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contributions. High-risk areas were mostly close (11-20%) rather than far (<1%) from healthcare. 22 

With the presented framework, areas with the highest estimated risk can be priority intervention 23 

targets in which risk management strategies can be implemented, such as land use planning and 24 

preventive measures to reduce contact between people and potential hosts. 25 

Key-words: zoonotic risk, viral emergence, land conversion, deforestation, host diversity, 26 

coronavirus, pandemics, sarbecovirus, One Health, scenario analysis 27 

 28 

Teaser: Multivariate clusters of stressors associated with SARS-like coronavirus spillover risk. 29 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.08.518776doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.08.518776
http://creativecommons.org/licenses/by/4.0/


 

2 

Introduction 30 

Human infectious diseases almost all came from other species (1). COVID-19, Ebola virus disease, 31 

HIV/AIDS and Zika virus disease are recent examples, whereas those like measles arose after the 32 

Neolithic Agricultural Revolution (2). The process of infectious disease emergence from animals 33 

begins with the cross-species transmission (spillover) of a microbe (e.g., virus, bacteria, fungus) to a 34 

new animal host in which it is pathogenic (1, 3, 4). Yet, successful emergence events are complex 35 

multi-stage processes with many possible pathways leading from the original wildlife reservoir to 36 

sustained transmission in people (5). The probability of any of these pathways occurring and resulting 37 

in infection emergence varies temporally and spatially. Understanding where and why viruses 38 

spillover is essential to prevent future pandemics. Pervasive, accelerated land use change (6), human 39 

encroachment, increasing and changing contacts among and between wildlife and domestic animals 40 

are among the multiple drivers of zoonotic pathogen transmission (7). However, the exact pathways 41 

of disease emergence are often unclear (8, 9). Cross-scale evaluation of disease emergence drivers, 42 

that can be measured and mapped, may allow decision-makers to know where to act and implement 43 

surveillance (10). Thus, effective risk evaluations must consider a variety of land use drivers as well 44 

as trends in the distribution of human and animal populations to optimally identify areas of change to 45 

focus mitigation measures (reduce pressures) and surveillance (11). 46 

Zoonotic disease risk has been mostly linked to mammals and birds (12). Bats are among the 47 

natural hosts of viruses in the coronavirus (family Coronaviridae) subgenus Sarbecovirus (Severe 48 

acute respiratory syndrome (SARS)–related coronaviruses), that includes SARS-CoV-1 and SARS-49 

CoV-2 (13, 14). Bat hosts of sarbecoviruses are broadly distributed but the highest diversity is in 50 

Southeast Asia (15). Human infection with Sarbecovirus from bats may be more frequent than 51 

reported from traditional surveillance (16) and potentially secondary hosts (17, 18). Viral infection 52 

prevalence contributes to the risk of spillover (4), and can be influenced by biological factors such as 53 

birthing cycles (19, 20) and external stimuli such as human changes to land use (7) (but see (21, 22)). 54 

Large scale risk assessments in which areas with similar risk profiles are identified provide 55 

invaluable information (13, 23) and can be rapid, while the development of local, detailed and 56 

intricate spillover and outbreak risk assessments can take a long time (24, 25). Since detailed and 57 

validated data for recent reports on outbreak risk reduction are lacking for most regions of the globe 58 

(e.g. the Sendai framework, https://sendaimonitor.undrr.org/), a broad evaluation targeting 59 

Sarbecovirus emergence can be advantageous to discuss diverse contexts across the region where 60 

most natural hosts of sarbecoviruses occur. Human encroachment has led to decreased distances 61 

between bat roosts and human settlements (26), so part of the relevant hazard for inferring spillover 62 

risk can be spatially quantified from remotely sensed proxies for socioecological risk factors. Previous 63 
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works estimated host distributions (15, 27) and developed modeling frameworks for adding proxies 64 

for disease risk and spread in the face of limited data (15, 27, 28). 65 

Here, we identify where indicators for emergence risk overlap, focusing on the biological 66 

possibility of the emergence of a Sarbecovirus. Our goal is to aid mitigation and surveillance 67 

activities throughout South, East and Southeast Asia, by identifying both where efforts should focus 68 

and which risk factors should be prioritized. Specifically, we aim to: 1) Identify and characterize 69 

