

1 **Anti-correlated Feature Selection Prevents False Discovery of Subpopulations in**
2 **scRNAseq**

3 Scott R Tyler,^{1,2,*} Ernesto Guccione^{2,3,4}, and Eric E Schadt^{1,*}

4 ¹Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New
5 York, NY, USA.

6 ² Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at
7 Mount Sinai, New York, NY, USA

8 ³ Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological
9 Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

10 ⁴ Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn
11 School of Medicine at Mount Sinai, New York, NY, USA

12 *Corresponding authors

13

14

15 **Abstract**

16 **While sub-clustering cell-populations has become popular in single cell-omics,**
17 **negative controls for this process are lacking. Popular feature-selection/clustering**
18 **algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous**
19 **clusters until nearly each cell is called its own cluster. Using 45,348 scRNAseq analyses**
20 **of real and synthetic datasets, we found that anti-correlated gene selection reduces or**
21 **eliminates erroneous subdivisions, increases marker-gene selection efficacy, and**
22 **efficiently scales to 245k cells without the need for high-performance computing.**

23

24 **Results**

25 A frequent first task in performing cell-type identification from scRNAseq is feature
26 selection to identify genes that are cell-type specific markers based on various statistical
27 properties. Current approaches include measures of the relationship between a gene's mean and
28 variance (i.e., overdispersion)¹⁻³ and a gene's mean and dropout rate⁴. An open problem however
29 is how algorithms handle the “null-dataset;” that is, when there is only a single cell-type present.

30 Given the popularity of sub-clustering (i.e., iteratively subdividing the initially identified
31 clusters)⁵⁻⁸, it is important to know that these groups are not being erroneously subdivided, thus
32 producing false subtypes⁹. While novel sub-populations of interest should always be validated via
33 bench-biology methods, an algorithmic assurance that one is not being misled can save money
34 and years of effort attempting to validate erroneously discovered “novel sub-populations.” Given
35 the imperfections in clustering algorithms¹⁰, sub-clustering itself can be a valid practice, because
36 a single round of clustering may be insufficient to fully divide a dataset into its constituent groups.
37 However, we must have confidence that such algorithms will correctly identify single populations,
38 preventing the false discovery of nonexistent sub-populations. In the case of a single cell
39 population, either 1) a feature selection algorithm would accurately report that there are no genes

40 that define sub-populations, or 2) the clustering algorithm would determine that only a single
41 cluster is present.

42 We sought to devise an algorithm to identify cell-type marker-genes that would not only
43 identify subpopulations of cell-types with high accuracy, but also solve the null-dataset problem.
44 We thus began from first principles, asking the question: “what is a cell-type?”. Traditional
45 molecular biology has defined cell-types based on distinct cellular functions that are concordant
46 with expression of distinct sets of genes: “marker-genes” (**Fig. 1a**), that often include hierarchical
47 mutually exclusive gene expression. For example, in the pancreas the gene *NEUROD1* is a pan-
48 endocrine marker, expressed in many different cell-types but should be mutually exclusively
49 expressed from exocrine marker-genes¹¹. If we accept this definition of cell-type and -lineage
50 specific genes, we can algorithmically discover marker-genes from scRNAseq, as these genes
51 will show a statistical excess of negative correlations with other genes (**Fig. 1b**). Given this
52 premise, if only a single cell-identity is present in a dataset, we would expect an absence of an
53 anti-correlation pattern since the cells of other cell-identities would not be present (**Fig. 1c**).
54 Indeed, looking at known marker-genes from different cell types in the pancreas (i.e. *AMY2A*
55 expressed in acinar cells and *SST* expressed in delta cells), we see the expected anti-correlation
56 pattern between *AMY2A* and *SST* (**Fig. 1d**), which disappears when examining subsets
57 comprised of only a single cell type (**Fig. 1e**). Notably, the anti-correlation pattern holds for
58 lineage-markers as well as cell-type markers (**Fig. 1f**).

59 Using these observations, we constructed an algorithm that identifies genes with an
60 excess of negative correlations relative to what would be expected if the gene were un-patterned,
61 as empirically measured with a bootstrap shuffled null background (**Fig. 1g,h**). We then select
62 genes that have an excess of negative correlations, controlling for false positives by setting an
63 appropriate false discovery rate (FDR) (**Fig. 1i**). Overall, this procedure selects the genes that
64 have significantly more negative correlations with other genes than would be expected by chance
65 (See **Methods** for details). While others have performed small-scale experiments using positive

66 correlations for feature selection, it was deemed infeasible due to computational run-time¹²; here
67 we create an open-source, efficient implementation in python to overcome this barrier, but focus
68 attention on negative correlation patterns as opposed to positive.

69 Given our reasoning that the anti-correlation pattern should go away when examining data
70 representing only a single cell-type (**Fig. 1c**), with preliminary support for our rationale in a single
71 dataset (**Fig. 1e**), we hypothesized that anti-correlation-based feature selection would be
72 sufficient to solve the null-dataset problem, while status quo algorithms may not adequately solve
73 for this problem. With the null-dataset, no “cell-type or cell-state specific genes” should be
74 identified as this is a single population of cells. We tested this hypothesis by performing feature
75 selection and affinity propagation (AP)-based clustering on two datasets composed of scRNAseq
76 from homeostatic cell line culture from NIH3T3 (**Fig. 1j**) or HEK293T cells (**Fig. 1k**), which we
77 anticipate would capture the biologically relevant variation in only a single clustering round, and
78 any attempt to *further* subdivide beyond that should be algorithmically blocked. Indeed, the anti-
79 correlation algorithm allowed for only a single round of clustering, while the other algorithms tested
80 allowed for further subdivisions (**Fig. 1j,k**).

81 While this preliminary evidence suggests that anti-correlation-based feature selection
82 solves the issue of false positives from sub-clustering homogenous populations, real-world
83 datasets do not harbor a “ground-truth.” We therefore simulated a single cluster using Splatter
84 which produces negative binomially distributed gene expression matrices¹³. We performed
85 feature selection using the noted algorithms¹⁴ and passed these features to four different
86 clustering algorithms including Affinity Propagation, K-means+Elbow-rule, K-means+Silhouette,
87 and locally weighted Louvain modularity (See **methods** for algorithm details). In all cases, the
88 anti-correlation-based method for feature selection detected no valid features within a single
89 population of cells, thus addressing the null-dataset problem, while all other feature selection and
90 clustering algorithm combinations failed the null-dataset problem, selecting noisy features that
91 resulted in at least several clusters (**Fig. 1l**). Note that most feature selection algorithms frequently

92 require the user to manually set the number of “discoveries” or selected features, which is likely
93 a key contributor to this failure of the null-dataset problem when using standard feature selection
94 approaches.

95 Without an algorithmic check to prevent erroneous sub-clustering, one could recursively
96 divide a dataset until it is fully subdivided (each individual cell representing its own cluster), here
97 dubbed “recursion-to-completion” (**Fig. 2a**). In practice, this would indicate that someone
98 analyzing a scRNAseq dataset could always decide to sub-cluster a “cluster of interest” and report
99 a “novel subpopulation” of cells, resulting in false discoveries. To test the robustness of each
100 feature selection algorithm to the recursion-to-completion problem, we selected four publicly
101 available datasets from differing species and platforms including droplet-based UMI approaches
102 (**Fig. 2b**) and full-length transcript single-cell and -nucleus RNAseq (sNucSeq) (**Fig. 2c**)¹⁴. Again,
103 we found that standard overdispersion- and dropout-based feature selection methods enabled
104 recursion-to-completion, often finding hundreds of clusters, while anti-correlation-based feature
105 selection were robust to this problem. Anti-correlation showed fewer rounds of recursion ($P \leq 0.05$
106 for TukeyHSD post-hocs), and fewer overall clusters ($P \leq 1e-3$ for TukeyHSD post-hocs) relative
107 to other methods (**Figure 2d-e**). This demonstrates that anti-correlation-based feature selection
108 is robust to differing technologies, species, and sequencing type, retaining the ability to minimize
109 false sub-divisions.

