

The establishment of locally adaptive inversions in structured populations

Carl Mackintosh^{1,2}, Michael F Scott³, Max Reuter¹, and Andrew

Pomiankowski^{1,2,*}

¹Department of Genetics, Evolution, and Environment, University College
London, Gower Street, London, WC1E 6BT

²CoMPLEX, University College London, Gower Street, London, WC1E 6BT

³School of Biological Sciences, University of East Anglia, Norwich Research Park,
Norwich, NR4 7TJ

*Author for correspondence: Andrew Pomiankowski (ucbhpom at ucl.ac.uk)

Abstract

Inversions have been proposed to facilitate local adaptation, by linking together locally coadapted

2 alleles at different loci. Classic prior work addressing this question theoretically has considered the

3 spread of inversions in “continent-island” models in which there is a unidirectional flow of mal-

4 adapted migrants into the island population. In this setting, inversions are most likely to establish

5 when selection is weak, because stronger local selection more effectively purges maladaptive al-

6 leles, thus lessening the advantage of inversions. Here, we show this finding only holds under

7 limited conditions. We study the establishment of inversions in a “two-deme” model, which ex-

8 plicitly considers the dynamics of allele frequencies in both populations linked by bidirectional

9 migration. For symmetric selection and migration, we find that stronger local selection increases

10 the flow of maladaptive alleles and favours inversions, the opposite of the pattern seen in the

11 asymmetric continent-island model. Furthermore, we show that the strength and symmetry of

12 selection also change the likelihood that an inversion captures an adaptive haplotype in the first

13 place. Considering the combined process of invasion and capture shows that inversions are most

14 likely to be found when locally adaptive loci experience strong selection. In addition, inversions

15 that establish in one deme also protect adaptive allele combinations in the other, leading to dif-

16 ferentiation between demes. Stronger selection in either deme once again makes differentiation

17 between populations more likely. In contrast, differentiation is less likely when migration rates

18 are high because adaptive haplotypes become less common. Overall, this analysis of evolutionary

19 dynamics across a structured population shows that established inversions are most likely to have

20 captured strongly selected local adaptation alleles.

Introduction

22 Chromosomal inversions are a form of structural variant that suppress recombination between

23 loci. Inversions can result in reduced fitness due to the disruption of genes around their break-

24 points (Kirkpatrick 2010), or from the capture and accumulation of deleterious alleles due to their

lower effective recombination rate (Wasserman 1968; Berdan et al. 2021). Furthermore, inversion
26 heterozygotes may experience reduced fecundity as a result of improper meiosis that results in
aneuploid gametes (White 1978). Despite these negative fitness effects, the ubiquity of inversions
28 has led to several putative explanations for their continued persistence (see reviews Kirkpatrick
2010; Wellenreuther and Bernatchez 2018; Faria, Johannesson, et al. 2019; Huang and Rieseberg
30 2020; Villoutreix et al. 2021). In particular, inversions could facilitate local adaptation under gene
flow by increasing linkage between coadapted alleles and reducing effective migration of mal-
32 adapted haplotypes (Kirkpatrick and Barton 2006).

34 Empirical evidence for this hypothesis has since been documented across a wide array of taxa
(e.g. Lowry and Willis 2010; Cheng et al. 2012; Ayala, Guerrero, and Kirkpatrick 2013; Lee et al.
36 2017; Christmas et al. 2019; Faria, Chaube, et al. 2019; Huang, Andrew, et al. 2020; Koch et al. 2021;
Hager et al. 2022; Harringmeyer and Hoekstra 2022), and a body of related theoretical work has
also developed from the original model, investigating the roles of geography, chromosome type,
38 and inversion length on the fate of adaptive inversions (Feder, Gejji, et al. 2011; Charlesworth and
Barton 2018; Connallon, Orito, et al. 2018; Connallon and Orito 2021; Proulx and Teotónio 2022).
40 For simplicity, this work often considers a “continent-island” model, in which inversions are intro-
duced into an “island” population which receives maladapted migrants from a larger “continent”
42 population. In this model, the selective advantage of an adaptive inversion is proportional to the
rate of gene flow (Kirkpatrick and Barton 2006), and inversely proportional to the strength of se-
44 lection on the island (Bürger and Akerman 2011; Charlesworth and Barton 2018). These results
rely on the homogeneous maladaptation of migrant alleles which follows from the extreme migra-
46 tion asymmetry assumed between the continent and island populations (Kirkpatrick and Barton
2006). This scenario is unlikely to apply to many empirical systems, where local adaptation oc-
48 curs in a structured population with greater symmetry and individuals migrate between similarly
sized populations at rates that are similar to and from each population (e.g. Feder, Gejji, et al.
50 2011, Proulx and Teotónio 2022). With two-way dispersal, selection will interact with migration
to determine the overall rate of maladaptive gene flow. However, there has been no thorough
52 analytical dissection of the roles that migration and selection play individually in such a model.

In addition, it is important to consider not only whether an inversion spreads but also how the frequency of adaptive haplotypes affects their probability of being captured by an inversion. This has been briefly discussed before (Kirkpatrick and Barton 2006), and in relative terms when comparing X-linked and autosomal inversions (Connallon, Olito, et al. 2018). But so far models have sidestepped the problem by assuming that either an inversion capturing the coadapted haplotype simply existed or that such an inversion arose during a period of allopatry (Feder, Gejji, et al. 2011). Explicitly modelling the origin of the inversion is important because parameters favourable for the establishment of an adaptive inversion are not necessarily those where adaptive inversions are likely to arise. Assuming an inversion captures a random genotype, the probability of capturing a particular adaptive combination is proportional to its frequency. For example, adaptive inversions are expected to be favoured most when there are high rates of migrant gene flow, so there are fewer fit genotypes to be captured.

Here, we model the fate of locally adaptive chromosomal inversions in a two-locus, two-allele, two-deme model with migration and selection. We consider the case of symmetrical deme sizes and migration, as well as asymmetrical scenarios with the continent-island model as the extreme case. To understand the dynamics of inversions, we determine the probability of an adaptive inversion arising and its subsequent selective advantage in a population in which the locally adaptive alleles have reached their equilibrium frequencies and linkage under migration and selection. By considering the processes of inversion origin and spread in both demes, we determine population structures which favour the evolution of inversions that allow local adaptation under environmentally variable selection.

Methods

We consider a population consisting of two demes linked by bidirectional migration with selection for local adaptation. We first derive analytical expressions for equilibrium allele frequencies at the local adaptation loci and the linkage disequilibrium (LD) between them. This will allow us to assess the frequency of each haplotype and hence the invasion probability of an inversion

capturing a locally adapted combination of alleles. We then determine the probability of such an
80 inversion arising and establishing itself in the population.

Model

82 We model an infinite population of two demes, consisting of haploid, hermaphroditic individuals
with discrete non-overlapping generations. The model is equally applicable to the case where
84 there are two sexes at even sex ratio whose genetic determination is unlinked to the adaptive loci
under consideration. Selection acts on two loci, A and B , that have two alleles each, A_i and B_i ,
86 where $i \in \{1, 2\}$ denotes the deme in which the allele provides a benefit s_i (equal between the two
loci). The relative fitness of an individual in deme i is either $(1 + s_i)^2$, $(1 + s_i)$ or 1, depending on
88 whether it carries two, one or no allele(s) conferring local adaptation to its environment.