univariate hotspots for four suggested spillover scenarios. 2) Identify spatially cohesive clusters of all 70 

risk indicators that, when combined, increase risk of zoonotic spillover (23, 29); 3) Quantify 71 

intersections of high-risk areas and access to health care, to identify where infection may be first 72 

detected and outbreaks may spread. 73 

The four scenarios evaluated represent different nested transmission pathways. We assume 74 

that the risk of emerging new SARS-like outbreaks is associated with social, biological and 75 

environmental components and, because there are unobserved dynamics for emerging viruses (30), we 76 

evaluated four nested spillover pathway scenarios based on landscape change and potential hosts (31): 77 

Scenario 1 (direct - known bat hosts) represents direct transmission from bats to people, facilitated by 78 

the landscape condition, human population, and known bat hosts. Although molecular investigations 79 

suggest that direct transmission of sarbecoviruses from bats to humans may be possible (32), it has yet 80 

to be better documented (33). Rather, the involvement of an intermediary or bridging host appears 81 

more likely, perhaps because this allows for recombination and viral evolution, and/or leads to greater 82 

exposure to human populations. Consequently, we developed Scenarios 2-4 to represent indirect 83 

pathways that build on Scenario 1 by adding livestock (Scenario 2, indirect - mammalian livestock) 84 

and wild mammals (Scenario 3, indirect - wild mammals). Scenario 4 (indirect - all mammals) is a 85 

global scenario comprising landscape condition, human population, known bat hosts, mammalian 86 

livestock and wild mammals.  87 

Results 88 

Characterization of univariate risk indicator hotspots 89 

The study region comprises a 25796-pixel grid for the terrestrial area evaluated. Univariate hotspot 90 

areas differ in magnitude (Figure 1) and extent according to components/indicators. Most hotspots 91 

concentrate at latitudes between 20 and 40 degrees. The univariate hotspots with the largest spatial 92 

extent are those obtained for agricultural and harvest land, followed by high integrity forests and areas 93 

with high deforestation potential. The majority of the included region comprises coldspots for primary 94 

bat hosts. Indicators with the greatest extent of coldspots were livestock (pigs then cattle) followed by 95 

known bat hosts. The largest extent of intermediate areas was for human population counts, which 96 
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presented no coldspots due to the ubiquitous nature of human occupation in terrestrial areas. The 97 

largest differences in all Bovidae livestock versus cattle-only hotspots (see Methods) are in central 98 

China, parts of north (Hebei, Shanxi, and Henan) China and central India (Figure S2). The complete 99 

overlap of hotspots considering all univariate hotspots at one grid never occurred. 100 

 101 

 102 

 103 
 104 

 105 
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Figure 1. Univariate hotspots of potential factors contributing to emergence of SARS-like 106 

coronaviruses. The upper panel shows the spatial distribution of hotspots based on univariate 107 

indicators of risk of new Sarbecovirus emergence evaluated in four scenarios. Bottom panel shows the 108 

proportion (%) of areas classified as hotspots, intermediate or coldspots across the study region, 109 

according to the aggregation of indicators in higher-level groups and univariate descriptors. Areas in 110 

the red zone represent hotspots, yellow zones are intermediate areas and coldspots in blue, at a 95% 111 

alpha error level. 112 

 113 

Scenarios 114 

Regardless of scenario, the largest hotspot overlaps occur in central and southeast China, south and 115 

northwestern India and Java. Differences between Scenario 1 (direct - known bat hosts) with potential 116 

primary known bat hosts and Scenario 4 (indirect - all mammals) are largest in central China (Figure 117 

2). The largest differences between each scenario and Scenario 1 (the scenario with fewest covariates) 118 

concentrated in central and southern China and represent the hotspots from the variables that were left 119 

out in the difference maps. Scenario 3 was the one with the least amount of differences in relation to 120 

Scenario 1. Similar to Scenario 1, Scenario 2 shows most hotspot convergences in central and south 121 

China. Considering Scenario 4 (indirect - all mammals), the most important PCA axes show a clear 122 

‘natural axis’ and an anthropogenic axis, where the pig production layer is intermediate to the 123 

influence of both axes (Figure S3). Both main axes explain 58.7% of the total variation (PC1 = 33.5%, 124 

