

1 **Title**

2 Cis-regulatory evolution of the potassium channel gene *kcnj13* during pigment
3 pattern diversification in *Danio* fish

4

5 **Authors**

6 ¹Marco Podobnik (<https://orcid.org/0000-0001-5480-7086>)

7 ²Ajeet P. Singh (<https://orcid.org/0000-0002-3819-5136>)

8 ³Zhenqiang Fu (<https://orcid.org/0000-0003-3766-1083>)

9 ⁴Christopher M. Dooley (<https://orcid.org/0000-0002-4941-9019>)

10 ¹Hans Georg Frohnhöfer (<https://orcid.org/0000-0003-4038-7089>)

11 ⁵Magdalena Firlej (<https://orcid.org/0000-0001-6156-9493>)

12 ^{6,7,8}Hadeer Elhabashy (<https://orcid.org/0000-0002-4677-7064>)

13 ⁹Simone Weyand (<https://orcid.org/0000-0002-7965-0895>)

14 ⁵John R. Weir (<https://orcid.org/0000-0002-6904-0284>)

15 ³Jianguo Lu (<https://orcid.org/0000-0002-3966-8812>)

16 ¹Christiane Nüsslein-Volhard (<https://orcid.org/0000-0002-7688-1401>)

17 ^{1,10}Uwe Irion (<https://orcid.org/0000-0003-2823-5840>)

18 ¹Max Planck Institute for Biology, Tübingen, Germany. ²Chemical Biology and
19 Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, USA. ³School
20 of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China. ⁴Department of
21 Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim,
22 Germany. ⁵Friedrich Miescher Laboratory of the Max Planck Society, Tübingen,
23 Germany. ⁶Department of Protein Evolution, Max Planck Institute for Biology,
24 Tübingen, Germany. ⁷Institute for Bioinformatics and Medical Informatics, University
25 of Tübingen, Tübingen, Germany. ⁸Department of Computer Science, University of
26 Tübingen, Tübingen, Germany. ⁹Department of Biochemistry, University of
27 Cambridge, Cambridge, United Kingdom. ¹⁰Corresponding author: Uwe Irion,
28 uwe.irion@tuebingen.mpg.de.

29

30 **Abstract**

31 Teleost fish of the genus *Danio* are excellent models to study the genetic and cellular
32 bases of pigment pattern variation in vertebrates. The two sister species *Danio rerio*
33 and *Danio aesculapii* show divergent patterns of horizontal stripes and vertical bars
34 that are partly caused by the evolution of the potassium channel gene *kcnj13*. In *D.*
35 *rerio*, *kcnj13* is required in melanophores for interactions with xanthophores and
36 iridophores, which cause location-specific pigment cell shapes and thereby influence
37 colour pattern and contrast. Here, we show that cis-regulatory rather than protein
38 coding changes underlie *kcnj13* evolution between the two species. *D. aesculapii*
39 express lower *kcnj13* levels and exhibit low-contrast patterns similar to *D. rerio*
40 mutants. Our results suggest that homotypic and heterotypic interactions between
41 the pigment cells and their shapes diverged between species by quantitative
42 changes in *kcnj13* expression during pigment pattern diversification.

43

44 **Introduction**

45 Teleost fish produce some of the most diverse pigment patterns in nature, which are
46 of great evolutionary importance as direct targets of natural and sexual selection.
47 Closely related species of the genus *Danio*, including the widely used model
48 organism zebrafish, *Danio rerio*, develop amazingly different patterns and are
49 therefore excellent models to investigate the evolution of pigment pattern
50 diversification in vertebrates¹⁻⁵. Recently, the phylogenetic relationships in the *Danio*
51 genus have been resolved, which led to the insight that a complex evolutionary
52 history underlies their speciation and morphological diversification⁶.

53 The horizontally striped pattern in *D. rerio* emerges during metamorphosis when
54 multipotent pigment cell progenitors derived from stem cells located at the dorsal
55 root ganglia (DRGs) migrate into the skin⁷⁻⁹. Here they differentiate and form the
56 pattern, presumably by a self-organizing process dependent on multiple cell-cell
57 interactions^{10,11}. These interactions lead to the acquisition of location-dependent cell
58 shapes, compact/yellow xanthophores and dense/reflective iridophores in the light
59 stripes, and stellate xanthophores and loose/blue iridophores in the dark
60 stripes^{7,12,13}. Melanophores are restricted to the dark stripes. Precise superimposition
61 of the differentially shaped pigment cells is required for colour and contrast of the
62 pattern. The cellular interactions are, at least partially, mediated by direct cell-cell
63 contacts through gap junctions, adhesion molecules and ion channels. Gap junctions
64 are formed by two connexins (Gja4 and Gja5b)¹⁴⁻¹⁶, Igf11 and Jam3b regulate
65 adhesion^{17,18} and Kcnj13 is an inwardly rectifying potassium channel¹⁹. The diverse
66 patterns in other *Danio* fish are produced by the same three types of pigment cells;
67 however, the genetic and cell biological basis of the pattern variation is still largely
68 unexplored. So far, the evolution in two separate cell differentiation pathways,
69 xanthophore-specific Csf1 signalling in *D. albolineatus* and iridophore-specific Edn

70 signalling in *D. nigrofasciatus*, has been linked to patterning differences²⁰⁻²². This
71 mode of evolution might partly cause changes in the timing and strength of the
72 interactions between pigment cells, with cascading effects on their final distribution
73 within the skin.

74 In this study, we focus on the diversification of pigment patterns between the two
75 sister species *D. rerio* and *D. aesculapii*. Whereas *D. rerio* develop a very stereotypic
76 pattern of sharp horizontal dark and light stripes on the flanks and in the anal and tail
77 fins (Fig. 1a), in *D. aesculapii* a more variable pattern of vertical bars with lower
78 contrast is formed anteriorly on the flank that dissolves into irregular spots
79 posteriorly; the fins are not patterned, except for one dark stripe in the anal fin (Fig.
80 1b). We have shown that the potassium channel gene *kcnj13* evolved to contribute
81 to these patterning differences between the two species²³.

82 In *D. rerio* *kcnj13* mutants fewer, wider and interrupted stripes develop, and
83 melanophores and compact xanthophores fail to separate completely (Fig.
84 1c,e,f,g)^{14,19,23-28}. A CRISPR/Cas9-mediated loss-of-function allele of *kcnj13* in *D.*
85 *aesculapii* showed that the gene is also required for the formation of vertical bars in
86 this species. This null allele leads to a complete loss of any pattern with uniform
87 distribution of mixed pigment cells in the skin (Fig. 1d)²³. Hybrids between the two
88 species display stripes similar to the pattern in *D. rerio*. The evolutionary divergence
89 of *kcnj13* between *D. rerio* and *D. aesculapii* was demonstrated by reciprocal hybrids
90 between wild-type and mutant fish²³. This genetic test is used to identify evolved
91 genes by comparing the phenotypes of reciprocal hemizygotes; that is hybrids, which
92 carry a null allele from either one of the parental species in an otherwise identical
93 genetic background²⁹. It depends on the ability to generate null alleles in a given
94 species pair, which is possible in several *Danio* species since the introduction of the
95 CRISPR/Cas9 system. Hemizygous hybrids between *D. rerio* *kcnj13* mutant and *D.*
96 *aesculapii* wild type display a spotted phenotype indicating that *D. aesculapii* allele
97 fails to complement the *D. rerio* null-allele, whereas the reciprocal hybrid in which the
98 *D. aesculapii* allele was mutant displayed the striped phenotype of hybrids between
99 the wild-type species. The different phenotypes demonstrated that the wild-type
100 alleles from the two species are functionally no longer equivalent. Mutations in *gja4*,
101 *gja5b* and *igsf11* in *D. aesculapii* revealed functions for all these genes in the
102 formation of the bar pattern. However, all hemizygous hybrids showed patterns
103 indistinguishable from patterns of wild-type hybrids, ruling out functional evolution of
104 these loci. Hybrids between *D. rerio* *kcnj13* mutants and seven additional *Danio*
105 species suggest that *kcnj13* evolved independently several times in the genus, as
106 the wild-type alleles from three different species, *Danio aesculapii*, *Danio tinwini* and
107 *Danio choprae*, do not complement a *D. rerio* *kcnj13* loss-of-function allele in
108 hemizygous fish²³.

109 In chimeras produced by blastula transplants, we corroborate previous
110 studies^{19,25} showing that *kcnj13* function is cell-autonomously required in

111 melanophores but not in xanthophores for normal stripe formation. In addition, we
112 show that the gene function is also not required in iridophores, the third pigment cell
113 type. In vitro experiments have shown that the function of *kcnj13* is required for the
114 depolarization of melanophore membranes upon contact with xanthophores²⁶. This
115 form of contact-dependent depolarisation might underlie the repulsive interactions
116 between melanophores and xanthophores during the establishment of the striped
117 pattern. To test the effects of *kcnj13* loss-of-function on the shapes of pigment cells
118 in vivo we performed further blastula transplants, fluorescence imaging of
119 labelled pigment cells and cell-lineage tracing of marked clones. We find that the
120 shapes of all three types of pigment cells are altered in the mutants, suggesting that
121 cell-cell interactions responsible for the location-dependent acquisition of cell shapes
122 are dependent on *kcnj13* function and defective in the mutants. Using a newly
123 generated CRISPR/Cas9-mediated knock-in reporter line we detect *kcnj13*
124 expression in only very few differentiated melanophores in the skin, suggesting that
125 *kcnj13* function might be required only during a short period or in a subset of cells for
126 a longer time during pattern formation.

127 The coding sequence for *kcnj13* is highly conserved within the *Danio* genus with very
128 few non-synonymous changes between the species. However, it was not clear
129 whether these changes between *D. rerio* and *D. aesculapii* are functionally relevant,
130 or whether cis-regulatory evolution underlies *kcnj13* divergence²³. We show that
131 transgenic rescue of the *kcnj13* mutant phenotype is possible with the wild-type
132 coding sequences of both, *D. rerio* and *D. aesculapii*, suggesting that both proteins
133 are functionally equivalent. Strikingly, we observe a much higher expression of the
134 *D. rerio* allele compared to the *D. aesculapii* allele in the skin of wild-type hybrids.
135 We conclude that regulatory rather than protein changes underlie the evolution of the
136 gene between *D. rerio* and *D. aesculapii*. The differences in the two patterns might
137 result in part from the lower expression of *kcnj13* in *D. aesculapii* leading to variation
138 in pigment cell distribution and shapes reminiscent of those in *D. rerio* mutants
139 deprived of *kcnj13* activity.

140

141 **Results**

142 Development of the *kcnj13* phenotype in *D. rerio*

143 To understand the function of *kcnj13* during pattern formation, we focused on its role
144 during stripe formation in *D. rerio*. Multiple dominant alleles of *kcnj13* have been
145 found in several independent genetic screens^{14,19,23-28}. Fish homozygous for two
146 dominant alleles (Fig. 1e,f) and homozygotes for a recessive loss-of-function allele
147 (Fig. 1c) develop similar but variable phenotypes with fewer, wider and interrupted
148 stripes. To test whether this variability in our stocks is attributable to the nature of the
149 allele (dominant or recessive) or the genetic background, we compared different
150 allelic combinations in F2 fish with the same genetic background and found that all of

151 them lead to indistinguishable phenotypes. This indicates that dominant and
152 recessive alleles cause the same developmental effects in homozygous mutants
153 (Fig. 1g,h) showing that the dominant alleles are dominant-negative in
154 heterozygotes.

155 We followed the development of the mutant pattern during metamorphosis. As
156 previously described²⁵, and comparable to wild type, melanophores in the mutants
157 are cleared from the region of the first light stripe, where compact iridophores and
158 xanthophores develop (Fig. 1i-m). However, unlike in wild-type fish, iridophores later
159 fail to initiate the consecutive light stripes, which leads to a phenotype of fewer and
160 broader stripes in the mutants with occasional interruptions (Fig. 1n,o).

