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30 Introduction

31  Human infectious diseases almost all came from other species (1). COVID-19, Ebola virus disease,
32  HIV/AIDS and Zika virus disease are recent examples, whereas those like measles arose after the
33  Neodlithic Agricultural Revolution (2). The process of infectious disease emergence from animals
34  begins with the cross-species transmission (spillover) of a microbe (e.g., virus, bacteria, fungus) to a
35 new animal hogt in which it is pathogenic (1, 3, 4). Yet, successful emergence events are complex
36  multi-stage processes with many possible pathways leading from the original wildlife reservoir to
37  sustained transmission in people (5). The probability of any of these pathways occurring and resulting
38 in infection emergence varies temporaly and spatially. Understanding where and why viruses
39  gpillover is essential to prevent future pandemics. Pervasive, accelerated land use change (6), human
40  encroachment, increasing and changing contacts among and between wildlife and domestic animals
41  are among the multiple drivers of zoonotic pathogen transmission (7). However, the exact pathways
42  of disease emergence are often unclear (8, 9). Cross-scale evaluation of disease emergence drivers,
43  that can be measured and mapped, may allow decision-makers to know where to act and implement
44 surveillance (10). Thus, effective risk evaluations must consider a variety of land use drivers as well
45  astrendsin the digribution of human and animal populations to optimally identify areas of change to

46  focus mitigation measures (reduce pressures) and surveillance (11).

47 Zoonotic disease risk has been mostly linked to mammals and birds (12). Bats are among the
48  natural hosts of viruses in the coronavirus (family Coronaviridae) subgenus Sarbecovirus (Severe
49  acute respiratory syndrome (SARS)—related coronaviruses), that includes SARS-CoV-1 and SARS-
50 CoV-2 (13, 14). Bat hosts of sarbecoviruses are broadly distributed but the highest diversity is in
51  Southeast Asia (15). Human infection with Sarbecovirus from bats may be more frequent than
52  reported from traditional surveillance (16) and potentially secondary hosts (17, 18). Viral infection
53  prevalence contributes to the risk of spillover (4), and can be influenced by biological factors such as
54 birthing cycles (19, 20) and external stimuli such as human changesto land use (7) (but see (21, 22)).

55 Large scale risk assessments in which areas with similar risk profiles are identified provide
56 invaluable information (13, 23) and can be rapid, while the development of local, detailed and
57 intricate spillover and outbreak risk assessments can take a long time (24, 25). Since detailed and
58 validated data for recent reports on outbreak risk reduction are lacking for most regions of the globe
59 (eg. the Sendai framework, https://sendaimonitor.undrr.org/), a broad evaluation targeting

60  Sarbecovirus emergence can be advantageous to discuss diverse contexts across the region where
61 most natural hosts of sarbecoviruses occur. Human encroachment has led to decreased distances
62  between bat roosts and human settlements (26), so part of the relevant hazard for inferring spillover

63  risk can be spatially quantified from remotely sensed proxies for socioecological risk factors. Previous
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64  works estimated hogt distributions (15, 27) and developed modeling frameworks for adding proxies
65  for diseaserisk and spread in the face of limited data (15, 27, 28).

66 Here, we identify where indicators for emergence risk overlap, focusing on the biological
67  possibility of the emergence of a Sarbecovirus. Our goa is to aid mitigation and surveillance
68  activities throughout South, East and Southeast Asia, by identifying both where efforts should focus
69  and which risk factors should be prioritized. Specifically, we aim to: 1) Identify and characterize
70  univariate hotspots for four suggested spillover scenarios. 2) Identify spatially cohesive clusters of all
71  risk indicators that, when combined, increase risk of zoonotic spillover (23, 29); 3) Quantify
72  intersections of high-risk areas and access to health care, to identify where infection may be first
73  detected and outbreaks may spread.

