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Abstract  

 

 

Background: Individuals who are socioeconomically disadvantaged are at increased risk for 

aging-related diseases and perform less well on tests of cognitive function. The Weathering 

Hypothesis proposes that these disparities in physical and cognitive health arise from an 

acceleration of biological processes of aging. Theories of how life adversity is biologically 

embedded identify epigenetic alterations, including DNA methylation (DNAm), as a mechanistic 

interface between the environment and health. Consistent with the Weathering hypothesis and 

theories of biological embedding, recently developed DNAm algorithms have revealed profiles 

reflective of more advanced aging and lower cognitive function among socioeconomically-at-

risk groups. These DNAm algorithms were developed using blood-DNA, but social and 

behavioral science research commonly collect saliva or cheek-swab DNA. This discrepancy is 

a potential barrier to research to elucidate mechanisms through which socioeconomic 

disadvantage affects aging and cognition. We therefore tested if social gradients observed in 

blood-DNAm measures could be reproduced using buccal-cell DNA obtained from cheek 

swabs. 

Results: We analyzed three DNAm measures of biological aging and one DNAm measure of 

cognitive performance, all of which showed socioeconomic gradients in previous studies: the 

PhenoAge and GrimAge DNAm clocks, DunedinPACE, and Epigenetic-g. We first computed 

blood-buccal cross-tissue correlations in n=21 adults (GEO111165). Cross-tissue correlations 

were low-to-moderate across (r=.25 to r=.48). We next conducted analyses of socioeconomic 

gradients using buccal DNAm data from SOEP-G (n=1128, 57% female; age mean=42 

yrs, SD=21.56, range 0-72). Associations of socioeconomic status with DNAm measures of 

aging were in the expected direction, but were smaller as compared to reports from blood DNAm 

datasets (r=-.08 to r=-.13). 

Conclusions: Our findings are consistent with the hypothesis that socioeconomic disadvantage 

is associated with DNAm indicators of worse physical and cognitive health. However, relatively 

low cross-tissue correlations and attenuated effect-sizes for socioeconomic gradients in buccal 

DNAm compared with reports from analysis of blood DNAm suggest that, in order to take full 

advantage of buccal-DNA samples, DNAm algorithms customized to buccal DNAm are needed. 

 

Keywords: aging; DNA methylation; biological aging; pace of aging; cognition; biomarker; 

lifespan; social determinants of health 
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Background 

Individuals who are socioeconomically disadvantaged are at increased risk for aging-

related diseases and exhibit lower average levels of cognitive function across the life course, 

(Gkiouleka et al., 2018; Lövdén et al., 2020, p. 202; Tucker-Drob, 2019). Studies of humans and 

other animals identify several biological pathways through which social factors drive disease, 

including dysregulation of immune and metabolic systems in response to chronic stress (Snyder-

Mackler et al., 2020). These pathways overlap substantially with the biology that mediates aging-

related health declines (López-Otín et al., 2013). This overlap is consistent with the Weathering 

Hypothesis, which proposes that social adversity accelerates biological processes of aging 

(Geronimus et al., 2006).  

Biological aging can be conceptualized as the progressive loss of system integrity that 

occurs with advancing chronological age (Kirkwood, 2005). The current state-of-the-art for 

quantification of biological aging in epidemiological studies of humans is a family of DNA 

methylation (DNAm) measurements. Epigenetic changes, including DNAm, are among the 

hallmarks of aging and are theorized to be key transducers of biological embedding of social 

adversity (Hertzman & Boyce, 2010; López-Otín et al., 2013). DNAm measures of biological 

aging that are most strongly predictive of disease, disability, and mortality are also consistently 

associated with social determinants of health (Oblak et al., 2021; Raffington & Belsky, 2022). In 

addition, there is evidence for social patterning of a DNAm measurement quantifying cognitive 

performance (McCartney et al., 2022), which parallels well-documented socioeconomic 

disparities in cognitive function across the life course (Lövdén et al., 2020). These DNAm 

measures open opportunities to study mechanisms of social disparities in physical and cognitive 

health and to guide the development and evaluation of interventions to address them.  

