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Abstract

Tissue phenotypes such as metabolic states, inflammation, and tumor properties are functions of molecular
states of cells that constitute the tissue. Recent spatial molecular profiling assays measure tissue architecture
motifs in a molecular and often unbiased way and thus can explain some aspects of emergence of these
phenotypes. Here, we characterize the ability of graph neural networks to model tissue-level emergent
phenotypes based on spatial data by evaluating phenotype prediction across model complexities. First, we show
that immune cell dispersion in colorectal tumors, which is known to be predictive of disease outcome, can be
captured by graph neural networks. Second, we show that breast cancer tumor classes can be predicted from
gene expression alone without spatial information and are thus too simplistic a phenotype to require a complex
model of emergence. Third, we show that representation learning approaches for spatial graphs of molecular
profiles are limited by overfitting in the prevalent regime of up to 100s of images per study. We address overfitting
with within-graph self-supervision and illustrate its promise for tissue representation learning as a constraint for
node representations.

Introduction

The high molecular resolution provided by single-cell RNA-seq (scRNA-seq) has put the cell as a functional unit
in the focus of recent advances in tissue biology1. However, interactions between cells and emergent properties
of the tissue beyond the length scale of a cell are largely lost in assays that are based on dissociated tissues.
Spatial molecular profiling assays with single-cell resolution can fill this gap between cell and tissue biology by
providing descriptions of tissues as graphs of cells2. For example, emergent properties of cells in tissue niches
can be modeled in such spatial graphs3. Sample-level labels often reflect complex tissue phenotypes, such as
metabolic properties or disease states. In the absence of spatial information, a supervised model on sample-level
labels can detect cell states and frequencies thereof that correlate with the tissue phenotype. Spatial information
and graphs of cells extend the capability of such supervised models to not only detect cellular phenotypes that
correlate with the labels, but also motifs of tissue architecture, such as cellular niches4. Because of their explicit
representation of cells as constituent building blocks of a tissue, graph neural networks promise to be more
interpretable with respect to niches than convolutional neural networks on tissue images and, indeed, have been
recently successfully deployed for tumor phenotype prediction from spatial proteomics data537. Here, we perform
a comparative ablation study over spatial features and single-cell resolution for graph neural networks that predict
tumor phenotypes from spatial graphs with gene expression or categorical cell type node features. We use this
analysis to show that spatial motives of cell types that are predictive of tumor labels are encoded in cell-wise
gene expression, thus delineating whether spatial edges need to be modeled.

Results

Graph neural networks model tissue phenotypes

We introduce graph neural networks over spatial graphs of cells with an aggregation function across node states
to model graph-level labels that represent tissue phenotypes (Fig. 1a). The input node features can either be
gene expression vectors per cell or coarsened gene expression features, such as categorical cell type labels
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(Fig. 1b). This model class captures both molecular information of individual cells as input node feature vectors
and the architecture of the tissue through the spatial proximity graph. Previously, such graph neural network
architectures have been used to model tumor grades based on H&E images8 and spatial proteomics537. We
consider examples of graph-level supervision on three data sets: Two large cohorts of imaging mass cytometry
(IMC) of breast cancer biopsy data stratified by tumor grade and other tumor characteristics (IMC - Jackson9 with
559 images from 350 patients and IMC - METABRIC9 with 500 images from 454 patients) and a cohort of
CODEX samples of colorectal cancer biopsies stratified by tumor classification and disease outcome (CODEX -
colorectal cancer10, 140 images from 35 patients). We focussed on tumor grade prediction on the IMC - Jackson
and IMC - METABRIC datasets. In these published breast cancer data sets, the grade label was previously
assigned by a pathologist to the tumors based on standard histology and the tumor section assayed with IMC
were chosen to represent this decision. In both cases, we considered the problem of distinguishing grade 1, 2
and 3 tumors without introducing class weighting. We considered the prediction of binary tumor classes defined
based on the presence of diffuse inflammatory infiltration in the CODEX - colorectal cancer data set (Fig. 1c). In
all data sets, we performed training, validation and test data splits by patients and grouped all images of a patient
into one partition. We chose neighborhood sizes for spatial graphs (resolution) based on the average node
degree distribution3 (Supp. Fig. 1). We standardized all features globally across all data as we found this to best
reflect cell type and condition information (Supp. Fig. 2).

