

1 **Ten years of unpredictable chronic stress in zebrafish: a**
2 **systematic review and meta-analysis**

3
4 Matheus Gallas-Lopes^{1,2,3}, Leonardo M. Bastos^{2,3}, Radharani Benvenutti⁴, Alana C.
5 Panzenhagen^{1,5}, Angelo Piatto³, Ana P. Herrmann^{1,2,3*}

6
7 ¹Brazilian Reproducibility Initiative in preclinical Systematic Review and Meta-Analysis
8 (BRISA) Collaboration, Rio de Janeiro, Brazil.

9
10 ²Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab),
11 Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde,
12 Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600/430, Porto
13 Alegre, Rio Grande do Sul, 90035-003, Brazil.

14
15 ³Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de
16 Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio
17 Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600/411, Porto Alegre, RS, 90035-
18 003, Brazil.

19
20 ⁴Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland,
21 123 St. Stephen's Green, Dublin, Ireland.

22
23 ⁵Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de
24 Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS),
25 Rua Ramiro Barcelos 2600, Porto Alegre, RS, 90035-003, Brazil.

26
27 *Corresponding author: Ana Paula Herrmann. Departamento de Farmacologia,
28 Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul,
29 Rua Ramiro Barcelos 2600/430, Porto Alegre, RS, 90035-003, Brazil. E-mail:
30 ana.herrmann@ufrgs.br

31
32 **Word count:** 12330

ABSTRACT

2 The zebrafish (*Danio rerio*) is a model animal that is being increasingly used in
3 neuroscience research. A decade ago, the first study on unpredictable chronic stress
4 (UCS) in zebrafish was published, inspired by protocols established for rodents in the
5 early 1980's. Since then, several studies have been published by different groups, in
6 some cases with conflicting results. We conducted a systematic review to identify
7 studies evaluating the effects of UCS in zebrafish and meta-analytically synthetized
8 the data of neurobehavioral outcomes and relevant biomarkers. Literature searches
9 were performed in three databases (PubMed, Scopus, and Web of Science) and a
10 two-step screening process based on inclusion/exclusion criteria. The included studies
11 underwent extraction of qualitative and quantitative data, as well as risk of bias
12 assessment. Outcomes of included studies ($n = 38$) were grouped into anxiety/fear-
13 related behaviour, locomotor function, social behaviour, or cortisol level domains. UCS
14 increased anxiety/fear-related behaviour and cortisol levels while decreased
15 locomotor function, but a significant summary effect was not observed for social
16 behaviour. Despite including a significant number of studies, the high heterogeneity
17 and the methodological and reporting problems evidenced in the risk of bias analysis
18 make it difficult to assess the internal validity of most studies and the overall validity of
19 the model. Our review thus evidences the need to conduct well-designed experiments
20 to better evaluate the effects of UCS on the behaviour of zebrafish.

21
22 **Keywords:** Unpredictable chronic stress, *Danio rerio*, animal model, anxiety,
23 locomotor function, social behaviour, cortisol, systematic review, meta-analysis,
24 depression

1	CONTENTS	
2	I. INTRODUCTION	3
3	II. METHODS	5
4	(1) Search strategy	5
5	(2) Eligibility screening	5
6	(3) Data extraction	6
7	(4) Risk of bias and reporting quality	8
8	(5) Meta-analysis	9
9	(6) Sensitivity analysis	11
10	III. RESULTS	11
11	(1) Search results	11
12	(2) Study characteristics	12
13	(3) Risk of bias and reporting quality	14
14	(4) Anxiety/fear-related behaviour	15
15	(5) Locomotor function	16
16	(6) Social behaviour	17
17	(7) Cortisol levels	17
18	(8) Publication bias	18
19	(9) Sensitivity analysis	20
20	IV. DISCUSSION	21
21	V. CONCLUSIONS	24
22	VI. AUTHOR CONTRIBUTIONS	25
23	VII. CONFLICT OF INTEREST	25
24	VIII. DATA AVAILABILITY	25
25	IX. ACKNOWLEDGEMENTS	26
26	X. REFERENCES	26
27		

1 **I. INTRODUCTION**

2 The origins of the unpredictable chronic stress (UCS) protocol go back to the early
3 1980s, when researchers proposed the chronic administration of a variety of stressors
4 to rodents as a way to induce behavioural alterations relevant to the study of
5 depression (Katz & Hersh, 1981; Katz, Roth & Carroll, 1981; Katz, 1982; Willner *et al.*,
6 1987). Construct, face, and predictive validities of this model are supported by many
7 studies showing that rodents exposed to the UCS protocol develop anhedonia-like
8 behaviour, cognitive deficits, hormonal and neurochemical imbalances, weight loss,
9 and other changes that can be reversed by using antidepressant treatments (Willner,
10 1997). Given its translational potential, there has been an exponential growth in the
11 implementation of this protocol across laboratories as it has become an important tool
12 for the study of the neurobiological basis of depression and antidepressant action
13 (Willner, 2017a; Nollet, 2021).

14 Whereas this intervention became popular, researchers started adapting the
15 UCS protocol and reports of controversial data and reproducibility problems have also
16 increased (Strelakova & Steinbusch, 2009; Willner, 2017b; Antoniuk *et al.*, 2019). The
17 protocol has been largely criticized for its lack of reliability as many known elements
18 such as the training level of experimenters, the duration of the protocol, and animal
19 characteristics (species, strain, sex, and others) can introduce variability and influence
20 the results (Willner, 2017b). Apart from that, even with heterogeneous protocols, UCS-
21 induced behavioural and physiological alterations have been replicated within and
22 between labs, adding to the internal and external validity of the model.

23 More than a decade ago, researchers made an effort to transpose this
24 intervention for studies using zebrafish (*Danio rerio* Hamilton, 1822), an emerging
25 model animal in the field of neuroscience at the time (Piato *et al.*, 2011). Cross-species

1 approaches are important tools to evaluate the validity of an intervention, and
2 translating the UCS protocol to zebrafish can help reduce species-specific biases
3 originating from studies conducted solely with rodents (Maximino *et al.*, 2015; Weber-
4 Stadlbauer & Meyer, 2019). In zebrafish, this protocol is also able to induce anxiety-
5 like behaviour and alterations in outcomes such as locomotion, cognition, sociability,
6 cortisol levels, and in some defence mechanisms against oxidative damage (Piato *et*
7 *al.*, 2011; Marcon *et al.*, 2016, 2018; Bertelli *et al.*, 2021). But just as in the experiments
8 carried out with rats and mice, the heterogeneity between protocols established in
9 each laboratory has grown throughout the years as investigators needed to adapt the
10 procedures to different facilities or to the outcomes of interest. This culminated in the
11 publication of many discrepant results for key outcomes to understand the impacts of
12 UCS, like social behaviour, which was shown to be altered in opposing directions
13 depending on the duration of the protocol (Piato *et al.*, 2011), or not altered at all
14 (Golla, Østby & Kermen, 2020; Bertelli *et al.*, 2021).

15 Aiming to estimate the overall validity and to summarise the evidence regarding
16 the effects of UCS on behavioural and biochemical outcomes relevant to the study of
17 psychiatric disorders, we conducted a systematic review and meta-analysis of the
18 available scientific literature using zebrafish. We analysed the evolution of this
19 intervention in the first ten years of its use, qualitatively describing the published
20 studies, establishing the direction and magnitude of the effect of chronic stress on
21 neurobehavioural and neurochemical parameters, detecting effect moderators, and
22 evaluating the impact of bias arising from methodological conduct, reporting quality,
23 and selective publication.

24

1 **II. METHODS**

2 A protocol for conducting this review was registered on Open Science Framework prior
3 to the screening of records and data collection. Preregistration is available at
4 <https://osf.io/9rvyn> (Gallas-Lopes *et al.*, 2021). The reporting of this study complies
5 with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
6 (PRISMA) guidelines (Page *et al.*, 2021).

7

8 **(1) Search strategy**

9 Searches were conducted in three bibliographic databases: PubMed, Scopus, and
10 Web of Science. The search strategy was designed to include broad terms that
11 describe the intervention (UCS protocol) and the desired population (zebrafish). The
12 complete query for each database can be found at <https://osf.io/9rvyn> (Gallas-Lopes
13 *et al.*, 2021). There were no language or date restrictions. The first search was
14 performed on the 10th of July, 2021, with an update search carried out on the 26th of
15 October, 2021. The bibliographic data acquired were imported to Rayyan software
16 (Ouzzani *et al.*, 2016), where duplicates were detected and removed by one of the
17 investigators (MGL). The reference lists of the included studies were also screened in
18 order to detect additional relevant articles.

19

20 **(2) Eligibility screening**

21 After the removal of duplicates, the selection of eligible studies was conducted using
22 Rayyan software in a two-step process based, initially, on title and abstract, followed
23 by a full-text analysis. The screening of each record was performed by two
24 independent investigators (MGL and LMB or RB) and disagreements were resolved
25 by a third investigator (APH). Peer-reviewed articles were eligible for inclusion if they

1 had an appropriate control group and assessed the effects of unpredictable chronic
2 stress in zebrafish (any strain or developmental stage) on any of the following domains
3 of interest: morphometric measures, locomotor function, sensory function, learning
4 and memory, social behaviour, reproductive behaviour, anxiety/fear-related
5 behaviour, circadian cycle-related behaviour, and neurochemical or peripheral
6 biomarkers (e.g., cortisol, cytokines, and oxidative stress).

7 In the first screening stage (title and abstract), studies were excluded based on
8 the following reasons: (1) design: not an original primary study (e.g., review,
9 commentary, conference proceedings, and corrections); (2) population: studies using
10 other species than zebrafish (*Danio rerio*) or studies that did not use any animal; (3)
11 intervention: non-interventional studies or studies using other interventions than
12 unpredictable chronic stress (e.g., acute stress (stressed only once) and repetitive
13 or predictable stress (chronic stress using only a single stressor multiple times)). In
14 the second stage (full-text screening), the remaining articles were assessed for
15 exclusion based on the same reasons considered in the first stage plus the following
16 additional reasons: (4) comparison: studies without an adequate control group; (5)
17 outcome: studies that did not evaluate any of the target outcomes. All Rayyan files
18 with investigators' decisions are available at the study repository in Open Science
19 Framework (<https://osf.io/j2zva/>), section "Eligibility screening archives".

20

21 **(3) Data extraction**

22 Data extraction from included studies was conducted by two independent investigators
23 (MGL and LMB or RB) and disagreements were resolved by a third investigator (APH).
24 Whenever available, the exact information and values were extracted directly from text
25 or tables. Otherwise, WebPlotDigitizer software (v4.5, Rohatgi, A., Pacifica, CA, USA,

1 <https://automeris.io/WebPlotDigitizer>) was used to manually estimate numbers from
2 the graphs. In cases of lacking or dubious information, investigators attempted to
3 contact via e-mail the corresponding author of the study in two separate attempts, at
4 least two weeks apart.

5 The following characteristics were extracted: (1) study characteristics: study
6 title, digital object identifier (DOI), first and last authors, last author's institutional
7 affiliation, and year of publication; (2) animal model characteristics: strain, sex, animal
8 source (supplier of the animals used to develop the experiments), the total number of
9 animals used, and the developmental stages during stress induction and outcome
10 assessment; (3) UCS protocol characteristics: the number of different stressors, stress
11 sessions per day, stress sessions in total, the duration of the stress protocol in days,
12 and the time in days between the end of UCS protocol and outcome assessment; (4)
13 test characteristics: experiment identification (to annotate whether the tests conducted
14 within the same study used different sets of animals), the type of the test, test duration,
15 habituation phase (whether the animals were subjected to an habituation phase in the
16 experimental apparatus prior to the test), the category of the measured variable, and
17 the measured variable. Co-authorship networks were constructed using VOSviewer
18 software version 1.6.18 (<https://www.vosviewer.com>) (van Eck & Waltman, 2007,
19 2010).

20 Outcome data were extracted for each of the variables within the domains of
21 interest. The measure of central tendency and the number of animals (n) were
22 extracted for the control and UCS groups along with the standard deviation (SD) or
23 standard error (SEM) when the mean value was expressed, or the interquartile range
24 (IQR) when data were expressed as the median value. Whenever sample size was
25 reported as a range instead of the exact number of animals in each group, the lowest

1 value was extracted. If the study reported the SEM, SD was calculated by multiplying
2 SEM by the square root of the sample size (SD = SEM * \sqrt{n}).

3

4 **(4) Risk of bias and reporting quality**

5 In order to evaluate the quality of included studies, the risk of bias assessment was
6 conducted by two independent investigators (MGL and LMB or RB) for each paper,
7 and disagreements were resolved by a third investigator (APH). The analysis was
8 conducted based on the SYRCLE's risk of bias tool for animal studies (Hooijmans *et*
9 *al.*, 2014) with adaptations to better suit the model animal and the intervention of
10 interest. The following items were evaluated for methodological quality: (1) description
11 of random allocation of animals; (2) description of baseline characteristics; (3)
12 description of random housing conditions during the experiments; (4) description of
13 random selection for outcome assessment; (5) description of blinding methods for
14 outcome assessment; (6) incomplete outcome data; (7) selective outcome reporting.
15 Additionally, four other items were evaluated by the investigators to assess the overall
16 reporting quality of the studies based on a set of reporting standards for rigorous study
17 design (Landis *et al.*, 2012): (8.1) mention of any randomization process; (8.2) sample
18 size estimation; (8.3) mention of inclusion/exclusion criteria; (8.4) mention of any
19 process to ensure blinding during the experiments. For methodological quality, each
20 item was scored with a "Yes" for low risk of bias, "No" for a high risk of bias or "Unclear"
21 when it was not possible to estimate the risk of bias based on the information provided.
22 Items regarding reporting quality were scored with only "Yes" or "No", meaning high
23 or low risk of bias, respectively. A complete guide for assessing the risk of bias

1 associated with each of the items in this review is available at <https://osf.io/sdpwb>.

2 Risk of bias plots were created using *robvis* (McGuinness & Higgins, 2021).

3

4 **(5) Meta-analysis**

5 Studies were grouped based on the domains of interest (anxiety/fear-related
6 behaviour, locomotor function, social behaviour, or cortisol levels), and a meta-
7 analysis was performed for each group. When a study reported multiple outcomes for
8 the same domain, only one outcome of interest was chosen for the meta-analysis
9 based on a rank of frequency developed by one of the investigators (MGL). Tests and
10 variables within each test were ranked prior to data extraction, and the most frequent
11 in the rank was included in the meta-analysis. The ranking is available at
12 <https://osf.io/rvn8b>. A minimum of five studies were required for each domain in order
13 to conduct a meta-analysis, as established a priori in our protocol (Gallas-Lopes *et al.*,
14 2021).

15 The sample size of the control group was divided by the number of comparisons
16 and rounded down whenever two or more experimental groups shared the same
17 control (Vesterinen *et al.*, 2014). When outcomes were analysed across time, the last
18 point was selected for analysis. When animals were subjected to experiments at
19 different time points following the end of the UCS protocol, the outcomes assessed
20 closest to the end of the protocol were chosen. Effect sizes were “flipped” (multiplied
21 by minus one) when needed to adjust the direction of the effect for specific behavioural
22 traits in order to properly interpret the effects of UCS. Studies that only reported
23 outcomes as the median value and interquartile range were excluded from the
24 analyses along with studies with incomplete data (e.g., lacking sample sizes, SD, and
25 SEM) when contact with the authors was unsuccessful.