A barrier to achieving this potential is that DNAm is specific to types of tissues and cells; 

it is a critical mechanism of cellular differentiation and determinant of cellular phenotype 

(Bakulski et al., 2016). Most DNAm algorithms used to study social gradients in health were 

developed from analysis of DNA derived from blood samples. Therefore, the ideal setting for 

their application is blood-derived DNA methylation. However, collection of blood samples is not 

feasible in some studies. For these studies, alternative sources of DNA, such as saliva and 

buccal tissue (i.e., inner cheek) may be easier to obtain. The extent to which algorithms 

developed from blood-derived DNA can provide reliable and valid measurements in alternative 

tissues remains uncertain.  

In two prior projects, we followed up algorithms developed to measure biological aging 

and cognitive functioning from blood DNAm in saliva samples collected from a pediatric cohort 

(Raffington, Belsky, et al., 2021; Raffington, Tanksley, et al., in press). In those studies, we were 

able to replicate several observations made from blood samples. First, the DNAm measure of 

the pace of biological aging (i.e., a previous iteration of DunedinPACE) exhibited a parallel 

socioeconomic gradient in the pediatric saliva samples as had been observed previously in 

blood DNAm datasets from adults. Second, the DNAm measure of cognitive functioning 
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Epigenetic-g exhibited parallel association with children’s performance on cognitive tests as had 

been observed previously in a blood DNAm dataset from adults. In contrast, the PhenoAge and 

GrimAge DNAm measures of biological age showed no social gradient in the pediatric saliva 

samples, in contrast to results from studies of blood samples (Schmitz et al., 2021).  

Saliva is composed of a mix of leukocytes (which are also the source of blood-derived 

DNA samples) and epithelial cells. Buccal sample-derived DNA comes predominantly from 

epithelial cells. It is unclear whether DNAm measures computed in buccal DNAm will show 

similar evidence of trans-tissue validation. Here, we examined whether the same socioeconomic 

gradients in biological aging and DNAm-predicted cognitive performance apparent in blood 

DNAm analyses could be reproduced in analysis of buccal DNAm. The analysis we report is 

based on a pre-registration plan filed with OSF (https://osf.io/msjgc). Where our work has 

developed beyond this original pre-registration, we note it in the text. We first tested cross-tissue 

correlations of DNAm measures of biological aging (i.e., PhenoAge Accel., GrimAge Accel., 

DunedinPACE) and DNAm-predicted cognitive performance (i.e., Epigenetic-g) in buccal and 

blood DNAm datasets generated from the same individuals using the public dataset GEO111165 

(n=21).  Next, we examined association of chronological age with buccal DNAm measures in  

n=1128 participants from SOEP-G (57% female; age mean=42 yrs, SD=21.56, range 0-72). 

Finally, we tested associations of socioeconomic status with DNAm algorithms computed from 

buccal-cell DNAm in the same SOEP-G sample.  

 

Results  

 

(1) Cross-tissue correlations between blood and buccal samples were 

low-to-moderate 

 

We evaluated the correspondence between buccal and blood DNAm measures in an 

auxiliary dataset that collected both buccal and blood samples from the same n=21 people 

(Braun et al., 2019); Illumina EPIC array dataset in Gene Expression Omnibus accession 

GSE11116, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111165). 

Cross-tissue correlations between blood and buccal samples of the DNAm measures were 

low-to-moderate across measures (r=0.25 to r=0.48). Means of DNAm measures were higher in 

buccal compared to blood samples, with the exception of Epigenetic-g, for which mean 

comparisons are not possible because beta-methylation values are standardized prior to 

computation (see Table 1). 
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Table 1. Blood-buccal cross-tissue correlations of blood-based DNA-methylation 

measures (n=21).  