74 The four scenarios evaluated represent different nested transmission pathways. We assume
75 that the risk of emerging new SARS-like outbreaks is associated with social, biological and
76  environmental components and, because there are unobserved dynamics for emerging viruses (30), we
77  evaluated four nested spillover pathway scenarios based on landscape change and potential hosts (31):
78  Scenario 1 (direct - known bat hosts) represents direct transmission from bats to people, facilitated by
79  the landscape condition, human population, and known bat hosts. Although molecular investigations
80  suggedt that direct transmission of sarbecoviruses from bats to humans may be possible (32), it has yet
81  to be better documented (33). Rather, the involvement of an intermediary or bridging host appears
82  more likely, perhaps because this allows for recombination and viral evolution, and/or leads to greater
83  exposure to human populations. Consequently, we developed Scenarios 2-4 to represent indirect
84  pathways that build on Scenario 1 by adding livestock (Scenario 2, indirect - mammalian livestock)
85  and wild mammals (Scenario 3, indirect - wild mammals). Scenario 4 (indirect - all mammals) is a
86  global scenario comprising landscape condition, human population, known bat hosts, mammalian

87 livestock and wild mammals.

88 Reaults

89  Characterization of univariate risk indicator hotspots

90 The study region comprises a 25796-pixel grid for the terrestrial area evaluated. Univariate hotspot
91  areas differ in magnitude (Figure 1) and extent according to components/indicators. Most hotspots
92  concentrate at latitudes between 20 and 40 degrees. The univariate hotspots with the largest spatial
93  extent are those obtained for agricultural and harvest land, followed by high integrity forests and areas
94  with high deforegtation potential. The majority of the included region comprises coldspots for primary
95  bat hosts. Indicators with the greatest extent of coldspots were livestock (pigs then cattle) followed by

96  known bat hosts. The largest extent of intermediate areas was for human population counts, which
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97  presented no coldspots due to the ubiquitous nature of human occupation in terrestrial areas. The
98 largest differences in all Bovidae livestock versus cattle-only hotspots (see Methods) are in central
99  Chinag, parts of north (Hebei, Shanxi, and Henan) China and central India (Figure S2). The complete
100  overlap of hotspots considering all univariate hotspots at one grid never occurred.
101
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106  Figure 1. Univariate hotspots of potential factors contributing to emergence of SARSlike
107  coronaviruses. The upper panel shows the spatial distribution of hotspots based on univariate
108 indicators of risk of new Sarbecovirus emergence evaluated in four scenarios. Bottom panel shows the
109  proportion (%) of areas classified as hotspots, intermediate or coldspots across the study region,
110  according to the aggregation of indicators in higher-level groups and univariate descriptors. Areas in
111 thered zone represent hotspots, yellow zones are intermediate areas and coldspots in blue, at a 95%
112  aphaerror level.

113

114 Scenarios

115 Regardiess of scenario, the largest hotspot overlaps occur in central and southeast China, south and
116  northwestern Indiaand Java. Differences between Scenario 1 (direct - known bat hosts) with potential
117  primary known bat hosts and Scenario 4 (indirect - all mammals) are largest in central China (Figure
118  2). Thelargest differences between each scenario and Scenario 1 (the scenario with fewest covariates)
119  concentrated in central and southern China and represent the hotspots from the variables that were left
120  out in the difference maps. Scenario 3 was the one with the least amount of differences in relation to
121  Scenario 1. Similar to Scenario 1, Scenario 2 shows most hotspot convergences in central and south
122  China Considering Scenario 4 (indirect - all mammals), the most important PCA axes show a clear
123  ‘natural axis' and an anthropogenic axis, where the pig production layer is intermediate to the
124  influence of both axes (Figure S3). Both main axes explain 58.7% of the total variation (PC1 = 33.5%,
125 PC2=24.8%).