161

162 Cell-autonomy of the *kcnj13* function in *D. rerio*

163 Melanophores but not xanthophores require *kcnj13* function for stripe formation as
164 shown in chimeras created by blastula transplants²⁵. We confirmed these
165 findings and also tested the requirement of *kcnj13* in iridophores. In these
166 experiments the donor embryos were mutant for *kcnj13* and genetically able to
167 provide only one of the three pigment cell types. Hosts were wild-type for *kcnj13* but
168 lacking this pigment cell type. Thus, in three sets of transplants, the resulting
169 chimeras had one mutant pigment cell type placed adjacent to the respective other
170 two wild-type cell types. In contrast to mutant xanthophores and iridophores, only
171 mutant melanophores could not contribute to wild-type patterns in chimeras (Fig. 2a-
172 c) leading to the conclusion that *kcnj13* is cell-autonomously required in
173 melanophores but not in xanthophores or iridophores. By transplanting *kcnj13*
174 mutant cells into *albino/sl45a2* hosts we further tested whether mutant
175 melanophores can integrate into a normal pattern with wild-type melanophores in the
176 chimeric animals. We observed disruptions in the striped pattern wherever mutant
177 (pigmented) melanophores were present (Fig. 2d). Similar severe pattern defects
178 were never observed in chimeras that had not received mutant melanophores
179 suggesting the absence of any functional requirement in non-pigment cells (Fig. 2d).
180 These results indicate that stripe formation requires *kcnj13* function autonomously
181 only in melanophores or their progenitors.

182

183 Endogenous *kcnj13* expression during metamorphosis in *D. rerio*

184 To investigate when *kcnj13* functions in the melanophore lineage, we used
185 CRISPR/Cas9-mediated homology-directed repair to produce a KaitA4::Venus
186 knock-in line (for details see methods) as a reporter for endogenous *kcnj13*
187 expression in *D. rerio*. In early larvae we observed expression in the pronephros,
188 hindbrain and melanophores, a pattern very similar to previously published results

189 obtained by *in situ* hybridization²⁸, suggesting that our reporter line faithfully
190 recapitulates endogenous *kcnj13* expression (Fig. 3a). During later stages, at the
191 onset of metamorphosis, expression is detected in patches of cells in the spinal cord
192 along the entire anterior posterior axis of the fish (Fig. 3b). These positions do not
193 overlap with the DRGs, where the neural-crest derived stem cells for the pigment
194 cells are located⁷⁻⁹ (Fig. 3c). We conclude that *kcnj13* does not provide a function for
195 stripe formation in these cells as our transplantation experiments indicate no
196 functional requirement in non-pigment cells (Fig. 2d). While the signals in the kidney
197 and spinal cord persist throughout metamorphosis, we do not find expression of the
198 reporter in pigment cell progenitors, but in a few xanthophores and melanized
199 melanophores in the skin during the time of pattern formation (Fig. 3d-f). These
200 results show that *kcnj13* is expressed at detectable levels only in a small subset of
201 melanophores at any given time during pattern formation.

202

203 Effects of *kcnj13* mutations on pigment cell shape in *D. rerio*

204 A key aspect of pigment pattern formation in *D. rerio* is the location-specific
205 acquisition of different pigment cell shapes. In the dark stripes of wild-type *D. rerio*,
206 melanophores are densely packed and compact, only cells located at the boundaries
207 to the light stripes form long protrusions, possibly interacting directly with
208 xanthophores and iridophores^{10,30}. To investigate cell shapes in *kcnj13* mutants we
209 observed fish carrying *Tg(kita::mcherry)*, which labels both xanthophores and
210 melanophores. Some cells are unlabelled due to the variegation of the transgene,
211 which allows to visualize the shapes of the tightly packed melanophores. Similar to
212 previous findings¹⁹ we observed that in the dark regions in the mutants
213 melanophores are less compact and less tightly packed compared to wild-type cells.
214 We also find that the melanophores bordering the light stripes lack the very long
215 protrusions present in the wild type (Fig. 4a,b). This suggests that *kcnj13* mutant
216 melanophores do not interact with one another and with xanthophores and
217 iridophores in the same way wild-type melanophores do.

218 Next, we investigated the effect of *kcnj13* mutations on xanthophore behaviour
219 during stripe formation. Upon transplanting wild-type xanthophores, labelled with
220 *Tg(sox10:mrfp)*, into *kcnj13* mutants these cells acquire compact shapes in the dark
221 stripe regions, where they normally appear stellate (Fig. 4c,d). Similar to findings
222 from in vitro studies²⁶, these results suggest that wild-type xanthophores are not
223 always able to interact with mutant melanophores, which causes patterning defects
224 *in vivo*.

225 To assess the effects of mutations in *kcnj13* on iridophores, we induced fluorescently
226 labelled clones in the mutants using a *Tg(sox10:cre-ERt2)* line⁷ and followed labelled
227 iridophores during metamorphosis. We found clones of dense iridophores, which are
228 characteristic for light stripes, in the dark stripe area (Fig. 4e,f). This result suggests

229 that iridophores require the presence of and interaction with melanophores to
230 acquire the loose form; and that this interaction depends on *kcnj13* function. Thus,
231 iridophores might not be able to recognise mutant melanophores and therefore
232 develop ectopically in the dense form in the dark stripe regions. We conclude that
233 *kcnj13* function, required in melanophores, is important for homotypic and
234 heterotypic pigment cell interactions, which control the location-dependent cell shape
235 acquisition of all three pigment cell types during pattern formation. These cumulative
236 effects might inhibit the reiteration of dark and light stripes in the mutant fish.

237

238 Evolution of pigment cell shapes between *D. rerio* and *D. aesculapii*

239 Melanophores in *D. rerio* produce pronounced polarized protrusions towards
240 compact xanthophores and both cell types are strictly separated between the light
241 and dark stripes. The polarity of the protrusions is lost in *kcnj13* mutants, where both
242 cell types also mix occasionally (Fig. 4a,b,g,h). This mutant phenotype is similar to
243 the situation in wild-type *D. aesculapii*, where we found a mixing of cells and no
244 pronounced polarity of melanophores towards xanthophores (Fig. 4i). The contrast of
245 the bar pattern is therefore reduced; there is no contrast in *D. aesculapii* *kcnj13*
246 mutants, where all pigment cells mix and no bars are formed²³. Our observations
247 suggest that the divergence of the pigment patterns between *D. rerio* and *D.*
248 *aesculapii* could partially be due to evolutionary changes in the interactions between
249 all three pigment cell types, which influence the cell shapes.

250

251 Molecular basis of *kcnj13* evolution between species

252 To investigate the channel structure of Kcnj13 (Kir7.1), we expressed the *D. rerio*
253 protein fused to mCherry using a Multibac-derived baculovirus/insect cell expression
254 system^{31,32}, purified the recombinant protein by affinity and size-exclusion
255 chromatography, and measured the molecular mass with mass photometry³³
256 (Supplementary Fig. 1). The results suggest that Kcnj13 exists as a homo-tetramer,
257 which can explain the dominant-negative effects observed in alleles carrying point
258 mutations affecting the selectivity filter or the second transmembrane helix (Fig.
259 1a,b) as caused by mutant proteins negatively interfering with wild-type copies in the
260 complex in heterozygous fish^{14,19,23,24,27,28}. We constructed homology-based and
261 AlphaFold-multimer models of the homo-tetrameric Kcnj13 channel (Supplementary
262 Files). These models agree with published structures of similar potassium channels.
263 The protein sequences of *D. rerio* and *D. aesculapii* differ only by two amino acid
264 residues (Q23L and D180G in magenta) in the cytoplasmic domain²³; structure
265 modelling of the two alleles is insensitive to these differences.

266 Reciprocal hemizygosity tests showed that the divergence of *kcnj13* must reside
267 within the locus, either in the protein-coding region or in cis-regulatory elements, but
268 cannot be due to trans-acting factors²³. To test whether the amino acid changes
269 identified between the two species contribute to the evolution of *kcnj13*, we used
270 Tol2 transgenesis to express the coding regions from *D. rerio* or *D. aesculapii* under
271 the control of the melanophore-specific *mitfa* promoter in *kcnj13* null-mutant *D. rerio*
272 (Fig. 5b,d). In both cases the transgenes were able to restore the striped pattern in
273 the trunk of the fish, indicating that the protein from *D. aesculapii* can function in a
274 similar manner to the *D. rerio* protein (Fig. 5e). We observed some differences in the
275 rescue capabilities of the transgenes among the lines we established, possibly due
276 to copy number variations and expression differences of the randomly inserted
277 transgenes. The striped pattern of the caudal fin was never restored in the
278 transgenic lines, most likely due to the inactivity of the promoter at the appropriate
279 time points in this tissue, corroborating the finding of fundamental mechanistic
280 differences in pigment pattern formation between the trunk and fin (Frohnhofer et al.
281 2013). Our results suggest that the coding regions from both species function
282 similarly and that the protein-coding changes are irrelevant for *kcnj13* divergence.

283 Therefore cis-regulatory changes likely underlie *kcnj13* evolution and patterning
284 differences between the two species. To test this prediction, we produced hybrids
285 between the two species and performed allele-specific expression analysis in the
286 skin and posterior trunk of adult fish. We found significantly higher levels of the *D.*
287 *rerio* allele compared to the *D. aesculapii* allele (Fig. 5f, Supplementary Fig. 2),
288 indicating species-specific regulation of the locus and thereby confirming cis-
289 regulatory evolution. Quantitative differences in expression levels might cause
290 differences in pigment cell interactions and shapes observed between *D. rerio* and
291 *D. aesculapii*. Based on the repeated and independent evolution of the ancestral
292 *kcnj13* function in the *Danio* genus²³ we speculate that similar cis-regulatory changes
293 might also have occurred in *D. tinwini* and *D. choprae*. Our results highlight the
294 *Danio* genus as an excellent model system to study the molecular, genetic and
295 cellular basis of pigment pattern diversification in vertebrates.

296

297 **Discussion**

298 Teleost fish produce some of the most intricate pigmentation patterns in nature.
299 However, only in a few species the pattern forming mechanisms are studied in detail.
300 *D. rerio*, an excellent vertebrate model organism widely used in research, shows a
301 conspicuous pattern of horizontal stripes on the flank and in the anal and tail fins.
302 This pattern is produced by three types of pigment cells interacting in complex ways
303 to self-organize into dark and light stripes. During pattern formation the horizontal
304 myoseptum serves as an anatomical pre-pattern for the orientation of the stripes.
305 The stripes in the anal and tail fins are contiguous with the stripes in the body.
306 However, the fin pattern is formed by a different, possibly somewhat simpler

307 mechanism that involves only two cell types, melanophores and xanthophores.
308 Cellular interactions mediated by direct cell-cell contacts depending on gap junctions
309 and adhesion molecules are essential for stripe formation as demonstrated by the
310 spotted phenotypes of *gja4*, *gja5b*, *igsf11* and *jam3b* mutants^{14,15,17,18}. In addition,
311 mutations in *kcnj13* lead to defects in the pattern with fewer, wider and interrupted
312 stripes and occasional mixing of compact xanthophores with
313 melanophores^{14,19,23,24,26-28}. *Kcnj13* regulates the membrane potential of
314 melanophores²⁶, which might be important for the repulsion between xanthophores
315 and melanophores. By interspecies complementation tests in *Danio* hybrids it was
316 previously shown that of these four genes only the function of *kcnj13* diverged within
317 the *Danio* genus, probably several times independently²³.

318 To better understand the role of *kcnj13* in pattern formation and diversification, we
319 examined its function in *D. rerio* in more detail. All *kcnj13* alleles isolated in genetic
320 screens are dominant with a relatively weak heterozygous and considerably stronger
321 homozygous phenotype. We previously produced a loss-of-function allele, which is
322 completely recessive²³. The phenotypes of homozygous fish for a dominant or the
323 recessive allele in the same genetic background are indistinguishable (Fig. 1g,h).
324 This demonstrates that the dominant alleles are in fact dominant-negatives and not
325 neomorphs. The variability we observe in our mutant strains is dependent on the
326 genetic background.

327 Phenotypic analysis of chimeras obtained by blastula transplants had already
328 demonstrated the autonomous requirement of *kcnj13* function in melanophores but
329 not in xanthophores²⁵. We repeated these transplantation experiments including the
330 third pigment cell type, iridophores. Our results show that *kcnj13* function is required
331 only in melanophores for stripe formation in *D. rerio*, but not in any other cell type
332 (Fig. 2a-c). In addition, we find that mutant melanophores lead to strong patterning
333 defects when transplanted into wild-type fish (Fig. 2d). This shows that the mutant
334 cells are not guided by their wild-type neighbours but influence the patterning
335 process cell-autonomously, possibly failing to instruct neighbouring xanthophores
336 and iridophores.