The life cycle begins with adults. These individuals reproduce, whereby pairs of parents are
90 sampled according to their relative fitness in their current deme to produce one joint offspring.
During reproduction, recombination occurs between the parental chromosomes (and their loci
92 for local adaptation) at rate r . When alleles are held in an inversion, the recombination rate with
non-inverted chromosomes drops to zero (double cross-overs and gene conversion are ignored).
94 Migration between demes then occurs such that a proportion m_{kl} of juveniles in deme l are mi-
grants from deme k . After migration, the juveniles in each deme become the adults of the next
96 generation. As the life cycle consist of just two phases, reproduction/selection and dispersal, the
order of events within a generation does not affect the results.

98 At the beginning of a generation, $A_i B_j$ adults in deme k are at proportion p_{ij}^k and have fit-
ness w_{ij}^k . Among the parents sampled for reproduction, the frequencies are $\tilde{p}_{ij}^k = p_{ij}^k (w_{ij}^k / \bar{w}_k)$,
100 where \bar{w}_k is the mean fitness in deme k . $D_k = p_{11}^k p_{22}^k - p_{12}^k p_{21}^k$ is the coefficient of linkage disequi-
librium in deme k , and $\tilde{D}_k = \tilde{p}_{11}^k \tilde{p}_{22}^k - \tilde{p}_{12}^k \tilde{p}_{21}^k$ is the linkage disequilibrium after selection, among
102 parents. Among the juveniles of the next generation, the frequency of genotype $A_i B_j$ in deme k

after migration, is given by

$$p_{ij}^{k'} = \frac{(1 - m_{kl})(\bar{p}_{ij}^k - r\tilde{D}_k) + m_{lk}(\bar{p}_{ij}^l - r\tilde{D}_l)}{1 - m_{kl} + m_{lk}} \quad (1)$$

¹⁰⁴ if $i = j$, and

$$p_{ij}^{k'} = \frac{(1 - m_{kl})(\bar{p}_{ij}^k + r\tilde{D}_k) + m_{lk}(\bar{p}_{ij}^l + r\tilde{D}_l)}{1 - m_{kl} + m_{lk}} \quad (2)$$

otherwise.

¹⁰⁶ When migration is limited to one direction (i.e., m_{12} or $m_{21} = 0$) or when selection in one
¹⁰⁸ environment is very strong ($s_i \gg s_j$), the model approaches the well studied “continent-island”
¹⁰⁸ model (hereafter superscript “C-I”, e.g., Kirkpatrick and Barton 2006 and Charlesworth and Barton
²⁰¹⁸).

¹¹⁰ Analysis

To use the quasi-linkage equilibrium (QLE) approximation, we first rewrite the genotype frequencies in terms of allele frequencies and LD, and then calculate their equilibria (Kirkpatrick, Johnson, and Barton 2002; Otto and Day 2011). This approximation assumes that recombination between ¹¹² the two loci is sufficiently high compared to migration and selection ($r \gg m_{ij}, s_k$) to allow LD to reach an equilibrium much more quickly than the allele frequencies. This is justified here if we do ¹¹⁴ not consider loci that are already tightly linked. But this is not an interesting case, because inversions then offer minimal advantage from suppressing recombination. To ensure the existence of an ¹¹⁶ equilibrium, migration must also be weak compared to selection (i.e. $\max(m_{12}, m_{21}) < \min(s_1, s_2)$).
¹¹⁸ These values allow the calculation of the equilibrium mean fitness in each deme, and hence the
¹²⁰ rate of increase of an adaptive inversion.

Using Equations 1 and 2 with $r = 0$, the dynamics of an A_1B_1 inversion are described by the
¹²² transition matrix M_{11} , in which the (i, j) -th entry describes an inverted adult experiencing selection

in deme i , and whose offspring is located in deme j post-dispersal, given by

$$M_{11} = \begin{pmatrix} \frac{(1-m_{12})(1+s_1)^2}{(1-m_{12}+m_{21})\hat{w}_1} & \frac{m_{12}(1+s_1)^2}{(1-m_{12}+m_{21})\hat{w}_1} \\ \frac{m_{21}}{(1-m_{21}+m_{12})\hat{w}_2} & \frac{(1-m_{21})}{(1-m_{21}+m_{12})\hat{w}_2} \end{pmatrix}, \quad (3)$$

124 where \hat{w}_k is the equilibrium mean fitness in deme k (we use the circumflex symbol $\hat{\cdot}$ for equilibrium values throughout). The rate that a rare A_1B_1 inversion increases in frequency in the whole
126 population (λ_{11}) is given by the leading eigenvalue of M_{11} . As the population is at equilibrium the
128 growth rate of a recombining A_1B_1 haplotype is 1, so $\lambda_{11} > 1$ implies a benefit to the inversion that
130 can be ascribed to the absence of recombination. From this measure of ‘invasion fitness’, we can
approximate the invasion probability as $2(\lambda_{11} - 1)$ (Otto and Whitlock 2013). A similar transition
matrix M_{22} can be derived for the behaviour of an A_2B_2 inversion (see File S1).

132 The invasion probability ($2(\lambda_{11} - 1)$) is specific to the A_1B_1 haplotype and hence conditional
134 on an inversion capturing this allelic combination. To account for the probability of an inversion
actually capturing the A_1B_1 haplotype in the first place, we need to take into account the frequency
136 of this haplotype in a population at equilibrium. The simplest way of achieving this would be to
138 multiply λ_{11} by the overall frequency of A_1B_1 , across the two demes. This is an acceptable approach
in the extreme case of the continent-island scenario, where the inversion is limited to the island
and the growth rate only applies to that population. However, the overall frequency of A_1B_1 is
no longer suitable in a two-deme model, because it gives equal weight to individuals in deme 1
where the haplotype is adaptive and those in deme 2 where it is not adaptive. Accordingly, in
140 order to determine the probability of an A_1B_1 inversion arising, we need to take into account not
only the frequency of the A_1B_1 haplotype but also the relative reproductive value of the inversion
142 in each deme. The reproductive value of the inversion in each deme is given by the left eigenvector
of M_{ii} and its components can be scaled to relative values that sum to 1. Call this scaled vector
144 $\mathbf{v}_i = (v_{i1}, v_{i2})$. Now, the probability that an inversion captures coadapted alleles (A_iB_i) and invades
is given by

$$\gamma_i = 2(\lambda_{ii} - 1)(v_{i1}\hat{p}_{ii}^1 + v_{i2}\hat{p}_{ii}^2). \quad (4)$$

¹⁴⁶ Finally, the probability of any locally adapted inversion establishing when it arises needs to consider both A_1B_1 and A_2B_2 haplotypes, and is given by

$$\Gamma = \gamma_{11} + \gamma_{22}. \quad (5)$$

¹⁴⁸ This is also equal to the probability of an inversion establishing itself overall, because inversions that capture allele combinations that are not advantageous in either deme (i.e. A_1B_2 or A_2B_1) are ¹⁵⁰ never favoured.

Data availability

¹⁵² A Mathematica notebook containing derivations and code used to generate figures is available as File S1.