126 Maximum overlap for non-human potential primary and secondary hosts occurred across Chinaand
127  Vietnam. The average time to reach healthcare in areas with complete overlap among potential non-
128 human hostsin areasis 1.04 h (0.76 SD). The fastest travel to healthcare times occurred in hotspots
129  for al host groups except wild mammals secondary hosts, where the fastest travel to healthcare times
130  wereassociated with intermediate areas and not hotspots (Table 1).
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132 Figure 2. Multivariate emergent risk hotspots for scenarios containing indicators associated
133  with landscape change and zoonotic pathogen emergence. Landscape, human population and
134  known bat hosts are included in all models, and are the sole indicators in Scenario 1, representing
135  direct transmission. To incorporate indirect transmission through secondary hosts, mammalian
136  livestock are included in Scenario 2, wild mammals in Scenario 3, and both mammalian livestock and
137  wild mammals in Scenario 4. The bottom panel shows differences between each upper respective
138  scenario and Scenario 1. The internal white area in the continent represents no data values for Lake
139  Qinghai; the largest lake in China

140 Tablel. Averagetimetoreach healthcarein areaswith complete overlap for non-human
141  potential hostswithin China and Vietnam. Wild mammal refers to wild mammals except for the
142  known bat host species.

Timeto reach healthcare (mean hours, [SD])

Component in potential Coldspot Intermediate Hotspot
transmission risk scenario

Primary hosts (known bat hosts) 5.81[10.2] 1.98[3] 1.76 [2.37]
Secondary hosts (wild mammal) 6.62[11.2] 1.97[3.57] 2.26 [3.03]

Secondary hosts (pig) 6.08 [10.2] 1.92[2.83]  0.8[0.73]
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Secondary hosts (cattle) 6.98 [10.6] 1.51[1.93] 0.64[0.72]

143

144  Hotspot overlap in clusters

145  Theoptima number of multivariate spatia clustersis nine when 10% of the human population is used
146  asaminimum bound variable and 19 for 5% of the human population. There isan incremental benefit
147  reduction from adding clugters, from nineteen groups on (Figure $4). The clusters from the cut-off
148  value of 5% are nested within the 10% clugters (Figure S5), and we present the clustersfor 19 areasin
149  the maintext (Figure 3). From the 19 clusters, Beijing (cluster 19), Java (cluster 17), and Sichuan and
150  Yuzhong District, Chongging (cluster 16, Table 2) concentrate the highest hotspot scores. The clusters
151  with highest scores were among the smaller clustersin geographical extent. Inner-West China (cluster
152 1), South Lhasa and Arunachal Pradesh (cluster 15), and Philippines, Timor East, West Papua (cluster
153  9) had the highest scores for coldspots. Areas with the highest scores for the Intermediate class were
154  Assam, West Burma block, Steppe and Sri Lanka (cluster 2), followed by Southwest Indochina
155  (cluster 11) and North India (cluster 14). Clusters with the all Bovidae livestock version are in Figure
156  S6, and they were very similar to the cattle-only versions, except for the Beijing area and the division
157  of thetwo larger clustersin India, West India and East India.

158

159 Table 2. Multivariate spatial clusters and the number of times in which the median values of
160 each emergent risk score were in coldspots, intermediate or hotspots (n=190). The top three

161  valuesfor each column are in boldface.

Clugter ID and indicative name N variables for which themedianisa
Coldspot Intermediate  Hotspot
spots
1Inner-West China 9 1 0
2 Assam, West Burma block, Steppe, and Sri Lanka 0 8 2
3 West Thailand, most of Sundaland islands 3 4 3
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4 Wes India 4 3 3
5 Central China 0 5 5
6 Manchuria 6 3 1
7 North Lao PDR, North Vietnam, South China 0 5 5
8 Eadt India 2 3 5
9 Philippines, Timor East, West Papua 7 2 1
10 North China 5 0 5
11 Southwest Indochina 0 6 4
12 Inner Manchuria 5 4 1
13 Nepal, Bhutan, Bangladesh 4 2 4
14 North India 1 6 3
15 South Lhasa and Arunachal Pradesh 8 1 1
16 Sichuan and Yuzhong District, Chongging 2 2 6
17 Java 1 2 7
18 East Bangladesh 2 4 4
19 Beijing 1 1 8
Total 60 62 68

162

163
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165  Figure 3. Digtribution of multivariate clusters of risk factors associated with potentially new
166 emerging SARS-like coronaviruses, based on Scenario 4 in which all potential mammalian
167  hosts, land use change and human exposure density distributions are considered. Areas located