Predictive features of tumor architecture are defined by an ablation study

When applying the GNN models to the three tumor settings described above, we found graph neural networks
with node state aggregation to be predictive of the considered tissue labels (Fig. 2). We performed an ablation
study over single-cell and spatial information for a tissue phenotype to investigate if these models require the
spatial proximity graph, thus testing if they capture emergent properties of tissue architecture. We designed the
ablation based on two baseline experiments, omitting spatial structure and cell resolution from spatial graphs of
single cells (Fig. 2b). The first baseline model uses pseudo bulk data, which consists of mean gene expression
vectors across an entire image. We used fully connected dense neural networks including linear models (MLP) to
predict tissue-level phenotypes on pseudo-bulk data (Online Methods). The second baseline model uses in silico
dissociated single-cell data, which corresponds to removing the observed cellular gene expression vectors from
their spatial context to yield independent observations. We modeled this in silico dissociated single-cell data with
a multi-instance (MI) model that aggregate cell-wise embeddings (Online Methods). We compared the
performance of these baseline models with spatial graph convolutional networks (GCN) that leverages spatial
information (Fig. 1c). We considered GCNs trained with cross entropy loss functions on the tumor phenotype. In
addition, we trained GCNs with an additional self-supervision task (GCN-SS). This self-supervision task consists
of predicting cell type composition in adjacent regions in the graph from local graph embeddings, in analogy to
predicting held-out patches in self-supervision in images (Online Methods).

First, we considered one-hot encoded cell type labels as input node features. MI models did not outperform
pseudo-bulk models on coarse binary cell type labels (immune and non-immune cells, Fig. 2b) and on more
fine-grained author-supplied labels (Supp. Fig. 3a-d). It was previously reported that the spatial distribution of
immune cells in colorectal cancer is predictive of disease outcome and is used to stratify tumors5,10. Indeed, we
found that an MLP trained on an immune cell dispersion estimate per image was more predictive of tumor class
in test images of colorectal cancer than the baseline pseudo-bulk model that only reflects composition but not
architecture (Fig. 2c, Online Methods). This performance was matched by GCN and GCN-SS (Fig. 2c),
demonstrating that these models can independently detect this tissue architecture feature. In contrast, the spatial
distribution of immune cells in breast cancer was not predictive of tumor class (Fig. 2c), potentially reflecting
differences in tumor biology and measurement characteristics.

Cell type labels are a coarsening of cell-wise gene expression measurements. Within-cell type gene expression
variation is in parts explained by spatial niches3. We considered gene expression as input feature vectors to
ablate over spatial features in the absence of confounding by cell type classification choices. First, we found that
MI models outperform pseudo-bulk models on test images of the IMC - Jackson dataset significantly (average
accuracy difference 0.105), not significantly on the IMC - METABRIC and CODEX - colorectal cancer datasets
(average accuracy difference 0.081 and 0.094, respectively). This performance of MI models indicates that
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information on tissue-level phenotypes is captured by single-cell-resolved data (Fig. 2c). Second, we found that
GCN models do not outperform MI models in the same setting (Fig. 2c). This result shows that predictors of the
considered tissue phenotypes are sufficiently captured by non-spatial single-cell gene expression states. One
interpretation of this result is that the predictive tissue architecture motives are already encoded in cell-wise gene
expression vectors, which would be consistent with the previously demonstrated ability of spatial graphs to
explain parts of within-cell-type gene expression variation3. Indeed, MI models were significantly better when
trained on gene expression vectors as opposed to one-hot encoded cell type node representations on the IMC -
Jackson data and IMC - METABRIC data (Supp. Fig. 3e), demonstrating that this information inherent single-cell
resolution is lost upon coarse graining gene expression to cell types.