1 Effects sizes were determined with standardised mean differences (SMD) using
2 Hedge's G method. Analyses were conducted using R Project for Statistical
3 Computing with packages *meta* (Balduzzi, Rücker & Schwarzer, 2019) (<https://cran.r-project.org/package=meta>) and *ggplot2* (Wilkinson, 2011) following Hedge's random
4 effects model given the anticipated heterogeneity between studies. Values for SMD
5 were reported with 95% confidence intervals. Heterogeneity between studies was
6 estimated using I^2 (Higgins & Thompson, 2002), τ^2 , and Cochran's Q (Cochran, 1954)
7 tests. Heterogeneity variance (τ^2) was estimated using the restricted maximum
8 likelihood estimator (Viechtbauer, 2005; Veroniki *et al.*, 2016). The confidence
9 intervals around pooled effects were corrected using Knapp-Hartung adjustments
10 (Knapp & Hartung, 2003). Values of 25%, 50%, and 75% were considered as
11 representing low, moderate, and high heterogeneity, respectively for I^2 , and a *p*-value
12 ≤ 0.1 was considered significant for Cochran's Q. Prediction intervals were estimated
13 to present the range of effects expected for future studies (Higgins *et al.*, 2019).
14 Furthermore, a subgroup meta-analysis was performed to evaluate if the duration of
15 the UCS protocol was a potential source of heterogeneity. Studies were grouped into
16 two categories: those with up to 7 days of UCS protocol and those with more than 7
17 days. Subgroup analysis was only performed when there were at least five unique
18 studies for each subgroup. A *p* ≤ 0.1 was considered significant for subgroup
19 differences (Richardson, Garner & Donegan, 2019).

21 Publication bias was investigated by generating funnel plots and performing
22 Duval and Tweedie's trim and fill analysis (Duval & Tweedie, 2000) and Egger's
23 regression test (Egger *et al.*, 1997). Analyses were only conducted when at least five
24 studies were available within a given domain for funnel plots and at least ten studies

1 for the regression test. A *p*-value < 0.1 was considered significant for the regression
2 test.

3

4 **(6) Sensitivity analysis**

5 A sensitivity analysis was conducted to assess if any experimental or methodological
6 difference between studies was distorting the main effect found in the meta-analysis.
7 Analyses were conducted following the jackknife method (Miller, 1974) and by
8 excluding studies presenting a significant risk of bias, defined as either a high risk of
9 bias in one of the main items evaluating methodological quality (items 1 to 7), or an
10 unclear risk of bias in five or more of the same items. A minimum of three comparisons
11 were required for each domain in order to conduct a sensitivity analysis.

12

13 **III. RESULTS**

14 **(1) Search results**

15 From the search in the selected databases, 420 records were retrieved altogether.
16 Following the removal of duplicates, 206 records were screened for eligibility based
17 on title and abstract. After the first screening phase, 58 studies remained to be
18 assessed based on full text, and 38 met the criteria and were included in the review
19 (Fig. 1). Out of the studies included in the review, 34 were collected from the first
20 database search on the 10th of July 2021, and four additional studies were identified
21 in the second search on the 26th of October 2021. No extra studies were identified by
22 reference list screening. Most of the records sought for inclusion in either stage of
23 screening were excluded because they did not meet the criteria set for the intervention
24 (*n* = 89), followed by the population of interest (*n* = 42), and the design of the study (*n*
25 = 37). Three studies were excluded from the quantitative analyses because the

1 minimum number of studies to perform a meta-analysis was not reached for the
2 outcomes reported (Zimmermann *et al.*, 2016; Jayamurali & Govindarajulu, 2017;
3 Marcon *et al.*, 2018), and four studies were excluded because of missing information
4 (Huang, Butler & Lubin, 2019; Zhang *et al.*, 2021; Kirsten *et al.*, 2021; Demin *et al.*,
5 2021). This resulted in 31 studies included in the quantitative synthesis.

6

7 =====

8 Fig. 1

9 =====

10

11 =====

12 Table 1

13 =====

14

15 **(2) Study characteristics**

16 As expected, the protocols implemented by each research group varied significantly.
17 The duration of the stress protocol ranged between 3 and 77 days, with 15 studies
18 (39.5%) implementing UCS for up to 7 days, and 27 (71%) for more than a week.
19 Protocols using 7 ($n = 13$, 34.2%) or 14 days ($n = 12$, 31.6%) of UCS were the most
20 common. It is important to mention that some studies ($n = 5$, 13.2%) used UCS
21 protocols of more than 15 days to explore the more severe or long-term impacts of
22 UCS in zebrafish. As compared with the rodent literature, in which 3 to 4 weeks of
23 UCS are necessary to observe the full behavioural phenotype, the duration of the
24 protocols in zebrafish is remarkably shorter (predominantly 7 or 14 days). The
25 protocols were conducted using frequently a group of up to 10 different stressors to

1 account for unpredictability. Outcome assessment usually took place within the 24
2 hours following the last stress session ($n = 31$, 81.6%), with only a few studies
3 evaluating the effects of UCS after a longer washout period ($n = 10$, 26.3%). The tests
4 were mostly scheduled to occur at least a day from the last stressor to avoid the acute
5 interference from the last stress session but also not too far off the end of the protocol
6 to avoid losing the effects of UCS.

7 Most studies were conducted by exposing adult zebrafish to the protocol ($n =$
8 34, 89.4%), followed by fish in the larval ($n = 3$, 7.9%), and juvenile life stages ($n = 1$,
9 2.6%). Of the publications implementing the UCS protocol in early developmental
10 stages, one of them evaluated behavioural data of the exposed animals when they
11 were still larvae. The remaining were designed to assess the long-lasting effects of the
12 stress, and, in this case, animals were tested more than 75 days after the protocol
13 ended, when they were considered adults. Experiments were conducted generally with
14 a pool of both male and female zebrafish ($n = 21$, 55.2%). In only two studies both
15 male and female zebrafish were used and sex was analysed as a biological variable,
16 whereas in four papers animals of only one sex were selected ($n = 2$ for male and $n =$
17 2 for female fish). The sex of the animals was not specified in 11 studies (28.9%). A
18 description of the studies included in the review can be found in Table 1, and the
19 detailed extracted information is available at <https://osf.io/pbhy4>. Co-authorship
20 network analysis identified 20 clusters of researchers implementing the UCS protocol
21 in their labs across the globe based on the studies included in this review (Fig. 2). An
22 interactive version of the co-authorship network is available at
23 <https://tinyurl.com/2g52lbfx>.

24

25 =====

1 Fig. 2
2 =====
3
4 **(3) Risk of bias and reporting quality**

5 The overall risk of bias associated with the items evaluated for methodological quality
6 was considered unclear (Fig. 3). In more than 89% of the studies included, the
7 information given was insufficient to rule out biases arising from the allocation of
8 animals to the experimental groups or baseline characteristics. Although being an
9 important good research practice, random housing allocation was not reported in any
10 publication. Bias related to blind assessment of outcomes was considered unclear in
11 14 studies (36.8%) and one study was deemed as having a high risk of bias for this
12 item. Outcome data was incomplete in two studies (5.3%), and it was unclear whether
13 data was complete in 63.2% of the assessed papers. For six studies (15.8%), cross-
14 checking the information for outcomes measured between the methodology and the
15 results was not possible and selective reporting was considered unclear.

16 As for the reporting quality, more than 50% of the studies failed to report any
17 information on the items assessed. Researchers failed to describe if any
18 randomization method was used in 21 studies (55.3%). Sample size estimation
19 procedures were not informed in 30 papers (78.9%). Reporting quality was also
20 considered unsatisfactory when evaluating the report of inclusion/exclusion criteria
21 and blinding, since there were no reports of these items in 27 (71.1%) and 23 (60.5%)
22 of the studies, respectively. Out of 418 scores given in the risk of bias assessment,
23 there were 51 (12.2%) inconsistencies between investigators. Individualised scores
24 for each study included are available at <https://osf.io/zw6qq>.

25

1 =====

2 Fig. 3

3 =====

4

5 **(4) Anxiety/fear-related behaviour**

6 The meta-analysis comprised 30 comparisons out of 22 independent studies. A total
7 of 347 animals were used as controls and 409 composed the stressed groups. The
8 most frequently used test to assess anxiety/fear-related behaviour in the included
9 comparisons was the novel tank (25), followed by the open field (3), light/dark (1), and
10 stress-induced analgesia tests (1).

11 The overall analysis revealed that stressed animals have higher levels of
12 anxiety/fear-related behaviour when compared to control animals (SMD 1.09 [0.50,
13 1.68], $p = 0.0007$, Fig. 4). The estimated heterogeneity was high, with an $I^2 = 81\%$, τ^2
14 = 1.61, and a $Q = 155.97$ ($df = 29$, $p < 0.01$). Subgroup analysis revealed that for
15 experiments with stress duration of up to 7 days there was no statistically significant
16 effect on anxiety/fear-related behaviour (SMD 0.37 [-0.30, 1.04], $p = 0.25$, Fig. 4). The
17 heterogeneity was also high for this subgroup, with an $I^2 = 80\%$, a $\tau^2 = 0.79$, and a Q
18 = 49.83 ($p < 0.01$). For experiments with a UCS regimen of more than 7 days, it is
19 possible to observe a significant effect of the stress on increasing anxiety-like
20 behaviour (SMD 1.58 [0.73, 2.43], $p < 0.01$, Fig. 4). The heterogeneity remained high
21 when analysing this subgroup, resulting in an $I^2 = 80\%$, a $\tau^2 = 2.06$, and a $Q = 88.60$
22 ($p < 0.01$). The difference between subgroups was also significant ($p = 0.02$)
23 suggesting that the duration of the UCS protocol modifies the effect of the stress on
24 anxiety/fear-related behaviour of zebrafish.

25

1 =====

2 Fig. 4

3 =====

4

5 **(5) Locomotor function**

6 The meta-analysis comprised 28 comparisons out of 21 independent studies. A total
7 of 454 animals were used as controls and 510 composed the stressed groups. The
8 most frequently used test to assess locomotor function in the included studies was the
9 novel tank (21), followed by the open field (4), mirror-induced aggression (2), and
10 stress-induced analgesia tests (1).

11 The overall analysis showed that stressed animals show lower levels of mobility
12 when compared to control animals (SMD -0.56 [-1.02, -0.10], $p = 0.0180$, Fig. 5). The
13 estimated heterogeneity was considered high, with an $I^2 = 83\%$, $\tau^2 = 1.01$, and a $Q =$
14 156.83 ($df = 27$, $p < 0.01$). When analysing separately experiments conducted with a
15 UCS protocol of up to 7 days, there was no statistically significant effect of the stress
16 on locomotor function (SMD -0.21 [-0.74, 0.33], $p = 0.42$, Fig. 5). The heterogeneity
17 was also high for this subgroup, with an $I^2 = 76\%$, a $\tau^2 = 0.59$, and a $Q = 49.51$ ($p <$
18 0.01). As for experiments conducted with a UCS regimen of more than 7 days, it is
19 possible to observe a significant difference in locomotor function between stressed
20 and control groups, evidencing lower mobility in stressed animals (SMD -0.93 [-1.69,
21 -0.16], $p = 0.02$, Fig. 5). The heterogeneity remained high when analysing this
22 subgroup, resulting in an $I^2 = 86\%$, a $\tau^2 = 1.43$, and a $Q = 101.67$ ($p < 0.01$). The
23 difference between subgroups was also significant ($p = 0.10$) suggesting that the
24 duration of the UCS protocol modifies the effect of the stress on the locomotor function
25 of zebrafish.

1
2 =====

3 Fig. 5

4 =====
5

6 **(6) Social behaviour**

7 The meta-analysis comprised 14 comparisons out of 11 independent studies. A total
8 of 172 animals were used as controls and 190 composed the stressed groups. The
9 most frequently used test to assess social behaviour in the included studies was the
10 shoaling response test (8), followed by social interaction (4), and novel tank tests (2).

11 The overall analysis showed no significant effects of the UCS protocol on social
12 behaviour (SMD -0.30 [-0.77, 0.17], $p = 0.1849$, Fig. 6). The estimated heterogeneity
13 was considered moderate, with an $I^2 = 74\%$, a $\tau^2 = 0.47$, and a $Q = 50.86$ ($df = 13, p <$
14 0.01). There were no sufficient studies to perform a subgroup analysis.

15
16 =====

17 Fig. 6

18 =====
19

20 **(7) Cortisol levels**

21 The meta-analysis comprised 22 comparisons out of 13 independent studies. A total
22 of 150 animals were used as controls and 223 composed the stressed groups. Whole-
23 body cortisol levels were measured in most studies (15), followed by trunk (5), and
24 serum cortisol measurements (2).

1 The overall analysis showed that stressed animals have higher levels of cortisol
2 when compared to control animals (SMD 0.66 [0.06, 1.25], $p = 0.0320$, Fig. 7). The
3 estimated heterogeneity was considered moderate, with an $I^2 = 75\%$, a $\tau^2 = 1.01$ and
4 a $Q = 84.98$ ($df = 21$, $p < 0.01$). When analysing separately experiments conducted
5 with a UCS regimen of up to 7 days, there was no statistically significant effect of the
6 stress on cortisol levels (SMD 0.73 [-0.27, 1.74], $p = 0.14$, Fig. 7). The heterogeneity
7 was high for this subgroup, with an $I^2 = 83\%$, a $\tau^2 = 2.00$, and a $Q = 77.02$ ($p < 0.01$).
8 As for experiments conducted with a UCS protocol of more than 7 days, it is possible
9 to observe a significant effect of the stress on increasing cortisol levels (SMD 0.68
10 [0.28, 1.08], $p < 0.01$, Fig. 7). The heterogeneity significantly decreased when
11 analysing this subgroup, resulting in an $I^2 = 0\%$, a $\tau^2 < 0.01$ and a $Q = 4.98$ ($p = 0.66$).
12 The difference between subgroups was not statistically significant ($p = 0.92$),
13 suggesting that the duration of the UCS protocol does not modify the effect of the
14 stress on the cortisol levels in zebrafish.

15

16 =====

17 Fig. 7

18 =====

19

20 **(8) Publication bias**

21 Visual inspection of funnel plots demonstrated a substantial asymmetrical distribution
22 of the studies within some domains of interest (Fig. 8). The scattered plot does not
23 show the expected funnel-shaped distribution of experiments for anxiety/fear-related
24 behaviour (Fig. 8A), locomotor function (Fig. 8B), social behaviour (Fig. 8C), and
25 cortisol levels (Fig. 8D). This could be attributed to sample heterogeneity, as the

1 protocols, tests, and measured variables differ significantly among selected studies.
2 Trim and fill analysis for anxiety/fear-related behaviour imputed 8 studies to the meta-
3 analysis, and the overall effect of the stress was not significant for this outcome (SMD
4 0.50 [-0.23, 1.24], $p = 0.1746$, Fig. 8A). For locomotor function, 5 studies were imputed,
5 and the overall effect of the stress was not significant (SMD -0.20 [-0.77, 0.36], $p =$
6 0.4677, Fig. 8B). For social behaviour, 6 studies were imputed, and the overall effect
7 of the stress remained not significant (SMD 0.28 [-0.31, 0.86], $p = 0.3338$, Fig. 8C).
8 For cortisol levels, 5 studies were imputed, and the overall effect of the stress was
9 once again not significant (SMD 0.20 [-0.51, 0.91], $p = 0.5683$, Fig. 8D).

10

11 =====

12 Fig. 8

13 =====

14

15 Egger's regression test indicated publication bias for most domains tested
16 (Table 2): anxiety/fear-related behaviour ($p = 0.001$), locomotor function ($p = 0.0277$),
17 and cortisol levels ($p = 0.0566$). All tests suggest a possible overestimation of the
18 effects of UCS based on published data. For social behaviour, on the other hand, the
19 regression test was not statistically significant ($p = 0.2507$), but this result should be
20 interpreted with caution as only a few studies reported such outcome and the statistical
21 power of the Egger's test heavily depends on the number of experiments included in
22 the analysis.