PC2 = 24.8%). 125 

Maximum overlap for non-human potential primary and secondary hosts occurred across China and 126 

Vietnam. The average time to reach healthcare in areas with complete overlap among potential non-127 

human hosts in areas is 1.04 h (0.76 SD). The fastest travel to healthcare times occurred in hotspots 128 

for all host groups except wild mammals secondary hosts, where the fastest travel to healthcare times 129 

were associated with intermediate areas and not hotspots (Table 1). 130 
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 131 
Figure 2. Multivariate emergent risk hotspots for scenarios containing indicators associated 132 
with landscape change and zoonotic pathogen emergence. Landscape, human population and 133 
known bat hosts are included in all models, and are the sole indicators in Scenario 1, representing 134 
direct transmission. To incorporate indirect transmission through secondary hosts, mammalian 135 
livestock are included in Scenario 2, wild mammals in Scenario 3, and both mammalian livestock and 136 
wild mammals in Scenario 4. The bottom panel shows differences between each upper respective 137 
scenario and Scenario 1. The internal white area in the continent represents no data values for Lake 138 
Qinghai; the largest lake in China. 139 

Table 1. Average time to reach healthcare in areas with complete overlap for non-human 140 
potential hosts within China and Vietnam. Wild mammal refers to wild mammals except for the 141 
known bat host species. 142 

  Time to reach healthcare (mean hours, [SD]) 

Component in potential 
transmission risk scenario 

Coldspot Intermediate Hotspot 

Primary hosts (known bat hosts) 5.81 [10.2] 1.98 [3] 1.76 [2.37] 

Secondary hosts (wild mammal) 6.62 [11.2] 1.97 [3.57] 2.26 [3.03] 

Secondary hosts (pig) 6.08 [10.2] 1.92 [2.83] 0.8 [0.73] 
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Secondary hosts (cattle) 6.98 [10.6] 1.51 [1.93] 0.64 [0.72] 
 

 143 

Hotspot overlap in clusters 144 

The optimal number of multivariate spatial clusters is nine when 10% of the human population is used 145 

as a minimum bound variable and 19 for 5% of the human population. There is an incremental benefit 146 

reduction from adding clusters, from nineteen groups on (Figure S4). The clusters from the cut-off 147 

value of 5% are nested within the 10% clusters (Figure S5), and we present the clusters for 19 areas in 148 

the main text (Figure 3). From the 19 clusters, Beijing (cluster 19), Java (cluster 17), and Sichuan and 149 

Yuzhong District, Chongqing (cluster 16, Table 2) concentrate the highest hotspot scores. The clusters 150 

with highest scores were among the smaller clusters in geographical extent. Inner-West China (cluster 151 

1), South Lhasa and Arunachal Pradesh (cluster 15), and Philippines, Timor East, West Papua (cluster 152 

9) had the highest scores for coldspots. Areas with the highest scores for the Intermediate class were 153 

Assam, West Burma block, Steppe and Sri Lanka (cluster 2), followed by Southwest Indochina 154 

(cluster 11) and North India (cluster 14). Clusters with the all Bovidae livestock version are in Figure 155 

S6, and they were very similar to the cattle-only versions, except for the Beijing area and the division 156 

of the two larger clusters in India, West India and East India. 157 

 158 

Table 2. Multivariate spatial clusters and the number of times in which the median values of 159 

each emergent risk score were in coldspots, intermediate or hotspots (n=190). The top three 160 

values for each column are in boldface. 161 

Cluster ID and indicative name N variables for which the median is a 

Coldspot Intermediate 

spots 

Hotspot  

1 Inner-West China 9 1 0  

2 Assam, West Burma block, Steppe, and Sri Lanka 0 8 2  

3 West Thailand, most of Sundaland islands 3 4 3  
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4 West India 4 3 3  