H:

168 inthered zone represent hotspots, yellow zones are intermediate areas and coldspots in blue, at a 95%
169  aphaerror level.
170
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171  Potential outbreak detection and spread

172  When we cross the risk factor spatial information with healthcare access measured as travel time, the
173  largest differences between combinations of quantiles of the two covariates are in the lowest and highest
174  quantiles of both variables (Figure 4). We calculated the areas with high-risk values that are far or
175  close to healthcare for all scenarios (Figure S7) within the spatial clusters from the skater analysis.
176  From the entire study region, areas closer to healthcare that had high hotspot overlap (areas in yellow
177  inFigure 4, Figure S7) covered an arearanging from 11.96% in Scenario 1, to 20.28% in Scenario 2,
178  14.66% in Scenario 3, and 13.67% in Scenario 4. Areas far from healthcare that present high hotspot
179  overlap (in red Figure 4 and Figure S7) were much rarer and varied according to scenarios, aways
180  covering less than 1% of the studied region, ranging from 0.1% in Scenario 1, to 0.30 in Scenario 2,
181  0.91% in Scenario 3 and 0.22% in Scenario 4. The relationship between travel time to healthcare and
182  human population counts (Figure S8) shows that areas far from healthcare tend to have lower
183  population counts, but the relationship is non-linear.

184

Scenario 1

Scenario 4

- Time to healthcare +

185
186  Figure4. Bivariate maps crossng emer gent risk from hotspot data on risk quantilesand access

187 to healthcare. Black lines divide the limitsfor the 19 clusters identified.
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188 Discussion

189 Urgent actions are needed to decrease disease emergence risk (34, 35). Using a macroscale
190 approach, we assessed the distribution of locations with a greater risk of experiencing Sarbecovirus
191  spillover events using landscape conditions and exposure of potential hosts (wildlife, domestic,
192  human). Landscape conditions coupled with predictions of the distribution of known hosts and
193  proxiesfor potential hosts and processes linked to human exposure to novel viruses can be a powerful
194  tool for spatial sample prioritization when limited viral spillover information is available, such as for
195  sarbecoviruses (16).

196 The overlap of risk factor hotspots represents pressure points on natural ecosystems that have
197  been extensively altered in terms of agriculture, deforestation, and livestock production. In some
198  cases, these clugters Hill have high values for forest quality and known host diversity (for instance,
199 cluger 5 — central China, and cluster 17 — Java). Areas where outstanding values of different risk
200 factors converge can pose a severe risk to disease emergence and conservation. In Sichuan — cluster
201 16 — values of livestock production are extremely high and largely extensive farming takes place
202  concomitantly with the presence of hotspots for mammal diversity (including higher values for known
203  bat hosts) and very high deforestation risk. Unfortunately, deforestation rates and the livestock
204  revolution are evident in our top-rated clusters (27), within biodiversity-rich areas, with high forest

205  lossrisk and avery large human population (in the case of Beijing - cluster 19 and Java - cluster 17).

206 We assume that intermediate areas in proximity to hotspots, and where socio-ecological
207  transitions such as those related to the livestock revolution, are at the greatest risk of transitioning to
208  hotspots (27). Even without transition, clusters with mostly intermediate values for stressors have had
209  zoonotic spilloversin the past (17, 33, 36), notably those in central China on cluster 2 and edges with
210  clugter 7 (north Lao PDR, north Vietnam, south China). Further, there is overlap of several identified
211  clugters with areas that concentrate hosts of other viruses with pandemic potential, such as Nipah
212 virus (37). The intermediate and high-risk areas within clusters need a multidimensional approach to
213  mitigation that combines targeted surveillance of human populations and the highly weighted risk
214  factors with One Health approaches. These approaches emphasise nature-based mitigation strategies,
215 looking at the socio-economic drivers that shape local landscape conditions. Our analyses also show
216  that risk factor clusters are commonly multinational, and action plans are a complex task to
217  implement. However, transboundary, coordinated action between nationsthat share territorial limitsis
218 paramount if configuration of hotspots is taken into account when managing, protecting and restoring

219 land to mitigate disease emergence risk.

