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Abstract 12 

 13 

Generative models of protein sequence families are an important tool in the repertoire of 14 

protein scientists and engineers alike. However, state-of-the-art generative approaches face 15 

inference, accuracy, and overfitting-related obstacles when modeling moderately sized to large 16 

proteins and/or protein families with low sequence coverage. To that end, we present a simple 17 

to learn, tunable, and accurate generative model, GENERALIST: GENERAtive nonLInear tenSor-18 

factorizaTion for protein sequences. Compared to state-of-the-art methods, GENERALIST 19 

accurately captures several high order summary statistics of amino acid covariation. 20 

GENERALIST also predicts conservative local optimal sequences which are likely to fold in stable 21 

3D structure. Importantly, unlike other methods, the density of sequences in GENERALIST-22 

modeled sequence ensembles closely resembles the corresponding natural ensembles. 23 

GENERALIST will be an important tool to study protein sequence variability. 24 
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Introduction  49 

 50 

Advances in omics technologies allow us to investigate sequences of evolutionarily related 51 

proteins from several different organisms. Surprisingly, even when the function and structure 52 

are conserved, sequences within protein families can vary substantially
1
. This variability is 53 

governed by a combination of factors, including protein stability
2
, interaction partners

3
, and 54 

function
4
. Therefore, it is not feasible to rationalize observed variation in protein sequences 55 

using bottom-up mechanism driven models.  56 

 57 

To understand the forces that constrain protein sequence variability and to identify new protein 58 

sequences that perform desired functions, we need methods to sample sequences that are 59 

likely to result in functional proteins
5
. Generative models of protein families that use multiple 60 

sequence alignments (MSAs) are one such approach. These models attempt to learn the 61 

covariation between amino acids across different positions and model a distribution over the 62 

sequence space that captures aspects of the observed covariation. The Potts model is one of the 63 

most popular generative models of protein families
6
. Potts model is a maximum entropy model 64 

constrained to reproduce positional amino acid frequencies and position-position pair 65 

correlations. Even though only 1- and 2-site frequencies are constrained, the model can 66 

reproduce higher order covariation statistics
7
. The model is easy to interpret, as it assigns an 67 

energy to sequences. In addition to modeling covariance between amino acid positions, Potts 68 

models have also been used to rationalize effects of mutations on fitness
8
, and to predict 69 

physical contacts between residues
7
.  70 

 71 

However, there are significant issues with the Potts model. The associated numerical inference 72 

is computationally inefficient
9
, limiting their application to small proteins and protein domains 73 

(� � 100 residues). In comparison, median protein size in many organisms including humans is 74 

much larger (� 350 residues)
10

. Due to the numerical inefficiencies in inference, there is no 75 

realistic way to tune the model beyond one- and two- position moments, for example, by 76 

incorporating multi-position correlations. Moreover, the model has many hyperparameters, 77 

including pseudocounts
11

 for unobserved amino acids and parameters related to phylogenetic 78 

reweighting
12

. How model predictions depend on these hyperparameters is not always clear. 79 

Finally, as we will show below, the Potts model does not reproduce statistics related to the 80 
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density of sequences and result in highly unnatural optimal sequences. Field theoretic 81 

approaches
13

 can systematically generalize the Potts model by incorporating higher order 82 

epistasis. However, these models can only be trained on very small sequences. Another recent 83 

generalization that combines elements of autoregressive modeling and the Potts model; the 84 

autoregressive DCA model
14

, addresses the numerical issues associated with the Potts model. 85 

However, as we show below, this approach does not reproduce statistics related to the density 86 

of sequences and overfits the data when modeling families of large proteins with small MSAs.  87 

 88 

Deep generative (DG) models are a potential alternative
15

 to Potts models for realistically sized 89 

proteins. However, DG models require large amounts of training data and lack interpretability. 90 