We noticed that the test performance of the optimal hyperparameter set depended on whether we selected
models based on training data loss or validation data loss and deteriorated if hyperparameters were chosen on
validation data (Supp. Fig. 4d). The two breast cancer data sets were big enough to include a validation data set.
We used 10% of the total data as validation data. The small validation dataset size of a few held-out images may
result in stochastic effects in model selection that are detrimental to finding good hyperparameters and we
continued to investigate models selected on train data performance. We noticed that the training loss plateaued
early in many model fits (Supp. Fig. 5) and hypothesized that GCNs overfit patients during training because of the
low number of total samples and the large content of information in the input data. We added further sample-level
labels in a multi-task set-up to the GCNs trained on the IMC - breast cancer and IMC - METABRIC data sets but
did not find this to improve the prediction accuracy on test data (Supp. Fig. 6).

Sample embeddings reflect tumor phenotypes

We sought to interpret the learnt tissue representations of GCNs through sample embeddings (Fig. 1c). After
node-pooling, graph-based neural networks yield spatially-aware embeddings of an entire graph that can be used
to compare different samples. Interestingly, the graph-embeddings show a continuous manifold of tumor grades
ranging from grade 1 via grade 2 to grade 3 in the IMC - Jackson and IMC - METABRIC datasets (Fig. 3a,b).
Note that the order of tumor grades is not encoded in the categorical multi-class prediction problem and was
learned correctly by the model, with grade 2 lying between grade 1 and 3 (Fig. 3a,b). The graph-embeddings of
grade 1 and 2 tend to overlap in the IMC - METABRIC dataset which reflects their anatomic similarity (Fig. 3b).
The sample embedding separates both tumor classes in the CODEX - colorectal cancer data sets (Fig. 3c).

Self-supervision mitigates overfitting on the node level

Not having found anomalies on the level of sample embeddings that could explain overfitting, we next considered
node embeddings. We considered the distribution of cell types and images of each node in a UMAP fit to the
embedding of 52 test images in both the input layer and the final node embedding layer of a GCN and a GCN-SS
(Fig. 4). Indeed, we found traces of overfitting to images on the level of node embeddings as a strong separation
of nodes of each image in the last node embedding layer of the GCN. We found that the self-supervision loss
constrains node embeddings by increasing integration of node embeddings across images (Fig. 4a,b). We
quantified this domain correction through self-supervision using data integration metrics from scRNA-seq
analysis11. We found image integration to improve as measured by data integration metrics11 to decrease when
adding a self-supervision loss in a GCN to a graph-level label loss (Fig. 4c, Supp. Fig. 8). Overfitting was less
prominent for MI models when compared to GCNs as evaluated by data integration metrics (Supp. Fig. 8),
demonstrating that the expressiveness of GCNs poses a challenge here. In summary, we showed that
self-supervision in graph representation learning is a powerful mechanism to constrain node embeddings and a
promising avenue to improve predictive performance in the future.

Discussion

We benchmarked the ability of graph neural networks to predict tissue-level phenotypes based on
single-cell-resolved spatial molecular profiling data sets. We detected spatial patterns of immune cells in
colorectal cancer related to tumor class with graph neural networks. In breast cancer, the spatial information was
sufficiently well represented in the cell-wise gene expression observations so that the predictive performance of
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GCNs is matched by non-spatial baseline models. This may be, in part, due to the simplicity of the currently
available tissue phenotype labels and to the small number of images per study that limits the complexity of
representations learned. We discussed self-supervision as a means to improve graph-level representation
learning in this regime of low number of data points where overfitting is hard to avoid. We validated our findings in
two comparable breast cancer cohorts and a colorectal cancer cohort, using tumor phenotypes as sample labels.
Different tissue phenotypes may provide harder supervision problems and thus may give rise to a stronger
relative performance of GCNs with respect to baseline models. Metabolic tissue properties and tissue response
to perturbation may provide for such complex physiological read-outs.

