.e., xi,j = 1 − xi,j623

◦ pi,j: probability that xi,j = 1624

◦ ai,j: probability that xi,j = 0625

◦ X ∈ ΩS ⊗Ω2: Incidence table of size S rows and N columns626

◦ x◦,j := (x1,j, …, xS,j)> (∈ ΩS
)

, referred to as “local compositional pro昀椀le”627

◦ xi,◦ := (xi,1, …, xi,N) (∈ ΩN
)

, referred to as “species occurrence pro昀椀le”628

◦ PX: Probability that the incidence table X realizes629

◦ 〈x◦,1, x◦,2〉 :=∑S
i=1 xi,1xi,2, or the inner product between local compositional pro昀椀les to count the number630

of common species631

◦
∣

∣x◦,j∣∣ := 〈x◦,j, x◦,j〉: the total number of species present in a site j632

◦ X = (x◦,1, x◦,2) as we consider only two sites.633

Appendix A Expectation of Jaccard dissimilarity634

Definition of Jaccard dissimilarity635

We write βJX for the Jaccard dissimilarity measure for a table X, de昀椀ned by:636

βJX := ∣∣x◦,1∣∣ +∣∣x◦,2∣∣ − 2 〈x◦,1, x◦,2〉∣

∣x◦,1∣∣ +∣∣x◦,2∣∣ − 〈x◦,1, x◦,2〉 . (A7)

For X = O (zero-matrix), we de昀椀ne βJO := 0, which follows from two facts: (i) two all-zero vectors are (or637

axiomatically should be) completely similar, and (ii) the nulli昀椀cation of the denominator (which is always638

larger or equal to the numerator) should imply the nulli昀椀cation of the numerator (which is smaller or at most639

equal) as well. To avoid confusion, we suppose that numerator being zero implies the Jaccard dissimilarity640

be zero (otherwise resulting in erroneous calculations). It makes sense to exclude the zero-matrix, because641

zero-matrix indicates that there is no species in the landscape. Therefore we will focus on the conditional642

expectation.643

Step 1: express the Jaccard dissimilarity as an integral644

We note that any fraction of ν1 to ν2 (≥ 0) has a form of integration:645

ν1
ν2
≡ ∫ +∞

0

∂∂ξ exp(ν1ξ − ν2θ)dθ∣∣∣∣
∣

ξ=0 , (A8)

which yields:646

βJX ≡ ∫ ∞
0

∂∂ξ exp



ξ
S
∑

i=1 (xi,1 + xi,2 − 2xi,1xi,2) exp



−θ S
∑

i=1 (xi,1 + xi,2 − xi,1xi,2)dθ

∣

∣

∣

∣

∣

ξ=0 , (A9)

where we assign that we do not interchange the integral with the derivative unless otherwise stated, in order647

to remind that the integral should be de昀椀ned as zero whenever the numerator is zero. We compute the648

expectation of βJX (which is a stochastic variable) over the distribution PX.649
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Step 2: Independence yields product650

Assuming the species independence, the probability that a given incidence table X is observed is given by:651

PX = S
∏

i=1
2
∏

j=1 pxi,ji,j axi,ji,j , (A10)

as the incidence probabilities are independent across species. We can then see the following facts:652

∑

X

PX

S
∏

i=1 (•) ≡ S
∏

i=1 ∑

xi,◦∈Ω2

pxi,1i,1 pxi,2i,2 a1−xi,1i,1 a1−xi,2i,2 (•)
exp





S
∑

i=1 (•) ≡ S
∏

i=1 exp(•) (A11)

Then we get the (unconditional) expectation as:653

E
[

βJ
]

:=∑
X

PXβ
J
X

= ∫ ∞
0

∂∂ξ S
∏

i=1 ∑

xi,◦∈Ω2

pxi,1i,1 pxi,2i,2 a1−xi,1i,1 a1−xi,2i,2 exp
(

ξ
(

xi,1 + xi,2 − 2xi,1xi,2) − θ (xi,1 + xi,2 − xi,1xi,2))dθ∣∣∣∣
∣

ξ=0 .
(A12)

Step 3: Boolean thinking654

Let us evaluate the Boolean variable in the argument of exponential:655

ξ
(

xi,1 + xi,2 − 2xi,1xi,2) − θ (xi,1 + xi,2 − xi,1xi,2) = 








0, if xi,1 = xi,2 = 0 (double-absence)−θ, if xi,1 = xi,2 = 1 (double-presence)

ξ − θ, otherwise (uniqueness)

(A13)

Using this can allow us to expand the summation
∑

xi,◦∈Ω2 ; that is:656

∑

xi,◦∈Ω2

pxi,1i,1 pxi,2i,2 a1−xi,1i,1 a1−xi,2i,2 exp
(

ξ
(

xi,1 + xi,2 − 2xi,1xi,2) − θ (xi,1 + xi,2 − xi,1xi,2))= di,◦ + e−θbi,◦ + eξ−θ (1 − bi,◦ − di,◦) (A14)

for all i ∈ { 1, …, S }. Therefore, substituting this into Eqn (A12) results in:657

