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SOCIOECONOMIC DISPARITIES AND BUCCAL DNA-METHYLATION

Abstract

Background: Individuals who are socioeconomically disadvantaged are at increased risk for
aging-related diseases and perform less well on tests of cognitive function. The Weathering
Hypothesis proposes that these disparities in physical and cognitive health arise from an
acceleration of biological processes of aging. Theories of how life adversity is biologically
embedded identify epigenetic alterations, including DNA methylation (DNAm), as a mechanistic
interface between the environment and health. Consistent with the Weathering hypothesis and
theories of biological embedding, recently developed DNAm algorithms have revealed profiles
reflective of more advanced aging and lower cognitive function among socioeconomically-at-
risk groups. These DNAm algorithms were developed using blood-DNA, but social and
behavioral science research commonly collect saliva or cheek-swab DNA. This discrepancy is
a potential barrier to research to elucidate mechanisms through which socioeconomic
disadvantage affects aging and cognition. We therefore tested if social gradients observed in
blood-DNAmM measures could be reproduced using buccal-cell DNA obtained from cheek
swabs.

Results: We analyzed three DNAmM measures of biological aging and one DNAmM measure of
cognitive performance, all of which showed socioeconomic gradients in previous studies: the
PhenoAge and GrimAge DNAm clocks, DunedinPACE, and Epigenetic-g. We first computed
blood-buccal cross-tissue correlations in n=21 adults (GEO111165). Cross-tissue correlations
were low-to-moderate across (r=.25 to r=.48). We next conducted analyses of socioeconomic
gradients using buccal DNAm data from SOEP-G (n=1128, 57% female; age mean=42
yrs, SD=21.56, range 0-72). Associations of socioeconomic status with DNAmM measures of
aging were in the expected direction, but were smaller as compared to reports from blood DNAmM
datasets (r=-.08 to r=-.13).

Conclusions: Our findings are consistent with the hypothesis that socioeconomic disadvantage
is associated with DNAm indicators of worse physical and cognitive health. However, relatively
low cross-tissue correlations and attenuated effect-sizes for socioeconomic gradients in buccal
DNAmM compared with reports from analysis of blood DNAmM suggest that, in order to take full
advantage of buccal-DNA samples, DNAm algorithms customized to buccal DNAm are needed.

Keywords: aging; DNA methylation; biological aging; pace of aging; cognition; biomarker;
lifespan; social determinants of health
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Background

Individuals who are socioeconomically disadvantaged are at increased risk for aging-
related diseases and exhibit lower average levels of cognitive function across the life course,
(Gkiouleka et al., 2018; Lovdén et al., 2020, p. 202; Tucker-Drob, 2019). Studies of humans and
other animals identify several biological pathways through which social factors drive disease,
including dysregulation of immune and metabolic systems in response to chronic stress (Snyder-
Mackler et al., 2020). These pathways overlap substantially with the biology that mediates aging-
related health declines (Lopez-Otin et al., 2013). This overlap is consistent with the Weathering
Hypothesis, which proposes that social adversity accelerates biological processes of aging
(Geronimus et al., 2006).

Biological aging can be conceptualized as the progressive loss of system integrity that
occurs with advancing chronological age (Kirkwood, 2005). The current state-of-the-art for
guantification of biological aging in epidemiological studies of humans is a family of DNA
methylation (DNAmM) measurements. Epigenetic changes, including DNAm, are among the
hallmarks of aging and are theorized to be key transducers of biological embedding of social
adversity (Hertzman & Boyce, 2010; Lopez-Otin et al., 2013). DNAmM measures of biological
aging that are most strongly predictive of disease, disability, and mortality are also consistently
associated with social determinants of health (Oblak et al., 2021; Raffington & Belsky, 2022). In
addition, there is evidence for social patterning of a DNAmM measurement quantifying cognitive
performance (McCartney et al., 2022), which parallels well-documented socioeconomic
disparities in cognitive function across the life course (Lovdén et al.,, 2020). These DNAmM
measures open opportunities to study mechanisms of social disparities in physical and cognitive
health and to guide the development and evaluation of interventions to address them.