Beyond the choice of tissue phenotype, there are many model architecture design choices to be considered in
the future: First, we considered GCN kernels here. Graph attention12 and other graph kernels with more degrees
of freedom may be more sensitive to complex tissue niche motives. Second, pooling across the graph may be
performed globally or hierarchically, as previously also discussed by Wu et al.5. Aggregation of information across
a graph becomes even more relevant if larger graphs are considered, which may for example become available
in the context of tissue clearing13. Integration of spatial profiling data with deep molecular profiles from
scRNA-seq data may provide for higher resolution in the gene expression input feature space to GCNs in the
future14.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2022. ; https://doi.org/10.1101/2022.12.08.519537doi: bioRxiv preprint 

https://paperpile.com/c/4UEp1z/DHcd0
https://paperpile.com/c/4UEp1z/hA4s
https://paperpile.com/c/4UEp1z/WldEn
https://paperpile.com/c/4UEp1z/Pn2aa
https://doi.org/10.1101/2022.12.08.519537
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: A graph neural networks model of tissue phenotypes.

(a) Tissue-level phenotypes are functions of the architecture of the tissue. In this case, two colorectal tumor
classes, Crohn’s-like reaction (CLR) and diffuse inflammatory infiltration (DII), can be distinguished based on the
spatial distribution of immune cells. This tumor label cannot be inferred based on frequencies of cell types that
would be available in dissociation-based protocols, but only based on the spatial distribution of cells10. One
example image from the CODEX - colorectal cancer dataset for each class. (b) A graphical representation of a
tissue graph with different node features, molecular gene expression profiles (left) and one-hot encoding of node
cell type (right). (c) The spatial context of each cell can be formally represented by a graph in which edges are
weighted based on the distance between nodes. Each sample can be represented as one such graph, where
nodes are colored by the measured cell features. We perform prediction with a model that consists of graph
neural network layers to produce node embeddings, followed by pooling over nodes and a final classification
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network. In addition, the node embeddings of connected components of nodes on the spatial proximity graph can
be aggregated for local self-supervision tasks, such as reconstruction of adjacent clusters’ cell type composition.
dotted line: connected component of nodes on spatial proximity graph. The spatially-aware graph embedding can
be visualized with a UMAP in which each point reflects one graph (image) and depicts separation of samples by
the tumor class (CLR and DII) here.

Figure 2: Graph neural networks predict whole-slide tumor phenotypes from cellular architecture.

(a) Design of the ablation study. MLP models only have access to the average node feature vector of the graph.
MI models have access to single-cell-resolved but in silico dissociated data from the observed spatial graph.
Spatially aware models, DISP, GCN, and GCN-SS, have access to node features and the spatial proximity graph.
MLP: Multi-layer perceptron based on graph-wide summary statistics on features. MI: Multi-instance model on
nodes of graph. DISP: Dispersion multi-layer perceptron based on average graph niches features. GCN: Graph
convolutional network. GCN-SS: Graph convolutional network with additional self-supervision loss. (b, c) Three
separate applications of graph neural networks to predict tumor phenotypes on the IMC - breast cancer
(Jackson), IMC - breast cancer (METABRIC) and CODEX - colorectal cancer datasets. Model complexity ablation
study on classification performance on breast cancer grade prediction and colorectal cancer group prediction
using two feature spaces, molecular features and cell types. Shown is the area-under-curve of the
receiver-operator characteristic curve (AUC ROC) using the binary cell type features (immune and non-immune)
(b) and molecular profile features (c) across six-fold cross-validation for the best performing hyper-parameter set
for each model class for best models selected on train loss.
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Figure 3: Graph neural networks interpolate tumor states.