E
[

βJ
] = ∫ ∞

0

∂∂ξ S
∏

i=1
(

di,◦ + e−θbi,◦ + eξ−θ (1 − bi,◦ − di,◦))dθ∣∣∣∣
∣

ξ=0 . (A15)

Step 4: apply Leibniz rule658

By using Leibniz rule of the derivative of a product, we can get:659

E
[

βJ
] = ∫ ∞

0
e−θ S
∑

i=1 (1 − bi,◦ − di,◦) S
∏

`=1,` 6=i
(

d`,◦ + e−θ (1 − d`,◦))dθ. (A16)

By transforming the variable z = 1 − e−θ with dθ = (1 − z)dz, we can rewrite Eqn (A16) as:660

E
[

βJ
] = ∫ 1

0

S
∑

i=1 (1 − bi,◦ − di,◦) S
∏

`=1,` 6=i (1 − z + zd`,◦)dz. (A17)
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Eqn (A17) represents the general expression for the expectation of Jaccard dissimilarity provided that species661

incidences are uncorrelated.662

Break to check: experiments663

Experiment 1 | When S = 1, we immediately get E
[

βJ
]

∣

∣

∣

∣

∣

S=1 = 1 − b1,◦ − d1,◦. Thus the conditional664

expectation is
(

1 − b1,◦ − d1,◦) ∕ (1 − d1,◦).665

Experiment 2 | When S = 2,666

E
[

βJ
]

∣

∣

∣

∣

∣

S=2 = ∫ 1

0

(

1 − b1,◦ − d1,◦) (1 − z + zd2,◦) + (1 − b2,◦ − d2,◦) (1 − z + zd1,◦)dz,
(A18)

which is
(

1 − b1,◦ − d1,◦) (1 − 1 ∕ 2 + d2,◦ ∕ 2)+(1 − b2,◦ − d2,◦) (1 − 1 ∕ 2 + d1,◦ ∕ 2). Thus667

the conditional expectation is668

E
[

βJ
∣

∣

∣γ > 0
]

∣

∣

∣

∣

∣

S=2 = 1
2
(

1 − d1,◦d2,◦) ((1 − b1,◦ − d1,◦) (1 + d2,◦) + (1 − b2,◦ − d2,◦) (1 + d1,◦))
(A19)

Experiment 3 | When all species are equal, that is when
(

pi,1, pi,2) ≡ (p◦,1, p◦,2) with pi,1pi,2 = b and669

ai,1ai,2 = d,670

E
[

βJ
] = ∫ 1

0
S (1 − b − d) (1 − z + zd)S−1 dz = 1 − b − d

1 − d ∙ (1 − dS) , (A20)

thus recovering Lu et al.’s (2019) results by dividing the RHS by 1 − dS the probability that671

some species is present (γ > 0).672

Rationale673

First, notice that 1−bi,◦ −di,◦ represents the probability that species i is unique to one of the sites. Given that674

species i is unique, we aim to identify which species are present, regardless of being unique or common. For675

instance, given that species i = 1 is unique, the other species i = 2, 3, …, S, each of which is either unique,676

common or double-absent, we can count the number of present species and put it in the denominator by677

calculating an integral of the product:678

M1 := ∫ 1

0

S
∏

`≥2 (1 − z + zd`,◦)dz. (A21)

Indeed, when S = 2, the integral results in M1 = (1 + d2,◦) ∕ 2, because with probability d2,◦, species 2679

is absent from both sites, in which the contribution of species 1 to Jaccard dissimilarity is 1, while with680

probability 1 − d2,◦, species 2 is present, in which case the contribution of species 1 to Jaccard dissimilarity681

is 1/2 (with species 2’s contribution not counted here), thus giving the expectation of
(

1 + d2,◦) ∕ 2. When682

S = 3, given that species i is unique, writing 00 for double-absence of species 2 and 3 and 00 for non683

double-absence of species 2 and 3,684

sp 2 sp 3 probability # present sp (incl 1) species 1’s contribution to Jaccard

00 00 d2,◦d3,◦ 1 1

00 00 d2,◦ (1 − d3,◦) 2 1 ∕ 2
00 00

(

1 − d2,◦) d3,◦ 2 1 ∕ 2
00 00

(

1 − d2,◦) (1 − d3,◦) 3 1 ∕ 3 (A22)
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The expected contribution of species 1 to Jaccard dissimilarity, conditioned on species 1 being unique, is685

thus given by686

d2,◦d3,◦ ∙ 1 + d2,◦ (1 − d3,◦) ∙ 12 + (1 − d2,◦) d3,◦ ∙ 12 + (1 − d2,◦) (1 − d3,◦) ∙ 13 = 2 + d2,◦ + d3,◦ + 2d2,◦d3,◦
6= M1

(A23)

where the second line results from calclation of M1 for S = 3. From this reasoning, we can interpret687

Eqn (A17) as the sum of the conditional expectations of species’ contribution to Jaccard dissimilarity.688

Step 5: reach Beta function689

Expanding the product in Eqn (A17) in terms of 1 − z and z, we get:690

E
[

βJ
] = S

∑

i=1 (1 − bi,◦ − di,◦) ∫ 1

0





S
∏

`=1;(` 6=i) (1 − z + zd`,◦)dz

= S
∑

i=1 (1 − bi,◦ − di,◦) ∫ 1

0

S
∑

k=1 ∑

y∈ΩS,∣∣y∣∣=k,yi=1 (1 − z)k−1 zS−k S
∏

`=1,` 6=i d1−y`i,◦ dz

(A24)