220 Conditionally safer areas (blue, Figure 4) represent remote areas that present little spatial
221  overlap inrisk factor hotpots. In those areas, priority should be assessing and reducing other disaster
222  and disease risks. In areas of high potential assessed risk (khaki, orange and red, Figure 4), actions

11
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223  should be focused on the drivers of spillover. Recent literature (35) suggests three broad, cost-
224  effective actions to minimize pandemic risk: better surveillance of pathogen spillover, better
225  management of wildlife trade, and substantial reduction of deforestation (i.e. primary prevention)
226  (35). Landscape planning should have priority, as these can have other benefits (38, 39) and can
227  include preventive measures to reduce levels of contact between people and potential wild and
228 domedtic animal hosts. Biosecurity measures and surveillance and fauna monitoring are also key
229  where multi-component risk levels are higher (40). Syndromic, virological, serological, and
230  behavioral risk surveillance of people with regular proximity with known reservoir or potential
231  amplifier hogts (40) can be of great value in these hotspots, but the ultimate prevention should be in
232  primary prevention. Beyond viral monitoring and discovery, prevention can be achieved by reducing
233  deforedation, wildlife trade and increasing sustainable management of agricultural areas (35).

234 Surveillance effort correlates with detecting infections and where human populations intersect
235  with wildlife, risk increases (41, 42). Evidence from Brazil also suggests zoonotic risk increases with
236  remoteness (along with increased wild mammal species richness) and decreases in areas with greater
237  native forest cover (43). Our results suggest high-risk areas are often (11-20%) associated with faster
238  travel times to healthcare, compared to remote areas (<1%) (yellow and red respectively, Figure 4).
239  The problem posed by remote sites for emergence mitigation is that while spillover probability and
240 initial ease of spread may be lower, so too is detection probability (41), because of the distance to
241  headlthcare. This may allow localized, remote outbreaks to establish and spread in human populations
242  before detection (44-46). Our findings can be helpful in allocating efforts for surveillance,
243  sugtainability and conservation actions and long term plans for ecological intervention, including in
244 areas with high emergent risk scores. Importantly, additional layers of prioritisation could be added to
245  implement mitigation actions on hotspots, for instance, where climate change vulnerability is also
246  high, such asin Java (47). Also, regions of China, in terms of mobility are outstandingly connected,
247  which highlights the need to reduce pressures arising from multiple hotspots.

248 Scenario 2 (indirect transmission through livestock) had the highest number of regions with
249  high-risk areas close to healthcare (yellow, Figure 4). These areas are extensive across the study
250 region in all scenarios, and should be prioritised for temporal screening for viruses in livestock, the
251  understanding of known hogts, and investments in improving public health responses to spread. High-
252  risk areas far from healthcare (red) represent small regions of our study area (<1%) in all scenarios,
253  where Scenario 1 had the fewest and Scenario 3 had the highest areas. These are areas with higher
254 possibilities for spillover, that would also be likely to go undetected during the early stages of human-
255  to-human transmission and spread. In those regions, urgent action to prevent contact, reduce
256  deforestation, and enhance biodiversity protection should take place, as well as improvements in
257  healthcare access. Human populations that are more vulnerable to risks could be targets for equitable

258  distribution of promising solutions, such as pan-coronavirus vaccines (48).

12
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259 Our findings are a snapshot of macroscale spatial trends that can be used for prioritising more
260  detailed analysis depending on the context and policy priorities. The United Nations Development
261  Progranme (UNDP) recommends the creation of ‘Maps of Hope for maintaining essential life
262  support areas (49), but the relationship between biodiversity loss, fragmentation, and zoonotic disease
263  isseldom considered in the designation of such areas. We advocate for a One Health approach (50) in
264  which the risks of pathogen emergence are explicitly integrated into initiatives addressing habitat
265  management, restoration and protection (49), and have demonstrated that this risk can be mapped at
266  large scales with insightsinto variability in the distribution of key drivers (50).