UMAP of graph embedding of GCN-SS of training and test data with class label superimposed for (a) IMC -
breast cancer (Jackson), (b) IMC - breast cancer (METABRIC) and (c) CODEX - colorectal cancer datasets.
Each point is one graph. (d, e) The euclidean distances between the different class embeddings of the (d) IMC -
breast cancer (Jackson) and (e) IMC - breast cancer (METABRIC).
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Figure 4: Auxiliary self-supervision loss stabilizes node embeddings.

(a,b) UMAPs of node embeddings by layer: input, last GCN layer in a GCN model and last GCN layer in a
GCN-SS with two GCN layers trained on the IMC - breast cancer data (Jackson). Superimposed are (a) the
cancer grade of the corresponding graph and (b) the image (graph) to which the node belongs. (c) Focusing only
on GCN and GCN-SS here, we show the iLISI and graph connectivity integration metrics on the three datasets
(N=3 cross validations). For iLISI and 1 - graph connectivity, higher values imply better integration, while low
values result from distribution differences in the considered batches.
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Online methods

Data

IMC - breast cancer (Jackson)

The breast cancer dataset (Jackson et al.9,15 with 559 images from 350 patients) was measured with IMC. The
dataset consists of samples from three breast cancer grades, grade 1 (114 images), grade 2 (214 images) and
grade 3 (231 images). Here, 34 proteins in a panel specific to breast cancer microenvironment were
simultaneously measured. We used the segmentation provided by Jackson et al.. We used the following
channels: 1021522Tm169Di EGFR, 1031747Er167Di ECadhe, 112475Gd156Di Estroge, 117792Dy163Di
GATA3, 1261726In113Di Histone, 1441101Er168Di Ki67, 174864Nd148Di SMA, 1921755Sm149Di Vimenti,
198883Yb176Di cleaved, 201487Eu151Di cerbB, 207736Tb159Di p53, 234832Lu175Di panCyto,
3111576Nd143Di Cytoker, Nd145Di Twist, 312878Gd158Di Progest, 322787Nd150Di cMyc, 3281668Nd142Di
Fibrone, 346876Sm147Di Keratin, 3521227Gd155Di Slug, 361077Dy164Di CD20, 378871Yb172Di vWF,
473968La139Di Histone, 651779Pr141Di Cytoker, 6967Gd160Di CD44, 71790Dy162Di CD45, 77877Nd146Di
CD68, 8001752Sm152Di CD3epsi, 92964Er166Di Carboni, 971099Nd144Di Cytoker, 98922Yb174Di Cytoker,
phospho Histone, phospho S6, phospho mTOR, Area. Jackon et al. annotated the following cell types: B cells, T
and B cells, T cells, macrophages, T cells, macrophages, endothelial, vimentin hi stromal cell, small circular
stromal cell, small elongated stromal cell, fibronectin hi stromal cell, large elongated stromal cell, SMA hi vimentin
hi stromal cell, hypoxic tumor cell, apoptotic tumor cell, proliferative tumor cell, p53+ EGFR+ tumor cell, basal CK
tumor cell, CK7+ CK hi cadherin hi tumor cell, CK7+ CK+ tumor cell, epithelial low tumor cell, CK low HR low
tumor cell, CK+ HR hi tumor cell, CK+ HR+ tumor cell, CK+ HR low tumor cell, CK low HR hi p53+ tumor cell and
myoepithelial tumor cell. We coarsened the cell types into B cells, T and B cells, T cells, macrophages, T cells,
macrophages, endothelial, stromal cells (vimentin hi stromal cell, small circular stromal cell, small elongated
stromal cell, fibronectin hi stromal cell, large elongated stromal cell, SMA hi vimentin hi stromal cell) and tumor
cells (hypoxic tumor cell, apoptotic tumor cell, proliferative tumor cell, p53+ EGFR+ tumor cell, basal CK tumor
cell, CK7+ CK hi cadherin hi tumor cell, CK7+ CK+ tumor cell, epithelial low tumor cell, CK low HR low tumor cell,
CK+ HR hi tumor cell, CK+ HR+ tumor cell, CK+ HR low tumor cell, CK low HR hi p53+ tumor cell, myoepithelial
tumor cell).