5 Central China 0 5 5  

6 Manchuria 6 3 1  

7 North Lao PDR, North Vietnam, South China 0 5 5  

8 East India 2 3 5  

9 Philippines, Timor East, West Papua 7 2 1  

10 North China 5 0 5  

11 Southwest Indochina 0 6 4  

12 Inner Manchuria 5 4 1  

13 Nepal, Bhutan, Bangladesh 4 2 4  

14 North India 1 6 3  

15 South Lhasa and Arunachal Pradesh 8 1 1  

16 Sichuan and Yuzhong District, Chongqing 2 2 6  

17 Java 1 2 7  

18 East Bangladesh 2 4 4  

19 Beijing 1 1 8  

Total 60 62 68  

 162 

 163 
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 164 

Figure 3. Distribution of multivariate clusters of risk factors associated with potentially new 165 

emerging SARS-like coronaviruses, based on Scenario 4 in which all potential mammalian 166 

hosts, land use change and human exposure density distributions are considered. Areas located 167 

in the red zone represent hotspots, yellow zones are intermediate areas and coldspots in blue, at a 95% 168 

alpha error level.  169 

 170 
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Potential outbreak detection and spread 171 

When we cross the risk factor spatial information with healthcare access measured as travel time, the 172 

largest differences between combinations of quantiles of the two covariates are in the lowest and highest 173 

quantiles of both variables (Figure 4). We calculated the areas with high-risk values that are far or 174 

close to healthcare for all scenarios (Figure S7) within the spatial clusters from the skater analysis. 175 

From the entire study region, areas closer to healthcare that had high hotspot overlap (areas in yellow 176 

in Figure 4, Figure S7) covered an area ranging from 11.96% in Scenario 1, to 20.28% in Scenario 2, 177 

14.66% in Scenario 3, and 13.67% in Scenario 4. Areas far from healthcare that present high hotspot 178 

overlap (in red Figure 4 and Figure S7) were much rarer and varied according to scenarios, always 179 

covering less than 1% of the studied region, ranging from 0.1% in Scenario 1, to 0.30 in Scenario 2, 180 

0.91% in Scenario 3 and 0.22% in Scenario 4. The relationship between travel time to healthcare and 181 

human population counts (Figure S8) shows that areas far from healthcare tend to have lower 182 

population counts, but the relationship is non-linear. 183 

 184 

185 
Figure 4. Bivariate maps crossing emergent risk from hotspot data on risk quantiles and access 186 

to healthcare. Black lines divide the limits for the 19 clusters identified. 187 
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Discussion 188 

Urgent actions are needed to decrease disease emergence risk (34, 35). Using a macroscale 189 

approach, we assessed the distribution of locations with a greater risk of experiencing Sarbecovirus 190 

spillover events using landscape conditions and exposure of potential hosts (wildlife, domestic, 191 

human). Landscape conditions coupled with predictions of the distribution of known hosts and 192 

proxies for potential hosts and processes linked to human exposure to novel viruses can be a powerful 193 

tool for spatial sample prioritization when limited viral spillover information is available, such as for 194 

sarbecoviruses (16). 195 

The overlap of risk factor hotspots represents pressure points on natural ecosystems that have 196 

been extensively altered in terms of agriculture, deforestation, and livestock production. In some 197 

cases, these clusters still have high values for forest quality and known host diversity (for instance, 198 

cluster 5 – central China, and cluster 17 – Java). Areas where outstanding values of different risk 199 

factors converge can pose a severe risk to disease emergence and conservation. In Sichuan – cluster 200 

16 – values of livestock production are extremely high and largely extensive farming takes place 201 

concomitantly with the presence of hotspots for mammal diversity (including higher values for known 202 

bat hosts) and very high deforestation risk. Unfortunately, deforestation rates and the livestock 203 

revolution are evident in our top-rated clusters (27), within biodiversity-rich areas, with high forest 204 

loss risk and a very large human population (in the case of Beijing - cluster 19 and Java - cluster 17).  205 

