

1 **Title**

2 **Transboundary hotspots associated with SARS-like coronavirus**
3 **spillover risk: implications for mitigation**

4 **Authors**

5 *Renata L. Muylaert^{1*}, David A Wilkinson², Tigga Kingston³, Paolo D’Odorico⁴, Maria Cristina Rulli⁴,*
6 *Nikolas Galli⁴, Reju Sam John¹, Phillip Alviola⁶, David T. S. Hayman¹*

7 **Affiliations**

8 ¹ *Massey University, Palmerston North, New Zealand*

9 ² *Université de La Réunion, UMR Processus infectieux en milieu insulaire tropical (PIMIT) CNRS 9192, INSERM 1187, IRD 249, Sainte-*
10 *Clotilde, La Réunion, France*

11 ³ *Department of Biological Sciences, Texas Tech University, Lubbock, TX, U.S.A.*

12 ⁴ *Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, U.S.A.*

13 ⁵ *Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy*

14 ⁶ *Institute of Biological Sciences, University of the Philippines- Los Banos, Laguna, Philippines*

15 *Corresponding author: R.deLaraMuylaert@massey.ac.nz

16 **Abstract:** The emergence of SARS-like coronaviruses is a multi-stage process from wildlife
17 reservoirs to people. Here we characterize multivariate indicators associated with the risk of zoonotic
18 spillover of SARS-like coronaviruses in different areas to help inform surveillance and mitigation
19 activities. We consider direct and indirect transmission pathways by modeling four scenarios with
20 livestock and mammalian wildlife as potential and known reservoirs, before examining how access to
21 healthcare varies within areas. We found 19 multivariate clusters that had differing risk factor
22 contributions. High-risk areas were mostly close (11-20%) rather than far (<1%) from healthcare.
23 With the presented framework, areas with the highest estimated risk can be priority intervention
24 targets in which risk management strategies can be implemented, such as land use planning and
25 preventive measures to reduce contact between people and potential hosts.

26 **Key-words:** zoonotic risk, viral emergence, land conversion, deforestation, host diversity,
27 coronavirus, pandemics, sarbecovirus, One Health, scenario analysis

28
29 **Teaser:** Multivariate clusters of stressors associated with SARS-like coronavirus spillover risk.

30 **Introduction**

31 Human infectious diseases almost all came from other species (1). COVID-19, Ebola virus disease,
32 HIV/AIDS and Zika virus disease are recent examples, whereas those like measles arose after the
33 Neolithic Agricultural Revolution (2). The process of infectious disease emergence from animals
34 begins with the cross-species transmission (spillover) of a microbe (e.g., virus, bacteria, fungus) to a
35 new animal host in which it is pathogenic (1, 3, 4). Yet, successful emergence events are complex
36 multi-stage processes with many possible pathways leading from the original wildlife reservoir to
37 sustained transmission in people (5). The probability of any of these pathways occurring and resulting
38 in infection emergence varies temporally and spatially. Understanding where and why viruses
39 spillover is essential to prevent future pandemics. Pervasive, accelerated land use change (6), human
40 encroachment, increasing and changing contacts among and between wildlife and domestic animals
41 are among the multiple drivers of zoonotic pathogen transmission (7). However, the exact pathways
42 of disease emergence are often unclear (8, 9). Cross-scale evaluation of disease emergence drivers,
43 that can be measured and mapped, may allow decision-makers to know where to act and implement
44 surveillance (10). Thus, effective risk evaluations must consider a variety of land use drivers as well
45 as trends in the distribution of human and animal populations to optimally identify areas of change to
46 focus mitigation measures (reduce pressures) and surveillance (11).

47 Zoonotic disease risk has been mostly linked to mammals and birds (12). Bats are among the
48 natural hosts of viruses in the coronavirus (family *Coronaviridae*) subgenus *Sarbecovirus* (Severe
49 acute respiratory syndrome (SARS)-related coronaviruses), that includes SARS-CoV-1 and SARS-
50 CoV-2 (13, 14). Bat hosts of sarbecoviruses are broadly distributed but the highest diversity is in
51 Southeast Asia (15). Human infection with *Sarbecovirus* from bats may be more frequent than
52 reported from traditional surveillance (16) and potentially secondary hosts (17, 18). Viral infection
53 prevalence contributes to the risk of spillover (4), and can be influenced by biological factors such as
54 birthing cycles (19, 20) and external stimuli such as human changes to land use (7) (but see (21, 22)).

55 Large scale risk assessments in which areas with similar risk profiles are identified provide
56 invaluable information (13, 23) and can be rapid, while the development of local, detailed and
57 intricate spillover and outbreak risk assessments can take a long time (24, 25). Since detailed and
58 validated data for recent reports on outbreak risk reduction are lacking for most regions of the globe
59 (e.g. the Sendai framework, <https://sendaimonitor.undrr.org/>), a broad evaluation targeting
60 *Sarbecovirus* emergence can be advantageous to discuss diverse contexts across the region where
61 most natural hosts of sarbecoviruses occur. Human encroachment has led to decreased distances
62 between bat roosts and human settlements (26), so part of the relevant hazard for inferring spillover
63 risk can be spatially quantified from remotely sensed proxies for socioecological risk factors. Previous

64 works estimated host distributions (15, 27) and developed modeling frameworks for adding proxies
65 for disease risk and spread in the face of limited data (15, 27, 28).

66 Here, we identify where indicators for emergence risk overlap, focusing on the biological
67 possibility of the emergence of a *Sarbecovirus*. Our goal is to aid mitigation and surveillance
68 activities throughout South, East and Southeast Asia, by identifying both where efforts should focus
69 and which risk factors should be prioritized. Specifically, we aim to: 1) Identify and characterize
70 univariate hotspots for four suggested spillover scenarios. 2) Identify spatially cohesive clusters of all
71 risk indicators that, when combined, increase risk of zoonotic spillover (23, 29); 3) Quantify
72 intersections of high-risk areas and access to health care, to identify where infection may be first
73 detected and outbreaks may spread.

74 The four scenarios evaluated represent different nested transmission pathways. We assume
75 that the risk of emerging new SARS-like outbreaks is associated with social, biological and
76 environmental components and, because there are unobserved dynamics for emerging viruses (30), we
77 evaluated four nested spillover pathway scenarios based on landscape change and potential hosts (31):
78 Scenario 1 (direct - known bat hosts) represents direct transmission from bats to people, facilitated by
79 the landscape condition, human population, and known bat hosts. Although molecular investigations
80 suggest that direct transmission of sarbecoviruses from bats to humans may be possible (32), it has yet
81 to be better documented (33). Rather, the involvement of an intermediary or bridging host appears
82 more likely, perhaps because this allows for recombination and viral evolution, and/or leads to greater
83 exposure to human populations. Consequently, we developed Scenarios 2-4 to represent indirect
84 pathways that build on Scenario 1 by adding livestock (Scenario 2, indirect - mammalian livestock)
85 and wild mammals (Scenario 3, indirect - wild mammals). Scenario 4 (indirect - all mammals) is a
86 global scenario comprising landscape condition, human population, known bat hosts, mammalian
87 livestock and wild mammals.

88 **Results**

89 *Characterization of univariate risk indicator hotspots*

90 The study region comprises a 25796-pixel grid for the terrestrial area evaluated. Univariate hotspot
91 areas differ in magnitude (Figure 1) and extent according to components/indicators. Most hotspots
92 concentrate at latitudes between 20 and 40 degrees. The univariate hotspots with the largest spatial
93 extent are those obtained for agricultural and harvest land, followed by high integrity forests and areas
94 with high deforestation potential. The majority of the included region comprises coldspots for primary
95 bat hosts. Indicators with the greatest extent of coldspots were livestock (pigs then cattle) followed by
96 known bat hosts. The largest extent of intermediate areas was for human population counts, which