¹⁵⁴ Results

Equilibrium allele frequencies and linkage disequilibrium

¹⁵⁶ At equilibrium, the frequencies of the alleles (\hat{f}_j^i for allele j in deme i) are

$$\begin{aligned} \hat{f}_{A_1}^1 &= \hat{f}_{B_1}^1 \approx \frac{1}{2} \left(1 - \frac{2m_{21}}{s_1} + \sqrt{\frac{4m_{12}m_{21}}{s_1s_2} + 1} \right), \\ \hat{f}_{A_1}^2 &= \hat{f}_{B_1}^2 \approx \frac{1}{2} \left(1 + \frac{2m_{12}}{s_2} - \sqrt{\frac{4m_{12}m_{21}}{s_1s_2} + 1} \right), \end{aligned} \quad (6)$$

and the linkage disequilibrium between loci in deme 1 (D_1) is

$$\begin{aligned} \hat{D}_1 &\approx \frac{m_{21}(\hat{f}_{A_1}^1 - \hat{f}_{A_1}^2)(\hat{f}_{B_1}^1 - \hat{f}_{B_1}^2)}{r} \\ &\approx \frac{m_{21}}{r} \left(\frac{m_{12}}{s_2} + \frac{m_{21}}{s_1} - \sqrt{1 + \frac{4m_{12}m_{21}}{s_1s_2}} \right)^2. \end{aligned} \quad (7)$$

¹⁵⁸ Linkage disequilibrium in deme 2 (\hat{D}_2) is given by replacing m_{21} with m_{12} and vice versa. These equilibrium values, derived here for haploidy and weak selection, are in accord with previous ¹⁶⁰ results (Akerman and Bürger 2014).

¹⁶² In the case where migration and selection are symmetric, $m_{kl} = m$ and $s_i = s$ (i.e., two populations with exactly opposing local selection pressures exchanging an equal proportion of migrants), the demes have symmetric allele frequencies ($f_{A_1}^2 = \hat{f}_{B_1}^2 = 1 - \hat{f}_{A_1}^1 = 1 - \hat{f}_{B_1}^1$) and linkage disequilibria

¹⁶⁴ ($D_1 = D_2$)

$$\hat{f}_{A_1}^1 = \hat{f}_{B_1}^1 \approx \frac{1}{2} \left(1 - \frac{2m}{s} + \sqrt{1 + \left(\frac{2m}{s} \right)^2} \right), \quad (8)$$

$$\hat{D} \approx \frac{m}{r} \left(\sqrt{1 + \left(\frac{2m}{s} \right)^2} - \frac{2m}{s} \right)^2, \quad (9)$$

¹⁶⁶ meaning that

$$\hat{f}_{A_1}^1 = \hat{f}_{B_1}^1 = \frac{1}{2} \left(1 + \sqrt{\frac{r\hat{D}}{m}} \right). \quad (10)$$

¹⁶⁸ In the other extreme case, where there is unidirectional gene flow from deme 2 ("continent") to deme 1 ("island"), the "continent" genotypes remain fixed to A_2B_2 . Setting $s_1 = s$ and $m_{21} = m$

$$\hat{f}_{A_1} = \hat{f}_{B_1} \approx 1 - \frac{m}{s}, \quad (11)$$

$$\begin{aligned} \hat{D} &\approx \frac{m\hat{f}_{A_1}\hat{f}_{B_1}}{r} \\ &\approx \frac{m}{r} \left(1 - \frac{m}{s} \right)^2. \end{aligned} \quad (12)$$

¹⁷⁰ Locally adaptive alleles are more abundant in the symmetric scenario (equation 8) than in the continent-island scenario (equation 11). This difference arises because in the symmetric scenario ¹⁷² a fraction of locally adapted migrants from a focal deme migrate to and survive in the other deme, only to return back and contribute to the frequency of beneficial alleles in the focal deme. In the ¹⁷⁴ continent-island scenario, in contrast, continental migrants can only introduce deleterious alleles into the focal deme.

¹⁷⁶ In both scenarios, linkage disequilibrium is positive, indicating that the adaptive alleles tend

to be found together in coadapted haplotypes (A_1B_1 and A_2B_2). This tendency increases with
178 the strength of selection in both models ($\partial\hat{D}/\partial s \geq 0$), because selection favours the association
of coadapted alleles, but decreases with the rate of recombination ($\partial\hat{D}/\partial r \leq 0$) which breaks the
180 coadapted haplotypes apart to create more intermediate haplotypes (A_1B_2 and A_2B_1).

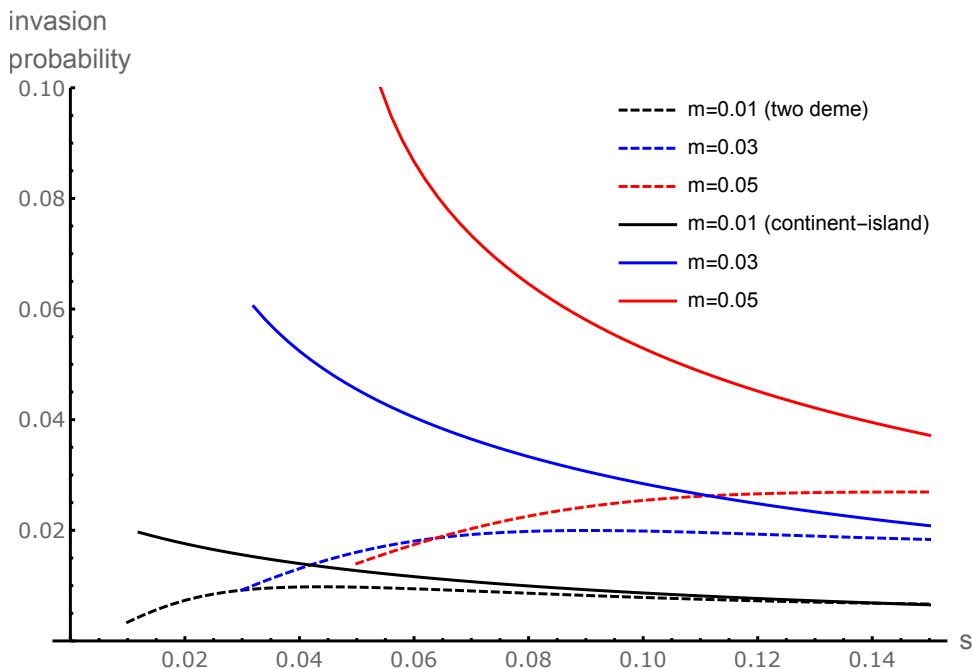
The role of migration is less straightforward and differs between the two scenarios. At small
182 migration rates, selection tends to be stronger relative to migration and demes are enriched for
locally adapted haplotypes. Linkage disequilibrium then increases with m because more A_2B_2
184 combinations are introduced into deme 1 (and more A_1B_1 combinations are introduced into deme
2 in the symmetric scenario). When migration becomes higher, the balance between selection and
186 migration shifts and migration tends to introduce proportionately more maladaptive haplotypes
from the other deme, thus degrading the linkage disequilibrium that is built up locally by selection.
188 The rate of migration at which this effect sets in depends on the model. In the continent-island
scenario, migration decreases linkage disequilibrium when $m > s/3$. In the symmetric case, mi-
190 gration begins to decrease linkage disequilibrium at a lower point, when $m > s\sqrt{3}/6$, because the
presence of A_1B_1 migrants in deme 2 generates more intermediate haplotypes through recombi-
192 nation. These individuals can back-migrate and degrade linkage disequilibrium in deme 1 (with
the same process going on in the reverse direction).