337 Our results support the prior observation that a *kcnj13* transgene expressed under
338 the control of the *mitfa* promoter, which is known to be active in melanophores and
339 their stem cells⁹, can rescue the mutant phenotype in the trunk²⁶. As these
340 experiments were conducted in the presence of a dominant-negative *kcnj13* allele,
341 which impedes the wild-type channel function, a complete rescue could not be
342 expected. In our transgenic rescue experiments, using the recessive mutant,
343 expression of *kcnj13* using the *mitfa* promoter restores the stripes on the flank of the
344 fish to a pattern very similar to the one observed in wild types (Fig. 5b), which further
345 supports the notion that *kcnj13* is required in melanophores. The striped pattern in
346 the anal and tail fins is not restored by the transgenes suggesting that expression
347 under the melanophore-specific *mitfa* promoter does not recapitulate all aspects of

348 the endogenous expression pattern of *kcnj13*, and mechanisms that form stripes in
349 the fins are fundamentally different from those that form stripes in the trunk¹⁰.

350 To visualize the expression pattern of *kcnj13* in *D. rerio* we made a reporter line by
351 homology directed knock-in of an optimized GAL4 coding sequence (KalTA4) into
352 the endogenous locus. In combination with a UAS:Venus transgene this reporter line
353 shows expression in early larvae in the pronephros and melanophores (Fig. 3a,b),
354 very similar to published data from in situ hybridizations²⁸, indicating that our line
355 faithfully recapitulates *kcnj13* expression. Later, during metamorphosis when the
356 pigment pattern is formed and also in adult fish, we detected expression in neurons
357 of the spinal cord (Fig. 4c). During these stages in situ hybridizations are difficult in
358 *D. rerio* and we rely on the reporter to indicate expression of the gene. As our
359 transplantation experiments clearly show a cell-autonomous requirement of *kcnj13* in
360 melanophores or their precursors (Fig. 2d) we can rule out a function of the gene for
361 pattern formation in these neuronal cells. We also found expression of the reporter
362 line during later stages in few xanthophores and, unexpectedly, only in a small
363 subset of melanophores (Fig. 4d). Expression of the reporter in xanthophores might
364 reflect earlier activation in a common precursor for melanophores and xanthophores
365 and the long persistence of the proteins (KalTA4 and Venus). Alternatively, *kcnj13*
366 could genuinely be expressed in xanthophores but without any obvious function in
367 stripe formation. Our observation that we cannot detect *kcnj13* expression in all
368 melanophores at any given time point suggests that it is either required only very
369 transiently or that only a few cells depend on *kcnj13* function and then influence the
370 behaviours of all the pigment cells. Alternatively, our reporter might not be sensitive
371 enough to allow the detection of very low expression levels, which could
372 nevertheless be relevant for pattern formation. A different possibility is that the
373 channel protein might be very stable and present in the cell membrane for prolonged
374 times even after transcription has ceased and also the reporter is no longer
375 detectable. In any case, our data is consistent with published data from single-cell
376 RNA sequencing³⁴, which also show expression of *kcnj13* to be low and limited to a
377 very minor fraction of pigment cell progenitors as well as differentiated melanophores
378 and xanthophores.

379 We conclude that *kcnj13* is only required in melanophores during pattern
380 development. Mutant melanophores are less compact and less tightly packed
381 affecting the tiling within the dark stripe. Mutant melanophores at the stripe
382 boundaries also do not form polarized protrusions towards the light stripes (Fig.
383 4a,b). The significance of these protrusions is unclear, they could be used for direct
384 repulsive interactions with xanthophores or iridophores to delineate the boundary
385 between light and dark stripe^{10,30}. In *kcnj13* mutants homotypic and heterotypic
386 interactions, among melanophores and between melanophores and the other two
387 pigment cell types, are affected, as seen, for example, by the mixing of the cells. We
388 find that the shapes of both cell types are affected in *kcnj13* mutants, with dense
389 iridophores and compact xanthophores, which are limited to the light stripes in wild

390 type, also appearing in dark stripe regions. Therefore, we conclude that
391 melanophores play a critical *kcnj13*-dependent role in directing dark stripe-specific
392 cell shape transitions in both, iridophores and xanthophores. In the absence of
393 *Kcnj13* all three types of pigment cells may lose their dark stripe-specific shapes,
394 which might indicate that the default shapes for xanthophores and iridophores are
395 the ones these cells acquire in the light stripe region.

396 The same types of pigment cells that are found in *D. rerio* form a range of very
397 different patterns in closely related *Danio* species. The specification and
398 differentiation of pigment cells are similar in *D. rerio* and *D. aesculapii*. They both
399 require Mitfa- and Kit signalling in melanophores and Csf1 and Ltk signalling in
400 xanthophores and iridophores, respectively^{23,35}. Mutants indicate that iridophores do
401 not emerge along the horizontal myoseptum, are lower in number and dispensable
402 for bar formation in *D. aesculapii* whereas they guide stripe formation in *D. rerio*²³.
403 Whether genes required for iridophore development have evolved between these
404 two species is not known. However, for another species, *D. nigrofasciatus*, it was
405 shown that reduced iridophore proliferation contributes to a reduction in stripe
406 number and integrity²². In addition, species-specific differences in the developmental
407 timing of pigment cell proliferation and differentiation can lead to patterning
408 differences as observed for xanthophores, which differentiate precociously in *D.*
409 *albolineatus* resulting in a loss of the striped pattern²¹. We find that melanophores in
410 *D. aesculapii* do not form long protrusions towards the light regions (Fig. 4g-i), which
411 is similar to *kcnj13* mutants in *D. rerio* (Fig. 4a,b). In *D. rerio* these protrusions might
412 partly regulate melanophore survival³⁰ and the overall stability of the boundary
413 between dark and light stripes. Similar to the *D. rerio* mutant, the lack of such
414 protrusions in *D. aesculapii* might indicate a less robust mechanism for the
415 consolidation of the boundary between dark bars and light regions (Fig. 4i), where
416 melanophores and xanthophores frequently mix.

417 When tested in *D. aesculapii* the four genes (*kcnj13*, *gja4*, *gja5b* and *igsf11*), known
418 to function in cell-cell interactions during stripe formation in *D. rerio*, were found to be
419 also required to form the bar pattern²³. Whereas residual patterns of spots or wider
420 and interrupted stripes still form in *D. rerio* mutants, the bar pattern is completely lost
421 in *D. aesculapii* mutants and all pigment cells intermingle and distribute evenly in the
422 skin, a phenotype only seen in double mutants in *D. rerio*. This indicates that cellular
423 interactions in both species occur but are more complex in *D. rerio*, which could lead
424 to a higher robustness of the patterning mechanism in this species. Reciprocal
425 hemizygosity tests for all four genes lead to the conclusion that there is functional
426 conservation in three cases, *gja4*, *gja5b* and *igsf11*, while only *kcnj13* diverged
427 between the two species²³. Thus, the formation of the very different patterns of
428 horizontal stripes and vertical bars involves the same players. Three of these, *Kcnj13*
429 and the two gap junction proteins, might be involved in an electric coupling of
430 pigment cells, which could allow coordinated tissue-scale patterning³⁶. Evolution in

431 *kcnj13* between the two species might influence the conditions for these interactions,
432 with the consequence of evolutionary change in patterning.

433 In our rescue experiments the coding sequences from both species, *D. rerio* and *D. aesculapii*, were equally able to restore stripe formation in *D. rerio* *kcnj13* mutants
434 indicating functional equivalency. However, the use of a non-native promoter and
435 possible position effects due to random integration of the transgenes might obscure
436 subtle functional differences between the two proteins. This question could be
437 addressed in the future by precise exchanges in the coding sequence of the
438 endogenous locus in *D. rerio*. However, we found allele-specific differences of *kcnj13*
439 expression in hybrids with much higher levels of expression from the *D. rerio* allele
440 (Fig. 5f) clearly indicating regulatory differences between the loci from the two
441 species. Therefore, the functional divergence of *kcnj13* between *D. rerio* and *D. aesculapii* is most likely caused by evolution of cis-regulatory elements affecting the
442 levels of expression of the gene. Cis-regulatory evolution has been implicated in
443 other cases of pattern diversification of *Danio* fish. In *D. albolineatus* the increased
444 expression of *Csf1* causes early differentiation of xanthophores leading to a loss of
445 the striped pattern and the mixing of pigment cells²¹. In *D. nigrofasciatus* iridophore
446 development is reduced due to cis-regulatory changes in the *Edn3* gene leading to
447 an attenuated pattern with fewer melanophores and stripes, similar to hypomorphic
448 *D. rerio* mutants²². In the rare case of *D. kyathit* and *D. quagga* hybrids between the
449 two species are fertile, which allows for quantitative trait locus (QTL) mapping. QTL
450 analysis for differences between the spotted *D. kyathit* and the striped *D. quagga* led
451 to the identification of a complex genetic basis for the pattern differences with
452 multiple candidate loci, probably involving changes in a number of regulatory
453 regions³⁷. In the more distantly related cichlids bars and stripes evolved repeatedly in
454 species endemic to the Great African Lakes. Here, QTL mapping identified
455 regulatory changes in the gene *agouti-related peptide 2* (*agrp2*) that underly these
456 patterning differences³⁸.

459 In three-spine sticklebacks genome-wide association studies identified loci
460 underlying repeated ecological adaptations in independent pairs of fresh- and
461 saltwater populations³⁹. These adaptive loci are predominantly affected by cis-
462 regulatory changes leading to differences in gene expression in the gills⁴⁰. In
463 contrast, trans-acting factors independently evolved to affect gene expression in the
464 pharyngeal tooth plate in sticklebacks⁴¹. It was speculated that the genetic
465 architecture of teeth formation is less complex than the adaptations to salt handling;
466 evolution of trans-acting factors might therefore be less pleiotropic in dental tissue
467 compared to multifunctional gills.

468 Dominant mutations in *kcnj13* in *D. rerio* cause pigment pattern defects but also late-
469 onset retinal degeneration^{42,43}, similar to mutations in the human ortholog that are
470 known to cause two rare retinal diseases^{44,45}. Mutations in mice lead to lethal defects
471 in tracheal development⁴⁶. Due to this observed pleiotropy protein evolution might be

472 highly constrained, favouring regulatory evolution. In general pigment patterns seem
473 to evolve often by regulatory mutations, whereas pigmentation frequently diverges by
474 protein changes⁴⁷. However, constraints on regulatory evolution also exist; ectopic
475 expression of *kcnj13* in the dermomyotome leads to a long-finned phenotype²⁸. Cis-
476 regulatory evolution in *kcnj13* specifically affecting expression in the skin is
477 presumably non-pleiotropic and might therefore be more permissive for evolutionary
478 change influencing pigment cell behaviour.

479 A basic colour-forming unit in cold-blooded vertebrates, fish, amphibians and
480 reptiles, consists of xanthophores in the top layer, iridophores in the middle layer and
481 melanophores in the bottom layer. Melanophores appear black in the absence of
482 shiny iridophores and yellow-orange xanthophores on top, as in *D. rerio* *shady/ltk* or
483 *pfeffer/csf1ra* mutants. Modifications of this basic arrangement of pigment cells can
484 yield diverse colourations. By varying the mechanisms that regulate pigment cell
485 shape and layering, differences in colour, brightness and contrast can be achieved.
486 In this regard our study points towards *kcnj13* as a key node for evolutionary
487 tinkering that underlies colour pattern diversification in teleosts. *D. rerio* *kcnj13*
488 mutants develop light and dark stripe regions low in contrast due to pigment cells
489 that lack location-specific shapes and colouration. Regulation of colouration by cell
490 shape transition may point to an important mechanism employed across evolution,
491 where layer-specific and location-specific arrangement of diverse pigment cell types
492 leads to species-specific colouration.

