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 14 

Abstract 15 

While sub-clustering cell-populations has become popular in single cell-omics, 16 

negative controls for this process are lacking. Popular feature-selection/clustering 17 

algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous 18 

clusters until nearly each cell is called its own cluster. Using 45,348 scRNAseq analyses 19 

of real and synthetic datasets, we found that anti-correlated gene selection reduces or 20 

eliminates erroneous subdivisions, increases marker-gene selection efficacy, and 21 

efficiently scales to 245k cells without the need for high-performance computing. 22 

 23 

Results 24 

A frequent first task in performing cell-type identification from scRNAseq is feature 25 

selection to identify genes that are cell-type specific markers based on various statistical 26 

properties. Current approaches include measures of the relationship between a gene’s mean and 27 

variance (i.e., overdispersion)1-3 and a gene’s mean and dropout rate4. An open problem however 28 

is how algorithms handle the “null-dataset;” that is, when there is only a single cell-type present. 29 

Given the popularity of sub-clustering (i.e., iteratively subdividing the initially identified 30 

clusters)5-8, it is important to know that these groups are not being erroneously subdivided, thus 31 

producing false subtypes9. While novel sub-populations of interest should always be validated via 32 

bench-biology methods, an algorithmic assurance that one is not being misled can save money 33 

and years of effort attempting to validate erroneously discovered “novel sub-populations.” Given 34 

the imperfections in clustering algorithms10, sub-clustering itself can be a valid practice,  because 35 

a single round of clustering may be insufficient to fully divide a dataset into its constituent groups. 36 

However, we must have confidence that such algorithms will correctly identify single populations, 37 

preventing the false discovery of nonexistent sub-populations. In the case of a single cell 38 

population, either 1) a feature selection algorithm would accurately report that there are no genes 39 
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that define sub-populations, or 2) the clustering algorithm would determine that only a single 40 

cluster is present.  41 

We sought to devise an algorithm to identify cell-type marker-genes that would not only 42 

identify subpopulations of cell-types with high accuracy, but also solve the null-dataset problem.  43 

We thus began from first principles, asking the question: “what is a cell-type?”. Traditional 44 

molecular biology has defined cell-types based on distinct cellular functions that are concordant 45 

with expression of distinct sets of genes: “marker-genes” (Fig. 1a), that often include hierarchical 46 

mutually exclusive gene expression. For example, in the pancreas the gene NEUROD1 is a pan-47 

endocrine marker, expressed in many different cell-types but should be mutually exclusively 48 

expressed from exocrine marker-genes11. If we accept this definition of cell-type and -lineage 49 

specific genes, we can algorithmically discover marker-genes from scRNAseq, as these genes 50 

will show a statistical excess of negative correlations with other genes (Fig. 1b). Given this 51 

premise, if only a single cell-identity is present in a dataset, we would expect an absence of an 52 

anti-correlation pattern since the cells of other cell-identities would not be present (Fig. 1c). 53 

Indeed, looking at known marker-genes from different cell types in the pancreas (i.e. AMY2A 54 

expressed in acinar cells and SST expressed in delta cells), we see the expected anti-correlation 55 

pattern between AMY2A and SST (Fig. 1d), which disappears when examining subsets 56 

comprised of only a single cell type (Fig. 1e). Notably, the anti-correlation pattern holds for 57 

lineage-markers as well as cell-type markers (Fig. 1f). 58 

Using these observations, we constructed an algorithm that identifies genes with an 59 

excess of negative correlations relative to what would be expected if the gene were un-patterned, 60 

as empirically measured with a bootstrap shuffled null background (Fig. 1g,h). We then select 61 

genes that have an excess of negative correlations, controlling for false positives by setting an 62 

appropriate false discovery rate (FDR) (Fig. 1i). Overall, this procedure selects the genes that 63 

have significantly more negative correlations with other genes than would be expected by chance 64 

(See Methods for details). While others have performed small-scale experiments using positive 65 
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correlations for feature selection, it was deemed infeasible due to computational run-time12; here 66 

we create an open-source, efficient implementation in python to overcome this barrier, but focus 67 

attention on negative correlation patterns as opposed to positive. 68 

Given our reasoning that the anti-correlation pattern should go away when examining data 69 

representing only a single cell-type (Fig. 1c), with preliminary support for our rationale in a single 70 

dataset (Fig. 1e), we hypothesized that anti-correlation-based feature selection would be 71 

sufficient to solve the null-dataset problem, while status quo algorithms may not adequately solve 72 

for this problem. With the null-dataset, no “cell-type or cell-state specific genes” should be 73 

identified as this is a single population of cells. We tested this hypothesis by performing feature 74 

selection and affinity propagation (AP)-based clustering on two datasets composed of scRNAseq 75 

from homeostatic cell line culture from NIH3T3 (Fig. 1j) or HEK293T cells (Fig. 1k), which we 76 

anticipate would capture the biologically relevant variation in only a single clustering round, and 77 

any attempt to further subdivide beyond that should be algorithmically blocked. Indeed, the anti-78 

correlation algorithm allowed for only a single round of clustering, while the other algorithms tested 79 

allowed for further subdivisions (Fig. 1j,k). 80 

While this preliminary evidence suggests that anti-correlation-based feature selection 81 

solves the issue of false positives from sub-clustering homogenous populations, real-world 82 

datasets do not harbor a “ground-truth.” We therefore simulated a single cluster using Splatter 83 

which produces negative binomially distributed gene expression matrices13. We performed 84 

feature selection using the noted algorithms1-4 and passed these features to four different 85 

clustering algorithms including Affinity Propagation, K-means+Elbow-rule, K-means+Silhouette, 86 

and locally weighted Louvain modularity (See methods for algorithm details). In all cases, the 87 