While sequencing advances have led to large MSAs, especially for bacterial protein families, 91 

many human proteins only exist in mammals and other higher order organisms where the MSA 92 

sizes are currently limited by the number of sequenced genomes and ultimately by the total 93 

number of mammalian species
16

. Neural network architectures are notorious for being over 94 

parametrized, including several hyperparameters for training the networks. Finally, as we show 95 

below, NN-based generative models may not necessarily improve in accuracy with the 96 

increasing complexity of the architecture. 97 

 98 

Therefore, there is an urgent need for efficient, tunable, and accurate generative models. To 99 

that end, we present here GENERALIST: GENERAtive nonLInear tenSor-factorizaTion-based 100 

model for protein sequences and other categorical data. In GENERALIST, we model individual 101 

protein sequences in the data as arising from a sequence-specific Gibbs-Boltzmann 102 

distribution
17,18

. The energies of the distribution are shared across all sequences and the 103 

temperatures are assigned in a sequence-specific manner. The modeler only specifies 104 

complexity of the model (see below), and both the energies and the temperatures are inferred 105 

directly from the data. The temperatures embed individual sequences in a latent space which 106 

can be tuned to achieve a user-desired tradeoff between the novelty of generated sequences 107 

and the accuracy of the ensemble in reproducing properties of the natural MSA.  108 

 109 

We use GENERALIST to model sequence variability in proteins that span multiple kingdoms of 110 

life, alignment sizes, and sequence lengths. We compare the performance of GENERALIST with 111 

three other generative models, the Potts model (referred to as adabmDCA
9
), the autoregressive 112 
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DCA model (referred to as ArDCA
14

), and a variational autoencoder-based model (referred to as 113 

VAE
19

). We show that compared to these other models, GENERALIST captures higher order 114 

statistics of amino acid covariation across sequences. GENERALIST also predicts conservative 115 

local optima that are likely to fold in stable three-dimensional structures. Importantly, the 116 

ensemble of sequences generated using GENERALIST most accurately represents the density of 117 

sequences observed in nature. We believe that GENERALIST will be an important tool to model 118 

protein sequences and other categorical data.  119 

 120 

Results 121 

 122 

The Mathematical formalism of GENERALIST 123 

 124 

 125 

Figure 1. Schematic of the GENERALIST approach. Sequences are modeled as arising from their own 126 

Gibbs-Boltzmann distributions over categorical variables. The inferred probabilities are used to generate 127 

new sequences.  128 

 129 

In GENERALIST (Figure 1), we start with a one-hot encoded representation of a multiple 130 

sequence alignment of � sequences of length �; ���� 	 1 if the amino acid at position 
 in the 131 

protein sequence indexed � has the identity �. Sequences are modeled as arising from their 132 

own Gibbs-Boltzmann distribution
17,18

: 133 


��� 	 1Ω��

exp �� � �������
�

���

� .                                              �1� 

In Eq. (1), ���  are sequence-specific inverse temperature-like quantities (latent space 134 

embeddings), ����are position and amino acid dependent variables, and  Ω�� is the partition 135 

function that normalizes the probabilities. We can write down the total log-likelihood of 136 

observing the data: 137 
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� 	 � ����
�,�,�

log 
��� 	  � � ����
�,�,�,�

������� � � log Ω�� .
�,�

                 �2� 

The gradients of the log likelihood with respect to position- and amino-acid dependent 138 

parameters ����  and ���  are analytical. The parameters are simultaneously inferred using 139 

maximum likelihood inference. Once the parameters are inferred, sequences can be sampled in 140 

the vicinity of any sequence in the MSA using probabilities inferred in Eq. (1).  141 

 142 

Below, we present our results for two proteins: Bovine Pancreatic Trypsin Inhibitor or BPT1, a 143 

small protein domain comprising � 50 amino acids with a large MSA of � 16000 sequences and 144 

epidermal growth factor receptor or EGFR, a large protein comprising � 1000 amino acids with 145 

a small MSA of � 1000 sequences. In the SI, we show our analyses for dihydrofolate reductase 146 

or DHFR (� 160 amino acids, � 7000 sequences in the MSA), p53 (� 350 amino acids, � 800 147 

sequences in the MSA), and mammalian target of rapamycin or mTor (� 2500 amino acids, 148 