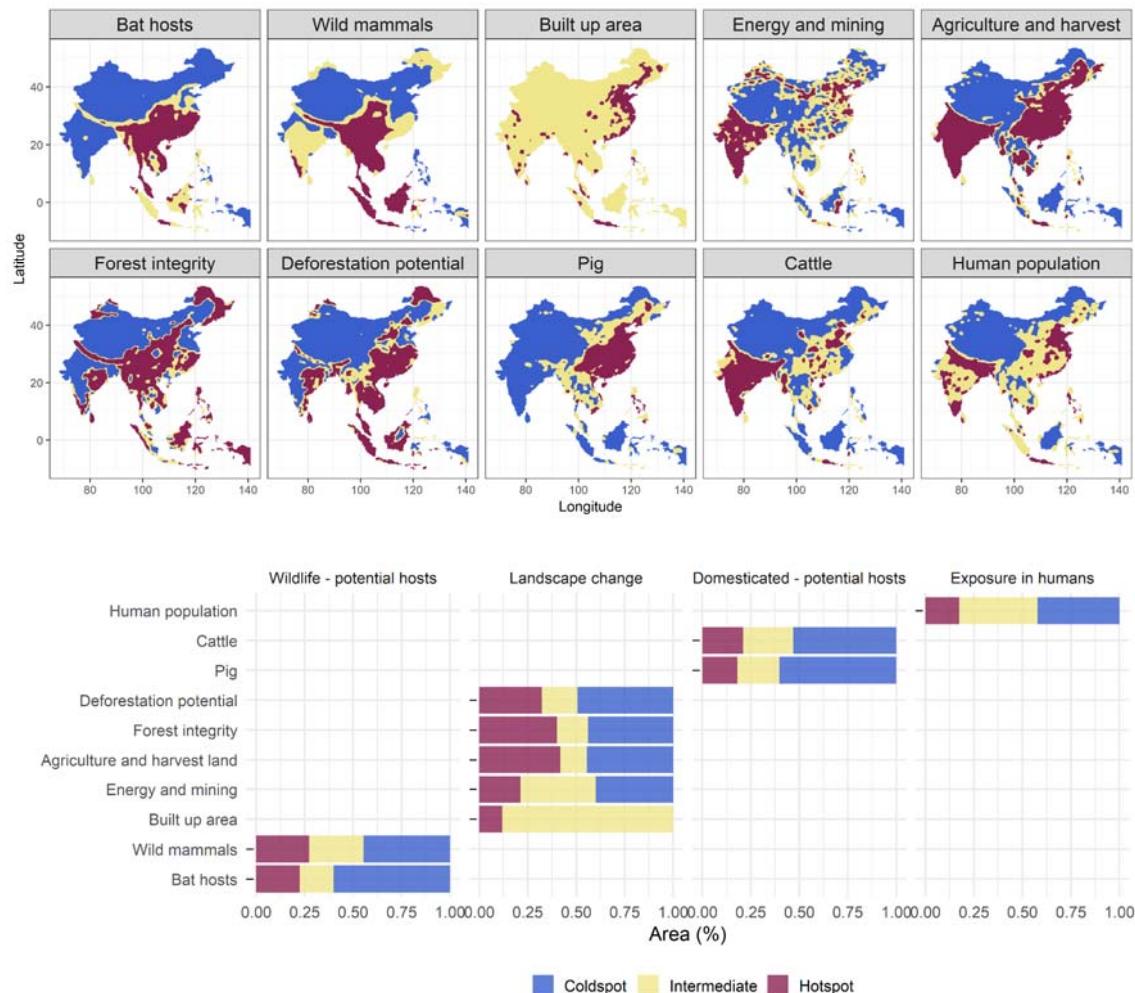
97 presented no coldspots due to the ubiquitous nature of human occupation in terrestrial areas. The
98 largest differences in all Bovidae livestock versus cattle-only hotspots (see Methods) are in central
99 China, parts of north (Hebei, Shanxi, and Henan) China and central India (Figure S2). The complete
100 overlap of hotspots considering all univariate hotspots at one grid never occurred.

101

102

103

104



105

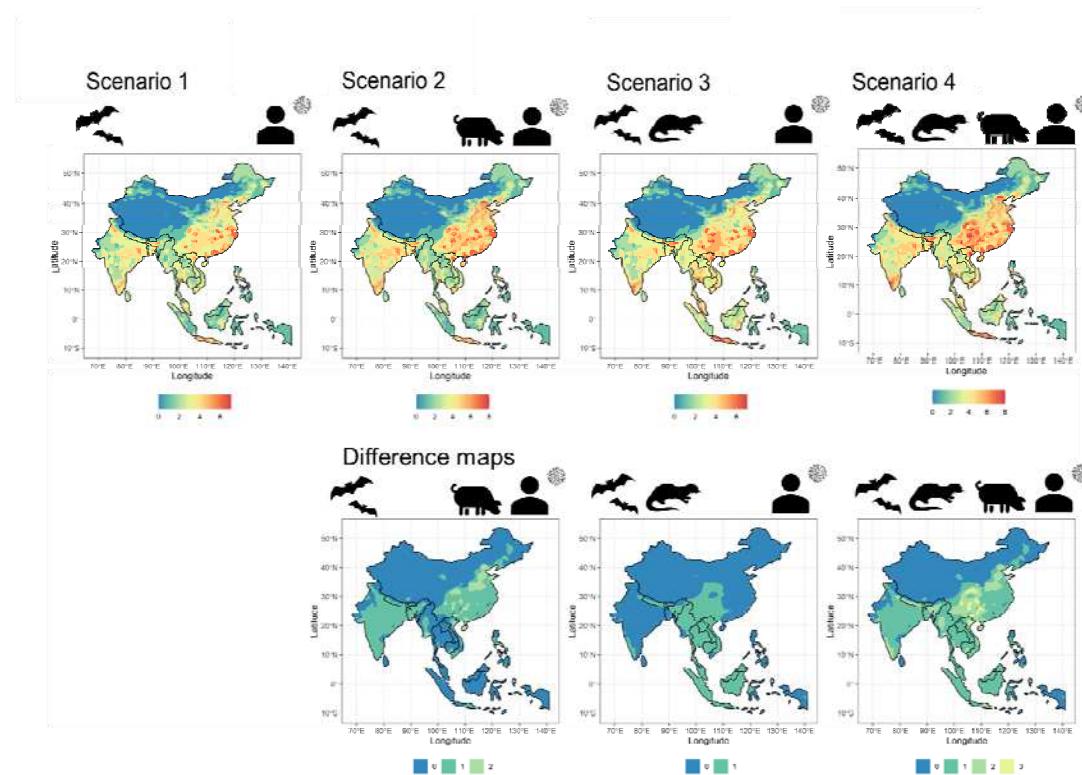
106 **Figure 1. Univariate hotspots of potential factors contributing to emergence of SARS-like**
107 **coronaviruses.** The upper panel shows the spatial distribution of hotspots based on univariate
108 indicators of risk of new *Sarbecovirus* emergence evaluated in four scenarios. Bottom panel shows the
109 proportion (%) of areas classified as hotspots, intermediate or coldspots across the study region,
110 according to the aggregation of indicators in higher-level groups and univariate descriptors. Areas in
111 the red zone represent hotspots, yellow zones are intermediate areas and coldspots in blue, at a 95%
112 alpha error level.

113

114 *Scenarios*

115 Regardless of scenario, the largest hotspot overlaps occur in central and southeast China, south and
116 northwestern India and Java. Differences between Scenario 1 (direct - known bat hosts) with potential
117 primary known bat hosts and Scenario 4 (indirect - all mammals) are largest in central China (Figure
118 2). The largest differences between each scenario and Scenario 1 (the scenario with fewest covariates)
119 concentrated in central and southern China and represent the hotspots from the variables that were left
120 out in the difference maps. Scenario 3 was the one with the least amount of differences in relation to
121 Scenario 1. Similar to Scenario 1, Scenario 2 shows most hotspot convergences in central and south
122 China. Considering Scenario 4 (indirect - all mammals), the most important PCA axes show a clear
123 'natural axis' and an anthropogenic axis, where the pig production layer is intermediate to the
124 influence of both axes (Figure S3). Both main axes explain 58.7% of the total variation (PC1 = 33.5%,
125 PC2 = 24.8%).

126 Maximum overlap for non-human potential primary and secondary hosts occurred across China and
127 Vietnam. The average time to reach healthcare in areas with complete overlap among potential non-
128 human hosts in areas is 1.04 h (0.76 SD). The fastest travel to healthcare times occurred in hotspots
129 for all host groups except wild mammals secondary hosts, where the fastest travel to healthcare times
130 were associated with intermediate areas and not hotspots (Table 1).



131

132

Figure 2. Multivariate emergent risk hotspots for scenarios containing indicators associated with landscape change and zoonotic pathogen emergence. Landscape, human population and known bat hosts are included in all models, and are the sole indicators in Scenario 1, representing direct transmission. To incorporate indirect transmission through secondary hosts, mammalian livestock are included in Scenario 2, wild mammals in Scenario 3, and both mammalian livestock and wild mammals in Scenario 4. The bottom panel shows differences between each upper respective scenario and Scenario 1. The internal white area in the continent represents no data values for Lake Qinghai; the largest lake in China.

133

134

135

136

137

138

139

140

141

142

Table 1. Average time to reach healthcare in areas with complete overlap for non-human potential hosts within China and Vietnam. Wild mammal refers to wild mammals except for the known bat host species.