493

494

495

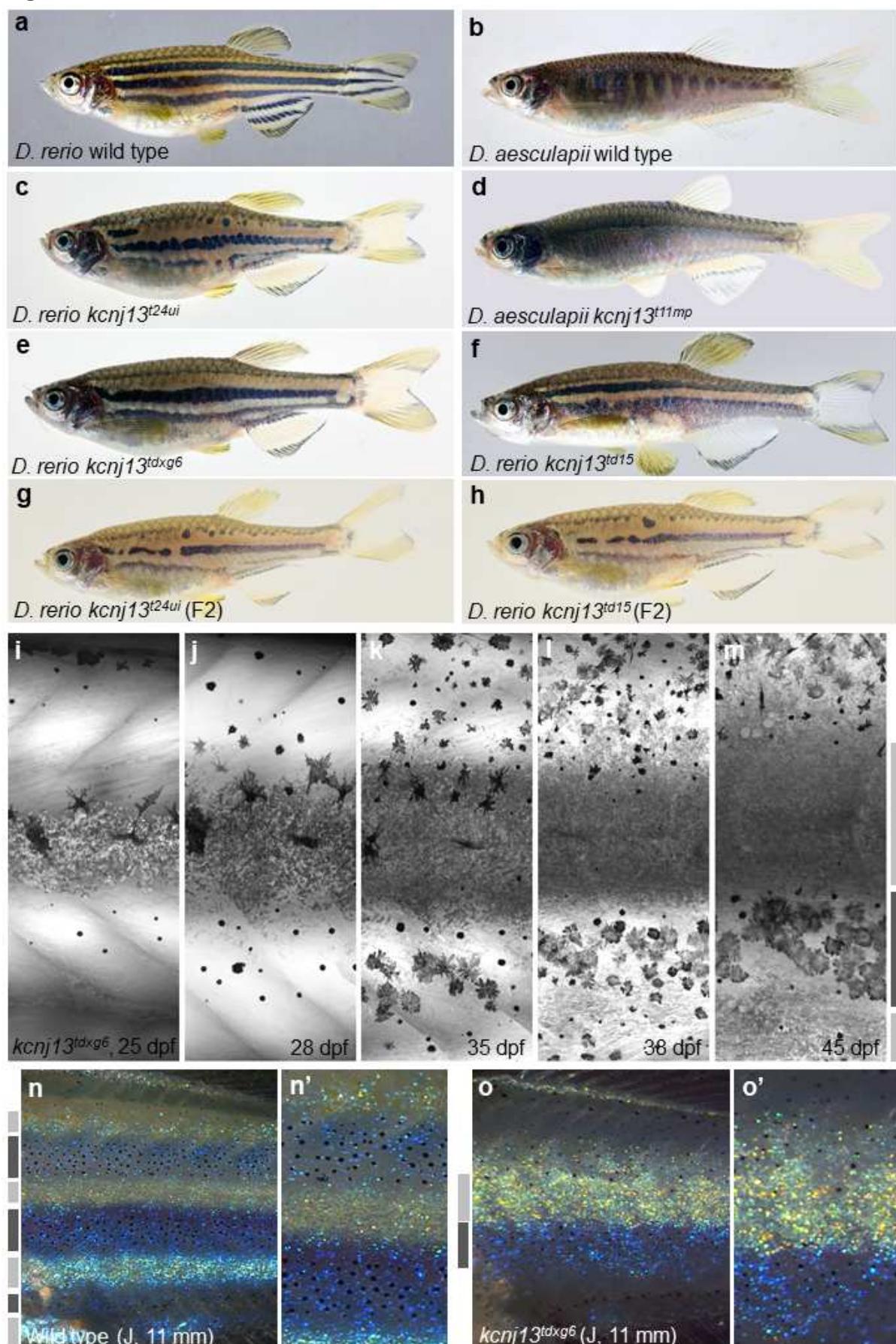
496

497

498

499

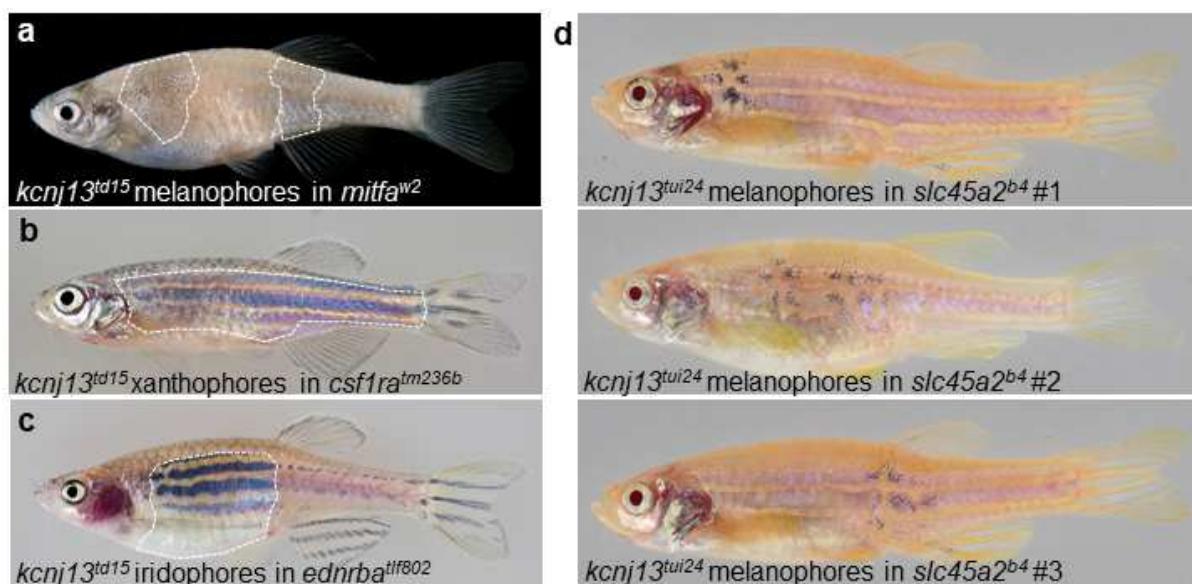
500


501

502

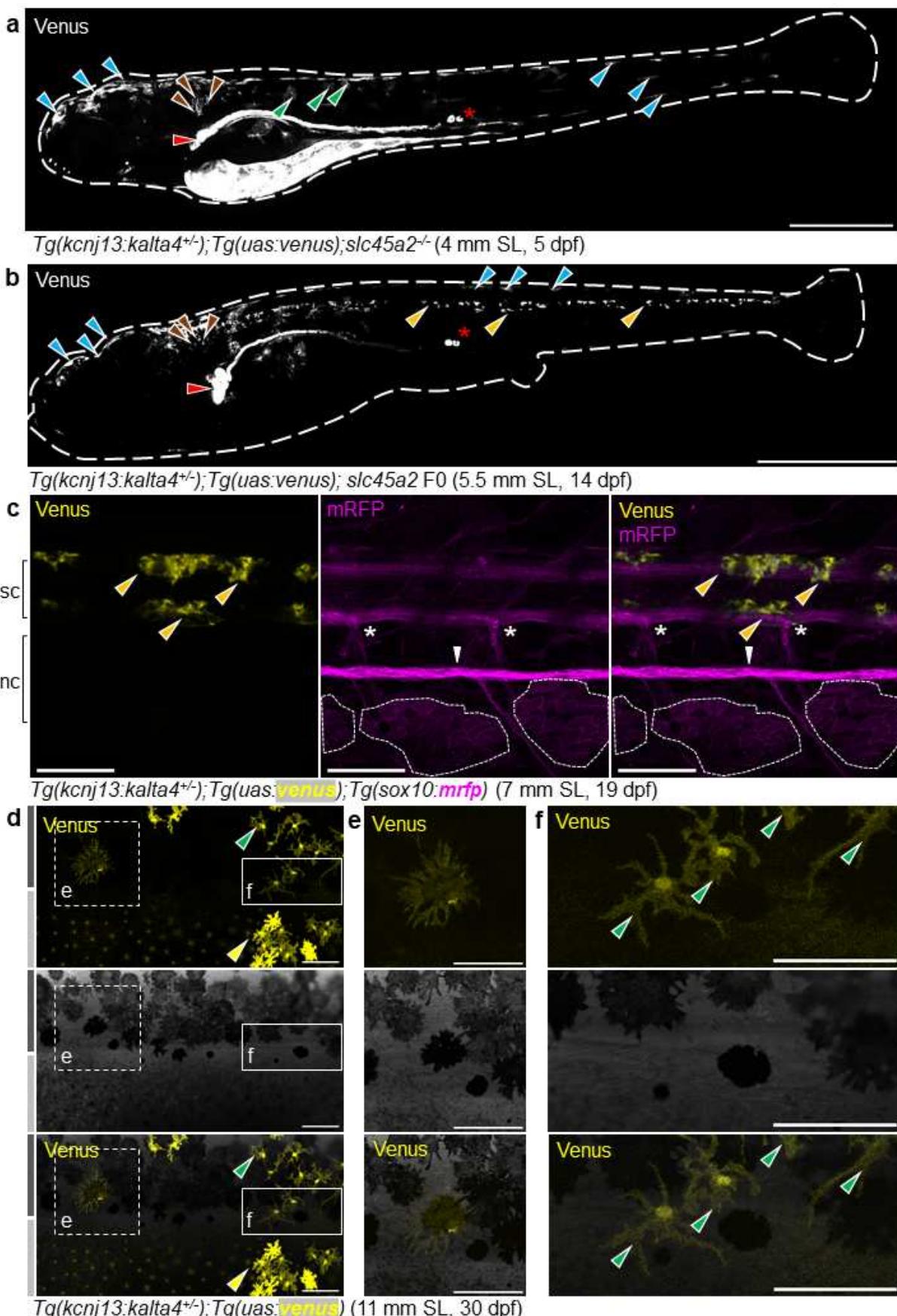
503

504


505 **Figures**

507 **Fig. 1: Pigment patterns in wild type and *kcnj13* mutant *D. rerio* and *D.*
508 *aesculapii*.**

509 Pigment patterns in **a** *D. rerio* wild type, **b** *D. aesculapii* wild type, **c** *D. rerio*
510 *kcnj13*^{t24ui}, **d** *D. aesculapii* *kcnj13*^{t11mp}, **e** *D. rerio* *kcnj13*^{txg6} and **f** *D. rerio* *kcnj13*^{td15}.
511 *kcnj13*^{t24ui} and *kcnj13*^{td15} were crossed to produce trans-heterozygous *kcnj13*^{tui24/td15}
512 F1 fish (not shown), which were then incrossed to generate F2 fish with the
513 genotypes **g** *kcnj13*^{t24ui} (n=8) and **h** *kcnj13*^{td15} (n=12). **i-m** Melanophore clearance in
514 *kcnj13*^{tdxg6} is similar to wild type during the development of the first light stripe
515 between 25 and 45 dpf. **n, n'** *D. rerio* wild-type and **o, o'** *kcnj13*^{tdxg6} patterns at J
516 stage (11 mm). In the mutants, iridophores fail to reiterate the consecutive light
517 stripes, which ultimately leads to fewer and broader stripes with occasional
518 interruptions. Light and dark grey bars represent light and dark stripe areas,
519 respectively.