Using the Beta function Β(k, S − k + 1) := ∫ 10 (1 − z)k−1 zS−k dz = (k − 1)!(S − k)! ∕ S!, we can rewrite E
[

βJ
]

691

as:692

E
[

βJ
] = S

∑

i=1 (1 − bi,◦ − di,◦) ∫ 1

0

S
∑

k=1 ∑

y∈ΩS,∣∣y∣∣=k,yi=1 (1 − z)k−1 zS−k S
∏

`=1,` 6=i d1−y`i,◦ dz

= S
∑

i=1 (1 − bi,◦ − di,◦) S
∑

k=1 ∑

y∈ΩS,∣∣y∣∣=k,yi=1 (k − 1)! (S − k)!S! S
∏

`=1,` 6=i d1−y`i,◦
= 1
S

S
∑

i=1 (1 − bi,◦ − di,◦) S
∑

k=1 ∑

y∈ΩS,∣∣y∣∣=k,yi=1 1
S−1Ck−1 S

∏

`=1,` 6=i d1−y`i,◦
(A25)

where S−1Ck−1 (with k = ∣∣y∣∣) represents the binomial coe昀케cient, which counts the number of ways, dis-693

regarding order, that k − 1 species can be chosen from among S − 1 species (Van Lint & Wilson 2001).694

This is the exact expression of the expectation of Jaccard dissimilarity. When we consider the conditional695

expectation, we divide the unconditional expectation by 1 −∏S
i=1 di,◦. An alternative expression (displayed696

in the main text) is given by:697

E
[

βJ
∣

∣

∣γ > 0
] = ∑S

i=1∑y∈ΩS
1
∣

∣y
∣

∣

yi
(

1−bi,◦−di,◦)
SC∣∣y

∣

∣

∏S
`( 6=i) d1−y``,◦

1 −∏S
k=1 dk,◦ (A26)

which follows by rearranging the binomial coe昀케cients.698

Shortcut method using the generating function699

By noticing that integration is the key, one can take a shortcut approach. Let τ(zb, zu, zd) :=∏S
i=1 (ui,◦zu + bi,◦zb + di,◦zd)700

be the joint generating function of the ternary distributions for species i to be common, unique, or double-701

absent (i = 1, 2, …, S). By expanding the polynomial we get the identity:702

τ(zb, zu, zd) ≡ ∑

{ iu+ib+id=S } τ(iu,ib,id)ziuu zibb zidd , (A27)
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where the coe昀케cient τ(iu,ib,id) represents the probability that (i) iu species are unique, (ii) ib species are703

common, and (iii) id = S − iu − ib species are double-absent.1 A vector i := (iu, ib, id) (with iu + ib + id = S)704

therefore represents the state, or species-implicit incidence-table, of the community, with each species705

categorized as either unique, common, or double-absent. What we ought to compute is then:706

E
[

βJ
] =∑

i

iu
iu + ib

τi, (A28)

which equals:707

∑

i

iu
iu + ib

τiziuu z
ib
b z

id
d

∣

∣

∣

∣

∣

zu=zb=zd=1 . (A29)

We wish to algebraically extract iu (the numerator of Jaccard dissimilarity) and the reciprocal of (ib + iu)708

(the denominator of Jaccard dissimilarity). With the inspiration of integration, we can come up with:709

E
[

βJ
] = ∫ 1

0

∂∂zu ∑i

τ(iu,ib,id)ziuu zibb 1id∣∣∣∣
∣

zu=zb dzb ≡ ∫ 1

0

∂∂zu τ(zu, zb, 1)∣∣∣∣∣zu=zb dzb. (A30)

Using the original de昀椀nition of the generating function, its derivative is given by:710 ∂∂zu τ(zb, zu, zd)∣∣∣∣∣zu=zb = ∂∂zu S
∏

i=1 (ui,◦zu + bi,◦zb + di,◦zd)∣∣∣∣
∣

zu=zb,zd=1= S
∑

i=1 ui,◦ ∏`( 6=i) (u`zb + b`zb + d`)

= S
∑

i=1 ui,◦ ∏`( 6=i)
(

(

1 − d`,◦) zb + d`,◦) ,
(A31)

which thus returns us back to Eqn (A17) by integrating the last line.711

Appendix B Approximations712

Upper bound713

Although the exact calculation of the expectation is correct, the computational speed may be too slow to714

be practical, especially when S is large. Therefore we consider approximating it. We will make use of the715

property of the bivariate function:716

J(b, d) := 1 − b − d
1 − d , (B32)

which is “almost” linear, on the feasible domain { (b, d) ∈ [0, 1]2 | √b +√
d ≤ 1 }.717

We rewrite Eqn (A17) as:718

∫ 1

0

S
∑

i=1 (1 − bi,◦ − di,◦) exp




S
∑

`=1,` 6=i log(1 − z + zd`,◦)dz. (B33)