Time to reach healthcare (mean hours, [SD])

Component in potential transmission risk scenario	Coldspot	Intermediate	Hotspot
Primary hosts (known bat hosts)	5.81 [10.2]	1.98 [3]	1.76 [2.37]
Secondary hosts (wild mammal)	6.62 [11.2]	1.97 [3.57]	2.26 [3.03]
Secondary hosts (pig)	6.08 [10.2]	1.92 [2.83]	0.8 [0.73]

Secondary hosts (cattle) 6.98 [10.6] 1.51 [1.93] **0.64 [0.72]**

143

144 *Hotspot overlap in clusters*

145 The optimal number of multivariate spatial clusters is nine when 10% of the human population is used
146 as a minimum bound variable and 19 for 5% of the human population. There is an incremental benefit
147 reduction from adding clusters, from nineteen groups on (Figure S4). The clusters from the cut-off
148 value of 5% are nested within the 10% clusters (Figure S5), and we present the clusters for 19 areas in
149 the main text (Figure 3). From the 19 clusters, Beijing (cluster 19), Java (cluster 17), and Sichuan and
150 Yuzhong District, Chongqing (cluster 16, Table 2) concentrate the highest hotspot scores. The clusters
151 with highest scores were among the smaller clusters in geographical extent. Inner-West China (cluster
152 1), South Lhasa and Arunachal Pradesh (cluster 15), and Philippines, Timor East, West Papua (cluster
153 9) had the highest scores for coldspots. Areas with the highest scores for the Intermediate class were
154 Assam, West Burma block, Steppe and Sri Lanka (cluster 2), followed by Southwest Indochina
155 (cluster 11) and North India (cluster 14). Clusters with the all Bovidae livestock version are in Figure
156 S6, and they were very similar to the cattle-only versions, except for the Beijing area and the division
157 of the two larger clusters in India, West India and East India.

158

159 **Table 2. Multivariate spatial clusters and the number of times in which the median values of**
160 **each emergent risk score were in coldspots, intermediate or hotspots (n=190).** The top three
161 values for each column are in boldface.

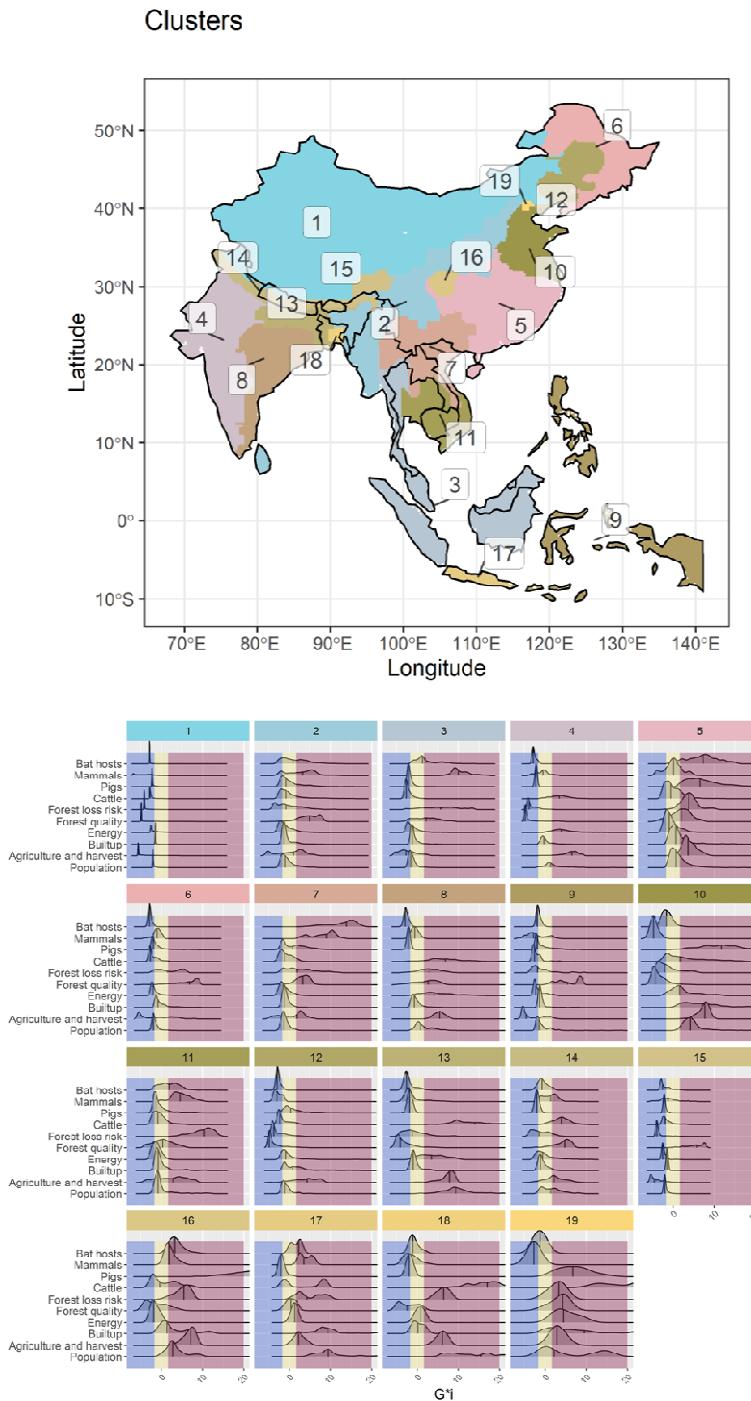
Cluster ID and indicative name N variables for which the median is a

	Coldspot	Intermediate	Hotspot
	spots		
1 Inner-West China	9	1	0
2 Assam, West Burma block, Steppe, and Sri Lanka	0	8	2
3 West Thailand, most of Sundaland islands	3	4	3

4 West India	4	3	3
5 Central China	0	5	5
6 Manchuria	6	3	1
7 North Lao PDR, North Vietnam, South China	0	5	5
8 East India	2	3	5
9 Philippines, Timor East, West Papua	7	2	1
10 North China	5	0	5
11 Southwest Indochina	0	6	4
12 Inner Manchuria	5	4	1
13 Nepal, Bhutan, Bangladesh	4	2	4
14 North India	1	6	3
15 South Lhasa and Arunachal Pradesh	8	1	1
16 Sichuan and Yuzhong District, Chongqing	2	2	6
17 Java	1	2	7
18 East Bangladesh	2	4	4
19 Beijing	1	1	8
Total	60	62	68