520

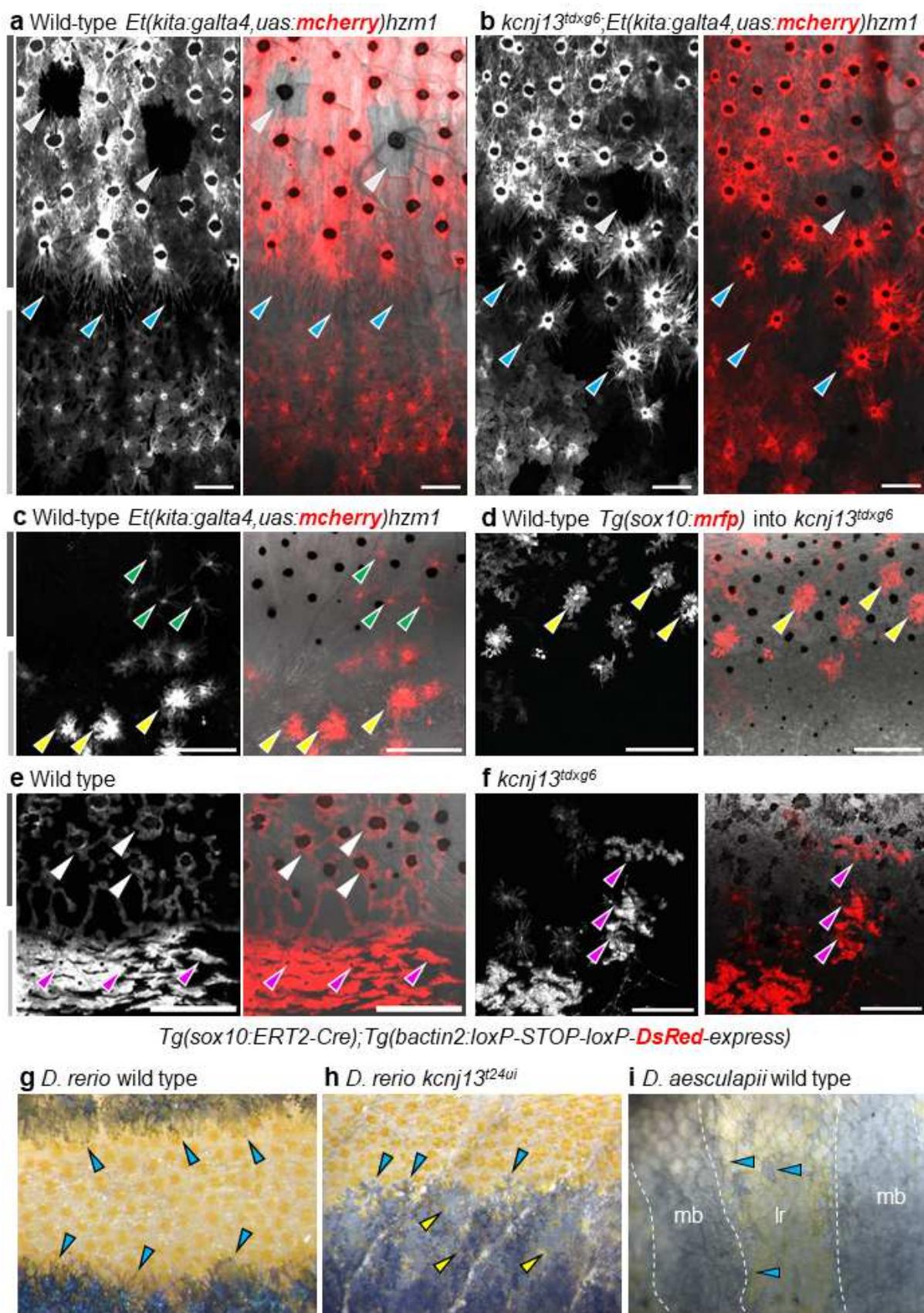
521 **Fig. 2: Melanophores require *kcnj13* autonomously during stripe formation.**

522
523 **a** Testing cell-autonomy of *kcnj13* by blastula transplants reveals a genetic
524 requirement in melanophores (*kcnj13*^{td15}; *ednrba*^{tif802}; *csf1ra*^{tm236b} into *mitfa*^{w2}), but not
525 in **b** xanthophores (*kcnj13*^{td15}; *kita*^{b134}; *ednrba*^{tif802} into *csf1ra*^{tm236b}) or **c** iridophores
526 (*kcnj13*^{td15}; *mitfa*^{w2}; *csf1ra*^{tm236b} into *ednrba*^{tif802}). **d** Transplantation experiments
527 (*kcnj13*^{tui24} into *slc45a2*^{b4}) provide further evidence of a cell-autonomous function of
528 *kcnj13* in melanophores during stripe formation. Transplanted mutant melanophores
529 (pigmented) are associated with stripe perturbations in *albino* hosts (n=3). Strong
530 pattern deformations are never observed in chimeras without pigmented trunk
531 melanophores (n=41).

532

535 **Fig. 3: Endogenous *kcnj13* expression during *D. rerio* development.**

536 **a** Heterozygous KalTA4::Venus reporter larva showing signals in melanophores in
537 the head and tail regions (cyan arrowheads), xanthophores (green arrowheads),
538 hindbrain (brown arrowheads), along the entire pronephros (red arrowhead),
539 including corpuscles of Stannius (red asterisk), and the yolk. 4 mm SL, 5 dpf, sagittal
540 view, images of four positions along the AP axis combined into one composite; scale
541 bar=500 μ m. **b** Similar expression patterns can be observed in larva week older, with
542 additional signals in the spinal cord (orange arrowheads). These signals persist
543 throughout further development. 5.5 mm SL, 14 dpf, sagittal view, images of five
544 combined into one composite; scale bar=1 mm. **c** Venus expression does not
545 overlap with locations of the pigment cell stem cells at the DRGs (marked by white
546 asterisks). Iridophore patches in the skin indicated with white dashed circles, lateral
547 line nerve marked with a white arrowhead. nc: notochord, sc: spinal cord; 7 mm SL,
548 19 dpf; scale bar=100 μ m. **d** During and after the consolidation of the stripes in wild
549 types (see Fig. 1i-o), Venus expression can be detected in only a minority of **e**
550 melanophores and **f** xanthophores in the skin at any given time point. Green
551 arrowheads indicate stellate and Venus-positive xanthophores in the dark stripe,
552 while yellow arrowheads indicate compact, pigmented and Venus-positive
553 xanthophores in the light stripe. 11 mm SL, 30 dpf, scale bar=100 μ m.


554

555

556

557

558

559

560

561 **Fig. 4: Pigment cell organization and shapes in *D. rerio* wild types and *kcnj13*
562 mutants, and *D. aesculapii* wild types.**

563 **a** In adult wild-type *D. rerio*, melanophores in the stripe are densely packed (note
564 variegation of the transgene in a few cells indicated with light-grey arrowheads) and
565 cells at the boundary form long protrusions towards the light stripe (cyan
566 arrowheads). **b** In *kcnj13^{tdxg6}* mutants, cells are less tightly packed in the dark stripe
567 and short protrusions form without clear polarity (cyan arrowheads). **c** Wild-type
568 xanthophores acquire stellate shapes in the dark stripes (green arrowheads) and
569 compact shapes in the light stripes (yellow arrowheads). **d** Transplanted mRFP-
570 positive wild-type xanthophores acquire inappropriate compact shapes (yellow
571 arrowheads) in a dark stripe in *kcnj13^{tdxg6}* mutants (donor: *Tg(sox10:mrfp)*, host:
572 *kcnj13^{tdxg6}*). **e** Wild-type iridophores acquire loose shapes (white arrowheads) in the
573 dark stripes and dense shapes (magenta arrowheads) in the light stripes. **f**
574 Iridophores acquire ectopic compact shapes (magenta arrowheads) in the dark
575 stripes in *kcnj13^{tdxg6}* mutants, visualized by tracing labelled clones. Light and dark
576 grey bars represent light and dark stripes in *D. rerio*, respectively. **g** Wild-type *D.*
577 *rerio* form long melanophore protrusions towards the light stripe regions (cyan
578 arrowheads, see a). **h** Melanophore protrusions are not polarized in *D. rerio* *kcnj13*
579 mutants (cyan arrowheads, see b) and pigmented xanthophores are visible in the
580 dark stripe region (yellow arrowheads). **i** *D. aesculapii* wild types lack polarized
581 melanophores (cyan arrowheads), melanophores and xanthophores mix
582 occasionally, and the boundary between bars and light regions is of very low
583 contrast. mb=melanophore bar region, lr=light region.

584

585

586

587

588

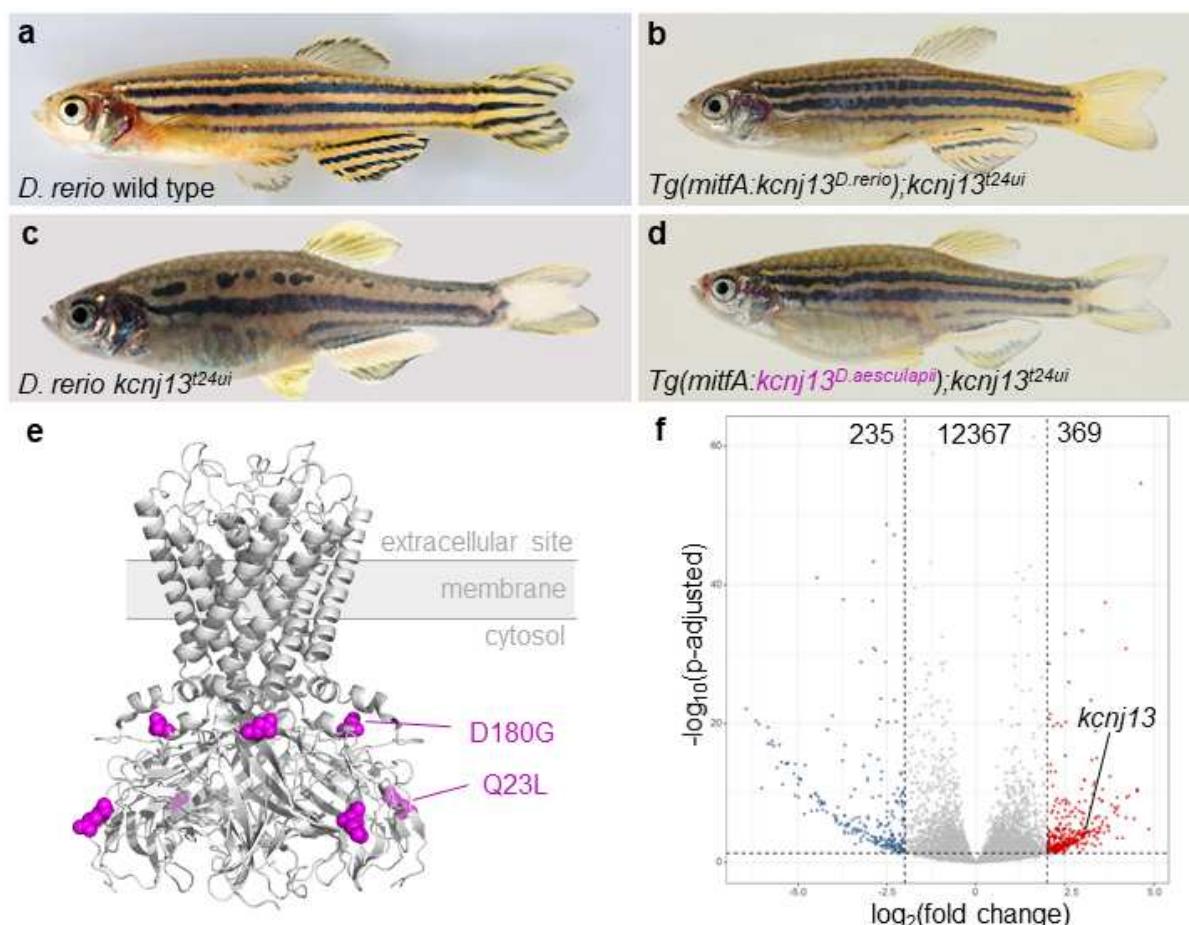
589


590

591

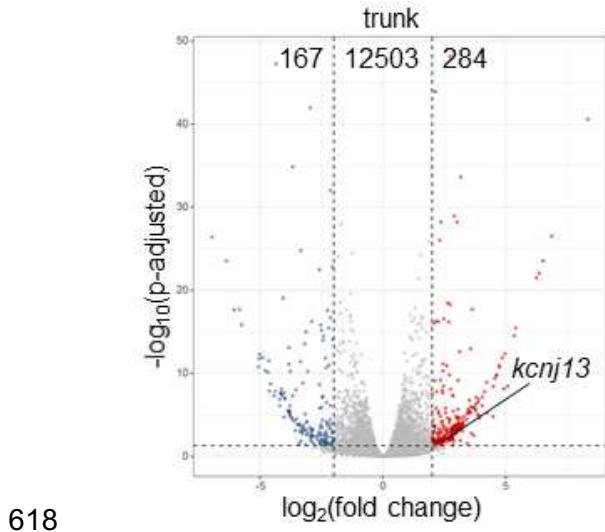
592

593


594

595

596 **Supplementary Fig. 1: Protein purification and analysis.** **a** Size-exclusion
597 chromatogram, fractions A8 and A9 are indicated. **b** Coomassie staining shows
598 bands corresponding to the expected size of about 70 kDa, with double bands
599 presumably due to glycosylation. **c** and **d** show mass-photometry peaks from
600 fractions A8 and A9, corresponding to a molecular mass of about 280 kDa, as
601 expected for a tetrameric complex. In c higher oligomeric states might be present.