Using Jensen’s inequality,719

S
∑

`=1,` 6=i log(1 − z + zd`,◦) ≤ (S − 1) log1 − z + z
1

S − 1 S
∑

`=1,` 6=i d`,◦


 , (B34)

1zd really is unneeded but is incorporated for symmetry.
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where the equality achieves when d`,◦s are all identical across species i = 1, 2, …, S. Now put:720

h\i := 1
S − 1 S

∑

`=1,` 6=i d`,◦. (B35)

Then we get:721

E
[

βJ
] ≤ ∫ 1

0

S
∑

i=1 (1 − b`,◦ − d`,◦) (1 − z + zh\i
)S−1

dz = 1
S

S
∑

i=1 1 − bi,◦ − di,◦
1 − h\i (

1 − hS\i) = βJ+. (B36)

RHS gives a very good approximation, because J(b, d) is almost linear and only very moderately concave.722

We divide both sides by 1 −∏S
i=1 di,◦ to get the approximation of the conditional expectation of Jaccard723

dissimilarity.724

Lower bound725

The lower-bound approximation of the expected Jaccard dissimilarity is given by:726

E
[

βJ
] = S

∑

i=1 (1 − bi,◦ − di,◦) ∫ 1

0





S
∏

`=1;` 6=i (1 − z + zd`,◦)dz

≥ S
∑

i=1 (1 − bi,◦ − di,◦) ∫ 1

0



1 − z + z
S
∏

`=1;` 6=i d 1
S−1
`,◦




S−1
dz

= 1
S

S
∑

i=1 (1 − bi,◦ − di,◦) 1 −∏S
`=1;` 6=i d S

S−1
`,◦

1 −∏S
`=1;` 6=i d 1

S−1
`,◦ = βJ−,

(B37)

where the second line follows by applying the induction, and the equality holds when di,◦s are all identical.727

2 Dividing both sides by 1 −∏S
i=1 di,◦ yields the approximation for the conditional expectation.728

Heuristic approximation729

The other approximation for the conditional expectation can be obtained heuristically (Ontiveros et al. 2021):730

βJheur = ∑S
i=1 (1 − bi,◦ − di,◦)
∑S

i=1 (1 − di,◦) = J





1
S

S
∑

i=1 bi,◦, 1S S
∑

i=1 di,◦


 (B38)

which represents the expected number of unique species divided by the expected number of present species.731

Deriving this formula requires quite a bit of calculations, but if we notice:732

1 −∏
i=1 di,◦ = − ∫ 1

0

d
dz

S
∏

i=1 (1 − z + zdi,◦)dz = ∫ 1

0

S
∑

i=1 (1 − di,◦) S
∏

`=1;` 6=i (1 − z + zd`,◦)dz, (B39)

2First, when S = 2, some convexity arguments of arithmetic and geometric means work. Second, hypothesizing that the inequality
is valid for a certain S = 2`, it is easy to prove that the inequality holds for S = 2`+1. Finally, hypothesizing that the inequality is
valid for a certain S, we prove the inequality is the case for S − 1, by using the binomial expansion of the product and applying the
arithmetic-geometric means relation repeatedly. The equality achieves when all di,◦ are equal. This completes the proof.
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then we get:733

E
[

βJ
∣

∣

∣γ > 0
] = E

[

βJ
]

1 −∏S
i=1 di,◦= ∫ 10 ∑S
i=1 (1 − di,◦ − bi,◦)∏S

`=1;` 6=i (1 − z + zd`,◦)dz
∫ 1
0

∑S
i=1 (1 − di,◦)∏S

`=1;` 6=i (1 − z + zd`,◦)dz= ∑S
i=1 (1 − di,◦ − bi,◦)Mi
∑S

i=1 (1 − di,◦)Mi
,

(B40)

where we have put:734

Mi := ∫ 1

0

S
∏

`=1;` 6=i (1 − z + zdi,◦)dz (B41)

for i = 1, 2, …, S. If we replace the integralMi, which shows up in both the denominator and numerator (but735

is multiplied by di昀昀erent coe昀케cients), with (say) its average over i = 1, 2, …, S, written asM* :=∑S
i=1Mi ∕S,736

then:737

E
[

βJ
∣

∣

∣γ > 0
] ≈ ∑S

i=1 (1 − di,◦ − bi,◦)M*
∑S

i=1 (1 − di,◦)M* = ∑S
i=1 (1 − di,◦ − bi,◦)
∑S

i=1 (1 − di,◦) = βJheur, (B42)

which thus gives the heuristic approximation. The approximation is exact whenM1 = · · · = MS (which is not738

a necessary condition). This explains why the heuristic approximation works for the conditional expectation,739

while not for the unconditional, and also explains why the heuristic approximation may be larger or smaller740

than the exact expectation depending on the variance inMis. We may observe thatMi becomes increasingly741

small with S larger (M* = O
(

(

∑S
i=1 di,◦)−1)), and thus, as S increases, the contribution of the replacement742

(Mi withM*) to the di昀昀erence between the exact and approximated expectation becomes smaller.743

The heuristic approximation may, however, be either larger or smaller than the exact conditional744

expectation, and thus the upper and lower bounds, (βJ+ and βJ−), both may be also recommended.745