We assume that intermediate areas in proximity to hotspots, and where socio-ecological 206 

transitions such as those related to the livestock revolution, are at the greatest risk of transitioning to 207 

hotspots (27). Even without transition, clusters with mostly intermediate values for stressors have had 208 

zoonotic spillovers in the past (17, 33, 36), notably those in central China on cluster 2 and edges with 209 

cluster 7 (north Lao PDR, north Vietnam, south China). Further, there is overlap of several identified 210 

clusters with areas that concentrate hosts of other viruses with pandemic potential, such as Nipah 211 

virus (37). The intermediate and high-risk areas within clusters need a multidimensional approach to 212 

mitigation that combines targeted surveillance of human populations and the highly weighted risk 213 

factors with One Health approaches. These approaches emphasise nature-based mitigation strategies, 214 

looking at the socio-economic drivers that shape local landscape conditions. Our analyses also show 215 

that risk factor clusters are commonly multinational, and action plans are a complex task to 216 

implement. However, transboundary, coordinated action between nations that share territorial limits is 217 

paramount if configuration of hotspots is taken into account when managing, protecting and restoring 218 

land to mitigate disease emergence risk. 219 

Conditionally safer areas (blue, Figure 4) represent remote areas that present little spatial 220 

overlap in risk factor hotpots. In those areas, priority should be assessing and reducing other disaster 221 

and disease risks. In areas of high potential assessed risk (khaki, orange and red, Figure 4), actions 222 
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should be focused on the drivers of spillover. Recent literature (35) suggests three broad, cost-223 

effective actions to minimize pandemic risk: better surveillance of pathogen spillover, better 224 

management of wildlife trade, and substantial reduction of deforestation (i.e. primary prevention) 225 

(35). Landscape planning should have priority, as these can have other benefits (38, 39) and can 226 

include preventive measures to reduce levels of contact between people and potential wild and 227 

domestic animal hosts. Biosecurity measures and surveillance and fauna monitoring are also key 228 

where multi-component risk levels are higher (40). Syndromic, virological, serological, and 229 

behavioral risk surveillance of people with regular proximity with known reservoir or potential 230 

amplifier hosts (40) can be of great value in these hotspots, but the ultimate prevention should be in 231 

primary prevention. Beyond viral monitoring and discovery, prevention can be achieved by reducing 232 

deforestation, wildlife trade and increasing sustainable management of agricultural areas (35).  233 

Surveillance effort correlates with detecting infections and where human populations intersect 234 

with wildlife, risk increases (41, 42). Evidence from Brazil also suggests zoonotic risk increases with 235 

remoteness (along with increased wild mammal species richness) and decreases in areas with greater 236 

native forest cover (43). Our results suggest high-risk areas are often (11-20%) associated with faster 237 

travel times to healthcare, compared to remote areas (<1%) (yellow and red respectively, Figure 4). 238 

The problem posed by remote sites for emergence mitigation is that while spillover probability and 239 

initial ease of spread may be lower, so too is detection probability (41), because of the distance to 240 

healthcare. This may allow localized, remote outbreaks to establish and spread in human populations 241 

before detection (44–46). Our findings can be helpful in allocating efforts for surveillance, 242 

sustainability and conservation actions and long term plans for ecological intervention, including in 243 

areas with high emergent risk scores. Importantly, additional layers of prioritisation could be added to 244 

implement mitigation actions on hotspots, for instance, where climate change vulnerability is also 245 

high, such as in Java (47). Also, regions of China, in terms of mobility are outstandingly connected, 246 

which highlights the need to reduce pressures arising from multiple hotspots.  247 

Scenario 2 (indirect transmission through livestock) had the highest number of regions with 248 

high-risk areas close to healthcare (yellow, Figure 4). These areas are extensive across the study 249 

region in all scenarios, and should be prioritised for temporal screening for viruses in livestock, the 250 

understanding of known hosts, and investments in improving public health responses to spread. High-251 

risk areas far from healthcare (red) represent small regions of our study area (<1%) in all scenarios, 252 

where Scenario 1 had the fewest and Scenario 3 had the highest areas. These are areas with higher 253 

possibilities for spillover, that would also be likely to go undetected during the early stages of human-254 

to-human transmission and spread. In those regions, urgent action to prevent contact, reduce 255 

deforestation, and enhance biodiversity protection should take place, as well as improvements in 256 

healthcare access. Human populations that are more vulnerable to risks could be targets for equitable 257 

distribution of promising solutions, such as pan-coronavirus vaccines (48). 258 
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Our findings are a snapshot of macroscale spatial trends that can be used for prioritising more 259 

detailed analysis depending on the context and policy priorities. The United Nations Development 260 