602

603

604 **Fig. 5: Molecular basis of *kcnj13* evolution between *D. rerio* and *D. aesculapii*.**
605 **a** *D. rerio* wild type. **b** *D. rerio* *kcnj13^{t24ui}*, in which either **c** the *D. rerio* allele of *kcnj13*
606 (*Tg(mitfA:kcnj13^{D.rerio});kcnj13^{t24ui}*) or **d** the *D. aesculapii* *kcnj13* allele
607 (*Tg(mitfA:kcnj13^{D.aesculapii});kcnj13^{t24ui}*) was expressed under the control of the *mitfa*
608 promoter from *D. rerio*. In both cases, stripes were restored in the trunk of the fish.
609 R224K was found to be polymorphic in *D. aesculapii* (Podobnik et al. 2020). **e**
610 SWISS-MODEL derived homology model of the Kcnj13 tetramer (Q23L and D180G
611 diverged between species in magenta). **f** Allele-specific expression analysis in
612 interspecific hybrids shows higher *kcnj13* expression of the *D. rerio* allele in the skin
613 (n=12; *p-adjust* < 0.0001), confirming cis-regulatory evolution. Overall, we found no
614 differences in expression levels in 12,367 genes. 369 and 235 genes were
615 significantly higher expressed from the *D. rerio* (red) or *D. aesculapii* allele (blue),
616 respectively.

617

618 **Supplementary Fig. 2: Allele-specific expression analysis in hybrids between**
619 ***D. rerio* and *D. aesculapii*.** In the trunk, 284 and 167 genes were significantly higher
620 expressed from either the *D. rerio* (red) or *D. aesculapii* allele (blue). For most
621 transcripts (12,503) we observed no differences in expression levels. We found
622 significantly higher expression of *kcnj13* from the *D. rerio* allele (*p-adjust* < 0.05).

624

625 **Material and Methods**

626 No statistical methods were used to predetermine sample size. The experiments
627 were not randomized. The investigators were not blinded to allocation during
628 experiments and outcome assessment.

629

630 **Fish husbandry**

631 *D. rerio* and *D. aesculapii* were maintained as described in Brand & Nüsslein-
632 Volhard⁴⁸. If not newly generated (Supplementary Table 1), the following lines were
633 used for experiments: *D. rerio* wild-type Tuebingen (TU), *kcnj13*^{t24ui23}, *kcnj13*^{td1519},
634 *kcnj13*^{tdxg614}, *nacre/mitfa*^{w249}, *pfeffer/csf1ra*^{tm236b50,51}, *rose/ednrba*^{tlf80252},
635 *albino/slcl45a2*^{b453}, *sparse/kita*^{b13454}, *Tg(sox10:mrfp)*⁷,
636 *Et(kita:galta4,uas:mcherry)hzm1*⁵⁵, *Tg(sox10:ERT2-Cre);Tg(bactin2:loxP-STOP-*
637 *loxP-DsRed-express)*^{56,57} and *D. aesculapii* *kcnj13*^{tmp1123}. Interspecific hybrids
638 between *D. rerio* and *D. aesculapii* were obtained by in vitro fertilizations²⁰. All
639 species were staged according to the normal table of *D. rerio* development⁵⁸. All
640 animal experiments were performed in accordance with the rules of the State of
641 Baden-Württemberg, Germany, and approved by the Regierungspräsidium
642 Tübingen.

643

644 **Supplementary Table 1: New transgenic lines used in this study**

Number	Line
1	<i>Tg(mitfa:kcnj13</i> ^{<i>D.rerio</i>}); <i>kcnj13</i> ^{t24ui}
2	<i>Tg(mitfa:kcnj13</i> ^{<i>D.aesculapii</i>}); <i>kcnj13</i> ^{t24ui}
3	<i>Tg(uas:venus)</i>
4	<i>Tg(kcnj13:kalta4);Tg(uas:venus)</i>
5	<i>Tg(kcnj13:kalta4);Tg(uas:venus);slc45a2</i> ^{t22mp}

645

646 **Tol2-mediated transgenesis**

647 To generate the transgenic rescue lines plasmids with the *mitfa* promoter sequence
648 from *D. rerio*⁴⁹, the coding sequences of *kcnj13* from *D. rerio* or *D. aesculapii*, and
649 the coding sequence of sfGFP was constructed. The construct was subcloned into
650 the Tol2 vector *pGEM-T pminiTol2* carrying SV40 elements, a green heart marker
651 *cmlc2:venus* and Tol2 restriction sites^{59,60}. The resulting plasmids were designated
652 as *pTol2gh-mitfa-kcnj13*^{*D.rerio*}-sfGFP (GenBank accession number: OP326275) and

653 *pTol2gh-mitfa-kcnj13^{D.aesculapii}-sfGFP* (GenBank accession number: OP326276). Tol2
654 transgenesis was performed as previously described⁶⁰; briefly, a solution (12.5 ng/µL
655 Tol2 mRNA, 50 ng/µL plasmid DNA, and 5 % Phenol Red) was injected into fertilised
656 eggs of *D. rerio* *kcnj13^{t24ui}* at the one-cell-stage. 100 F0 embryos were selected for
657 marker gene expression at around 2 dpf and raised to adulthood. Mature F0 founder
658 fish were outcrossed to *D. rerio* *kcnj13^{t24ui}* and F1 larvae positive for marker gene
659 expression were selected to obtain stable transgenic lines. In both cases, lines were
660 identified in which the mutant phenotype was partially rescued. These lines were
661 designated as *Tg(mitfa:kcnj13^{D.rerio});kcnj13^{t24ui}* and
662 *Tg(mitfa:kcnj13^{D.aesculapii});kcnj13^{t24ui}*, outcrossed to *D. rerio* *kcnj13^{t24ui}*, and selected
663 for marker gene expression in embryos and intact stripe patterns in adults for at least
664 three generations (Supplementary Table 1).

665 To generate a *D. rerio* UAS:Venus line a plasmid with the coding sequence for the
666 Venus-variant of YFP under the control of the yeast transcription factor GAL4 (6
667 UAS-sites) was constructed (pminiTol2_UAS:Venus, GenBank accession:
668 OP243708); mRNA for the Tol2 transposase was transcribed in vitro from the
669 plasmid pCS2FA-transposase⁶¹ using the mMessageMachine and Poly-A tailing Kits
670 (Invitrogen). TU embryos at the one-cell stage were injected with approximately 2-4
671 nL of injection mix containing 250 ng/µL of in vitro transcribed mRNA and 25 ng/µL of
672 plasmid DNA in PBS with Phenol Red as a tracer dye. The adult F0 fish were
673 crossed to TU and the F1 larvae were screened for expression of the mCherry
674 marker in the heart. From the positive F1 fish a stable line was established by
675 another outcross to TU followed by sibling matings of the F2 fish (Supplementary
676 Table 1).

677

678 CRISPR/Cas9-mediated knock-out and knock-in

679 For gene knock-outs the CRISPR/Cas9 system was applied either as described in
680 Irion et al.⁶² or according to the guidelines for embryo microinjection of Integrated
681 DNA Technologies (IDT). Briefly, oligonucleotides were cloned into pDR274 to
682 generate the sgRNA vector. sgRNAs were transcribed from the linearised vector
683 using the MEGAscript T7 Transcription Kit (Invitrogen). Alternatively, target-specific
684 crRNAs and universal tracrRNAs were purchased from IDT. Cas9 was expressed as
685 a fusion protein with mCherry in *E. coli* (BL21(DE)3pLysS) from the plasmid pOPT-
686 Kan_Cas9-mCherry (GenBank accession: OP243709) and purified via double affinity
687 chromatography (His-Tag and Twin-StrepTag) using standard procedures. Before
688 use, the purified protein was dialyzed into PBS containing additionally 300 mM NaCl
689 and 150 mM KCl, aliquoted and stored at -70°C. sgRNAs or crRNA:tracrRNA
690 duplexes were injected as ribonucleoprotein complexes with Cas9 proteins into one-
691 cell stage embryos. The efficiency of indel generation was tested on eight larvae at 1
692 dpf by PCR using specific primer pairs and by sequence analysis as described
693 previously⁶³. The remaining larvae were raised to adulthood. Mature F0 fish carrying

694 indels were outcrossed. Loss-of-function alleles in heterozygous F1 fish were
695 selected to establish homozygous or trans-heterozygous mutant lines
696 (Supplementary Table 1).

697 To generate a reporter line for the expression of *kcnj13* the CRISPR/Cas9-system
698 was used. For the sgRNA template two oligonucleotides (5'-
699 TAGGCCGTCTTGCTGACCAGG-3' and 5'-AAACCCTGGTCAGCAAAGACGG-3')
700 were annealed and cloned into pDR274; the RNA was transcribed in vitro with the
701 MegaScript Kit from Invitrogen. A donor plasmid was constructed containing the
702 KalTA4 variant⁵⁵ of the GAL4 coding sequence flanked by homology arms and
703 CRISPR target sites (GenBank accession: OP243710). This plasmid (25 ng/µL) was
704 co-injected with Cas9 protein (500 ng/µL) and sgRNA (35 ng/µL) into one-cell stage
705 embryos from the UAS:Venus line. The resulting F0 fish were backcrossed to
706 UAS:Venus and the F1 larvae were screened for expression of Venus. One founder
707 fish was identified with offspring showing a very strong early signal in the yolk and
708 later also in the pronephros and melanophores, consistent with published expression
709 data (Supplementary Table 1). To achieve good imaging conditions in this line we
710 generated an *albino* loss-of-function allele, *slc45a2^{t22mp}*, as previously described⁶²
711 (Supplementary Table 1).

712

713 **Blastula transplants**

714 Chimeric animals in Fig. 2a-d and Fig. 4d were generated by transplants of cells
715 during blastula stage as described in⁶⁴.

716

717 **Cre induction and clonal analyses**

718 Cre induction was carried out as described in⁷. Labelled clones in Fig. 4e,f were from
719 fish followed over pattern development.

720

721 **Image acquisition and processing**

722 Anesthesia of postembryonic and adult fish was performed as described previously⁷.
723 Bright-field images of adult fish in Fig. 1a-h and Fig. 2a-d were obtained using a
724 Canon 5D Mk II camera. To visualize melanophore protrusions via dispersion of
725 melanosomes using bright-field imaging (Fig. 4g-i), fish were kept in the dark with a
726 final concentration of 100 µM yohimbine (CAS: 65-19-0, Sigma-Aldrich) for 30
727 minutes before imaging as described in³⁰. Fish with different pigment patterns vary
728 considerably in contrast, thus requiring different settings for aperture and exposure
729 time, which can result in slightly different colour representations in the pictures.
730 Fluorescence images of postembryonic and adult fish were acquired on a Zeiss LSM

731 780 NLO confocal (BioOptics Facility, Max Planck Institute for Biology Tübingen) and
732 a Leica M205 FA stereo-microscope. Repeated imaging of pigment cell clones in
733 metamorphic *D. rerio* was performed as described in⁷. Maximum intensity projections
734 of confocal scans were uniformly adjusted for brightness and contrast. Images were
735 processed using Adobe Photoshop, Adobe Illustrator CS6 and Fiji⁶⁵.

736

737 **Protein expression and purification**

738 We expressed Kcnj13-mCherry with N-terminal His-tags in Sf9-insect cells using a
739 baculovirus/insect cell expression system^{31,32}. Pink pellets were washed with PBS,
740 stored at -70 °C, and later purified at 4 °C at all stages. We selected n-Dodecyl-B-D-
741 Maltoside (DDM, Serva Elec.) detergents at around 2x critical micelle concentration
742 (CMC) and supplied Cholestryl Hemisuccinate (CHS, Serva Elec.) lipids for
743 solubilization of the membrane protein. Cell pellets were resuspended in lysis buffer
744 A, treated with a high-pressure homogeniser (Avestin EmulsiFlex-C3) and samples
745 were centrifuged at 40,000 rpm for one hr. The supernatant was incubated with Ni-
746 NTA beads for four hrs and applied to a polypropylene column (BioRad) equilibrated
747 in lysis buffer A. The column was washed with buffers B and C, and protein was
748 eluted with buffer D. Fractions were isolated based on pink-marker colouration and
749 concentrated using an AMICON ULTRA-15 filter (100 kDa cut-off). The concentrated
750 sample was spun for one hr on a table-top centrifuge at full speed and supernatant
751 was applied onto a Superose 6 Increase 5/150 GL column for gel filtration using
752 buffer E. Buffer compositions are provided in Supplementary Table 2.