Altogether, we obtained the three approximations:746

◦ Approximation from below: βJ−747

◦ Approximation from above: βJ+748

◦ Heuristic approximation: βJheur749

Performances750

We numerically compared the accuracy and precision of the approximations, in the following procedure.751

(1) Generate two vectors (with S = 100):752

p◦,1 =














p1,1
p2,1
...

pS,1















,p◦,2 =














p1,2
p2,2
...

pS,2















, (B43)

in which each value of pi,1 drawn from the Beta distribution with parameters 1.2 and 1.5, and pi,2 drawn753

from the Beta distribution with parameters 1.6 and 0.8.754

(2) Calculate double-presence and -absence vectors:755

b◦,◦ =














b1,◦
b2,◦
...

bS,◦















=














p1,1p1,2
p2,1p2,2

...
pS,1pS,2















, d◦,◦ =














d1,◦
d2,◦
...

dS,◦















=














a1,1a1,2
a2,1a2,2

...
aS,1aS,2















, (B44)

which can be numerically implemented with Hadamard product.756
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(3) Compute the followings:757 ∙ E
[

βJ
∣

∣γ > 0
]

using Eqn (A17);758 ∙ βJ− in a brute-force approach;759 ∙ βJ+ in a brute-force approach;760 ∙ βJheur in a brute-force approach.761

(4) Repeat the procedure 100 times and generated the probability distributions of those four quantities (but762

note that they are stochastic variables because we used the Beta distribution to generate { pi,j }).763

(5) We plot the distribution of the expectations of Jaccard dissimilarity measures (approximations and exact764

value).765

Distribution of the expectation of the indices.

0.50 0.55 0.60 0.65 0.70

E[βJ | γ > 0]

β
+ γ>0J

β
heur

J

β
- γ>0J

SI Figure 1: We assessed the probability distributions of the exact and approximated Jaccard expectations.

Appendix C Well-definedness766

Here we clarify some concepts that have been le昀琀 unspeci昀椀ed in the main text.767

Species pool768

We 昀椀rst suppose that species i is presentable in the focal metacommunity if strictly di,◦ < 1. The collection of769

all presentable species is called as species pool. Its cardinality (i.e., the number of members of the species770

pool) is referred to as species pool size and denoted as S. By de昀椀ning these, we exclude never presentable771

species from the species pool, pi,1 = pi,2 = 0.772

Bounds of w and h773

species difference774

The species di昀昀erence index is Schur-convex (Arnold 2012; McVinish & Lester 2020), thus taking the775

minimum zero when all species are equally likely to be present in each site; that is whenever:776

p1,j = · · · = pS,j > 0 (C45)

for j = 1, 2.777

To determine an upper bound (if any), we conventionally assume that for all species i, there is a minimum778

value of the presence probabilities pi,j ≥ ε. Then by the property of Schur-convexity of Hoover index, the779

largest di昀昀erence (inequality) occurs when:780

p1,1 = 1, pi,1 ≡ ε > 0, ∀i ≥ 2,
p1,2 = 1, pi,2 ≡ ε > 0, ∀i ≥ 2, (C46)

with species-wise permutation permitted for each j. Substituting this into w gives the maximum value,781

which reads:782

max {w } = 2 (1 − ε) (S − 1)
S
(

ε (S − 1) + 1
) < 2. (C47)
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Spatial heterogeneity783

If and only if pi,1 ≡ pi,2 for each i, spatial heterogeneity h achieves the minimum of zero. If and only if784
∣

∣pi,1 − pi,2∣∣ = 1 − ε, spatial heterogeneity h achieves the maximum of 1 − ε.785

Axioms786

Species di昀昀erence w has to satisfy a number of axioms in order to be a “di昀昀erence” measure among species,787

as does h in order to measure heterogeneity between two sites. We adopt Routledge’s (1983), Jost’s (2006,788

2007), Chao & Ricotta’s (2019), and Leinster’s (2021) approach to develop appropriate indices. Note that789

the presence probabilities do not represent abundances.790

requirement 1 The 昀椀rst requirement for w is that, if, and only if, pi,1s are all equal and pi,2 are all equal,791

then w = 0.792

requirement 2 Second, w is Schur-convex (or Schur-increasing; Marshall et al. 1979, Chapter 1).793

requirement 3 The requirement for heterogeneity h is that it is a distance function between p◦,1 and p◦,2.794

Appendix D Variance of Jaccard dissimilarity795

Same method as the mean796

To compute the variance, we use the identity for a pair of positive quantities ν1, ν2 > 0:797

ν21
ν22
≡ − ∫ +∞

0

∂ 3∂ξ∂η2 exp(ν1η − (ν2θ + ξθ)
)

dθ

∣

∣

∣

∣

∣

ξ=η=0 . (D48)

One may preferably di昀昀erentiate the quantity before integration (otherwise, erroneous calculation is possi-798

ble).799

For Jaccard dissimilarity, we choose ν1 = ∑S
i=1 (xi,1 + xi,2 − 2xi,1xi,2), which represents the number800

of unique species, and ν2 = ∑S
i=1 (xi,1 + xi,2 − xi,1xi,2), which represents the number of present species801

