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Abstract
Measuring forest biodiversity using terrestrial surveys is expensive and can only capture
common species abundance in large heterogeneous landscapes. In contrast, combining
airborne imagery with computer vision can generate individual tree data at the scales of
hundreds of thousands of trees. To train computer vision models, ground-based species labels
are combined with airborne reflectance data. Due to the difficulty of finding rare species in a
large landscape, the majority of classification models only include the most abundant species,
leading to biased predictions at broad scales. Extending classification models to include rare
species requires targeted data collection and algorithmic improvements to overcome large data
imbalances between dominant and rare taxa. In addition, large landscapes often require
multiple acquisition events, leading to significant within-species variation in reflectance spectra.
Using a multi-temporal hierarchical model, we demonstrate the ability to include species
predicted at less than 1% frequency in landscape without losing performance on the dominant
species. The final model has over 75% accuracy for 14 species with improved rare species
classification compared to a baseline deep learning model. After filtering out dead trees, we
generate landscape species maps of individual crowns for over 670,000 individual trees at the
Ordway Swisher Biological Station within the National Ecological Observatory Network. We
estimate the relative abundance of the species within the landscape and provide three
measures of uncertainty to generate a range of counts for each species. These maps provide
the first estimates of canopy tree diversity within NEON sites to include rare species and provide
a blueprint for capturing tree diversity using airborne computer vision at broad scales.

Keywords: Tree Species Classification; Deep Learning; Multi-temporal ensembling; biodiversity

Introduction
Forest ecosystem services, ecology, and biogeography all depend on the composition of
individual tree species. However, traditional methods for collecting species information cannot
scale to entire forests and are mostly limited to sampling plots with small spatial coverage. In
contrast, airborne data collection using hyperspectral sensors can cover areas containing
millions of trees. Early studies of remotely-sensed tree species prediction focused largely on
hand-crafted features using spectral indices to create machine learning models (e.g. Heikkinen
et al. 2010, Schäfer et al. 2016, Maschler et al. 2018). These studies often used coarse
taxonomic categories (e.g. ‘conifer’) and were restricted to a small number of bands across a
wide spectral range (Dalponte and Coomes 2016). Following the trend away from hand-crafted
features towards deep learning neural networks, numerous publications have applied computer
vision approaches to airborne tree species prediction (Mäyrä et al. 2021, Abbas et al. 2021,
Chen et al. 2022, Onishi et al. 2022, Veras et al. 2022). These applications demonstrated that
models often achieve between 70% to 90% accuracy for fewer than 10 co-occurring,
well-sampled, classes (Marconi et al. 2022). A remaining species classification challenge is
broadening classifications beyond the most common and differentiable species and applying
these models to the scale of entire forested landscapes. Most previous work focused on either
relatively species poor areas, (e.g. four species in Mäyrä et al. 2021), or only included the most
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common species in small sampling areas (Veras et al. 2022). Extending the number of classes
in a species classification model broadens the questions that can be answered using airborne
remote sensing to include biodiversity modeling and fine-grained, wildlife habitat management.
Additionally, we can be more confident in predicted tree crown map accuracy since they are
more likely to cover the species in the landscape. However, as species number increases,
species misclassifications also increase, making it more difficult to learn discriminative features
(Qin et al. 2022). This challenge is further compounded when applying species classification
models to large areas. For example, Onishi et al. (2022) showed that the accuracy of an RGB
deep learning tree species model dropped by more than 35% among acquisition flights.

Our goal was to develop an individual tree species model that captures common and
rare tree species across a 3800 hectare landscape at the Ordway-Swisher BIological Station, a
National Ecological Observatory Network (NEON) site in Florida. NEON includes 47 terrestrial
sites across the United States, with vegetation data in form of forest plots in which individual
trees are identified to species and overlapping airborne LIDAR, RGB and hyperspectral data
sampled annually for most sites. Airborne species classification within NEON sites started with
Fricker et al. (2019) at the Teakettle California site (TEAK) using 7 species and a ‘Dead’ class
collected during one flightline. Scholl et al. (2020) followed with a four species model at the
Niwot Ridge NEON site in Colorado (NIWO). Two data science competitions, one focused on
the OSBS site (Marconi et al. 2019) and the second combining data from the OSBS, Talladega,
Alabama (TALL), and Mountain Lake, Virginia (MLBS) sites in the Southeastern US (Graves et
al. 2021), used NEON forest plot data with 33 species, of which only 15 had more than 5
individuals. The lack of data for less common species was the primary factor in poor model
performance. For example, as part of the multi-site data competition (Graves et al. 2021), Scholl
et al. (2021) modeled 27 selected species classes, but only 7 of these classes had non-zero
evaluation accuracy. Marconi et al. (2021) attempted the first NEON-wide model for 77 species
across 27 sites using a pixel-based ensemble machine learning classifier. In all of these studies,
only the most common species were classified, largely due to insufficient field data on rare
species for model development and evaluation. This illustrates that even well-designed
vegetation sampling (NEON’s forest plots are stratified by habitat type to capture landscape
variation) that is used for developing remote sensing models often lacks sufficient field samples
of rare species, requiring approaches to supplementing available data and building models that
are robust to small amounts of data in rare classes.