110 To verify these results with known ground-truth, we simulated 4 clusters, and allowed each
111 algorithm to iteratively sub-cluster until either no features were returned, or only a single cluster
112 was identified. Consistent with our findings from real-world datasets, anti-correlation-based
113 feature selection protected against erroneous sub-clustering, while other approaches allowed for
114 several rounds of recursive sub-clustering, yielding hundreds to thousands of final ‘clusters’ (fewer
115 average rounds of sub-clustering: $P=1.08e-6, F=52.9$, main-effects 1-way ANOVA; $P \leq 6.2e-6$ for
116 TukeyHSD post-hocs; fewer total clusters: $P=7.2e-10, F=238.2$, main-effects 1-way ANOVA;
117 $P \leq 1.3e-9$ for TukeyHSD post-hocs); **Extended Data Fig. 1a**). These simulated data demonstrate

118 that anti-correlated feature selection guards against erroneously splitting a single population of
119 cells, while the algorithms tested here enable false discoveries of what appear to be “novel sub-
120 types.”

121 We next sought to determine the overall accuracy of these feature selection algorithms,
122 where ground-truth differentially expressed genes (DEGs) should be selected by feature selection
123 algorithms, and non-DEGs should not be selected. To this end, we used Splatter to simulate
124 datasets comprised of 4, 6, 8, and 10 clusters. Our anti-correlation algorithm had the best
125 accuracy, F1-score, Mathew’s Correlation Coefficient (MCC), precision, true negative rate, FPR,
126 and false discovery rate (FDR) compared to other feature selection algorithms (**Extended Data**
127 **Fig. 1b**). However, anti-correlation-based feature selection had average recall (also called
128 sensitivity or false negative rate); this is explained however, by Splatter’s wide-spread co-
129 expression of *all* genes in *all* clusters (**Extended Data Fig. 2a**). In other words, using Splatter, *all*
130 *clusters* express the “marker-genes” of *all other* clusters, therefore blunting the anti-correlations
131 of marker-genes seen in practice (**Fig. 1**), thus reducing the apparent sensitivity. SERGIO
132 however is a gene regulatory network (GRN) based scRNAseq simulation approach that more
133 accurately represents empirical scRNAseq datasets¹⁵ and does not induce co-expression of all
134 marker genes in all clusters (**Extended Data Fig. 2b**). Using this simulation paradigm anti-
135 correlation-based feature selection outperformed other approaches by *every* metric including
136 recall/sensitivity (**Extended Data Fig. 1c**). Furthermore, using seven pancreatic datasets,^{2, 16-20}
137 the anti-correlated genes were either tied for, or had significantly higher p-value significance rank,
138 precision, and recall for pancreatic specific genes based on gProfiler/Human Protein Atlas tissue
139 enrichment compared to other algorithms (**Extended Data Fig. 1d**)^{21, 22}.

140 To assess the practical scalability of anti-correlation-based feature selection, we re-
141 processed and ran a larger dataset (245,389 cells) from a *Tabula Muris* data-release²³. The full
142 feature selection process took 60.95 minutes, while calculating the cell-cell correlations, distance,
143 and clustering were far more computationally intense taking several days (see **Methods** for

144 clustering details) (**Fig 2f**). These findings show that anti-correlation-based feature selection
145 should not be a major limiting factor for large datasets.

146 We also sought to demonstrate our feature-selection approach's utility in safe sub-
147 clustering in practice; to this end, we focused on a cluster whose marker genes included
148 insulin/amylin (*INS1/2*, *IAPP*) and glucagon (*GCG*), the markers for pancreatic beta and alpha
149 cells, respectively, indicating that this cluster was insufficiently divided in the first clustering round.
150 We performed sub-clustering with anti-correlation, identifying leukocyte, alpha-, beta-, and delta-
151 cell populations. We further sub-clustered the insulin high population, and unexpectedly found the
152 rare²⁴ population of pancreatic-polypeptide (*Ppy/Pyy*) expressing PP-cells (**Fig. 2g**), a cluster
153 comprising only 0.01% of the original dataset. Attempting to further sub-divide PP-cells yielded
154 no usable features, thus showing that anti-correlation-based feature selection can facilitate
155 extremely sensitive sub-clustering to identify rare biologically meaningful populations from large
156 datasets, while also preventing errant subdivisions.

157 As seen in the final sub-cluster round, however, while anti-correlation-based feature-
158 selection is biologically accurate and answers the question: "Should this cluster be sub-
159 clustered?", it does not ensure that downstream algorithms will select the correct number of
160 clusters; this remains an outstanding problem as previously reported⁹. However, passing the first
161 step of successfully identifying a homogeneous population, through anti-correlation-based feature
162 selection, provides confidence that meaningful structure existed in the parent population.

163 Overall, these results demonstrate that anti-correlation-based feature selection solves
164 the null-dataset and recursion-to-completion problems, outperforms others in overall feature
165 selection accuracy, and works with both UMI and full-length sequencing methods. These
166 properties can prevent wasted time and money for bench-practitioners attempting to validate
167 novel sub-populations by providing an algorithmic check to false discoveries in scRNAseq.
168 Lastly, our open source python package (titled *anticor_features*) is open-source, pip installable,
169 and compatible with SCANPY/AnnData²⁵ to enable broad adoptability.

170 **Code and Data Availability**

171 All code used for implementing the anti-correlation-based feature selection approach is available
172 as a stand-alone package:

173 https://bitbucket.org/scotttyler892/anticor_features

174 and is also pip installable:

175 `python3 -m pip install anticor_features`

176 All code for running simulations and comparisons used in this study are available at:

177 https://bitbucket.org/scotttyler892/anti_correlation_vs_overdispersion/

178

179 **Methods**

180 *Example of anti-correlation principle on pancreatic dataset*

181 A previously published scRNAseq dataset and annotations were used for scatter plots of

182 *AMY2A* for acinar cells, *SST* for delta cells, and *NEUROD1* for endocrine cells (**Fig. 1d-f**)².

183

184 *Normalization of scRNAseq datasets to be used for benchmarking*

185 Due to large variation (often orders of magnitude differences) in total UMI counts across

186 cells and it's downstream effects on cell-to-cell distance metrics, we normalized each cell within

187 UMI based datasets through bootstrapped UMI downsampling as described [here](#):

188 https://bitbucket.org/scottyler892/pyminer_norm. In brief, a cutoff is selected for both the number

189 of observed genes in a cell as well as the number of total UMI observed in a cell. Cells not meeting

190 these criteria are removed, and all other cells are normalized through UMI downsampling. UMI

191 downsampling is done through simulating the transcriptome of a given cell, and randomly

192 selecting N transcripts, where N is the desired number of total UMI for each cell to have, in this

193 case 95% of the cutoff used for total UMI count. Thus, each cell is randomly sampled to the same

194 UMI depth.

195 To normalize full-length sequencing datasets with TPM or similar units, we created a

196 variant of quantile normalization we call truncated quantile normalization. First a cutoff (g) is

197 selected for the number of genes to be expressed in each cell in the final normalized dataset.

198 Next, cells with fewer than $g+1$ genes expressed are removed, then for each cell, the

199 transcriptome is subtracted by the expression value of gene $g+1$ for that cell, thus setting the $g+1$

200 gene's expression to zero, leaving the remaining top g expressed genes with >0 expression in all

201 cells. All negative values are then set to 0. For ties at the expression-level of g that would result

202 in differing number of observed genes, genes are randomly selected to be preserved or set to

203 zero stochastically. This yields a vector for each cell for whom the top expressed g genes are

204 kept, but shifted downwards in a manner that does not introduce an artificially large gap between

205 the lowest expressed gene (g) and zero. These top g genes for each cell are then quantile
206 normalized. This process is implemented in the `pyminer_norm` pip package, and can be called
207 from the command-line on tsv files:

208 `python3 -m pyminer_norm.quantile_normalize -i in_file.tsv -o out_file_qNorm.tsv -n 2000`

209 to perform truncated quantile normalization on the top 2000 genes for each cell.

210

211 *NIH3T3 and HEK293T cell line datasets*

212 This dataset was downloaded from 10x Genomics' website at
213 (https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/1k_hgmm_v3).