  Mean differences Cross-tissue 

Correlation 

 

  Mean  SD 95% CI p r  

PhenoAge Accel.      0.25  

 blood 7.25 8.35 45.03, 56.23 <0.001   

 buccal 57.88 9.56     

GrimAge Accel.      0.48  

 blood 19.04 4.93 12.02, 18.08 <0.001   

 buccal 34.09 4.78     

DunedinPACE    0.39, 0.50 <0.001 0.31  

 blood 1.07 0.11     

 buccal 1.52 0.06     

Epigenetic-g    _  _ 0.46  

 blood 0 0.33     

 buccal 0 0.23     

Means, standard deviations (SD), and blood-buccal cross-tissue correlations of DNA-

methylation measures of accelerated biological aging (i.e., PhenoAge Acceleration, GrimAge 

Acceleration), pace of aging (i.e., DunedinPACE), and DNAm-predicted cognitive performance 

(i.e., Epigenetic-g). Mean comparisons for Epigenetic-g are not possible because beta-

methylation values are standardized prior to computation. Based on n=21 people from Gene 

Expression Omnibus accession GSE11116 (chronological age mean = 32.24, SD = 16.05). 

 

(2) Chronological age gradients in biological aging are reproduced in 

buccal DNAm  

 

We examined associations of chronological age with buccal DNAm algorithms. For 

PhenoAge, strong association with chronological age is expected. In SOEP-G, participants’ 

buccal DNAm PhenoAge values were highly correlated with their chronological ages (PhenoAge 

r=0.89, 95% CI = 0.88, 0.90, p<0.001). GrimAge calculations include information about 

participant chronological age and, as a result, show very strong correlations (r=0.99, 95% CI = 

0.99, 0.99, p<0.001). In contrast to PhenoAge and GrimAge, which estimate biological age 

values, DunedinPACE estimates the pace of aging. Consistent with prior reports from blood 

DNAm datasets and with biodemography theory, which proposes that the pace of aging 

accelerates as we grow older (Belsky et al., 2022; Finch & Crimmins, 2016), participants’ 

DunedinPACE values were moderately correlated with their chronological ages (r =0.24, 95% CI 

= 0.18, 0.29, p<0.001). We also observed positive age trends for Epigenetic-g, mirroring known 
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patterns of cognitive development; values increased across the first half of the lifespan and then 

stabilized in late middle age (r =0.45, 95% CI = 0.40, 0.49, p<0.001; age in years unstandardized 

b = 0.008, 95% CI = 0.006 – 0.011, p<0.001; age squared unstandardized b = -0.001, 95% CI 

= -0.001- 0.000, p=0.001). Age patterning of DNAm measures is shown in in Figure 1. 

 

 

DNAm Algorithms of Biological Age 

 

(A) PhenoAge (B) GrimAge 

  

 

DNAm Algorithm of  

Pace of Aging 

DNAm Algorithm of  

Cognitive Performance 

(C) DunedinPACE (D) Epigenetic-g 
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Figure 1. Chronological age and buccal DNAm algorithms. Panel (A-

B) plot associations of chronological age with buccal DNAm 

algorithms of biological aging, for which strong associations are 

expected: (A) PhenoAge and (B) GrimAge. Panel (C) plots 

association of chronological age with the pace of aging, 

DunedinPACE. Panel (D) plots association of  chronological age with 

a DNAm algorithm of cognitive performance, Epigenetic-g. 

 

 

(3) Socioeconomic disadvantage is associated with accelerated biological 

aging in Germany 

 

We tested associations of socioeconomic status (SES) with DNAm measures of biological 

aging computed from buccal-cell DNAm in SOEP-G. SES was measured as a composite of 

household income and educational levels (highest in household). Consistent with reports from 

blood DNAm datasets, participants with higher SES had younger biological ages and slower 

pace of aging (r’s = -0.08 to -0.13, p’s < 0.011, Table 2).  

