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Abstract

Generative models of protein sequence families are an important tool in the repertoire of
protein scientists and engineers alike. However, state-of-the-art generative approaches face
inference, accuracy, and overfitting-related obstacles when modeling moderately sized to large
proteins and/or protein families with low sequence coverage. To that end, we present a simple
to learn, tunable, and accurate generative model, GENERALIST: GENERAtive nonlInear tenSor-
factorizaTion for protein sequences. Compared to state-of-the-art methods, GENERALIST
accurately captures several high order summary statistics of amino acid covariation.
GENERALIST also predicts conservative local optimal sequences which are likely to fold in stable
3D structure. Importantly, unlike other methods, the density of sequences in GENERALIST-
modeled sequence ensembles closely resembles the corresponding natural ensembles.
GENERALIST will be an important tool to study protein sequence variability.
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49  Introduction
50
51 Advances in omics technologies allow us to investigate sequences of evolutionarily related

52 proteins from several different organisms. Surprisingly, even when the function and structure
53 are conserved, sequences within protein families can vary substantially’. This variability is
54  governed by a combination of factors, including protein stability?, interaction partners®, and
55 function®. Therefore, it is not feasible to rationalize observed variation in protein sequences
56  using bottom-up mechanism driven models.

57

58  To understand the forces that constrain protein sequence variability and to identify new protein
59 sequences that perform desired functions, we need methods to sample sequences that are
60 likely to result in functional proteins’. Generative models of protein families that use multiple
61 sequence alignments (MSAs) are one such approach. These models attempt to learn the
62 covariation between amino acids across different positions and model a distribution over the
63 sequence space that captures aspects of the observed covariation. The Potts model is one of the
64 most popular generative models of protein families®. Potts model is a maximum entropy model
65 constrained to reproduce positional amino acid frequencies and position-position pair
66  correlations. Even though only 1- and 2-site frequencies are constrained, the model can
67 reproduce higher order covariation statistics’. The model is easy to interpret, as it assigns an
68  energy to sequences. In addition to modeling covariance between amino acid positions, Potts
69 models have also been used to rationalize effects of mutations on fitness®, and to predict
70  physical contacts between residues’.

71

72 However, there are significant issues with the Potts model. The associated numerical inference
73 is computationally inefficient’, limiting their application to small proteins and protein domains
74 (L ~ 100 residues). In comparison, median protein size in many organisms including humans is
75 much larger (~ 350 residues)'. Due to the numerical inefficiencies in inference, there is no
76 realistic way to tune the model beyond one- and two- position moments, for example, by
77 incorporating multi-position correlations. Moreover, the model has many hyperparameters,
78 including pseudocounts'® for unobserved amino acids and parameters related to phylogenetic
79 reweighting'?>. How model predictions depend on these hyperparameters is not always clear.

80 Finally, as we will show below, the Potts model does not reproduce statistics related to the
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81 density of sequences and result in highly unnatural optimal sequences. Field theoretic
82 approaches®® can systematically generalize the Potts model by incorporating higher order
83 epistasis. However, these models can only be trained on very small sequences. Another recent
84  generalization that combines elements of autoregressive modeling and the Potts model; the
85 autoregressive DCA model**, addresses the numerical issues associated with the Potts model.
86 However, as we show below, this approach does not reproduce statistics related to the density
87  of sequences and overfits the data when modeling families of large proteins with small MSAs.
88
89 Deep generative (DG) models are a potential alternative’® to Potts models for realistically sized
90 proteins. However, DG models require large amounts of training data and lack interpretability.
91 While sequencing advances have led to large MSAs, especially for bacterial protein families,
92 many human proteins only exist in mammals and other higher order organisms where the MSA
93 sizes are currently limited by the number of sequenced genomes and ultimately by the total
94  number of mammalian species'®. Neural network architectures are notorious for being over
95 parametrized, including several hyperparameters for training the networks. Finally, as we show
96 below, NN-based generative models may not necessarily improve in accuracy with the
97 increasing complexity of the architecture.
98
99  Therefore, there is an urgent need for efficient, tunable, and accurate generative models. To
100 that end, we present here GENERALIST: GENERAtive nonlLinear tenSor-factorizaTion-based
101  model for protein sequences and other categorical data. In GENERALIST, we model individual
102 protein sequences in the data as arising from a sequence-specific Gibbs-Boltzmann
103  distribution'’®. The energies of the distribution are shared across all sequences and the
104  temperatures are assigned in a sequence-specific manner. The modeler only specifies
105 complexity of the model (see below), and both the energies and the temperatures are inferred
106  directly from the data. The temperatures embed individual sequences in a latent space which
107  can be tuned to achieve a user-desired tradeoff between the novelty of generated sequences
108  and the accuracy of the ensemble in reproducing properties of the natural MSA.
109
110  We use GENERALIST to model sequence variability in proteins that span multiple kingdoms of
111 life, alighment sizes, and sequence lengths. We compare the performance of GENERALIST with