214 The cells of mouse or human origin were separated into distinct datasets for our purposes here
215 based on the sum of reads that mapped to each species' transcriptome, while doublets were
216 excluded. In the case of both human and mouse references, cells were kept that had >3162
217 counts mapping to hg19 or mm10 for HEK293T and NIH3T3 respectively, cells were also only
218 kept if they had >1000 genes observed. The remaining cells were then downsampled to 3003
219 counts for each dataset to normalize for variable count depth that otherwise spanned two orders
220 of magnitude.

221

222 *Affinity Propagation*

223 Our implementation of affinity propagation was based on the `sklearn`
224 `sklearn.cluster.AffinityPropagation` function, in which the preference vector is initialized to the row-
225 wise minimum of the input matrix; in this case, the negative squared Euclidean distance of the
226 Spearman correlations across all cells. We observed that as datasets scale, the original affinity
227 propagation algorithm fragments single populations into many small populations that were similar
228 to each other. We therefore follow the original affinity propagation results with an analysis that
229 calculates the distance (in affinity space) between cluster centers (also called exemplars). The
230 standard deviation of within-cluster affinities is then calculated. For each cluster-cluster pair from

231 the original affinity propagation cluster results, we then determine the number of combined
232 standard deviations required to traverse half the Euclidean distance in affinity space between two
233 cluster centers. This measure is the number of standard deviations needed to reach the waypoint
234 between two cluster centers. Because these are standard deviation measures, we can convert
235 these to transition probabilities, as with a Z-score, using the `scipy.stats.norm.sf` function. This
236 creates a cluster x cluster matrix of transition probabilities; this probability matrix is then subjected
237 to dense weighted Louvain modularity. Final clusters are determined by the results of this
238 procedure, where AP clusters that were determined by Louvain modularity to belong to the same
239 community are merged. All code and cluster for the affinity propagation with merged procedure
240 can be accessed through running PyMINEr with the appended arguments: “-ap_clust -ap_merge”
241 at the command line or interactively via the `pyminer.pyminer.pyminer_analysis` function using the
242 arguments: `ap_clust=True, ap_merge=True`.

243

244 *Clustering – K-means with Elbow and K-means with silhouette*

245 First each dataset (already log transformed) was subset for the genes selected by the
246 given feature selection algorithm, then genes were min-max linear normalized between 0 and 1.
247 K-means clustering was performed using the `sklearn.cluster.KMeans` function. For the elbow rule,
248 the sum of squared Euclidean distances of samples to their cluster center was used in conjunction
249 with the given k value. We took the elbow to be the value of k which yielded the minimum distance
250 to the origin.

251 For the silhouette method, we calculated the average silhouette score with the
252 `sklearn.metrics.silhouette_score` function, and sample level silhouettes calculated with the
253 `silhouette_samples` function. The number of clusters was selected by moving from `k=1` to `k_max`,
254 testing for whether there existed a cluster whose maximum sample level silhouette was less than
255 the average silhouette score for the whole dataset (as determined by the `silhouette_score`
256 function).

257

258 *Clustering – Locally weighted Louvain modularity*

259 We created a kNN graph embedding and subjected it to Louvain modularity as follows:

260 1. Calculate Spearman correlation of all cells against all other cells (matrix: **S**).

261 2. Calculate the inverse squared Euclidean distance matrix from the Spearman matrix

262 (matrix: **D**), divided by the square-root of the number of cells. In this matrix, cells that are

263 more similar to each have higher values, and cells that are dissimilar have lower values,

264 inversely proportional to the squared Euclidean distance.

265 3. For each cell, i , (i.e.: row in matrix **D**) subtract the upper 95th percentile (or top 200th closest

266 cell, whichever yields fewer connections) of distance vector (\mathbf{D}_i), then mask all negative

267 values to zero, thus creating a weighted local distance matrix (matrix: **L**).

268 4. To ensure that all cells are on an equivalent scale, each row in **L** is divided by its maximum

269 ($\mathbf{L}_i = \mathbf{L}_i / \max(\mathbf{L}_i)$).

270 5. The normalized local distance matrix **L** serves as the weighted adjacency matrix for

271 building the network for weighted Louvain modularity.

272

273 The locally weighted adjacency matrix was subjected to Louvain modularity as implemented in

274 the python pip package: python-louvain.

275

276 *Implementation of other feature selection algorithms*

277 Because each feature selection algorithm expects slightly different processing methods

278 relative to each other (either normalized and log-transformed, or count data), we followed author

279 guidance in implementation.

280

281 *PyMINEr's overdispersion pipeline*: is contained within the originally published full PyMINEr

282 pipeline, but is also callable within python as follows:

```
283 feature_table = do_over_dispers_feat_select(ids=cell_ids,  
284                                     ID_list=gene_ids,  
285                                     in_mat=exprs)  
286  
287 Seurat's overdispersion: Per author guidelines, we log-normalized the input expression matrix  
288 and selected features as follows:  
289 obj<- NormalizeData(CreateSeuratObject(exprs))  
290 obj <- FindVariableFeatures(obj)  
291 var_feat <- VariableFeatures(obj)  
292  
293 Original Brennecke algorithm: We used the implementation of the original overdispersion-based  
294 feature selection algorithm as implemented in the M3Drop package as follows:  
295 Brennecke_HVG <- BrenneckeGetVariableGenes(exprs, fdr = 0.05, minBiolDisp = 0.5)  
296  
297 M3Drop: Unlike other most other feature selection algorithms, M3Drop allows for either a pre-  
298 specified FDR, or a pre-specified percentage of the transcriptome to select. In our testing using  
299 the FDR approach (which could theoretically solve that the null-dataset problem), we found that  
300 each dataset required fine tuning of this cutoff to provide reasonable results, and in the case of  
301 full-length transcript based approaches did not select any genes even in the full datasets, which  
302 are known to be biologically complex. We therefore sought a more realistic implementation that  
303 did not require manual tuning for each dataset, and therefore implemented the “percentage”  
304 approach within M3Drop so that a standard call yielded meaningful results regardless of dataset,  
305 without necessitating a manual inspection for hyperparameter selection for all datasets, which  
306 could also be seen as tuning hyperparameters to fit our expectations of the data. The  
307 implementation was as follows:  
308     results <- M3DropGetExtremes(exprs, percent=0.05, suppress.plot=TRUE)
```

309 Using the genes within the results\$right section as the genes with an excess of zeros for the final
310 selected genes.

311

312 *Details of anti-correlation feature selection algorithm*

313 We aimed to develop an algorithm that identifies genes that have “too many” negative
314 correlations below a dynamically selected cutoff that make the selected genes more negatively
315 correlated with other genes than one would expect from random chance. To this end we began
316 with a False Positive Rate (FPR) of 0.001, for identifying a cutoff at which correlations should be
317 counted as a “discovery” (D, where more significant), or “non-discovery” (ND, where less
318 significant). Using a bootstrap shuffled null background, in which all discoveries (D) are false,
319 because true positives (TP) are known to be equal to zero:

320
$$FP + TP = N(D)$$

321 Where D is all discoveries, more significant than the cutoff. Therefore because this is measured
322 from a bootstrap shuffled null background (i.e.: TP = 0):

323
$$FP = N(D)$$

324 Using this knowledge, we created the null background of gene-gene Spearman correlations is
325 generated through randomly sampling 5,000 genes, shuffling within-genes, such that a gene-
326 gene correlation plot would have its x-y pairing shuffled, calculating pairwise Spearman
327 correlations.

328

329 **Definitions**

330 **E_o**: the original expression matrix

331 **rand**: an integer vector of the length 5000 for the random samples within the space of 1..n, where
332 n is the number of genes

333 **E_r**: The random subset matrix that is permuted as defined below:

334 For i..N(rand):

335 $\mathbf{E}_{r,i} = \text{permute}(\mathbf{E}_{o, \text{rand}[i]})$

336 Where \mathbf{E}_r provides a $N(\text{cell}) \times N(\text{rand})$ matrix, which is a within-gene bootstrap shuffled
337 version of a subset of the transcriptome, therefore unpairing the gene-gene pairs for measuring
338 the null background of Spearman correlations.