While the number of rare species naturally differs across ecosystems, our goal was to
develop modeling approaches that can be applied to the rarest species and be used to capture
diversity of ecosystems with canopy trees with long tails of rare species. In the case of the
OSBS NEON forest plots contain only five canopy species with more than five individuals;
however, we estimate that there are at least 18 canopy tree species across the landscape. This
difference is in part due to NEON’s plot design which focuses on covering the common land
types in the ecosystem using the National Land Cover Database. While we know five species
dramatically underestimate tree diversity at the site, it is not yet possible to estimate the
proportion of crowns they represent. Using fixed-plot data biases samples towards common
species and underrepresents the role of rare species at landscape levels, while using targeted
sampling overrepresents rare species. Airborne remote sensing provides a more unbiased
estimate of the tree community composition at the forest scale. However, there are limitations to
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the maximum species diversity that can be captured in airborne classification models. Species
with only a handful of individuals are unlikely to generalize across broad areas, even with
targeted data collection.

Broadening the number of species in remote sensing classification models to include
rarer species creates several challenges. The largest problem is sample imbalance between
common and rare species. Machine learning models favor predictions that improve overall
performance and often ignore rare species classes. Due to small sample sizes, we risk
overfitting models applied to spectra from individuals of rare species. To combat both the risk of
class imbalance and rare species overfitting, we developed a hierarchical, multi-temporal
ensembling approach using convolutional neural networks with spectral attention. The spectral
attention blocks act as a form of data reduction to help the model learn which combinations of
bands are most useful in classification. This reduces the overfitting by reducing hundreds of
spectral bands into a narrower number of classification features. The multi-temporal aspect uses
repeated views of the same ground truth tree across years to bolster low sample sizes of rare
species. The learned features are also more robust to annual variation in spectral reflectance
that arises through differences in sampling conditions and the data acquisition environment.
Finally, the hierarchical model combines multiple sub-models that each distinguish only a few
classes. This combination helps address the inherent class imbalance in species abundances
and the challenge of developing discriminative features with many classes, while still avoiding
undersampling common classes or oversampling rare classes.

Using a hierarchical multi-temporal model, we generated landscape level maps for
hundreds of thousands of individual tree crowns. Using these maps, we estimated species
abundance distributions at broad scales. However, this biodiversity point estimate did not
incorporate any uncertainty in the predicted species counts. It did not indicate the relative
confidence among classes, and it provided no way of assessing prediction accuracy. To address
these shortcomings, we assessed the different types of uncertainty from our species predictions.
There was uncertainty in data due to trees selected as training versus evaluation examples
during model development, in the model due to the stochastic nature of learning features for
classification, and in each predicted crown through the model’s confidence score. By evaluating
these areas of uncertainty we begin to bring deep learning in ecological monitoring closer to
traditional monitoring programs that have robust confidence measures. While these approaches
to capture rare species and describing uncertainty were tested at one site, we expect these
approaches to be broadly useful at any site with long-tailed tree diversity.

Methods
We developed a multi-stage pipeline to predict tree species based on field-collected labels and
airborne sensor data (Figure 1). In summary, researchers collected crown data and identified
tree species in the field using a geospatial point at the tree stem, or drew a tree crown on a
tablet while viewing the corresponding airborne imagery. The stem data were converted into a
crown using an existing RGB tree crown deep learning model (Weinstein et al. 2020a). Tree
crown locations were then judged to be visible from the air by comparing LiDAR-derived heights
and field measured heights, which were available only for NEON field plot data. Hyperspectral
data were cropped to each tree crown, split into training and test segments, and used to train a
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multi-temporal hierarchical model. During prediction, the same RGB tree crown deep learning
model was used to generate predicted crowns, which were then assigned a species label using
hyperspectral data. This workflow was applied to four years of airborne data and all tiles within
the bounds of the OSBS NEON site to create maps of hundreds of thousands of individual
trees.