A barrier to achieving this potential is that DNAm is specific to types of tissues and cells;
it is a critical mechanism of cellular differentiation and determinant of cellular phenotype
(Bakulski et al., 2016). Most DNAm algorithms used to study social gradients in health were
developed from analysis of DNA derived from blood samples. Therefore, the ideal setting for
their application is blood-derived DNA methylation. However, collection of blood samples is not
feasible in some studies. For these studies, alternative sources of DNA, such as saliva and
buccal tissue (ze., inner cheek) may be easier to obtain. The extent to which algorithms
developed from blood-derived DNA can provide reliable and valid measurements in alternative
tissues remains uncertain.

In two prior projects, we followed up algorithms developed to measure biological aging
and cognitive functioning from blood DNAm in saliva samples collected from a pediatric cohort
(Raffington, Belsky, et al., 2021; Raffington, Tanksley, et al., in press). In those studies, we were
able to replicate several observations made from blood samples. First, the DNAmM measure of
the pace of biological aging (/e., a previous iteration of DunedinPACE) exhibited a parallel
socioeconomic gradient in the pediatric saliva samples as had been observed previously in
blood DNAmM datasets from adults. Second, the DNAmM measure of cognitive functioning


https://doi.org/10.1101/2022.12.07.519438
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.07.519438; this version posted December 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

SOCIOECONOMIC DISPARITIES AND BUCCAL DNA-METHYLATION

Epigenetic-g exhibited parallel association with children’s performance on cognitive tests as had
been observed previously in a blood DNAmM dataset from adults. In contrast, the PhenoAge and
GrimAge DNAmM measures of biological age showed no social gradient in the pediatric saliva
samples, in contrast to results from studies of blood samples (Schmitz et al., 2021).

Saliva is composed of a mix of leukocytes (which are also the source of blood-derived
DNA samples) and epithelial cells. Buccal sample-derived DNA comes predominantly from
epithelial cells. It is unclear whether DNAmM measures computed in buccal DNAm will show
similar evidence of trans-tissue validation. Here, we examined whether the same socioeconomic
gradients in biological aging and DNAm-predicted cognitive performance apparent in blood
DNAmM analyses could be reproduced in analysis of buccal DNAm. The analysis we report is
based on a pre-registration plan filed with OSF (https://osf.io/msjgc). Where our work has
developed beyond this original pre-registration, we note it in the text. We first tested cross-tissue
correlations of DNAmM measures of biological aging (/.e., PhenoAge Accel., GrimAge Accel.,
DunedinPACE) and DNAm-predicted cognitive performance (/.e., Epigenetic-g) in buccal and
blood DNAmM datasets generated from the same individuals using the public dataset GEO111165
(n=21). Next, we examined association of chronological age with buccal DNAmM measures in
n=1128 participants from SOEP-G (57% female; age mean=42 yrs, SD=21.56, range 0-72).
Finally, we tested associations of socioeconomic status with DNAm algorithms computed from
buccal-cell DNAm in the same SOEP-G sample.

Results

(1) Cross-tissue correlations between blood and buccal samples were
low-to-moderate

We evaluated the correspondence between buccal and blood DNAmM measures in an
auxiliary dataset that collected both buccal and blood samples from the same n=21 people
(Braun et al.,, 2019); lllumina EPIC array dataset in Gene Expression Omnibus accession
GSE11116, https://www.ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE111165).

Cross-tissue correlations between blood and buccal samples of the DNAmM measures were
low-to-moderate across measures (/=0.25 to r=0.48). Means of DNAmM measures were higher in
buccal compared to blood samples, with the exception of Epigenetic-g, for which mean
comparisons are not possible because beta-methylation values are standardized prior to
computation (see Table 1).
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Table 1. Blood-buccal cross-tissue correlations of blood-based DNA-methylation
measures (n=21).

Mean differences Cross-tissue
Correlation
Mean  SD 95% ClI p r
PhenoAge Accel. 0.25

blood 725 835 45.03,56.23 <0.001
buccal 57.88 9.56
GrimAge Accel. 0.48
blood 19.04 493 12.02,18.08 <0.001
buccal 34.09 478
DunedinPACE 0.39, 0.50 <0.001 0.31
blood 1.07  0.11
buccal 152 0.06
Epigenetic-g 0.46
blood 0 0.33
buccal 0 0.23
Means, standard deviations (SD), and blood-buccal cross-tissue correlations of DNA-
methylation measures of accelerated biological aging (/.e., PhenoAge Acceleration, GrimAge

Acceleration), pace of aging (/.e., DunedinPACE), and DNAm-predicted cognitive performance
(7.e., Epigenetic-g). Mean comparisons for Epigenetic-g are not possible because beta-
methylation values are standardized prior to computation. Based on n=21 people from Gene
Expression Omnibus accession GSE11116 (chronological age mean = 32.24, SD = 16.05).