Next, according to our pre-registered analysis plan, we tested whether the association of 

SES with DNAm measures of aging differed by chronological age. This interaction was 

statistically significant for PhenoAge and GrimAge Acceleration (SES by continuous age 

interaction on PhenoAge std b= -0.11, 95% CI = -0.17, -0.05, p<0.001; Grimage std b= -0.07, 

95% CI = -0.13, -0.02, p=0.011). There were no age differences in the SES association with 

DunedinPACE (p-value for continuous age interaction = 0.916). To further illustrate the 

interaction, we stratified the sample into older and younger participants. Among the older 

participants (aged>42 years, n=576), the SES association with PhenoAge Acceleration was r= -

0.14, 95% CI = -0.22, -0.06, p<0.001 and with GrimAge Acceleration was r= -0.18, 95% CI = -

0.26, -0.10, p<0.001. In contrast, among younger participants (aged<42 years, n=482), the SES 

association with PhenoAge Acceleration was r= 0.03, 95% CI = -0.06, 0.12, p= 0.494 and with 

GrimAge Acceleration was r= -0.04, 95% CI = -0.13, 0.05, p=0.352. In sum, SES was associated 

with PhenoAge and GrimAge Acceleration only for older participants, whereas low SES was 

associated with DunedinPACE across age groups. Figure 2 shows the association of 

socioeconomic status with DNAm by age. 

Association of socioeconomic status with Epigenetic-g was in the expected direction, but 

was small and not statistically different from zero at the alpha=0.05 level (see Table 4 and Figure 

2D). Excluding smokers and accounting for body mass index did not substantially affect 

associations with SES (see Figure S1).  
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Table 2. Associations of socioeconomic status with buccal 

DNA-methylation measures. 

    

 r 95% CI P 

PhenoAge Accel. -0.08 -0.139, -0.018 0.011 

GrimAge Accel -0.13 -0.190, -0.071 <0.001 

DunedinPACE -0.10 -0.154, -0.034 0.002 

Epigenetic-g 0.06 -0.003, 0.117 0.064 

Associations of socioeconomic status (average z-scored household 

income and education) with buccal DNA-methylation measures of 

accelerated biological aging (i.e., PhenoAge Acceleration, GrimAge 

Acceleration), pace of biological aging (i.e., DunedinPACE) and 

DNAm-predicted cognitive performance (i.e., Epigenetic-g).  
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DNAm Algorithms of Biological Age Acceleration 

 

(A) PhenoAge Acceleration (B) GrimAge Acceleration 

  

 

DNAm Algorithm of Pace of 

Aging 

DNAm Algorithm of 

Cognitive Performance 

  

(C) DunedinPACE (D) Epigenetic-g 
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Figure 2. Socioeconomic status and buccal DNAm algorithms. Panel (A-

B) plot associations of socioeconomic status with buccal DNAm 

algorithms of accelerated biological aging: (A) PhenoAge Acceleration 

and (B) GrimAge Acceleration. Panel (C) plots association of 

socioeconomic status with the pace of aging, DunedinPACE. Panel (D) 

plots association of  socioeconomic status with a DNAm algorithm of 

cognitive performance, Epigenetic-g. 
 

 

Discussion  

We tested if socioeconomic gradients in DNAm measurements of biological aging and 

cognitive performance, which are apparent in blood DNAm analyses, could be reproduced in 

analysis of buccal DNAm. Our findings are consistent with the Weathering Hypothesis that 

socioeconomic disadvantage is associated with accelerated biological aging. However, effect-

sizes were approximately 50% lower than those reported in previously published analyses of 

blood DNAm datasets. Such studies have reported associations of magnitude of approximately 

r=.20, ranging from r=.10 to r=.37 (Raffington & Belsky, 2022), whereas here we report 

associations of magnitude of approximately r=.10, ranging from r=.079 to r=.13 Similarly, 

associations of socioeconomic status with buccal DNAm-predicted cognitive performance were 

attenuated by approximately 50% and not statistically different from zero, in contrast to studies 

of blood and saliva DNAm datasets, which have reported associations with socioeconomic 

measures of magnitude r=.11 and r=.14 (McCartney et al., 2022; Raffington, Tanksley, et al., in 

press, note larger effect sizes for neighborhood-level socioeconomic contexts). Moreover, cross-

tissue correspondence of DNAm indices was low-to-moderate. Collectively, these findings 

suggest that in order to take full advantage of buccal DNA samples, it will be important to 

develop DNAm indices that are customized to buccal DNAm.  