112 three other generative models, the Potts model (referred to as adabmDCA?®), the autoregressive
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113 DCA model (referred to as ArDCA™), and a variational autoencoder-based model (referred to as
114  VAE™). We show that compared to these other models, GENERALIST captures higher order
115 statistics of amino acid covariation across sequences. GENERALIST also predicts conservative
116 local optima that are likely to fold in stable three-dimensional structures. Importantly, the
117 ensemble of sequences generated using GENERALIST most accurately represents the density of
118  sequences observed in nature. We believe that GENERALIST will be an important tool to model

119  protein sequences and other categorical data.

120
121  Results
122
123  The Mathematical formalism of GENERALIST
124
Maximum Log Likelihood inference
l 7,0 = argmax,, ; & l
Natural sequences Generated sequences
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126 Figure 1. Schematic of the GENERALIST approach. Sequences are modeled as arising from their own
127 Gibbs-Boltzmann distributions over categorical variables. The inferred probabilities are used to generate
128  new sequences.

129
130  In GENERALIST (Figure 1), we start with a one-hot encoded representation of a multiple

131  sequence alignment of N sequences of length L; g,,;, = 1 if the amino acid at position [ in the

132 protein sequence indexed n has the identity a. Sequences are modeled as arising from their

17,18,

K
1
Ton = Q_IEXp <_ Z angakl> . (1)
n

k=1

133  own Gibbs-Boltzmann distribution

134 In Eqg. (1), z,, are sequence-specific inverse temperature-like quantities (latent space
135 embeddings), 8,;are position and amino acid dependent variables, and (,; is the partition
136  function that normalizes the probabilities. We can write down the total log-likelihood of

137  observing the data:
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L= 2 Oqni 108 g = — 2 Oant Znk Okl — z log Q. (2)

nla nlLak n,l
138  The gradients of the log likelihood with respect to position- and amino-acid dependent
139 parameters 8,;; and z,; are analytical. The parameters are simultaneously inferred using
140 maximum likelihood inference. Once the parameters are inferred, sequences can be sampled in
141 the vicinity of any sequence in the MSA using probabilities inferred in Eq. (1).

142
143 Below, we present our results for two proteins: Bovine Pancreatic Trypsin Inhibitor or BPT1, a

144  small protein domain comprising ~ 50 amino acids with a large MSA of ~ 16000 sequences and
145 epidermal growth factor receptor or EGFR, a large protein comprising ~ 1000 amino acids with
146 a small MSA of ~ 1000 sequences. In the SI, we show our analyses for dihydrofolate reductase
147  or DHFR (~ 160 amino acids, ~ 7000 sequences in the MSA), p53 (~ 350 amino acids, ~ 800
148  sequences in the MSA), and mammalian target of rapamycin or mTor (~ 2500 amino acids,
149  ~ 500 sequences in the MSA). Details of model training can be found in Sl Section 1.

150

151 Choosing the optimal latent space dimension in GENERALIST

152

153 GENERALIST is a latent space model. Increasing latent space dimension typically improves the

154  ability of the generated ensemble to accurately capture summary statistics of the data (for
155 example, amino acid frequencies and covariation). At the same time, a high dimensional latent
156 space can result in a generated ensemble that is nearly identical to the natural one; trivially
157 reproducing all statistics but failing to generate new sequences. Therefore, a common challenge
158 with latent space models is selecting an appropriate dimension to avoid overfitting.

159

160  GENERALIST offers a natural way of evaluating overfitting. We computed for each generated
161 sequence the fractional Hamming distance (fraction of positions that have a different amino
162 acid) to the closest natural sequence (blue distributions in Figure 2, S| Section 2). We compared
163  these distributions to the distribution of nearest neighbor distances within the natural
164  ensembles (gray distributions in Figure 2). For an overfit ensemble, the distribution will peak
165 sharply at zero; implying that generated sequences are nearly identical to natural ones. In Figure
166 2, we show these distance distributions for GENERALIST ensembles trained with different latent
167  space dimensions. When the latent space dimension is low, GENERALIST ensembles comprise

168  sequences that are on average different from the natural sequences (as quantified by the mean


https://doi.org/10.1101/2022.12.12.520114
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.12.520114; this version posted December 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

169  fractional Hamming distance to the closest natural sequence, blue bar). However, the
170  ensembles tend towards overfitting with higher latent space dimension, as seen in the leftward

171  shiftin the distribution of distances to the nearest natural neighbor.
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174  Figure 2. The distribution of distances to the nearest natural sequence for multiple latent space
175 dimensions. For each protein and a given latent space dimension, an in silico ensemble was generated
176 using GENERALIST. For each generated sequence, the minimum fractional Hamming distance to the
177 natural ensemble was evaluated (blue). The same calculation was repeated for natural sequences (gray).
178 The dashed vertical lines represent the means of the distributions. The gray disc on the left indicates the
179  optimal latent space dimension for each protein.