� 500 sequences in the MSA). Details of model training can be found in SI Section 1.  149 

 150 

Choosing the optimal latent space dimension in GENERALIST  151 

 152 

GENERALIST is a latent space model. Increasing latent space dimension typically improves the 153 

ability of the generated ensemble to accurately capture summary statistics of the data (for 154 

example, amino acid frequencies and covariation). At the same time, a high dimensional latent 155 

space can result in a generated ensemble that is nearly identical to the natural one; trivially 156 

reproducing all statistics but failing to generate new sequences. Therefore, a common challenge 157 

with latent space models is selecting an appropriate dimension to avoid overfitting. 158 

 159 

GENERALIST offers a natural way of evaluating overfitting. We computed for each generated 160 

sequence the fractional Hamming distance (fraction of positions that have a different amino 161 

acid) to the closest natural sequence (blue distributions in Figure 2, SI Section 2). We compared 162 

these distributions to the distribution of nearest neighbor distances within the natural 163 

ensembles (gray distributions in Figure 2). For an overfit ensemble, the distribution will peak 164 

sharply at zero; implying that generated sequences are nearly identical to natural ones. In Figure 165 

2, we show these distance distributions for GENERALIST ensembles trained with different latent 166 

space dimensions. When the latent space dimension is low, GENERALIST ensembles comprise 167 

sequences that are on average different from the natural sequences (as quantified by the mean 168 
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fractional Hamming distance to the closest natural sequence, blue bar). However, the 169 

ensembles tend towards overfitting with higher latent space dimension, as seen in the leftward 170 

shift in the distribution of distances to the nearest natural neighbor.  171 

 172 

 173 

Figure 2. The distribution of distances to the nearest natural sequence for multiple latent space 174 

dimensions. For each protein and a given latent space dimension, an in silico ensemble was generated 175 

using GENERALIST. For each generated sequence, the minimum fractional Hamming distance to the 176 

natural ensemble was evaluated (blue). The same calculation was repeated for natural sequences (gray). 177 

The dashed vertical lines represent the means of the distributions. The gray disc on the left indicates the 178 

optimal latent space dimension for each protein.  179 

 180 

In the middle, we find the optimal latent space dimension as the one that matches the average 181 

separation between nearest neighbors in natural sequences (dashed gray line) and the average 182 
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separation between sequences in the generated ensemble and the nearest natural neighbor 183 

(dashed blue line). For the rest of the analyses, we choose this optimal dimension for the 184 

studied proteins. Notably, variational autoencoders lend themselves to a latent space 185 

description as well. Yet, we observed that ensembles generated using VAEs did not exhibit a 186 

systematic trend towards overfitting when the latent space dimension was increased (SI Figure 187 

1).  188 

 189 

GENERALIST reproduces high order summary statistics of natural sequences  190 

 191 

A key metric to evaluate the accuracy of generative models is their ability to reproduce 192 

summary statistics on the sequences (SI Section 3). In Figures 3A and 3B, we show for BPT1 and 193 

EGFR that GENERALIST accurately reproduces amino acid frequencies and mean removed 194 

positional correlations up to order 4. Notably, as seen in Figure 3C and 3D (SI Figure 2), while 195 

adabmDCA, ArDCA, and VAE-based predictions of positional frequency statistics correlate 196 

strongly with those observed in the natural sequences (SI Section 4); these methods typically 197 

under-predict these statistics (quantified by the slope of the best fit line).  198 

 199 

Next, we investigated the ability of the generated ensembles to reproduce very high order 200 

summary statistics. Most amino acid combinations of order higher than 4 are rarely found in 201 

natural MSAs. We therefore used a recently introduced metric $	
 that measures the average 202 

Pearson correlation between the occurrence frequency of the top 20 amino acid combinations 203 

of any given order
20

. In Figure 3E and 3F (SI Figure 3), we show that GENERALIST accurately 204 

captures co-occurrence frequencies of the most frequent amino acid combinations up to order 205 