267 Limitations

268 We acknowledge the complexity of pathogen responses to land use modification (9), and
269  important data use limitations for specific contexts. The static datasets used here are al global yet
270  accessible. But hotspots may change in response to changes in economic and agricultural policies at
271 nationa and subnational levels, international agreements such as Agenda 2030, and climate change
272  adaptation (51). There are aso several data limitations. Cryptic diversity in bats (52) and uneven
273  sampling occur for sarbecoviruses and their bat hosts (15) create uncertainty regarding bats that is
274  difficult to account for. Ecological analyses at finer spatial and temporal scales than used here can
275  ducidate cascading events that result in zoonotic spillover. For example, Hendra virus spillover from
276  batsto horses in Australia seems to be driven by interactions between climatic change altering the
277  flowering phenology of important nectar sources, exacerbating food shortages resulting from native
278  habitat loss and degradation, and nutritional stress in bats that can increase Hendra virus shedding.
279  Native resource declines have concurrently promoted urbanization of many bat populations,
280 increasing the human-bat interface and potential for spillover events to horses, which can act as
281  intermediary hosts, or even potentially direct to humans (53). Our analyses may capture the
282  macroscale processes, but not these local events.

283 Similarly, while knowing that the top-priority traded mammals (54) are correlated with total
284  mammalian diversity, local analyses should evaluate factors that cannot be easily mapped or tracked,
285  such as animal trade and hunting, which is currently not feasible using a macroscale approach. Our
286  workflow can, however, be easily coupled with detailed local data for spillover ‘barriers’ and host
287  characterigtics to bring insights and customize action plans, such as data on reservoir density,
288  pathogen prevalence, pathogen shedding, and data on spillover recipients, such as susceptibility and
289  infection (55). This is especially important when macroscale and subnational level risk assessments
290 ae nether complete or validated for most nations (accessed in  September 2022,
291  https://drmkc.jrc.ec.europa.eu/inform-index/INFORM -Subnational -Risk).
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292 The role of domestic intermediate hosts for sarbecoviruses is unclear, with numerous species
293 able to be infected by SARS-CoV-2 (56). Here we include cattle and all Bovidae livestock
294  evaluations, leading to similar overall results for clusters but with some univariate hotspots less
295 intense, especially in central India and south China, while making them more intense around Beijing,
296  highlighting how uncertainties around host susceptibility and potential pathways leads to uncertainty
297  regarding risk. The emergence of a novel coronavirus and re-emergence of a known Sarbecovirus
298  through spillback is also possible (56) and may change risk profiles. Other factors that play a large
299  rolein outbreak response such as conflict (57) and other societal challenges associated with health and
300 theenvironment might also be considered.

301 Conclusions

302 The use of remote sensing layers can bring insights for land use planning when considering
303  complex processes such as disease emergence. This process may benefit not only the understanding of
304  risks but also loca actions informed by broad patterns (28). Recent models suggest that the
305  implementation of smaller-scale land-use planning strategies guided by macro-scale patterns may help
306  to reduce the overall burden from emerging infectious diseases (58), while also taking into account
307  Dbiodiversity conservation. This could be evaluated from multiple perspectives, including in the
308  context of other planetary boundaries and how zoonotic disease risk inserts within it (59), considering
309  we have already passed the 1-degree warmer planet threshold (60).

310 This work contributes to strengthening evidence of transboundary clusters of risk factors for
311  disease emergence. We use a reproducible workflow based on hotspot analysis from broad-scale data
312  that is accessible through open software and maps for easy interpretation. This can enable local and
313 national agencies to engage in new land-use planning actions by including stakeholders (academia,
314  government, local communities and non-governmental organisations) under a One Health perspective.
315  Theneed to reduce access to healthcare inequalities (61) without promoting encroachment into natural
316  areas is a chalenge. Efforts should focus on comprehensive land use planning on the place of
317  healthcare facilities and other infrastructure (62). Biodiversity provides essential ecosystem services,
318  so primary prevention of spillover can benefit sustainability at multiple scales, sustaining life on earth
319  and human health (55), Our findings can help stakeholders when evaluating multiscale policies, land
320 use planning and considering integrating community health programmes to universal healthcare

321  implementation (63) into transboundary, national or subnational levels.