23

24 =====

25 Table 2

1 =====

2

3 **(9) Sensitivity analysis**

4 The sensitivity analyses for studies presenting a significant risk of bias skewed the
5 main effect of the domains tested (Fig. 9). After excluding studies with a high risk of
6 bias, no significant effects of UCS on anxiety/fear-related behaviour (SMD 1.01 [-0.19,
7 2.22], Fig. 9A) and locomotor function (SMD -0.42 [-1.14, 0.30], Fig. 9B) were
8 observed. For social behaviour, the overall interpretation remained the same, with no
9 significant effects of the intervention on this behaviour (SMD 0.07 [-0.46, 0.60], Fig.
10 9C). For cortisol levels, on the other hand, by excluding studies associated with a high
11 risk of bias the direction of the effect was reversed, as the meta-analysis evidenced
12 higher levels of cortisol in the control animals when compared to the stressed groups
13 (SMD -0.60 [-0.98, -0.21], Fig. 9D). Although it is an interesting result, the meta-
14 analysis conducted with studies presenting a low risk of bias for the cortisol levels is
15 based only on the results of three individual studies with different experiments, which
16 hinders the extrapolation of this result. In the sensitivity analyses following the
17 jackknife method, no study was shown to be skewing the overall result of the meta-
18 analyses as the interpretation of the summary results was altered by omitting one
19 study at a time (Suppl. Fig. 1). An exception to this was the sensitivity analysis for
20 cortisol: in the absence of four of the studies the overall effect size is not statistically
21 significant. This, however, is not surprising considering that the lower limit of the
22 confidence interval in the original meta-analysis was already close to zero.
23 Furthermore, heterogeneity is not much altered in any of the leave-one-out simulations
24 as compared to the original result.

25

1 =====

2 Fig. 9

3 =====

4

5 **IV. DISCUSSION**

6 Ten years after the publication of the first study of UCS conducted using zebrafish as
7 the model animal (Piato *et al.*, 2011), we performed a systematic review and meta-
8 analysis of the literature to evaluate and synthetize the behavioural and neurochemical
9 effects of this protocol. Despite the relatively low number of studies carried out with far
10 fewer animals than the rodent literature, the main findings of our study show that UCS
11 increases anxiety-like behaviour and cortisol levels while decreasing locomotor activity
12 in zebrafish. On the other hand, no effects on social behaviour were observed in this
13 species.

14 Such results somewhat correlate with the findings gathered from experiments
15 conducted with rodents. As mentioned before, although the stress regimen is shown
16 to consistently induce anhedonia-like behavior in rodents, several variables intrinsic to
17 the organisms such as species, sex, age, and resilience or the protocol itself have a
18 great impact on the outcomes measured, leading to the heterogeneity observed in the
19 literature (Antoniuk *et al.*, 2019). Results for anxiety-like behaviour (Kompagne *et al.*,
20 2008; Cox *et al.*, 2011; Zhu *et al.*, 2014), locomotor function (Kumar, Kuhad & Chopra,
21 2011; Sequeira-Cordero *et al.*, 2019), and social behaviour (Boxelaere *et al.*, 2017)
22 vary considerably depending on the conditions applied in the experiments and are still
23 in need of a thorough systematic review to determine effect direction. The same can
24 be said for the hormonal regulation of the stress response and related neurochemical
25 outcomes. It is also expected to observe an increase in corticosterone and an

1 imbalance of neurochemical markers driven by the UCS in rodents, but many reports
2 reveal behavioural alterations in the absence of detectable modifications in these other
3 parameters as reviewed elsewhere (Willner, 2017a; Lages *et al.*, 2021).

4 Many factors might explain the high heterogeneity revealed between included
5 studies and the behavioural response of fish. The number and classes of stressors
6 used differ substantially between studies. This information is crucial since different
7 stressors have been shown to trigger different patterns of behavioural and biochemical
8 responses in rodents (Antoniuk *et al.*, 2019). Most experiments have been conducted
9 using mixed samples of both male and female zebrafish without reporting
10 individualised effects of UCS by sex. Unfortunately, it is still difficult to evaluate these
11 differential impacts since more studies are required to conduct analyses grouped by
12 sex; however, a few experiments have already shown that stress can elicit different
13 responses in male and female zebrafish (Rambo *et al.*, 2017; Huang *et al.*, 2019).

14 Subgroup analyses indicate that the duration of the stress protocol might also
15 influence relevant outcomes, corroborating what was shown in previous works (Pianta
16 *et al.*, 2011; Palucha-Poniewiera *et al.*, 2020; Fontana *et al.*, 2021). When grouping
17 experiments by this variable, no significant effects of the stress are observed in
18 anxiety/fear-related behaviour, locomotor function, and cortisol levels for stress
19 regimens of up to 7 days despite the overall effects of UCS for these domains.
20 Protocols with more than 7 days, on the other hand, show a significant effect of UCS
21 for the same variables, indicating that regimens of more than a week of stress are
22 necessary to reveal the deleterious consequences of stress in zebrafish. It is important
23 to note that most experiments designed to evaluate the long-lasting effects of UCS in
24 zebrafish were included in the group with shorter stress times. In these cases, stress
25 sessions occur in early developmental stages and tests usually take place later in the

1 animal's life. This allows for a long washout period between the stress and outcome
2 assessment that might explain the lack of effects of stress when such designs are
3 used. Capturing UCS effects heavily depends on assessment timing (Willner, 2017a;
4 Bosch *et al.*, 2022), and tests should be scheduled to avoid observing acute effects of
5 a single stressor as well as losing the effects of the intervention as a whole since
6 animals are likely to eventually recover, unless the stressors coincide with a window
7 of developmental vulnerability (Jankord *et al.*, 2011).

8 The results of this review should be interpreted with caution considering that
9 the main effects of the analyses were influenced by studies with a high risk of bias.
10 Although many efforts have been made to improve the reporting quality of pre-clinical
11 research (Sert *et al.*, 2020), the publication of studies adhering to measures designed
12 to mitigate the risk of bias associated with methodological conduct is still low (Baker
13 *et al.*, 2014; Macleod *et al.*, 2015). These problems hamper the correct analysis of
14 results and contribute to the reproducibility crisis in the biomedical field (Samsa &
15 Samsa, 2019; Gerlai, 2019), encouraging researchers to question the validity of animal
16 models (Worp *et al.*, 2010). By excluding studies with a high risk of bias in the
17 sensitivity analysis it was possible to visualise the direct impacts of these on distorting
18 the main effects found in the meta-analyses for anxiety/fear-related behaviour,
19 locomotor activity, and especially for cortisol, for which effect direction was inverted in
20 sensitivity analysis.

21 In the same way, publication bias plays a part in generating misleading
22 assumptions even in meta-analyses based on broad and rigorous systematic reviews
23 (Worp *et al.*, 2010). There is evidence of selective publishing of studies for the domains
24 tested based on funnel plot inspection and Egger's test evaluation, pointing to the need

1 to conduct well-delineated experiments using this model, as these results denote a
2 possible overestimation of the effects of chronic stress in zebrafish.

3

4 **V. CONCLUSIONS**

5 (1) The overall results of our meta-analysis reveal the effects of UCS in increasing
6 anxiety/fear-related behaviour and cortisol levels while decreasing locomotor
7 function;

8 (2) No effects of stress were found for social behaviour, but the literature reporting
9 this outcome is limited, conflicting and with evidence of bias, which warrants
10 well-designed future experiments to fill this gap;

11 (3) The risk of bias was considered generally high for the studies included in this
12 review, indicating poor methodological and reporting quality of studies
13 conducted using zebrafish;

14 (4) We found moderate to high heterogeneity in the data, suggesting that several
15 variables could influence the results obtained. Given the small number of
16 studies included, it is difficult to point out the sources of variation other than the
17 duration of the stress protocol;

18 (5) Protocols of more than a week of stress (mostly 14 days) seem to be better
19 suited to induce behavioural and biochemical alterations that are expected to
20 occur with UCS;

21 (6) The shorter duration makes zebrafish UCS protocols less time-consuming as
22 compared with rodent protocols, which may be a convenient advantage,
23 especially considering resource constraints;

24 (7) Our analyses stress the need to conduct well-designed experiments using the
25 UCS model to assess its effects on zebrafish behaviour and neurochemical

1 parameters, further exploring the sources of variation that might influence the
2 results, such as the nature of stressors and sex;

3 (8) Overall, this review corroborates the need for improvement in methodological
4 and reporting conduct across preclinical research.

5

6 **VI. AUTHOR CONTRIBUTIONS**

7 **Matheus Gallas-Lopes:** conceptualization, data curation, formal analysis,
8 investigation, methodology, project administration, visualisation, and writing - original
9 draft; **Leonardo M. Bastos:** conceptualization, investigation, methodology, and
10 writing – review & editing; **Radharani Benvenutti:** conceptualization, investigation,
11 methodology, and writing – review & editing; **Alana C. Panzenhagen:**
12 conceptualization, formal analysis, methodology, visualisation, and writing - review &
13 editing; **Angelo Piatto:** conceptualization, investigation, methodology, and writing –
14 review & editing; **Ana P. Herrmann:** conceptualization, data curation, formal analysis,
15 investigation, methodology, project administration, supervision, visualisation, and
16 writing – review & editing;

17

18 **VII. CONFLICT OF INTEREST**

19 The authors declare no conflicts of interest.

20

21 **VIII. DATA AVAILABILITY**

22 All data is available in Open Science Framework (<https://osf.io/j2zva/>).

23

1 **IX. ACKNOWLEDGEMENTS**

2 The authors thank the Conselho Nacional de Desenvolvimento Científico e
3 Tecnológico (CNPq, proc. 303343/2020-6), Coordenação de Aperfeiçoamento de
4 Pessoal de Nível Superior - Brasil (CAPES), and Pró-Reitoria de Pesquisa
5 (PROPESQ) at Universidade Federal do Rio Grande do Sul (UFRGS) for funding and
6 support.

7

8 **X. REFERENCES**

9 Antoniuk, S., Bijata, M., Ponimaskin, E. & Włodarczyk, J. (2019) Chronic unpredictable
10 mild stress for modeling depression in rodents: Meta-analysis of model
11 reliability. *Neuroscience & Biobehavioral Reviews* **99**, 101–116.

12 Baker, D., Lidster, K., Sotomayor, A. & Amor, S. (2014) Two Years Later: Journals
13 Are Not Yet Enforcing the ARRIVE Guidelines on Reporting Standards for Pre-
14 Clinical Animal Studies. *PLOS Biology* **12**, e1001756. Public Library of Science.

15 Balduzzi, S., Rücker, G. & Schwarzer, G. (2019) How to perform a meta-analysis with
16 R: a practical tutorial. *Evidence-Based Mental Health* **22**, 153–160. Royal
17 College of Psychiatrists.

18 Benneh, C.K., Biney, R.P., Mante, P.K., Tandoh, A., Adongo, D.W. & Woode, E.
19 (2017) Maerua angolensis stem bark extract reverses anxiety and related
20 behaviours in zebrafish—Involvement of GABAergic and 5-HT systems.
21 *Journal of Ethnopharmacology* **207**, 129–145.

22 Bertelli, P.R., Mocelin, R., Marcon, M., Sachett, A., Gomez, R., Rosa, A.R., Herrmann,
23 A.P. & Piato, A. (2021) Anti-stress effects of the glucagon-like peptide-1
24 receptor agonist liraglutide in zebrafish. *Progress in Neuro-
25 Psychopharmacology and Biological Psychiatry* **111**, 110388.

1 Biney, R.P., Benneh, C.K., Adongo, D.W., Ameyaw, E.O. & Woode, E. (2021)
2 Evidence of an antidepressant-like effect of xylopic acid mediated by
3 serotonergic mechanisms. *Psychopharmacology* **238**, 2105–2120.

4 Bosch, K., Sbrini, G., Burattini, I., Nieuwenhuis, D., Calabrese, F., Schubert, D.,
5 Henckens, M.J.A.G. & Homberg, J.R. (2022) Repeated testing modulates
6 chronic unpredictable mild stress effects in male rats. *Behavioural Brain
7 Research* **432**, 113960.

8 Boxelaere, M. van, Clements, J., Callaerts, P., D'Hooge, R. & Callaerts-Vegh, Z.
9 (2017) Unpredictable chronic mild stress differentially impairs social and
10 contextual discrimination learning in two inbred mouse strains. *PLOS ONE* **12**.
11 Public Library of Science.

12 Chakravarty, S., Reddy, B.R., Sudhakar, S.R., Saxena, S., Das, T., Meghah, V.,
13 Swamy, C.V.B., Kumar, A. & Idris, M.M. (2013) Chronic Unpredictable Stress
14 (CUS)-Induced Anxiety and Related Mood Disorders in a Zebrafish Model:
15 Altered Brain Proteome Profile Implicates Mitochondrial Dysfunction. *PLOS
16 ONE* **8**. Public Library of Science.

17 Chen, B., Peng, Z., Zhang, C., Lin, H., Gao, J., Zheng, H., Cao, W. & Qin, X. (2021)
18 Study on Improving Effect of Oyster Hydrolysate on Depressive Behavior of
19 Zebrafish Under Chronic Unpredictable Mild Stress. *Shipin kexue jishu xuebao*
20 **39**, 55–63. Beijing Technology and Business University, Department of Science
21 and Technology.

22 Cochran, W.G. (1954) Some Methods for Strengthening the Common χ^2 Tests.
23 *Biometrics* **10**, 417–451. Wiley, International Biometric Society.

24 Costa de Melo, N., Sánchez-Ortiz, B.L., dos Santos Sampaio, T.I., Matias Pereira,
25 A.C., Pinheiro da Silva Neto, F.L., Ribeiro da Silva, H., Alves Soares Cruz, R.,

1 Keita, H., Soares Pereira, A.M. & Tavares Carvalho, J.C. (2019) Anxiolytic and
2 Antidepressant Effects of the Hydroethanolic Extract from the Leaves of *Aloysia*
3 *polystachya* (Griseb.) Moldenke: A Study on Zebrafish (*Danio rerio*).
4 *Pharmaceuticals* **12**, 106. Multidisciplinary Digital Publishing Institute.

5 Cox, B.M., Alsawah, F., McNeill, P.C., Galloway, M.P. & Perrine, S.A. (2011)
6 Neurochemical, hormonal, and behavioral effects of chronic unpredictable
7 stress in the rat. *Behavioural Brain Research* **220**, 106–111.

8 Davis, D.J., Doerr, H.M., Grzelak, A.K., Busi, S.B., Jasarevic, E., Ericsson, A.C. &
9 Bryda, E.C. (2016) *Lactobacillus plantarum* attenuates anxiety-related behavior
10 and protects against stress-induced dysbiosis in adult zebrafish. *Scientific
11 Reports* **6**, 33726. Nature Publishing Group.

12 Demin, K.A., Kolesnikova, T.O., Galstyan, D.S., Krotova, N.A., Ilyin, N.P., Derzhavina,
13 K.A., Levchenko, N.A., Strekalova, T., de Abreu, M.S., Petersen, E.V.,
14 Seredinskaya, M., Cherneyko, Y.V., Kositsyn, Y.M., Sorokin, D.V., Zabegalov,
15 K.N., et al. (2021) Modulation of behavioral and neurochemical responses of
16 adult zebrafish by fluoxetine, eicosapentaenoic acid and lipopolysaccharide in
17 the prolonged chronic unpredictable stress model. *Scientific Reports* **11**, 14289.
18 Nature Publishing Group.

19 Demin, K.A., Lakstygal, A.M., Krotova, N.A., Masharsky, A., Tagawa, N., Chernysh,
20 M.V., Ilyin, N.P., Taranov, A.S., Galstyan, D.S., Derzhavina, K.A., Levchenko,
21 N.A., Kolesnikova, T.O., Mor, M.S., Vasyutina, M.L., Efimova, E.V., et al. (2020)
22 Understanding complex dynamics of behavioral, neurochemical and
23 transcriptomic changes induced by prolonged chronic unpredictable stress in
24 zebrafish. *Scientific Reports* **10**, 19981. Nature Publishing Group.

