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Abstract

While sub-clustering cell-populations has become popular in single cell-omics,
negative controls for this process are lacking. Popular feature-selection/clustering
algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous
clusters until nearly each cell is called its own cluster. Using 45,348 scRNAseq analyses
of real and synthetic datasets, we found that anti-correlated gene selection reduces or
eliminates erroneous subdivisions, increases marker-gene selection efficacy, and

efficiently scales to 245k cells without the need for high-performance computing.

Results

A frequent first task in performing cell-type identification from scRNAseq is feature
selection to identify genes that are cell-type specific markers based on various statistical
properties. Current approaches include measures of the relationship between a gene’s mean and
variance (i.e., overdispersion)' and a gene’s mean and dropout rate*. An open problem however
is how algorithms handle the “null-dataset;” that is, when there is only a single cell-type present.

Given the popularity of sub-clustering (i.e., iteratively subdividing the initially identified
clusters)®3, it is important to know that these groups are not being erroneously subdivided, thus
producing false subtypes®. While novel sub-populations of interest should always be validated via
bench-biology methods, an algorithmic assurance that one is not being misled can save money
and years of effort attempting to validate erroneously discovered “novel sub-populations.” Given
the imperfections in clustering algorithms'?, sub-clustering itself can be a valid practice, because
a single round of clustering may be insufficient to fully divide a dataset into its constituent groups.
However, we must have confidence that such algorithms will correctly identify single populations,
preventing the false discovery of nonexistent sub-populations. In the case of a single cell
population, either 1) a feature selection algorithm would accurately report that there are no genes
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that define sub-populations, or 2) the clustering algorithm would determine that only a single
cluster is present.

We sought to devise an algorithm to identify cell-type marker-genes that would not only
identify subpopulations of cell-types with high accuracy, but also solve the null-dataset problem.
We thus began from first principles, asking the question: “what is a cell-type?”. Traditional
molecular biology has defined cell-types based on distinct cellular functions that are concordant
with expression of distinct sets of genes: “marker-genes” (Fig. 1a), that often include hierarchical
mutually exclusive gene expression. For example, in the pancreas the gene NEUROD1 is a pan-
endocrine marker, expressed in many different cell-types but should be mutually exclusively
expressed from exocrine marker-genes''. If we accept this definition of cell-type and -lineage
specific genes, we can algorithmically discover marker-genes from scRNAseq, as these genes
will show a statistical excess of negative correlations with other genes (Fig. 1b). Given this
premise, if only a single cell-identity is present in a dataset, we would expect an absence of an
anti-correlation pattern since the cells of other cell-identities would not be present (Fig. 1c).
Indeed, looking at known marker-genes from different cell types in the pancreas (i.e. AMY2A
expressed in acinar cells and SST expressed in delta cells), we see the expected anti-correlation
pattern between AMY2A and SST (Fig. 1d), which disappears when examining subsets
comprised of only a single cell type (Fig. 1e). Notably, the anti-correlation pattern holds for
lineage-markers as well as cell-type markers (Fig. 1f).

Using these observations, we constructed an algorithm that identifies genes with an
excess of negative correlations relative to what would be expected if the gene were un-patterned,
as empirically measured with a bootstrap shuffled null background (Fig. 1g,h). We then select
genes that have an excess of negative correlations, controlling for false positives by setting an
appropriate false discovery rate (FDR) (Fig. 1i). Overall, this procedure selects the genes that
have significantly more negative correlations with other genes than would be expected by chance
(See Methods for details). While others have performed small-scale experiments using positive
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correlations for feature selection, it was deemed infeasible due to computational run-time'?; here
we create an open-source, efficient implementation in python to overcome this barrier, but focus
attention on negative correlation patterns as opposed to positive.

Given our reasoning that the anti-correlation pattern should go away when examining data
representing only a single cell-type (Fig. 1¢), with preliminary support for our rationale in a single
dataset (Fig. 1e), we hypothesized that anti-correlation-based feature selection would be
sufficient to solve the null-dataset problem, while status quo algorithms may not adequately solve
for this problem. With the null-dataset, no “cell-type or cell-state specific genes” should be
identified as this is a single population of cells. We tested this hypothesis by performing feature
selection and affinity propagation (AP)-based clustering on two datasets composed of scRNAseq
from homeostatic cell line culture from NIH3T3 (Fig. 1j) or HEK293T cells (Fig. 1k), which we
anticipate would capture the biologically relevant variation in only a single clustering round, and
any attempt to further subdivide beyond that should be algorithmically blocked. Indeed, the anti-
correlation algorithm allowed for only a single round of clustering, while the other algorithms tested
allowed for further subdivisions (Fig. 1j,k).