Data Collection
NEON collected airborne data over the Ordway-Swisher Biological Station annually in
September between 2017 and 2021, with the exclusion of 2020 due to pandemic-related
closures. We used four data products from NEON’s airborne observation platform, 1)
orthorectified Camera Mosaic (‘RGB’ NEON ID: DP3.30010.001), 2) ecosystem sStructure
(‘Canopy Height Model’  NEON ID: DP3.30015.001), 3) hyperspectral surface reflectance (‘HSI’
NEON ID: DP1.30006.001), and 4) vegetation structure (NEON ID: DP1.10098.001) (National
Ecological Observatory Network (NEON) 2021). The 10 cm RGB data were used to predict tree
crown locations necessary for associating field labels and sensor data during model
development. RGB data were also used to identify dead trees during our prediction workflow.
The 1 m canopy-height model was used to determine which field collected data were likely to be
visible from the air, as well as to define a 3-m minimum tree height threshold during the
prediction workflow. The HSI data is used to differentiate tree species based on spectral
reflectance. The HSI data spanned approximately 420-2500 nm with a spectral sampling
interval of 5 nm, a total of 426 bands. NEON provides orthorectified images with a pixel size of 1
m2 in 1 km2 tiles that are georectified and aligned with the RGB and Canopy-Height-Model. For
more information on hyperspectral data processing and calibration see NEON technical
document NEON.DOC.001288.

The NEON Vegetation Structure dataset is a collection of tree stem points within
fixed-width field plots; plot locations are allocated across sites according to a stratified random,
spatially balanced design (Barnett et al. 2019). The plot locations were designed to capture the
major ecosystems within a site. All trees in sampled areas with a stem diameter > 10 cm are
mapped and measured for diameter and height, and health status and species identity are
recorded. Building on this NEON dataset, we incorporated stem location and information from
Wang et al. (2020) and the OSBS ForestGEO plot (Johnson et al. 2021). We targeted sampling
rare or incorrectly predicted species using preliminary species classification results and
identifying ecosystem types with high frequency of rarer species from the Florida Natural Areas
Inventory (fnai.org) of the site (Figure S1). We used tree crown locations predicted from
Weinstein et al. (2021) to identify target trees in the field and map them on the images following
Graves et al. (2020), resulting in 1556 additional trees from 24 areas of interest. Several rare
species were found but discarded for the following reasons:1) any species with less than five
individuals found during field sampling (n=5), 2) any shrub-like species judged not to be visible
in the canopy (e.g. Ilex cassine), 3) species whose taxonomic status was in question, e.g.
Quercus laurifolia versus Quercus hemisphaerica. The final number of samples per species is
shown in Table 1.
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Table 1. The number of training and test individuals for each taxa. The NEON taxonomic
identification codes are used throughout the figures for abbreviations. Hierarchical level
indicates how the species was classified in the hierarchical model.

Species TaxonID Train Test Hierarchical Level

Acer rubrum ACRU 39 12 Broadleaf

Carya glabra CAGL8 138 34 Broadleaf

Liquidambar
styraciflua

LIST2 80 14 Broadleaf

Magnolia sp. MAGNO 33 14 Broadleaf

Nyssa sylvatica NYSY 49 19 Broadleaf

Pinus clausa PICL 73 11 Needleleaf

Pinus elliottii PIEL 188 23 Needleleaf

Pinus palustris PIPA2 1581 95 Dominant Species

Pinus taeda PITA 82 13 Needleleaf

Quercus geminata QUGE2 141 12 Oak

Quercus
hemisphaerica

QUHE2 185 25 Oak

Quercus laevis QULA2 466 16 Oak

Quercus nigra QUNI 84 21 Oak

Quercus virginiana QUVI 90 18 Oak

To connect airborne sensor data with species labels collected in the field, we converted
individual stems into a tree crown using either the bounding box of the field-drawn polygon or
the field stem point. For the field stem points, we used the DeepForest model to predict
bounding boxes that overlapped the field points. The DeepForest model is a RGB tree detection
tool that has been validated using NEON data (Weinstein et al. 2020a, 2020b, 2021). While
previous work used a fixed number of pixels closest to the field stem location (Scholl et al. 2020,
Marconi et al. 2022), model-based bounding boxes linked training and evaluation processes
more directly to predictions where no stem locations were available. In the event that multiple
predicted tree crown boxes overlapped the field point, we chose the box centroid nearest the
field stem.
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Figure 1. Input data and sensor data types for three sample species. Crown locations (red
bounding box) are either estimated directly in the field using a tablet (top-center), or predicted
from a GPS point at the tree location (blue point) using a deep learning RGB model. These data
are overlaid on 369 hyperspectral data bands, shown here as a three-band false color image
(457 nm, 648 nm, 939 nm wavelengths). The spectral signature for each sample is collected for
each available year of sensor data.