194 Invasion probability of a locally adaptive inversion

Having established the equilibrium composition of populations, we can now consider the fate of
196 a new inversion that captures allele A_1 and B_1 , which are locally adaptive in deme 1. We calculate
the rate of increase and probability of fixation of this inversion. We again compare the two extreme
198 models, the continent-island and the symmetric scenarios before examining the full model.

The growth rate of the inversion in the continent-island scenario is

$$\lambda_{11}^{C-I} \approx 1 + m, \quad (13)$$


200 implying that migration is the main driver behind the selective advantage of inversions (Kirkpatrick and Barton 2006). The rate of growth is independent of the strength of selection in the
202 island. The inversion's benefit is the protection of locally adapted haplotypes from acquiring maladaptive migrant alleles through recombination. Increasing the strength of selection within the
204 "island" has no effect to leading order, under the assumption that selection and migration are both weak.

206 In the symmetric scenario, the growth rate of an inversion is given by

$$\lambda_{11}^{\text{sym}} \approx 1 + m + \sqrt{m^2 + s^2} - \sqrt{4m^2 + s^2}. \quad (14)$$

208 Since $\sqrt{m^2 + s^2} < \sqrt{4m^2 + s^2}$, we always have $\lambda_{11}^{\text{sym}} < \lambda_{11}^{\text{C-I}}$ and the advantage of the inversion is
210 weaker in the two-deme compared to the continent-island model. The inversion's growth rate
in the symmetric scenario now depends on the strength of local selection. Specifically, inversions
212 are increasingly favoured with stronger selection (the square root terms in Equation 14 converge
as s increases and $\lambda_{11}^{\text{sym}}$ tends towards $\lambda_{11}^{\text{C-I}}$). As the strength of selection increases, the proportion
214 of deme 2 that is well-adapted increases. This means that new migrants carry more maladaptive
alleles and recombination more often results in less fit offspring, so that the inverted haplotype
has a greater advantage over non-inverted A_1B_1 haplotypes.

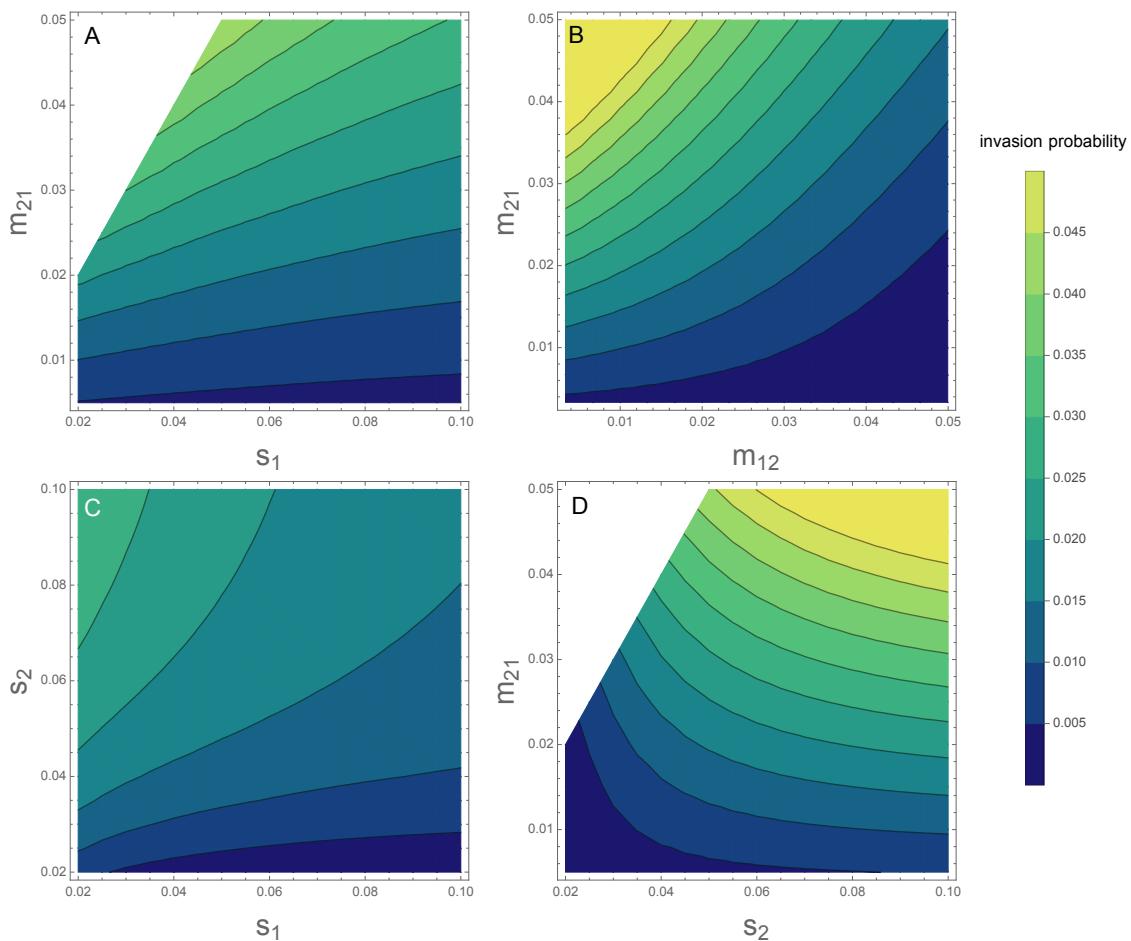
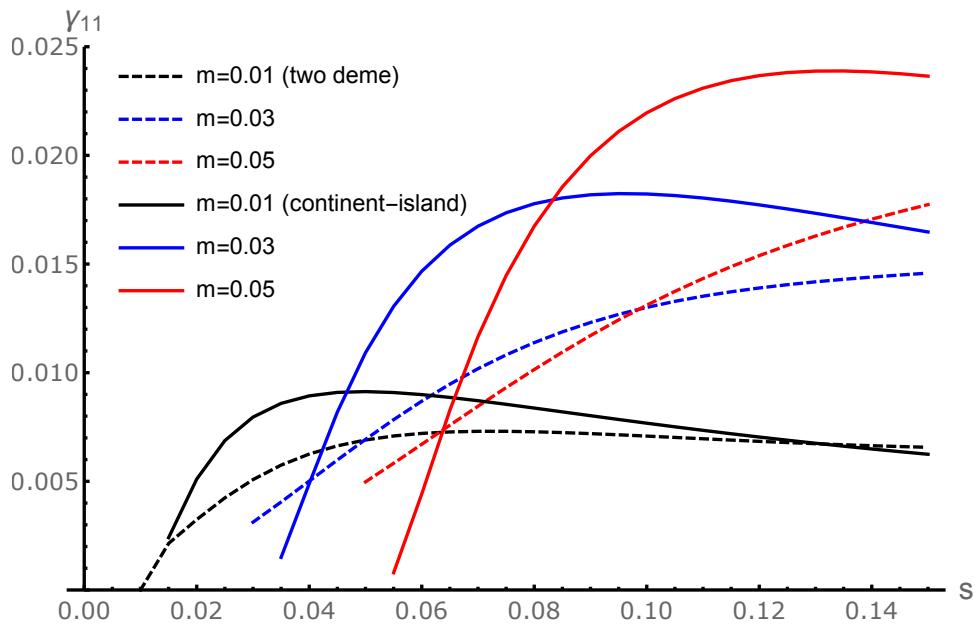