anti-correlation-based method for feature selection detected no valid features within a single 88 

population of cells, thus addressing the null-dataset problem, while all other feature selection and 89 

clustering algorithm combinations failed the null-dataset problem, selecting noisy features that 90 

resulted in at least several clusters (Fig. 1l). Note that most feature selection algorithms frequently 91 
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require the user to manually set the number of “discoveries” or selected features, which is likely 92 

a key contributor to this failure of the null-dataset problem when using standard feature selection 93 

approaches. 94 

Without an algorithmic check to prevent erroneous sub-clustering, one could recursively 95 

divide a dataset until it is fully subdivided (each individual cell representing its own cluster), here 96 

dubbed “recursion-to-completion” (Fig. 2a). In practice, this would indicate that someone 97 

analyzing a scRNAseq dataset could always decide to sub-cluster a “cluster of interest” and report 98 

a “novel subpopulation” of cells, resulting in false discoveries. To test the robustness of each 99 

feature selection algorithm to the recursion-to-completion problem, we selected four publicly 100 

available datasets from differing species and platforms including droplet-based UMI approaches 101 

(Fig. 2b) and full-length transcript single-cell and -nucleus RNAseq (sNucSeq) (Fig. 2c)14. Again, 102 

we found that standard overdispersion- and dropout-based feature selection methods enabled 103 

recursion-to-completion, often finding hundreds of clusters, while anti-correlation-based feature 104 

selection were robust to this problem. Anti-correlation showed fewer rounds of recursion (P≤0.05 105 

for TukeyHSD post-hocs), and fewer overall clusters (P≤1e-3 for TukeyHSD post-hocs) relative 106 

to other methods (Figure 2d-e). This demonstrates that anti-correlation-based feature selection 107 

is robust to differing technologies, species, and sequencing type, retaining the ability to minimize 108 

false sub-divisions. 109 

To verify these results with known ground-truth, we simulated 4 clusters, and allowed each 110 

algorithm to iteratively sub-cluster until either no features were returned, or only a single cluster 111 

was identified. Consistent with our findings from real-world datasets, anti-correlation-based 112 

feature selection protected against erroneous sub-clustering, while other approaches allowed for 113 

several rounds of recursive sub-clustering, yielding hundreds to thousands of final ‘clusters’ (fewer 114 

average rounds of sub-clustering: P=1.08e-6,F=52.9,main-effects 1-way ANOVA; P≤6.2e-6 for 115 

TukeyHSD post-hocs; fewer total clusters: P=7.2e-10,F=238.2,main-effects 1-way ANOVA; 116 

P≤1.3e-9 for TukeyHSD post-hocs); Extended Data Fig. 1a). These simulated data demonstrate 117 
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that anti-correlated feature selection guards against erroneously splitting a single population of 118 

cells, while the algorithms tested here enable false discoveries of what appear to be “novel sub-119 

types.” 120 

We next sought to determine the overall accuracy of these feature selection algorithms, 121 

where ground-truth differentially expressed genes (DEGs) should be selected by feature selection 122 

algorithms, and non-DEGs should not be selected. To this end, we used Splatter to simulate 123 

datasets comprised of 4, 6, 8, and 10 clusters. Our anti-correlation algorithm had the best 124 

accuracy, F1-score, Mathew’s Correlation Coefficient (MCC), precision, true negative rate, FPR, 125 

and false discovery rate (FDR) compared to other feature selection algorithms (Extended Data 126 

Fig. 1b). However, anti-correlation-based feature selection had average recall (also called 127 

sensitivity or false negative rate); this is explained however, by Splatter’s wide-spread co-128 

expression of all genes in all clusters (Extended Data Fig. 2a). In other words, using Splatter, all 129 

clusters express the “marker-genes” of all other clusters, therefore blunting the anti-correlations 130 

of marker-genes seen in practice (Fig. 1), thus reducing the apparent sensitivity. SERGIO 131 

however is a gene regulatory network (GRN) based scRNAseq simulation approach that more 132 

accurately represents empirical scRNAseq datasets15 and does not induce co-expression of all 133 

marker genes in all clusters (Extended Data Fig. 2b). Using this simulation paradigm anti-134 

correlation-based feature selection outperformed other approaches by every metric including 135 

recall/sensitivity (Extended Data Fig. 1c). Furthermore, using seven pancreatic datasets,2, 16-20 136 

the anti-correlated genes were either tied for, or had significantly higher p-value significance rank, 137 

precision, and recall for pancreatic specific genes based on gProfiler/Human Protein Atlas tissue 138 

enrichment compared to other algorithms (Extended Data Fig. 1d)21, 22. 139 

To assess the practical scalability of anti-correlation-based feature selection, we re-140 

processed and ran a larger dataset (245,389 cells) from a Tabula Muris data-release23. The full 141 

feature selection process took 60.95 minutes, while calculating the cell-cell correlations, distance, 142 

and clustering were far more computationally intense taking several days (see Methods for 143 
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clustering details) (Fig 2f). These findings show that anti-correlation-based feature selection 144 

should not be a major limiting factor for large datasets.  145 

We also sought to demonstrate our feature-selection approach’s utility in safe sub-146 

clustering in practice; to this end, we focused on a cluster whose marker genes included 147 

insulin/amylin (INS1/2, IAPP) and glucagon (GCG), the markers for pancreatic beta and alpha 148 

cells, respectively, indicating that this cluster was insufficiently divided in the first clustering round. 149 