Due to differences in data acquisition timing and sampling conditions, raw reflectance
values differed among flight years. We found that the optimal normalization strategy divided the
value of each hyperspectral channel by the maximum value for that channel across the entire
crown. To create a consistent input size, we resized the crop to 11 x 11 pixels using nearest
neighbors interpolation. Several reasonable sizes were tested without considerable variation.
We removed bands associated with water absorption, which were usually completely saturated
and non-informative for tree species prediction. We also removed the first and last 10 bands due
sensor noise, resulting in a total of 349 bands as model inputs.
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Modeling Approaches
To build a multi-temporal hierarchical model, we tested a series of submodels to assess overall
model performance at each progressive stage. We began with a 2D convolutional neural
network model, which is the most commonly used model architecture in computer vision. We
then added a depth-wise spectral attention architecture to customize the 2D CNN to
hyperspectral data. These 2D spectral attention models were then stacked to form a
multi-temporal ensemble. We next organized the multi-temporal ensembles into a hierarchical
structure that separately modeled individual subgroups.

Figure 2. Workflow for classification using a hierarchical multi-temporal model. The field
collected data are tree stems or crown polygons. For tree stems, crown locations are detected
using a RGB deep learning model (Weinstein et al. 2021). Crown locations were used to crop
available sensor data for each year. The cropped tree crowns are resized, normalized, and used
to train the hierarchical model. The hierarchical model begins by classifying whether the input
sample is the most common class–P. palustris. If not classified as P. palustris, the broadleaf or
needleleaf distinction decides which downstream model is used. The broadleaf model contains
a nested category to separate the oak subgroup. For each submodel, we use the same
multi-temporal ensemble architecture. Within the multi-temporal ensemble, each year is
separately modeled using a spectral attention block. The results are then averaged among
years.

2D CNN
The baseline model was a set of two-dimensional convolutional neural blocks (2D CNN). Each
2D CNN block has a kernel size of 3 x 3, followed by 2D batch normalization and RELU
activation. The 2D CNN model has three 2D CNN blocks with progressively deeper filters of 32,
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64, 128 size channels. Max pooling with kernel size 2 x 2 is applied to blocks 2 and 3. To obtain
class scores, output from the third block is flattened and passed through a fully connected layer
of depth 512 with softmax activation.

2D CNN with spectral attention
Building from the 2D CNN model, we added a spectral attention layer to help the model focus
on salient combinations of features among HSI bands (Hang et al. 2020). Each spectral
attention layer is inserted after each CNN block. The output of each CNN block is pooled across
the spatial dimension, creating a 1D feature output. This 1D layer is passed to a 1D
convolutional layer. Similar to the 2D CNN block described above, the spectral attention filter is
progressively deeper, with 32, 64 and 128 filters and  kernel sizes of 3, 5, and 7. Compared to
Hang et al. (2020), we removed the spatial attention network, as it provided no benefit and
increased overfitting.

Multi-temporal ensemble
To combat the challenge of within-class spectral variance, we separately modeled 2017, 2018,
2019 and 2021 sensor data followed by an ensemble among years. Using multiple views has
the potential to overcome illumination changes among flights and biological variation in leaf
signatures due to phenology and health status, thus allowing more robust feature learning for
species classification. The ensemble also reduces the potential effect of spatial mismatch
between field-collected levels and sensor data, which arise from single-year georectification
errors. The final cross-year score is the mean of class scores among years.

Hierarchical mixture of multi-temporal experts
We organized the multi-temporal ensembles into a nested series of five hierarchical models.
The organization is guided by three aims: 1) reduce class imbalance by separately modeling the
most common training class and rarer classes, 2) highly similar classes should be grouped
together and away from distant classes, allowing submodels to learn features specific to this
task, 3) higher level submodels should align with biological groupings, such that downstream
users could choose to adopt biological grouped labels over the more refined species
specific-labels. The top model classifies a sample as belonging to the most common species, P.
palustris (PIPA2), or ‘Other.’ If classified as ‘Other,’ a sample is classified as either ‘Broadleaf’ or
‘Needleleaf’. If samples are classified as ‘Needleaf’, they are passed to the Needleleaf
submodel for final species classification. If samples are classified as ‘Broadleaf,’ they are
passed to a broadleaf submodel that includes all species but lumps ‘Oaks’ into a single class. If
predicted ‘Oak,’ the sample is classified by the final oak-only submodel.

Training
All models were trained on a single NVIDIA A100 GPU with a batch size of 128. Each model
was trained for 70 epochs using ADAM optimization and a default learning rate of 0.0001. This
learning rate was altered for the hierarchical model for which each submodel had a separate
learning rate. We found that higher-order submodels, such as the Broadleaf versus Needleaf
level, required a lower learning rate of 0.00001, whereas the lower levels used the default
0.0001 learning rate. The learning rate was reduced every eight epochs by a factor of 0.75
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based on decreasing validation loss, with a minimum learning rate of 1e-6. While our
hierarchical strategy dramatically reduced class imbalance by grouping rare species, we did
provide minimal undersampling of oak classes by allowing no more than 200 samples per
species. This is a much higher ceiling than would have been possible without the hierarchical
approach. During training, we provided standard rotation and flip augmentation to reduce
overfitting. To promote rare species classification, we divided the loss of each sample by
species frequency, which has the effect of increased loss weight for rare classes.