216 While stronger selection increases the frequency of maladaptive alleles among migrants, it
218 will also remove them more effectively from the focal deme. This effect is not captured by our
220 QLE approximation, so we numerically calculate the advantage of a rare inversion while assuming
that allele frequencies are at the exact equilibrium calculated to second order in selection and
migration (Figure 1). In the continent-island scenario, the genotypic composition of migrants
222 is unaffected by selection. Stronger selection reduces the advantage of an inversion (as found by
Bürger and Akerman 2011; Charlesworth and Barton 2018) because the island population becomes
better adapted as selection increases, so that recombining adaptive haplotypes results in less fit
offspring less often (Figure 1).

Figure 1: Invasion probabilities approximated to second order in migration and selection for an inversion capturing A_1B_1 in each of the symmetric and continent-island scenarios under various rates of migration.. Data with $s < m$ are excluded as the adaptive alleles may not be at a stable equilibrium. The rate of recombination between the two loci was $r = 0.15$.


224 In the symmetric scenario, the numerical results confirm that increasingly strong selection
 favours inversions, as in the QLE results. This happens because selection reinforces local adapta-
 226 tion and makes migrants more maladapted. However, this advantage plateaus as the strength of
 selection increases, because adaptive alleles become more common. This decreases the advantage
 228 of inversions, as selection alone tends to weed out the maladapted combinations. Unless selection
 is very strong, the former force dominates, meaning that the selective advantage of inversions is
 230 primarily determined by the genotypic composition of migrants. Under very strong selection, the
 invasion probability under symmetric migration converges on that in the island-continent scenario
 232 (Figure 1), because the composition of migrants in each become similar.

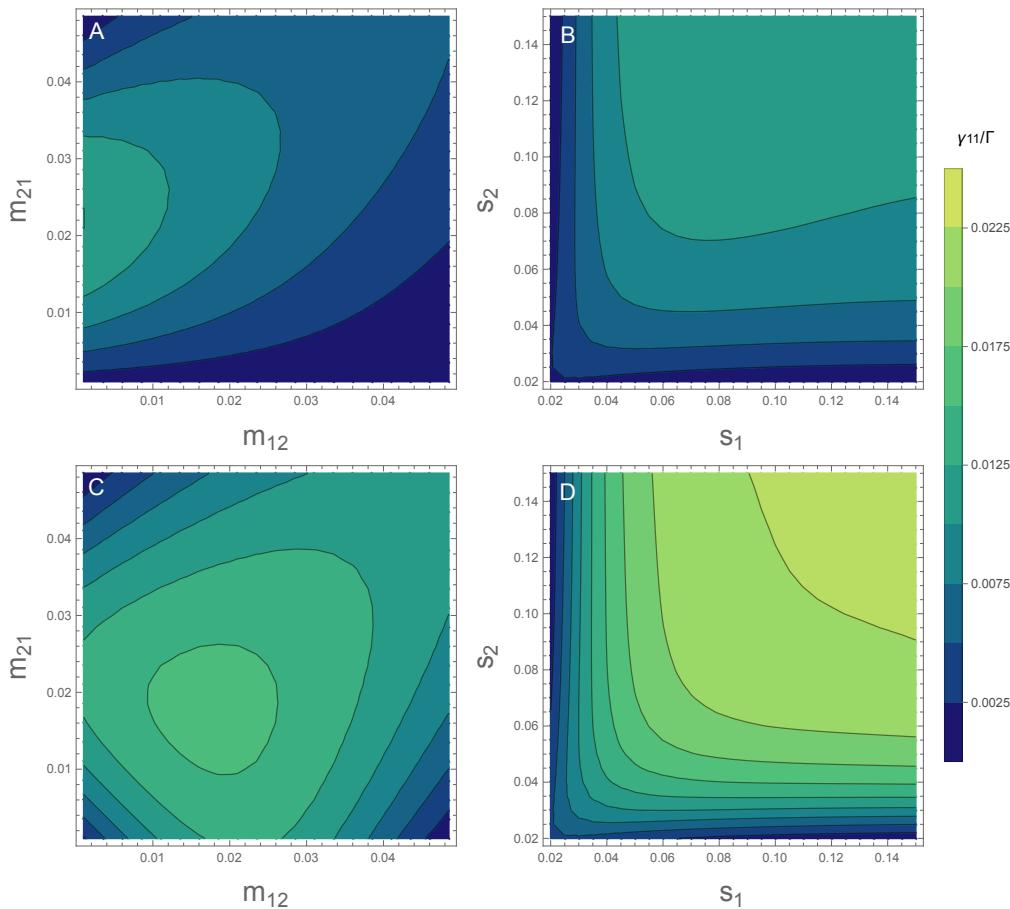
Unlike the continent-island model, the two-deme model allows us to include asymmetric lo-
 234 cal selection and migration (Figure 2). Selection in the focal deme (s_1) increases the degree of local
 adaptation and inversions therefore have a lesser advantage. This effect is strongest when there
 236 are more maladapted migrants entering deme 1 (higher m_{21} , Figure 2A) or when the genotypic
 composition of migrants is more maladapted (higher s_2 , Figure 2C), but has a weaker effect on in-

Figure 2: A_1B_1 inversion invasion probabilities calculated to second order in migration and selection terms. Where they do not vary, migration parameters are 0.02 and selection parameters are 0.05. Recombination was set to $r = 0.15$.

version invasion probability than parameters that change the genotypic composition of migrants (m_{21} and s_2). For a fixed level of migration into deme 1 (m_{21}), the growth rate of the inversion decreases with increasing migration out of deme 1 (m_{12}) because inversions migrate out of the environment in which they are adapted (Figure 2B). Overall, a combination of increased migration from, and selection in, deme 2, are the most important factors in generating the inversion's advantage (Figure 2D) — exactly the two parameters that are most extreme in the continent-island model.

Figure 3: Combined probability of an inversion arising on an A_1B_1 haplotype and then invading (γ_{11}). The invasion probabilities from Figure 1 are adjusted to account for the frequency and relative reproductive value of A_1B_1 in each deme. Equilibria are unstable for $m < s$, $r = 0.15$.