While this preliminary evidence suggests that anti-correlation-based feature selection
solves the issue of false positives from sub-clustering homogenous populations, real-world
datasets do not harbor a “ground-truth.” We therefore simulated a single cluster using Splatter
which produces negative binomially distributed gene expression matrices'. We performed
feature selection using the noted algorithms™* and passed these features to four different
clustering algorithms including Affinity Propagation, K-means+Elbow-rule, K-means+Silhouette,
and locally weighted Louvain modularity (See methods for algorithm details). In all cases, the
anti-correlation-based method for feature selection detected no valid features within a single
population of cells, thus addressing the null-dataset problem, while all other feature selection and
clustering algorithm combinations failed the null-dataset problem, selecting noisy features that
resulted in at least several clusters (Fig. 11). Note that most feature selection algorithms frequently
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92  require the user to manually set the number of “discoveries” or selected features, which is likely
93  akey contributor to this failure of the null-dataset problem when using standard feature selection
94  approaches.
95 Without an algorithmic check to prevent erroneous sub-clustering, one could recursively
96 divide a dataset until it is fully subdivided (each individual cell representing its own cluster), here
97 dubbed “recursion-to-completion” (Fig. 2a). In practice, this would indicate that someone
98 analyzing a scRNAseq dataset could always decide to sub-cluster a “cluster of interest” and report
99 a “novel subpopulation” of cells, resulting in false discoveries. To test the robustness of each
100 feature selection algorithm to the recursion-to-completion problem, we selected four publicly
101 available datasets from differing species and platforms including droplet-based UMI approaches
102  (Fig. 2b) and full-length transcript single-cell and -nucleus RNAseq (sNucSeq) (Fig. 2c)'*. Again,
103  we found that standard overdispersion- and dropout-based feature selection methods enabled
104  recursion-to-completion, often finding hundreds of clusters, while anti-correlation-based feature
105  selection were robust to this problem. Anti-correlation showed fewer rounds of recursion (P<0.05
106  for TukeyHSD post-hocs), and fewer overall clusters (P<1e-3 for TukeyHSD post-hocs) relative
107 to other methods (Figure 2d-e). This demonstrates that anti-correlation-based feature selection
108 s robust to differing technologies, species, and sequencing type, retaining the ability to minimize
109 false sub-divisions.
110 To verify these results with known ground-truth, we simulated 4 clusters, and allowed each
111 algorithm to iteratively sub-cluster until either no features were returned, or only a single cluster
112  was identified. Consistent with our findings from real-world datasets, anti-correlation-based
113  feature selection protected against erroneous sub-clustering, while other approaches allowed for
114  several rounds of recursive sub-clustering, yielding hundreds to thousands of final ‘clusters’ (fewer
115  average rounds of sub-clustering: P=1.08e-6,F=52.9, main-effects 1-way ANOVA; P<6.2e-6 for
116  TukeyHSD post-hocs; fewer total clusters: P=7.2e-10,F=238.2,main-effects 1-way ANOVA;
117  P<1.3e-9 for TukeyHSD post-hocs); Extended Data Fig. 1a). These simulated data demonstrate
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118 that anti-correlated feature selection guards against erroneously splitting a single population of
119 cells, while the algorithms tested here enable false discoveries of what appear to be “novel sub-
120  types.”

121 We next sought to determine the overall accuracy of these feature selection algorithms,
122 where ground-truth differentially expressed genes (DEGs) should be selected by feature selection
123 algorithms, and non-DEGs should not be selected. To this end, we used Splatter to simulate
124  datasets comprised of 4, 6, 8, and 10 clusters. Our anti-correlation algorithm had the best
125  accuracy, F1-score, Mathew’s Correlation Coefficient (MCC), precision, true negative rate, FPR,
126  and false discovery rate (FDR) compared to other feature selection algorithms (Extended Data
127  Fig. 1b). However, anti-correlation-based feature selection had average recall (also called
128  sensitivity or false negative rate); this is explained however, by Splatter's wide-spread co-
129  expression of all genes in all clusters (Extended Data Fig. 2a). In other words, using Splatter, all
130 clusters express the “marker-genes” of all other clusters, therefore blunting the anti-correlations
131  of marker-genes seen in practice (Fig. 1), thus reducing the apparent sensitivity. SERGIO
132 however is a gene regulatory network (GRN) based scRNAseq simulation approach that more
133 accurately represents empirical scRNAseq datasets'’® and does not induce co-expression of all
134  marker genes in all clusters (Extended Data Fig. 2b). Using this simulation paradigm anti-
135  correlation-based feature selection outperformed other approaches by every metric including
136  recall/sensitivity (Extended Data Fig. 1c). Furthermore, using seven pancreatic datasets,? 1620
137  the anti-correlated genes were either tied for, or had significantly higher p-value significance rank,
138  precision, and recall for pancreatic specific genes based on gProfiler/Human Protein Atlas tissue
139  enrichment compared to other algorithms (Extended Data Fig. 1d)*" %

140 To assess the practical scalability of anti-correlation-based feature selection, we re-
141  processed and ran a larger dataset (245,389 cells) from a Tabula Muris data-release??. The full
142  feature selection process took 60.95 minutes, while calculating the cell-cell correlations, distance,
143  and clustering were far more computationally intense taking several days (see Methods for
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144  clustering details) (Fig 2f). These findings show that anti-correlation-based feature selection
145  should not be a major limiting factor for large datasets.

146 We also sought to demonstrate our feature-selection approach’s utility in safe sub-
147  clustering in practice; to this end, we focused on a cluster whose marker genes included
148  insulinfamylin (INS1/2, IAPP) and glucagon (GCG), the markers for pancreatic beta and alpha
149  cells, respectively, indicating that this cluster was insufficiently divided in the first clustering round.
150 We performed sub-clustering with anti-correlation, identifying leukocyte, alpha-, beta-, and delta-
151  cell populations. We further sub-clustered the insulin high population, and unexpectedly found the
152  rare® population of pancreatic-polypeptide (Ppy/Pyy) expressing PP-cells (Fig. 2g), a cluster
153  comprising only 0.01% of the original dataset. Attempting to further sub-divide PP-cells yielded
154 no usable features, thus showing that anti-correlation-based feature selection can facilitate
155  extremely sensitive sub-clustering to identify rare biologically meaningful populations from large
156  datasets, while also preventing errant subdivisions.