We performed sub-clustering with anti-correlation, identifying leukocyte, alpha-, beta-, and delta-150 

cell populations. We further sub-clustered the insulin high population, and unexpectedly found the 151 

rare24 population of pancreatic-polypeptide (Ppy/Pyy) expressing PP-cells (Fig. 2g), a cluster 152 

comprising only 0.01% of the original dataset. Attempting to further sub-divide PP-cells yielded 153 

no usable features, thus showing that anti-correlation-based feature selection can facilitate 154 

extremely sensitive sub-clustering to identify rare biologically meaningful populations from large 155 

datasets, while also preventing errant subdivisions. 156 

As seen in the final sub-cluster round, however, while anti-correlation-based feature-157 

selection is biologically accurate and answers the question: “Should this cluster be sub-158 

clustered?”, it does not ensure that downstream algorithms will select the correct number of 159 

clusters; this remains an outstanding problem as previously reported9. However, passing the first 160 

step of successfully identifying a homogeneous population, through anti-correlation-based feature 161 

selection, provides confidence that meaningful structure existed in the parent population. 162 

Overall, these results demonstrate that anti-correlation-based feature selection solves 163 

the null-dataset and recursion-to-completion problems, outperforms others in overall feature 164 

selection accuracy, and works with both UMI and full-length sequencing methods. These 165 

properties can prevent wasted time and money for bench-practitioners attempting to validate 166 

novel sub-populations by providing an algorithmic check to false discoveries in scRNAseq. 167 

Lastly, our open source python package (titled anticor_features) is open-source, pip installable, 168 

and compatible with SCANPY/AnnData25 to enable broad adoptability.  169 
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Code and Data Availability 170 

All code used for implementing the anti-correlation-based feature selection approach is available 171 

as a stand-alone package: 172 

https://bitbucket.org/scottyler892/anticor_features 173 

and is also pip installable: 174 

python3 -m pip install anticor_features 175 

All code for running simulations and comparisons used in this study are available at: 176 

https://bitbucket.org/scottyler892/anti_correlation_vs_overdispersion/ 177 

  178 
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Methods 179 

Example of anti-correlation principle on pancreatic dataset  180 

 A previously published scRNAseq dataset and annotations were used for scatter plots of 181 

AMY2A for acinar cells, SST for delta cells, and NEUROD1 for endocrine cells (Fig. 1d-f)2. 182 

 183 

Normalization of scRNAseq datasets to be used for benchmarking 184 

 Due to large variation (often orders of magnitude differences) in total UMI counts across 185 

cells and it’s downstream effects on cell-to-cell distance metrics, we normalized each cell within 186 

UMI based datasets through bootstrapped UMI downsampling as described here: 187 

https://bitbucket.org/scottyler892/pyminer_norm. In brief, a cutoff is selected for both the number 188 

of observed genes in a cell as well as the number of total UMI observed in a cell. Cells not meeting 189 

these criteria are removed, and all other cells are normalized through UMI downsampling. UMI 190 

downsampling is done through simulating the transcriptome of a given cell, and randomly 191 

selecting N transcripts, where N is the desired number of total UMI for each cell to have, in this 192 

case 95% of the cutoff used for total UMI count. Thus, each cell is randomly sampled to the same 193 

UMI depth. 194 

 To normalize full-length sequencing datasets with TPM or similar units, we created a 195 

variant of quantile normalization we call truncated quantile normalization. First a cutoff (g) is 196 

selected for the number of genes to be expressed in each cell in the final normalized dataset. 197 

Next, cells with fewer than g+1 genes expressed are removed, then for each cell, the 198 

transcriptome is subtracted by the expression value of gene g+1 for that cell, thus setting the g+1 199 

gene’s expression to zero, leaving the remaining top g expressed genes with >0 expression in all 200 

cells. All negative values are then set to 0. For ties at the expression-level of g that would result 201 

in differing number of observed genes, genes are randomly selected to be preserved or set to 202 

zero stochastically. This yields a vector for each cell for whom the top expressed g genes are 203 

kept, but shifted downwards in a manner that does not introduce an artificially large gap between 204 
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the lowest expressed gene (g) and zero. These top g genes for each cell are then quantile 205 

normalized. This process is implemented in the pyminer_norm pip package, and can be called 206 

from the command-line on tsv files: 207 

      python3 -m pyminer_norm.quantile_normalize -i in_file.tsv -o out_file_qNorm.tsv -n 2000 208 

to perform truncated quantile normalization on the top 2000 genes for each cell. 209 

 210 

NIH3T3 and HEK293T cell line datasets 211 

This dataset was downloaded from 10x Genomics’ website at 212 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/1k_hgmm_v3). 213 

The cells of mouse or human origin were separated into distinct datasets for our purposes here 214 

based on the sum of reads that mapped to each species’ transcriptome, while doublets were 215 

excluded. In the case of both human and mouse references, cells were kept that had >3162 216 

counts mapping to hg19 or mm10 for HEK293T and NIH3T3 respectively, cells were also only 217 

kept if they had >1000 genes observed. The remaining cells were then downsampled to 3003 218 

counts for each dataset to normalize for variable count depth that otherwise spanned two orders 219 

of magnitude. 220 

 221 

Affinity Propagation 222 

Our implementation of affinity propagation was based on the sklearn 223 

sklearn.cluster.AffinityPropagation function, in which the preference vector is initialized to the row-224 

wise minimum of the input matrix; in this case, the negative squared Euclidean distance of the 225 