(2) Chronological age gradients in biological aging are reproduced in
buccal DNAmM

We examined associations of chronological age with buccal DNAmM algorithms. For
PhenoAge, strong association with chronological age is expected. In SOEP-G, participants’
buccal DNAmM PhenoAge values were highly correlated with their chronological ages (PhenoAge
r=0.89, 95% CI = 0.88, 0.90, p<0.001). GrimAge calculations include information about
participant chronological age and, as a result, show very strong correlations (r=0.99, 95% Cl =
0.99, 0.99, p<0.001). In contrast to PhenoAge and GrimAge, which estimate biological age
values, DunedinPACE estimates the pace of aging. Consistent with prior reports from blood
DNAmM datasets and with biodemography theory, which proposes that the pace of aging
accelerates as we grow older (Belsky et al.,, 2022; Finch & Crimmins, 2016), participants’
DunedinPACE values were moderately correlated with their chronological ages (r=0.24, 95% ClI
=0.18, 0.29, p<0.001). We also observed positive age trends for Epigenetic-g, mirroring known
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patterns of cognitive development; values increased across the first half of the lifespan and then
stabilized in late middle age (r=0.45, 95% CI| = 0.40, 0.49, p<0.001; age in years unstandardized
b =0.008, 95% Cl = 0.006 — 0.011, p<0.001; age squared unstandardized b = -0.001, 95% CI
=-0.001- 0.000, p=0.001). Age patterning of DNAmM measures is shown in in Figure 1.
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Figure 1. Chronological age and buccal DNAm algorithms. Panel (A-
B) plot associations of chronological age with buccal DNAm
algorithms of biological aging, for which strong associations are
expected: (A) PhenoAge and (B) GrimAge. Panel (C) plots
association of chronological age with the pace of aging,
DunedinPACE. Panel (D) plots association of chronological age with
a DNAm algorithm of cognitive performance, Epigenetic-g.

(3) Socioeconomic disadvantage is associated with accelerated biological
aging in Germany

We tested associations of socioeconomic status (SES) with DNAmM measures of biological
aging computed from buccal-cell DNAm in SOEP-G. SES was measured as a composite of
household income and educational levels (highest in household). Consistent with reports from
blood DNAm datasets, participants with higher SES had younger biological ages and slower
pace of aging (rs=-0.0810 -0.13, p's < 0.011, Table 2).

Next, according to our pre-registered analysis plan, we tested whether the association of
SES with DNAm measures of aging differed by chronological age. This interaction was
statistically significant for PhenoAge and GrimAge Acceleration (SES by continuous age
interaction on PhenoAge std b= -0.11, 95% CI = -0.17, -0.05, p<0.001; Grimage std b= -0.07,
95% CIl = -0.13, -0.02, p=0.011). There were no age differences in the SES association with
DunedinPACE (p-value for continuous age interaction = 0.916). To further illustrate the
interaction, we stratified the sample into older and younger participants. Among the older
participants (aged>42 years, n=576), the SES association with PhenoAge Acceleration was r= -
0.14, 95% CI = -0.22, -0.06, p<0.001 and with GrimAge Acceleration was r= -0.18, 95% CI = -
0.26, -0.10, p<0.001. In contrast, among younger participants (aged<42 years, n=482), the SES
association with PhenoAge Acceleration was r= 0.03, 95% CIl = -0.06, 0.12, p= 0.494 and with
GrimAge Acceleration was r=-0.04, 95% Cl = -0.13, 0.05, p=0.352. In sum, SES was associated
with PhenoAge and GrimAge Acceleration only for older participants, whereas low SES was
associated with DunedinPACE across age groups. Figure 2 shows the association of
socioeconomic status with DNAm by age.