IMC - breast cancer (METABRIC)

The breast cancer METABRIC cohort (Ali et al.15 with 500 images from 467 patients) was collected with IMC.
Here, 37 proteins in formalin-fixed, paraffin-embedded breast tumor samples were measured. METABRIC
dataset consists of images from three breast cancer grades, grade 1 (50 images), grade 2 (181 images) and
grade 3 (269 images). Ali et al. segmented the single cells in the images using random forest classifier and then
the expression of proteins in single cells was quantified. The mean protein expression of the segmented cells are
used as the node features of the spatial graph with edge weights between cells defined using decaying kernels at
the center of the reference cells. We used the following channels: HH3_total, CK19, CK8_18, Twist, CD68, CK14,
SMA, Vimentin, c_Myc, HER2, CD3, HH3_ph, Erk1_2, Slug, ER, PR, p53, CD44, EpCAM, CD45, GATA3, CD20,
Beta_catenin, CAIX, E_cadherin, Ki67, EGFR, pS6, Sox9, vWF_CD31, pmTOR, CK7, panCK,
c_PARP_c_Casp3, DNA1, DNA2, H3K27me3, CK5, Fibronectin. Ali et al. annotated the following cell types: B
cells, Basal CKlow, Endothelial, Fibroblasts, Fibroblasts CD68+, HER2+, HR+ CK7-, HR+ CK7- Ki67+, HR+ CK7-
Slug+, HR- CK7+, HR- CK7-, HR- CKlow CK5+, HR- Ki67+, HRlow CKlow, Hypoxia, Macrophages Vim+
CD45low, Macrophages Vim+ Slug+, Macrophages Vim+ Slug-, Myoepithelial, Myofibroblasts and T cells,
Vascular SMA+. We coarsened the cell types into B cells, Endothelial, Fibroblasts (Fibroblasts, Fibroblasts
CD68+), Macrophages (Macrophages Vim+ CD45low, Macrophages Vim+ Slug+, Macrophages Vim+ Slug-),
Myoepithelial, Myofibroblasts, T cells, Vascular SMA+ and Tumor cells (HER2+, HR+ CK7-, HR+ CK7- Ki67+,
HR+ CK7- Slug+, HR- CK7+, HR- CK7-, HR- CKlow CK5+, HR- Ki67+, HRlow CKlow, Hypoxia).

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 11, 2022. ; https://doi.org/10.1101/2022.12.08.519537doi: bioRxiv preprint 

https://paperpile.com/c/4UEp1z/DwkXW+MNHt
https://paperpile.com/c/4UEp1z/MNHt
https://doi.org/10.1101/2022.12.08.519537
http://creativecommons.org/licenses/by-nc-nd/4.0/