Spearman correlations across all cells. We observed that as datasets scale, the original affinity 226 

propagation algorithm fragments single populations into many small populations that were similar 227 

to each other. We therefore follow the original affinity propagation results with an analysis that 228 

calculates the distance (in affinity space) between cluster centers (also called exemplars). The 229 

standard deviation of within-cluster affinities is then calculated. For each cluster-cluster pair from 230 
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the original affinity propagation cluster results, we then determine the number of combined 231 

standard deviations required to traverse half the Euclidean distance in affinity space between two 232 

cluster centers. This measure is the number of standard deviations needed to reach the waypoint 233 

between two cluster centers. Because these are standard deviation measures, we can convert 234 

these to transition probabilities, as with a Z-score, using the scipy.stats.norm.sf function. This 235 

creates a cluster x cluster matrix of transition probabilities; this probability matrix is then subjected 236 

to dense weighted Louvain modularity. Final clusters are determined by the results of this 237 

procedure, where AP clusters that were determined by Louvain modularity to belong to the same 238 

community are merged. All code and cluster for the affinity propagation with merged procedure 239 

can be accessed through running PyMINEr with the appended arguments: “ -ap_clust -ap_merge” 240 

at the command line or interactively via the pyminer.pyminer.pyminer_analysis function using the 241 

arguments: ap_clust=True, ap_merge=True. 242 

 243 

Clustering – K-means with Elbow and K-means with silhouette  244 

First each dataset (already log transformed) was subset for the genes selected by the 245 

given feature selection algorithm, then genes were min-max linear normalized between 0 and 1. 246 

K-means clustering was performed using the sklearn.cluster KMeans function. For the elbow rule, 247 

the sum of squared Euclidean distances of samples to their cluster center was used in conjunction 248 

with the given k value. We took the elbow to be the value of k which yielded the minimum distance 249 

to the origin. 250 

For the silhouette method, we calculated the average silhouette score with the 251 

sklearn.metrics silhouette_score function, and sample level silhouettes calculated with the 252 

silhouette_samples function. The number of clusters was selected by moving from k=1 to k_max, 253 

testing for whether there existed a cluster whose maximum sample level silhouette was less than 254 

the average silhouette score for the whole dataset (as determined by the silhouette_score 255 

function). 256 
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 257 

Clustering – Locally weighted Louvain modularity 258 

We created a kNN graph embedding and subjected it to Louvain modularity as follows: 259 

1. Calculate Spearman correlation of all cells against all other cells (matrix: S). 260 

2. Calculate the inverse squared Euclidean distance matrix from the Spearman matrix  261 

(matrix: D), divided by the square-root of the number of cells. In this matrix, cells that are 262 

more similar to each have higher values, and cells that are dissimilar have lower values, 263 

inversely proportional to the squared Euclidean distance. 264 

3. For each cell, i, (i.e.: row in matrix D) subtract the upper 95th percentile (or top 200th closest 265 

cell, whichever yields fewer connections) of distance vector (Di), then mask all negative 266 

values to zero, thus creating a weighted local distance matrix (matrix: L). 267 

4. To ensure that all cells are on an equivalent scale, each row in L is divided by it’s maximum 268 

( Li = Li / max(Li) ). 269 

5. The normalized local distance matrix L serves as the weighted adjacency matrix for 270 

building the network for weighted Louvain modularity. 271 

 272 

The locally weighted adjacency matrix was subjected to Louvain modularity as implemented in 273 

the python pip package: python-louvain. 274 

 275 

Implementation of other feature selection algorithms 276 

Because each feature selection algorithm expects slightly different processing methods 277 

relative to each other (either normalized and log-transformed, or count data), we followed author 278 

guidance in implementation. 279 

 280 

PyMINEr’s overdispersion pipeline: is contained within the originally published full PyMINEr 281 

pipeline, but is also callable within python as follows: 282 
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feature_table = do_over_dispers_feat_select(ids=cell_ids, 283 

                                                                         ID_list=gene_ids, 284 

                                                                         in_mat=exprs) 285 

 286 

Seurat’s overdispersion: Per author guidelines, we log-normalized the input expression matrix 287 

and selected features as follows: 288 

obj<- NormalizeData(CreateSeuratObject(exprs)) 289 

obj <- FindVariableFeatures(obj) 290 

var_feat <- VariableFeatures(obj) 291 

 292 

Original Brennecke algorithm: We used the implementation of the original overdispersion-based 293 

feature selection algorithm as implemented in the M3Drop package as follows: 294 

Brennecke_HVG <- BrenneckeGetVariableGenes(exprs, fdr = 0.05, minBiolDisp = 0.5) 295 

 296 

M3Drop: Unlike other most other feature selection algorithms, M3Drop allows for either a pre-297 

specified FDR, or a pre-specified percentage of the transcriptome to select. In our testing using 298 

the FDR approach (which could theoretically solve that the null-dataset problem), we found that 299 

each dataset required fine tuning of this cutoff to provide reasonable results, and in the case of 300 

full-length transcript based approaches did not select any genes even in the full datasets, which 301 

are known to be biologically complex. We therefore sought a more realistic implementation that 302 

did not require manual tuning for each dataset, and therefore implemented the “percentage” 303 

approach within M3Drop so that a standard call yielded meaningful results regardless of dataset, 304 

without necessitating a manual inspection for hyperparameter selection for all datasets, which 305 

could also be seen as tuning hyperparameters to fit our expectations of the data. The 306 

implementation was as follows:  307 

results <- M3DropGetExtremes(exprs, percent=0.05, suppress.plot=TRUE) 308 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.05.519161doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.519161
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