10. The ability of GENERALIST to capture these higher order statistics did not depend on 206 

restricting our attention to the top 20 amino acid combinations (SI Figure 4). In comparison, 207 

adabmDCA, ArDCA, and VAEs led to less accurate predictions about higher order correlations 208 

when the MSAs were large (BPT1 in the main text and DHFR in the SI). Importantly, the 209 

ensembles generated using VAEs did not exhibit a systematic trend toward more accurate 210 

predictions when the latent space dimension was increased (SI Figure 1). Finally, ArDCA could 211 

capture higher order positional correlations for large proteins with small MSAs (Figure 3F, SI 212 

Figure 3). However, as we will show below, this was due to overfitting.  213 

 214 
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These results conclusively show that GENERALIST-based sequence ensembles retain positional 215 

correlation information of arbitrarily high orders observed in naturally occurring sequences for 216 

large proteins as well as for proteins with very small MSAs.  217 

 218 
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Figure 3. Panels A and B. Comparison of amino acid frequencies, mean removed pair, three and four body 219 

correlations calculated from GENERALIST-generated in silico ensembles (y-axis) and the natural sequences 220 

(x-axis) for BPT1 (panel A) and EGFR (panel B). Panels C and D. 1 – Pearson correlation coefficient versus 1 221 

– slope of the best fit line for the comparison between amino acid frequencies, mean removed pair, three 222 

and four body correlations for GENERALIST, ArDCA, adabmDCA, and VAEs shown for BPT1 (panel C) and 223 

EGFR (panel D). Panels E and F. The average Pearson correlation coefficient between frequencies of top 224 

20 amino acid combinations of order n (x-axis) averaged across different combinations (y-axis) for 225 

GENERALIST, ArDCA, adabmDCA, and VAEs shown for BPT1 (panel E) and EGFR (panel F).  226 

 227 

GENERALIST finds conservative optimal sequences  228 

 229 

A key feature of generative models is the ability to assign probabilities to arbitrary sequences 230 

and therefore find local sequence optima (sequences corresponding to the local maximum of 231 

the probability). The local optima inform us about the local structure of the inferred sequence 232 

space energy landscape and their relationship to naturally occurring sequences. For example, if 233 

the generative models are purely data-driven, that is, if they do not incorporate any information 234 

about structure/function/fitness, it may be desirable that the local optima are in the vicinity of 235 

natural sequences.  236 

 237 
Figure 4. Panel A. The distribution of distances to the nearest natural neighbor from sequences optimized 238 

using GENERALIST, ArDCA, and adabmDCA modeled probabilities. Panel B. The log-fold improvement in 239 

probabilities between the starting sequence and the local optimum. Panel C. Sequence-averaged plddt 240 

scores for AlphaFold2 predicted structures for the locally optimum sequences.  241 

 242 

To test the relationship between local optimum sequences and natural sequences, we use 243 

GENERALIST, adabmDCA, and ArDCA to obtain locally optimal sequences. VAE was not included 244 

because VAEs involve a nonlinear transformation from the latent space to the sequence space 245 

and therefore the probability in the sequence space is difficult to calculate.  246 

 247 

We obtained local minima in adabmDCA and ArDCA using a random search (SI Section 5). Briefly, 248 

we start from sequences in the natural MSA and randomly mutated amino acids while only 249 

accepting mutations that improve sequence probability as evaluated by the model. Multiple 250 

iterations of this operation lead to local optimum sequences. The local optimum sequences 251 

predicted by GENERALIST were obtained by finding the highest probability sequence 252 
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corresponding to the latent space embedding of natural sequences. This analysis was only 253 

performed on BPT1 where all three models could be trained in a reasonable time.  254 

 255 

As seen in Figure 4A, adabmDCA generates locally optimal sequences that differed by a 256 

staggering 84% from the closest naturally occurring sequence neighbor. These optimal 257 

sequences were predicted to be significantly better compared to the starting natural sequences, 258 

with an average improvement by � 110 fold in probability at each position (with a total average 259 

increase in probability by a factor of � 5 ' 10�
� when considering the entire sequence) (Figure 260 