Association of socioeconomic status with Epigenetic-gwas in the expected direction, but
was small and not statistically different from zero at the alpha=0.05 level (see Table 4 and Figure
2D). Excluding smokers and accounting for body mass index did not substantially affect
associations with SES (see Figure S1).
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Table 2. Associations of socioeconomic status with buccal
DNA-methylation measures.

r 95% CI P
PhenoAge Accel. -0.08 -0.139, -0.018 0.011
GrimAge Accel -0.13 -0.190, -0.071 <0.001
DunedinPACE -0.10 -0.154, -0.034 0.002
Epigenetic-g 0.06 -0.003, 0.117 0.064

Associations of socioeconomic status (average z-scored household
income and education) with buccal DNA-methylation measures of
accelerated biological aging (/.e., PhenoAge Acceleration, GrimAge
Acceleration), pace of biological aging (/e., DunedinPACE) and
DNAm-predicted cognitive performance (/.e., Epigenetic-g).
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Figure 2. Socioeconomic status and buccal DNAm algorithms. Panel (A-
B) plot associations of socioeconomic status with buccal DNAmM
algorithms of accelerated biological aging: (A) PhenoAge Acceleration
and (B) GrimAge Acceleration. Panel (C) plots association of
socioeconomic status with the pace of aging, DunedinPACE. Panel (D)
plots association of socioeconomic status with a DNAm algorithm of
cognitive performance, Epigenetic-g.

Discussion

We tested if socioeconomic gradients in DNAmM measurements of biological aging and
cognitive performance, which are apparent in blood DNAmM analyses, could be reproduced in
analysis of buccal DNAm. Our findings are consistent with the Weathering Hypothesis that
socioeconomic disadvantage is associated with accelerated biological aging. However, effect-
sizes were approximately 50% lower than those reported in previously published analyses of
blood DNAm datasets. Such studies have reported associations of magnitude of approximately
r=.20, ranging from r=.10 to r=.37 (Raffington & Belsky, 2022), whereas here we report
associations of magnitude of approximately r=.10, ranging from r=.079 to r=.13 Similarly,
associations of socioeconomic status with buccal DNAm-predicted cognitive performance were
attenuated by approximately 50% and not statistically different from zero, in contrast to studies
of blood and saliva DNAm datasets, which have reported associations with socioeconomic
measures of magnitude r=.11 and r=.14 (McCartney et al., 2022; Raffington, Tanksley, et al., in
press, note larger effect sizes for neighborhood-level socioeconomic contexts). Moreover, cross-
tissue correspondence of DNAm indices was low-to-moderate. Collectively, these findings
suggest that in order to take full advantage of buccal DNA samples, it will be important to
develop DNAm indices that are customized to buccal DNAm.

One observation from our buccal DNAm data is that SES was associated with more
PhenoAge Acceleration and GrimAge Acceleration only for older participants, whereas in the
case of DunedinPACE the socioeconomic gradient was evident for both young and old
participants. This pattern of results is consistent with findings from saliva DNAm in children and
adolescents, which showed no association of PhenoAge and GrimAge with household SES, but
did identify an association with DunedinPACE (Raffington, Belsky, et al., 2021). One possible
explanation for this result is that measures of biological age, such as PhenoAge and GrimAge,
which were designed to quantify differences in mortality risk among midlife and older adults,
may be less sensitive to early stages in the biological embedding of social disadvantage.
Replication of this result in other datasets and across tissues is needed.
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Conclusion

Our findings are consistent with the hypothesis that socioeconomic disadvantage is associated
with accelerated biological aging in Germany. However, cross-tissue correspondence of DNAmM
indices was low-to-moderate and effect-sizes for SES associations estimated from buccal DNAmM
were attenuated by roughly 50% compared with reports from blood DNAmM datasets.
Development of DNAmM measures of biological aging and cognitive performance that are
customized to buccal DNAm should be a research priority.

Methods

1. Participants

SOEP-G participants were from the SOEP-IS cohort, which is based on a random sample of
German households and contains a rich array of information on socioeconomic context,
household dynamics, personality, and health (Koellinger et al., 2021). 6,576 people were
originally invited to participate in the 2019 wave of the SOEP-IS with the aim to collect saliva for
genotyping, 2598 of whom provided a valid genetic sample. ~98% of the genotyped SOEP-IS
sample is of high genetic similarity to European reference groups. See Koellinger et al. (2021)
for more information on the genotyped SOEP-IS cohort called SOEP-G.