Using the genes within the results$right section as the genes with an excess of zeros for the final 309 

selected genes. 310 

 311 

Details of anti-correlation feature selection algorithm 312 

 We aimed to develop an algorithm that identifies genes that have “too many” negative 313 

correlations below a dynamically selected cutoff that make the selected genes more negatively 314 

correlated with other genes than one would expect from random chance. To this end we began 315 

with a False Positive Rate (FPR) of 0.001, for identifying a cutoff at which correlations should be 316 

counted as a “discovery” (D, where more significant), or “non-discovery” (ND, where less 317 

significant). Using a bootstrap shuffled null background, in which all discoveries (D) are false, 318 

because true positives (TP) are known to be equal to zero: 319 

𝐹𝑃 + 𝑇𝑃 = 𝑁(𝐷) 320 

Where D is all discoveries, more significant that the cutoff. Therefore because this is measured 321 

from a bootstrap shuffled null background (i.e.: TP = 0): 322 

𝐹𝑃 = 𝑁(𝐷) 323 

Using this knowledge, we created the null background of gene-gene Spearman correlations is 324 

generated through randomly sampling 5,000 genes, shuffling within-genes, such that a gene-325 

gene correlation plot would have its x-y pairing shuffled, calculating pairwise Spearman 326 

correlations. 327 

 328 

Definitions 329 

Eo: the original expression matrix 330 

rand: an integer vector of the length 5000 for the random samples within the space of 1..n, where 331 

n is the number of genes 332 

Er: The random subset matrix that is permuted as defined below: 333 

For i..N(rand): 334 
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Er,i = permute(Eo, rand[ i ]) 335 

Where Er provides a N(cell) x N(rand) matrix, which is a within-gene bootstrap shuffled 336 

version of a subset of the transcriptome, therefore unpairing the gene-gene pairs for measuring 337 

the null background of Spearman correlations. 338 

In our testing, using a greater number of randomly selected genes, N(rand), for the 339 

permutation based null-background did alter the null-distributions, as these distributions were 340 

stable at this sampling depth, and did not notably change the selected cutoffs. Note that the 341 

method of rank transformation for Spearman correlation effects the outcome; here we perform 342 

dense-rank transformation. Non-dense rank transformations frequently result in large gaps within 343 

the distributions because of ties. This is particularly important with count-based datasets where 344 

ties are frequent. 345 

 The null Spearman background matrix (B) was the symmetric 5000 x 5000 comparison of 346 

this sample (5000 choose 2 combinations). 347 

For i=1..N(rand) and j=1..N(rand): 348 

𝐁௜,௝ =  𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛൫𝐄௥,௜, 𝐄௥,௝൯ 349 

 350 

Next, this B background matrix, of null Spearman rho values, is filtered for only values Bi,j <0, thus 351 

creating a negative correlation null-background; this is needed because the null background for 352 

values Bi,j >0 and values Bi,j <0 follow different distributions (Extended Data Fig. 2c), indicating 353 

the necessity to measure them independently. Self-comparisons and duplicate comparisons were 354 

also removed. 355 

For i=1..N(rand), and j=i+1..N(rand): 356 

𝒃 =  ൫𝐁௜,௝ ∈ 𝐁 ห 𝐁௜,௝ < 0 | 𝑖 > 𝑗 ) 357 

Conceptually, this filtering is also important because the estimated number of false 358 

positives (FP) for a given gene i is dependent on the number of genes that are actually randomly 359 
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distributed, or truly correlated. For example, gene X is co-regulated within a module of 2000 360 

genes, while gene Y is not genuinely correlated with any other genes. Given that the number of 361 

genes is static and zero sum, this true positive co-regulation removes those genes from possible 362 

false positive negatively correlated genes.  363 

 364 

This null background vector (b) is used to calculate an the cutoff (𝑪𝒏𝒆𝒈) that most closely 365 

matches the desired FPR (default=1 in 1000 false positives), with a discovery considered as a 366 

Spearman rho value < 𝑪𝒏𝒆𝒈 in the gene-gene correlation matrix (S) calculated from the unshuffled 367 

original expression matrix (𝐄௢), This cutoff is used for the estimated false discovery rate (FDR) for 368 

the original intact unshuffled dataset. 369 

Given that: 370 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 371 

and  372 

𝑁(𝑏) =  𝐹𝑃 + 𝑇𝑁  373 

Because TP = FN = 0, given that b was generated from a bootstrap shuffled null. We therefore 374 

find that: 375 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑁(𝑏)
 376 

𝑁(𝑏) ∗  𝐹𝑃𝑅 =  𝐹𝑃 377 

Therefore, to identify the appropriate cutoff (𝑪𝒏𝒆𝒈), that yields the FPR(=1e-3 by default), we 378 

simply take the Spearman rho value of b that is located within the sorted background vector that 379 

gives the ratio of false positives to true negatives. 380 

𝑏௦௢௥௧ =  𝑠𝑜𝑟𝑡(𝑏) 381 

Such that for i=1..N(𝑏௦௢௥௧)-1, 𝑏௦௢௥௧,௜ <  𝑏௦௢௥௧,௜ାଵ 382 
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We then calculate the 𝑪𝒏𝒆𝒈 cutoff, but taking the value at the index that gives the expected ratio 383 

of false positives to true negatives as determined by the FPR hyperparameter (default=1e-3) 384 

𝐶௡௘௚ =  𝑏௦௢௥௧,⌊ಷು⌋
 385 

Next, we use this empirically determined cutoff (𝑪𝒏𝒆𝒈), applying it to classify “discoveries” of 386 

negative correlations in the correlation matrix S as calculated from the original, non-shuffled 387 

dataset (𝐄௢). Where a discovery is defined as a Spearman rho value Si,j less than the 𝑪𝒏𝒆𝒈 cutoff. 388 