157 As seen in the final sub-cluster round, however, while anti-correlation-based feature-
158  selection is biologically accurate and answers the question: “Should this cluster be sub-
159 clustered?”, it does not ensure that downstream algorithms will select the correct number of
160  clusters; this remains an outstanding problem as previously reported®. However, passing the first
161  step of successfully identifying a homogeneous population, through anti-correlation-based feature
162  selection, provides confidence that meaningful structure existed in the parent population.

163 Overall, these results demonstrate that anti-correlation-based feature selection solves
164  the null-dataset and recursion-to-completion problems, outperforms others in overall feature

165  selection accuracy, and works with both UMI and full-length sequencing methods. These

166  properties can prevent wasted time and money for bench-practitioners attempting to validate

167  novel sub-populations by providing an algorithmic check to false discoveries in sScRNAseq.

168  Lastly, our open source python package (titled anticor_features) is open-source, pip installable,

169  and compatible with SCANPY/AnnData?® to enable broad adoptability.
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170  Code and Data Availability
171  All code used for implementing the anti-correlation-based feature selection approach is available
172  as a stand-alone package:

173 https://bitbucket.org/scottyler892/anticor features

174  and is also pip installable:
175 python3 -m pip install anticor_features
176  All code for running simulations and comparisons used in this study are available at:

177 https://bitbucket.org/scottyler892/anti correlation vs overdispersion/

178
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179  Methods

180  Example of anti-correlation principle on pancreatic dataset

181 A previously published scRNAseq dataset and annotations were used for scatter plots of
182  AMY2A for acinar cells, SST for delta cells, and NEUROD1 for endocrine cells (Fig. 1d-f)2.

183

184  Normalization of scRNAseq datasets to be used for benchmarking

185 Due to large variation (often orders of magnitude differences) in total UMI counts across
186 cells and it's downstream effects on cell-to-cell distance metrics, we normalized each cell within
187 UMI based datasets through bootstrapped UMI downsampling as described here:

188 https://bitbucket.org/scottyler892/pyminer norm. In brief, a cutoff is selected for both the number

189  of observed genes in a cell as well as the number of total UMI observed in a cell. Cells not meeting
190 these criteria are removed, and all other cells are normalized through UMI downsampling. UMI
191 downsampling is done through simulating the transcriptome of a given cell, and randomly
192  selecting N transcripts, where N is the desired number of total UMI for each cell to have, in this
193  case 95% of the cutoff used for total UMI count. Thus, each cell is randomly sampled to the same
194  UMI depth.

195 To normalize full-length sequencing datasets with TPM or similar units, we created a
196  variant of quantile normalization we call truncated quantile normalization. First a cutoff (g) is
197  selected for the number of genes to be expressed in each cell in the final normalized dataset.
198  Next, cells with fewer than g+1 genes expressed are removed, then for each cell, the
199 transcriptome is subtracted by the expression value of gene g+1 for that cell, thus setting the g+1
200 gene’s expression to zero, leaving the remaining top g expressed genes with >0 expression in all
201  cells. All negative values are then set to 0. For ties at the expression-level of g that would result
202  in differing number of observed genes, genes are randomly selected to be preserved or set to
203  zero stochastically. This yields a vector for each cell for whom the top expressed g genes are
204  kept, but shifted downwards in a manner that does not introduce an artificially large gap between
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205 the lowest expressed gene (g) and zero. These top g genes for each cell are then quantile
206  normalized. This process is implemented in the pyminer_norm pip package, and can be called
207  from the command-line on tsv files:

208 python3 -m pyminer_norm.quantile_normalize -i in_file.tsv -0 out_file_gNorm.tsv -n 2000

209 to perform truncated quantile normalization on the top 2000 genes for each cell.

210

211 NIH3T3 and HEK293T cell line datasets

212 This  dataset was  downloaded  from 10x  Genomics’ website  at

213 (https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/1k_hgmm v3).

214 The cells of mouse or human origin were separated into distinct datasets for our purposes here
215  based on the sum of reads that mapped to each species’ transcriptome, while doublets were
216  excluded. In the case of both human and mouse references, cells were kept that had >3162
217  counts mapping to hg19 or mm10 for HEK293T and NIH3T3 respectively, cells were also only
218  kept if they had >1000 genes observed. The remaining cells were then downsampled to 3003
219  counts for each dataset to normalize for variable count depth that otherwise spanned two orders
220  of magnitude.

221

222 Affinity Propagation

223 Our implementation of affinity propagation was based on the sklearn
224 sklearn.cluster.AffinityPropagation function, in which the preference vector is initialized to the row-
225  wise minimum of the input matrix; in this case, the negative squared Euclidean distance of the
226  Spearman correlations across all cells. We observed that as datasets scale, the original affinity
227  propagation algorithm fragments single populations into many small populations that were similar
228 to each other. We therefore follow the original affinity propagation results with an analysis that
229 calculates the distance (in affinity space) between cluster centers (also called exemplars). The
230 standard deviation of within-cluster affinities is then calculated. For each cluster-cluster pair from
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231  the original affinity propagation cluster results, we then determine the number of combined
232 standard deviations required to traverse half the Euclidean distance in affinity space between two
233 cluster centers. This measure is the number of standard deviations needed to reach the waypoint
234 between two cluster centers. Because these are standard deviation measures, we can convert
235 these to transition probabilities, as with a Z-score, using the scipy.stats.norm.sf function. This
236  creates a cluster x cluster matrix of transition probabilities; this probability matrix is then subjected
237 to dense weighted Louvain modularity. Final clusters are determined by the results of this
238  procedure, where AP clusters that were determined by Louvain modularity to belong to the same
239  community are merged. All code and cluster for the affinity propagation with merged procedure
240  can be accessed through running PyMINEr with the appended arguments: “-ap_clust -ap_merge”
241  at the command line or interactively via the pyminer.pyminer.pyminer_analysis function using the
242 arguments: ap_clust=True, ap_merge=True.