One observation from our buccal DNAm data is that SES was associated with more 

PhenoAge Acceleration and GrimAge Acceleration only for older participants, whereas in the 

case of DunedinPACE the socioeconomic gradient was evident for both young and old 

participants. This pattern of results is consistent with findings from saliva DNAm in children and 

adolescents, which showed no association of PhenoAge and GrimAge with household SES, but 

did identify an association with DunedinPACE (Raffington, Belsky, et al., 2021). One possible 

explanation for this result is that measures of biological age, such as PhenoAge and GrimAge, 

which were designed to quantify differences in mortality risk among midlife and older adults, 

may be less sensitive to early stages in the biological embedding of social disadvantage. 

Replication of this result in other datasets and across tissues is needed.    
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Conclusion 

Our findings are consistent with the hypothesis that socioeconomic disadvantage is associated 

with accelerated biological aging in Germany. However, cross-tissue correspondence of DNAm 

indices was low-to-moderate and effect-sizes for SES associations estimated from buccal DNAm 

were attenuated by roughly 50% compared with reports from blood DNAm datasets. 

Development of DNAm measures of biological aging and cognitive performance that are 

customized to buccal DNAm should be a research priority.  

 

Methods 

 

1. Participants 

SOEP-G participants were from the SOEP-IS cohort, which is based on a random sample of 

German households and contains a rich array of information on socioeconomic context, 

household dynamics, personality, and health (Koellinger et al., 2021). 6,576 people were 

originally invited to participate in the 2019 wave of the SOEP-IS with the aim to collect saliva for 

genotyping, 2598 of whom provided a valid genetic sample. ~98% of the genotyped SOEP-IS 

sample is of high genetic similarity to European reference groups. See Koellinger et al. (2021) 

for more information on the genotyped SOEP-IS cohort called SOEP-G.  

Residual frozen DNA samples from n=1128 individuals from the n=2598 genotyped 

SOEP-G cohort were selected for DNAm extraction based on the availability of funds (see Table 

3 for descriptive statistics). Exclusion and inclusion criteria were: (1) exclusion of 5 samples due 

to sex mismatch between self-reported and genetic sex, (2) inclusion of all samples from children 

and adolescents (i.e., under or equal to 18 yrs) whose residual DNA samples contained at least 

50ng of DNA, (3) inclusion of adults that had (a) at least 250ng of DNA left, (b) had a DNA call 

rate of at least 0.975, (c) were not parents of selected children and adolescents so that the 

maximum number of different households were included, and (d) extended the age distribution 

continuously past 18 years so that all younger adults were included. The ID list was randomized 

so that plate effects were not confounded with chronological age. In addition, 24 samples were 

randomly selected as technical duplicates. The final sample of n=1128 unrelated participants 

(490 male, 638 female) consisted of 872 adults and 256 children and adolescents (age 

mean=41.88 yrs, SD=21.56, range 0-72, see supplementary Figure S1 for density plot of age 

distribution). 95% of participants were born in Germany. 
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Table 3. Descriptive statistics of the analytic sample after DNA-methylation 

based exclusions (N= 1058). 