Again it is important to note two things: 1) the null distribution of Spearman correlations, 389 

are in fact two separate distributions concatenated around zero, for the null distribution of rho 390 

values <0, and the null distribution of rho values >0 (ED. Fig. 2c); and 2) that variable abundance 391 

of True Positives within the positive correlation domain will decrease the total number of 392 

comparisons that fall within the negative correlation domain of these distributions; these two 393 

distributions are therefore in competition with one another, meaning that they must be quantified 394 

independently. For these reasons, when applying the empirically measured cutoff (𝑪௡௘௚) from the 395 

shuffled transcriptome, we must apply it only to the correlations falling below zero. To 396 

apply this cutoff (𝑪௡௘௚) to the original expression matrix (𝐄௢), we first calculate the symmetric 397 

gene-gene Spearman rho matrix (S).  398 

Next, the number of total (T) Spearman rhos values <0 within S is tabulated for the application of 399 

our cutoff (𝑪௡௘௚): 400 

𝑇௜  =  𝑁൫𝐒௜,௝ ∈ 𝐒 |  𝐒௜,௝ < 0൯ 401 

For i=1..n, where n is the number of genes. 402 

Note also, that 𝑇௜ sums to the total number of discoveries (D) and non-discoveries (ND).  403 

𝑇௜  =  𝑁(𝐷௜ ) +  𝑁(𝑁𝐷௜ ) = 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 404 

Where: 405 

𝑁(𝐷௜) =  𝑁൫𝐒௜,௝ ∈ 𝐒 |  𝐒௜,௝ <  𝑪௡௘௚൯ = 𝐹𝑃 + 𝑇𝑃 406 

𝑁(𝑁𝐷௜) =  𝑁൫𝐒௜,௝ ∈ 𝐒 ห 𝐒௜,௝ < 0 ห 𝐒௜,௝ >  𝑪௡௘௚൯ = 𝐹𝑁 + 𝑇𝑁 407 
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 408 

Further, the discoveries are comprised of both false positives (FP) and true positives (TP), 409 

however, which individual values within the discovery class is a FP or TP is unknown. Using the 410 

FPR however, we can estimate the number of expected FPs given the total number of 411 

comparisons <0 for the given gene (𝑇௜). In other words, if this gene were random in its negative 412 

correlations, then only a specific number of false positives would be expected (𝐹𝑃ప
෢ ), using 𝑪௡௘௚ 413 

as a cutoff. 414 

𝐹𝑃ప
෢ =  𝑇௜ ∗ 𝐹𝑃𝑅 415 

Therefore, with FDR defined as: 416 

𝐹𝐷𝑅 =  
𝐹𝑃

(𝐹𝑃 +  𝑇𝑃)
 417 

We can estimate the FDR for each gene, determining if it has an over abundance of negative 418 

correlations compared to what is expected from the null distribution: 419 

𝐹𝐷𝑅ప
෣ =  

𝐹𝑃ప
෢

𝑁(𝐷௜)
 420 

We then select genes that have a >15x excess in discoveries relative the expected number of 421 

false positives under the null distribution assumption. This corresponds to an estimated 𝐹𝐷𝑅෣ =422 

0.066 (1/15). This yields the set of all excessively negatively correlated genes (A): 423 

𝐴 =   ൛ 𝑔𝑒𝑛𝑒௜ ∈ 𝑔𝑒𝑛𝑒𝑠 ห 𝐹𝐷𝑅ప
෣ < 0.066ൟ 424 

Lastly, given that spurious positivity is still possible and even expected, we add one last layer of  425 

protection against false discoveries. The positive/negative status of a single gene likely does not 426 

define a truly “novel subtype” – particularly in a technique such as single-cell -omics where 427 

stochastic dropout from random sampling is expected. We therefore apply an additional filter from 428 

the premise that the genes whose expression patterns separate meaningful populations should 429 

also be positively correlated with other genes that are following similar regulatory patterns. To 430 
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select this population of genes, we find genes that have greater than 10 positive correlations 431 

above the positive correlation cutoff (𝑪௣௢௦), as calculated similarly to (𝑪௡௘௚) as described above.  432 

𝑀 =   ൛𝑔𝑒𝑛𝑒௜ ∈ 𝑔𝑒𝑛𝑒𝑠 ห 𝑁൫ 𝐒𝒊,𝒋 ห 𝐒𝒊,𝒋 > 𝐶௣௢௦ห 𝑖 ≠  𝑗 ൯ > 10 ൟ 433 

The final included features are the intersect of A and M: 434 

𝐹 =  𝐴 ∩ 𝑀 435 

Overall, this means that genes must contain both an excess of negative correlations, and be a 436 

member of a “module” of at least 10 genes that move in concert. 437 

 438 

Recursion benchmarks 439 

 An initial run of locally weighted Louvain modularity was performed, then the given dataset 440 

was subset to contain only the cells of a given cluster in the prior round of clustering. Next, feature 441 

selection and locally weighted Louvain modularity was applied again, recursively until either each 442 

cell was called its own “cell-type”/cluster or produced “cell-types”/clusters with ≤5 cells. 443 

 Circular recursion graphs were displayed using networkx26, with layout determined by the 444 

graphviz_layout(prog='twopi') layout27. 445 

 446 

In silico recursive clustering benchmark 447 

 Four clusters were simulated using Splatter13, and all algorithms were allowed to 448 

recursively select features, which were then subjected to locally weighted Louvain modularity until 449 

one of the following conditions were met: no features were selected, the clustering algorithm only 450 

found a single cluster, or the results of clustering formed groups of 5 or fewer cells. 451 

 452 

Real-world recursive clustering benchmark 453 

 The above described recursion procedure was applied to the previously released mouse 454 

heart scRNAseq dataset,28 and human PBMC dataset29 for UMI based technologies, and mouse 455 
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hippocampus single nucleus RNAseq14 and human dendritic cell/monocyte30 datasets were used 456 

for full length transcript sequencing based approaches. Each dataset was normalized as 457 

described above and is available in the repository site containing this benchmark: 458 

https://bitbucket.org/scottyler892/anti_correlation_vs_overdispersion in the data folder. The same 459 

recursive clustering procedure was followed as described for the in silico recursion benchmark 460 

above. 461 

 462 

Feature selection accuracy based on Splatter and Sergio simulations 463 

 For both simulation paradigms, we simulated 4, 6, 8, and 10 clusters. 2500 cells were 464 

simulated with 10000 genes, of which 2000 were intended to be differentially regulated across 465 

clusters. Once simulations were completed, the datasets were downsampled down to 95% of the 466 

cell with the lowest total counts in the given dataset, using the pyminer_norm python package31. 467 