162

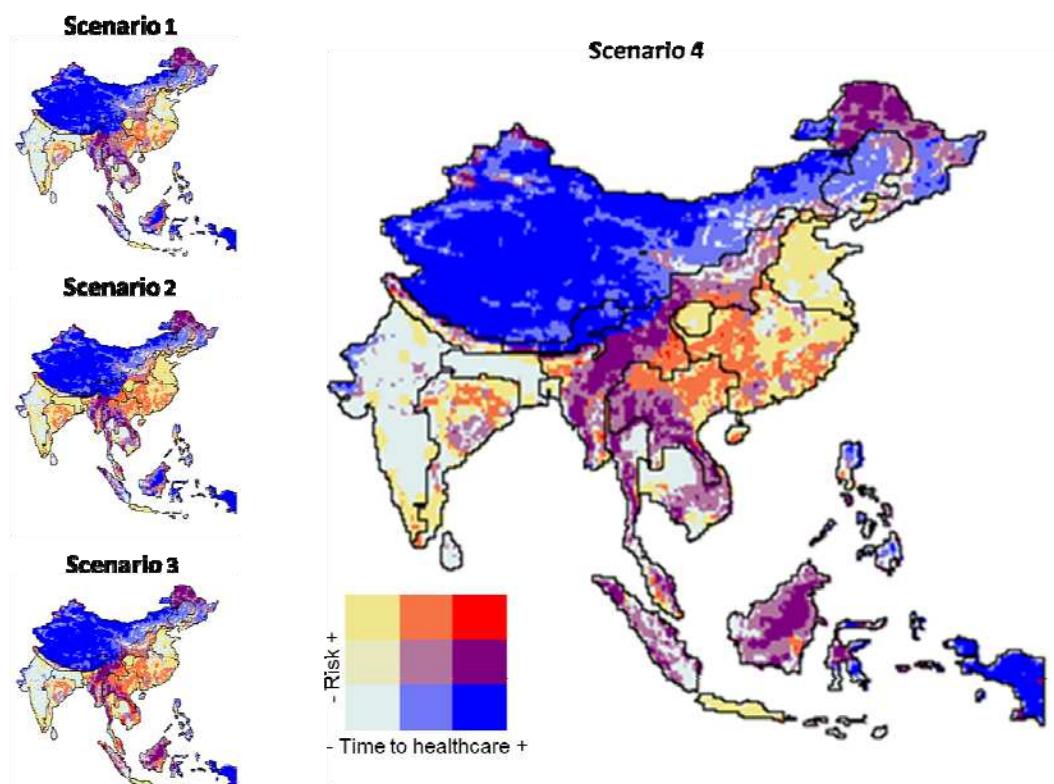
163



171 *Potential outbreak detection and spread*

172 When we cross the risk factor spatial information with healthcare access measured as travel time, the
173 largest differences between combinations of quantiles of the two covariates are in the lowest and highest
174 quantiles of both variables (Figure 4). We calculated the areas with high-risk values that are far or
175 close to healthcare for all scenarios (Figure S7) within the spatial clusters from the skater analysis.
176 From the entire study region, areas closer to healthcare that had high hotspot overlap (areas in yellow
177 in Figure 4, Figure S7) covered an area ranging from 11.96% in Scenario 1, to 20.28% in Scenario 2,
178 14.66% in Scenario 3, and 13.67% in Scenario 4. Areas far from healthcare that present high hotspot
179 overlap (in red Figure 4 and Figure S7) were much rarer and varied according to scenarios, always
180 covering less than 1% of the studied region, ranging from 0.1% in Scenario 1, to 0.30 in Scenario 2,
181 0.91% in Scenario 3 and 0.22% in Scenario 4. The relationship between travel time to healthcare and
182 human population counts (Figure S8) shows that areas far from healthcare tend to have lower
183 population counts, but the relationship is non-linear.

184



185
186 **Figure 4. Bivariate maps crossing emergent risk from hotspot data on risk quantiles and access**
187 **to healthcare.** Black lines divide the limits for the 19 clusters identified.

188 **Discussion**

189 Urgent actions are needed to decrease disease emergence risk (34, 35). Using a macroscale
190 approach, we assessed the distribution of locations with a greater risk of experiencing *Sarbecovirus*
191 spillover events using landscape conditions and exposure of potential hosts (wildlife, domestic,
192 human). Landscape conditions coupled with predictions of the distribution of known hosts and
193 proxies for potential hosts and processes linked to human exposure to novel viruses can be a powerful
194 tool for spatial sample prioritization when limited viral spillover information is available, such as for
195 sarbecoviruses (16).

196 The overlap of risk factor hotspots represents pressure points on natural ecosystems that have
197 been extensively altered in terms of agriculture, deforestation, and livestock production. In some
198 cases, these clusters still have high values for forest quality and known host diversity (for instance,
199 cluster 5 – central China, and cluster 17 – Java). Areas where outstanding values of different risk
200 factors converge can pose a severe risk to disease emergence and conservation. In Sichuan – cluster
201 16 – values of livestock production are extremely high and largely extensive farming takes place
202 concomitantly with the presence of hotspots for mammal diversity (including higher values for known
203 bat hosts) and very high deforestation risk. Unfortunately, deforestation rates and the livestock
204 revolution are evident in our top-rated clusters (27), within biodiversity-rich areas, with high forest
205 loss risk and a very large human population (in the case of Beijing - cluster 19 and Java - cluster 17).

206 We assume that intermediate areas in proximity to hotspots, and where socio-ecological
207 transitions such as those related to the livestock revolution, are at the greatest risk of transitioning to
208 hotspots (27). Even without transition, clusters with mostly intermediate values for stressors have had
209 zoonotic spillovers in the past (17, 33, 36), notably those in central China on cluster 2 and edges with
210 cluster 7 (north Lao PDR, north Vietnam, south China). Further, there is overlap of several identified
211 clusters with areas that concentrate hosts of other viruses with pandemic potential, such as Nipah
212 virus (37). The intermediate and high-risk areas within clusters need a multidimensional approach to
213 mitigation that combines targeted surveillance of human populations and the highly weighted risk
214 factors with One Health approaches. These approaches emphasise nature-based mitigation strategies,
215 looking at the socio-economic drivers that shape local landscape conditions. Our analyses also show
216 that risk factor clusters are commonly multinational, and action plans are a complex task to
217 implement. However, transboundary, coordinated action between nations that share territorial limits is
218 paramount if configuration of hotspots is taken into account when managing, protecting and restoring
219 land to mitigate disease emergence risk.

220 Conditionally safer areas (blue, Figure 4) represent remote areas that present little spatial
221 overlap in risk factor hotspots. In those areas, priority should be assessing and reducing other disaster
222 and disease risks. In areas of high potential assessed risk (khaki, orange and red, Figure 4), actions

223 should be focused on the drivers of spillover. Recent literature (35) suggests three broad, cost-
224 effective actions to minimize pandemic risk: better surveillance of pathogen spillover, better
225 management of wildlife trade, and substantial reduction of deforestation (i.e. primary prevention)
226 (35). Landscape planning should have priority, as these can have other benefits (38, 39) and can
227 include preventive measures to reduce levels of contact between people and potential wild and
228 domestic animal hosts. Biosecurity measures and surveillance and fauna monitoring are also key
229 where multi-component risk levels are higher (40). Syndromic, virological, serological, and
230 behavioral risk surveillance of people with regular proximity with known reservoir or potential
231 amplifier hosts (40) can be of great value in these hotspots, but the ultimate prevention should be in
232 primary prevention. Beyond viral monitoring and discovery, prevention can be achieved by reducing
233 deforestation, wildlife trade and increasing sustainable management of agricultural areas (35).

234 Surveillance effort correlates with detecting infections and where human populations intersect
235 with wildlife, risk increases (41, 42). Evidence from Brazil also suggests zoonotic risk increases with
236 remoteness (along with increased wild mammal species richness) and decreases in areas with greater
237 native forest cover (43). Our results suggest high-risk areas are often (11-20%) associated with faster
238 travel times to healthcare, compared to remote areas (<1%) (yellow and red respectively, Figure 4).
239 The problem posed by remote sites for emergence mitigation is that while spillover probability and
240 initial ease of spread may be lower, so too is detection probability (41), because of the distance to
241 healthcare. This may allow localized, remote outbreaks to establish and spread in human populations
242 before detection (44-46). Our findings can be helpful in allocating efforts for surveillance,
243 sustainability and conservation actions and long term plans for ecological intervention, including in
244 areas with high emergent risk scores. Importantly, additional layers of prioritisation could be added to
245 implement mitigation actions on hotspots, for instance, where climate change vulnerability is also
246 high, such as in Java (47). Also, regions of China, in terms of mobility are outstandingly connected,
247 which highlights the need to reduce pressures arising from multiple hotspots.

248 Scenario 2 (indirect transmission through livestock) had the highest number of regions with
249 high-risk areas close to healthcare (yellow, Figure 4). These areas are extensive across the study
250 region in all scenarios, and should be prioritised for temporal screening for viruses in livestock, the
251 understanding of known hosts, and investments in improving public health responses to spread. High-
252 risk areas far from healthcare (red) represent small regions of our study area (<1%) in all scenarios,
253 where Scenario 1 had the fewest and Scenario 3 had the highest areas. These are areas with higher
254 possibilities for spillover, that would also be likely to go undetected during the early stages of human-
255 to-human transmission and spread. In those regions, urgent action to prevent contact, reduce
256 deforestation, and enhance biodiversity protection should take place, as well as improvements in
257 healthcare access. Human populations that are more vulnerable to risks could be targets for equitable
258 distribution of promising solutions, such as pan-coronavirus vaccines (48).

259 Our findings are a snapshot of macroscale spatial trends that can be used for prioritising more
260 detailed analysis depending on the context and policy priorities. The United Nations Development
261 Programme (UNDP) recommends the creation of ‘Maps of Hope’ for maintaining essential life
262 support areas (49), but the relationship between biodiversity loss, fragmentation, and zoonotic disease
263 is seldom considered in the designation of such areas. We advocate for a One Health approach (50) in
264 which the risks of pathogen emergence are explicitly integrated into initiatives addressing habitat
265 management, restoration and protection (49), and have demonstrated that this risk can be mapped at
266 large scales with insights into variability in the distribution of key drivers (50).

267 *Limitations*

268 We acknowledge the complexity of pathogen responses to land use modification (9), and
269 important data use limitations for specific contexts. The static datasets used here are all global yet
270 accessible. But hotspots may change in response to changes in economic and agricultural policies at
271 national and subnational levels, international agreements such as Agenda 2030, and climate change
272 adaptation (51). There are also several data limitations. Cryptic diversity in bats (52) and uneven
273 sampling occur for sarbecoviruses and their bat hosts (15) create uncertainty regarding bats that is
274 difficult to account for. Ecological analyses at finer spatial and temporal scales than used here can
275 elucidate cascading events that result in zoonotic spillover. For example, Hendra virus spillover from
276 bats to horses in Australia seems to be driven by interactions between climatic change altering the
277 flowering phenology of important nectar sources, exacerbating food shortages resulting from native
278 habitat loss and degradation, and nutritional stress in bats that can increase Hendra virus shedding.
279 Native resource declines have concurrently promoted urbanization of many bat populations,
280 increasing the human-bat interface and potential for spillover events to horses, which can act as
281 intermediary hosts, or even potentially direct to humans (53). Our analyses may capture the
282 macroscale processes, but not these local events.