Sample N M SD 

Age (years) 1058     42.42 21.17   

Sex, female 610  58%   – 

DunedinPACE a 1058     1.64     0.11 

PhenoAge b 1058     99.15 18.81 

GrimAge c 1058     74.3 15.9 

Epigenetic-g 1058    0     0.21 

Household income (Euro) 1044    3318.07   1859.59 

Household income / persons in household 

(Euro) 

1044   1497.82   827.05   

Maximum household education (years) 1042 13.34       2.76 

Age- and sex-normed body mass index 876     22.55   5.8 

PedBE 1058   30.21 10.86 

Self-reported smoking, yes 87    

a A value of 1 reflects the average Pace of Aging in the Dunedin Study birth cohort 

over the age 26-45 follow-up period. A value of 1.01 therefore reflects a pace of 

aging 1% faster than the Dunedin Study norm.  

b PhenoAge represents the age in years at which average mortality risk in NHANES 

III matches the mortality risk predicted by the PhenoAge algorithm. 

c GrimAge represents the age in years at which average mortality risk in the 

Framingham Heart Study Offspring cohort matches predicted mortality risk. 

 

Measures 

 

DNA-methylation preprocessing and exclusions. 

DNA was extracted from buccal swabs collected using Isohelix IS SK-1S Dri-Capsules 

(Koellinger et al 2021). DNA extraction and methylation profiling was conducted by the Human 

Genomics Facility (HuGe-F) at the Erasmus Medical Center in Rotterdam, Netherlands. The 

Infinium MethylEPIC v1 manifest B5 kit (Illumina, Inc., San Diego, CA) was used to assess 

methylation levels at 865,918 CpG sites.  

DNAm preprocessing was primarily conducted with Illumina’s GenomeStudio software 

and open-source R (version 4.2.0) packages ‘minfi’ (Aryee et al., 2014) and ‘ewastools’ (Heiss & 

Just, 2018). We generated 20 control metrics in GenomeStudio as described in the BeadArray 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.07.519438doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.07.519438
http://creativecommons.org/licenses/by-nc/4.0/


 
SOCIOECONOMIC DISPARITIES AND BUCCAL DNA-METHYLATION  

 

 13 

Controls Reporter Software Guide from Illumina (note similar parameters can be computed using 

the ewastools ‘control_metrics()’ function). Samples falling below the Illumina-recommended cut-

offs were flagged and further investigated. Flagged samples were classified as failed if 1. all 

types of poor bisulfite conversion and all types of poor bisulfite conversion background; 2. all 

types of bisulfite conversion background falling below 0.5; 3. all types of poor hybridization; 4. 

all types of poor specificity (excluded n=42).  

As a second step, we identified unreliable data points resulting from low fluorescence 

intensities by filtering using detection p-values, calculated from comparing fluorescence 

intensities to a noise distribution. We removed probes with only background signal in a high 

proportion of samples (proportion of samples with detection p-value > 0.01 is > 0.1). We also 

removed probes for which a high proportion of samples had low bead numbers (proportion of 

samples with bead number < 3 is > 0.1). Further, we removed probes with SNPs at the CG or 

single base extension position as well as cross-reactive probes for EPIC arrays (McCartney et 

al., 2016; Pidsley et al., 2016). 

We used  minfi’s ‘preprocessNoob’ (Triche et al., 2013) to correct for background noise 

and color dye bias and ‘BMIQ’ to account for probe-type differences (Teschendorff & 

Widschwendter, 2012). 

Cell composition was estimated using HEpiDISH, which is an iterative hierarchical version 

of the EpiDISH R package using robust partial correlations 

(https://github.com/sjczheng/EpiDISH). Because epithelial cell types are the dominant cell type 

in buccal samples, we applied a threshold of 0.5 for epithelial cell proportions to reliably call a 

"buccal sample" and excluded samples that failed this metric (n=28). All samples were from the 

same batch. Final analytic sample size after DNAm exclusions was N=1058. 

In GSE111165 blood samples, DNAm algorithms were residualized for reference-free cell 

composition and plate (Houseman et al., 2016). 