Residual frozen DNA samples from n=1128 individuals from the n=2598 genotyped
SOEP-G cohort were selected for DNAmM extraction based on the availability of funds (see Table
3 for descriptive statistics). Exclusion and inclusion criteria were: (1) exclusion of 5 samples due
to sex mismatch between self-reported and genetic sex, (2) inclusion of all samples from children
and adolescents (/.e., under or equal to 18 yrs) whose residual DNA samples contained at least
50ng of DNA, (3) inclusion of adults that had (a) at least 250ng of DNA left, (b) had a DNA call
rate of at least 0.975, (c) were not parents of selected children and adolescents so that the
maximum number of different households were included, and (d) extended the age distribution
continuously past 18 years so that all younger adults were included. The ID list was randomized
so that plate effects were not confounded with chronological age. In addition, 24 samples were
randomly selected as technical duplicates. The final sample of n=1128 unrelated participants
(490 male, 638 female) consisted of 872 adults and 256 children and adolescents (age
mean=41.88 yrs, SD=21.56, range 0-72, see supplementary Figure S1 for density plot of age
distribution). 95% of participants were born in Germany.
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Table 3. Descriptive statistics of the analytic sample after DNA-methylation
based exclusions (N= 1058).

Sample N M SD
Age (years) 1058 42.42 21.17
Sex, female 610 58% -
DunedinPACE @ 1058 1.64 0.11
PhenoAge® 1058 99.15 18.81
GrimAge° 1058 74.3 15.9
Epigenetic-g 1058 0 0.21
Household income (Euro) 1044 3318.07 1859.59
Household income / persons in household 1044 1497.82 827.05
(Euro)

Maximum household education (years) 1042 13.34 2.76
Age- and sex-normed body mass index 876 22.55 5.8
PedBE 1058 30.21 10.86
Self-reported smoking, yes 87

@ A value of 1 reflects the average Pace of Aging in the Dunedin Study birth cohort
over the age 26-45 follow-up period. A value of 1.01 therefore reflects a pace of
aging 1% faster than the Dunedin Study norm.

bPhenoAge represents the age in years at which average mortality risk in NHANES
[l matches the mortality risk predicted by the PhenoAge algorithm.

¢ GrimAge represents the age in years at which average mortality risk in the
Framingham Heart Study Offspring cohort matches predicted mortality risk.

Measures

DNA-methylation preprocessing and exclusions.

DNA was extracted from buccal swabs collected using Isohelix IS SK-1S Dri-Capsules
(Koellinger et al 2021). DNA extraction and methylation profiling was conducted by the Human
Genomics Facility (HuGe-F) at the Erasmus Medical Center in Rotterdam, Netherlands. The
Infinium MethylEPIC v1 manifest B5 kit (lllumina, Inc., San Diego, CA) was used to assess
methylation levels at 865,918 CpG sites.

DNAm preprocessing was primarily conducted with lllumina’s GenomeStudio software
and open-source A (version 4.2.0) packages ‘minfi’ (Aryee et al., 2014) and ‘ewastools’ (Heiss &
Just, 2018). We generated 20 control metrics in GenomeStudio as described in the BeadArray
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Controls Reporter Software Guide from lllumina (note similar parameters can be computed using
the ewastools ‘control_metrics()’ function). Samples falling below the lllumina-recommended cut-
offs were flagged and further investigated. Flagged samples were classified as failed if 1. all
types of poor bisulfite conversion and all types of poor bisulfite conversion background; 2. all
types of bisulfite conversion background falling below 0.5; 3. all types of poor hybridization; 4.
all types of poor specificity (excluded n=42).

As a second step, we identified unreliable data points resulting from low fluorescence
intensities by filtering using detection p-values, calculated from comparing fluorescence
intensities to a noise distribution. We removed probes with only background signal in a high
proportion of samples (proportion of samples with detection p-value > 0.01 is > 0.1). We also
removed probes for which a high proportion of samples had low bead numbers (proportion of
samples with bead number < 3 is > 0.1). Further, we removed probes with SNPs at the CG or
single base extension position as well as cross-reactive probes for EPIC arrays (McCartney et
al., 2016; Pidsley et al., 2016).