283 Similarly, while knowing that the top-priority traded mammals (54) are correlated with total
284 mammalian diversity, local analyses should evaluate factors that cannot be easily mapped or tracked,
285 such as animal trade and hunting, which is currently not feasible using a macroscale approach. Our
286 workflow can, however, be easily coupled with detailed local data for spillover ‘barriers’ and host
287 characteristics to bring insights and customize action plans, such as data on reservoir density,
288 pathogen prevalence, pathogen shedding, and data on spillover recipients, such as susceptibility and
289 infection (55). This is especially important when macroscale and subnational level risk assessments
290 are neither complete or validated for most nations (accessed in September 2022,
291 <https://drmkc.jrc.ec.europa.eu/inform-index/INFORM-Subnational-Risk>).

292 The role of domestic intermediate hosts for sarbecoviruses is unclear, with numerous species
293 able to be infected by SARS-CoV-2 (56). Here we include cattle and all Bovidae livestock
294 evaluations, leading to similar overall results for clusters but with some univariate hotspots less
295 intense, especially in central India and south China, while making them more intense around Beijing,
296 highlighting how uncertainties around host susceptibility and potential pathways leads to uncertainty
297 regarding risk. The emergence of a novel coronavirus and re-emergence of a known *Sarbecovirus*
298 through spillback is also possible (56) and may change risk profiles. Other factors that play a large
299 role in outbreak response such as conflict (57) and other societal challenges associated with health and
300 the environment might also be considered.

301 *Conclusions*

302 The use of remote sensing layers can bring insights for land use planning when considering
303 complex processes such as disease emergence. This process may benefit not only the understanding of
304 risks but also local actions informed by broad patterns (28). Recent models suggest that the
305 implementation of smaller-scale land-use planning strategies guided by macro-scale patterns may help
306 to reduce the overall burden from emerging infectious diseases (58), while also taking into account
307 biodiversity conservation. This could be evaluated from multiple perspectives, including in the
308 context of other planetary boundaries and how zoonotic disease risk inserts within it (59), considering
309 we have already passed the 1-degree warmer planet threshold (60).

310 This work contributes to strengthening evidence of transboundary clusters of risk factors for
311 disease emergence. We use a reproducible workflow based on hotspot analysis from broad-scale data
312 that is accessible through open software and maps for easy interpretation. This can enable local and
313 national agencies to engage in new land-use planning actions by including stakeholders (academia,
314 government, local communities and non-governmental organisations) under a One Health perspective.
315 The need to reduce access to healthcare inequalities (61) without promoting encroachment into natural
316 areas is a challenge. Efforts should focus on comprehensive land use planning on the place of
317 healthcare facilities and other infrastructure (62). Biodiversity provides essential ecosystem services,
318 so primary prevention of spillover can benefit sustainability at multiple scales, sustaining life on earth
319 and human health (55). Our findings can help stakeholders when evaluating multiscale policies, land
320 use planning and considering integrating community health programmes to universal healthcare
321 implementation (63) into transboundary, national or subnational levels.

322 **Materials and Methods**

323 We use South, East and Southeast Asia (including West Papua) as our study region, where
324 most *Sarbecovirus* hosts are concentrated (15, 16) and where many unknown sarbecoviruses are
325 estimated to exist (29). We define our study region as the terrestrial area of the following countries:

326 Bangladesh, Bhutan, Brunei, Cambodia, China, India, Indonesia, Laos, Malaysia, Myanmar, Nepal,
327 Philippines, Singapore, Sri Lanka, Thailand, Timor-Leste, and Vietnam.

328 *Characterization of univariate risk indicator hotspots*

329 We identified spatial clusters of components of risk. Our rationale for including each indicator
330 relating to a SARS-like disease is presented in Table S1. We assume our inferred risk arises not from
331 individual factors having outstanding high values (hotspots), but instead it arises when they are
332 combined, facilitating conditions for viral spillover. In that sense our inference of risk is an emergent
333 property of the system (Emergent risk). We adapted a broad-scale risk estimation framework
334 (<https://mcr2030.undrr.org/quick-risk-estimation-tool>) focusing on the potential for sarbecoviruses to
335 emerge. The broad risk factors were five landscape-level conditions and five biological layers,
336 according to four scenarios (Table S1). The analysis is naive about the influence of individual drivers
337 on the risk of spillover in the sense that all factors were weighted equally in our scenario evaluations.
338 We selected the following factors for land use change and landscape conditions: Intensity of 1) built-
339 up land, 2) mining and energy, 3) agricultural and harvest land, 4) forest quality, and 5) local forest
340 loss risk. As a measure of human or animal exposure, we used livestock (pigs and cattle), wildlife
341 (known bat hosts and all other wild mammals), and human populations. To avoid collinearity, we only
342 selected variables with product-moment correlation coefficient (r) values $< \pm 0.7$ (Figure S1). There
343 are many countries in Southeast Asia where carabao (*Bubalus bubalis*) and other Bovidae livestock
344 are more common than cattle (*Bos taurus*) so we provide results for Bovidae livestock instead of
345 cattle-only in the Supplementary materials.

346 The study region was divided into a spatial grid composed of 0.25 decimal degrees-sized tiles
347 (~27 km). All indicators were resampled to match this resolution. For data layers that were counts
348 from shapefiles (other mammal species numbers), we applied median values for resampling. We ran a
349 univariate hotspot analysis based on Getis-ord G* i scores considering each factor individually at 95%
350 alpha error cut-off. We created a list of closest neighbors considering all data and n=25 for the closest
351 neighborhood. Local G assumes a two-sided alternative hypothesis, where high-positive values
352 indicate hotspot regions and low negative values indicate coldspots. Pixels located in-between the
353 alternative hotspot or coldspot hypothesis values are referred as intermediate regions, where the value
354 may reflect random spatial process, i.e. no spatial clustering detected. Critical values for defining
355 univariate hotspots followed the critical values for 95th percentile (64).

356 *Scenarios*

357 Detected hotspots for all landscape condition components were used in combination with
358 biological components in the scenario analyses. Scenario 1 considers direct transmission from bats to
359 humans, where the biological risk is composed of the average number of bat species in which

360 sarbecoviruses have been reported as the known primary hosts. For Scenario 2, we then considered
361 the components of scenario one in combination with potential intermediate hosts using: pig counts,
362 cattle-only or Bovidae livestock counts. Scenario 3 considered bat hosts and the number of other wild
363 mammal species present. For Scenario 3, we used the wild mammals layer (minus known bat hosts)
364 and known bat hosts as the potential intermediate hosts. We considered using a traded mammal layer
365 instead of an all wild mammal layer in Scenario 3, because of evidence the first Covid-19 cases
366 identified were linked to the Huanan Seafood Wholesale Market in Wuhan (18). An available high
367 priority traded mammal layer (54), however, is highly correlated ($r = 0.864$) with the wild mammal
368 layer. Because of this correlation in addition to high uncertainty regarding trade, we kept only the
369 mammal layer and bat hosts layer in Scenario 3. A fourth scenario including all of the previous
370 mammalian layers, be it wild or livestock, was constructed. We plotted counts of hotspots
371 (convergence of hotspots) and the differences between every scenario map and the map from Scenario
372 1 (lowest number of variables, direct transmission), to help understand how much risk is added when
373 we have other potential intermediate hosts to the system.

374 *Hotspot convergence in clusters*

375 We evaluated the spatial clustering among hotspots including all the selected indicators (Scenario 4,
376 five landscape descriptors, five potential host components). We opted for doing a single cluster
377 analysis because we cannot weigh the importance of the single variables for influencing an ultimate
378 spillover event. The variables comprised here describe landscape condition, human population, cattle,
379 pig, bat hosts and all other wild mammals. We assume areas that contain most hotspots or that are on
380 the verge of becoming hotpots (intermediate areas) for the components evaluated are at higher risk of
381 emerging new sarbecoviruses. A multivariate spatial cluster analysis was applied to scores for every
382 variable after the univariate hotspot analysis using rgeoda 0.0.9 (65). We used the multivariate skater
383 (Spatial `K'luster Analysis by Tree Edge Removal) hierarchical partitioning algorithm (66) to infer
384 contiguous clusters of similar values in the region based on the optimal pruning of a minimum
385 spanning tree. Spatial clusters represent emergent, cohesive risk combinations distributed in space.
386 Contiguity was assessed by a queen weights matrix after transforming pixels to geographical
387 coordinates. Distance functions were set to euclidean. We evaluated the k number of clusters from 1
388 to 40. To find the optimal number of clusters, we evaluated the total within-cluster sum of squares
389 variation, visually inspecting the point of inflection in the curve towards stabilization. As the
390 reduction in increment was very smooth, we present the number of clusters for skater informed by the
391 max-p algorithm. We used max-p to find the solution for the optimal number of spatially-defined
392 clusters setting as a bounding variable (a variable that allows for a minimum value summed for each
393 cluster) the human population amounts at 5% and 10%. The algorithm was computed at 99 interactions
394 with 123456789 as a random seed.