Combined capture and invasion probability of locally adaptive inversions


246 The analysis above calculates the invasion probability assuming that an inversion captures the
 247 A_1B_1 haplotype. It does not take into account the probability that an inversion occurs in an A_1B_1
 248 individual. It seems reasonable to assume that an inversion captures a random haplotype which
 249 means that the invasion probability should reflect the relative frequency of A_1B_1 as well as its re-
 250 productive value in each deme. Under this assumption, both the continent-island and two-deme
 251 scenarios predict similar patterns of invasion probabilities. As the strength of selection s increases,
 252 more locally adaptive genotypes are available to be captured by an inversion (Figure 3). The pos-
 253 itive effect of selection on the frequency of locally adapted genotypes (A_1B_1) has a larger positive
 254 effect on the combined invasion probability than the negative effect of selection on the inversion's
 255 subsequent selective advantage relative to the population (as illustrated in Figure 1). Thus, our
 256 results predict that stronger selection is more likely to drive the evolution of locally adaptive in-
 257 versions. Importantly, this is true for both scenarios and radically alters the prediction for how
 258 inversions should contribute to local adaptation in the continent-island scenario (c.f. Figure 1).

We can also see how asymmetric migration or selection affect the combined process of haplotype capture and invasion by inversions. While high migration into deme 1 strongly favours the invasion of existing adaptive inversions (Figure 2B), it also lowers the probability of them arising in the first place, due to the lower frequency of coadapted haplotypes. Thus, adaptive inversions are most likely to form and invade when m_{21} is intermediate, such that the probability of an inversion capturing an adaptive haplotype and the inversion's subsequent selective advantage are both reasonably large (Figure 4A).

Increasing the strength of selection in either deme typically increases the chance that adaptive inversions will arise and spread. Increasing the strength of selection in deme 2 (s_2) increases migration load and therefore the inversion's advantage and increasing selection in deme 1 (s_1) increases the probability of capturing the adaptive haplotype (Figure 4B). Yet, as discussed above, A_1B_1 inversion invasion probabilities decline under very strong selection in deme 1 (very high s_1) by increasing preexisting adaptation. Nevertheless, stronger local selection usually creates a more favourable environment for adaptive inversions to arise and proliferate.

So far, we have only considered the evolution of a specific inversion, adaptive in one deme. This is the only plausible scenario in the continent-island scenario, where only inversions that capture the island-adapted haplotype A_1B_1 are of interest. However, with two demes, divergent local adaptation can occur from either adaptive inversion, both due to the beneficial effects in the favoured deme and due to the protection from deleterious recombination that such an inversion offers to individuals adapted to the other deme. So in this final section we consider the overall probability of local adaptation through the spread of an inversion that arises anywhere in the population ($\Gamma := \gamma_{11} + \gamma_{22}$; Figure 4C, 4D).

Under symmetric local selection, inversions are most likely to establish when migration is symmetric and intermediate (Figure 4C). Migration rates that are favourable for the establishment of inversion in one deme are not so favourable in the other (γ_{22} values can be seen by reflecting Figures 4A, 4B across the diagonal) such that symmetric migration rates give the highest overall probability of inversion establishment. Similarly, when migration is symmetric, strong and sym-

Figure 4: Total establishment probability of an adaptive inversion across the whole population. A, B: Combined probability of an inversion arising on the A_1B_1 haplotype and then invading (γ_{11}) for asymmetric migration (A) or selection (B). C, D: Probability of an inversion capturing either adaptive haplotype (A_1B_1 or A_2B_2) and invading (Γ) for asymmetric migration (C) or selection (D). The continent-island model corresponds to $m_{12} = 0$ (Y axis in A, C) and the symmetric two-deme model corresponds to the $s_1 = s_2$ diagonal in panels B and D. Unless varying along axes, $m_{12} = m_{21} = 0.02$ and $s_1 = s_2 = 0.05$. To ensure stability, we vary parameters in the range where $\max(m_{12}, m_{21}) < \min(s_1, s_2)$, $r = 0.15$.

metric local selection is most conducive to the formation and spread of locally adaptive inversions (Figure 4D). Across both demes, this maximises the probability of capturing an adaptive haplotype while maintaining migration load.

Discussion

Here, we have examined the evolution of locally adaptive chromosomal inversions while explicitly modelling selection across a structured population. Inversions can keep locally favoured allele

292 combinations together in the face of maladapted migrants. Therefore, adaptive inversions spread
293 fastest when migrant alleles are homogeneously maladaptive, as assumed in the continent-island
294 scenario that has been well studied (Kirkpatrick and Barton 2006; Charlesworth and Barton 2018).
295 The continent-island scenario represents an extreme, where migrants are fixed in their genetic
296 composition, being purely maladaptive, with the migration rate alone determining selection for
297 the inversion. In comparison, the two-deme model leads to a number of novel insights. By in-
298 cluding the dynamics of selection and migration in the source population, we find that inversions
299 capturing alleles experiencing relatively strong selection are more favoured, unlike the condition
300 found when migration is unidirectional in the continent-island scenario (Figure 1). Extending the
301 model to account for the probability that inversions initially capture favourable haplotypes shows
302 that relatively strong selection is most likely to underlie inversions (Figure 3) and continent-island
303 scenarios aren't necessarily most conducive to inversion evolution (Figure 3). We further exam-
304 ine asymmetric selection pressures across demes, showing that strong selection in either deme
305 generally promotes the establishment of adaptive inversions by either increasing the selective ad-
306 vantage or the probability of capture (Figure 4). Overall, our results suggest that inversions are
307 particularly likely to arise and establish when selection on locally adaptive alleles is strong.

308 Theories concerning the origins of adaptive inversions can broadly be split into three cat-
309 egories (Schaal, Haller, and Lotterhos 2022): “capture”, in which an inversion creates a linkage
310 group of existing adaptive variation and spreads (Kirkpatrick and Barton 2006); “gain”, in which
311 an inversion is initially polymorphic (e.g. due to drift, underdominance, or acquisition of a good
312 genetic background), and then accumulates adaptive variation which is subsequently protected
313 from recombination (e.g. Lamichhaney et al. 2016, Samuk et al. 2017); or “generation”, in which
314 adaptive variation is created when the inversion occurs through the breakpoint disrupting coding
315 sequence or gene expression (Feder and Nosil 2009; Villoutreix et al. 2021, e.g. Jones et al. 2012).
316 Our work focuses on the “capture” hypothesis in which locally adaptive alleles are already segre-
317 gating and have reached migration-selection equilibrium and may have already evolved enhanced
318 local fitness. This scenario is the most analytically tractable, and hence we analyse it here. How-
319 ever there is *a priori* no reason why any inversion with “capture” origins could not subsequently

320 gain more adaptive variation at a later date as set-out in the “gain” hypothesis. In a pure “capture” scenario, we show large effect alleles are the most likely to underlie adaptive inversions.

322 The evolution of the effect size distribution of locally adaptive alleles is likely to favour those that are strongly selected, facilitating the evolution of adaptive inversions. In the short term, locally adaptive alleles must experience fairly strong selection to be able to resist being swamped by migration (Lenormand 2002; Yeaman 2015). Small effect alleles can still contribute to local adaptation when they arise in close linkage with large effect alleles, resulting in aggregated regions of adaptation which could be modelled as a single locus of large effect (Yeaman and Whitlock 2011).
324
326 Alternatively, they can contribute transiently before being lost (Yeaman 2015). With high gene flow, and over long timescales, the architecture of local adaptation is expected to evolve towards a few, highly concentrated clusters of small effect alleles linked with large effect alleles (Yeaman and Whitlock 2011), which are likely to be particularly conducive to inversion establishment.