We used minfi’s ‘preprocessNoob’ (Triche et al., 2013) to correct for background noise
and color dye bias and ‘BMIQ’ to account for probe-type differences (Teschendorff &
Widschwendter, 2012).

Cell composition was estimated using HEpiDISH, which is an iterative hierarchical version
of the EpiDISH R package using robust partial correlations
(https://github.com/sjczheng/EpiDISH). Because epithelial cell types are the dominant cell type
in buccal samples, we applied a threshold of 0.5 for epithelial cell proportions to reliably call a
"buccal sample" and excluded samples that failed this metric (n=28). All samples were from the
same batch. Final analytic sample size after DNAm exclusions was N=1058.

In GSE111165 blood samples, DNAm algorithms were residualized for reference-free cell
composition and plate (Houseman et al., 2016).

DNA-methylation algorithms

Our pre-registered analysis focused on two DNAmM measures developed from blood
DNAm data and which we had previously followed-up in saliva DNAm data (/.e., DunedinPACE
and Epigenetic-g) as well as a buccal-based algorithm of chronological age to be used as a
data quality control measure (/.e., PedBE). For comparative purposes, we report additional
results for two further DNAmM measures developed from blood DNAm, the PhenoAge and
GrimAge clocks (Levine et al., 2018; Lu et al., 2019). We include these measures, which are
among the best-evidenced DNAmM biomarkers of aging, to help contextualize findings for
DunedinPACE and Epigenetic-g. See Table 4 for description of DNA-methylation algorithm
computations.
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Table 4. Description of DNA-methylation algorithm computations.
DNAm algorithm Description
PhenoAge PhenoAge was first modeled from physiological markers and chronological

age (Levine et al., 2018). This first-stage algorithm was then applied to a new
sample in which it was modeled from DNA methylation to derive the final DNA
methylation clock. PhenoAge represents the age in years at which average
mortality risk in NHANES Ill matches the mortality risk predicted by the
PhenoAge algorithm.

PhenoAge was computed using DNAm principal components, which have
been found to increase reliability (Higgins-Chen et al., 2022), using code
available at https://github.com/MorganLevineLab/PC-Clocks. Using 24
technical replicates of samples in SOEP, we estimated the intraclass
correlation coefficient (ICC). PhenoAge showed excellent reliability (ICC=
0.982). PhenoAge Acceleration was computed by residualizing PhenoAge for
chronological age.

GrimAge GrimAge was developed with a set of physiological indicators modeled from

DNAm using machine learning analysis and then these DNA methylation
algorithms along with age, sex, and a DNAm algorithm of smoking history
were applied to model mortality (Lu et al., 2019). GrimAge represents the age
in years at which average mortality risk in the Framingham Heart Study
Offspring cohort matches predicted mortality risk.
GrimAge was computed using DNAm principal components, which have
been found to increase reliability (Higgins-Chen et al., 2022), using code
available at  https://github.com/Morganl evinelLab/PC-Clocks. GrimAge
showed excellent reliability (ICC= 0.999). GrimAge Acceleration was
computed by residualizing GrimAge for chronological age.

DunedinPACE DunedinPACE was developed as a DNA methylation measure of the pace of
aging in the Dunedin Study birth cohort (Belsky et al., 2022). The Dunedin
Study Pace of Aging is a composite phenotype derived from analysis of
longitudinal change in biomarkers of organ-system integrity. Initially
developed from analysis of three waves of biomarker data accumulated over
a 12-year period (Belsky et al., 2015). Pace of Aging has recently been
extended to a fourth measurement occasion spanning 20 years of follow-up
(Elliott et al., 2021). DunedinPACE was developed from this second iteration
of the Pace of Aging.
Briefly, DNAm algorithm development was conducted using a subset of EPIC
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array probes that were also included on lllumina’s earlier 450k array and that
were identified as having relatively higher test-retest reliability (Sugden et al.,
2020). Elastic-net regression machine learning analysis was used to fit Pace
of Aging to DNAm data generated from blood samples collected when
participants were aged 45 years. The elastic net regression produced a 173-
CpG algorithm. Increments of DunedinPACE correspond to “years” of
physiological change occurring per 12-months of chronological time. A value
of 1 reflects the average Pace of Aging in the Dunedin Study birth cohort over
the age 26-45 follow-up period. A value of 1.01 therefore reflects a pace of
aging 1% faster than the Dunedin Study norm. DunedinPACE was be
calculated based on the published algorithm using code available at
https://github.com/danbelsky/DunedinPACE/. 14 of the 173 CpG probes that
are part of DunedinPACE were not present in our dataset. Buccal
DunedinPACE showed good reliability (ICC= 0.74).