25 Duval, S. & Tweedie, R. (2000) Trim and Fill: A Simple Funnel-Plot-Based Method of

1 Testing and Adjusting for Publication Bias in Meta-Analysis. *Biometrics* **56**,
2 455–463.

3 van Eck, N.J. & Waltman, L. (2007) VOS: A New Method for Visualizing Similarities
4 Between Objects. In *Advances in Data Analysis* (eds R. Decker & H.-J. Lenz),
5 pp. 299–306. Springer, Berlin, Heidelberg.

6 van Eck, N.J. & Waltman, L. (2010) Software survey: VOSviewer, a computer program
7 for bibliometric mapping. *Scientometrics* **84**, 523–538.

8 Egger, M., Smith, G.D., Schneider, M. & Minder, C. (1997) Bias in meta-analysis
9 detected by a simple, graphical test. *BMJ* **315**, 629–634. British Medical Journal
10 Publishing Group.

11 Fontana, B.D., Cleal, M., Norton, W.H.J. & Parker, M.O. (2021a) The impact of chronic
12 unpredictable early-life stress (CUELS) on boldness and stress-reactivity:
13 Differential effects of stress duration and context of testing. *Physiology &*
14 *Behavior* **240**, 113526.

15 Fontana, B.D., Gibbon, A.J., Cleal, M., Norton, W.H.J. & Parker, M.O. (2021b) Chronic
16 unpredictable early-life stress (CUELS) protocol: Early-life stress changes
17 anxiety levels of adult zebrafish. *Progress in Neuro-Psychopharmacology and*
18 *Biological Psychiatry* **108**, 110087.

19 Fontana, B.D., Gibbon, A.J., Cleal, M., Sudwarts, A., Pritchett, D., Miletto Petrazzini,
20 M.E., Brennan, C.H. & Parker, M.O. (2021c) Moderate early life stress improves
21 adult zebrafish (*Danio rerio*) working memory but does not affect social and
22 anxiety-like responses. *Developmental Psychobiology* **63**, 54–64.

23 Fulcher, N., Tran, S., Shams, S., Chatterjee, D. & Gerlai, R. (2017) Neurochemical
24 and Behavioral Responses to Unpredictable Chronic Mild Stress Following
25 Developmental Isolation: The Zebrafish as a Model for Major Depression.

1 *Zebrafish* **14**, 23–34. Mary Ann Liebert, Inc., publishers.

2 Gallas-Lopes, M., Herrmann, A.P., Benvenutti, R., Pianta, A., Panzenhagen, A.C. &

3 Bastos, L.M. (2021) Unpredictable chronic stress in zebrafish: a systematic

4 review. OSF.

5 Gerlai, R. (2019) Reproducibility and replicability in zebrafish behavioral neuroscience

6 research. *Pharmacology Biochemistry and Behavior* **178**, 30–38.

7 Golla, A., Østby, H. & Kermen, F. (2020) Chronic unpredictable stress induces anxiety-

8 like behaviors in young zebrafish. *Scientific Reports* **10**, 10339. Nature

9 Publishing Group.

10 Grzelak, A.K., Davis, D.J., Caraker, S.M., Crim, M.J., Spitsbergen, J.M. & Wiedmeyer,

11 C.E. (2017) Stress Leukogram Induced by Acute and Chronic Stress in

12 Zebrafish (*Danio rerio*). *Comparative Medicine* **67**, 263–269.

13 Higgins, J.P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J. & Welch,

14 V.A. (2019) *Cochrane handbook for systematic reviews of interventions*. John

15 Wiley & Sons.

16 Higgins, J.P.T. & Thompson, S.G. (2002) Quantifying heterogeneity in a meta-

17 analysis. *Statistics in Medicine* **21**, 1539–1558.

18 Hooijmans, C.R., Rovers, M.M., de Vries, R.B., Leenaars, M., Ritskes-Hoitinga, M. &

19 Langendam, M.W. (2014) SYRCLE's risk of bias tool for animal studies. *BMC*

20 *Medical Research Methodology* **14**, 43.

21 Huang, V., Butler, A.A. & Lubin, F.D. (2019) Telencephalon transcriptome analysis of

22 chronically stressed adult zebrafish. *Scientific Reports* **9**, 1379. Nature

23 Publishing Group.

24 Jankord, R., Solomon, M.B., Albertz, J., Flak, J.N., Zhang, R. & Herman, J.P. (2011)

25 Stress Vulnerability during Adolescent Development in Rats. *Endocrinology*

1 152, 629–638.

2 Jayamurali, D. & Govindarajulu, S.N. (2017) Impact of chronic unpredictable stress on
3 the expression of apoptotic genes in zebrafish brain. *International Journal of*
4 *Pharmaceutical Sciences and Research* **8**, 4363–4370.

5 Katz, R.J. (1982) Animal model of depression: pharmacological sensitivity of a hedonic
6 deficit. *Pharmacology, Biochemistry, and Behavior* **16**, 965–968.

7 Katz, R.J. & Hersh, S. (1981) Amitriptyline and scopolamine in an animal model of
8 depression. *Neuroscience and Biobehavioral Reviews* **5**, 265–271.

9 Katz, R.J., Roth, K.A. & Carroll, B.J. (1981) Acute and chronic stress effects on open
10 field activity in the rat: implications for a model of depression. *Neuroscience and*
11 *Biobehavioral Reviews* **5**, 247–251.

12 Kirsten, K., Pompermaier, A., Koakoski, G., Mendonça-Soares, S., da Costa, R.A.,
13 Maffi, V.C., Kreutz, L.C. & Barcellos, L.J.G. (2021) Acute and chronic stress
14 differently alter the expression of cytokine and neuronal markers genes in
15 zebrafish brain. *Stress* **24**, 107–112. Taylor & Francis.

16 Knapp, G. & Hartung, J. (2003) Improved tests for a random effects meta-regression
17 with a single covariate. *Statistics in Medicine* **22**, 2693–2710.

18 Kompagne, H., Bárdos, G., Szénási, G., Gacsályi, I., Hársing, L.G. & Lévay, G. (2008)
19 Chronic mild stress generates clear depressive but ambiguous anxiety-like
20 behaviour in rats. *Behavioural Brain Research* **193**, 311–314.

21 Kumar, B., Kuhad, A. & Chopra, K. (2011) Neuropsychopharmacological effect of
22 sesamol in unpredictable chronic mild stress model of depression: behavioral
23 and biochemical evidences. *Psychopharmacology* **214**, 819–828.

24 Lages, Y.V.M., Rossi, A.D., Krahe, T.E. & Landeira-Fernandez, J. (2021) Effect of
25 chronic unpredictable mild stress on the expression profile of serotonin

1 receptors in rats and mice: a meta-analysis. *Neuroscience & Biobehavioral*
2 *Reviews* **124**, 78–88.

3 Landis, S.C., Amara, S.G., Asadullah, K., Austin, C.P., Blumenstein, R., Bradley, E.W.,
4 Crystal, R.G., Darnell, R.B., Ferrante, R.J., Fillit, H., Finkelstein, R., Fisher, M.,
5 Gendelman, H.E., Golub, R.M., Goudreau, J.L., et al. (2012) A call for
6 transparent reporting to optimize the predictive value of preclinical research.
7 *Nature* **490**, 187–191. Nature Publishing Group.

8 Macleod, M.R., McLean, A.L., Kyriakopoulou, A., Serghiou, S., Wilde, A. de, Sherratt,
9 N., Hirst, T., Hemblade, R., Bahor, Z., Nunes-Fonseca, C., Potluru, A.,
10 Thomson, A., Baginskite, J., Egan, K., Vesterinen, H., et al. (2015) Risk of
11 Bias in Reports of In Vivo Research: A Focus for Improvement. *PLOS Biology*
12 **13**. Public Library of Science.

13 Manuel, R., Gorissen, M., Zethof, J., Ebbesson, L.O.E., van de Vis, H., Flik, G. & van
14 den Bos, R. (2014) Unpredictable chronic stress decreases inhibitory
15 avoidance learning in Tuebingen long-fin zebrafish: stronger effects in the
16 resting phase than in the active phase. *Journal of Experimental Biology* **217**,
17 3919–3928.

18 Marcon, M., Herrmann, A.P., Mocelin, R., Rambo, C.L., Koakoski, G., Abreu, M.S.,
19 Conterato, G.M.M., Kist, L.W., Bogo, M.R., Zanatta, L., Barcellos, L.J.G. &
20 Pianto, A.L. (2016) Prevention of unpredictable chronic stress-related
21 phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline.
22 *Psychopharmacology* **233**, 3815–3824.

23 Marcon, M., Mocelin, R., Benvenutti, R., Costa, T., Herrmann, A.P., de Oliveira, D.L.,
24 Koakoski, G., Barcellos, L.J.G. & Pianto, A. (2018a) Environmental enrichment
25 modulates the response to chronic stress in zebrafish. *Journal of Experimental*

1 *Biology* **221**.

2 Marcon, M., Mocelin, R., de Oliveira, D.L., da Rosa Araujo, A.S., Herrmann, A.P. &

3 Piato, A. (2019) Acetyl-L-carnitine as a putative candidate for the treatment of

4 stress-related psychiatric disorders: Novel evidence from a zebrafish model.

5 *Neuropharmacology* **150**, 145–152.

6 Marcon, M., Mocelin, R., Sachett, A., Siebel, A.M., Herrmann, A.P. & Piato, A. (2018b)

7 Enriched environment prevents oxidative stress in zebrafish submitted to

8 unpredictable chronic stress. *PeerJ* **6**. PeerJ Inc.

9 Maximino, C., Silva, R., da Silva, S. de N., Rodrigues, L. do S., Barbosa, H., de

10 Carvalho, T., Leão, L.K., Lima, M., Oliveira, K.R. & Herculano, A. (2015) Non-

11 mammalian models in behavioral neuroscience: consequences for biological

12 psychiatry. *Frontiers in Behavioral Neuroscience* **9**.

13 McGuinness, L.A. & Higgins, J.P.T. (2021) Risk-of-bias VISualization (robvis): An R

14 package and Shiny web app for visualizing risk-of-bias assessments. *Research*

15 *Synthesis Methods* **12**, 55–61.

16 Miller, R.G. (1974) The jackknife-a review. *Biometrika* **61**, 1–15.

17 Mocelin, R., Marcon, M., D'ambros, S., Mattos, J., Sachett, A., Siebel, A.M.,

18 Herrmann, A.P. & Piato, A. (2019) N-Acetylcysteine Reverses Anxiety and

19 Oxidative Damage Induced by Unpredictable Chronic Stress in Zebrafish.

20 *Molecular Neurobiology* **56**, 1188–1195.

21 Nollet, M. (2021) Models of Depression: Unpredictable Chronic Mild Stress in Mice.

22 *Current Protocols* **1**.

23 O'Daniel, M.P. & Petrunich-Rutherford, M.L. (2020) Effects of chronic prazosin, an

24 alpha-1 adrenergic antagonist, on anxiety-like behavior and cortisol levels in a

25 chronic unpredictable stress model in zebrafish (*Danio rerio*). *PeerJ* **8**, e8472.

1 PeerJ Inc.

2 Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. (2016) Rayyan—a web
3 and mobile app for systematic reviews. *Systematic Reviews* **5**, 210.

4 Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D.,
5 Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J.,
6 Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., et al. (2021) The PRISMA 2020
7 statement: an updated guideline for reporting systematic reviews. *BMJ* **372**,
8 n71. British Medical Journal Publishing Group.

9 Palucha-Poniewiera, A., Podkowa, K., Rafalo-Ulinska, A., Branski, P. & Burnat, G.
10 (2020) The influence of the duration of chronic unpredictable mild stress on the
11 behavioural responses of C57BL/6J mice. *Behavioural Pharmacology* **31**, 574–
12 582.

13 Pavlidis, M., Theodoridi, A. & Tsalaftouta, A. (2015) Neuroendocrine regulation of the
14 stress response in adult zebrafish, *Danio rerio*. *Progress in Neuro-
15 Psychopharmacology and Biological Psychiatry* **60**, 121–131.

16 Piato, Â.L., Capiotti, K.M., Tamborski, A.R., Osés, J.P., Barcellos, L.J.G., Bogo, M.R.,
17 Lara, D.R., Vianna, M.R. & Bonan, C.D. (2011) Unpredictable chronic stress
18 model in zebrafish (*Danio rerio*): Behavioral and physiological responses.
19 *Progress in Neuro-Psychopharmacology and Biological Psychiatry* **35**, 561–
20 567.

21 Rambo, C.L., Mocelin, R., Marcon, M., Villanova, D., Koakoski, G., de Abreu, M.S.,
22 Oliveira, T.A., Barcellos, L.J.G., Piato, A.L. & Bonan, C.D. (2017) Gender
23 differences in aggression and cortisol levels in zebrafish subjected to
24 unpredictable chronic stress. *Physiology & Behavior* **171**, 50–54.

25 Reddy, B.R., Babu, N.S., Das, T., Bhattacharya, D., Murthy, Ch.L.N., Kumar, A., Idris,

1 M.M. & Chakravarty, S. (2021) Proteome profile of telencephalon associates
2 attenuated neurogenesis with chronic stress induced mood disorder
3 phenotypes in zebrafish model. *Pharmacology Biochemistry and Behavior* **204**.

4 Reddy, R. G., Dachavaram, S. S., Reddy, B. R., Kalyankar, K. B., Rajan, W. D.,
5 Kootar, S., Kumar, A., Das, S. & Chakravarty, S. (2018). Fellutamide B
6 Synthetic Path Intermediates with in Vitro Neuroactive Function Shows Mood-
7 Elevating Effect in Stress-Induced Zebrafish Model. *ACS omega*, **3(9)**, 10534-
8 10544.

9 Reddy, R.G., Surineni, G., Bhattacharya, D., Marvadi, S.K., Sagar, A., Kalle, A.M.,
10 Kumar, A., Kantevari, S. & Chakravarty, S. (2019) Crafting Carbazole-Based
11 Vorinostat and Tubastatin-A-like Histone Deacetylase (HDAC) Inhibitors with
12 Potent in Vitro and in Vivo Neuroactive Functions. *ACS Omega* **4**, 17279–
13 17294. American Chemical Society.

14 Richardson, M., Garner, P. & Donegan, S. (2019) Interpretation of subgroup analyses
15 in systematic reviews: A tutorial. *Clinical Epidemiology and Global Health* **7**,
16 192–198.

17 Rosdy, M.S., Rofiee, M.S., Samsulrizal, N., Salleh, M.Z. & Teh, L.K. (2021)
18 Understanding the effects of *Moringa oleifera* in chronic unpredictable stressed
19 zebrafish using metabolomics analysis. *Journal of Ethnopharmacology* **278**,
20 114290.

21 Samsa, G. & Samsa, L. (2019) A Guide to Reproducibility in Preclinical Research.
22 *Academic Medicine* **94**, 47–52.

23 dos Santos Sampaio, T.I., de Melo, N.C., de Freitas Paiva, B.T., da Silva Aleluia, G.A.,
24 da Silva Neto, F.L.P., da Silva, H.R., Keita, H., Cruz, R.A.S., Sánchez-Ortiz,
25 Pineda-Peña, E.A., Balderas, J.L., Navarrete, A. & Carvalho, J.C.T. (2018)

1 Leaves of *Spondias mombin* L. a traditional anxiolytic and antidepressant:
2 Pharmacological evaluation on zebrafish (*Danio rerio*). *Journal of*
3 *Ethnopharmacology* **224**, 563–578.

4 Sequeira-Cordero, A., Salas-Bastos, A., Fornaguera, J. & Brenes, J.C. (2019)
5 Behavioural characterisation of chronic unpredictable stress based on
6 ethologically relevant paradigms in rats. *Scientific Reports* **9**, 17403. Nature
7 Publishing Group.

8 Sert, N.P. du, Hurst, V., Ahluwalia, A., Alam, S., Avey, M.T., Baker, M., Browne, W.J.,
9 Clark, A., Cuthill, I.C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S.T.,
10 Howells, D.W., Karp, N.A., et al. (2020) The ARRIVE guidelines 2.0: Updated
11 guidelines for reporting animal research. *PLOS Biology* **18**, e3000410. Public
12 Library of Science.