339 In our testing, using a greater number of randomly selected genes, $N(\text{rand})$, for the
340 permutation based null-background did alter the null-distributions, as these distributions were
341 stable at this sampling depth, and did not notably change the selected cutoffs. Note that the
342 method of rank transformation for Spearman correlation effects the outcome; here we perform
343 dense-rank transformation. Non-dense rank transformations frequently result in large gaps within
344 the distributions because of ties. This is particularly important with count-based datasets where
345 ties are frequent.

346 The null Spearman background matrix (\mathbf{B}) was the symmetric 5000 x 5000 comparison of
347 this sample (5000 choose 2 combinations).

348 For $i=1..N(\text{rand})$ and $j=1..N(\text{rand})$:

349
$$\mathbf{B}_{i,j} = \text{Spearman}(\mathbf{E}_{r,i}, \mathbf{E}_{r,j})$$

350

351 Next, this \mathbf{B} background matrix, of null Spearman rho values, is filtered for only values $\mathbf{B}_{i,j} < 0$, thus
352 creating a negative correlation null-background; this is needed because the null background for
353 values $\mathbf{B}_{i,j} > 0$ and values $\mathbf{B}_{i,j} < 0$ follow different distributions (**Extended Data Fig. 2c**), indicating
354 the necessity to measure them independently. Self-comparisons and duplicate comparisons were
355 also removed.

356 For $i=1..N(\text{rand})$, and $j=i+1..N(\text{rand})$:

357
$$\mathbf{b} = (\mathbf{B}_{i,j} \in \mathbf{B} \mid \mathbf{B}_{i,j} < 0 \mid i > j)$$

358 Conceptually, this filtering is also important because the estimated number of false
359 positives (FP) for a given gene i is dependent on the number of genes that are actually randomly

360 distributed, or truly correlated. For example, gene X is co-regulated within a module of 2000
361 genes, while gene Y is not genuinely correlated with any other genes. Given that the number of
362 genes is static and zero sum, this true positive co-regulation removes those genes from possible
363 false positive negatively correlated genes.

364

365 This null background vector (b) is used to calculate an the cutoff (C_{neg}) that most closely
366 matches the desired FPR (default=1 in 1000 false positives), with a discovery considered as a
367 Spearman rho value $< C_{neg}$ in the gene-gene correlation matrix (S) calculated from the unshuffled
368 original expression matrix (E_0). This cutoff is used for the estimated false discovery rate (FDR) for
369 the original intact unshuffled dataset.

370 Given that:

371
$$FPR = \frac{FP}{FP + TN}$$

372 and

373
$$N(b) = FP + TN$$

374 Because $TP = FN = 0$, given that b was generated from a bootstrap shuffled null. We therefore
375 find that:

376
$$FPR = \frac{FP}{N(b)}$$

377
$$N(b) * FPR = FP$$

378 Therefore, to identify the appropriate cutoff (C_{neg}), that yields the FPR(=1e-3 by default), we
379 simply take the Spearman rho value of b that is located within the sorted background vector that
380 gives the ratio of false positives to true negatives.

381
$$b_{sort} = sort(b)$$

382 Such that for $i=1..N(b_{sort})-1$, $b_{sort,i} < b_{sort,i+1}$

383 We then calculate the C_{neg} cutoff, but taking the value at the index that gives the expected ratio
384 of false positives to true negatives as determined by the FPR hyperparameter (default=1e-3)

385
$$C_{neg} = b_{sort, \lfloor FPR \rfloor}$$

386 Next, we use this empirically determined cutoff (C_{neg}), applying it to classify “discoveries” of
387 negative correlations in the correlation matrix \mathbf{S} as calculated from the original, non-shuffled
388 dataset (\mathbf{E}_o). Where a discovery is defined as a Spearman rho value $\mathbf{S}_{i,j}$ less than the C_{neg} cutoff.

389 Again it is important to note two things: 1) the null distribution of Spearman correlations,
390 are in fact two separate distributions concatenated around zero, for the null distribution of rho
391 values <0 , and the null distribution of rho values >0 (ED. Fig. 2c); and 2) that variable abundance
392 of True Positives within the positive correlation domain will decrease the total number of
393 comparisons that fall within the negative correlation domain of these distributions; these two
394 distributions are therefore in competition with one another, meaning that they must be quantified
395 independently. For these reasons, when applying the empirically measured cutoff (C_{neg}) from the
396 shuffled transcriptome, we must apply it only to the correlations falling below zero. To
397 apply this cutoff (C_{neg}) to the original expression matrix (\mathbf{E}_o), we first calculate the symmetric
398 gene-gene Spearman rho matrix (\mathbf{S}).

399 Next, the number of total (T) Spearman rhos values <0 within \mathbf{S} is tabulated for the application of
400 our cutoff (C_{neg}):

401
$$T_i = N(\mathbf{S}_{i,j} \in \mathbf{S} \mid \mathbf{S}_{i,j} < 0)$$

402 For $i=1..n$, where n is the number of genes.

403 Note also, that T_i sums to the total number of discoveries (D) and non-discoveries (ND).

404
$$T_i = N(D_i) + N(ND_i) = TP + TN + FP + FN$$

405 Where:

406
$$N(D_i) = N(\mathbf{S}_{i,j} \in \mathbf{S} \mid \mathbf{S}_{i,j} < C_{neg}) = FP + TP$$

407
$$N(ND_i) = N(\mathbf{S}_{i,j} \in \mathbf{S} \mid \mathbf{S}_{i,j} < 0 \mid \mathbf{S}_{i,j} > C_{neg}) = FN + TN$$

408

409 Further, the discoveries are comprised of both false positives (FP) and true positives (TP),
410 however, *which* individual values within the discovery class is a FP or TP is unknown. Using the
411 FPR however, we can estimate the number of *expected* FPs given the total number of
412 comparisons <0 for the given gene (T_i). In other words, if this gene were random in its negative
413 correlations, then only a specific number of false positives would be expected (\widehat{FP}_i), using C_{neg}
414 as a cutoff.

415
$$\widehat{FP}_i = T_i * FPR$$

416 Therefore, with *FDR* defined as:

417
$$FDR = \frac{FP}{(FP + TP)}$$

418 We can estimate the *FDR* for each gene, determining if it has an over abundance of negative
419 correlations compared to what is expected from the null distribution:

420
$$\widehat{FDR}_i = \frac{\widehat{FP}_i}{N(D_i)}$$

421 We then select genes that have a $>15x$ excess in discoveries relative the expected number of
422 false positives under the null distribution assumption. This corresponds to an estimated $\widehat{FDR} =$
423 0.066 (1/15). This yields the set of all excessively negatively correlated genes (A):

424
$$A = \{ gene_i \in genes \mid \widehat{FDR}_i < 0.066 \}$$

425 Lastly, given that spurious positivity is still possible and even expected, we add one last layer of
426 protection against false discoveries. The positive/negative status of a single gene likely does not
427 define a truly “novel subtype” – particularly in a technique such as single-cell -omics where
428 stochastic dropout from random sampling is expected. We therefore apply an additional filter from
429 the premise that the genes whose expression patterns separate meaningful populations should
430 also be positively correlated with other genes that are following similar regulatory patterns. To

431 select this population of genes, we find genes that have greater than 10 positive correlations
432 above the positive correlation cutoff (C_{pos}), as calculated similarly to (C_{neg}) as described above.

433
$$M = \{gene_i \in genes \mid N(S_{i,j} \mid S_{i,j} > C_{pos} \mid i \neq j) > 10\}$$

434 The final included features are the intersect of A and M:

435
$$F = A \cap M$$

436 Overall, this means that genes must contain both an excess of negative correlations, and be a
437 member of a “module” of at least 10 genes that move in concert.

438

439 *Recursion benchmarks*

440 An initial run of locally weighted Louvain modularity was performed, then the given dataset
441 was subset to contain only the cells of a given cluster in the prior round of clustering. Next, feature
442 selection and locally weighted Louvain modularity was applied again, recursively until either each
443 cell was called its own “cell-type”/cluster or produced “cell-types”/clusters with ≤ 5 cells.

444 Circular recursion graphs were displayed using networkx²⁶, with layout determined by the
445 graphviz_layout(prog='twopi') layout²⁷.