322 Migration regimes under which inversions are likely to form and spread are fairly specific because they must satisfy multiple requirements. Firstly, we assume that locally adaptive alleles are polymorphic, which means they must be able to resist swamping by migration. This condition requires relatively weak migration and is likely to be a significant constraint on the evolution of local adaptation (Feder, Gejji, et al. 2011). Then, given that locally adaptive alleles are maintained, higher migration rates favour the spread of inversions because they increase the frequency of the maladaptive alleles and thus the cost of recombination (Figures 1, 2). However, this also has the effect of reducing the frequency of adaptive haplotypes so that inversions are less likely to capture a full complement of adaptive alleles (Figure 4). The result is that higher migration rates do not always favour the evolution of inversions. In general, rates of migration may turn out to restrict the evolution of capture-origin inversions more than previously thought.
324
326
330
332
334
336
338
340
342

344 Schaal, Haller, and Lotterhos 2022 used simulations to study the invasion of inversions capturing variation that influences a polygenic quantitative trait, finding that inversions involved in local adaptation tended to exhibit more of a capture than a gain effect when alleles were unlikely to be swamped. When alleles were prone to swamping by migration, persisting locally adap-

tive inversions had often gained much more adaptive variation post-capture. Under high rates
348 of gene flow both capture and gain scenarios are plausible, depending on the effect size of the
loci captured. Because adaptive alleles can be gained after the inversion arose and spread, recent
350 inversions may offer the best opportunity to test our predictions about the effect size of alleles
driving the evolution of locally adaptive inversions. The allelic content of such inversions could
352 depend on how long the populations in question have been diverging, with the expectation that
long periods of divergence results in a more concentrated architecture (Yeaman and Whitlock
354 2011). However, separating the individual trait effects of different loci within the inversion is chal-
lenging once they have been linked together. Thus, despite the prevalence of putatively adaptive
356 inversions, mapping of quantitative trait loci has been achieved in only a handful of cases (e.g.
Peichel and Marques 2017; Koch et al. 2021; and Poelstra et al. 2014 for an example unrelated to
358 local adaptation) leaving open questions about the number and effect size of loci that underpin
inversion selective advantage (Tigano and Friesen 2016).

360 We only consider the evolution of inversions that link alleles at two relatively nearby loci.
It is possible that an inversion could capture more than two loci that affect local adaptation. As
362 the number of loci contributing towards adaptation increases, it becomes less likely that an inver-
sion will capture all the adaptive alleles on the same haplotype. Nevertheless, inversions will still
364 spread if they capture more locally adaptive alleles than the population mean. A similar process
has been proposed for the evolution of inversions that happen to capture fewer deleterious muta-
366 tions than average (Nei, Kojima, and Schaffer 1967; Jay et al. 2022; Lenormand and Roze 2022). The
relationship between invasion fitness and haplotype frequencies as the number of loci increases
368 remains to be explored, but we expect inversion evolution will continue to depend on a balance
between the selective advantage of the captured haplotype and on the probability of capturing a
370 favourable haplotype.

Our model does not include deleterious mutations or breakpoint effects, which can affect
372 the fate of inversions. Low rates of gene flux within inverted arrangements means that deleterious
variation captured by the inversion persists for a long time throughout lineages, as purging this

374 variation relies on rare events such as gene conversion and double crossover events. Inversion
breakpoints can also disrupt gene function and result in lower individual fitness (White 1978;
376 Kirkpatrick 2010), though this can occasionally be adaptive (e.g. Corbett-Detig 2016). These ef-
fects can be incorporated into the model by introducing a fixed cost or benefit. Reduced recom-
378 bination within inversions severely weakens the efficacy of purifying selection on new mutations
(Charlesworth 1996; Betancourt, Welch, and Charlesworth 2009). Mutation accumulation is par-
380 ticularly important while the inversion is at low frequency, because most inverted chromosomes
will occur in heterokaryotypes where recombination is suppressed (Navarro, Barbadilla, and Ruiz
382 2000), though gene conversion and double crossover events may alleviate this a little (Berdan et al.
2021). We model a haploid population, but in diploids the presence and accumulation of strong
384 recessive mutations within inversion will result in negative frequency-dependent selection which
limits inversion frequency and the recombination rate (Nei, Kojima, and Schaffer 1967; Wasser-
386 man 1968; Ohta 1971). The generally deleterious effects associated with inversions likely mean
that their invasion probabilities are much lower than we obtain here.

388 In summary, our results emphasise the likelihood that strongly selected loci can contribute
to local adaptation in two ways: by increasing the frequency of adaptive haplotypes that can be
390 captured by an inversion, and by increasing the rate of migrant gene flow and thus the potential
cost of recombination. High migration rates also increase this recombination load and thus the
392 selective advantage of an inversion, but this also reduces the frequency of adaptive haplotypes.
The probability of adaptive inversion formation could be as important as its selective advantage
394 in determining where such inversions are likely to be found.

Funding

396 CM is supported by funding from CoMPLEX and an Engineering and Physical Sciences Research
Council studentship (EP/N509577/1). MFS is supported by a Leverhulme Trust Early Career Fel-
398 lowship (ECF-2020-095). AP is supported by funding from the Engineering and Physical Sci-
ences Research Council (EP/F500351/1, EP/I017909/1), Natural Environment Research Council

⁴⁰⁰ (NE/R010579/1) and Biotechnology and Biological Sciences Research Council (BB/V003542/1).

Bibliography

⁴⁰² Akerman, A. and R. Bürger (2014). "The consequences of gene flow for local adaptation and differentiation: a two-locus two-deme model". *Journal of Mathematical Biology* 68.5, pp. 1135–1198.

⁴⁰⁴ Ayala, D., R. F. Guerrero, and M. Kirkpatrick (2013). "Reproductive isolation and local adaptation quantified for a chromosome inversion in a malaria mosquito". *Evolution* 67.4, pp. 946–958.

⁴⁰⁶ Berdan, E. L. et al. (2021). "Deleterious mutation accumulation and the long-term fate of chromosomal inversions". *PLOS Genetics* 17.3, e1009411.

⁴⁰⁸ Betancourt, A. J., J. J. Welch, and B. Charlesworth (2009). "Reduced effectiveness of selection caused by a lack of recombination". *Current Biology* 19.8, pp. 655–660.

⁴¹⁰ Bürger, R. and A. Akerman (2011). "The effects of linkage and gene flow on local adaptation: A two-locus continent–island model". *Theoretical Population Biology* 80.4, pp. 272–288.

⁴¹² Charlesworth, B. (1996). "Background selection and patterns of genetic diversity in *Drosophila melanogaster*". *Genetics Research* 68.2, pp. 131–149.

⁴¹⁴ Charlesworth, B. and N. H. Barton (2018). "The spread of an inversion with migration and selection". *Genetics* 208.1, pp. 377–382.

⁴¹⁶ Cheng, C. et al. (2012). "Ecological genomics of *Anopheles gambiae* along a latitudinal cline: a population-resequencing approach". *Genetics* 190.4, pp. 1417–1432.