180
181  In the middle, we find the optimal latent space dimension as the one that matches the average

182  separation between nearest neighbors in natural sequences (dashed gray line) and the average
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183 separation between sequences in the generated ensemble and the nearest natural neighbor
184  (dashed blue line). For the rest of the analyses, we choose this optimal dimension for the
185 studied proteins. Notably, variational autoencoders lend themselves to a latent space
186 description as well. Yet, we observed that ensembles generated using VAEs did not exhibit a
187 systematic trend towards overfitting when the latent space dimension was increased (S| Figure
188 1)

189

190  GENERALIST reproduces high order summary statistics of natural sequences

191

192 A key metric to evaluate the accuracy of generative models is their ability to reproduce

193  summary statistics on the sequences (Sl Section 3). In Figures 3A and 3B, we show for BPT1 and
194  EGFR that GENERALIST accurately reproduces amino acid frequencies and mean removed
195 positional correlations up to order 4. Notably, as seen in Figure 3C and 3D (SI Figure 2), while
196 adabmDCA, ArDCA, and VAE-based predictions of positional frequency statistics correlate
197  strongly with those observed in the natural sequences (S| Section 4); these methods typically

198  under-predict these statistics (quantified by the slope of the best fit line).

199
200 Next, we investigated the ability of the generated ensembles to reproduce very high order

201  summary statistics. Most amino acid combinations of order higher than 4 are rarely found in
202 natural MSAs. We therefore used a recently introduced metric 1, that measures the average
203 Pearson correlation between the occurrence frequency of the top 20 amino acid combinations
204  of any given order™. In Figure 3E and 3F (Sl Figure 3), we show that GENERALIST accurately
205 captures co-occurrence frequencies of the most frequent amino acid combinations up to order
206  10. The ability of GENERALIST to capture these higher order statistics did not depend on
207  restricting our attention to the top 20 amino acid combinations (S| Figure 4). In comparison,
208  adabmDCA, ArDCA, and VAEs led to less accurate predictions about higher order correlations
209  when the MSAs were large (BPT1 in the main text and DHFR in the SI). Importantly, the
210 ensembles generated using VAEs did not exhibit a systematic trend toward more accurate
211  predictions when the latent space dimension was increased (SI Figure 1). Finally, ArDCA could
212 capture higher order positional correlations for large proteins with small MSAs (Figure 3F, SI
213 Figure 3). However, as we will show below, this was due to overfitting.

214
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215 These results conclusively show that GENERALIST-based sequence ensembles retain positional
216 correlation information of arbitrarily high orders observed in naturally occurring sequences for
217 large proteins as well as for proteins with very small MSAs.
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219 Figure 3. Panels A and B. Comparison of amino acid frequencies, mean removed pair, three and four body
220 correlations calculated from GENERALIST-generated in silico ensembles (y-axis) and the natural sequences
221 (x-axis) for BPT1 (panel A) and EGFR (panel B). Panels C and D. 1 — Pearson correlation coefficient versus 1
222 — slope of the best fit line for the comparison between amino acid frequencies, mean removed pair, three
223 and four body correlations for GENERALIST, ArDCA, adabmDCA, and VAEs shown for BPT1 (panel C) and
224 EGFR (panel D). Panels E and F. The average Pearson correlation coefficient between frequencies of top
225 20 amino acid combinations of order n (x-axis) averaged across different combinations (y-axis) for
226  GENERALIST, ArDCA, adabmDCA, and VAEs shown for BPT1 (panel E) and EGFR (panel F).

227

228  GENERALIST finds conservative optimal sequences
229
230 A key feature of generative models is the ability to assign probabilities to arbitrary sequences

231 and therefore find local sequence optima (sequences corresponding to the local maximum of
232  the probability). The local optima inform us about the local structure of the inferred sequence
233  space energy landscape and their relationship to naturally occurring sequences. For example, if
234  the generative models are purely data-driven, that is, if they do not incorporate any information
235 about structure/function/fitness, it may be desirable that the local optima are in the vicinity of

236  natural sequences.
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238 Figure 4. Panel A. The distribution of distances to the nearest natural neighbor from sequences optimized
239  using GENERALIST, ArDCA, and adabmDCA modeled probabilities. Panel B. The log-fold improvement in
240 probabilities between the starting sequence and the local optimum. Panel C. Sequence-averaged plddt
241 scores for AlphaFold2 predicted structures for the locally optimum sequences.