Programme (UNDP) recommends the creation of ‘Maps of Hope’ for maintaining essential life 261 

support areas (49), but the relationship between biodiversity loss, fragmentation, and zoonotic disease 262 

is seldom considered in the designation of such areas. We advocate for a One Health approach (50) in 263 

which the risks of pathogen emergence are explicitly integrated into initiatives addressing habitat 264 

management, restoration and protection (49), and have demonstrated that this risk can be mapped at 265 

large scales with insights into variability in the distribution of key drivers (50).  266 

Limitations 267 

We acknowledge the complexity of pathogen responses to land use modification (9), and 268 

important data use limitations for specific contexts. The static datasets used here are all global yet 269 

accessible. But hotspots may change in response to changes in economic and agricultural policies at 270 

national and subnational levels, international agreements such as Agenda 2030, and climate change 271 

adaptation (51). There are also several data limitations. Cryptic diversity in bats (52) and uneven 272 

sampling occur for sarbecoviruses and their bat hosts (15) create uncertainty regarding bats that is 273 

difficult to account for. Ecological analyses at finer spatial and temporal scales than used here can 274 

elucidate cascading events that result in zoonotic spillover. For example, Hendra virus spillover from 275 

bats to horses in Australia seems to be driven by interactions between climatic change altering the 276 

flowering phenology of important nectar sources, exacerbating food shortages resulting from native 277 

habitat loss and degradation, and nutritional stress in bats that can increase Hendra virus shedding. 278 

Native resource declines have concurrently promoted urbanization of many bat populations, 279 

increasing the human-bat interface and potential for spillover events to horses, which can act as 280 

intermediary hosts, or even potentially direct to humans (53). Our analyses may capture the 281 

macroscale processes, but not these local events.  282 

Similarly, while knowing that the top-priority traded mammals (54) are correlated with total 283 

mammalian diversity, local analyses should evaluate factors that cannot be easily mapped or tracked, 284 

such as animal trade and hunting, which is currently not feasible using a macroscale approach. Our 285 

workflow can, however, be easily coupled with detailed local data for spillover ‘barriers’ and host 286 

characteristics to bring insights and customize action plans, such as data on reservoir density, 287 

pathogen prevalence, pathogen shedding, and data on spillover recipients, such as susceptibility and 288 

infection (55). This is especially important when macroscale and subnational level risk assessments 289 

are neither complete or validated for most nations (accessed in September 2022, 290 

https://drmkc.jrc.ec.europa.eu/inform-index/INFORM-Subnational-Risk).  291 
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The role of domestic intermediate hosts for sarbecoviruses is unclear, with numerous species 292 

able to be infected by SARS-CoV-2 (56). Here we include cattle and all Bovidae livestock 293 

evaluations, leading to similar overall results for clusters but with some univariate hotspots less 294 

intense, especially in central India and south China, while making them more intense around Beijing, 295 

highlighting how uncertainties around host susceptibility and potential pathways leads to uncertainty 296 

regarding risk. The emergence of a novel coronavirus and re-emergence of a known Sarbecovirus 297 

through spillback is also possible (56) and may change risk profiles. Other factors that play a large 298 

role in outbreak response such as conflict (57) and other societal challenges associated with health and 299 

the environment might also be considered. 300 

Conclusions 301 

The use of remote sensing layers can bring insights for land use planning when considering 302 

complex processes such as disease emergence. This process may benefit not only the understanding of 303 

risks but also local actions informed by broad patterns (28). Recent models suggest that the 304 

implementation of smaller-scale land-use planning strategies guided by macro-scale patterns may help 305 

to reduce the overall burden from emerging infectious diseases (58), while also taking into account 306 

biodiversity conservation. This could be evaluated from multiple perspectives, including in the 307 

context of other planetary boundaries and how zoonotic disease risk inserts within it (59), considering 308 

we have already passed the 1-degree warmer planet threshold (60).  309 

This work contributes to strengthening evidence of transboundary clusters of risk factors for 310 

disease emergence. We use a reproducible workflow based on hotspot analysis from broad-scale data 311 

that is accessible through open software and maps for easy interpretation. This can enable local and 312 

national agencies to engage in new land-use planning actions by including stakeholders (academia, 313 

government, local communities and non-governmental organisations) under a One Health perspective. 314 