(gamma diversity). That is:802

βJX
2 = − ∫ +∞

0

∂ 3∂ξ∂η2 expη S
∑

i=1 (xi,1 + xi,2 − 2xi,1xi,2) exp



−θ S
∑

i=1 (xi,1 + xi,2 − xi,1xi,2)dθ

∣

∣

∣

∣

∣

ξ=η=0 .
(D49)

The expectation of βJX
2
is given by:

E
[

βJ
2
] = − ∫ +∞

0

∂ 3∂ξ∂η2 e−ξθ S
∏

i=1∑xi,◦ PX exp
(

η
(

xi,1 + xi,2 − 2xi,1xi,2) − θ (xi,1 + xi,2 − xi,1xi,2))dθ∣∣∣∣
∣

ξ=η=0
(D50)

By evaluating the Boolean variable,803

η
(

xi,1 + xi,2 − 2xi,1xi,2) − θ (xi,1 + xi,2 − xi,1xi,2) =






























0, xi,◦ = (0, 0);
η − θ, xi,◦ = (0, 1);
η − θ, xi,◦ = (1, 0);−θ, xi,◦ = (1, 1); (D51)
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the resulting expression reads:804

E
[

βJ
2
] = − ∫ +∞

0

∂ 3∂ξ∂η2 e−ξθ S
∏

i=1
(

di,◦ + bi,◦e−θ + (1 − di,◦ − bi,◦) eη−θ)dθ∣∣∣∣
∣

ξ=η=0 . (D52)

This is the most general expression for the second moment of the Jccard dissimilarity. For brevity we write805

ui,◦ := 1 − bi,◦ − di,◦ for the probability that species i is unique (neither double-absent nor common); also, we806

write τ`(θ) := d`+(1 − d`) e−θ for the moment generating function of the probability that species ` is present807

in at least one of the sites, 1 − d`,◦; write ψi
(

θ, η) := di,◦ + bi,◦e−θ + ui,◦eη−θ, thus with ψi(θ, 0) ≡ τi(θ).808

Leibniz rule for the second η-derivatives is given by:809 ∂ 2∂η2 S
∏

i=1 ψi
(

θ, η)∣∣∣
∣

∣

η=0 =




S
∑

i=1 ui,◦e−θ
S
∏

`( 6=i) τ`(θ)


 + S
∑

i=1 ui,◦e−θ
S
∑

k=1;
k 6=i uke

−θ S
∏

`=1;
` 6=i,k τ`(θ) , (D53)

using which we get:810

E
[

βJ
2
] = − ∂∂ξ ∫ +∞

0
e−ξθ











S
∑

i=1 ui,◦e−θ
S
∏

`( 6=i) τ`(θ) + S
∑

i=1 ui,◦e−θ
S
∑

k=1;
k 6=i uke

−θ S
∏

`=1;
` 6=i,k τ`(θ)











dθ. (D54)

We can evaluate this integral as did we before. However, the resulting equation is heavily complicated811

(involving, e.g., Harmonic numbers) and computationally expensive.812

Approximating variance using Hubbard-Stratonovich transformation813

Here, we take a di昀昀erent approach to evaluate the variance. We use the identity:814

ν21
ν22
≡ − ∂∂ξ ∫ ∞

0
e−(ν2+ν21ξ)θ dθ∣∣∣

∣

∣

ξ=0 (D55)

for 0 ≤ ν1 ≤ ν2, as well as the Hubbard-Stratonovich transformation (Hubbard 1959):815

e−ξθλ2 ≡ 1√
4πξθ

∫ ∞−∞ e− ζ2
4ξθ−ıλζ dζ (D56)

where ı represents the imaginary unit. Combining the identities gives:816

(

βJ
)2 = (∑S

i=1 xi,1 + xi,2 − 2xi,1xi,2
∑S

i=1 xi,1 + xi,2 − xi,1xi,2 )2

Eqn (D55)= − ∫ ∞
0

exp









−


S
∑

i=1 (xi,1 + xi,2 − xi,1xi,2) + ξ





S
∑

i=1 xi,1 + xi,2 − 2xi,1xi,22





θ









dθ

= − ∫ ∞
0

dθ
∫ ∞−∞ dζ exp






−θ S

∑

i=1 (xi,1 + xi,2 − xi,1xi,2) 1√
4πξθ

exp



− ζ2

4ξθ
− ıζ S

∑

i=1 (xi,1 + xi,2 − 2xi,1xi,2)
(D57)

Let us evaluate the Boolean variable:817

− θ (xi,1 + xi,2 − xi,1xi,2) − ıζ (xi,1 + xi,2 − 2xi,1xi,2) = 








0 xi,1 = xi,2 = 0;−θ − ıζ xi,1 + xi,2 = 1;−θ xi,1 = xi,2 = 1; (D58)

29

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.13.520233doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520233
http://creativecommons.org/licenses/by-nc/4.0/


then we get:818

E
[

(

βJ
)2
] = − ∂∂ξ ∫ ∞

0
dθ
∫ ∞−∞ dζe− ζ2

4ξθ
1√
4πξθ

S
∏

i=1
(

di,◦ + (1 − di,◦ − bi,◦) e−θ−ıζ + bi,◦e−θ) . (D59)