243

244  Clustering — K-means with Elbow and K-means with silhouette

245 First each dataset (already log transformed) was subset for the genes selected by the
246  given feature selection algorithm, then genes were min-max linear normalized between 0 and 1.
247  K-means clustering was performed using the sklearn.cluster KMeans function. For the elbow rule,
248  the sum of squared Euclidean distances of samples to their cluster center was used in conjunction
249  with the given k value. We took the elbow to be the value of k which yielded the minimum distance
250 to the origin.

251 For the silhouette method, we calculated the average silhouette score with the
252 sklearn.metrics silhouette_score function, and sample level silhouettes calculated with the
253  silhouette_samples function. The number of clusters was selected by moving from k=1 to k_max,
254  testing for whether there existed a cluster whose maximum sample level silhouette was less than
255 the average silhouette score for the whole dataset (as determined by the silhouette score
256  function).
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Clustering — Locally weighted Louvain modularity
We created a kNN graph embedding and subjected it to Louvain modularity as follows:

1. Calculate Spearman correlation of all cells against all other cells (matrix: S).

2. Calculate the inverse squared Euclidean distance matrix from the Spearman matrix
(matrix: D), divided by the square-root of the number of cells. In this matrix, cells that are
more similar to each have higher values, and cells that are dissimilar have lower values,
inversely proportional to the squared Euclidean distance.

3. Foreachcell, i, (i.e.: row in matrix D) subtract the upper 95" percentile (or top 200" closest
cell, whichever yields fewer connections) of distance vector (D), then mask all negative
values to zero, thus creating a weighted local distance matrix (matrix: L).

4. Toensure that all cells are on an equivalent scale, each row in L is divided by it's maximum
(Li=L;/ max(L) ).

5. The normalized local distance matrix L serves as the weighted adjacency matrix for

building the network for weighted Louvain modularity.

The locally weighted adjacency matrix was subjected to Louvain modularity as implemented in

the python pip package: python-louvain.

Implementation of other feature selection algorithms
Because each feature selection algorithm expects slightly different processing methods
relative to each other (either normalized and log-transformed, or count data), we followed author

guidance in implementation.

PyMINEr’s overdispersion pipeline: is contained within the originally published full PyMINEr
pipeline, but is also callable within python as follows:
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283  feature_table = do_over _dispers_feat select(ids=cell_ids,

284 ID_list=gene_ids,
285 in_mat=exprs)
286

287  Seurat’s overdispersion: Per author guidelines, we log-normalized the input expression matrix
288  and selected features as follows:

289  obj<- NormalizeData(CreateSeuratObject(exprs))

290 obj <- FindVariableFeatures(obj)

291  var_feat <- VariableFeatures(obj)

292

293  Original Brennecke algorithm: We used the implementation of the original overdispersion-based
294  feature selection algorithm as implemented in the M3Drop package as follows:

295  Brennecke HVG <- BrenneckeGetVariableGenes(exprs, fdr = 0.05, minBiolDisp = 0.5)

296

297  M3Drop: Unlike other most other feature selection algorithms, M3Drop allows for either a pre-
298  specified FDR, or a pre-specified percentage of the transcriptome to select. In our testing using
299 the FDR approach (which could theoretically solve that the null-dataset problem), we found that
300 each dataset required fine tuning of this cutoff to provide reasonable results, and in the case of
301 full-length transcript based approaches did not select any genes even in the full datasets, which
302 are known to be biologically complex. We therefore sought a more realistic implementation that
303 did not require manual tuning for each dataset, and therefore implemented the “percentage”
304  approach within M3Drop so that a standard call yielded meaningful results regardless of dataset,
305  without necessitating a manual inspection for hyperparameter selection for all datasets, which
306 could also be seen as tuning hyperparameters to fit our expectations of the data. The
307 implementation was as follows:

308 results <- M3DropGetExtremes(exprs, percent=0.05, suppress.plot=TRUE)
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309 Using the genes within the results$right section as the genes with an excess of zeros for the final
310 selected genes.

311

312  Details of anti-correlation feature selection algorithm

313 We aimed to develop an algorithm that identifies genes that have “too many” negative
314  correlations below a dynamically selected cutoff that make the selected genes more negatively
315  correlated with other genes than one would expect from random chance. To this end we began
316  with a False Positive Rate (FPR) of 0.001, for identifying a cutoff at which correlations should be
317 counted as a “discovery” (D, where more significant), or “non-discovery” (ND, where less
318  significant). Using a bootstrap shuffled null background, in which all discoveries (D) are false,
319  because true positives (TP) are known to be equal to zero:

320 FP +TP = N(D)

321 Where D is all discoveries, more significant that the cutoff. Therefore because this is measured
322 from a bootstrap shuffled null background (i.e.: TP = 0):

323 FP = N(D)

324  Using this knowledge, we created the null background of gene-gene Spearman correlations is
325 generated through randomly sampling 5,000 genes, shuffling within-genes, such that a gene-
326 gene correlation plot would have its x-y pairing shuffled, calculating pairwise Spearman
327  correlations.