242
243  To test the relationship between local optimum sequences and natural sequences, we use

244  GENERALIST, adabmDCA, and ArDCA to obtain locally optimal sequences. VAE was not included
245 because VAEs involve a nonlinear transformation from the latent space to the sequence space
246  andtherefore the probability in the sequence space is difficult to calculate.

247
248 We obtained local minima in adabmDCA and ArDCA using a random search (Sl Section 5). Briefly,

249 we start from sequences in the natural MSA and randomly mutated amino acids while only
250 accepting mutations that improve sequence probability as evaluated by the model. Multiple
251 iterations of this operation lead to local optimum sequences. The local optimum sequences

252 predicted by GENERALIST were obtained by finding the highest probability sequence
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253 corresponding to the latent space embedding of natural sequences. This analysis was only

254 performed on BPT1 where all three models could be trained in a reasonable time.

255
256  As seen in Figure 4A, adabmDCA generates locally optimal sequences that differed by a

257  staggering 84% from the closest naturally occurring sequence neighbor. These optimal
258  sequences were predicted to be significantly better compared to the starting natural sequences,
259  with an average improvement by ~ 110 fold in probability at each position (with a total average
260  increase in probability by a factor of ~ 5 X 101°%* when considering the entire sequence) (Figure
261 4B, measured by log odds ratio). These local minima in the Potts model that do not resemble
262 any natural sequences are reminiscent of the unwanted spurious minima in Hopfield networks®.
263 Compared to adabmDCA, ArDCA generated local optimal sequences that were significantly more
264  conservative (on an average, 17% difference compared to 84%) (Figure 4A). The optimal
265 sequences were also predicted to be a relatively modest improvement over the starting natural
266 sequence with an improvement by ~ 1.5 fold in probability at each position with a total average
267 increase in probability by a factor of ~ 5 X 10° when considering the entire sequence (Figure
268  4B). Like ArDCA, GENERALIST-based local optima were significantly more conservative. As seen
269 in Figure 4A, the local optimum sequences differed from the closest naturally occurring
270 sequences on an average by 8%. As seen in Figure 4B, the per amino acid improvement was
271  only ~ 1.1 fold with a total average increase in probability by a factor of ~ 7 X 10? when
272  considering the entire sequence.

273
274  To test whether these sequences potentially fold in stable 3D structures, we used AlphaFold2%,

275 a recent machine learning method that can predict 3D structures from sequences and MSAs (SI
276  Section 6). We used the sequence-averaged predicted local distance difference test (plddt) as a
277  proxy for quality of predicted structures. Previous studies have shown that a sequence average
278  plddt of > 80 corresponds to sequences that are likely to fold in stable 3D structures™. As seen
279 in Figure 4C, local optimal sequences imputed by adabmDCA were predicted to be significantly
280  worse folders compared to both GENERALIST and ArDCA. While ArDCA and GENERALIST produce
281 sequences that were predicted to be comparable by AlphaFold2 on average.

282
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283  These results show that GENERALIST can identify local optima in the sequence space. These
284  optima are typically not seen in nature. The optimal sequences predicted by GENERALIST were
285  also predicted by AlphaFold2 to fold in stable 3D structures

286

287  GENERALIST reproduces statistics related to the density of sequences in the natural ensemble

288
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290 Figure 5. Panels A and B. Distribution of fractional Hamming distances between random pairs of
291 sequences within an ensemble shown for BPT1 (panel A) and EGFR (panel B). Panels C and D. Distribution
292 of fractional Hamming distances to the closest sequence within an ensemble for different models shown
293 for BPT1 (panel C) and EGFR (panel D). Panels E and F. Distribution of fractional Hamming distances to
294 closest natural sequence for different models shown for BPT1 (panel E) and EGFR (panel F).

295
296 In addition to reproducing the summary statistics (Figure 3), an important test for generative

728 To that end, we

297  models is capturing the density of sequences in the natural ensemble
298 evaluated three different statistics for all generated ensembles: (a) the distribution of distances
299  between pairs of randomly picked sequences, (b) the distribution of nearest neighbor distances,
300 and(c) the distribution of distances to the nearest natural neighbor.