 

DNA-methylation algorithms  

Our pre-registered analysis focused on two DNAm measures developed from blood 

DNAm data and which we had previously followed-up in saliva DNAm data (i.e., DunedinPACE 

and Epigenetic-g) as well as a buccal-based algorithm of chronological age to be used as a 

data quality control measure (i.e., PedBE). For comparative purposes, we report additional 

results for two further DNAm measures developed from blood DNAm, the PhenoAge and 

GrimAge clocks (Levine et al., 2018; Lu et al., 2019). We include these measures, which are 

among the best-evidenced DNAm biomarkers of aging, to help contextualize findings for 

DunedinPACE and Epigenetic-g. See Table 4 for description of DNA-methylation algorithm 

computations. 
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Table 4. Description of DNA-methylation algorithm computations. 

DNAm algorithm  Description 

PhenoAge PhenoAge was first modeled from physiological markers and chronological 

age (Levine et al., 2018). This first-stage algorithm was then applied to a new 

sample in which it was modeled from DNA methylation to derive the final DNA 

methylation clock. PhenoAge represents the age in years at which average 

mortality risk in NHANES III matches the mortality risk predicted by the 

PhenoAge algorithm. 

PhenoAge was computed using DNAm principal components, which have 

been found to increase reliability (Higgins-Chen et al., 2022), using  code 

available at   https://github.com/MorganLevineLab/PC-Clocks. Using 24 

technical replicates of samples in SOEP, we estimated the intraclass 

correlation coefficient (ICC). PhenoAge showed excellent reliability (ICC= 

0.982). PhenoAge Acceleration was computed by residualizing PhenoAge for 

chronological age. 

GrimAge GrimAge was developed with a set of physiological indicators modeled from 

DNAm using machine learning analysis and then these DNA methylation 

algorithms along with age, sex, and a DNAm algorithm of smoking history 

were applied to model mortality (Lu et al., 2019). GrimAge represents the age 

in years at which average mortality risk in the Framingham Heart Study 

Offspring cohort matches predicted mortality risk. 

GrimAge was computed using DNAm principal components, which have 

been found to increase reliability (Higgins-Chen et al., 2022), using code 

available at  https://github.com/MorganLevineLab/PC-Clocks. GrimAge 

showed excellent reliability (ICC= 0.999). GrimAge Acceleration was 

computed by residualizing GrimAge for chronological age. 

 

 

DunedinPACE DunedinPACE was developed as a DNA methylation measure of the pace of 

aging in the Dunedin Study birth cohort (Belsky et al., 2022). The Dunedin 

Study Pace of Aging is a composite phenotype derived from analysis of 

longitudinal change in biomarkers of organ-system integrity. Initially 

developed from analysis of three waves of biomarker data accumulated over 

a 12-year period (Belsky et al., 2015). Pace of Aging has recently been 

extended to a fourth measurement occasion spanning 20 years of follow-up 

(Elliott et al., 2021). DunedinPACE was developed from this second iteration 

of the Pace of Aging.  

Briefly, DNAm algorithm development was conducted using a subset of EPIC 
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array probes that were also included on Illumina’s earlier 450k array and that 

were identified as having relatively higher test-retest reliability (Sugden et al., 

2020). Elastic-net regression machine learning analysis was used to fit Pace 

of Aging to DNAm data generated from blood samples collected when 

participants were aged 45 years. The elastic net regression produced a 173-

CpG algorithm. Increments of DunedinPACE correspond to “years” of 

physiological change occurring per 12-months of chronological time. A value 

of 1 reflects the average Pace of Aging in the Dunedin Study birth cohort over 

the age 26-45 follow-up period. A value of 1.01 therefore reflects a pace of 

aging 1% faster than the Dunedin Study norm. DunedinPACE was be 

calculated based on the published algorithm using code available at 

https://github.com/danbelsky/DunedinPACE/. 14 of the 173 CpG probes that 

are part of DunedinPACE were not present in our dataset. Buccal 

DunedinPACE showed good reliability (ICC= 0.74). 

Epigenetic-g Epigenetic-g was computed using a blood-based algorithm from an 

epigenome-wide association study (EWAS) in BayesR+ of general cognitive 

function (g) in 9162 adults (59% females; mean age 49.8 years, SD 13.6, 

range 18–93) in the Generation Scotland Study (McCartney et al., 2022). 