13 Shams, S., Khan, A. & Gerlai, R. (2021) Early social deprivation does not affect cortisol
14 response to acute and chronic stress in zebrafish. *Stress* **24**, 273–281. Taylor
15 & Francis.

16 Song, C., Liu, B.-P., Zhang, Y.-P., Peng, Z., Wang, J., Collier, A.D., Echevarria, D.J.,
17 Savelieva, K.V., Lawrence, R.F., Rex, C.S., Meshalkina, D.A. & Kalueff, A.V.
18 (2018) Modeling consequences of prolonged strong unpredictable stress in
19 zebrafish: Complex effects on behavior and physiology. *Progress in Neuro-
20 Psychopharmacology and Biological Psychiatry* **81**, 384–394.

21 Strekalova, T. & Steinbusch, H. (2009) Factors of Reproducibility of Anhedonia
22 Induction in a Chronic Stress Depression Model in Mice. In *Mood and Anxiety
23 Related Phenotypes in Mice: Characterization Using Behavioral Tests* (ed T.D.
24 Gould), pp. 153–176. Humana Press, Totowa, NJ.

25 Thomson, J.S., Deakin, A.G., Cossins, A.R., Spencer, J.W., Young, I.S. & Sneddon,

1 L.U. (2020) Acute and chronic stress prevents responses to pain in zebrafish:
2 evidence for stress-induced analgesia. *Journal of Experimental Biology* **223**.

3 Veroniki, A.A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G.,
4 Kuss, O., Higgins, J.P., Langan, D. & Salanti, G. (2016) Methods to estimate
5 the between-study variance and its uncertainty in meta-analysis. *Research
6 Synthesis Methods* **7**, 55–79.

7 Vesterinen, H.M., Sena, E.S., Egan, K.J., Hirst, T.C., Churolov, L., Currie, G.L.,
8 Antonic, A., Howells, D.W. & Macleod, M.R. (2014) Meta-analysis of data from
9 animal studies: A practical guide. *Journal of Neuroscience Methods* **221**, 92–
10 102.

11 Viechtbauer, W. (2005) Bias and Efficiency of Meta-Analytic Variance Estimators in
12 the Random-Effects Model. *Journal of Educational and Behavioral Statistics* **30**,
13 261–293.

14 Weber-Stadlbauer, U. & Meyer, U. (2019) Challenges and opportunities of a-priori and
15 a-posteriori variability in maternal immune activation models. *Current Opinion
16 in Behavioral Sciences* **28**, 119–128.

17 Wilkinson, L. (2011) ggplot2: Elegant Graphics for Data Analysis by WICKHAM, H.
18 *Biometrics* **67**, 678–679.

19 Willner, P. (1997) Validity, reliability and utility of the chronic mild stress model of
20 depression: a 10-year review and evaluation. *Psychopharmacology* **134**, 319–
21 329.

22 Willner, P. (2017a) The chronic mild stress (CMS) model of depression: History,
23 evaluation and usage. *Neurobiology of Stress* **6**, 78–93.

24 Willner, P. (2017b) Reliability of the chronic mild stress model of depression: A user
25 survey. *Neurobiology of Stress* **6**, 68–77.

1 Willner, P., Towell, A., Sampson, D., Sophokleous, S. & Muscat, R. (1987) Reduction
2 of sucrose preference by chronic unpredictable mild stress, and its restoration
3 by a tricyclic antidepressant. *Psychopharmacology* **93**, 358–364.

4 Worp, H.B. van der, Howells, D.W., Sena, E.S., Porritt, M.J., Rewell, S., O'Collins, V.
5 & Macleod, M.R. (2010) Can Animal Models of Disease Reliably Inform Human
6 Studies? *PLOS Medicine* **7**. Public Library of Science.

7 Zhang, R., Qiao, C., Liu, Q., He, J., Lai, Y., Shang, J. & Zhong, H. (2021) A Reliable
8 High-Throughput Screening Model for Antidepressant. *International Journal of
9 Molecular Sciences* **22**, 9505. Multidisciplinary Digital Publishing Institute.

10 Zhu, S., Shi, R., Wang, J., Wang, J.-F. & Li, X.-M. (2014) Unpredictable chronic mild
11 stress not chronic restraint stress induces depressive behaviours in mice.
12 *NeuroReport* **25**, 1151–1155.

13 Zimmermann, F.F., Altenhofen, S., Kist, L.W., Leite, C.E., Bogo, M.R., Cognato, G.P.
14 & Bonan, C.D. (2016) Unpredictable Chronic Stress Alters Adenosine
15 Metabolism in Zebrafish Brain. *Molecular Neurobiology* **53**, 2518–2528.

Figure legends

Fig. 1. Flowchart diagram of the collection of studies and selection process.

Fig. 2. Co-authorship network analysis of researchers that authored studies implementing the unpredictable chronic stress protocol (UCS) in zebrafish. Authors are colour-coded from violet (older studies) to yellow (more recent studies) indicating the average publication year of the studies published by each researcher. The size of the circles represents the number of studies published by each author. The distance between the two circles indicates the correlations between researchers.

Fig. 3. Risk of bias assessment of included studies. The risk of bias assessment was performed by two independent investigators based on the SYRCLE's risk of bias assessment tool. Items 1 to 7 account for methodological quality and were scored as presenting a high, unclear or low risk of bias. Items 8.1 to 8.4 evaluate the reporting quality of the studies and were scored as presenting a high or low risk of bias. Classification is given as the percentage of assessed studies ($n = 38$) presenting each score.

Fig. 4. The effect of unpredictable chronic stress (UCS) protocol on anxiety/fear-related behaviour of zebrafish. Subgroup analyses were based on the duration of the stress protocol (either ≤ 7 days or > 7 days of stress). Data are presented as Hedges' G standardised mean differences (SMD) and 95% confidence intervals.

Fig. 5. The effect of unpredictable chronic stress (UCS) protocol on the locomotor function of zebrafish. Subgroup analyses were based on the duration of the stress protocol (either ≤ 7 days or > 7 days of stress). Data are presented as Hedges' G standardised mean differences (SMD) and 95% confidence intervals.

Fig. 6. The effect of unpredictable chronic stress (UCS) protocol on the social behaviour of zebrafish. Data are presented as Hedges' G standardised mean differences (SMD) and 95% confidence intervals.

Fig. 7. The effect of unpredictable chronic stress (UCS) protocol on cortisol levels in zebrafish. Subgroup analyses were based on the duration of the stress protocol (either ≤ 7 days or > 7 days of stress). Data are presented as Hedges' G standardised mean differences (SMD) and 95% confidence intervals.

Fig. 8. Funnel plots including studies analysed within each domain of interest: (A) anxiety/fear-related behaviour, (B) locomotor function, (C) social behaviour, and (D) cortisol levels. Each grey circle represents a single comparison. Hollow circles represent imputed studies in the trim and fill analysis. The vertical line represents the overall effect size and the triangular region represents the 95% confidence interval. Shaded areas represent the interval for statistically significant effects.

Fig. 9. Sensitivity analyses for studies with a high risk of bias. The analyses were conducted by excluding studies presenting a significant risk of bias, defined as either a high risk of bias in one of the main items evaluating methodological quality in the risk of bias assessment (items 1 to 7), or an unclear risk of bias in five or more of the same items. Analyses were conducted for (A) anxiety/fear-related behaviour, (B) locomotor function, (C) social behaviour, and (D) cortisol levels. Data are presented as Hedges' G standardised mean differences (SMD) and 95% confidence intervals.