328

329  Definitions

330 E.: the original expression matrix

331 rand: an integer vector of the length 5000 for the random samples within the space of 1..n, where
332  nis the number of genes

333  E:: The random subset matrix that is permuted as defined below:

334  Fori..N(rand):
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335  E:; = permute(Eo, rand[i1)

336 Where E; provides a N(cell) x N(rand) matrix, which is a within-gene bootstrap shuffled
337  version of a subset of the transcriptome, therefore unpairing the gene-gene pairs for measuring
338  the null background of Spearman correlations.

339 In our testing, using a greater number of randomly selected genes, N(rand), for the
340 permutation based null-background did alter the null-distributions, as these distributions were
341  stable at this sampling depth, and did not notably change the selected cutoffs. Note that the
342  method of rank transformation for Spearman correlation effects the outcome; here we perform
343  dense-rank transformation. Non-dense rank transformations frequently result in large gaps within
344  the distributions because of ties. This is particularly important with count-based datasets where
345 ties are frequent.

346 The null Spearman background matrix (B) was the symmetric 5000 x 5000 comparison of
347  this sample (5000 choose 2 combinations).

348  Fori=1..N(rand) and j=1..N(rand):

349 B, = Spearman(Er_i, Er,j)

350

351 Next, this B background matrix, of null Spearman rho values, is filtered for only values B;; <0, thus
352  creating a negative correlation null-background; this is needed because the null background for
353  values B;; >0 and values B;; <0 follow different distributions (Extended Data Fig. 2c), indicating
354  the necessity to measure them independently. Self-comparisons and duplicate comparisons were
355  also removed.

356  Fori=1..N(rand), and j=i+1..N(rand):

357 b= (B;;€B|B;;<0]i>})

358 Conceptually, this filtering is also important because the estimated number of false

359  positives (FP) for a given gene i is dependent on the number of genes that are actually randomly

15
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distributed, or truly correlated. For example, gene X is co-regulated within a module of 2000
genes, while gene Y is not genuinely correlated with any other genes. Given that the number of
genes is static and zero sum, this true positive co-regulation removes those genes from possible

false positive negatively correlated genes.

This null background vector (b) is used to calculate an the cutoff (Cy4) that most closely

matches the desired FPR (default=1 in 1000 false positives), with a discovery considered as a

Spearman rho value < Cy4 in the gene-gene correlation matrix (S) calculated from the unshuffled

original expression matrix (E, ), This cutoff is used for the estimated false discovery rate (FDR) for
the original intact unshuffled dataset.

Given that:

FpP

FPR= wp TN

and
N(b) = FP +TN
Because TP = FN = 0, given that b was generated from a bootstrap shuffled null. We therefore

find that:

FP
N(b)

FPR =
N(b) * FPR = FP
Therefore, to identify the appropriate cutoff (C,.4), that yields the FPR(=1e-3 by default), we
simply take the Spearman rho value of b that is located within the sorted background vector that
gives the ratio of false positives to true negatives.

bsore = sort(b)

Such that for i=1..N(bsor¢)-1, Psore.i < Dsorti+1

16
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383  We then calculate the Cy,4 cutoff, but taking the value at the index that gives the expected ratio

384  of false positives to true negatives as determined by the FPR hyperparameter (default=1e-3)

385 Cneg = bsort,leJ
386  Next, we use this empirically determined cutoff (C,.g4), applying it to classify “discoveries” of

387 negative correlations in the correlation matrix 8 as calculated from the original, non-shuffled
388  dataset (E,). Where a discovery is defined as a Spearman rho value S;; less than the Cy,4 cutoff.
389 Again it is important to note two things: 1) the null distribution of Spearman correlations,
390 are in fact two separate distributions concatenated around zero, for the null distribution of rho
391  values <0, and the null distribution of rho values >0 (ED. Fig. 2c¢); and 2) that variable abundance
392 of True Positives within the positive correlation domain will decrease the total number of
393  comparisons that fall within the negative correlation domain of these distributions; these two
394  distributions are therefore in competition with one another, meaning that they must be quantified
395 independently. For these reasons, when applying the empirically measured cutoff (C,,4) from the
396 shuffled transcriptome, we must apply it only to the correlations falling below zero. To

397  apply this cutoff (C,.4) to the original expression matrix (E,), we first calculate the symmetric
398 gene-gene Spearman rho matrix (S).

399  Next, the number of total (T) Spearman rhos values <0 within S is tabulated for the application of

400  our cutoff (Cpey):
401 T, = N(S;; €S| S;; <0)
402  Fori=1..n, where n is the number of genes.

403  Note also, that T; sums to the total number of discoveries (D) and non-discoveries (ND).

404 T; = N(D;)+ N(ND;) =TP + TN + FP + FN
405  Where:

406 N(D;)) = N(S;; €S| S;; < Cpey) =FP+TP

407 N(ND;) = N(S;; €S|S;;<0]|S;;> Cpey) =FN+TN

17
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408

409  Further, the discoveries are comprised of both false positives (FP) and true positives (TP),
410 however, which individual values within the discovery class is a FP or TP is unknown. Using the
411 FPR however, we can estimate the number of expected FPs given the total number of
412  comparisons <0 for the given gene (T;). In other words, if this gene were random in its negative
413  correlations, then only a specific number of false positives would be expected (FP), using Creg
414  as a cutoff.