Evaluation
To create a train-test split for model evaluation, we adopted a geographic approach to ensure
that data collected in close proximity did not occur in both train and test. For the NEON woody
vegetation structure data, entire NEON plots were assigned to either train or test. For the
non-NEON data, which did not naturally fall into fixed plots, we drew a 40 x 40 m grid over the
entire site and assigned trees within each cell into either train or test. Using this train-test split,
we evaluated our species classification models using recall, defined as the proportion of
correctly predicted samples, and precision, defined as the proportion of predictions which were
correct. We further classified these metrics into micro-averaged and macro-averaged scores.
Micro-averaging uses the natural abundance of each class in the test set, whereas
macro-averaging first computes the metric on each species individually and then averages the
results. Given the large imbalance in the class frequency, the macro-averaged results are
sensitive to the rare species performance, whereas the micro-averaged results are sensitive to
the dominant species performance.

Alive-Dead Filtering
One added complexity of this workflow is that our field data set did not contain many dead trees,
which regularly occur on the landscape and should be classified separately from living trees. To
provide a simple filter for trees that appear dead in the RGB data we collected 6,342 crops from
the prediction landscape, as well as other NEON sites, and hand annotated them as either alive
or dead. We finetuned a resnet-50 pre-trained on ImageNet to classify alive or dead trees before
passing them to the species classification model. The model was trained with an ADAM
optimizer with a learning rate of 0.001 and batch size of 128 for 40 epochs, and was evaluated
on a randomly held out of 10% of the crops.

Uncertainty
Our workflow generates counts of each species at the full-site scale. However, this count comes
without uncertainty and no mechanism to assess relative confidence among classes or
samples. We identified three types of uncertainty in predicted counts: 1) data uncertainty, 2)
model uncertainty, and 3) sample-based uncertainty (Hu et al. 2021, Lai et al. 2021, Abdar et al.
2021). Data uncertainty is variance due to individual differences in spectral reflectance. This
uncertainty can be measured using k-fold cross validation, where the original pool of data is
repeatedly split into random train/test splits, and the entire workflow is repeated, leading to a
new set of predicted species counts at the full-site scale. Model uncertainty is variance due to
stochastic optimization of model weights. This can be especially important among rare taxa,
where the highest predicted class for an individual crown may have an only marginally higher
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score than the 2nd predicted class. By repeatedly training the network from initialization, we
propagated the uncertainty into downstream species predictions. Sample uncertainty is the
confidence in each prediction, which is a combination of the model’s predicted confidence score,
such that we are not assuming all samples are equally likely to be incorrect, as well as the
empirical evaluation score that captures which species are likely to be confused. To measure
this effect on predictions, we took the output of each sample and assigned the label based on
the evaluation confusion matrix. For example, if a sample was predicted to be Q. geminata with
a confidence score of 70%, we took a Bernoulli random draw with this probability. If the result
was zero, we drew a new species prediction from the evaluation confusion for this sample. If Q.
geminata was correctly classified in 60% of the evaluation samples and confused with Q. nigra
in 40% of the evaluation samples, the new species ID had a 40% chance of being assigned to
Q. nigra.

Results
The hierarchical multi-temporal spectral attention model had the highest performance with 75%
micro-accuracy, 64% macro-accuracy over all species, and with 96% precision and recall for the
dominant species, P. palustris (Table 2). Ten-fold cross-validation of the train-test split showed
modest variation in evaluation metrics among train/test splits, but always remained higher than
simpler models. Adding spectral attention increased the micro-averaged accuracy of all classes,
as well as the precision of the dominant class P. palustris, compared to a baseline 2D CNN. The
multi-temporal ensemble alone did improve recall of the dominant class to 96%, but at the cost
of reduced precision of 87%, meaning that many non-P. palustris trees were classified as P.
palustris. However, the combination of a hierarchical model structure and a multi-temporal
ensemble resulted in significant improvements in performance in three out of four metrics (Table
2), indicating an important classification interaction between these two approaches.