Fig. 1

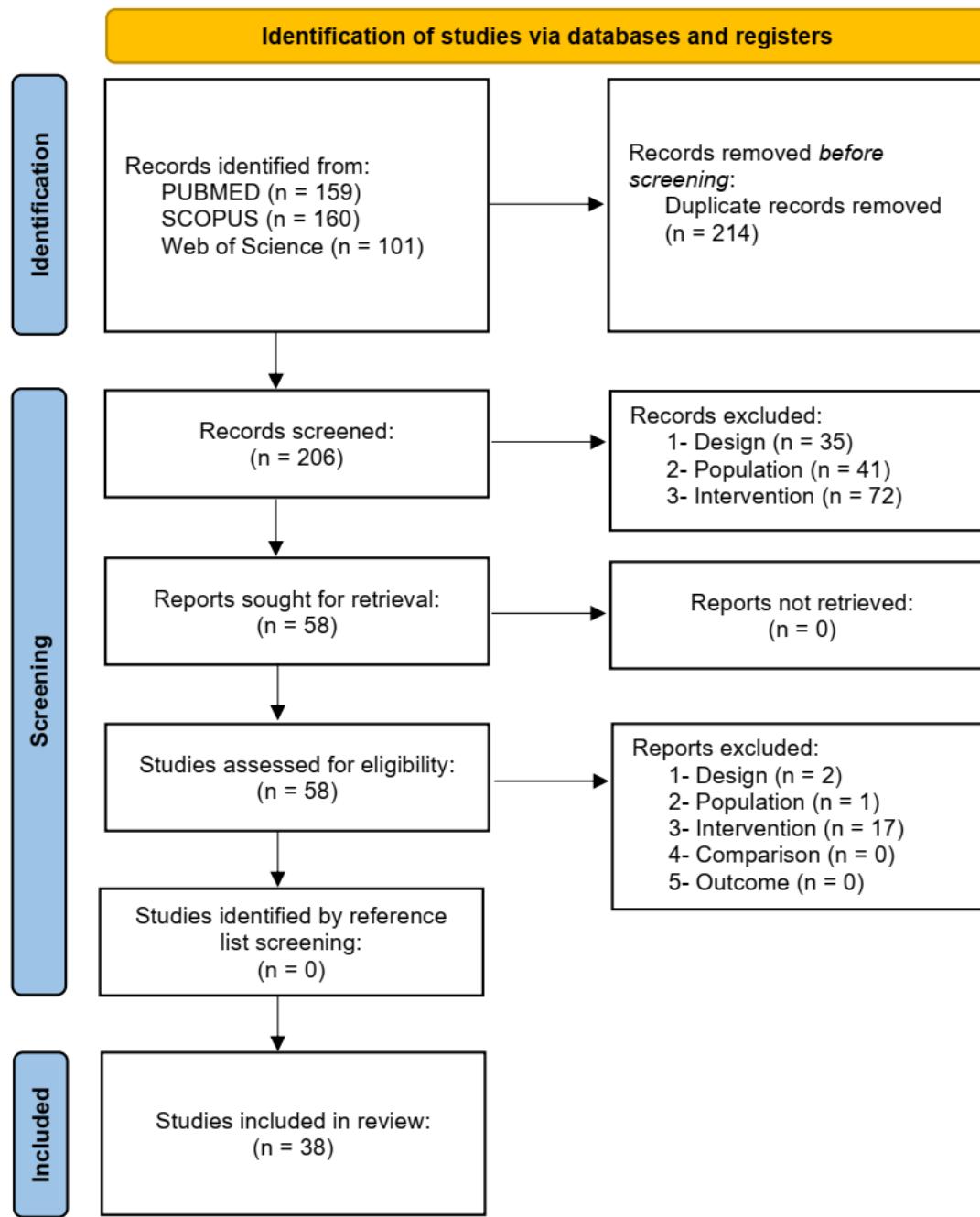
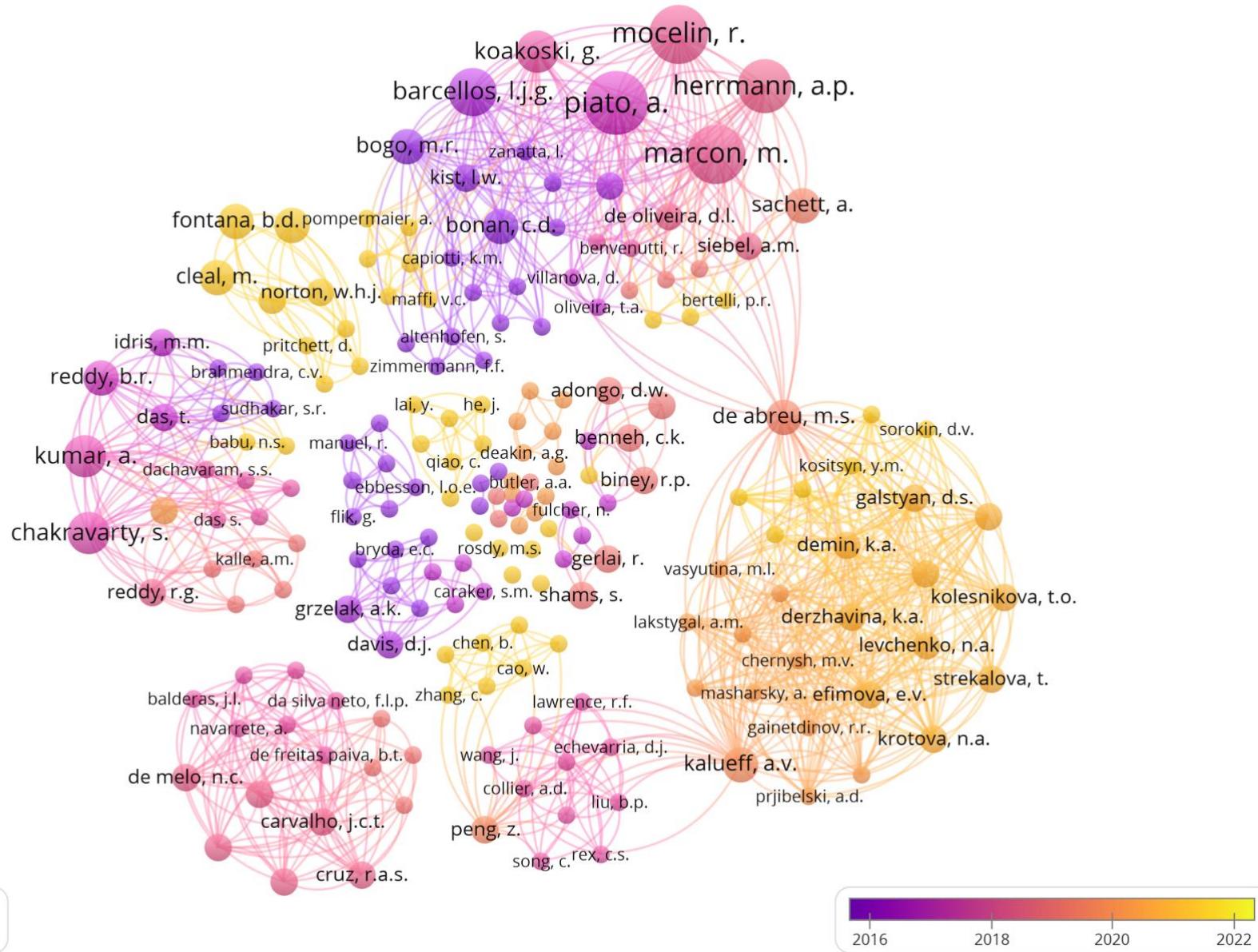
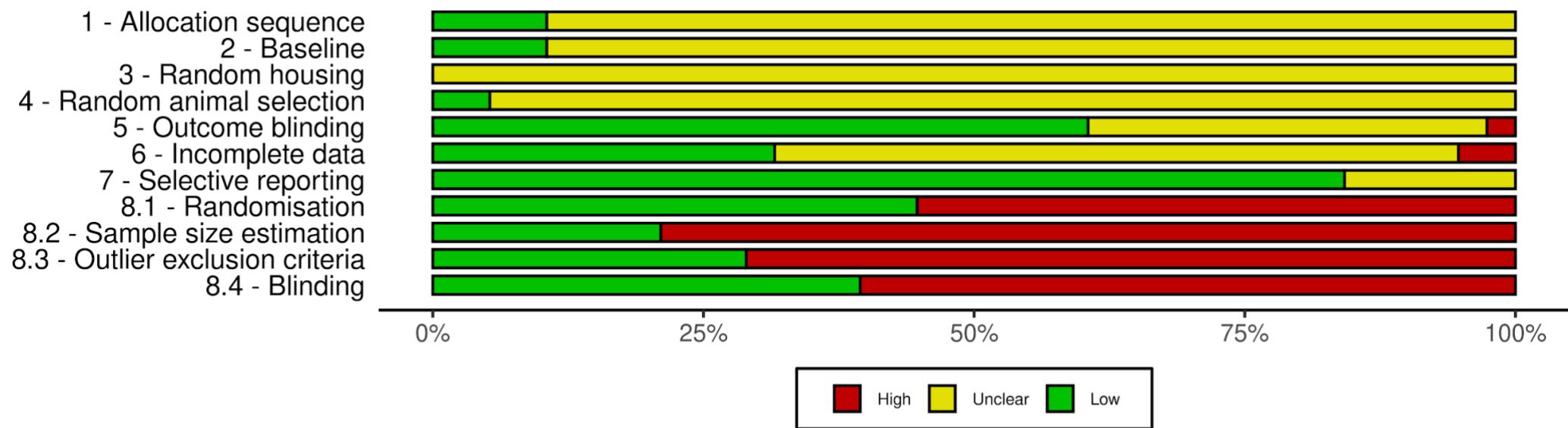
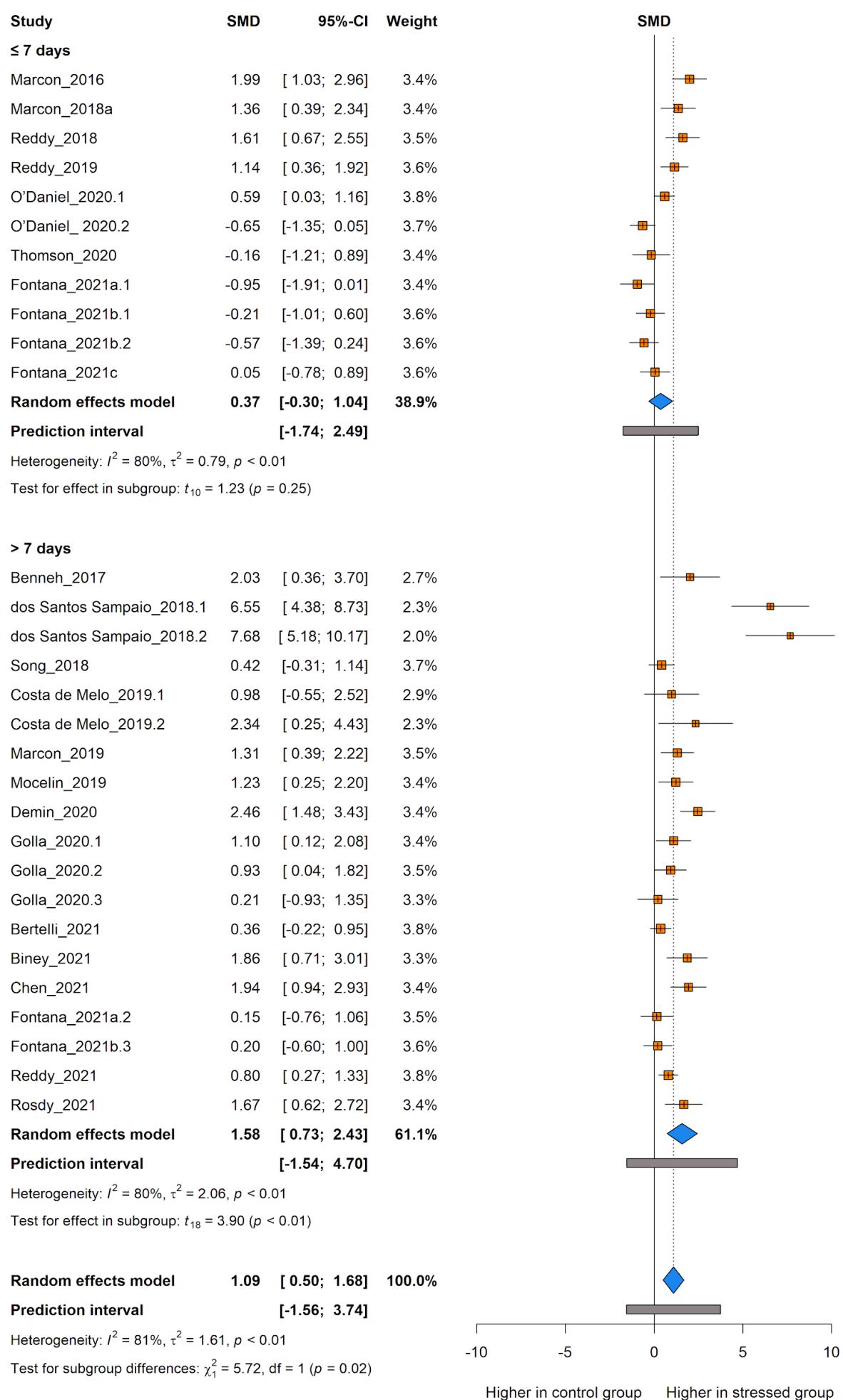
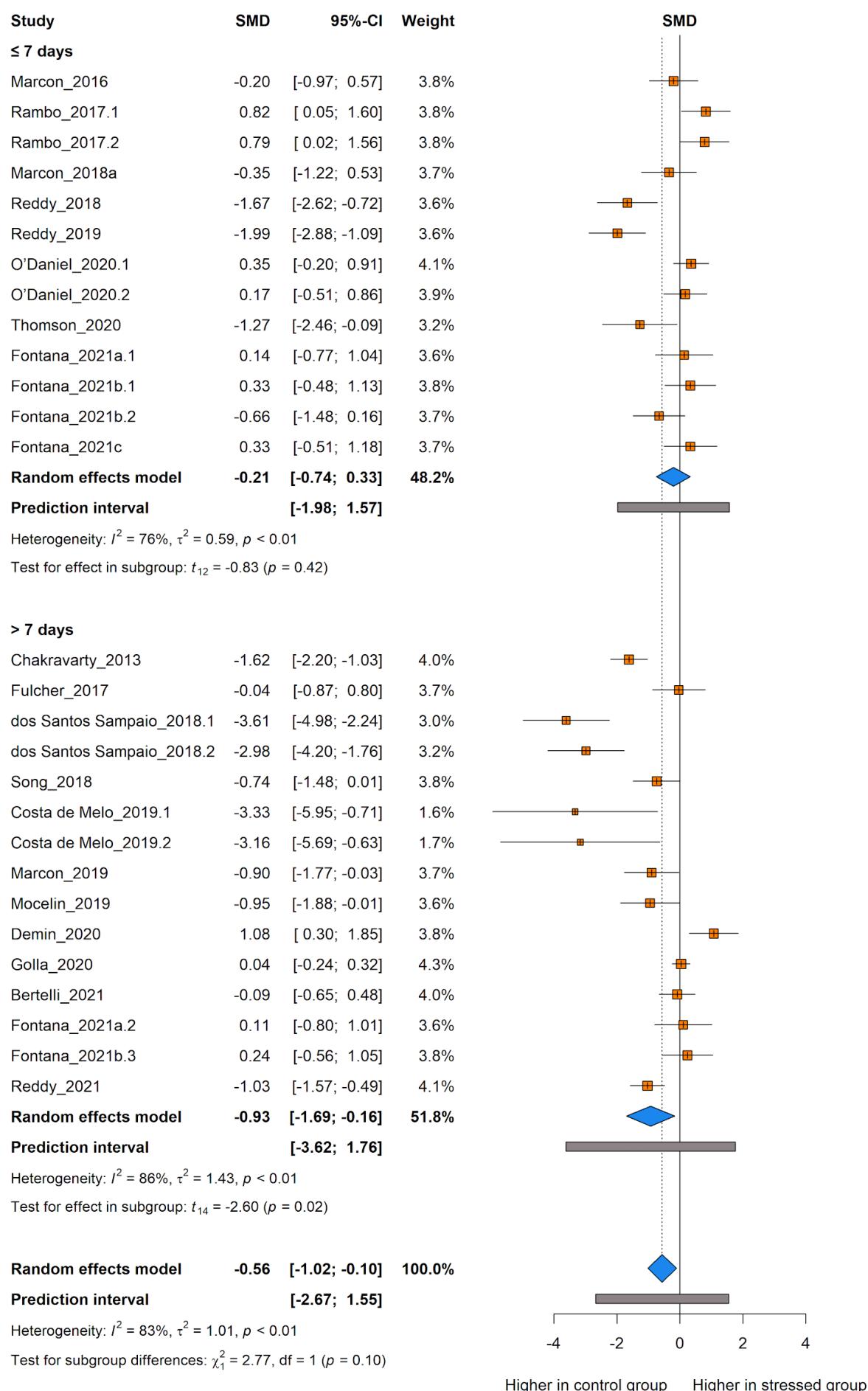


Fig. 2


Fig. 3

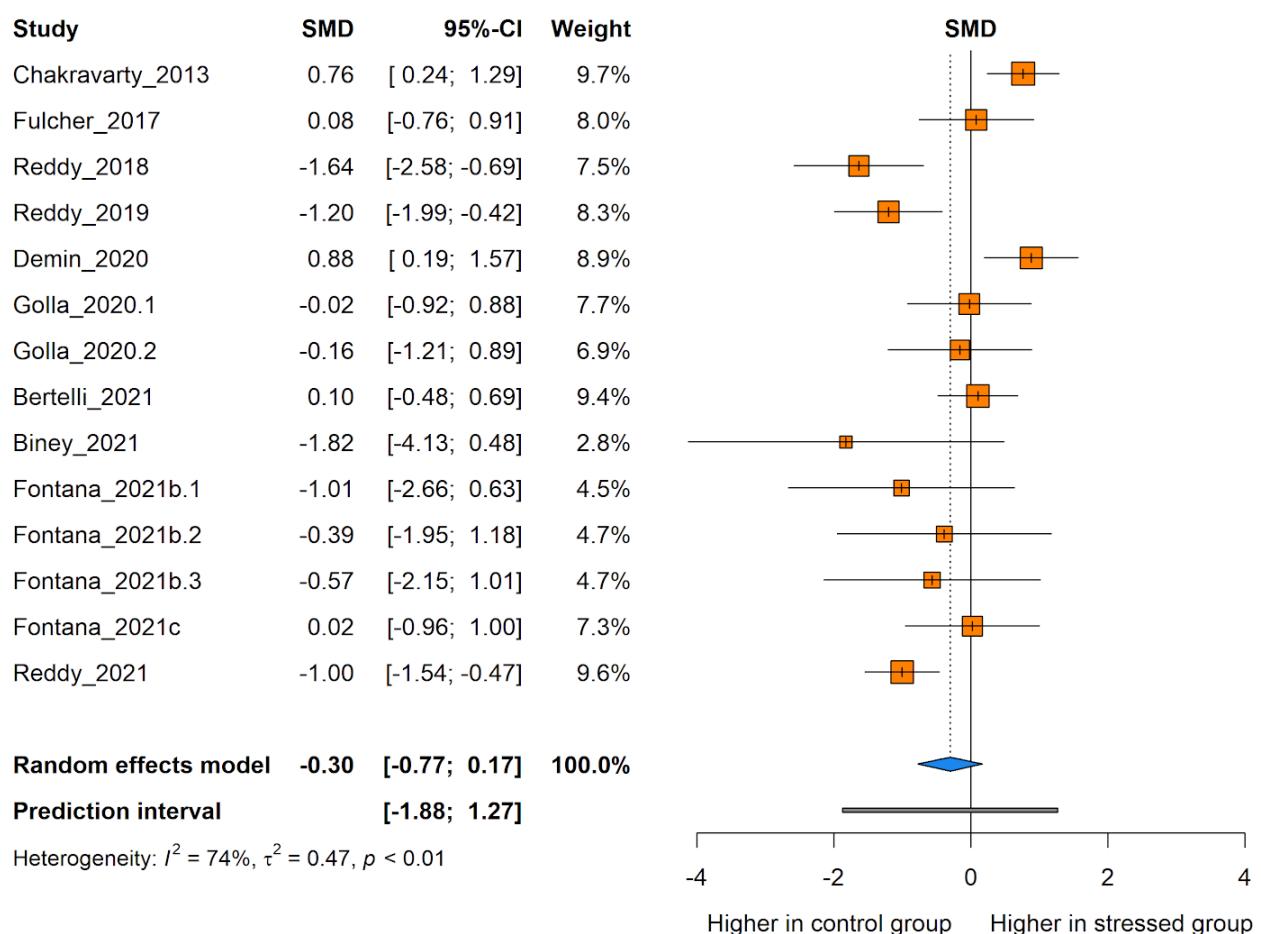

Fig. 4

Fig. 5

Fig. 6

Fig. 7

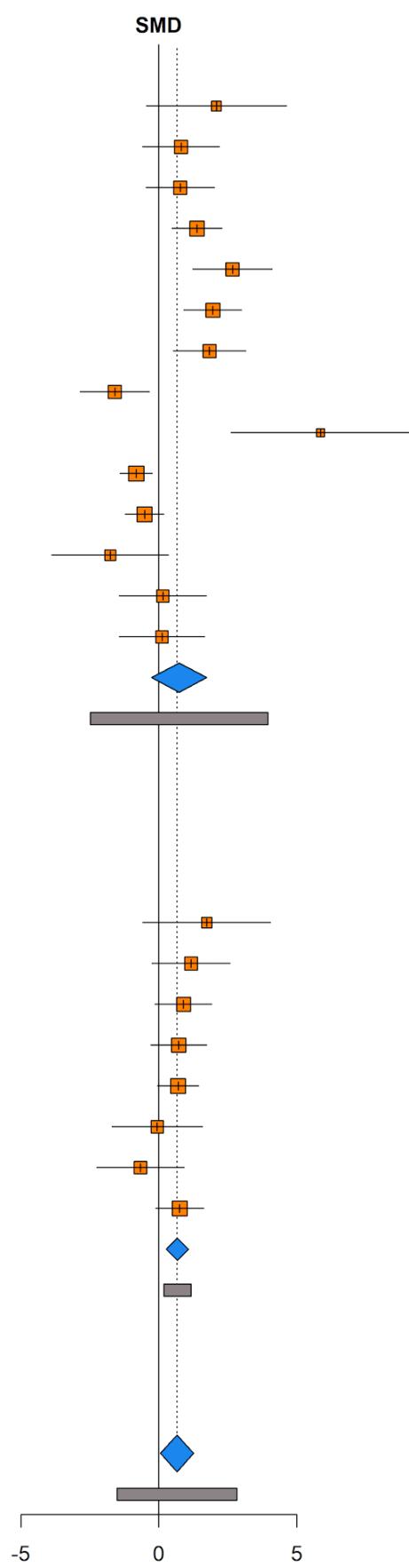
Study	SMD	95%-CI	Weight
≤ 7 days			
Piato_2011.1	2.09	[-0.46; 4.63]	2.5%
Manuel_2014.1	0.81	[-0.58; 2.20]	4.5%
Manuel_2014.3	0.78	[-0.46; 2.01]	4.9%
Davis_2016	1.38	[0.47; 2.29]	5.6%
Marcon_2016	2.67	[1.23; 4.11]	4.4%
Grzelak_2017	1.96	[0.91; 3.00]	5.3%
Rambo_2017.1	1.84	[0.52; 3.15]	4.7%
Rambo_2017.2	-1.60	[-2.85; -0.34]	4.8%
Marcon_2018a	5.86	[2.62; 9.10]	1.8%
O'Daniel_2020.1	-0.82	[-1.40; -0.24]	6.2%
O'Daniel_2020.2	-0.52	[-1.21; 0.18]	6.0%
Fontana_2021a.1	-1.76	[-3.88; 0.36]	3.1%
Fontana_2021b.1	0.15	[-1.43; 1.72]	4.1%
Fontana_2021b.2	0.12	[-1.44; 1.67]	4.2%
Random effects model	0.73	[-0.27; 1.74]	62.3%
Prediction interval		[-2.49; 3.95]	