If we approximate the product as:819

S
∏

i=1
(

di,◦ + (1 − di,◦ − bi,◦) e−θ−ıζ + bi,◦e−θ) ≈ (d*,◦ + u*,◦e−θ−ıζ + b*,◦e−θ)S , (D60)

where the *-subscripted quantities are the arithmetic means, over i ∈ { 1, …, S }, of the corresponding820

quantities, i.e, d*,◦ := 1
S

∑S
i=1 di,◦, b*,◦ := 1

S

∑S
i=1 bi,◦, and u*,◦ := 1 − d*,◦ − b*,◦, then the expected value is821

approximated by822

E
[

(

βJ
)2
] ≈ − ∂∂ξ ∫ ∞

0
dθ
∫ ∞−∞ dζe− ζ2

4ξθ
1√
4πξθ

(

d*,◦ + u*,◦e−θ−ıζ + b*,◦e−θ)S (D61)

evaluated at ξ = 0.823

Interchanging the order of the derivative and the double integral, we get824

E
[

(

βJ
)2
] ≈ − ∫ ∞

0
dθ
∫ ∞−∞ dζ

∂∂ξ ( 1√
4πξθ

e− ζ2
4ξθ

)

eS log
(

d*,◦+u*,◦e−θ−ıζ+b*,◦e−θ). (D62)

In the limit ξ → 0, the function
∂∂ξ ( 1√

4πξθe
− ζ2
4ξθ

) = ζ2−2ξθ
8
√
π(ξθ)5∕2 e− ζ2

4ξθ is very peaked about ζ = 0. Therefore,825

we expect the integrand to be nicely approximated if we substitute the logarithm by its series expansion826

about ζ = 0,827

log
(

κ1 + κ2e−iζ) ≈ log(κ1 + κ2) − ı bζ
κ1 + κ2

− κ1κ2ζ2

2(κ1 + κ2)2
+O(ζ3), (D63)

with κ1 := d*,◦ + b*,◦e−θ and κ2 := u*,◦e−θ. Inserting this second approximation into Eqn (D62) we get828

E
[

(

βJ
)2
] ≈ − ∫ ∞

0
dθ
(

d*,◦ + (1 − d*,◦)e−θ)S ∂∂ξ 1√
4πξθ

∫ ∞−∞ dζe
− ζ2
4ξθ−ı Sκ2ζ

κ1+κ2 − Sκ1κ2ζ
2

2(κ1+κ2)2 , (D64)

which, again, has to be evaluated at ξ = 0. The integral over ζ can be evaluated as829

1√
4πξθ

∫ ∞−∞ dζe
− ζ2
4ξθ−ı Sκ2ζ

κ1+κ2 − Sκ1κ2ζ
2

2(κ1+κ2)2 = κ1 + κ2
√

(κ1 + κ2)2 + 2Sκ1κ2ξθ
e
− ξθ(κ2S)

2

(κ1+κ2)2+2Sκ1κ2ξθ . (D65)

Now, we can take the derivative with respect to ξ and evaluate it at ξ = 0 to get830 ∂∂ξ 1√
4πξθ

∫ ∞−∞ dζe
− ζ2
4ξθ−ı Sκ2ζ

κ1+κ2 − Sκ1κ2ζ
2

2(κ1+κ2)2
∣

∣

∣

∣

∣

ξ=0 = −Sκ2θ(κ1 + κ2S)
(κ1 + κ2)2

. (D66)

Therefore, inserting this expression into Eqn (D64) and replacing κ1 and κ2 by their expressions in terms831

of d*,◦, b*,◦, u*,◦, and θ, we obtain832

E
[

(

βJ
)2
] ≈ Su*,◦ ∫ ∞

0
dθe−θ (d*,◦ + b*,◦e−θ + Su*,◦e−θ)(d*,◦ + (1 − d*,◦)e−θ)S−2 θ. (D67)

Changing to the variable z = e−θ yields833

E
[

(

βJ
)2
] ≈ Su*,◦ ∫ 1

0
dz(− log z) (d*,◦ + b*,◦z + Su*,◦z) (d*,◦ + (1 − d*,◦)z)S−2 . (D68)
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We now use the binomial expansion
(

d*,◦ + (1 − d*,◦)z)S−2 = dS−2*,◦ ∑S−2
k=0 (S−2k ) ( (1−d*,◦)

d*,◦ z
)k

to get834

E
[

(

βJ
)2
] ≈ Su*,◦dS−2*,◦ S−2

∑

k=0
(

S − 2
k

)(

1 − d*,◦
d*,◦

)k ∫ 1

0
dz(− log z) (d*,◦ + b*,◦z + Su*,◦z) zk, (D69)

which, upon evaluation of the integral, yields835

E
[

(

βJ
)2
] ≈ Su*,◦dS−2*,◦ S−2

∑

k=0
(

S − 2
k

)(

1 − d*,◦
d*,◦

)k ( d*,◦
(k + 1)2

+ b*,◦ + Su*,◦
(k + 2)2

) . (D70)

The sum above can be expressed in terms of generalized hypergeometric functions pFq
(

{A}, {B};Z) as836

E
[

(

βJ
)2
] ≈ u*,◦ (b*,◦ + Su*,◦) (1 − dS*,◦)

(S − 1) (1 − d*,◦)2 − Su*,◦dS−1*,◦ (b*,◦ + Su*,◦)
(S − 1) (1 − d*,◦) 3F2

(

{1, 1, 1 − S}, {2, 2}; 1 − 1
d*,◦
)

+ Su*,◦dS−1*,◦ 3F2

(

{1, 1, 2 − S}, {2, 2}; 1 − 1
d*,◦
) .