The first model of P. palustris versus all other taxa had an accuracy of 97.2% with
precision and recall for P. palustris of 96.3% and 94.0%, respectively. The second model of
‘Broadleaf’ versus ‘Needleleaf’ had a mean accuracy of 96.4% with higher precision for
Broadleaf (99.3%) than Needeleaf (93.6%). The final higher level label is within the ‘Broadleaf’
model which jointly grouped all oak trees. The ‘Oak’ label within this model had a precision of
90.4% and an accuracy of 77.6%. The confusion matrix showed the majority of misclassification
occurred in nested models. For example, the most common misclassification of Quercus
geminata is Quercus nigra which both occur within the ‘Oak’ nested model. While there are
examples of misclassification across nested models, such as among Quercus laevis and P.
palustris which co-occur in the same habitat, these are relatively infrequent due to the high
accuracy of the higher level submodels (Figure 3).

We predicted the locations of all standing trees within the OSBS area using the existing
deepforest RGB model, resulting in 670,883 predicted canopy trees within the OSBS boundary.
We filtered these tree crowns using the alive-dead model. The evaluation accuracy of the
alive-dead model was 95.8% (Table S1). We identified 22,359 standing dead trees in the
landscape. After removing these trees, we classified each tree crown using the multi-temporal
hierarchical model. Creating spatial maps of predicted tree crowns showed significant
micro-habitat specialization among species. P. palustris and Q. laevis are the dominant species
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in the upland, sandhill areas of the site. The habitats at lower elevation and closer to the lakes,
particularly xeric hammock and transitional hardwood sites, are dominated by Q. hemisphaerica
and Q. geminata. An increase in rarer broadleaf species such Liquidambar styraciflua and
Nyssa sylvatica in mesic hammock and baygall habitats, particularly in the southwest portion of
the site (Figure 4, Figure S1). There was a low confidence area in the southwest which
corresponded to the baygall habitat and increased prevalence of rarer broadleaf species,
including N. sylvatica and Acer rubrum (Figure 5, Figure S1). The zero evaluation accuracy of
ACRU should be taken with some consideration given that there are only 6 available evaluation
samples, the lowest of any species.

Table 2. Evaluation scores for each component of the final model. The micro-averaged accuracy
is the proportion of samples correctly predicted. The macro-averaged accuracy is the proportion
of samples correctly predicted by species, averaged across all species. The recall and precision
of the dominant class class, P. palustris, are also used as metrics to illustrate the accuracy of
species-level predictions and because the dominant species will have a significant impact on
the quality of full-site predictions. For the multi-temporal hierarchical model, the training
workflow was repeated 10 times beginning from a random initialization of weights to generate a
range of evaluation metrics. The mean (min, max) of each metric is shown.

Model Micro-accuracy Macro-accuracy P. palustris
Recall

P. palustris
Precision

2D CNN 0.61 0.48 0.92 0.80

2D CNN
+ Spectral Attention

0.65 0.54 0.92 0.92

Multi-temporal
+ Spectral Attention

0.66 0.52 0.96 0.87

Hierarchical
+ Spectral Attention

0.60 0.59 0.91 0.91

Multi-temporal +
Hierarchical  +

Spectral Attention

0.75 (0.71,
0.78)

0.63 (0.58,
0.67)

0.96 (0.95, 0.99) 0.96 (0.94, 0.98)
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Figure 3. Confusion matrix between the predicted species for the model using multi-temporal
mixture of experts and the field labeled taxa. The proportion of data in each cell is shown and
colored.
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Figure 4. Predicted crown map for 14 species and dead trees at the full site scale (670,883
trees) for the Ordway-Swisher Biological Station. The ensemble species prediction is shown as
the result of a five layer hierarchical multi-temporal model. A 100m inset is shown from a
biodiverse region of the site, showing where a lake ecosystem meets a hardwood forest (black
point) and uphill pine savanna (red point).
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Figure 5. Spatial map of ensemble confidence scores alongside the predicted classes. The
confidence score for each predicted species label is shown with low confidence samples shown
in red and high confidence in blue.
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Figure 6. Uncertainty in predicted counts for the entire OSBS NEON site using the
multi-temporal hierarchical model. The ‘Data’ uncertainty is assessed using cross-validation of
the train/test splits from the original field collected data. For each train/test split, the entire
workflow is run to create predictions of species abundances at the site-level. The ‘Model’
uncertainty is assessed using repeat model training for the same train/test split. This uncertainty
reflects the stochastic nature of the model optimization process. The error bars on both types of
uncertainty are the result of predictions across 10 iterations. The ‘Sample’ uncertainty,
represented by an “X”, is a multinomial draw from the evaluation confusion matrix based on the
confidence score of each predicted tree crown.