The need to reduce access to healthcare inequalities (61) without promoting encroachment into natural 315 

areas is a challenge. Efforts should focus on comprehensive land use planning on the place of 316 

healthcare facilities and other infrastructure (62). Biodiversity provides essential ecosystem services, 317 

so primary prevention of spillover can benefit sustainability at multiple scales, sustaining life on earth 318 

and human health (55), Our findings can help stakeholders when evaluating multiscale policies, land 319 

use planning and considering integrating community health programmes to universal healthcare 320 

implementation (63) into transboundary, national or subnational levels. 321 

Materials and Methods 322 

We use South, East and Southeast Asia (including West Papua) as our study region, where 323 

most Sarbecovirus hosts are concentrated (15, 16) and where many unknown sarbecoviruses are 324 

estimated to exist (29). We define our study region as the terrestrial area of the following countries: 325 
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Bangladesh, Bhutan, Brunei, Cambodia, China, India, Indonesia, Laos, Malaysia, Myanmar, Nepal, 326 

Philippines, Singapore, Sri Lanka, Thailand, Timor-Leste, and Vietnam.  327 

Characterization of univariate risk indicator hotspots 328 

We identified spatial clusters of components of risk. Our rationale for including each indicator 329 

relating to a SARS-like disease is presented in Table S1. We assume our inferred risk arises not from 330 

individual factors having outstanding high values (hotspots), but instead it arises when they are 331 

combined, facilitating conditions for viral spillover. In that sense our inference of risk is an emergent 332 

property of the system (Emergent risk). We adapted a broad-scale risk estimation framework 333 

(https://mcr2030.undrr.org/quick-risk-estimation-tool) focusing on the potential for sarbecoviruses to 334 

emerge. The broad risk factors were five landscape-level conditions and five biological layers, 335 

according to four scenarios (Table S1). The analysis is naive about the influence of individual drivers 336 

on the risk of spillover in the sense that all factors were weighted equally in our scenario evaluations. 337 

We selected the following factors for land use change and landscape conditions: Intensity of 1) built-338 

up land, 2) mining and energy, 3) agricultural and harvest land, 4) forest quality, and 5) local forest 339 

loss risk. As a measure of human or animal exposure, we used livestock (pigs and cattle), wildlife 340 

(known bat hosts and all other wild mammals), and human populations. To avoid collinearity, we only 341 

selected variables with product-moment correlation coefficient (r) values < ±0.7 (Figure S1). There 342 

are many countries in Southeast Asia where carabao (Bubalus bubalis) and other Bovidae livestock 343 

are more common than cattle (Bos taurus) so we provide results for Bovidae livestock instead of 344 

cattle-only in the Supplementary materials. 345 

The study region was divided into a spatial grid composed of 0.25 decimal degrees-sized tiles 346 

(~27 km). All indicators were resampled to match this resolution. For data layers that were counts 347 

from shapefiles (other mammal species numbers), we applied median values for resampling. We ran a 348 

univariate hotspot analysis based on Getis-ord G*i scores considering each factor individually at 95% 349 

alpha error cut-off. We created a list of closest neighbors considering all data and n=25 for the closest 350 

neighborhood. Local G assumes a two-sided alternative hypothesis, where high-positive values 351 

indicate hotspot regions and low negative values indicate coldspots. Pixels located in-between the 352 

alternative hotspot or coldspot hypothesis values are referred as intermediate regions, where the value 353 

may reflect random spatial process, i.e. no spatial clustering detected. Critical values for defining 354 

univariate hotspots followed the critical values for 95th percentile (64). 355 

Scenarios 356 

Detected hotspots for all landscape condition components were used in combination with 357 

biological components in the scenario analyses. Scenario 1 considers direct transmission from bats to 358 

humans, where the biological risk is composed of the average number of bat species in which 359 
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sarbecoviruses have been reported as the known primary hosts. For Scenario 2, we then considered 360 

the components of scenario one in combination with potential intermediate hosts using: pig counts, 361 

cattle-only or Bovidae livestock counts. Scenario 3 considered bat hosts and the number of other wild 362 

mammal species present. For Scenario 3, we used the wild mammals layer (minus known bat hosts) 363 

and known bat hosts as the potential intermediate hosts. We considered using a traded mammal layer 364 

instead of an all wild mammal layer in Scenario 3, because of evidence the first Covid-19 cases 365 

identified were linked to the Huanan Seafood Wholesale Market in Wuhan (18). An available high 366 

priority traded mammal layer (54), however, is highly correlated (r = 0.864) with the wild mammal 367 

layer. Because of this correlation in addition to high uncertainty regarding trade, we kept only the 368 

mammal layer and bat hosts layer in Scenario 3. A fourth scenario including all of the previous 369 

mammalian layers, be it wild or livestock, was constructed. We plotted counts of hotspots 370 