Epigenetic-g Epigenetic-g was computed using a blood-based algorithm from an
epigenome-wide association study (EWAS) in BayesR+ of general cognitive
function (g) in 9162 adults (59% females; mean age 49.8 years, SD 13.6,
range 18-93) in the Generation Scotland Study (McCartney et al., 2022).
Briefly, general cognitive function was derived from the first unrotated
principal component of logical memory, verbal fluency and digit symbol tests,
and vocabulary. Cognitive phenotypes were corrected for age, sex, BMI and
an epigenetic smoking score. Epigenetic-g includes all CpG sites in the
EWAS. The weights for each CpG are the mean posterior effect sizes from the
EWAS model of g. Prior to computation of Epigenetic-g in the present study,
methylation values were scaled within each CpG site (rmean =0, SD = 1) and
calculated based on the published algorithm using code available at
https://gitlab.com/danielmccartney/ewas_of cognitive funct.  Epigenetic-g
showed good reliability (ICC= 0.84).

PedBE As a data quality control, we examined associations of chronological age with
the Pediatric-Buccal-Epigenetic (PedBE) clock, which was computed using a
buccal-based algorithm of chronological age in individuals aged 0 to 20 years
old (McEwen et al., 2019). Elastic net penalized regression was used to select
94 CpGs from a training dataset of 1032 subjects. PedBE was calculated
based on the published algorithm using code available at
https://github.com/kobor-lab/Public-Scripts/blob/master/PedBE.Md. All 94
CpG probes were present in our dataset. PedBE showed excellent reliability
(ICC= 0.967). PedBE was strongly associated with chronological age,
indicating good data quality (r =0.91, 95% CI = 0.90, 0.92, p<0.001).
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Socioeconomic status. We deviated from our pre-registered analysis plan by testing
associations with socioeconomic status (average z-scored household income and education)
rather than examining income and education separately, to reduce the number of statistical
comparisons. Monthly household net income in Euros from all sources (e.g. employment,
pensions, unemployment benefits, maternity benefits, higher education grants, military or civil
service pay, compulsory child support, etc.) was reported by the self-defined head of household.
In the 2% of cases with missing income values, information about determinants of household
income and past data were used to impute estimated values (for more information see page 27
https://www.diw.de/documents/publikationen/73/diw_01.c.787445.de/diw_ssp0844.pdf)/.
Household income was divided by the number of persons in the household and sqrt transformed

to correct for skew (this deviated from our preregistration plan; sqgrt-transformation improved
normality of distribution more than log-transformation in shapiro wilks test).

Given the wide age range of participants, we indexed educational attainment as the
highest degree obtained by any individual in the household. Educational attainment was
converted to number of educational years (no degree = 7 years, lower school degree = 9 years,
intermediary school = 10 years, degree for, a professional coll. = 12 years, high school degree
= 13 years, other = 10 years) with additional occupational training added (apprenticeship = +1.5
years, technical schools (including health) = +2 years, civil servants apprenticeship = +1.5
years, higher technical college = +3 years, university degree = +5 years).

Covariates.

Body mass index (BMI). Height (in cm) and weight (in kg) were measured via self-report and
transformed to sex- and age-normed BMI z-scores

Smoking. Participant self-reported current or past smoking across multiple waves. Across
guestions and waves, if a participant ever responded that they smoked currently or in the past,
they were identified as a smoker. If a participant ever responded that they never smoked and
never responded that they did smoke, they were identified as a never-smoker.
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Supplemental Results
Supplemental Figures
(A) Full sample (n=1058) (B) Excluding self-reported smokers (n=971)
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(C) DNAm algorithms residualized for body
mass index (n= 876)
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Supplementary Figure S1. Correlation matrix of of socioeconomic variables with buccal DNA-methylation
(DNAm) algorithms in (A) full sample, (B) excluding self-reported smokers, and (C) residualizing DNAm
algorithms for body mass index (BMI). In all plots DNAmM measures were residualized for chronological
age. BMI was age- and sex-normed.
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