301

302 In Figure 5A and 5B (Sl Figure 5), we plot the distribution of fractional Hamming distances

303 between pairs of random sequences in an ensemble. We see that all generative models, except

304  for the VAEs, accurately reproduced this distribution, implying that most ensembles captured
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305 the expanse of the natural sequence ensemble. Ensembles generated using VAEs comprised
306 sequences that are on average are closer to each other than natural sequences.

307

308  The distribution of nearest neighbor distances portrayed a more complex picture. In Figure 5C
309 and 5D (Sl Figure 6, Sl Section 2), we plot the distribution of fractional Hamming distances to the
310  nearest neighbor within the ensemble. When MSAs were large (BPT1 in Figure 5C and DHFR in Sl
311 Figure 6), ArDCA/adabmDCA generated ensemble comprised sequences that were farther away
312  from each other compared to natural sequences. In contrast, for small MSAs (EGFR in Figure 5D
313 and p53 and mTor in Sl Figure 6), ArDCA generated ensembles comprised sequences that were
314  closer to each other compared to natural sequences. VAEs generated ensemble always
315 comprised sequences that were on average closer to each other than natural sequences (with
316  the exception of mTor). In contrast GENERALIST generated ensemble closely reproduced the
317 density of nearest neighbor sequences observed in the natural ensembles.

318

319 Next, we compared the distance distribution to the nearest natural neighbor. Here too,
320 GENERALIST generated ensembles closely reproduced the density of nearest neighbor
321 sequences (Figure 5E and 5F, Sl Figure 7). In contrast, ArDCA/adabmDCA generated sequences
322  were farther from the natural sequences if the MSA was large (BPT1 in Figure 5E and DHFR in SI
323  Figure 7). ArDCA generated ensembles for proteins with small MSAs were overfit to the MSA as
324  evidenced by a distribution of distances with a sharp peak at zero (EGFR in Figure 5F and p53
325  and mTor in S| Figure 7). This overfitting also explains the accuracy with which ArDCA can
326  reproduce sequence summary statistics for EGFR and other large proteins with small MSAs
327  (Figure 3F, SI Figure 3). Finally, VAEs generated ensemble comprised sequences that were
328  farther away compared to natural sequences for all proteins.

329

330  These results show that an optimally tuned GENERALIST ensemble can capture various aspects

331  of the density of sequences in the natural ensemble.

332
333 Discussion

334
335 Generative models of protein sequence families are an important tool for protein scientists and

336  engineers alike. Ideally, these models should be simple to learn, tunable, and accurate,
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337 especially when studying proteins of significant clinical interest which tend to be large proteins
338  with small MSAs.

339

340 In this work, we examined three state-of-the-art models. Physics-based Potts models could only
341 be used to model small sequences, limiting their application to single domains and small
342 proteins. Moreover, these models could not be tuned. The sequence ensemble generated by
343 Potts models could not reproduce the density of sequences in the natural ensemble and had
344  optima that appeared unnatural. In contrast, the autoregressive generalization of the Potts
345 model was significantly more efficient in model fitting and more accurate in reproducing
346 summary statistics such as frequencies of higher order amino acid combinations (Figure 3). The
347 model also reproduced reasonable local optima that were computationally deemed to fold in
348 stable 3D structures (Figure 4). However, the autoregressive Potts model could not reproduce
349 the density of sequences in the natural ensemble (Figure 5). Importantly, given that the model
350 has O(L?) parameters for proteins of sequence length L, this model overfits the training data
351 when modeling human proteins of significant clinical interest which are large and have small
352  MSAs.

353

354 Neural networks based variational autoencoders were efficient and did not appear to overfit the
355 training data (Figure 5). Overall, these models were less accurate in predicting summary
356 statistics of sequences compared to GENERALIST, the Potts model, and the autoregressive
357 generational of the Potts model. At the same time, potentially owing to model complexity (and
358  therefore parameter non-identifiability) and low amounts of training data, the models appeared
359 to not have any systematic trends with respect to accuracy and overfit as a function of the
360  dimension of the latent space.

361

362 In contrast, GENERALIST is efficient, accurate, and tunable, allowing us to analyze large proteins
363 with small MSAs. Notably, given its simple structure, there are several avenues of improving
364  GENERALIST. For example, function/fitness information obtained from deep mutational
365 scanning™® can be incorporated as constraints on the energies and phylogenetic information can
366  be imposed as constraints on the latent space. Finally, GENERALIST can be easily reformulated

367 for any other categorical data, for example, presence/absence of single nucleotide
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polymorphisms or nucleotide sequences. We believe that GENERALIST will be an asset for

protein scientists and engineers alike.
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