Briefly, general cognitive function was derived from the first unrotated 

principal component of logical memory, verbal fluency and digit symbol tests, 

and vocabulary. Cognitive phenotypes were corrected for age, sex, BMI and 

an epigenetic smoking score. Epigenetic-g includes all CpG sites in the 

EWAS. The weights for each CpG are the mean posterior effect sizes from the 

EWAS model of g. Prior to computation of Epigenetic-g in the present study, 

methylation values were scaled within each CpG site (mean = 0, SD = 1) and 

calculated based on the published algorithm using code available at 

https://gitlab.com/danielmccartney/ewas_of_cognitive_funct. Epigenetic-g 

showed good reliability (ICC= 0.84).  

PedBE   As a data quality control, we examined associations of chronological age with 

the Pediatric-Buccal-Epigenetic (PedBE) clock, which was computed using a 

buccal-based algorithm of chronological age in individuals aged 0 to 20 years 

old (McEwen et al., 2019). Elastic net penalized regression was used to select 

94 CpGs from a training dataset of 1032 subjects. PedBE was calculated 

based on the published algorithm using code available at 

https://github.com/kobor-lab/Public-Scripts/blob/master/PedBE.Md. All 94 

CpG probes were present in our dataset. PedBE showed excellent reliability 

(ICC= 0.967). PedBE was strongly associated with chronological age, 

indicating good data quality (r =0.91, 95% CI = 0.90, 0.92, p<0.001). 
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Socioeconomic status. We deviated from our pre-registered analysis plan by testing 

associations with socioeconomic status (average z-scored household income and education) 

rather than examining income and education separately, to reduce the number of statistical 

comparisons. Monthly household net income in Euros from all sources (e.g. employment, 

pensions, unemployment benefits, maternity benefits, higher education grants, military or civil 

service pay, compulsory child support, etc.) was reported by the self-defined head of household. 

In the 2% of cases with missing income values, information about determinants of household 

income and past data were used to impute estimated values (for more information see page 27 

https://www.diw.de/documents/publikationen/73/diw_01.c.787445.de/diw_ssp0844.pdf)/. 

Household income was divided by the number of persons in the household and sqrt transformed 

to correct for skew (this deviated from our preregistration plan; sqrt-transformation improved 

normality of distribution more than log-transformation in shapiro wilks test). 

Given the wide age range of participants, we indexed educational attainment as the 

highest degree obtained by any individual in the household. Educational attainment was 

converted to number of educational years (no degree = 7 years, lower school degree = 9 years, 

intermediary school = 10 years, degree for, a professional coll. = 12 years, high school degree 

= 13 years, other = 10 years) with additional occupational training added (apprenticeship = +1.5 

years, technical schools (including health) = +2 years, civil servants apprenticeship = +1.5 

years, higher technical college = +3 years, university degree = +5 years).  

 

Covariates.  

Body mass index (BMI). Height (in cm) and weight (in kg) were measured via self-report and 

transformed to sex- and age-normed BMI z-scores  

 

Smoking. Participant self-reported current or past smoking across multiple waves. Across 

questions and waves, if a participant ever responded that they smoked currently or in the past, 

they were identified as a smoker. If a participant ever responded that they never smoked and 

never responded that they did smoke, they were identified as a never-smoker.  
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Supplemental Results 

Supplemental Figures 

(A) Full sample (n=1058) (B) Excluding self-reported smokers (n=971) 

  

(C) DNAm algorithms residualized for body 

mass index (n= 876) 

 

 

Supplementary Figure S1. Correlation matrix of of socioeconomic variables with buccal DNA-methylation 

(DNAm) algorithms in (A) full sample, (B) excluding self-reported smokers, and (C) residualizing DNAm 

algorithms for body mass index (BMI). In all plots DNAm measures were residualized for chronological 

age. BMI was age- and sex-normed.  
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