(D71)

As a consequence, we 昀椀nd the following approximation for the variance,837

V
[

βJ
] ≈ u*,◦ (b*,◦ + Su*,◦) (1 − dS*,◦)

(S − 1) (1 − d*,◦)2 − Su*,◦dS−1*,◦ (b*,◦ + Su*,◦)
(S − 1) (1 − d*,◦) 3F2

(

{1, 1, 1 − S}, {2, 2}; 1 − 1
d*,◦
)

+ Su*,◦dS−1*,◦ 3F2

(

{1, 1, 2 − S}, {2, 2}; 1 − 1
d*,◦
) − ( u*,◦

1 − d*,◦)2 ,
(D72)

where we have approximated the expectation E
[

βJ
]2 with the square of our heuristic approximation,838

E
[

βJ
]2 ≈ (βJheur)2 = (∑S

i=1 (1 − bi,◦ − di,◦)
∑S

i=1 (1 − di,◦) )2 = ( u*,◦
1 − d*,◦)2 . (D73)

The analytical approximation obtained in Eqn (D72) yields always averaged standard deviation relative errors839

less than 10%. In most of the cases relative errors for the standard deviation, averaged over realizations of840

incidence vectors, are only about 2%.841

Leading term in the limit of large S842

In order to get more insight about the dependence with S in the limit S → ∞, we have computed an843

asymptotic expansion of the variance to get the leading term in the series expansion on S. First let us write844

Eqn (D67) as845

E
[

(

βJ
)2
] ≈ Su*,◦ ∫ ∞

0
dθe−θθ(d*,◦ + b*,◦e−θ + Su*,◦e−θ) e(S−2) log(d*,◦+(1−d*,◦)e−θ). (D74)

In the limit of large S, the exponential function will be very peaked at the maximum of the function846

log
(

d*,◦ + (1 − d*,◦)e−θ). So we expect to have a good approximation in the limit S → ∞ if we replace the847

logarithm by its series expansion,848

log
(

d*,◦ + (1 − d*,◦)e−θ) ≈ −(1 − d*,◦)θ +O(θ2), (D75)
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about the point at which the maximum is reached, i.e, θ = 0. Then, for large S, Eqn (D67) will be nicely849

approximated by850

E
[

(

βJ
)2
] ≈ Su*,◦ ∫ ∞

0
dθe−θθ(d*,◦ + b*,◦e−θ + Su*,◦e−θ) e−(S−2)(1−d)θ. (D76)

This integral can be actually evaluated to give851

E
[

(

βJ
)2
] ≈ Su*,◦ d*,◦

(

1 + (S − 2)(1 − d*,◦))2 + b*,◦ + Su*,◦
(

2 + (S − 2)(1 − d*,◦))2 (D77)

plus subleading terms in S. Here we observe that our approximation for E
[

(

βJ
)2
]

converges to the squared852

heuristic Jaccard measure approximation,853

lim
S→∞ E

[

(

βJ
)2
] ≈ ( u*,◦

1 − d*,◦)2 , (D78)

so, in the limit of large S we 昀椀nd the following leading term for the variance approximation:854

V
[

βJ
] ≈ u*,◦ ((1 − d*,◦)(b*,◦ + d*,◦) − 4d*,◦u*,◦)

(1 − d*,◦)3S . (D79)

The variance decreases as S−1 in the case of large number of species. This explains why our heuristic855

approximation works very well in that limit.856

Appendix E SDM857

Data was collected over a four-year period (1993-1996) in usually three visits per year (2 above the treeline)858

using a simpli昀椀ed territory mapping approach, and integrated in the Swiss breeding bird atlas at 1-by-1859

km resolution (Schmid et al. 1998, 2018). The data source we used included environmental predictor860

variables corresponding to climate, topography and vegetation structure at the same spatial scale, but861

geographic coordinates were removed. Data can be found at Zurell et al. 2019b,a. We used the whole862

dataset to infer SDMs using only the climatic variables, as current and future values of these variables863

for Switzerland are available in worldclim (www.worldclim.org; Hijmans et al. 2005). For each species,864

we used an ensemble approach of, initially, four di昀昀erent algorithms: generalized linear models (GLMs),865

generalized additive models (GAMs), random forests (RFs) and boosted regression trees (BRTs). However,866

GLMs and GAMs produced unreliable projections and were subsequently excluded from our analyses.867

We then projected current and future incidences for each species in our ensemble approach. With those868

incidences, we calculated the expected dissimilarity provided by Eqn (2) at each location of Switzerland for869

the subcommunity of woodpeckers.870
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SI Figure 2: The presence probabilities: pi,current, pi,future, and pi,future − pi,current.
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