(convergence of hotspots) and the differences between every scenario map and the map from Scenario 371 

1 (lowest number of variables, direct transmission), to help understand how much risk is added when 372 

we have other potential intermediate hosts to the system.  373 

Hotspot convergence in clusters 374 

We evaluated the spatial clustering among hotspots including all the selected indicators (Scenario 4, 375 

five landscape descriptors, five potential host components). We opted for doing a single cluster 376 

analysis because we cannot weigh the importance of the single variables for influencing an ultimate 377 

spillover event. The variables comprised here describe landscape condition, human population, cattle, 378 

pig, bat hosts and all other wild mammals. We assume areas that contain most hotspots or that are on 379 

the verge of becoming hotpots (intermediate areas) for the components evaluated are at higher risk of 380 

emerging new sarbecoviruses. A multivariate spatial cluster analysis was applied to scores for every 381 

variable after the univariate hotspot analysis using rgeoda 0.0.9 (65). We used the multivariate skater 382 

(Spatial `K’luster Analysis by Tree Edge Removal) hierarchical partitioning algorithm (66) to infer 383 

contiguous clusters of similar values in the region based on the optimal pruning of a minimum 384 

spanning tree. Spatial clusters represent emergent, cohesive risk combinations distributed in space. 385 

Contiguity was assessed by a queen weights matrix after transforming pixels to geographical 386 

coordinates. Distance functions were set to euclidean. We evaluated the k number of clusters from 1 387 

to 40. To find the optimal number of clusters, we evaluated the total within-cluster sum of squares 388 

variation, visually inspecting the point of inflection in the curve towards stabilization. As the 389 

reduction in increment was very smooth, we present the number of clusters for skater informed by the 390 

max-p algorithm. We used max-p to find the solution for the optimal number of spatially-defined 391 

clusters setting as a bounding variable (a variable that allows for a minimum value summed for each 392 

cluster) the human population amounts at 5% and 10%. The algorithm was computed at 99 interactions 393 

with 123456789 as a random seed.  394 
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To interpret variation of hotspots within clusters, we counted the number of variables for which the 395 

median of the value distribution is a hotspot (i.e. falling within the hotspot interval at 95% Gi*). We 396 

then discuss the clusters based on the number of indicators that are already hotspots and the 397 

distribution that falls in intermediate zones, so closer to becoming hotspots, which may be ones 398 

contributing to greater spillover risk in the near future. We did this by evaluating the density 399 

distribution of variables in a ridgeline plot. Finally, to understand the overall variation (and among 400 

clusters) we provide a Principal component analysis (PCA) biplot through Scenario 4 to discuss major 401 

axes of variation between optimal number of clusters. We ran the hotspot analyses with cattle-only 402 

and with the summed values for Bovidae livestock (presented in the Supplemental Material). All 403 

geographical coordinates were warped to World Mercator (EPSG: 3395) and World Geodetic System 404 

1984 datum before spatial analysis.  405 

Emergent risk and its relationship with access to healthcare 406 

After identifying the hotspots within the scenarios, we match their proximity to detection by matching 407 

their information with the level of motorized access to healthcare. Access to healthcare measured as 408 

travel time was considered as both a proxy for connectivity and an indicator of the likelihood of 409 

detection, following infection spillover and spread. We built bivariate maps and three-by-three 410 

quantile (N=9) combinations considering the intensity of hotspots from their overlay scaled and scaled 411 

values for access to healthcare, all rescaled from zero to one. All analyses were done in QGIS 3.10.7 412 

(67), R 4.1.3 (68) and bash (69). Code for the analyses can be found at 413 

https://github.com/renatamuy/hotspots/.  414 

 415 
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