415 FP, = T, FPR

416  Therefore, with FDR defined as:

FpP

417 FDR = ——
(FP + TP)

418 We can estimate the FDR for each gene, determining if it has an over abundance of negative

419  correlations compared to what is expected from the null distribution:

420 FDR, =

421  We then select genes that have a >15x excess in discoveries relative the expected number of
422 false positives under the null distribution assumption. This corresponds to an estimated FDR =
423 0.066 (1/15). This yields the set of all excessively negatively correlated genes (A):

424 A= {genei € genes | FDR, < 0.066}

425  Lastly, given that spurious positivity is still possible and even expected, we add one last layer of
426  protection against false discoveries. The positive/negative status of a single gene likely does not
427  define a truly “novel subtype” — particularly in a technique such as single-cell -omics where
428  stochastic dropout from random sampling is expected. We therefore apply an additional filter from
429 the premise that the genes whose expression patterns separate meaningful populations should

430 also be positively correlated with other genes that are following similar regulatory patterns. To
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431  select this population of genes, we find genes that have greater than 10 positive correlations
432 above the positive correlation cutoff (C,,), as calculated similarly to (C,,.4) as described above.
433 M= {genei € genes | N( Sij | Sij > Cpos| i # j) > 10}

434  The final included features are the intersect of A and M:

435 F=AnNM

436  Overall, this means that genes must contain both an excess of negative correlations, and be a
437  member of a “module” of at least 10 genes that move in concert.

438

439  Recursion benchmarks

440 An initial run of locally weighted Louvain modularity was performed, then the given dataset
441  was subset to contain only the cells of a given cluster in the prior round of clustering. Next, feature
442  selection and locally weighted Louvain modularity was applied again, recursively until either each
443  cell was called its own “cell-type”/cluster or produced “cell-types”/clusters with <5 cells.

444 Circular recursion graphs were displayed using networkx?®, with layout determined by the
445  graphviz_layout(prog="twopi') layout?’.

446

447  In silico recursive clustering benchmark

448 Four clusters were simulated using Splatter'®, and all algorithms were allowed to
449  recursively select features, which were then subjected to locally weighted Louvain modularity until
450  one of the following conditions were met: no features were selected, the clustering algorithm only
451  found a single cluster, or the results of clustering formed groups of 5 or fewer cells.

452

453  Real-world recursive clustering benchmark

454 The above described recursion procedure was applied to the previously released mouse

455  heart scRNAseq dataset,? and human PBMC dataset?® for UMI based technologies, and mouse
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456  hippocampus single nucleus RNAseq'# and human dendritic cell/monocyte®® datasets were used
457  for full length transcript sequencing based approaches. Each dataset was normalized as
458 described above and is available in the repository site containing this benchmark:

459 https://bitbucket.org/scottyler892/anti correlation vs overdispersion in the data folder. The same

460  recursive clustering procedure was followed as described for the in silico recursion benchmark
461  above.

462

463  Feature selection accuracy based on Splatter and Sergio simulations

464 For both simulation paradigms, we simulated 4, 6, 8, and 10 clusters. 2500 cells were
465  simulated with 10000 genes, of which 2000 were intended to be differentially regulated across
466  clusters. Once simulations were completed, the datasets were downsampled down to 95% of the
467  cell with the lowest total counts in the given dataset, using the pyminer_norm python package®'.
468 Splatter simulations were generated using the bin/simulate_data.R with the above
469  described clusters, cells, and gene parameters. SERGIO simulations were generated from the
470  bin/generate_sergio_sim.py script, which was called from the bin/simulate_data.R file. For each
471  cluster, a single “master-regulator” gene was used to induce high expression of its child nodes in
472  the GRN. The non-differentially regulated genes were random negative binomial distributions
473  added to the network with the np.random.negative_binomial function.

474 Similar to performing pathway analyses, a proper background list of genes is necessary
475  for quantifying enrichment. For example there may be a simulated low-expression gene that was
476  ‘“differentially expressed” in ground-truth, however, was only expressed in two cells after
477  simulation of the low expressed gene. In this situation, this gene it would not be realistically
478  possible to “detect” this gene as differentially expressed even if ground truth clusters were known.
479  Therefore to generate a background of detectably differentially expressed genes, were performed
480  differential expression analysis by 1-way ANOVA (aov function) using the known ground truth
481  cluster labels. This gives us a list of detectably differentially expressed genes to use as the ground
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482  truth desired genes for feature selection, while non-detectably differentially expressed were all
483  treated as not desired for selection. This parallels pathway analysis in that, if a gene is not
484  detectably expressed, it should not be included in the custom background.