4B, measured by log odds ratio). These local minima in the Potts model that do not resemble 261 

any natural sequences are reminiscent of the unwanted spurious minima in Hopfield networks
21

. 262 

Compared to adabmDCA, ArDCA generated local optimal sequences that were significantly more 263 

conservative (on an average, 17% difference compared to 84%� (Figure 4A). The optimal 264 

sequences were also predicted to be a relatively modest improvement over the starting natural 265 

sequence with an improvement by � 1.5 fold in probability at each position with a total average 266 

increase in probability by a factor of � 5 ' 10�  when considering the entire sequence (Figure 267 

4B). Like ArDCA, GENERALIST-based local optima were significantly more conservative. As seen 268 

in Figure 4A, the local optimum sequences differed from the closest naturally occurring 269 

sequences on an average by 8%. As seen in Figure 4B, the per amino acid improvement was 270 

only � 1.1 fold with a total average increase in probability by a factor of � 7 ' 10	  when 271 

considering the entire sequence.  272 

 273 

To test whether these sequences potentially fold in stable 3D structures, we used AlphaFold2
22

, 274 

a recent machine learning method that can predict 3D structures from sequences and MSAs (SI 275 

Section 6). We used the sequence-averaged predicted local distance difference test (plddt) as a 276 

proxy for quality of predicted structures. Previous studies have shown that a sequence average 277 

plddt of  ( 80 corresponds to sequences that are likely to fold in stable 3D structures
23

. As seen 278 

in Figure 4C, local optimal sequences imputed by adabmDCA were predicted to be significantly 279 

worse folders compared to both GENERALIST and ArDCA. While ArDCA and GENERALIST produce 280 

sequences that were predicted to be comparable by AlphaFold2 on average. 281 

 282 
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These results show that GENERALIST can identify local optima in the sequence space. These 283 

optima are typically not seen in nature. The optimal sequences predicted by GENERALIST were 284 

also predicted by AlphaFold2 to fold in stable 3D structures 285 

 286 

GENERALIST reproduces statistics related to the density of sequences in the natural ensemble 287 

 288 

 289 

Figure 5. Panels A and B. Distribution of fractional Hamming distances between random pairs of 290 

sequences within an ensemble shown for BPT1 (panel A) and EGFR (panel B). Panels C and D. Distribution 291 

of fractional Hamming distances to the closest sequence within an ensemble for different models shown 292 

for BPT1 (panel C) and EGFR (panel D). Panels E and F. Distribution of fractional Hamming distances to 293 

closest natural sequence for different models shown for BPT1 (panel E) and EGFR (panel F). 294 

 295 

In addition to reproducing the summary statistics (Figure 3), an important test for generative 296 

models is capturing the density of sequences in the natural ensemble
7,24

. To that end, we 297 

evaluated three different statistics for all generated ensembles: (a) the distribution of distances 298 

between pairs of randomly picked sequences, (b) the distribution of nearest neighbor distances, 299 

and (c) the distribution of distances to the nearest natural neighbor.  300 

 301 

In Figure 5A and 5B (SI Figure 5), we plot the distribution of fractional Hamming distances 302 

between pairs of random sequences in an ensemble. We see that all generative models, except 303 

for the VAEs, accurately reproduced this distribution, implying that most ensembles captured 304 
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the expanse of the natural sequence ensemble. Ensembles generated using VAEs comprised 305 

sequences that are on average are closer to each other than natural sequences. 306 

 307 

The distribution of nearest neighbor distances portrayed a more complex picture. In Figure 5C 308 

and 5D (SI Figure 6, SI Section 2), we plot the distribution of fractional Hamming distances to the 309 

nearest neighbor within the ensemble. When MSAs were large (BPT1 in Figure 5C and DHFR in SI 310 