753

754 **Supplementary Table 2: Buffers used for protein purification.**

Buffer	Composition
Lysis buffer A	50 mM HEPES pH 7.5, 100 mM NaCl, 20 mM imidazole, 1 % w/v DDM, 0.5 % w/v CHS, 1 % protease inhibitor (cOmplete Protease Inhibitor Cocktail EDTA-free, Sigma-Aldrich)
Wash buffer B	50 mM HEPES pH 7.5, 100 mM NaCl, 20 mM imidazole, 0.01 % w/v DDM, 0.005 % CHS, 1 % protease inhibitor
Wash buffer C	50 mM HEPES pH 7.5, 100 mM NaCl, 50 mM imidazole, 0.01 % w/v DDM, 0.005 % CHS, 1 % protease inhibitor
Elution buffer D	50 mM HEPES pH 7.5, 100 mM NaCl, 350 mM imidazole, 0.01 % w/v DDM, 0.005 % CHS, 1 % protease inhibitor
Gel filtration buffer E	50 mM HEPES pH 7.5, 100 mM NaCl, 0.01 % w/v DDM, 0.005 % CHS

755

756

757 **Mass photometry**

758 Measurements were performed in buffer E (see above) using an One^{MP} mass
759 photometer (Refeyn Ltd, Oxford, UK)³³. Immediately before analysis, the sample was
760 diluted 1:10 with the aforementioned buffer. Molecular mass was determined in the
761 analysis software provided by the manufacturer using a NativeMark- (Invitrogen).

762

763 **Structure modelling**

764 The homology model of the tetrameric Kcnj13 channel (Fig. 5e) was built using
765 SWISS-MODEL⁶⁶⁻⁷⁰ based on the crystal structure template (2.6-Å resolution) of the
766 potassium channel Kir2.2 from *Gallus gallus* (PDB ID: 3spg), sharing a sequence
767 similarity of 37 % with the target protein Kcnj13 from *D. rerio*. Similar models with a
768 pTM-based confidence score of ~ 60 % were generated using AlphaFold-
769 Multimer^{71,72}.

770

771 **Genome and transcriptome sequencing**

772 Reciprocal crosses between species (male *D. aesculapii* x female *D. rerio* (pair 1),
773 and male *D. rerio* x female *D. aesculapii* (pair 2)) were performed via in vitro
774 fertilization to produce F1 hybrids. Adult parental fish (n=4) and F1 hybrids (n=12; 7
775 hybrids from cross 1, 5 hybrids from cross 2) were euthanized by exposure to
776 buffered 0.5 g/L MS-222 (Tricaine). Tissues were dissected in ice-cold PBS and
777 collected using TRIzol (Life Technologies). DNA from the parental individuals was
778 isolated from posterior trunk tissue including the fins. RNA was obtained from skin
779 and posterior trunk tissue of F1 hybrids. RNA integrity and quantity were assessed
780 by Agilent 2100 Bioanalyzer. Metadata is provided in Supplementary Table 3. Library
781 preparation (DNA/RNA: TruSeq DNA Nano Kit (Illumina); 100 ng per sample) and
782 sequencing (NovaSeq 6000 (Illumina), for DNA: 2x 250 bp, for RNA: 2x 100 bp) were
783 performed by CeGaT GmbH (Tübingen, Germany). Data are available in:
784 PRJEB53585.

785 All subsequent analyzes were based on high-quality clean reads. Quality of the
786 sequencing data was checked using FastQC (version 0.11.9) and adapter
787 sequences were trimmed using fastp (version 0.23.2)⁷³. Genome resequencing
788 reads were aligned to the *D. rerio* reference genome (GRCz11) using BWA-MEM
789 (version 0.7.17-r1188)⁷⁴. The aligned SAM files were sorted and converted into BAM
790 files using SAMtools (version 1.11)⁷⁵. Then the sorted BAM files were de-realigned
791 and indexed again using Picard (version 2.18.29,
792 <https://broadinstitute.github.io/picard/>). Transcriptomes were aligned to GRCz11
793 using STAR aligner (version 2.7.10a)⁷⁶. The BAM files directly output by STAR in
794 two-pass mode are deduplicated and indexed by Picard.

795 **Variant calling and filtration**

796 To identify species-specific alleles, variant calling was performed according to the
797 best practice pipeline of the Genome Analysis Toolkit (GATK4)^{77,78}. Specifically,
798 Haplotypecaller was used to detect variants based on genome and transcriptome
799 data. The called variants were joint-genotyped using GtotypeGVCFs into a single
800 .vcf file; data from skin and trunk tissue were separately processed. First,
801 SelectVariants was used to filter single nucleotide polymorphisms (SNPs), then the
802 selected SNPs were hard-filtered using Variantfiltration. Specifically, SNPs of 'QUAL
803 < 30.0, QD < 2, FS > 60, MQ < 40, SOR > 3, MQRankSum < -12.5 and
804 ReadPosRankSum > -8' as well as non-biallelic SNPs were filtered out. The
805 remaining SNPs were filtered again using VCFtools (--max-missing 0.8, --maf 0.05).
806 Finally, SNPs shared by genomes and transcriptomes were selected for the
807 subsequent allele-specific expression analysis (ASE) using the intersect function of
808 Bedtools (version 2.30.0)⁷⁹.

809

810 **Allele-specific expression analysis**

811 Read counts for species-specific SNPs were averaged per gene for each hybrid
812 transcriptome using GATK ASEReadCounter⁸⁰ with default filters enabled.
813 Significant allele-specific expression was defined as 'Fold Change' > 2 between
814 alleles and adjusted p-values (p-adj) < 0.05 from DESeq2 package in R⁸¹. Finally, the
815 ggplot2⁸² package in R rendered a volcano plot using the data obtained by DESeq2.

816

817 **Data availability**

818 The authors declare that all data supporting the findings of this study are available
819 within the article and its supplementary information files or from the corresponding
820 author upon reasonable request. The dataset generated during this study is available
821 at The European Nucleotide Archive (ENA) accession number: PRJEB53585.

822

823 **Supplementary Table 3: Metadata for transcriptomic analysis**

CeGaT ID	short sample description	sex	stage	Egg_lay_date	Sampling_date	Extraction_date	RIN_value	quantity_u g	Concentration_ng_uL
S1906Nr1	RNA_skin_relio-aesculapii_pair1_hybrid_1	NA	adult	20190606	20200113	20190114	9,30	0,814	90,4
S1906Nr2	RNA_trunk_relio-aesculapii_pair1_hybrid_1	NA	adult	20190606	20200113	20190114	9,30	1,752	219
S1906Nr3	RNA_skin_relio-aesculapii_pair1_hybrid_2	NA	adult	20190606	20200113	20190114	8,20	1,548	172
S1906Nr4	RNA_trunk_relio-aesculapii_pair1_hybrid_2	NA	adult	20190606	20200113	20190114	8,20	1,856	232
S1906Nr5	RNA_skin_relio-aesculapii_pair1_hybrid_3	NA	adult	20190606	20200113	20190114	7,90	1,54	154
S1906Nr6	RNA_trunk_relio-aesculapii_pair1_hybrid_3	NA	adult	20190606	20200113	20190114	8,20	4,23	470

S1906Nr7	RNA_skin_rerio-aesculapii_pair1_hybrid_4	NA	adult	20190606	20200113	20190114	8,50	1,43	130
S1906Nr8	RNA_trunk_rerio-aesculapii_pair1_hybrid_4	NA	adult	20190606	20200113	20190114	9,30	5,7	570
S1906Nr9	RNA_skin_rerio-aesculapii_pair1_hybrid_5	NA	adult	20190606	20200113	20190114	8,20	1,6	160
S1906Nr10	RNA_trunk_rerio-aesculapii_pair1_hybrid_5	NA	adult	20190606	20200113	20190114	7,80	3,652	332
S1906Nr11	RNA_skin_rerio-aesculapii_pair1_hybrid_6	NA	adult	20190606	20200113	20190114	8,50	1,118	93,2
S1906Nr12	RNA_trunk_rerio-aesculapii_pair1_hybrid_6	NA	adult	20190606	20200113	20190114	9,20	3,204	356
S1906Nr13	RNA_skin_rerio-aesculapii_pair1_hybrid_7	NA	adult	20190606	20200113	20190114	9,00	1,232	112
S1906Nr14	RNA_trunk_rerio-aesculapii_pair1_hybrid_7	NA	adult	20190606	20200113	20190114	9,60	1,76	160
S1906Nr15	RNA_skin_rerio-aesculapii_pair2_hybrid_8	NA	adult	20190814	20200113	20190114	9,20	1,56	120
S1906Nr16	RNA_trunk_rerio-aesculapii_pair2_hybrid_8	NA	adult	20190814	20200113	20190114	9,40	3,77	290
S1906Nr17	RNA_skin_rerio-aesculapii_pair2_hybrid_9	NA	adult	20190814	20200113	20190114	7,70	1,596	114
S1906Nr18	RNA_trunk_rerio-aesculapii_pair2_hybrid_9	NA	adult	20190814	20200113	20190114	9,90	2,288	176
S1906Nr21	RNA_skin_rerio-aesculapii_pair2_hybrid_11	NA	adult	20190814	20200113	20190114	8,80	1,644	137
S1906Nr22	RNA_trunk_rerio-aesculapii_pair2_hybrid_11	NA	adult	20190814	20200113	20190114	9,70	4,296	358
S1906Nr25	RNA_skin_rerio-aesculapii_pair2_hybrid_13	NA	adult	20190814	20200113	20190114	9,40	1,365	105
S1906Nr26	RNA_trunk_rerio-aesculapii_pair2_hybrid_13	NA	adult	20190814	20200113	20190114	10,00	1,728	144
S1906Nr27	RNA_skin_rerio-aesculapii_pair2_hybrid_14	NA	adult	20190814	20200113	20190114	9,50	1,508	116
S1906Nr28	RNA_trunk_rerio-aesculapii_pair2_hybrid_14	NA	adult	20190814	20200113	20190114	9,40	3,406	262
S1906Nr29	DNA_D_aesculapii_parent3_male_pair1	male	adult	NA	20190612	20190612	NA	2,104	11,5
S1906Nr30	DNA_D_reio_parent1_female_pair1	female	adult	NA	20190612	20190612	NA	5,746	31,4
S1906Nr31	DNA_D_reio_parent5_male_pair2	male	adult	NA	20190816	20190816	NA	7,997	43,7
S1906Nr32	DNA_D_aesculapii_parent9_female_pair2	female	adult	NA	20190816	20190816	NA	5,124	28

824

825 Acknowledgements

826 We thank Hans-Martin Maischein (now Max Planck Institute for Heart and Lung
827 Research, Bad Nauheim, Germany) and Horst Geiger (Max Planck Institute for
828 Biology, Tübingen, Germany) for help with blastula transplants, Christian
829 Feldhaus and Aurora Panzera (BioOptics Facility, Max Planck Institute for Biology)
830 for help with imaging of the transgenic lines, Veronika Altmannova and Dorota
831 Rousova (Friedrich Miescher Laboratory, Tübingen, Germany) for help with protein
832 purification, and Silke Geiger-Rudolph, Roberta Occhinegro and Reinhard Albrecht
833 for excellent technical assistance (Max Planck Institute for Biology, Tübingen,
834 Germany). The AlphaFold-Multimer model was generated using the BMBF-funded
835 de.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI)
836 (031A532B, 031A533A, 031A533B, 031A534A, 031A535A, 031A537A, 031A537B,
837 031A537C, 031A537D, 031A538A). This work was supported by an ERC Advanced
838 Grant “DanioPattern” (694289) and the Max Planck Society, Germany.

839

840 **Contributions**

841 M.P., A.P.S., C.M.D., H.G.F., S.W., C.N.V. and U.I. were involved in the design of
842 the experiments. M.P., A.P.S., U.I., H.G.F., and M.F. performed the experiments.
843 U.I., M.P., C.N.V., A.P.S., J.L. , Z.F., C.M.D., H.E., S.W., J.R.W. and analysed the
844 data. M.P. made the figures with help from U.I. and C.N.V.; M.P., U.I., A.P.S. and
845 C.N.V. wrote the manuscript. C.N.V. and J.R.W. acquired funding.