Heterogeneity: $I^2 = 83\%$, $\tau^2 = 2.00$, $p < 0.01$

Test for effect in subgroup: $t_{13} = 1.58$ ($p = 0.14$)

> 7 days

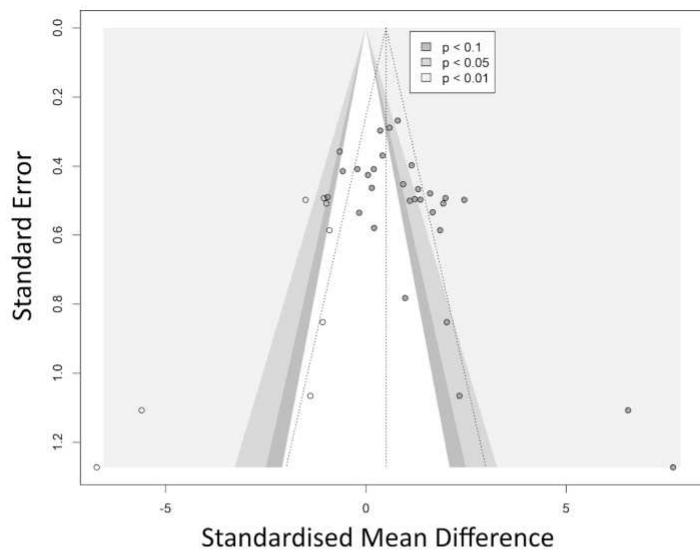
Piato_2011.2	1.74	[-0.58; 4.05]	2.8%
Manuel_2014.2	1.17	[-0.26; 2.59]	4.5%
Pavlidis_2015.1	0.90	[-0.14; 1.93]	5.3%
Pavlidis_2015.2	0.72	[-0.29; 1.74]	5.4%
Song_2018	0.70	[-0.05; 1.45]	5.9%
Fontana_2021a.2	-0.06	[-1.70; 1.58]	4.0%
Fontana_2021b.3	-0.66	[-2.26; 0.93]	4.1%
Shams_2021	0.76	[-0.11; 1.63]	5.7%
Random effects model	0.68	[0.28; 1.08]	37.7%
Prediction interval		[0.19; 1.17]	


Heterogeneity: $I^2 = 0\%$, $\tau^2 = < 0.01$, $p = 0.66$

Test for effect in subgroup: $t_7 = 4.02$ ($p < 0.01$)

Random effects model	0.66	[0.06; 1.25]	100.0%
Prediction interval		[-1.51; 2.83]	

Heterogeneity: $I^2 = 75\%$, $\tau^2 = 1.01$, $p < 0.01$


Test for subgroup differences: $\chi^2_1 = 0.01$, $df = 1$ ($p = 0.92$)

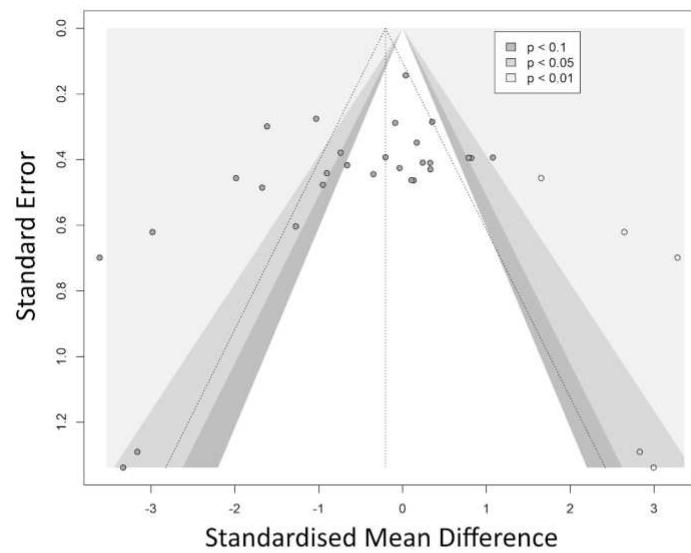
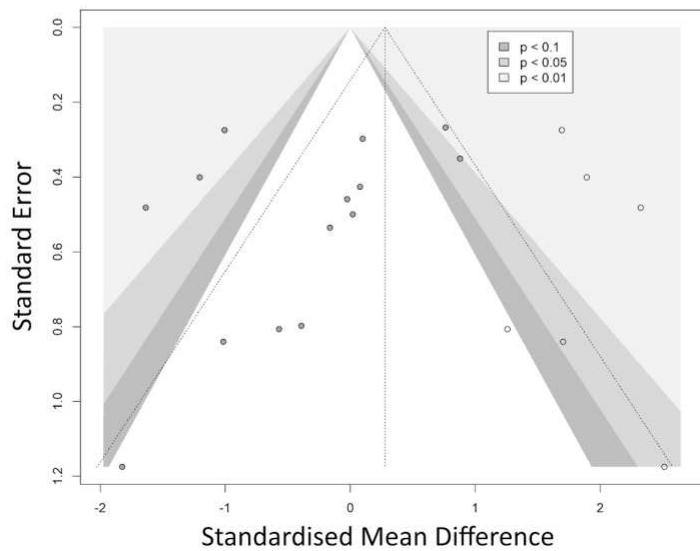
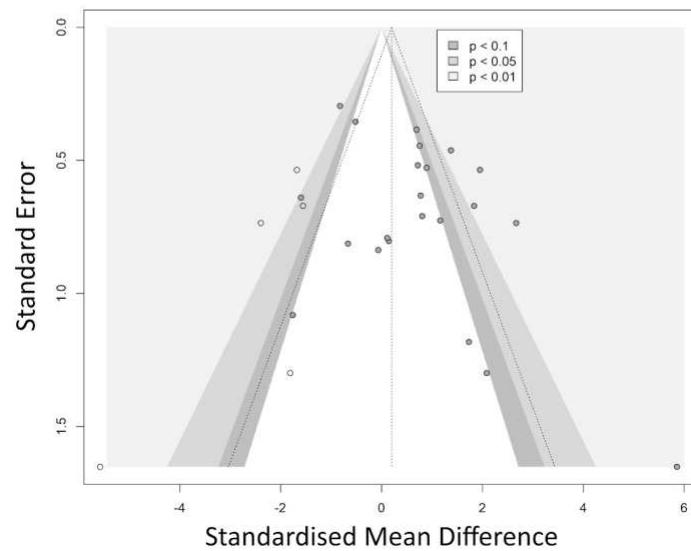
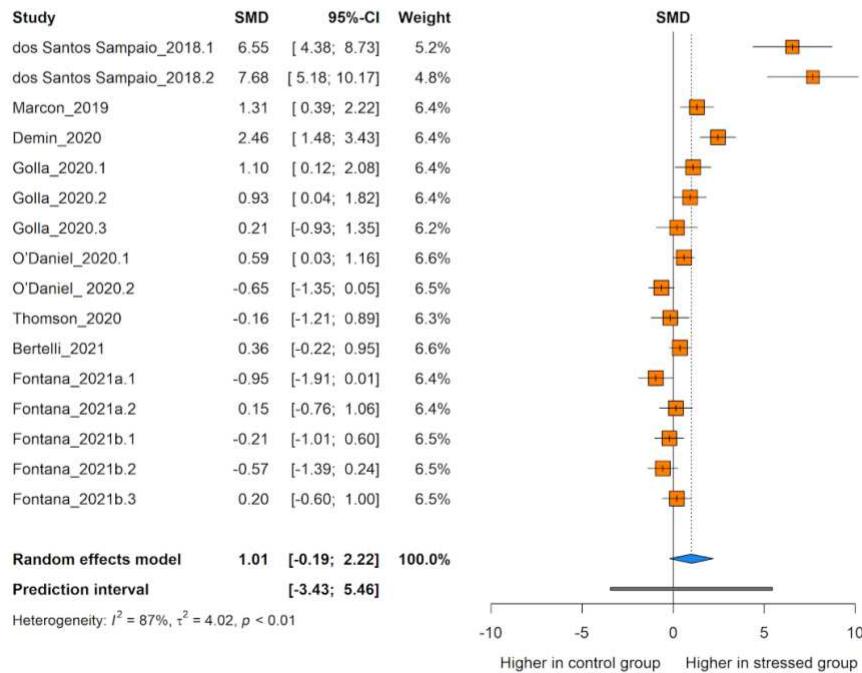

Higher in control group Higher in stressed group

Fig. 8


(A) Anxiety/fear-related behaviour


(B) Locomotor function

(C) Social behaviour



(D) Cortisol levels

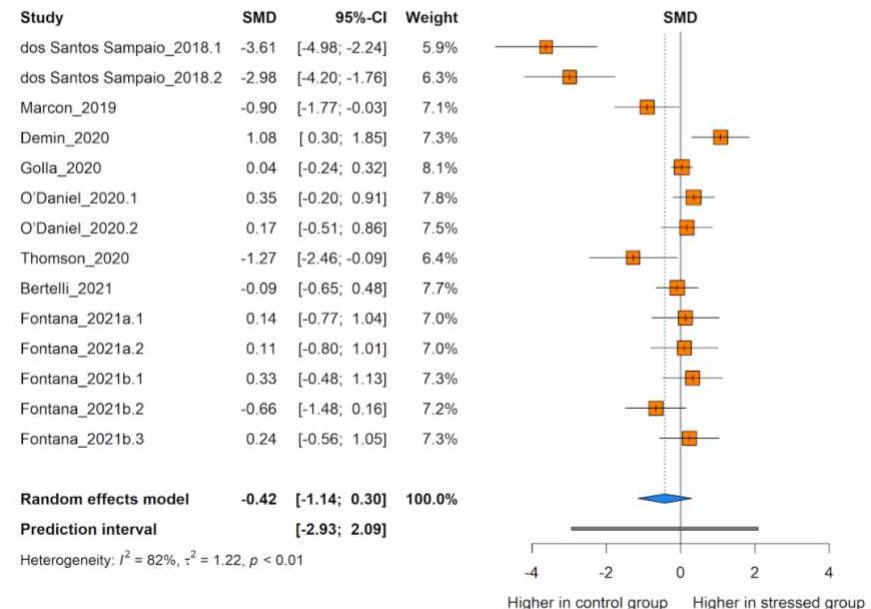
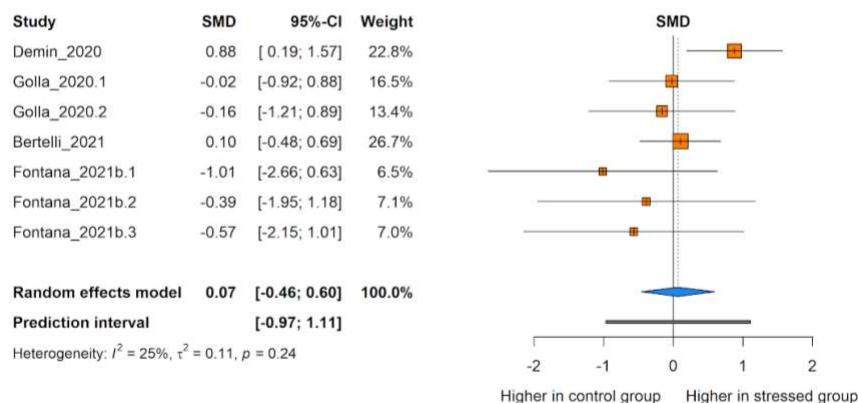
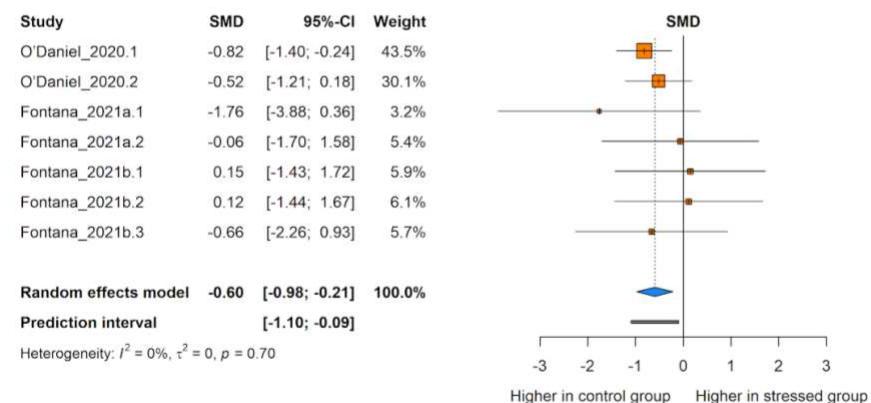


Fig. 9


(A) Anxiety/fear-related behaviour


(B) Locomotor function

(C) Social behaviour

(D) Cortisol levels

Table 1

Table 1. Qualitative description of studies reporting unpredictable chronic stress (UCS) protocols in research with zebrafish. The sex of the animals used was computed as: M, for male animals; F, for females; M:F, when male and female were included but tested and analyzed as a mixed group; M+F, when male and female fish were discriminated in the experiments; Unclear, for larvae and when the sex of the animals was not reported. Main findings were described as: ↑, higher when compared to the control group; ↓, lower when compared to the control group; =, no difference when compared to the control group.

Reference	Duration of stress protocol (days)	Number of different stressors	Interval between stress protocol and outcome assessment (days)	Developmental stage during stress/outcome assessment	Sex	Main findings
Piato <i>et al.</i> , 2011	7, 14	10	1	Adult	M	Anxiety/fear-related behaviour ↓ Height in the tank Cortisol ↑ Whole-body cortisol Locomotor function ↓ Locomotion (14 days) Neurochemical outcomes ↓ <i>gr</i> expression ↑ <i>crf</i> expression Social behaviour ↑ Shoal cohesion (7 days) ↓ Shoal cohesion (14 days)
Chakravarty <i>et al.</i> , 2013	15	10	1	Adult	M:F	Anxiety/fear-related behaviour ↑ Latency to upper zone ↓ Entries in the upper zone ↑ Freezing bouts ↑ Freezing duration ↓ Latency to dark compartment Locomotor function ↓ Crossings Neurochemical outcomes ↑ <i>crf</i> expression ↑ <i>ppp3r1a</i> expression ↑ <i>bdnf</i> expression Social behaviour

Table 1

						↓ Latency to together
Manuel <i>et al.</i> , 2014	7, 14	9	1	Adult	M:F	Cortisol
Pavlidis, Theodoridi & Tsalafouta, 2015	11	7-12	1	Adult	M:F	Cortisol ↑ Whole-body cortisol (14 days, 7 nights of UCS)
						Learning and memory ↓ Latency to black compartment day 2 (14 days of UCS) ↓ Latency to black compartment day 3 (7 nights of UCS)
						Neurochemical outcomes ↑ <i>cart</i> expression (7 days of UCS) ↑ <i>htr1ab</i> expression (7 days of UCS) = <i>crf-bp</i> expression = <i>crf</i> expression ↑ <i>bndf</i> expression (7 nights of UCS) ↑ <i>grβ</i> expression (7 nights of UCS) = <i>cnr1</i> expression ↑ <i>mr</i> expression (7 nights of UCS) ↑ <i>gra</i> expression (7 nights of UCS) = <i>mr/gra</i> ratio ↑ <i>grβ/gra</i> ratio (7 nights of UCS)
						Cortisol ↑ Trunk cortisol concentration (Higher grade stressors)
						Neurochemical outcomes = <i>crf</i> mRNA ↑ <i>pomc</i> mRNA (Higher grade stressors) ↑ <i>gr</i> mRNA (Higher grade stressors) ↑ <i>mr</i> mRNA (Higher grade stressors) = <i>mc2r</i> mRNA ↑ <i>prl</i> mRNA (Higher grade stressors) = <i>avt</i> mRNA