446

447 *In silico recursive clustering benchmark*

448 Four clusters were simulated using Splatter¹³, and all algorithms were allowed to
449 recursively select features, which were then subjected to locally weighted Louvain modularity until
450 one of the following conditions were met: no features were selected, the clustering algorithm only
451 found a single cluster, or the results of clustering formed groups of 5 or fewer cells.

452

453 *Real-world recursive clustering benchmark*

454 The above described recursion procedure was applied to the previously released mouse
455 heart scRNASeq dataset,²⁸ and human PBMC dataset²⁹ for UMI based technologies, and mouse

456 hippocampus single nucleus RNAseq¹⁴ and human dendritic cell/monocyte³⁰ datasets were used
457 for full length transcript sequencing based approaches. Each dataset was normalized as
458 described above and is available in the repository site containing this benchmark:
459 [https://bitbucket.org/scotttyler892/anti correlation vs overdispersion](https://bitbucket.org/scotttyler892/anti_correlation_vs_overdispersion) in the data folder. The same
460 recursive clustering procedure was followed as described for the *in silico* recursion benchmark
461 above.

462

463 *Feature selection accuracy based on Splatter and Sergio simulations*

464 For both simulation paradigms, we simulated 4, 6, 8, and 10 clusters. 2500 cells were
465 simulated with 10000 genes, of which 2000 were intended to be differentially regulated across
466 clusters. Once simulations were completed, the datasets were downsampled down to 95% of the
467 cell with the lowest total counts in the given dataset, using the pyminer_norm python package³¹.

468 Splatter simulations were generated using the bin/simulate_data.R with the above
469 described clusters, cells, and gene parameters. SERGIO simulations were generated from the
470 bin/generate_sergio_sim.py script, which was called from the bin/simulate_data.R file. For each
471 cluster, a single “master-regulator” gene was used to induce high expression of its child nodes in
472 the GRN. The non-differentially regulated genes were random negative binomial distributions
473 added to the network with the np.random.negative_binomial function.

474 Similar to performing pathway analyses, a proper background list of genes is necessary
475 for quantifying enrichment. For example there may be a simulated low-expression gene that was
476 “differentially expressed” in ground-truth, however, was only expressed in two cells after
477 simulation of the low expressed gene. In this situation, this gene it would not be realistically
478 possible to “detect” this gene as differentially expressed even if ground truth clusters were known.
479 Therefore to generate a background of detectably differentially expressed genes, were performed
480 differential expression analysis by 1-way ANOVA (aov function) using the known ground truth
481 cluster labels. This gives us a list of detectably differentially expressed genes to use as the ground

482 truth desired genes for feature selection, while non-detectably differentially expressed were all
483 treated as not desired for selection. This parallels pathway analysis in that, if a gene is not
484 detectably expressed, it should not be included in the custom background.

485

486 *Pancreatic datasets for feature selection*

487 The seven pancreatic datasets^{2, 16-20} used for feature selection efficacy benchmarking
488 were processed as previously described²; the available post-processing datasets were used as-
489 is. These datasets are also now re-packaged in the data zip contained within the benchmark
490 repository. To assess efficacy, three primary metrics were used via gProfiler analysis using the
491 human protein atlas “HPA” pathways which indicates genes are enriched for certain tissues and
492 sub-tissue niches^{21, 22}. For each dataset, a custom background was used, comprised of the genes
493 expressed in the given dataset. For each analysis, the HPA results were filtered to include only
494 the pancreatic tissues and niches, the pancreatic HPA pathway that was the most significant was
495 counted as a method’s best pancreatic match. The -log10(p-values), precision, and recall for this
496 best match was used for comparisons. To adjust for the wide range and skewed distributions in
497 significance across datasets and methods, we rank transformed the -log10(p-values); precision
498 and recall however are all on a scale between 0 and 1, and were therefore analyzed directly.
499 Significance was determined with the aov and TukeyHSD functions to measure the main effects
500 and post-hocs respectively. The aov function was called with the formula: metric ~ method +
501 dataset.

502

503 *Tabula Muris dataset*

504 The senescent Tabula Muris dataset²³ was used to demonstrate the scalability of our
505 analytic pipeline. This dataset was previously filtered to contain only cells with ≥ 2500 UMI counts.
506 We therefore downsampled the dataset such that all cells contained 2500 UMI, and log2

507 transformed it for analysis. The downsampling process was performed using the bio-pyminer-
508 norm package that is pip installable:

509 python3 -m pip install bio-pyminer-norm

510 The process of downsampling is reported in detail at the repository website:
511 https://bitbucket.org/scotttyler892/pyminer_norm

512

513 Subclustering rounds were first feature selected with the anti-correlation package that we
514 released here, using default parameters:

515 from anticor_features.anticor_features import

516 anti_cor_table = get_anti_cor_genes(exprs, feature_ids, species = "mmusculus")

517 Locally weighted Louvain modularity was used for clustering as described above. Note that while
518 the default functionality of our feature selection package automatically removes ribosomal,
519 mitochondrial, and hemoglobin related genes, for fair comparison with other methods, these
520 genes were left in for possible selection when comparing to other algorithms. This can be
521 customized using the pre_remove_pathways argument. The default removal list are genes
522 contained in the following pathways (all related to ribosomal, mitochondrial, and hemoglobin):

523 "GO:0044429", "GO:0006390", "GO:0005739", "GO:0005743", "GO:0070125", "GO:0070126", "GO:
524 0005759", "GO:0032543", "GO:0044455", "GO:0005761", "GO:0005840", "GO:0003735", "GO:0022
525 626", "GO:0044391", "GO:0006614", "GO:0006613", "GO:0045047", "GO:0000184", "GO:0043043"
526 , "GO:0006413", "GO:0022613", "GO:0043604", "GO:0015934", "GO:0006415", "GO:0015935",
527 "GO:0072599", "GO:0071826", "GO:0042254", "GO:0042273", "GO:0042274", "GO:0006364", "GO:
528 0022618", "GO:0005730", "GO:0005791", "GO:0098554", "GO:0019843", "GO:0030492"

529 Alternatively, if the user wishes to exclude specific features, these can be included in the
530 pre_remove_features list argument; however, this was left empty for all of the work presented
531 here.

532 **References**

533 1. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-
534 1902.e1821 (2019).

535 2. Tyler, S.R. et al. PyMINER Finds Gene and Autocrine-Paracrine Networks from Human
536 Islet scRNA-Seq. *Cell Reports* **26**, 1951-1964.e1958 (2019).

537 3. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments.
538 *Nature methods* **10**, 1093 (2013).

539 4. Andrews, T.S. & Hemberg, M. M3Drop: dropout-based feature selection for scRNASeq.
540 *Bioinformatics* **35**, 2865-2867 (2018).

541 5. Madisoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus
542 tissue stability after cold preservation. *Genome Biology* **21**, 1 (2019).

543 6. Cui, Y. et al. Single-Cell Transcriptome Analysis Maps the Developmental Track of the
544 Human Heart. *Cell Reports* **26**, 1934-1950.e1935 (2019).

545 7. Kaplan, N. et al. Single-Cell RNA Transcriptome Helps Define the Limbal/Corneal
546 Epithelial Stem/Early Transit Amplifying Cells and How Autophagy Affects This
547 Population. *Investigative Ophthalmology & Visual Science* **60**, 3570-3583 (2019).

548 8. Ayyaz, A. et al. Single-cell transcriptomes of the regenerating intestine reveal a revival
549 stem cell. *Nature* **569**, 121-125 (2019).

550 9. Kiselev, V.Y., Andrews, T.S. & Hemberg, M. Challenges in unsupervised clustering of
551 single-cell RNA-seq data. *Nature Reviews Genetics* **20**, 273-282 (2019).

552 10. Kleinberg, J. An impossibility theorem for clustering. *Advances in neural information
553 processing systems*, 463-470 (2003).

554 11. Liu, H. et al. Systematically labeling developmental stage-specific genes for the study of
555 pancreatic β -cell differentiation from human embryonic stem cells. *Cell Research* **24**,
556 1181-1200 (2014).

557 12. Andrews, T.S. & Hemberg, M. Dropout-based feature selection for scRNASeq. *bioRxiv*,
558 065094 (2018).