485

486  Pancreatic datasets for feature selection

487 The seven pancreatic datasets® '®2° used for feature selection efficacy benchmarking
488  were processed as previously described?; the available post-processing datasets were used as-
489 is. These datasets are also now re-packaged in the data zip contained within the benchmark
490 repository. To assess efficacy, three primary metrics were used via gProfiler analysis using the
491  human protein atlas “HPA” pathways which indicates genes are enriched for certain tissues and
492  sub-tissue niches?':?2, For each dataset, a custom background was used, comprised of the genes
493  expressed in the given dataset. For each analysis, the HPA results were filtered to include only
494  the pancreatic tissues and niches, the pancreatic HPA pathway that was the most significant was
495  counted as a method’s best pancreatic match. The -log10(p-values), precision, and recall for this
496  best match was used for comparisons. To adjust for the wide range and skewed distributions in
497  significance across datasets and methods, we rank transformed the -log10(p-values); precision
498  and recall however are all on a scale between 0 and 1, and were therefore analyzed directly.
499  Significance was determined with the aov and TukeyHSD functions to measure the main effects
500 and post-hocs respectively. The aov function was called with the formula: metric ~ method +
501 dataset.

502

503 Tabula Muris dataset

504 The senescent Tabula Muris dataset?® was used to demonstrate the scalability of our
505 analytic pipeline. This dataset was previously filtered to contain only cells with 22500 UMI counts.

506 We therefore downsampled the dataset such that all cells contained 2500 UMI, and log2
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transformed it for analysis. The downsampling process was performed using the bio-pyminer-

norm package that is pip installable:

python3 -m pip install bio-pyminer-norm

The process of downsampling is reported in detail at the repository website:

https://bitbucket.org/scottyler892/pyminer norm

Subclustering rounds were first feature selected with the anti-correlation package that we

released here, using default parameters:

from anticor_features.anticor_features import

anti_cor_table = get_anti_cor_genes(exprs, feature_ids, species = “mmusculus”)

Locally weighted Louvain modularity was used for clustering as described above. Note that while
the default functionality of our feature selection package automatically removes ribosomal,
mitochondrial, and hemoglobin related genes, for fair comparison with other methods, these
genes were left in for possible selection when comparing to other algorithms. This can be
customized using the pre_remove_pathways argument. The default removal list are genes

contained in the following pathways (all related to ribosomal, mitochondrial, and hemoglobin):

"G0:0044429","G0:0006390","G0O:0005739","G0O:0005743","G0O:0070125","G0O:0070126","GO:
0005759","G0:0032543","G0:0044455","G0O:0005761","GO:0005840","GO:0003735","G0O:0022
626","G0:0044391","G0O:0006614","G0O:0006613","G0O:0045047","G0O:0000184","GO:004304 3"
,"G0:0006413","G0:0022613","G0O:0043604","G0O:0015934","G0O:0006415","GO:0015935",

"G0:0072599","G0:0071826","G0O:0042254","G0O:0042273","G0:0042274","G0O:0006364","GO:

0022618","G0:0005730","G0O:0005791","G0O:0098554","G0O:0019843","GO:0030492"
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529  Alternatively, if the user whishes to exclude specific features, these can be included in the
530 pre_remove_features list argument; however, this was left empty for all of the work presented

531 here.
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600 Figure 1: Anti-correlation algorithm premise and passage of the null-dataset problem. a,
601  The logic behind anti-correlation-based feature selection. Marker-genes will be expressed at
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602  higher levels in their lineage/cell-type compared to cells outside of that lineage or cell-type. b,
603  As a scatter plot where expression of marker A is plotted against marker B, cells of type A and B
604  will form an L-shaped anti-correlation pattern, while cell-type C would express low levels of both
605 marker A and B. ¢, This anti-correlation pattern would disappear when examining a single

606  population of cells. d, The anti-correlation pattern of marker-genes appears in an example

607  dataset,?2 where high expression of AMY2A in acinar cells forms an anti-correlation pattern with
608  SST in delta cells of the pancreas. e, The anti-correlation pattern between AMY2A and SST
609 disappears when only subset for delta cells. f, The anti-correlation pattern is also present in

610 lineage-marking-genes as shown by the pattern of AMYA2 and NEUROD1, which labels all

611  endocrine cells of the pancreas. g, The anti-correlation-based feature selection algorithm first
612  calculates a null background of Spearman correlations based on bootstrap shuffled gene-gene
613  pairs to calculate a background. h, Next the cutoff value closest matching the desired false

614  positive rate (FPR) is determined. Displayed is a histogram of the bootstrap shuffled null-

615  background of Spearman correlations less than zero. i, Lastly genes which show more

616  significant negative correlations (x-axis) than expected by chance (black line), given the gene’s
617  number of total negative correlations (y-axis), are selected: i.e. those to the right of the cutoff
618 line. These are then used to calculate the False Discovery Rate (FDR) for each gene (See

619  Methods for details). j-k, Heatmaps of selected features, and the total number of subclusters for
620 each method of feature selection paired with AP clustering, when algorithms were allowed to
621  sub-divide iteratively for homeostatic cell line scRNAseq: (j) NIH3T3, (k) HEK293T. |, Boxplots
622  indicating the total number of clusters identified by each method of feature selection (box colors)
623  and clustering (noted in panels) showed that anti-correlation-based features selection (arrows)
624 identified no features, indicating a single population in all cases, while other methods produced
625  more clusters, thus failing the null-dataset problem.
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Figure 2: Recursion-to-completion in real datasets and anti-correlation algorithm scaling.
a, A schematic of sub-clustering is shown in the form of UMAP projections of the original
dataset (left panel), and a sub-clustering iteration of a population found in the first round of
feature selection and clustering (right panel). b-c, In real datasets of varying technologies,
status quo algorithms fail the recursion-to-completion problem while the anti-correlation-based
approach prevented recursion-to-completion. Recursive clustering plots where each point
indicates a cluster at a given recursive clustering recursion-depth as denoted in successive
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rings and color. d, Boxplots of the mean recursion depth for each of the final sub-clusters for
each noted method. e, Boxplots of the total number of groups obtained through iterative sub-
clustering. f, A heatmap of the top 5 marker genes per cluster are shown for the 26 primary
lineages from the full senescent Tabula Muris dataset?, with the last cluster representing a
mixture of endocrine pancreas. g, When subclustered with anti-correlated feature selection, cell-
type droplets (x) as well as classically described leukocyte, a, 8, B, and acinar populations were
discovered. Subclustering B cells discovered mixed-lineage droplets with 6 and leukocyte cells
as well as the rare PP-cell population, but additional subclustering of PP-cells was prevented by
anti-correlation-based feature selection.