Table 1

							↑ <i>hypocretin/orexin</i> mRNA (Higher grade stressors) ↑ <i>bdnf</i> mRNA ↑ <i>c-FOS</i> mRNA
Davis <i>et al.</i> , 2016	5	5	Unclear	Adult	Unclear	Cortisol ↑ Serum cortisol	
Marcon <i>et al.</i> , 2016	7	7	1	Adult	M:F	Leukogram ↓ Lymphocytes ↑ Monocytes = Neutrophils = Eosinophils	Anxiety/fear-related behaviour ↓ Time in the upper zone ↓ Entries in the upper zone
Zimmermann <i>et al.</i> , 2016	7	10	1	Adult	M	Cortisol ↑ Whole-body cortisol Locomotor function = Total distance travelled Neurochemical outcomes ↑ <i>cox-2</i> expression = <i>tnf-α</i> expression ↑ <i>IL-6</i> expression = <i>IL-10</i> expression	Neurochemical outcomes ↓ Membrane-bound Adenosine Deaminase = Cytosolic Adenosine Deaminase = <i>ada1</i> expression = <i>ada2.1</i> expression = <i>ada2.2</i> expression = <i>adal</i> expression = <i>adaasi</i> expression = ATP hydrolysis = ADP hydrolysis = AMP hydrolysis

Table 1

Benneh <i>et al.</i> , 2017	14	8	1, 3	Adult	Unclear	Anxiety/fear-related behaviour ↓ Time in the upper zone = Entries in the upper zone ↑ Latency to upper zone (3 days post UCS) ↓ Time spent in light region (1 day post UCS) ↓ Entries in the light region (1 day post UCS) Social behaviour ↓ Shoal average area (3 days post UCS)
Fulcher <i>et al.</i> , 2017	15	6	1	Adult	M:F	Anxiety/fear-related behaviour ↓ Distance to bottom (1-3 minutes of test) ↓ Freezing duration (1-3 minutes of test) Locomotor function ↑ Distance travelled (1-3, 6-10 minutes of test) ↑ Absolute turn angle (1-3, 11-15 minutes of test) Morphometric measurements ↑ Bodyweight Neurochemical outcomes = Dopamine levels = DOPAC levels = Serotonin levels = 5-HIAA levels Social behaviour = Distance to stimulus ↑ Variance of distance to stimulus (1-3 minutes of test)
Grzelak <i>et al.</i> , 2017	10	5	Unclear	Adult	Unclear	Cortisol ↑ Serum cortisol

Table 1

							Leukogram
							↓ Lymphocytes differential count ↑ Monocytes differential count = Neutrophils differential count = Eosinophils differential count
Jayamurali & Govindarajulu, 2017							Neurochemical outcomes
							↑ <i>crf</i> expression ↓ <i>gr</i> expression ↑ <i>p53</i> expression ↑ <i>NOXA</i> expression ↓ <i>bcl2</i> expression ↑ <i>casp3</i> expression
Rambo <i>et al.</i> , 2017							Aggression ↑ Relative time spent close to the mirror (male) Cortisol ↑ Whole-body cortisol (male) Locomotor function = Total distance travelled = Mean speed = Crossings
dos Santos Sampaio <i>et al.</i> , 2018							Anxiety/fear-related behaviour ↓ Time in the upper zone ↑ Latency to upper zone ↑ Freezing duration Locomotor function ↓ Total distance travelled ↓ Quadrants crossed ↑ Erratic swimming
Marcon <i>et al.</i> , 2018a							Anxiety/fear-related behaviour ↓ Time in the upper zone ↓ Entries in the upper zone ↑ Time in the bottom Cortisol ↑ Trunk cortisol

Table 1

							Locomotor function = Total distance travelled
							Neurochemical outcomes ↑ Reactive oxygen species (ROS) levels - DCF fluorescence
Marcon <i>et al.</i> , 2018b	7	6	1	Adult	M:F		Neurochemical outcomes ↑ TBARS levels ↑ Reactive oxygen species (ROS) levels - DCF fluorescence ↓ NPSH levels = SH total levels ↓ SOD activity = CAT activity
Reddy <i>et al.</i> , 2018	7	10	1	Adult	Unclear		Anxiety/fear-related behaviour ↓ Time spent in the upper zone ↑ Latency to upper zone ↑ Freezing duration Locomotor function ↓ Crossings Social behaviour ↓ Interaction time
Song <i>et al.</i> , 2018	35	>10	1	Adult	M:F		Anxiety/fear-related behaviour ↓ Time in the upper zone ↓ Entries in the upper zone = Freezing bouts Cortisol ↑ Whole-body cortisol Dendritic spines ↑ Average number of spines Locomotor function = Total distance travelled ↓ Mean meander moved = Low mobility duration = Low mobility frequency = Regular mobility duration

Table 1

							<p>= Regular mobility frequency = Highly mobility duration = Highly mobility frequency ↓ Mean velocity = Mean maximal velocity</p> <p>Neurochemical outcomes = <i>bdnf</i> expression = <i>p75</i> expression = <i>trkB</i> expression = <i>gfap</i> expression</p> <p>Peripheral outcomes ↑ Whole-body <i>IL-1β</i> ↑ Whole-body <i>IL-6</i> ↑ Whole-body <i>IL-10</i> ↑ Whole-body <i>bdnf</i></p>
Costa de Melo et al., 2019	15	6	1	Adult	F		<p>Anxiety/fear-related behaviour ↓ Time in the upper zone ↑ Latency to upper zone ↑ Freezing duration</p> <p>Locomotor function ↓ Total distance travelled ↓ Quadrants crossed ↑ Erratic swimming</p>
Huang et al., 2019	14	6	1	Adult	M+F		<p>Anxiety/fear-related behaviour = Percent at bottom</p> <p>Cortisol ↑ Trunk cortisol (15 min after the last stressor)</p> <p>Locomotor function = Total distance travelled</p> <p>Neurochemical outcomes ↑ <i>ache</i> expression (female) ↑ <i>nr3c1</i> expression ↓ <i>hsd11b2</i> expression = <i>npy</i> expression</p>

Table 1

Marcon <i>et al.</i> , 2019	14	6	1	Adult	M:F	Anxiety/fear-related behaviour ↓ Time in the upper zone = Time in the middle zone ↑ Time in the bottom ↓ Entries in the upper zone Locomotor function = Total distance travelled = Crossings Neurochemical outcomes ↑ TBARS levels ↓ NPSH levels = SH total levels ↓ SOD activity = CAT activity
Mocelin <i>et al.</i> , 2019	14	6	1	Adult	M:F	Anxiety/fear-related behaviour ↓ Time in the upper zone ↓ Entries in the upper zone ↑ Time in the bottom = Entries in the bottom Locomotor function = Total distance travelled = Crossings Neurochemical outcomes ↑ TBARS levels ↑ Reactive oxygen species (ROS) levels - DCF fluorescence ↓ NPSH levels ↓ SOD activity = CAT activity
Reddy <i>et al.</i> , 2019	7	10	1,4	Adult	Unclear	Anxiety/fear-related behaviour ↓ Time spent in the upper zone ↑ Latency to upper zone ↑ Freezing duration (social behaviour test, before drug treatment)

Table 1

	Demin <i>et al.</i> , 2020	34	>10	7, 14, 21, 28, 35	Adult	M:F	Locomotor function
							↓ Crossings
							Social behaviour
							↓ Interaction time
							↑ Latency to interaction
							Anxiety/fear-related behaviour
							↓ Time spent in the upper zone
							↓ Time spent in the light zone (1, 2, 3 weeks of UCS)
							↓ Distance to the surface (1 week of UCS)
							↑ Distance to the surface (2 weeks of UCS)
							↓ Time spent active (1 week of UCS)
							↑ Time spent active (3 weeks of UCS)
							Locomotor function
							↑ Distance travelled (5 weeks of UCS)
							Neurochemical outcomes
							= Whole-brain serotonin
							↑ 5-HIAA levels (2 weeks of UCS)
							↓ 5-HIAA levels (4 weeks of UCS)
							↑ 5-HIAA/5HT ratio (2 weeks of UCS)
							↓ 5-HIAA/5HT ratio (3,4 weeks of UCS)
							= Norepinephrine
							= <i>saga</i> expression
							↓ <i>isg15</i> expression
							↓ <i>otx5</i> expression
							↑ <i>tpm4b</i> expression
							Social behaviour

Table 1

						↓ Interfish distance (5 weeks of UCS)
Golla <i>et al.</i> , 2020	8	5	1, 2, 3, 8	Larval	Unclear	Anxiety/fear-related behaviour = Thigmotaxis index = Scototaxis index ↓ Vertical position (1 day post UCS) ↑ Ratio of fish in bottom third (1-3 days post UCS) Locomotor function ↑ Total distance travelled (Light-dark test; 2 days post UCS) ↑ Mean velocity (Light-dark test; 2 days post UCS) Morphometric measurements ↓ Size Social behaviour = Nearest neighbour distance = Interfish distance
O'Daniel & Petrunich-Rutherford, 2020	7	7	1, 8	Adult	M:F	Anxiety/fear-related behaviour ↓ Time spent in the upper zone (1 day post UCS) ↑ Entries in the upper zone (7 days post UCS) ↑ Distance travelled in the upper zone (7 days post UCS) = Freezing duration Cortisol ↓ Trunk cortisol (1 day post UCS) Locomotor function = Total distance travelled = Mean ambulatory velocity Morphometric measurements = Trunk weight
Thomson <i>et al.</i> , 2020	7	3	0	Adult	F	Anxiety/fear-related behaviour ↑ Time spent in the bottom

Table 1

						Locomotor function ↓ Velocity = Fractal dimension
Bertelli <i>et al.</i> , 2021	14	6	1	Adult	M:F	Anxiety/fear-related behaviour ↓ Time spent in the upper zone = Entries in the upper zone = Time in the centre zone ↑ Freezing duration Locomotor function ↓ Total distance travelled = Absolute turn angle = Crossings Morphometric measurements ↓ Weight Neurochemical outcomes ↑ TBARS levels ↓ NPSH levels Peripheral outcomes ↑ Blood glucose Social behaviour = Time in the interaction zone = Interaction time = Number of interactions
Biney <i>et al.</i> , 2021	14	8	4	Adult	Unclear	Anxiety/fear-related behaviour ↓ Time spent in the upper zone ↓ Entries in the upper zone ↓ Time spent in the light zone = Entries in the light zone Social behaviour = Shoal cohesion
Chen <i>et al.</i> , 2021	35	Unclear	1	Adult	M:F	Anxiety/fear-related behaviour ↓ Time spent in the upper zone ↓ Time spent in the light zone ↑ Latency to the dark zone Cortisol

Table 1

							↑ Peripheral cortisol
							Neurochemical outcomes
							↑ <i>bdnf</i> expression
							↑ <i>tnf-α</i> expression
							↑ <i>IL-1β</i> expression
							↑ <i>IL-10</i> expression
							Morphometric measurements
							↓ Body mass index
Demin <i>et al.</i> , 2021	77	>10	1	Adult	M:F		Anxiety/fear-related behaviour
							↓ Time spent in the upper zone
							Learning and memory
							↓ Time spent in the light zone
							Locomotor function
							= Mean velocity
							Neurochemical outcomes
							↑ Norepinephrine levels
							= Dopamine levels
							= Serotonin levels
							= 5HIAA to 5HT ratio
							Social behaviour
							↓ Interfish distance
Fontana <i>et al.</i> , 2021a	7, 14	8	~ 180	Larval / Adult	Unclear		Anxiety/fear-related behaviour
							↓ Time spent in the bottom (7 days of UCS protocol)
							Cortisol
							= Whole-body cortisol
							Learning and memory
							= Time spent close to the object
							= Entries to the object zone
							Locomotor function
							= Total distance travelled
Fontana <i>et al.</i> , 2021b	3, 7, 14	8	1, 120	Larval / Juvenile, Adult	M:F		Anxiety/fear-related behaviour
							↑ Time spent in the upper zone (7 days of UCS protocol/ Adult)

Table 1

							<p>↓ Time spent in the dark zone (7 days of UCS protocol/ Adult)</p> <p>↑ Thigmotaxis (7 days of UCS protocol/ Juvenile)</p> <p>= Preference index</p> <p>Cortisol</p> <p>= Whole-body cortisol</p> <p>Learning and memory</p> <p>= Total turns</p> <p>= Alternations</p> <p>= Repetitions</p> <p>Locomotor function</p> <p>= Total distance travelled</p> <p>Social behaviour</p> <p>= Interfish distance</p> <p>= Shoal average area</p>
Fontana <i>et al.</i> , 2021c	3	3	> 75	Juvenile / Adult	Unclear	Anxiety/fear-related behaviour	<p>= Time spent in the bottom</p> <p>Learning and memory</p> <p>↑ Average of turns</p> <p>↑ Relative alterations</p> <p>↓ Relative repetitions</p> <p>= Relative right turns</p> <p>= Relative left turns</p> <p>Locomotor function</p> <p>= Total distance travelled</p> <p>Social behaviour</p> <p>= Shoal cohesion</p>
Kirsten <i>et al.</i> , 2021	14	9	0.5	Adult	M:F	Neurochemical outcomes	<p>= <i>bdnf</i> expression</p> <p>↑ <i>tnf-α</i> expression</p> <p>↑ <i>IL-1β</i> expression</p> <p>= <i>IL-4</i> expression</p> <p>= <i>IL-6</i> expression</p> <p>↑ <i>IL-10</i> expression</p>

Table 1

							↓ <i>c-FOS</i> expression = <i>INF-γ</i> expression
Reddy <i>et al.</i> , 2021	10	10	1, 2	Adult	M:F	Anxiety/fear-related behaviour ↑ Time spent in the bottom ↓ Transitions to upper zone ↑ No movement duration ↑ Latency to feed ↓ Feeding frequency ↓ Latency to freeze ↑ Freezing bouts ↑ Freezing duration ↓ Time spent in the pheromone zone Locomotor function ↓ Total distance travelled ↓ Mean velocity ↓ Movement duration ↓ Highly mobile duration ↓ Duration of erratic movements Neurochemical outcomes ↓ <i>bdnf</i> expression ↑ <i>crf</i> expression ↑ <i>calcineurin</i> expression ↓ <i>B-III tubulin</i> expression = <i>blbp</i> expression ↓ <i>pmTOR/mTOR</i> ratio ↓ <i>sox2</i> expression ↓ <i>sox2</i> positive cells Proliferative index ↑ Proliferative index telencephalon (dorsomedial) ↓ Proliferative index telencephalon (dorsolateral) Social behaviour	

Table 1

							↓ Duration of interaction (with target fish in the interaction zone) ↓ Interaction frequency (with target fish in the interaction zone)
Rosdy <i>et al.</i> , 2021	14	10	Unclear	Adult	Unclear	Anxiety/fear-related behaviour ↓ Time spent in the upper zone ↓ Time spent in the light zone	
Shams, Khan & Gerlai, 2021	15	6	1	Adult	M:F	Cortisol ↑ Whole-body cortisol	
Zhang <i>et al.</i> , 2021	28	8	1	Adult	Unclear	Anxiety/fear-related behaviour ↓ Time spent in the upper zone ↑ Latency to the upper zone ↑ Freezing bouts ↑ Freezing duration ↑ Immobility time Locomotor function ↓ Total distance travelled ↓ Mean velocity ↑ Meandering ↑ Absolut turn angle ↑ Angular velocity	

Table 2

Table 2. Regression test for Funnel plot asymmetry ("Egger's test"). A *p*-value < 0.1 was considered significant for publication bias.

Domain	Intercept	Standard Error	t	p-value
Anxiety/fear-related behaviour	-1.0856	0.5182	3.68	0.001
Locomotor function	0.5310	0.3866	-2.33	0.0277
Social Behaviour	0.4880	0.5840	-1.21	0.2507
Cortisol levels	-0.7010	0.5919	2.02	0.0566