322 Materialsand Methods

323 We use South, East and Southeast Asia (including West Papua) as our study region, where
324  most Sarbecovirus hosts are concentrated (15, 16) and where many unknown sarbecoviruses are

325 edimated to exist (29). We define our study region as the terrestrial area of the following countries:
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326  Bangladesh, Bhutan, Brunei, Cambodia, China, India, Indonesia, Laos, Malaysia, Myanmar, Nepal,
327  Philippines, Singapore, Sri Lanka, Thailand, Timor-Leste, and Vietnam.

328  Characterization of univariate risk indicator hotspots

329 We identified spatial clusters of components of risk. Our rationale for including each indicator
330 relating to a SARS-like disease is presented in Table S1. We assume our inferred risk arises not from
331 individua factors having outstanding high values (hotspots), but instead it arises when they are
332  combined, facilitating conditions for viral spillover. In that sense our inference of risk is an emergent
333  property of the sysem (Emergent risk). We adapted a broad-scale risk estimation framework
334  (https://mcr2030.undrr.org/quick-risk-estimation-tool) focusing on the potential for sarbecoviruses to
335 emerge. The broad risk factors were five landscape-level conditions and five biological layers,
336  according to four scenarios (Table S1). The analysis is naive about the influence of individual drivers
337  ontherisk of spillover in the sense that al factors were weighted equally in our scenario evaluations.
338  We selected the following factors for land use change and landscape conditions: Intensity of 1) built-
339  upland, 2) mining and energy, 3) agricultural and harvest land, 4) forest quality, and 5) local forest
340 lossrisk. As a measure of human or animal exposure, we used livestock (pigs and cattle), wildlife
341  (known bat hosts and all other wild mammals), and human populations. To avoid collinearity, we only
342  selected variables with product-moment correlation coefficient (r) values < 0.7 (Figure S1). There
343  are many countries in Southeast Asia where carabao (Bubalus bubalis) and other Bovidae livestock
344  are more common than cattle (Bos taurus) so we provide results for Bovidae livestock instead of

345  cattle-only in the Supplementary materials.

346 The study region was divided into a spatial grid composed of 0.25 decimal degrees-sized tiles
347 (=27 km). All indicators were resampled to match this resolution. For data layers that were counts
348  from shapefiles (other mammal species numbers), we applied median values for resampling. Weran a
349  univariate hotspot analysis based on Getis-ord G*i scores considering each factor individually at 95%
350 dphaerror cut-off. We created alist of closest neighbors considering all data and n=25 for the closest
351  neighborhood. Local G assumes a two-sided alternative hypothesis, where high-positive values
352 indicate hotspot regions and low negative values indicate coldspots. Pixels located in-between the
353  dternative hotspot or coldspot hypothesis values are referred as intermediate regions, where the value
354  may reflect random spatial process, i.e. no spatial clustering detected. Critical values for defining
355  univariate hotspots followed the critical values for 95th percentile (64).

356 Scenarios

357 Detected hotspots for al landscape condition components were used in combination with
358  biological components in the scenario analyses. Scenario 1 considers direct transmission from bats to