Figure 6), ArDCA/adabmDCA generated ensemble comprised sequences that were farther away 311 

from each other compared to natural sequences. In contrast, for small MSAs (EGFR in Figure 5D 312 

and p53 and mTor in SI Figure 6), ArDCA generated ensembles comprised sequences that were 313 

closer to each other compared to natural sequences. VAEs generated ensemble always 314 

comprised sequences that were on average closer to each other than natural sequences (with 315 

the exception of mTor). In contrast GENERALIST generated ensemble closely reproduced the 316 

density of nearest neighbor sequences observed in the natural ensembles.  317 

 318 

Next, we compared the distance distribution to the nearest natural neighbor. Here too, 319 

GENERALIST generated ensembles closely reproduced the density of nearest neighbor 320 

sequences (Figure 5E and 5F, SI Figure 7). In contrast, ArDCA/adabmDCA generated sequences 321 

were farther from the natural sequences if the MSA was large (BPT1 in Figure 5E and DHFR in SI 322 

Figure 7). ArDCA generated ensembles for proteins with small MSAs were overfit to the MSA as 323 

evidenced by a distribution of distances with a sharp peak at zero (EGFR in Figure 5F and p53 324 

and mTor in SI Figure 7). This overfitting also explains the accuracy with which ArDCA can 325 

reproduce sequence summary statistics for EGFR and other large proteins with small MSAs 326 

(Figure 3F, SI Figure 3). Finally, VAEs generated ensemble comprised sequences that were 327 

farther away compared to natural sequences for all proteins.   328 

 329 

These results show that an optimally tuned GENERALIST ensemble can capture various aspects 330 

of the density of sequences in the natural ensemble.  331 

 332 

Discussion 333 

 334 

Generative models of protein sequence families are an important tool for protein scientists and 335 

engineers alike. Ideally, these models should be simple to learn, tunable, and accurate, 336 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2022. ; https://doi.org/10.1101/2022.12.12.520114doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.12.520114
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

especially when studying proteins of significant clinical interest which tend to be large proteins 337 

with small MSAs. 338 

 339 

In this work, we examined three state-of-the-art models. Physics-based Potts models could only 340 

be used to model small sequences, limiting their application to single domains and small 341 

proteins. Moreover, these models could not be tuned. The sequence ensemble generated by 342 

Potts models could not reproduce the density of sequences in the natural ensemble and had 343 

optima that appeared unnatural. In contrast, the autoregressive generalization of the Potts 344 

model was significantly more efficient in model fitting and more accurate in reproducing 345 

summary statistics such as frequencies of higher order amino acid combinations (Figure 3).  The 346 

model also reproduced reasonable local optima that were computationally deemed to fold in 347 

stable 3D structures (Figure 4). However, the autoregressive Potts model could not reproduce 348 

the density of sequences in the natural ensemble (Figure 5). Importantly, given that the model 349 

has )��	� parameters for proteins of sequence length �, this model overfits the training data 350 

when modeling human proteins of significant clinical interest which are large and have small 351 

MSAs.  352 

 353 

Neural networks based variational autoencoders were efficient and did not appear to overfit the 354 

training data (Figure 5). Overall, these models were less accurate in predicting summary 355 

statistics of sequences compared to GENERALIST, the Potts model, and the autoregressive 356 

generational of the Potts model. At the same time, potentially owing to model complexity (and 357 

therefore parameter non-identifiability) and low amounts of training data, the models appeared 358 

to not have any systematic trends with respect to accuracy and overfit as a function of the 359 

dimension of the latent space.  360 

 361 

In contrast, GENERALIST is efficient, accurate, and tunable, allowing us to analyze large proteins 362 

with small MSAs. Notably, given its simple structure, there are several avenues of improving 363 

GENERALIST. For example, function/fitness information obtained from deep mutational 364 

scanning
15

 can be incorporated as constraints on the energies and phylogenetic information can 365 

be imposed as constraints on the latent space. Finally, GENERALIST can be easily reformulated 366 

for any other categorical data, for example, presence/absence of single nucleotide 367 
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polymorphisms or nucleotide sequences.  We believe that GENERALIST will be an asset for 368 

protein scientists and engineers alike.  369 

 370 
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