Splatter simulations were generated using the bin/simulate_data.R with the above 468 

described clusters, cells, and gene parameters. SERGIO simulations were generated from the 469 

bin/generate_sergio_sim.py script, which was called from the bin/simulate_data.R file. For each 470 

cluster, a single “master-regulator” gene was used to induce high expression of its child nodes in 471 

the GRN. The non-differentially regulated genes were random negative binomial distributions 472 

added to the network with the np.random.negative_binomial function. 473 

 Similar to performing pathway analyses, a proper background list of genes is necessary 474 

for quantifying enrichment. For example there may be a simulated low-expression gene that was 475 

“differentially expressed” in ground-truth, however, was only expressed in two cells after 476 

simulation of the low expressed gene. In this situation, this gene it would not be realistically 477 

possible to “detect” this gene as differentially expressed even if ground truth clusters were known. 478 

Therefore to generate a background of detectably differentially expressed genes, were performed 479 

differential expression analysis by 1-way ANOVA (aov function) using the known ground truth 480 

cluster labels. This gives us a list of detectably differentially expressed genes to use as the ground 481 
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truth desired genes for feature selection, while non-detectably differentially expressed were all 482 

treated as not desired for selection. This parallels pathway analysis in that, if a gene is not 483 

detectably expressed, it should not be included in the custom background. 484 

 485 

Pancreatic datasets for feature selection 486 

The seven pancreatic datasets2, 16-20 used for feature selection efficacy benchmarking 487 

were processed as previously described2; the available post-processing datasets were used as-488 

is. These datasets are also now re-packaged in the data zip contained within the benchmark 489 

repository. To assess efficacy, three primary metrics were used via gProfiler analysis using the 490 

human protein atlas “HPA” pathways which indicates genes are enriched for certain tissues and 491 

sub-tissue niches21, 22. For each dataset, a custom background was used, comprised of the genes 492 

expressed in the given dataset. For each analysis, the HPA results were filtered to include only 493 

the pancreatic tissues and niches, the pancreatic HPA pathway that was the most significant was 494 

counted as a method’s best pancreatic match. The -log10(p-values), precision, and recall for this 495 

best match was used for comparisons. To adjust for the wide range and skewed distributions in 496 

significance across datasets and methods, we rank transformed the -log10(p-values); precision 497 

and recall however are all on a scale between 0 and 1, and were therefore analyzed directly. 498 

Significance was determined with the aov and TukeyHSD functions to measure the main effects 499 

and post-hocs respectively. The aov function was called with the formula: metric ~ method + 500 

dataset. 501 

 502 

Tabula Muris dataset 503 

 The senescent Tabula Muris dataset23 was used to demonstrate the scalability of our 504 

analytic pipeline. This dataset was previously filtered to contain only cells with ≥2500 UMI counts. 505 

We therefore downsampled the dataset such that all cells contained 2500 UMI, and log2 506 
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transformed it for analysis. The downsampling process was performed using the bio-pyminer-507 

norm package that is pip installable: 508 

python3 -m pip install bio-pyminer-norm 509 

The process of downsampling is reported in detail at the repository website: 510 

https://bitbucket.org/scottyler892/pyminer_norm  511 

 512 

 Subclustering rounds were first feature selected with the anti-correlation package that we 513 

released here, using default parameters: 514 

 from anticor_features.anticor_features import   515 

 anti_cor_table = get_anti_cor_genes(exprs, feature_ids, species = “mmusculus”) 516 

Locally weighted Louvain modularity was used for clustering as described above. Note that while 517 

the default functionality of our feature selection package automatically removes ribosomal, 518 

mitochondrial, and hemoglobin related genes, for fair comparison with other methods, these 519 

genes were left in for possible selection when comparing to other algorithms. This can be 520 

customized using the pre_remove_pathways argument. The default removal list are genes 521 

contained in the following pathways (all related to ribosomal, mitochondrial, and hemoglobin): 522 

"GO:0044429","GO:0006390","GO:0005739","GO:0005743","GO:0070125","GO:0070126","GO:523 

0005759","GO:0032543","GO:0044455","GO:0005761","GO:0005840","GO:0003735","GO:0022524 

626","GO:0044391","GO:0006614","GO:0006613","GO:0045047","GO:0000184","GO:0043043"525 

,"GO:0006413","GO:0022613","GO:0043604","GO:0015934","GO:0006415","GO:0015935", 526 

"GO:0072599","GO:0071826","GO:0042254","GO:0042273","GO:0042274","GO:0006364","GO:527 

0022618","GO:0005730","GO:0005791","GO:0098554","GO:0019843","GO:0030492" 528 
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Alternatively, if the user whishes to exclude specific features, these can be included in the 529 

pre_remove_features list argument; however, this was left empty for all of the work presented 530 