359 humans, where the biological risk is composed of the average number of bat species in which
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360  sarbecoviruses have been reported as the known primary hosts. For Scenario 2, we then considered
361  the components of scenario one in combination with potential intermediate hosts using: pig counts,
362  cattle-only or Bovidae livestock counts. Scenario 3 considered bat hosts and the number of other wild
363  mammal species present. For Scenario 3, we used the wild mammals layer (minus known bat hosts)
364  and known bat hosts as the potential intermediate hosts. We considered using a traded mammal layer
365 instead of an all wild mammal layer in Scenario 3, because of evidence the first Covid-19 cases
366 identified were linked to the Huanan Seafood Wholesale Market in Wuhan (18). An available high
367  priority traded mammal layer (54), however, is highly correlated (r = 0.864) with the wild mammal
368 layer. Because of this correlation in addition to high uncertainty regarding trade, we kept only the
369 mammal layer and bat hosts layer in Scenario 3. A fourth scenario including all of the previous
370 mammalian layers, be it wild or livestock, was constructed. We plotted counts of hotspots
371  (convergence of hotspots) and the differences between every scenario map and the map from Scenario
372 1 (lowest number of variables, direct transmission), to help understand how much risk is added when
373  we have other potential intermediate hosts to the system.

374  Hotspot convergencein clusters

375  We evaluated the spatial clustering among hotspots including all the selected indicators (Scenario 4,
376  five landscape descriptors, five potential host components). We opted for doing a single cluster
377  analysis because we cannot weigh the importance of the single variables for influencing an ultimate
378  gspillover event. The variables comprised here describe landscape condition, human population, cattle,
379  pig, bat hosts and al other wild mammals. We assume areas that contain most hotspots or that are on
380 the verge of becoming hotpots (intermediate areas) for the components evaluated are at higher risk of
381  emerging new sarbecoviruses. A multivariate spatial cluster analysis was applied to scores for every
382  variable after the univariate hotspot analysis using rgeoda 0.0.9 (65). We used the multivariate skater
383  (Spatial ‘K’'luster Analysis by Tree Edge Removal) hierarchical partitioning algorithm (66) to infer
384  contiguous clusters of similar values in the region based on the optimal pruning of a minimum
385  gpanning tree. Spatial clusters represent emergent, cohesive risk combinations distributed in space.
386  Contiguity was assessed by a queen weights matrix after transforming pixels to geographical
387  coordinates. Distance functions were set to euclidean. We evaluated the k number of clusters from 1
388  to 40. To find the optimal number of clusters, we evaluated the total within-cluster sum of squares
389  variation, visualy inspecting the point of inflection in the curve towards stabilization. As the
390  reduction in increment was very smooth, we present the number of clustersfor skater informed by the
391  max-p agorithm. We used max-p to find the solution for the optimal number of spatially-defined
392  cluders setting as a bounding variable (a variable that allows for a minimum value summed for each
393  cludger) the human population amounts at 5% and 10%. The algorithm was computed at 99 interactions
394  with 123456789 as a random seed.
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395  To interpret variation of hotspots within clusters, we counted the number of variables for which the
396  median of the value distribution is a hotspot (i.e. falling within the hotspot interval at 95% Gi*). We
397  then discuss the clusters based on the number of indicators that are already hotspots and the
398  distribution that falls in intermediate zones, so closer to becoming hotspots, which may be ones
399  contributing to greater spillover risk in the near future. We did this by evaluating the density
400  distribution of variables in a ridgeline plot. Finally, to understand the overall variation (and among
401  clusters) we provide a Principal component analysis (PCA) biplot through Scenario 4 to discuss major
402  axes of variation between optimal number of clusters. We ran the hotspot analyses with cattle-only
403  and with the summed values for Bovidae livestock (presented in the Supplemental Material). All
404  geographical coordinates were warped to World Mercator (EPSG: 3395) and World Geodetic System
405 1984 datum before spatial analysis.

406  Emergent risk and its relationship with accessto healthcare

407  After identifying the hotspots within the scenarios, we match their proximity to detection by matching
408 their information with the level of motorized access to healthcare. Access to healthcare measured as
409 travel time was considered as both a proxy for connectivity and an indicator of the likelihood of
410  detection, following infection spillover and spread. We built bivariate maps and three-by-three
411  quantile (N=9) combinations considering the intensity of hotspots from their overlay scaled and scaled
412  values for access to healthcare, all rescaled from zero to one. All anayses were done in QGIS 3.10.7
413 (67), R 413 (68) and bash (69). Code for the anayses can be found at
414  https://github.com/renatamuy/hotspots.

415
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