Discussion
Using multi-year airborne hyperspectral data, an expanded set of field-labeled tree stems
focused on sampling rare species and habitats, and computer vision approaches designed to
support classification of rare species, we produced individual level crown maps for 14 tree
species and a dead class at the Ordway-Swisher Biological Station (OSBS) NEON site with
75% accuracy. These 14 species represent almost 90% of all stems present at the site and
include rare species representing less than 1% of the individual trees on the landscape.
Compared to the single-site OSBS model created from NEON woody vegetation structure data
alone (Marconi et al. 2022, evaluation accuracy in Table S2), we doubled the species number
predicted by incorporating auxiliary, non-NEON data. As a result, 25% of crowns predicted at
OSBS in this study were of species not included in previous efforts. This means that earlier
predictions had a ceiling of 75% accuracy for full site predictions, regardless of their
performance. This highlights the limitations of fixed forest inventory plot data to develop remote
sensing models and, as a result, the difficulty of measuring tree biodiversity across large
landscapes.
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Using targeted data collection alongside NEON field plots, we combined multi-temporal
classification models with hierarchical models to improve overall accuracy from 0.61 to 0.75
compared to a baseline CNN model. This approach was particularly effective at improving
prediction accuracy of rarer species; average species accuracy improved from 0.48 to 0.63 in
the final model. The multi-temporal and hierarchical model complimented each other, with the
combined model improving the overall performance more than any component part. Model
improvement for rare species did not come at the expense of reduced precision of the dominant
P. palustris class, which had a recall and precision of 0.96. The improvements of the
multi-temporal approach are likely due to the stabilized model learning that comes from multiple
lighting conditions that control differences in spectral reflection or image alignment. The
drawback of the multi-temporal approach is that it requires the interyear georectification to be
consistent. NEON airborne remote sensing surveys are designed to occur at the same time
each year (September for OSBS), meaning that images do not capture differences in species
phenology (Xi et al. 2021, Veras et al. 2022). Our results suggest that multiple temporal views,
even absent phenological information, can benefit generalization when dealing with low training
sample sizes (Takahashi Miyoshi et al. 2020, Beery et al. 2022).

The hierarchical model organization contributed to improved rare accuracy of species
classification by separately modeling common species and then grouping remaining taxa by
general phylogeny and habitat. This approach limits the need for oversampling rare classes or
undersampling dominant classes. It may also act as a form of regularization against mislabeled
data or samples that are polluted with pixels from neighboring species. By separating classes,
we minimized the need for tradeoffs in learning features that separate species classes and
allowed each model to learn features more closely refined for smaller target taxa. While this
strategy works well when combined with the multi-temporal ensemble, yielding an improvement
in micro accuracy of more than 10%, creating, training, and validating hierarchical models is
time-consuming and requires additional computational and developer time. Finding an
automated way to split classes into nested models will be key in scaling to hundreds of species
classes (Liu et al. 2019).

An important methodological change from previous tree species classification workflows
is that we generated crown predictions for evaluation using an RGB crown detection model
independent from the field labeled trees.This approach reflects the process during prediction in
which field stem points are not available. The majority of previous papers use fixed size boxes
around field stem points or hand-drawn crown polygons on the imagery to generate both
training and evaluation data (Maschler et al. 2018, Scholl et al. 2020, Onishi et al. 2022,
Marconi et al. 2022). This crown delineation approach biases results towards higher accuracy
as field points are most often collected on the largest and easiest to differentiate individuals.
This in turn biases the evaluation score compared to large scale predictions, since during
prediction we cannot hand delineate crowns. The downside of using algorithmically generated
bounding boxes is that it introduces additional uncertainty due to imperfect crown predictions.
The dominant species, P. palustris, happens to be relatively easy to delineate due to regular
spacing among individuals and simple crown geometry. In contrast, the Quercus species have
complex crowns and field assessments suggest that the predicted crowns are sometimes
oversegmented, leading to multiple predicted crowns for each true tree. This means that the
Quercus individual counts are biased to be higher compared to the Pinus counts. Cascading
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uncertainty from the crown detection into the species classification model could assist in
creating more accurate counts that reflect the bias among species in crown detection accuracy
(Maschler et al. 2018).

We applied the resulting model to make landscape maps capturing 670,883 individual
trees from 14 species, plus a dead tree class, at OSBS. Using the uncertainty in data measured
by cross-validation (in red, Figure 6), we estimate there are 189,878 P. palustris trees (lower 5th
quantile=147,240, upper 5th quantile=226,880), which equates to 28.3% (21.9%, 33.8%) of the
detected trees. P. palustris mostly occurs in the higher elevation sandhill pine forests
co-occurring with Q. laevis and to a lesser extent Q. geminata, and Q. hemisphaerica in the
hardwood forests at lower elevation and fringing lakes alongside other broadleaf species. The
remaining species each represented less than 10% of crowns, with 10 species below 5% of
crowns. The rarest two species, A. rubrum and Magnolia sp. were predicted to be less than one
tenth of 1% of crowns. There is a higher concentration of rare broadleaf species in the
southwest area of the site, corresponding to a low lying “baygall” swamp ecosystem (Figure 5,
Figure S1). We have since visited these areas and confirmed the tree biodiversity contains a
higher proportion of N. sylvatica than the rest of the site. However, these predictions are likely
overly biased towards this species and are a proxy for the higher tree diversity in the swamp
rather than a single patch composed dominantly of N. sylvatica. The low coverage of training
data in this area likely led to the model predicting that the area was dominated by one class that
was collected nearby. This example underscores the complexity of assessing diversity in broad
scale forested ecosystems and the virtue of interactive sampling efforts where areas with low
prediction confidence merit additional data collection.