CODEX - colorectal cancer
The colorectal cancer dataset (Schürch et al.7 with 140 images from 35 patients) was measured with CODEX.
The dataset consists of two patient groups, one group with Crohn’s-like reaction (CLR) represented in 68 images
and one group with diffuse inflammatory infiltration (DII) represented in 72 images. Here, 57 proteins specific to
the tumor microenvironment were measured. We used the segmentation previously performed by Schürch et al..
The molecular abundance per cell segment and the coordinates of the center of each cell were used to construct
the spatial graph. We used the following channels: CD44, FOXP3, CD8A, TP53, GATA3, PTPRC, TBX21,
CTNNB1, HLA-DR, CD274, MKI67, PTPRC, CD4, CR2, MUC1, TNFRSF8, CD2, VIM, MS4A1, LAG3, ATP1A1,
CD5, IDO1, KRT1, ITGAM, NCAM1, ACTA1, BCL2, IL2RA, ITGAX, PDCD1, GZMB, EGFR, VISTA, FUT4, ICOS,
SYP, GFAP, CD7, CD247, CHGA, CD163, PTPRC, CD68, PECAM1, PDPN, CD34, CD38, SDC1,
HOECHST1:Cyc_1_ch_1, CDX2, COL6A1, CCR4, MMP9, TFRC, B3GAT1, MMP12. Schürch et al. annotated
the following cell types: B cells, CD11b+ monocytes, CD11b+CD68+ macrophages, CD11c+ DCs, CD163+
macrophages, CD3+ T cells, CD4+ T cells, CD4+ T cells CD45RO+, CD4+ T cells GATA3+, CD68+
macrophages, CD68+ macrophages GzmB+, CD68+CD163+ macrophages, CD8+ T cells, NK cells, Tregs,
adipocytes, dirt, granulocytes, immune cells, immune cells / vasculature, lymphatics, nerves, plasma cells,
smooth muscle, stroma, tumor cells, tumor cells / immune cells and undefined, vasculature. We binarized the cell
types into immune cells (B cells, CD11b+ monocytes, CD11b+CD68+ macrophages, CD11c+ DCs, CD163+
macrophages, CD3+ T cells, CD4+ T cells, CD4+ T cells CD45RO+, CD4+ T cells GATA3+, CD68+
macrophages, CD68+ macrophages GzmB+, CD68+CD163+ macrophages, CD8+ T cells, NK cells, Tregs,
granulocytes, immune cells, immune cells / vasculature, lymphatics and tumor cells / immune cells) and other
(adipocytes, dirt, nerves, plasma cells, smooth muscle, stroma, tumor cells, undefined and vasculature).

Processing

We considered molecular feature spaces and cell type feature spaces. We compared molecular feature
quantification per cell as provided by the authors9,16 (no feature transformation), image-wise feature
standardization and global feature standardization. The cell type feature space was assembled as a one-hot
encoding of the categorical cell type labels as described in the methods sections specific to each dataset. We
used patient identifiers as the domain label for all datasets.

Spatial proximity graphs

We considered neighborhood graphs built with fixed kernel radii across all images. In all datasets considered
here, pixel dimensions are fixed across images so that radii defined on pixels correspond to consistent spatial
distances across images. We defined a raw adjacency matrix for each image with entries based on a radius� �ÿĀ

of a kernel between the position of two cells in 2D space :ÿ ÿ, Ā ÿÿ,  ÿĀ
.�ÿĀ = 1 ÿĀ ÿÿ − ÿĀ||| |||||| |||2 <  ÿ ÿĂĀÿ 0

Spectral clustering

We computed spectral clustering for the spatial graphs, where we divided the graph into a certain number of
subgraphs (clusters) based on distances between the nodes of the graph. We first compute k nearest neighbors
matrices, where k is a hyperparameter representing the number of neighbors used for kNN graph construction.
We then computed the n spectral clusters in the graph using the SpectralClustering model, where n is a
hyperparameter of the desired number of subgraphs and we perform a one-hot encoded assignment of the graph
nodes to the nearest cluster. We also calculate the adjacency matrices within each of the clusters.

dataset learning
rate

l2 radius aggregation depth number
of
clusters

width
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IMC - breast
cancer
(Jackson)

{0.05, 5e-3,
5e-4}

{0, 1e-6, 1e-3} {10,50} mean {1,2,3} {5,10, 20} {16,64}

IMC - breast
cancer
(METABRIC)

{5e-3,
5e-4}

{0, 1e-6} {10, 20, 55} mean 3 {5, 10} {16, 64}

CODEX -
colorectal
cancer

{5e-3,
5e-4}

{0, 1e-6} {25,50, 120} spectral {2,3} {5,10} {4,8,16, 32}

Table 1: Hyper-parameters screened in grid search for each data set.

Models

All models presented are feed-forward networks that take graph data (or reductions thereof) as input and produce
a graph-level classification as output.