559 13. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing
560 data. *Genome Biology* **18**, 174 (2017).

561 14. Habib, N. et al. Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn
562 neurons. *Science* **353**, 925-928 (2016).

563 15. Dibaeinia, P. & Sinha, S. SERGIO: A Single-Cell Expression Simulator Guided by Gene
564 Regulatory Networks. *Cell Systems* **11**, 252-271.e211 (2020).

565 16. Li, J. et al. Single-cell transcriptomes reveal characteristic features of human pancreatic
566 islet cell types. *EMBO reports* **17**, 178-187 (2016).

567 17. Muraro, M.J. et al. A Single-Cell Transcriptome Atlas of the Human Pancreas. *Cell Syst*
568 **3**, 385-394.e383 (2016).

569 18. Segerstolpe, Å. et al. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in
570 Health and Type 2 Diabetes. *Cell metabolism* **24**, 593-607 (2016).

571 19. Wang, Y.J. et al. Single-Cell Transcriptomics of the Human Endocrine Pancreas. *Diabetes*
572 **65**, 3028-3038 (2016).

573 20. Xin, Y. et al. RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes
574 Genes. *Cell metabolism* **24**, 608-615 (2016).

575 21. Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and
576 conversions of gene lists (2019 update). *Nucleic Acids Research* **47**, W191-W198 (2019).

577 22. Uhlén, M. et al. Tissue-based map of the human proteome. *Science* **347**, 1260419 (2015).

578 23. Almanzar, N. et al. A single-cell transcriptomic atlas characterizes ageing tissues in the
579 mouse. *Nature* **583**, 590-595 (2020).

580 24. Brereton, M.F., Vergari, E., Zhang, Q. & Clark, A. Alpha-, Delta- and PP-cells: Are They
581 the Architectural Cornerstones of Islet Structure and Co-ordination? *The Journal of*

582 *histochemistry and cytochemistry : official journal of the Histochemistry Society* **63**, 575-
 583 591 (2015).

584 25. Wolf, F.A., Angerer, P. & Theis, F.J. SCANPY: large-scale single-cell gene expression
 585 data analysis. *Genome Biology* **19**, 15 (2018).

586 26. Hagberg, A., Swart, P. & S Chult, D. (Los Alamos National Lab.(LANL), Los Alamos, NM
 587 (United States), 2008).

588 27. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C. & Woodhull, G. in *Graph drawing*
 589 software 127-148 (Springer, 2004).

590 28. Genomics, x. (2018).

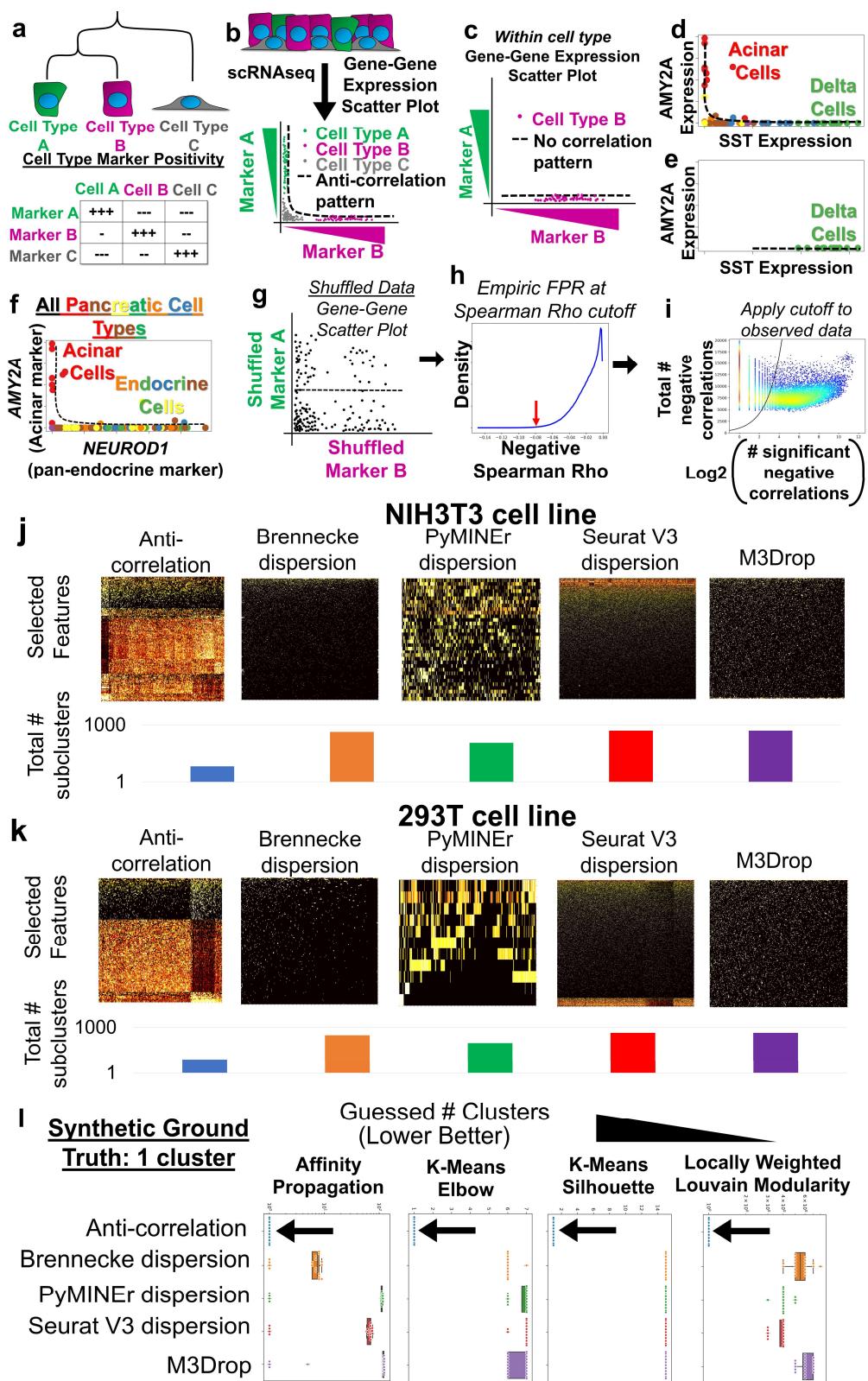
591 29. Genomics, x. (2018).

592 30. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells,
 593 monocytes, and progenitors. *Science (New York, N.Y.)* **356**, eaah4573 (2017).

594 31. Tyler, S.R., Bunyavanich, S. & Schadt, E.E. PMD Uncovers Widespread Cell-State
 595 Erasure by scRNASeq Batch Correction Methods. *bioRxiv*, 2021.2011.2015.468733
 596 (2021).