395 To interpret variation of hotspots within clusters, we counted the number of variables for which the
396 median of the value distribution is a hotspot (i.e. falling within the hotspot interval at 95% Gi*). We
397 then discuss the clusters based on the number of indicators that are already hotspots and the
398 distribution that falls in intermediate zones, so closer to becoming hotspots, which may be ones
399 contributing to greater spillover risk in the near future. We did this by evaluating the density
400 distribution of variables in a ridgeline plot. Finally, to understand the overall variation (and among
401 clusters) we provide a Principal component analysis (PCA) biplot through Scenario 4 to discuss major
402 axes of variation between optimal number of clusters. We ran the hotspot analyses with cattle-only
403 and with the summed values for Bovidae livestock (presented in the Supplemental Material). All
404 geographical coordinates were warped to World Mercator (EPSG: 3395) and World Geodetic System
405 1984 datum before spatial analysis.

406 *Emergent risk and its relationship with access to healthcare*

407 After identifying the hotspots within the scenarios, we match their proximity to detection by matching
408 their information with the level of motorized access to healthcare. Access to healthcare measured as
409 travel time was considered as both a proxy for connectivity and an indicator of the likelihood of
410 detection, following infection spillover and spread. We built bivariate maps and three-by-three
411 quantile (N=9) combinations considering the intensity of hotspots from their overlay scaled and scaled
412 values for access to healthcare, all rescaled from zero to one. All analyses were done in QGIS 3.10.7
413 (67), R 4.1.3 (68) and bash (69). Code for the analyses can be found at
414 <https://github.com/renatamuy/hotspots/>.

415

416 **References and notes**

- 417 1. N. D. Wolfe, C. P. Dunavan, J. Diamond, Origins of major human infectious diseases. *Nature*.
418 **447**, 279–283 (2007).
- 419 2. A. Düx, S. Lequime, L. V. Patrono, B. Vrancken, S. Boral, J. F. Gogarten, A. Hilbig, D. Horst,
420 K. Merkel, B. Prepoint, S. Santibanez, J. Schlotterbeck, M. A. Suchard, M. Ulrich, N. Widulin,
421 A. Mankertz, F. H. Leendertz, K. Harper, T. Schnalke, P. Lemey, S. Calvignac-Spencer, Measles
422 virus and rinderpest virus divergence dated to the sixth century BCE. *Science*. **368**, 1367–1370
(2020).
- 424 3. R. Antia, R. R. Regoes, J. C. Koella, C. T. Bergstrom, The role of evolution in the emergence of
425 infectious diseases. *Nature*. **426**, 658–661 (2003).
- 426 4. J. O. Lloyd-Smith, D. George, K. M. Pepin, V. E. Pitzer, J. R. C. Pulliam, A. P. Dobson, P. J.
427 Hudson, B. T. Grenfell, Epidemic dynamics at the human-animal interface. *Science*. **326**, 1362–
428 1367 (2009).
- 429 5. R. K. Plowright, J. K. Reaser, H. Locke, S. J. Woodley, J. A. Patz, D. J. Becker, G. Oppler, P. J.
430 Hudson, G. M. Tabor, Land use-induced spillover: a call to action to safeguard environmental,

431 animal, and human health. *Lancet Planet Health.* **5**, e237–e245 (2021).

432 6. M. C. Hansen, P. V. Potapov, A. H. Pickens, A. Tyukavina, A. Hernandez-Serna, V. Zalles, S.
433 Turubanova, I. Kommareddy, S. V. Stehman, X.-P. Song, A. Kommareddy, Global land use
434 extent and dispersion within natural land cover using Landsat data. *Environ. Res. Lett.* **17**,
435 034050 (2022).

436 7. P. Eby, A. J. Peel, A. Hoegh, W. Madden, J. R. Giles, P. J. Hudson, R. K. Plowright, Pathogen
437 spillover driven by rapid changes in bat ecology. *Nature* (2022), doi:10.1038/s41586-022-05506-
438 2.

439 8. C. A. Sánchez, J. Venkatachalam-Vaz, J. M. Drake, Spillover of zoonotic pathogens: A review
440 of reviews. *Zoonoses Public Health.* **68**, 563–577 (2021).

441 9. A. D. Mader, N. A. Waters, E. C. Kawazu, M. Marvier, N. Monnin, D. J. Salkeld, Messaging
442 Should Reflect the Nuanced Relationship between Land Change and Zoonotic Disease Risk.
443 *Bioscience*, biac075 (2022).

444 10. C. E. Snedden, S. K. Makanani, S. T. Schwartz, A. Gamble, R. V. Blakey, B. Borremans, S. K.
445 Helman, L. Espericueta, A. Valencia, A. Endo, M. E. Alfaro, J. O. Lloyd-Smith, SARS-CoV-2:
446 Cross-scale Insights from Ecology and Evolution. *Trends Microbiol.* **29**, 593–605 (2021).

447 11. J. K. Reaser, B. E. Hunt, M. Ruiz-Aravena, G. M. Tabor, J. A. Patz, D. J. Becker, H. Locke, P. J.
448 Hudson, R. K. Plowright, Fostering landscape immunity to protect human health: A
449 science-based rationale for shifting conservation policy paradigms. *Conserv. Lett.* (2022),
450 doi:10.1111/conl.12869.

451 12. R. Gibb, D. W. Redding, K. Q. Chin, C. A. Donnelly, T. M. Blackburn, T. Newbold, K. E. Jones,
452 Zoonotic host diversity increases in human-dominated ecosystems. *Nature.* **584**, 398–402 (2020).

453 13. S. Lytras, J. Hughes, D. Martin, P. Swanepoel, A. de Klerk, R. Lourens, S. L. Kosakovsky Pond,
454 W. Xia, X. Jiang, D. L. Robertson, Exploring the Natural Origins of SARS-CoV-2 in the Light of
455 Recombination. *Genome Biol. Evol.* **14** (2022), doi:10.1093/gbe/evac018.

456 14. A. Latinne, B. Hu, K. J. Olival, G. Zhu, L. Zhang, H. Li, A. A. Chmura, H. E. Field, C.
457 Zambrana-Torrelío, J. H. Epstein, B. Li, W. Zhang, L.-F. Wang, Z.-L. Shi, P. Daszak, Origin and
458 cross-species transmission of bat coronaviruses in China. *Nat. Commun.* **11**, 4235 (2020).

459 15. R. L. Muylaert, T. Kingston, J. Luo, M. H. Vancine, N. Galli, C. J. Carlson, R. S. John, M. C.
460 Rulli, D. T. S. Hayman, Present and future distribution of bat hosts of sarbecoviruses:
461 implications for conservation and public health. *Proc. Biol. Sci.* **289**, 20220397 (2022).

462 16. C. A. Sánchez, H. Li, K. L. Phelps, C. Zambrana-Torrelío, L.-F. Wang, P. Zhou, Z.-L. Shi, K. J.
463 Olival, P. Daszak, A strategy to assess spillover risk of bat SARS-related coronaviruses in
464 Southeast Asia. *Nat. Commun.* **13**, 4380 (2022).

465 17. World Health Organization, WHO-convened global study of origins of SARS-CoV-2: China
466 part. *World Health Organization* (2021) (available at <https://apo.org.au/node/311637>).

467 18. M. Worobey, J. I. Levy, L. Malpica Serrano, A. Crits-Christoph, J. E. Pekar, S. A. Goldstein, A.
468 L. Rasmussen, M. U. G. Kraemer, C. Newman, M. P. G. Koopmans, M. A. Suchard, J. O.
469 Wertheim, P. Lemey, D. L. Robertson, R. F. Garry, E. C. Holmes, A. Rambaut, K. G. Andersen,
470 The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19
471 pandemic. *Science.* **377**, 951–959 (2022).

472 19. L. Joffrin, A. O. G. Hoarau, E. Lagadec, O. Torrontegi, M. Köster, G. Le Minter, M. Dietrich, P.

473 474 Mavingui, C. Lebarbenchon, Seasonality of coronavirus shedding in tropical bats. *R Soc Open Sci.* **9**, 211600 (2022).