⁴¹⁸ Christmas, M. J. et al. (2019). "Chromosomal inversions associated with environmental adaptation in honeybees". *Molecular Ecology* 28.6, pp. 1358–1374.

⁴²⁰ Connallon, T. and C. Orito (2021). "Natural selection and the distribution of chromosomal inversion lengths". *Molecular Ecology* 31.13.

422 Connallon, T., C. Olito, et al. (2018). "Local adaptation and the evolution of inversions on sex
chromosomes and autosomes". *Philosophical Transactions of the Royal Society B: Biological Sciences*
424 373.1757, p. 20170423.

426 Corbett-Detig, R. B. (2016). "Selection on inversion breakpoints favors proximity to pairing sensi-
tive sites in *Drosophila melanogaster*". *Genetics* 204.1, pp. 259–265.

428 Faria, R., P. Chaube, et al. (2019). "Multiple chromosomal rearrangements in a hybrid zone be-
tween *Littorina saxatilis* ecotypes". *Molecular Ecology* 28.6, pp. 1375–1393.

430 Faria, R., K. Johannesson, et al. (2019). "Evolving inversions". *Trends in Ecology & Evolution* 34.3,
pp. 239–248.

432 Feder, J. L., R. Gejji, et al. (2011). "Adaptive chromosomal divergence driven by mixed geographic
mode of evolution". *Evolution* 65.8, pp. 2157–2170.

434 Feder, J. L. and P. Nosil (2009). "Chromosomal inversions and species differences: when are genes
affecting adaptive divergence and reproductive isolation expected to reside within inversions?"
Evolution 63.12, pp. 3061–3075.

436 Hager, E. R. et al. (2022). "A chromosomal inversion contributes to divergence in multiple traits
between deer mouse ecotypes". *Science* 377.6604, pp. 399–405.

438 Harringmeyer, O. S. and H. E. Hoekstra (2022). "Chromosomal inversion polymorphisms shape
the genomic landscape of deer mice". *Nature Ecology & Evolution*, pp. 1–15.

440 Huang, K., R. L. Andrew, et al. (2020). "Multiple chromosomal inversions contribute to adaptive
divergence of a dune sunflower ecotype". *Molecular Ecology* 29.14, pp. 2535–2549.

442 Huang, K. and L. H. Rieseberg (2020). "Frequency, origins, and evolutionary role of chromosomal
inversions in plants". *Frontiers in Plant Science* 11.

444 Jay, P. et al. (2022). "Sheltering of deleterious mutations explains the stepwise extension of recom-
bination suppression on sex chromosomes and other supergenes". *PLOS Biology* 20.7, e3001698.

446 Jones, F. C. et al. (2012). "The genomic basis of adaptive evolution in threespine sticklebacks".
Nature 484.7392, pp. 55–61.

448 Kirkpatrick, M. (2010). "How and why chromosome inversions evolve". *PLOS Biology* 8.9, e1000501.

Kirkpatrick, M. and N. Barton (2006). "Chromosome inversions, local adaptation and speciation".
450 *Genetics* 173.1, pp. 419–434.

Kirkpatrick, M., T. Johnson, and N. Barton (2002). "General models of multilocus evolution".
452 *Genetics* 161.4, pp. 1727–1750.

Koch, E. L. et al. (2021). "Genetic variation for adaptive traits is associated with polymorphic in-
454 versions in *Littorina saxatilis*". *Evolution Letters* 5.3, pp. 196–213.

Lamichhaney, S. et al. (2016). "Structural genomic changes underlie alternative reproductive strate-
456 gies in the ruff (*Philomachus pugnax*)". *Nature Genetics* 48.1, pp. 84–88.

Lee, C.-R. et al. (2017). "Young inversion with multiple linked QTLs under selection in a hybrid
458 zone". *Nature Ecology & Evolution* 1.5, pp. 1–13.

Lenormand, T. (2002). "Gene flow and the limits to natural selection". *Trends in Ecology & Evolution*
460 17.4, pp. 183–189.

Lenormand, T. and D. Roze (2022). "Y recombination arrest and degeneration in the absence of
462 sexual dimorphism". *Science* 375.6581, pp. 663–666.

Lowry, D. B. and J. H. Willis (2010). "A widespread chromosomal inversion polymorphism con-
464 tributes to a major life-history transition, local adaptation, and reproductive isolation". *PLOS
Biology* 8.9, e1000500.

466 Navarro, A., A. Barbadilla, and A. Ruiz (2000). "Effect of inversion polymorphism on the neutral
nucleotide variability of linked chromosomal regions in *Drosophila*". *Genetics* 155.2, pp. 685–
468 698.

Nei, M., K.-I. Kojima, and H. E. Schaffer (1967). "Frequency changes of new inversions in popula-
470 tions under mutation-selection equilibria". *Genetics* 57.4, pp. 741–750.

Ohta, T. (1971). "Associative overdominance caused by linked detrimental mutations*". *Genetics
Research* 18.3, pp. 277–286.

Otto, S. P. and M. C. Whitlock (2013). "Fixation Probabilities and Times". *eLS*. John Wiley & Sons,
474 Ltd.

Otto, S. P. and T. Day (2011). *A Biologist's Guide to Mathematical Modeling in Ecology and Evolution*.
476 Princeton University Press.

Peichel, C. L. and D. A. Marques (2017). "The genetic and molecular architecture of phenotypic diversity in sticklebacks". *Philosophical Transactions of the Royal Society B: Biological Sciences* 372.1713, p. 20150486.

Poelstra, J. W. et al. (2014). "The genomic landscape underlying phenotypic integrity in the face of gene flow in crows". *Science* 344.6190, pp. 1410–1414.

Proulx, S. R. and H. Teotónio (2022). "Selection on modifiers of genetic architecture under migration load". *PLOS Genetics* 18.9, e1010350.

Samuk, K. et al. (2017). "Gene flow and selection interact to promote adaptive divergence in regions of low recombination". *Molecular Ecology* 26.17, pp. 4378–4390.

Schaal, S. M., B. C. Haller, and K. E. Lotterhos (2022). "Inversion invasions: when the genetic basis of local adaptation is concentrated within inversions in the face of gene flow". *Philosophical Transactions of the Royal Society B: Biological Sciences* 377.1856, p. 20210200.

Tigano, A. and V. L. Friesen (2016). "Genomics of local adaptation with gene flow". *Molecular Ecology* 25.10, pp. 2144–2164.

Villoutreix, R. et al. (2021). "Inversion breakpoints and the evolution of supergenes". *Molecular Ecology* 30.12, pp. 2738–2755.

Wasserman, M. (1968). "Recombination-induced chromosomal heterosis". *Genetics* 58.1, pp. 125–139.

Wellenreuther, M. and L. Bernatchez (2018). "Eco-evolutionary genomics of chromosomal inversions". *Trends in Ecology & Evolution* 33.6, pp. 427–440.

White, M. J. D. (1978). *Modes of Speciation*. W. H. Freeman.

Yeaman, S. (2015). "Local adaptation by alleles of small effect". *The American Naturalist* 186.S1, S74–S89.

Yeaman, S. and M. C. Whitlock (2011). "The genetic architecture of adaptation under migration–selection balance". *Evolution* 65.7, pp. 1897–1911.