597

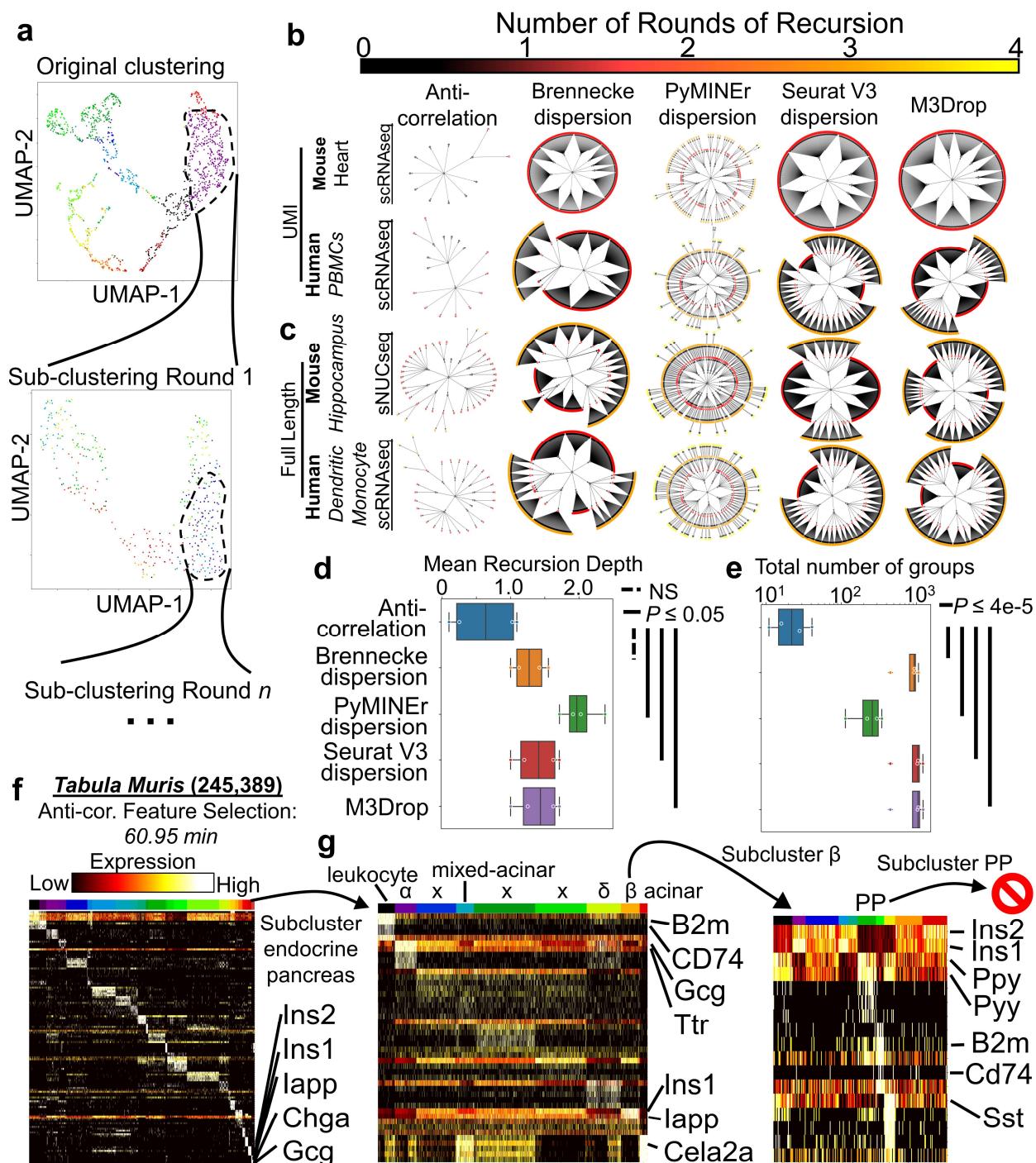
598



599

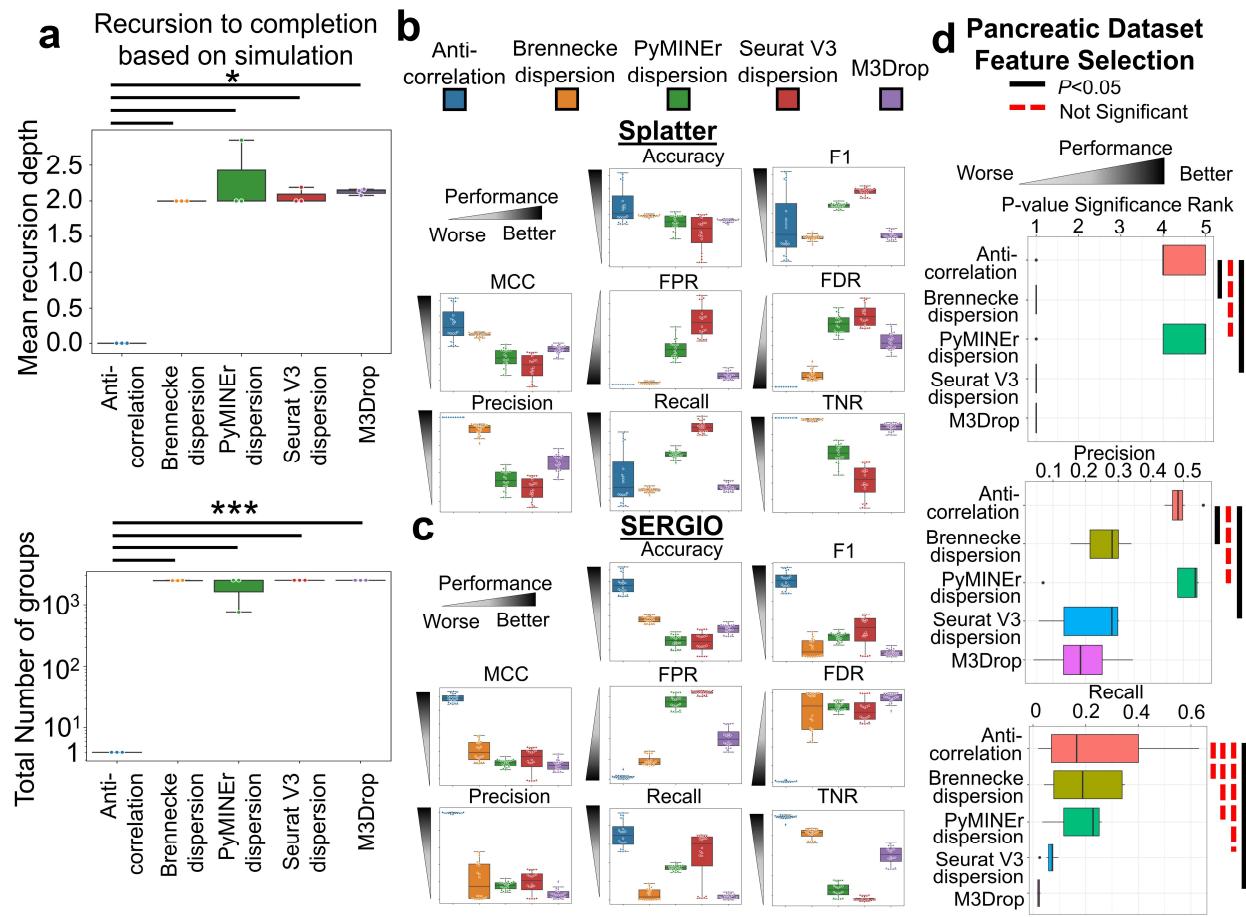
600 **Figure 1: Anti-correlation algorithm premise and passage of the null-dataset problem. a,**
 601 The logic behind anti-correlation-based feature selection. Marker-genes will be expressed at

602 higher levels in their lineage/cell-type compared to cells outside of that lineage or cell-type. **b**,
603 As a scatter plot where expression of marker A is plotted against marker B, cells of type A and B
604 will form an L-shaped anti-correlation pattern, while cell-type C would express low levels of both
605 marker A and B. **c**, This anti-correlation pattern would disappear when examining a single
606 population of cells. **d**, The anti-correlation pattern of marker-genes appears in an example
607 dataset,² where high expression of *AMY2A* in acinar cells forms an anti-correlation pattern with
608 *SST* in delta cells of the pancreas. **e**, The anti-correlation pattern between *AMY2A* and *SST*
609 disappears when only subset for delta cells. **f**, The anti-correlation pattern is also present in
610 lineage-marking-genes as shown by the pattern of *AMY2A* and *NEUROD1*, which labels all
611 endocrine cells of the pancreas. **g**, The anti-correlation-based feature selection algorithm first
612 calculates a null background of Spearman correlations based on bootstrap shuffled gene-gene
613 pairs to calculate a background. **h**, Next the cutoff value closest matching the desired false
614 positive rate (FPR) is determined. Displayed is a histogram of the bootstrap shuffled null-
615 background of Spearman correlations less than zero. **i**, Lastly genes which show more
616 significant negative correlations (x-axis) than expected by chance (black line), given the gene's
617 number of total negative correlations (y-axis), are selected: i.e. those to the right of the cutoff
618 line. These are then used to calculate the False Discovery Rate (FDR) for each gene (See
619 **Methods** for details). **j-k**, Heatmaps of selected features, and the total number of subclusters for
620 each method of feature selection paired with AP clustering, when algorithms were allowed to
621 sub-divide iteratively for homeostatic cell line scRNAseq: (**j**) NIH3T3, (**k**) HEK293T. **l**, Boxplots
622 indicating the total number of clusters identified by each method of feature selection (box colors)
623 and clustering (noted in panels) showed that anti-correlation-based features selection (arrows)
624 identified no features, indicating a single population in all cases, while other methods produced
625 more clusters, thus failing the null-dataset problem.