475 476 477 478 20. D. Montecino-Latorre, T. Goldstein, T. R. Kelly, D. J. Wolking, A. Kindunda, G. Kongo, S. O. Bel-Nono, R. R. Kazwala, R. D. Suu-Ire, C. M. Barker, C. K. Johnson, J. A. K. Mazet, Seasonal shedding of coronavirus by straw-colored fruit bats at urban roosts in Africa. *PLoS One.* **17**, e0274490 (2022).

479 480 481 482 21. S. Wacharapluesadee, P. Duengkae, A. Chaiyees, T. Kaewpom, A. Rodpan, S. Yingsakmongkon, S. Petcharat, P. Phengsakul, P. Maneeorn, T. Hemachudha, Longitudinal study of age-specific pattern of coronavirus infection in Lyle's flying fox (*Pteropus lylei*) in Thailand. *Virol. J.* **15**, 38 (2018).

483 484 485 22. A. Seltmann, V. M. Corman, A. Rasche, C. Drosten, G. Á. Czirják, H. Bernard, M. J. Struebig, C. C. Voigt, Seasonal Fluctuations of Astrovirus, But Not Coronavirus Shedding in Bats Inhabiting Human-Modified Tropical Forests. *Ecohealth.* **14**, 272–284 (2017).

486 487 488 489 490 23. M. Ruiz-Aravena, C. McKee, A. Gamble, T. Lunn, A. Morris, C. E. Snedden, C. K. Yinda, J. R. Port, D. W. Buchholz, Y. Y. Yeo, C. Faust, E. Jax, L. Dee, D. N. Jones, M. K. Kessler, C. Falvo, D. Crowley, N. Bharti, C. E. Brook, H. C. Aguilar, A. J. Peel, O. Restif, T. Schountz, C. R. Parrish, E. S. Gurley, J. O. Lloyd-Smith, P. J. Hudson, V. J. Munster, R. K. Plowright, Ecology, evolution and spillover of coronaviruses from bats. *Nat. Rev. Microbiol.* **20**, 299–314 (2022).

491 492 24. R. Djalante, R. Shaw, A. DeWit, Building resilience against biological hazards and pandemics: COVID-19 and its implications for the Sendai Framework. *Prog Disaster Sci.* **6**, 100080 (2020).

493 494 495 25. L. Pearson, M. Pelling, The UN Sendai Framework for Disaster Risk Reduction 2015–2030: Negotiation Process and Prospects for Science and Practice. *J. of Extr. Even.* **02**, 1571001 (2015).

496 497 26. M. Pretorius, W. Markotter, M. Keith, Assessing the extent of land-use change around important bat-inhabited caves. *BMC Zoology.* **6**, 1–12 (2021).

498 499 500 27. M. C. Rulli, P. D'Odorico, N. Galli, D. T. S. Hayman, Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. *Nature Food.* **2**, 409–416 (2021).

501 502 503 28. D. A. Wilkinson, J. C. Marshall, N. P. French, D. T. S. Hayman, Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. *J. R. Soc. Interface* (2018), doi:10.1098/rsif.2018.0403.

504 505 506 29. S. J. Anthony, C. K. Johnson, D. J. Greig, S. Kramer, X. Che, H. Wells, A. L. Hicks, D. O. Joly, N. D. Wolfe, P. Daszak, W. Karesh, W. I. Lipkin, S. S. Morse, J. A. K. Mazet, T. Goldstein, Global patterns in coronavirus diversity. *Virus Evol.* **3**, vex012 (2017).

507 508 509 510 511 30. H. Heesterbeek, R. M. Anderson, V. Andreasen, S. Bansal, D. De Angelis, C. Dye, K. T. D. Eames, W. J. Edmunds, S. D. W. Frost, S. Funk, T. D. Hollingsworth, T. House, V. Isham, P. Klepac, J. Lessler, J. O. Lloyd-Smith, C. J. E. Metcalf, D. Mollison, L. Pellis, J. R. C. Pulliam, M. G. Roberts, C. Viboud, Isaac Newton Institute IDD Collaboration, Modeling infectious disease dynamics in the complex landscape of global health. *Science.* **347**, aaa4339 (2015).

512 513 514 515 516 31. Z. L. Grange, T. Goldstein, C. K. Johnson, S. Anthony, K. Gilardi, P. Daszak, K. J. Olival, T. O'Rourke, S. Murray, S. H. Olson, E. Togami, G. Vidal, Expert Panel, PREDICT Consortium, J. A. K. Mazet, University of Edinburgh Epigroup members those who wish to remain anonymous, Ranking the risk of animal-to-human spillover for newly discovered viruses. *Proc. Natl. Acad. Sci. U. S. A.* **118** (2021), doi:10.1073/pnas.2002324118.

517 32. H. Guo, A. Li, T.-Y. Dong, J. Su, Y.-L. Yao, Y. Zhu, Z.-L. Shi, M. Letko, ACE2-Independent
518 Bat Sarbecovirus Entry and Replication in Human and Bat Cells. *MBio*, e0256622 (2022).

519 33. N. Wang, S.-Y. Li, X.-L. Yang, H.-M. Huang, Y.-J. Zhang, H. Guo, C.-M. Luo, M. Miller, G.
520 Zhu, A. A. Chmura, E. Hagan, J.-H. Zhou, Y.-Z. Zhang, L.-F. Wang, P. Daszak, Z.-L. Shi,
521 Serological Evidence of Bat SARS-Related Coronavirus Infection in Humans, China. *Virol. Sin.*
522 **33**, 104–107 (2018).

523 34. C. J. Carlson, G. F. Albery, C. Merow, C. H. Trisos, C. M. Zipfel, E. A. Eskew, K. J. Olival, N.
524 Ross, S. Bansal, Climate change increases cross-species viral transmission risk. *Nature*. **607**,
525 555–562 (2022).

526 35. A. S. Bernstein, A. W. Ando, T. Loch-Temzelides, M. M. Vale, B. V. Li, H. Li, J. Busch, C. A.
527 Chapman, M. Kinnaird, K. Nowak, M. C. Castro, C. Zambrana-Torreljo, J. A. Ahumada, L.
528 Xiao, P. Roehrdanz, L. Kaufman, L. Hannah, P. Daszak, S. L. Pimm, A. P. Dobson, The costs
529 and benefits of primary prevention of zoonotic pandemics. *Sci Adv.* **8**, eabl4183 (2022).

530 36. H. Li, E. Mendelsohn, C. Zong, W. Zhang, E. Hagan, N. Wang, S. Li, H. Yan, H. Huang, G.
531 Zhu, N. Ross, A. Chmura, P. Terry, M. Fielder, M. Miller, Z. Shi, P. Daszak, Human-animal
532 interactions and bat coronavirus spillover potential among rural residents in Southern China.
533 *Biosaf Health*. **1**, 84–90 (2019).

534 37. G. F. Albery, D. J. Becker, L. Brierley, C. E. Brook, R. C. Christofferson, L. E. Cohen, T. A.
535 Dallas, E. A. Eskew, A. Fagre, M. J. Farrell, E. Glennon, S. Guth, M. B. Joseph, N. Mollentze,
536 B. A. Neely, T. Poisot, A. L. Rasmussen, S. J. Ryan, S. Seifert, A. R. Sjodin, E. M. Sorrell, C. J.
537 Carlson, The science of the host-virus network. *Nat Microbiol*. **6**, 1483–1492 (2021).

538 38. Y. Lu, Y. Yang, B. Sun, J. Yuan, M. Yu, N. C. Stenseth, J. M. Bullock, M. Obersteiner, Spatial
539 variation in biodiversity loss across China under multiple environmental stressors. *Sci Adv.* **6**
540 (2020), doi:10.1126/sciadv.abd0952.

541 39. P. Jaureguierry, N. Titeux, M. Wiemers, D. E. Bowler, L. Coscieme, A. S. Golden, C. A.
542 Guerra, U. Jacob, Y. Takahashi, J. Settele, S. Díaz, Z. Molnár, A. Purvis, The direct drivers of
543 recent global anthropogenic biodiversity loss. *Sci Adv.* **8**, eabm9982 (2022).

544 40. G. T. Keusch, J. H. Amuasi, D. E. Anderson, P. Daszak, I. Eckerle, H. Field, M. Koopmans, S.
545 K. Lam, C. G. Das Neves, M. Peiris, S. Perlman, S. Wacharapluesadee, S. Yadana, L. Saif,
546 Pandemic origins and a One Health approach to preparedness and prevention: Solutions based on
547 SARS-CoV-2 and other RNA viruses. *Proc. Natl. Acad. Sci. U. S. A.* **119**, e2202871119 (2022).