From these spatially explicit predictions, we aggregated the data to estimate the total
number of individuals of each species at the site. Given the low number of training and testing
samples for rare species, estimating the uncertainty in predicted counts is crucial for conducting
downstream ecological analysis using remote-sensing derived data. This has been generally
overlooked in previous work due to ongoing debate about how to interpret machine learning
outputs and translate them into measures familiar to ecologists. We offered three measures of
uncertainty that gave rise to reasonably similar numbers of counts, with little change in the rank
abundance among taxa. The exception was the tradeoff between Q. hemisphaerica and Q.
geminata. These two species are closely related and have only modest habitat differences.
Overall, the landscape maps do a good job at showing the general pattern of oak ecology, with
Q. hemisphaerica more common in  upland areas, Q. geminata more common in the sandy dry
areas, and Q. virginiana in more mesic hardwood ecosystems. These species are known to
hybridize, and the higher uncertainty in Q. geminata counts underscores the importance of
assessing models using train-test cross validation when predicting across large landscapes.

The three types of uncertainty used in this paper provide a first glimpse into the
integration between computer vision and ecological modeling. In particular, the per-sample
uncertainty is a coarse measure since neural networks tend to be overconfident, leading to
reduced predicted uncertainty (Abdar et al. 2021). The approach of multiplying each sample by
the confusion matrix is complicated by the lack of granularity in the evaluation data. If there are
only 5 evaluation samples for a particular taxa, then the evaluation score is quantized to come
in sizes of 20%. When assessing trees at the scale of millions of examples, this lack of
resolution makes the calculation sensitive to idiosyncratic examples that could lead to erroneous
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allocation of predicted counts. For this reason, forcing the inclusion of species with a low
number of evaluation samples can add confusion to the model without reliable information on
prediction accuracy. For example, while the Acer rubrum evaluation accuracy in Figure 3 is 0%,
we believe it is very unlikely that all A. rubrum predictions in landscape maps are incorrect. We
simply lack the evaluation data (n=6) to assess its true accuracy. Deeper integration between
deep learning neural networks and traditional hierarchical Bayesian models will help clarify the
relationship between the predicted class conditional on the sample probability and the prior
expectation of confusion among species.

The availability of large scale remote sensing has opened the potential for monitoring
and analyzing ecological data at unprecedented scales. However, while ecological research
often requires information about rare species, many remote-sensing based approaches are
forced to ignore those rarer classes due to limitations in data availability and training, evaluating
and model design. We have shown that for a single site it is possible to increase the coverage of
biodiversity in remote sensing models by leveraging additional sources of data, targeting
sampling of rarer classes, using multiple images of each individual, and employing hierarchical
model architectures. Deciding on the level of rarity captured by remote-sensing models that is
necessary for conducting ecological studies remains an important question for researchers
moving forward.

Data Availability
The github repo has been archived on zenodo https://github.com/weecology/DeepTreeAttention
(https://zenodo.org/record/7308745#.Y3KiwOzMKHE) along with hyperspectral crops from the
train and test split used to generate the landscape maps https://zenodo.org/record/7301868.
The RGB model used to generate predicted tree crowns is available through the deepforest
python package: https://deepforest.readthedocs.io/.
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Supplemental Figures

Figure S1. Florida Natural Areas Inventory map for the OSBS site. Obtained from fnai.org.

Table S1 Confusion matrix for the Alive/Dead model to filter out predicted trees before species
classification using the hyperspectral model.

Predicted

Alive Dead

Observed Alive 527 9

Dead 10 89

Table S2. Species results for the six species that occur in Marconi et al. 2021. Sorted by number
of evaluation samples in Marconi et al. 2021.
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Species Evaluation
Samples

Evaluation
Samples -
Marconi et al.
2021

Recall Recall - Marconi
et al. 2021

Quercus laevis 17 31 92.3 77.4

Pinus palustris 81 28 96.3 100

Quercus
geminata

11 8 63.6 62.5

Quercus
hemisphaerica

38 7 75.9 0

Pinus elliottii 15 1 60.8 100

Pinus taeda 11 1 72.7 0
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