627 **Figure 2: Recursion-to-completion in real datasets and anti-correlation algorithm scaling.**
 628 **a**, A schematic of sub-clustering is shown in the form of UMAP projections of the original
 629 dataset (left panel), and a sub-clustering iteration of a population found in the first round of
 630 feature selection and clustering (right panel). **b-c**, In real datasets of varying technologies,
 631 status quo algorithms fail the recursion-to-completion problem while the anti-correlation-based
 632 approach prevented recursion-to-completion. Recursive clustering plots where each point
 633 indicates a cluster at a given recursive clustering recursion-depth as denoted in successive

634 rings and color. **d**, Boxplots of the mean recursion depth for each of the final sub-clusters for
635 each noted method. **e**, Boxplots of the total number of groups obtained through iterative sub-
636 clustering. **f**, A heatmap of the top 5 marker genes per cluster are shown for the 26 primary
637 lineages from the full senescent *Tabula Muris* dataset²³, with the last cluster representing a
638 mixture of endocrine pancreas. **g**, When subclustered with anti-correlated feature selection, cell-
639 type droplets (x) as well as classically described leukocyte, α , δ , β , and acinar populations were
640 discovered. Subclustering β cells discovered mixed-lineage droplets with δ and leukocyte cells
641 as well as the rare PP-cell population, but additional subclustering of PP-cells was prevented by
642 anti-correlation-based feature selection.



643

644 **Extended Data Figure 1: Anti-correlation-based feature selection outperforms other**
 645 **methods in recursion-to-completion and feature selection efficacy.** **a**, Using Splatter

646 simulation of four clusters, all algorithms were allowed to select features and perform locally

647 weighted Louvain modularity-based clustering recursively. Shown are boxplots indicating the

648 mean recursive depth and total number of clusters on a log scale. The anti-correlation algorithm

649 did not allow for any recursive clustering, resulting in fewer clusters identified (*: $P \leq 6.2 \times 10^{-6}$;

650 ***: $P \leq 1.7 \times 10^{-9}$; all ANOVA/TukeyHSD post-hoc comparisons against anti-correlation). **b-c**, Taken

651 as a classification problem in which a feature selection algorithm's task is to select detectably

652 differentially expressed genes across clusters, we quantified each algorithm's accuracy, F1 score,

653 Mathew's Correlation Coefficient (MCC), false positive rate (FPR), false discovery rate (FDR),

654 precision, true negative rate (TNR), and recall. **b**, Boxplots of classification metrics (panels) by

655 feature selection approach (colored boxes) using Splatter simulations¹³. **c**, Boxplots indicating the

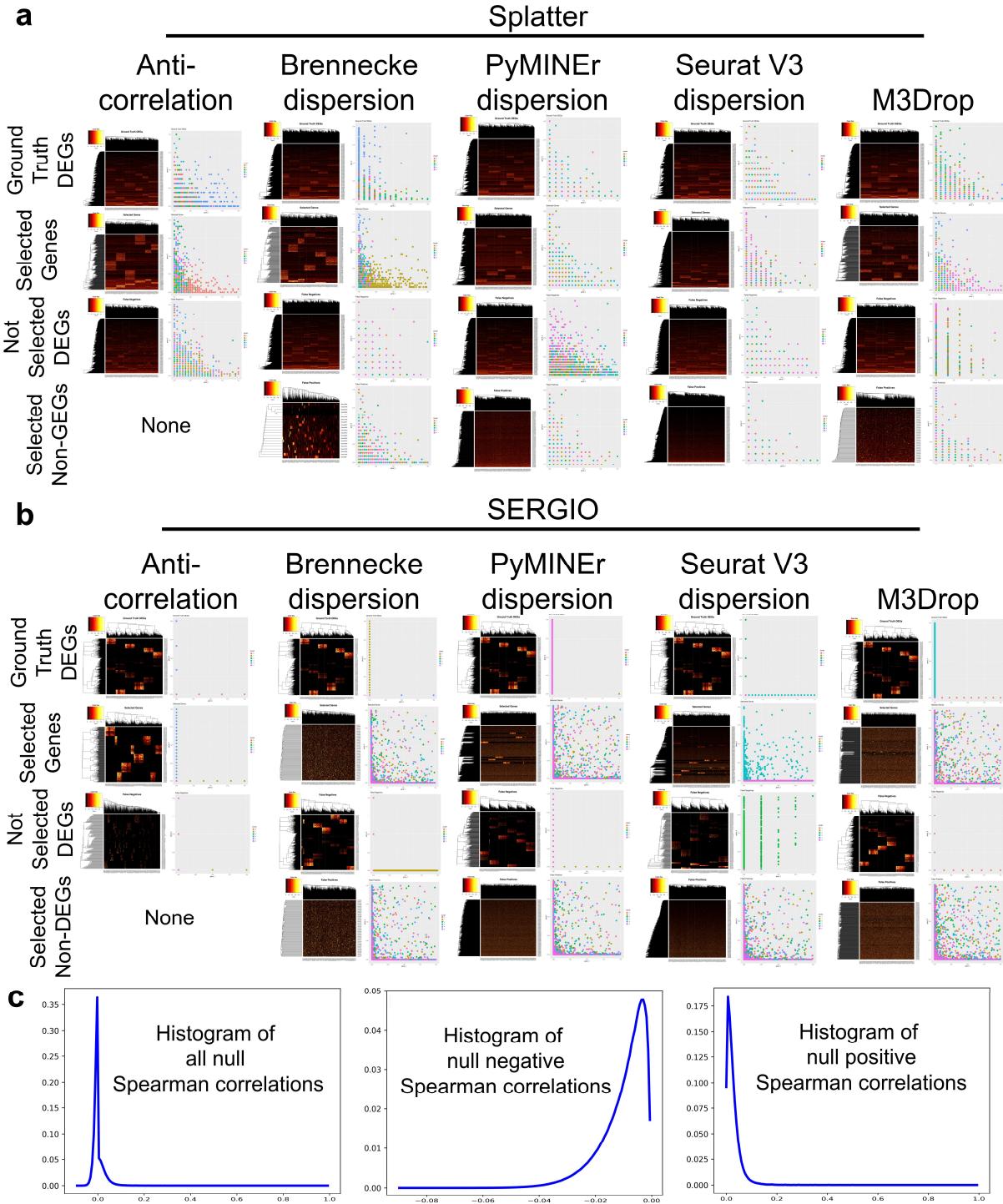
656 performance of each features selection method (colored boxes) for each metric (panels), using

657 SERGIO, gene regulatory network based simulations¹⁵. **d**, Using 7 pancreatic datasets^{2, 16-20}, each

658 algorithm's selected features was analyzed for significance with pancreatic tissue enrichment via

659 gProfiler and the human protein atlas^{21, 22}; displayed are boxplots of the "best" pancreatic pathway

660 by p-value comparing this pathway's rank p-value, precision, and recall.



661

662 **Extended Data Figure 2: Examples of Splatter and SERGIO simulations, and feature**
 663 **selection.** **a,b,** For both simulation paradigms **(a)** Splatter and **(b)** SERGIO, heatmaps are
 664 shown for the ground truth differentially expressed genes (DEGs), the selected-genes, non-
 665 selected DEGs, and selected genes that are not differentially expressed. Next to the heatmaps
 666 are gene-gene scatter plots of randomly selected genes from the indicated class (row) for the
 667 feature selection algorithms (columns). Points indicate an individual cell's expression of random

668 gene-x and gene-y for the designated gene class and algorithm, colorized by the simulated
669 cluster. **(a)** Splatter DEGs show widespread co-expression of DEGs within all clusters, while **(b)**
670 SERGIO allows for cluster specific expression of DEGs. **(c)** An example histogram of null
671 distribution patterns of Spearman rhos on shuffled datasets shows that, even on shuffled data
672 with no true positives, negative rhos follow a different distribution than positive rho values.