Pseudobulk multi-layer perceptron networks (MLP)

For the pseudobulk reference model, we used an aggregated mean of the feature space across the entire image

and it as input, , where is the vector of average expression of input features, is the node featureý =  1� ÿ
�∑ ýÿ ý ý

matrix (number of nodes input features). The input is then fed to a dense fully connected network to obtain� ý
the graph-level prediction .þ =  Ā(ý )
Multi-instance networks (MI)

For the multi-instance reference model, we used a stack of fully connected layers to obtain node-wise feature
embeddings. Each layer l transformed the set of node features as:

,�Ă+1 = σ �Ă�Ă( )
where is an activation function, is a node feature matrix of dimensions (number of nodes x input features)σ �Ă
and is a weight matrix of dimensions (input features x output features). To then obtain graph-level predictions,�Ă
the node feature embeddings were aggregated by a pooling layer and further transformed by two dense layers.

Graph convolutional networks (GCN)

The node embedding layers for the Graph Convolutional Network are defined as:

,�Ă+1 = σ �*�Ă�Ă( )
where is an activation function, is a n input node feature matrix of dimensions (number of nodes x inputσ �Ă
features), is a weight matrix of dimensions (input features x output features) and is the spectral normalized�Ă �*
adjacency matrix:�* = Ā− 12 � Ā− 12
where is the raw adjacency matrix and is the degree matrix of A. Node embeddings were then aggregated� Ā
by a pooling layer and two dense layers were then used to obtain the graph-level predictions.

Graph convolutional networks with self-supervision (GCN-SS)

We introduced a self-supervision auxiliary task to the graph neural network. The self-supervision loss was added
to the supervised loss which in this case acts as a regularization factor to the loss function. Here, we chose
relative cell type proportions as our self-supervision task. Spectral clustering was performed on the spatial graph.
For each node, the relative proportions of cell types in the same cluster are predicted.
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Ā(þ,  þ) =  1ÿ*� ÿ
�∑ �

ÿ∑( þā(ÿ)� −  þÿ�)2
where , where is the number of spectral clusters and the cluster assignment of cell i,þ ∈  �ÿýÿ,  þ ∈  ��ýÿ ÿ ā(ÿ)
and is the number of distinct cell types.ÿ
Dispersion model

As for deriving self-supervision labels, we performed spectral clustering, calculated the relative proportions of cell
types per cluster, and finally aggregated the mean of relative proportions of cell types across the clusters,

, a vector of length , where is the number of spectral clusters and is the fraction of cell typesý� =  1ÿ ā
ÿ∑ ��ā ÿ ÿ ��ā

of type in cluster . We then predicted the graph-level label based on with a fully connected network:� ā ý
. In this manuscript, we used the dispersion model only on binarized cell type labels.þ  =  Ā(ý)

Node-wise pooling

We aggregated information across all observations in an image using a mean aggregation for the IMC datasets
and used aggregation in spectral clusters on the CODEX data. For spectral pooling, we first aggregated nodes
within the same cluster followed by aggregating across clusters. The spectral clusters are subgraphs (clusters) of
adjacent nodes assigned k-nearest neighbors clustering algorithm. The number of clusters in a graph is a
hyperparameter ranging between 5 and 20 clusters.

Integration metrics

To quantify the domain correction across the different models, we adapted integration metrics from scRNA-seq,
namely the graph connectivity metric and iLISI graph metric from the scIB9 package. The graph connectivity and
iLISI graph metrics are both calculated from the kNN graph (k=50) of the node embeddings of all images and
assess the connectivity between the nodes from the same images, the higher the scores the better the images
are integrated. We further trained a linear regression model using the node embeddings from the last layer of the
models for the prediction of the image identities and used its accuracy to quantify the strength of the signal still
coming from the image identity. For the prediction accuracy, the lower the score the better the images are
integrated.

Code and data availability

We used published datasets provided in the original studies. We summarized all models, training and
interpretation mechanisms discussed here in a python package centered around graph-level supervision on
spatial single-cell graphs, https://github.com/theislab/tissue. We are also providing all the analysis and the model
evaluation notebooks that were presented throughout the paper,
https://github.com/theislab/tissue_reproducibility.
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