548 41. K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, P. Daszak, Global
549 trends in emerging infectious diseases. *Nature*. **451**, 990–993 (2008).

550 42. V. Guernier, M. E. Hochberg, J.-F. Guégan, Ecology Drives the Worldwide Distribution of
551 Human Diseases. *PLoS Biol.* **2**, e141 (2004).

552 43. G. R. Winck, R. L. G. Raimundo, H. Fernandes-Ferreira, M. G. Bueno, P. S. D'Andrea, F. L.
553 Rocha, G. L. T. Cruz, E. M. Vilar, M. Brandão, J. L. P. Cordeiro, C. S. Andreazzi,
554 Socioecological vulnerability and the risk of zoonotic disease emergence in Brazil. *Sci Adv.* **8**,
555 eabo5774 (2022).

556 44. J. R. Giles, D. A. T. Cummings, B. T. Grenfell, A. J. Tatem, E. zu Erbach-Schoenberg, C. J. E.
557 Metcalf, A. Wesolowski, Trip duration drives shift in travel network structure with implications
558 for the predictability of spatial disease spread. *PLoS Comput. Biol.* **17**, e1009127 (2021).

559 45. S. Riley, C. Fraser, C. A. Donnelly, A. C. Ghani, L. J. Abu-Raddad, A. J. Hedley, G. M. Leung,

560 L.-M. Ho, T.-H. Lam, T. Q. Thach, P. Chau, K.-P. Chan, S.-V. Lo, P.-Y. Leung, T. Tsang, W.
561 Ho, K.-H. Lee, E. M. C. Lau, N. M. Ferguson, R. M. Anderson, Transmission dynamics of the
562 etiological agent of SARS in Hong Kong: impact of public health interventions. *Science*. **300**,
563 1961–1966 (2003).

564 46. R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, J. Shaman, Substantial undocumented
565 infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). *Science*. **368**,
566 489–493 (2020).

567 47. R. Green, P. Scheelbeek, J. Bentham, S. Cuevas, P. Smith, A. D. Dangour, Growing health:
568 global linkages between patterns of food supply, sustainability, and vulnerability to climate
569 change. *The Lancet Planetary Health*. **6**, e901–e908 (2022).

570 48. E. Dolgin, Pan-coronavirus vaccine pipeline takes form. *Nat. Rev. Drug Discov.* **21**, 324–326
571 (2022).

572 49. Maps of Hope – UN Biodiversity Lab, (available at <https://unbiodiversitylab.org/maps-of-hope/>).

573 50. One Health High-Level Expert Panel (OHHLEP), W. B. Adisasmoro, S. Almuhairi, C. B.
574 Behravesh, P. Bilivogui, S. A. Bukachi, N. Casas, N. C. Becerra, D. F. Charron, A. Chaudhary, J.
575 R. Ciacci Zanella, A. A. Cunningham, O. Dar, N. Debnath, B. Dungu, E. Farag, G. F. Gao, D. T.
576 S. Hayman, M. Khaitsa, M. P. G. Koopmans, C. Machalaba, J. S. Mackenzie, W. Markotter, T.
577 C. Mettenleiter, S. Morand, V. Smolenskiy, L. Zhou, One Health: A new definition for a
578 sustainable and healthy future. *PLoS Pathog.* **18**, e1010537 (2022).

579 51. "Transforming our world: The 2030 agenda for sustainable development" in *A New Era in
580 Global Health* (Springer Publishing Company, New York, NY, 2018;
581 <https://sdgs.un.org/2030agenda>).

582 52. A. Chornelia, J. Lu, A. C. Hughes, How to Accurately Delineate Morphologically Conserved
583 Taxa and Diagnose Their Phenotypic Disparities: Species Delimitation in Cryptic Rhinolophidae
584 (Chiroptera). *Front. Ecol. Evol.* **0** (2022), doi:10.3389/fevo.2022.854509.

585 53. D. J. Becker, A. D. Washburne, C. L. Faust, E. A. Mordecai, R. K. Plowright, The problem of
586 scale in the prediction and management of pathogen spillover. *Philos. Trans. R. Soc. Lond. B
587 Biol. Sci.* **374**, 20190224 (2019).

588 54. M. R. Cronin, L. A. de Wit, L. Martínez-Estevez, Aligning conservation and public health goals
589 to tackle unsustainable trade of mammals. *Conservation Science and Practice*. **n/a**, e12818
590 (2022).

591 55. Ecological interventions to prevent and manage zoonotic pathogen spillover, ,
592 doi:10.1098/rstb.2018.0342.

593 56. A. Nerpel, L. Yang, J. Sorger, A. Käsbohrer, C. Walzer, A. Desvars-Larrive, SARS-ANI: a
594 global open access dataset of reported SARS-CoV-2 events in animals. *Scientific Data*. **9**, 1–13
595 (2022).

596 57. M. Gayer, D. Legros, P. Formenty, M. A. Connolly, Conflict and emerging infectious diseases.
597 *Emerg. Infect. Dis.* **13**, 1625–1631 (2007).

598 58. R. E. Baker, A. S. Mahmud, I. F. Miller, M. Rajeev, F. Rasambainarivo, B. L. Rice, S.
599 Takahashi, A. J. Tatem, C. E. Wagner, L.-F. Wang, A. Wesolowski, C. J. E. Metcalf, Infectious
600 disease in an era of global change. *Nat. Rev. Microbiol.* **20**, 193–205 (2022).

601 59. J. Rockström, W. Steffen, K. Noone, Å. Persson, F. S. Chapin, E. F. Lambin, T. M. Lenton, M.

602 Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der Leeuw,
603 H. Rodhe, S. Sörlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W.
604 Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, J. A. Foley,
605 A safe operating space for humanity. *Nature*. **461**, 472–475 (2009).

606 60. D. I. Armstrong McKay, A. Staal, J. F. Abrams, R. Winkelmann, B. Sakschewski, S. Loriani, I.
607 Fetzer, S. E. Cornell, J. Rockström, T. M. Lenton, Exceeding 1.5°C global warming could trigger
608 multiple climate tipping points. *Science*. **377**, eabn7950 (2022).

609 61. Z. Tao, Q. Wang, Facility or Transport Inequality? Decomposing Healthcare Accessibility
610 Inequality in Shenzhen, China. *Int. J. Environ. Res. Public Health*. **19** (2022),
611 doi:10.3390/ijerph19116897.

612 62. K. B. Toh, J. Millar, P. Psychas, B. Abuaku, C. Ahorlu, S. Oppong, K. Koram, D. Valle, Guiding
613 placement of health facilities using multiple malaria criteria and an interactive tool. *Malar. J.* **20**,
614 455 (2021).

615 63. A. Gachitorena, F. A. Ihantamalala, C. Révillion, L. F. Cordier, M. Randriamihaja, B.
616 Razafinjato, F. H. Rafenoarivamalala, K. E. Finnegan, J. C. Andrianirarison, J. Rakotonirina,
617 V. Herbreteau, M. H. Bonds, Geographic barriers to achieving universal health coverage:
618 evidence from rural Madagascar. *Health Policy Plan*. **36**, 1659–1670 (2021).

619 64. J. K. Ord, A. Getis, Local spatial autocorrelation statistics: Distributional issues and an
620 application. *Geogr. Anal.* **27**, 286–306 (2010).

621 65. X. Li, L. Anselin, rgeoda: R Library for Spatial Data Analysis (2022).

622 66. R. M. Assunção, M. C. Neves, G. Câmara, C. Da Costa Freitas, Efficient regionalization
623 techniques for socio-economic geographical units using minimum spanning trees. *Int. J. Geogr.
624 Inf. Sci.* **20**, 797–811 (2006).

625 67. QGIS Development Team, *QGIS Geographic Information System* (Open Source Geospatial
626 Foundation, 2009; <http://qgis.osgeo.org>).

627 68. R Core Team, R: A Language and Environment for Statistical Computing (2020), (available at
628 <https://www.R-project.org/>).

629 69. P. Gnu, Free Software Foundation. *Bash (3. 2. 48)[Unix shell program]*.

630 **Acknowledgments**

631 We thank Dr Jinhong Luo for comments on an earlier version of the draft. Massey University's
632 subscription to New Zealand eScience Infrastructure (NeSi) enabled us to use high-performance
633 computing facilities. Te Pūnaha Matatini gave us support during the 2022 Mahia Te Mahi workshop.

634 **Funding**

635 RLM, DTS, RSJ: Bryce Carmine and Anne Carmine (née Percival), through the Massey University
636 Foundation; DTS: Royal Society Te Apārangi, grant number MAU1701.

637 **Competing interests**

638 The authors declare that they have no competing interests.

639

640 **Competing interests**

641 All data needed to evaluate the conclusions in the paper are present in the paper and the
642 Supplementary Materials.

643