here.   531 
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 599 

Figure 1: Anti-correlation algorithm premise and passage of the null-dataset problem. a, 600 
The logic behind anti-correlation-based feature selection. Marker-genes will be expressed at 601 
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higher levels in their lineage/cell-type compared to cells outside of that lineage or cell-type. b, 602 
As a scatter plot where expression of marker A is plotted against marker B, cells of type A and B 603 
will form an L-shaped anti-correlation pattern, while cell-type C would express low levels of both 604 
marker A and B. c, This anti-correlation pattern would disappear when examining a single 605 
population of cells. d, The anti-correlation pattern of marker-genes appears in an example 606 
dataset,2 where high expression of AMY2A in acinar cells forms an anti-correlation pattern with 607 
SST in delta cells of the pancreas. e, The anti-correlation pattern between AMY2A and SST 608 
disappears when only subset for delta cells. f, The anti-correlation pattern is also present in 609 
lineage-marking-genes as shown by the pattern of AMYA2 and NEUROD1, which labels all 610 
endocrine cells of the pancreas. g, The anti-correlation-based feature selection algorithm first 611 
calculates a null background of Spearman correlations based on bootstrap shuffled gene-gene 612 
pairs to calculate a background. h, Next the cutoff value closest matching the desired false 613 
positive rate (FPR) is determined. Displayed is a histogram of the bootstrap shuffled null-614 
background of Spearman correlations less than zero. i, Lastly genes which show more 615 
significant negative correlations (x-axis) than expected by chance (black line), given the gene’s 616 
number of total negative correlations (y-axis), are selected: i.e. those to the right of the cutoff 617 
line. These are then used to calculate the False Discovery Rate (FDR) for each gene (See 618 
Methods for details). j-k, Heatmaps of selected features, and the total number of subclusters for 619 
each method of feature selection paired with AP clustering, when algorithms were allowed to 620 
sub-divide iteratively for homeostatic cell line scRNAseq: (j) NIH3T3, (k) HEK293T. l, Boxplots 621 
indicating the total number of clusters identified by each method of feature selection (box colors) 622 
and clustering (noted in panels) showed that anti-correlation-based features selection (arrows) 623 
identified no features, indicating a single population in all cases, while other methods produced 624 
more clusters, thus failing the null-dataset problem.   625 
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 626 

Figure 2: Recursion-to-completion in real datasets and anti-correlation algorithm scaling. 627 
a, A schematic of sub-clustering is shown in the form of UMAP projections of the original 628 
dataset (left panel), and a sub-clustering iteration of a population found in the first round of 629 
feature selection and clustering (right panel). b-c, In real datasets of varying technologies, 630 
status quo algorithms fail the recursion-to-completion problem while the anti-correlation-based 631 
approach prevented recursion-to-completion. Recursive clustering plots where each point 632 
indicates a cluster at a given recursive clustering recursion-depth as denoted in successive 633 
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rings and color. d, Boxplots of the mean recursion depth for each of the final sub-clusters for 634 
each noted method. e, Boxplots of the total number of groups obtained through iterative sub-635 
clustering. f, A heatmap of the top 5 marker genes per cluster are shown for the 26 primary 636 
lineages from the full senescent Tabula Muris dataset23, with the last cluster representing a 637 
mixture of endocrine pancreas. g, When subclustered with anti-correlated feature selection, cell-638 
type droplets (x) as well as classically described leukocyte, α, δ, β, and acinar populations were 639 
discovered. Subclustering β cells discovered mixed-lineage droplets with δ and leukocyte cells 640 
as well as the rare PP-cell population, but additional subclustering of PP-cells was prevented by 641 
anti-correlation-based feature selection.  642 
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 643 

Extended Data Figure 1: Anti-correlation-based feature selection outperforms other 644 
methods in recursion-to-completion and feature selection efficacy. a, Using Splatter 645 
simulation of four clusters, all algorithms were allowed to select features and perform locally 646 
weighted Louvain modularity-based clustering recursively. Shown are boxplots indicating the 647 
mean recursive depth and total number of clusters on a log scale. The anti-correlation algorithm 648 
did not allow for any recursive clustering, resulting in fewer clusters identified (*:P≤6.2e-6; 649 
***:P≤1.7e-9; all ANOVA/TukeyHSD post-hoc comparisons against anti-correlation). b-c, Taken 650 
as a classification problem in which a feature selection algorithm’s task is to select detectably 651 
differentially expressed genes across clusters, we quantified each algorithm’s accuracy, F1 score, 652 
Mathew’s Correlation Coefficient (MCC), false positive rate (FPR), false discovery rate (FDR), 653 
precision, true negative rate (TNR), and recall. b, Boxplots of classification metrics (panels) by 654 
feature selection approach (colored boxes) using Splatter simulations13. c, Boxplots indicating the 655 
performance of each features selection method (colored boxes) for each metric (panels), using 656 
SERGIO, gene regulatory network based simulations15. d, Using 7 pancreatic datasets2, 16-20, each 657 
algorithm’s selected features was analyzed for significance with pancreatic tissue enrichment via 658 
gProfiler and the human protein atlas21, 22; displayed are boxplots of the “best” pancreatic pathway 659 
by p-value comparing this pathway’s rank p-value, precision, and recall.  660 
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661 
Extended Data Figure 2: Examples of Splatter and SERGIO simulations, and feature 662 
selection. a,b, For both simulation paradigms (a) Splatter and (b) SERGIO, heatmaps are 663 
shown for the ground truth differentially expressed genes (DEGs), the selected-genes, non-664 
selected DEGs, and selected genes that are not differentially expressed. Next to the heatmaps 665 
are gene-gene scatter plots of randomly selected genes from the indicated class (row) for the 666 
feature selection algorithms (columns). Points indicate an individual cell’s expression of random 667 
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gene-x and gene-y for the designated gene class and algorithm, colorized by the simulated 668 
cluster. (a) Splatter DEGs show widespread co-expression of DEGs within all clusters, while (b) 669 
SERGIO allows for cluster specific expression of DEGs. (c) An example histogram of null 670 
distribution patterns of Spearman rhos on shuffled datasets shows that, even on shuffled data 671 
with no true positives, negative rhos follow a different distribution than positive rho values. 672 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 7, 2022. ; https://doi.org/10.1101/2022.12.05.519161doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.519161
http://creativecommons.org/licenses/by-nc-nd/4.0/