29


https://doi.org/10.1101/2022.12.05.519161
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.05.519161; this version posted December 7, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Recursion to completion |y Pancreatic Dataset

based on simulation Anti-  Brennecke PyMINEr Seurat V3 =™ Feature Selection
* correlation dispersion dispersion dispersion p — P<0.05

— == Not Significant

S — Splatter
o e —;\; Performance
25 ccuracy _ F1 -
o < o - : Worse il Better
.5 2.0 Pftff;[ma-nce ‘\‘ é R w o P-v:nlue 2S|gng|cance Rank
®» 1.5 Worse Better | - = 1 2 3 4 5
=] | (L Anti- .
3 1.0 MCC FPR FDR correlation ‘:’ ||
05 = s B(ennecﬂker| 1
c Y. i | dispersion I
S CL '
§oo- T ag= | w | o w o -
t5espses g 2 =) = Seurat V3 |
<5 80 Z0D T2 QO Precision Recall TNR dispersion
2 E22Q 52 2 - & W == M3Drop |
§ g 5 %3 » = | ) | o ! B Precision
*k % ‘* e 1= - L 1
SERGIO S I
@ — Cc _ Brennecke, ﬁ |
= — _ Accuracy _H dispersion 1
3] —— o —— ‘ ' PyMINET. . 1
5)103 * mce ‘ = ! £ dis);gersion l
Y— - Worse Better = B B Seurat V3- '
© | =g pa==__ dispersion
2102 MCC FPR FOR  M3Drop Il
= T m= ] L T eca
E ' - H=m™ 0 02 04 06
=10 ‘ - | =] 1 Anti- |
5 1= “ ‘H‘*"ﬁ“’ =3 ‘ correlation | — :”
= L C OC S5C ®OcC | - Brennecke .
e E S 39 % 2 >9 Precision Recall TNR dispersion ‘I:I:} ::
oL ED 5P -
eeg3e fe 2 | B g 7= e il .
5 oA Q0 | T (RS - BE g } .
S & 5 N5 \ \ = Seurat V3
\ M;— E i dispersion
643 el L N. < oilie| | e M3Drop’ |

644 Extended Data Figure 1: Anti-correlation-based feature selection outperforms other
645 methods in recursion-to-completion and feature selection efficacy. a, Using Splatter
646  simulation of four clusters, all algorithms were allowed to select features and perform locally
647  weighted Louvain modularity-based clustering recursively. Shown are boxplots indicating the
648 mean recursive depth and total number of clusters on a log scale. The anti-correlation algorithm
649 did not allow for any recursive clustering, resulting in fewer clusters identified (*:P<6.2e-6;
650  ***:P<1.7e-9; all ANOVA/TukeyHSD post-hoc comparisons against anti-correlation). b-c, Taken
651 as a classification problem in which a feature selection algorithm’s task is to select detectably
652  differentially expressed genes across clusters, we quantified each algorithm’s accuracy, F1 score,
653 Mathew’s Correlation Coefficient (MCC), false positive rate (FPR), false discovery rate (FDR),
654  precision, true negative rate (TNR), and recall. b, Boxplots of classification metrics (panels) by
655 feature selection approach (colored boxes) using Splatter simulations'®. ¢, Boxplots indicating the
656  performance of each features selection method (colored boxes) for each metric (panels), using
657 SERGIO, gene regulatory network based simulations™. d, Using 7 pancreatic datasets? '2°, each
658  algorithm’s selected features was analyzed for significance with pancreatic tissue enrichment via
659  gProfiler and the human protein atlas?" ?2; displayed are boxplots of the “best” pancreatic pathway
660 by p-value comparing this pathway’s rank p-value, precision, and recall.
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Extended Data Figure 2: Examples of Splatter and SERGIO simulations, and feature
selection. a,b, For both simulation paradigms (a) Splatter and (b) SERGIO, heatmaps are
shown for the ground truth differentially expressed genes (DEGs), the selected-genes, non-
selected DEGs, and selected genes that are not differentially expressed. Next to the heatmaps

are gene-gene scatter plots of randomly selected genes from the indicated class (row) for the
feature selection algorithms (columns). Points indicate an individual cell’s expression of random

0.000
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668  gene-x and gene-y for the designated gene class and algorithm, colorized by the simulated

669  cluster. (a) Splatter DEGs show widespread co-expression of DEGs within all clusters, while (b)
670 SERGIO allows for cluster specific expression of DEGs. (¢) An example histogram of null

671  distribution patterns of Spearman rhos on shuffled datasets shows that, even on shuffled data
672  with no true positives, negative rhos follow a different distribution than positive rho values.
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