846

847 **Ethics declaration**

848 Competing interests

849 The authors declare no competing interests.

850

851 **References**

- 852 1 Parichy, D. M. Advancing biology through a deeper understanding of zebrafish
853 ecology and evolution. *eLife* **4**, doi:10.7554/eLife.05635 (2015).
- 854 2 Singh, A. P. & Nusslein-Volhard, C. Zebrafish stripes as a model for vertebrate colour
855 pattern formation. *Curr Biol* **25**, R81-R92, doi:10.1016/j.cub.2014.11.013 (2015).
- 856 3 Patterson, L. B. & Parichy, D. M. Zebrafish Pigment Pattern Formation: Insights into
857 the Development and Evolution of Adult Form. *Annu Rev Genet* **53**, 505-530,
858 doi:10.1146/annurev-genet-112618-043741 (2019).
- 859 4 Irion, U. & Nusslein-Volhard, C. The identification of genes involved in the evolution
860 of color patterns in fish. *Curr Opin Genet Dev* **57**, 31-38,
861 doi:10.1016/j.gde.2019.07.002 (2019).
- 862 5 Parichy, D. M. Evolution of pigment cells and patterns: recent insights from teleost
863 fishes. *Curr Opin Genet Dev* **69**, 88-96, doi:10.1016/j.gde.2021.02.006 (2021).
- 864 6 McCluskey, B. M. & Postlethwait, J. H. Phylogeny of zebrafish, a "model species,"
865 within *Danio*, a "model genus". *Mol Biol Evol* **32**, 635-652,
866 doi:10.1093/molbev/msu325 (2015).
- 867 7 Singh, A. P., Schach, U. & Nusslein-Volhard, C. Proliferation, dispersal and patterned
868 aggregation of iridophores in the skin prefigure striped colouration of zebrafish. *Nat
869 Cell Biol* **16**, 607-614, doi:10.1038/ncb2955 (2014).
- 870 8 Singh, A. P. et al. Pigment Cell Progenitors in Zebrafish Remain Multipotent through
871 Metamorphosis. *Dev Cell* **38**, 316-330, doi:10.1016/j.devcel.2016.06.020 (2016).
- 872 9 Dooley, C. M., Mongera, A., Walderich, B. & Nusslein-Volhard, C. On the embryonic
873 origin of adult melanophores: the role of ErbB and Kit signalling in establishing
874 melanophore stem cells in zebrafish. *Development* **140**, 1003-1013,
875 doi:10.1242/dev.087007 (2013).
- 876 10 Frohnhöfer, H. G., Krauss, J., Maischein, H. M. & Nusslein-Volhard, C. Iridophores
877 and their interactions with other chromatophores are required for stripe formation in
878 zebrafish. *Development* **140**, 2997-3007, doi:10.1242/dev.096719 (2013).
- 879 11 Patterson, L. B. & Parichy, D. M. Interactions with iridophores and the tissue
880 environment required for patterning melanophores and xanthophores during
881 zebrafish adult pigment stripe formation. *PLoS Genet* **9**, e1003561,
882 doi:10.1371/journal.pgen.1003561 (2013).

883 12 Mahalwar, P., Walderich, B., Singh, A. P. & Nusslein-Volhard, C. Local
884 reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish.
885 *Science* **345**, 1362-1364, doi:10.1126/science.1254837 (2014).

886 13 Gur, D. *et al.* In situ differentiation of iridophore crystallotypes underlies zebrafish
887 stripe patterning. *Nat Commun* **11**, 6391, doi:10.1038/s41467-020-20088-1 (2020).

888 14 Irion, U. *et al.* Gap junctions composed of connexins 41.8 and 39.4 are essential for
889 colour pattern formation in zebrafish. *eLife* **3**, e05125, doi:10.7554/eLife.05125
890 (2014).

891 15 Watanabe, M. *et al.* Spot pattern of leopard Danio is caused by mutation in the
892 zebrafish connexin41.8 gene. *EMBO Rep* **7**, 893-897, doi:10.1038/sj.embo.7400757
893 (2006).

894 16 Watanabe, M., Sawada, R., Aramaki, T., Skerrett, I. M. & Kondo, S. The
895 Physiological Characterization of Connexin41.8 and Connexin39.4, Which Are
896 Involved in the Striped Pattern Formation of Zebrafish. *J Biol Chem* **291**, 1053-1063,
897 doi:10.1074/jbc.M115.673129 (2016).

898 17 Eom, D. S. *et al.* Melanophore migration and survival during zebrafish adult pigment
899 stripe development require the immunoglobulin superfamily adhesion molecule
900 Igf11. *PLoS Genet* **8**, e1002899, doi:10.1371/journal.pgen.1002899 (2012).

901 18 Eom, D. S., Patterson, L. B., Bostic, R. R. & Parichy, D. M. Immunoglobulin
902 superfamily receptor Junctional adhesion molecule 3 (Jam3) requirement for
903 melanophore survival and patterning during formation of zebrafish stripes. *Dev Biol*
904 **476**, 314-327, doi:10.1016/j.ydbio.2021.04.007 (2021).

905 19 Iwashita, M. *et al.* Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1
906 mutation: implications for the regulation of melanosome movement. *PLoS Genet* **2**,
907 e197, doi:10.1371/journal.pgen.0020197 (2006).

908 20 Parichy, D. M. & Johnson, S. L. Zebrafish hybrids suggest genetic mechanisms for
909 pigment pattern diversification in Danio. *Dev Genes Evol* **211**, 319-328,
910 doi:10.1007/s004270100155 (2001).

911 21 Patterson, L. B., Bain, E. J. & Parichy, D. M. Pigment cell interactions and differential
912 xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern
913 evolution. *Nat Commun* **5**, 5299, doi:10.1038/ncomms6299 (2014).

914 22 Spiewak, J. E. *et al.* Evolution of Endothelin signaling and diversification of adult
915 pigment pattern in Danio fishes. *PLoS Genet* **14**, e1007538,
916 doi:10.1371/journal.pgen.1007538 (2018).

917 23 Podobnik, M. *et al.* Evolution of the potassium channel gene Kcnj13 underlies colour
918 pattern diversification in Danio fish. *Nat Commun* **11**, 6230, doi:10.1038/s41467-020-
919 20021-6 (2020).

920 24 Haffter, P. *et al.* Mutations affecting pigmentation and shape of the adult zebrafish.
921 *Dev Genes Evol* **206**, 260-276, doi:10.1007/s004270050051 (1996).

922 25 Maderspacher, F. & Nusslein-Volhard, C. Formation of the adult pigment pattern in
923 zebrafish requires leopard and obelix dependent cell interactions. *Development* **130**,
924 3447-3457, doi:10.1242/dev.00519 (2003).

925 26 Inaba, M., Yamanaka, H. & Kondo, S. Pigment pattern formation by contact-
926 dependent depolarization. *Science* **335**, 677, doi:10.1126/science.1212821 (2012).

927 27 Henke, K. *et al.* Genetic Screen for Postembryonic Development in the Zebrafish
928 (Danio rerio): Dominant Mutations Affecting Adult Form. *Genetics* **207**, 609-623,
929 doi:10.1534/genetics.117.300187 (2017).

930 28 Silic, M. R. *et al.* Potassium Channel-Associated Bioelectricity of the Dermomyotome
931 Determines Fin Patterning in Zebrafish. *Genetics* **215**, 1067-1084,
932 doi:10.1534/genetics.120.303390 (2020).

933 29 Stern, D. L. Identification of loci that cause phenotypic variation in diverse species
934 with the reciprocal hemizygosity test. *Trends Genet* **30**, 547-554,
935 doi:10.1016/j.tig.2014.09.006 (2014).

936 30 Hamada, H. *et al.* Involvement of Delta/Notch signaling in zebrafish adult pigment
937 stripe patterning. *Development* **141**, 318-324, doi:10.1242/dev.099804 (2014).

938 31 Bieniossek, C., Imasaki, T., Takagi, Y. & Berger, I. MultiBac: expanding the research
939 toolbox for multiprotein complexes. *Trends Biochem Sci* **37**, 49-57,
940 doi:10.1016/j.tibs.2011.10.005 (2012).

941 32 Altmannova, V., Blaha, A., Astrinidis, S., Reichle, H. & Weir, J. R. InteBac: An
942 integrated bacterial and baculovirus expression vector suite. *Protein Sci* **30**, 108-114,
943 doi:10.1002/pro.3957 (2021).

944 33 Young, G. *et al.* Quantitative mass imaging of single biological macromolecules.
945 *Science* **360**, 423-427, doi:10.1126/science.aar5839 (2018).

946 34 Saunders, L. M. *et al.* Thyroid hormone regulates distinct paths to maturation in
947 pigment cell lineages. *eLife* **8**, doi:10.7554/eLife.45181 (2019).

948 35 McCluskey, B. M., Liang, Y., Lewis, V. M., Patterson, L. B. & Parichy, D. M. Pigment
949 pattern morphospace of *Danio* fishes: evolutionary diversification and mutational
950 effects. *Biol Open* **10**, doi:10.1242/bio.058814 (2021).

951 36 Harris, M. P. Bioelectric signaling as a unique regulator of development and
952 regeneration. *Development* **148**, doi:10.1242/dev.180794 (2021).

953 37 McCluskey, B. M., Uji, S., Mancusi, J. L., Postlethwait, J. H. & Parichy, D. M. A
954 complex genetic architecture in zebrafish relatives *Danio quagga* and *D. kyathit*
955 underlies development of stripes and spots. *PLoS Genet* **17**, e1009364,
956 doi:10.1371/journal.pgen.1009364 (2021).

957 38 Kratochwil, C. F. *et al.* Agouti-related peptide 2 facilitates convergent evolution of
958 stripe patterns across cichlid fish radiations. *Science* **362**, 457-460,
959 doi:10.1126/science.aa06809 (2018).

960 39 Jones, F. C. *et al.* The genomic basis of adaptive evolution in threespine
961 sticklebacks. *Nature* **484**, 55-61, doi:10.1038/nature10944 (2012).

962 40 Verta, J. P. & Jones, F. C. Predominance of cis-regulatory changes in parallel
963 expression divergence of sticklebacks. *eLife* **8**, doi:10.7554/eLife.43785 (2019).

964 41 Hart, J. C., Ellis, N. A., Eisen, M. B. & Miller, C. T. Convergent evolution of gene
965 expression in two high-toothed stickleback populations. *PLoS Genet* **14**, e1007443,
966 doi:10.1371/journal.pgen.1007443 (2018).

967 42 Toms, M. *et al.* Phagosomal and mitochondrial alterations in RPE may contribute to
968 KCNJ13 retinopathy. *Sci Rep* **9**, 3793, doi:10.1038/s41598-019-40507-8 (2019).

969 43 Toms, M. *et al.* Missense variants in the conserved transmembrane M2 protein
970 domain of KCNJ13 associated with retinovascular changes in humans and zebrafish.
971 *Exp Eye Res* **189**, 107852, doi:10.1016/j.exer.2019.107852 (2019).

972 44 Hejtmancik, J. F. *et al.* Mutations in KCNJ13 cause autosomal-dominant snowflake
973 vitreoretinal degeneration. *Am J Hum Genet* **82**, 174-180,
974 doi:10.1016/j.ajhg.2007.08.002 (2008).

975 45 Sergouniotis, P. I. *et al.* Recessive mutations in KCNJ13, encoding an inwardly
976 rectifying potassium channel subunit, cause leber congenital amaurosis. *Am J Hum
977 Genet* **89**, 183-190, doi:10.1016/j.ajhg.2011.06.002 (2011).

978 46 Yin, W. *et al.* The potassium channel KCNJ13 is essential for smooth muscle
979 cytoskeletal organization during mouse tracheal tubulogenesis. *Nat Commun* **9**,
980 2815, doi:10.1038/s41467-018-05043-5 (2018).

981 47 Orteu, A. & Jiggins, C. D. The genomics of coloration provides insights into adaptive
982 evolution. *Nat Rev Genet* **21**, 461-475, doi:10.1038/s41576-020-0234-z (2020).

983 48 Brand, M., Granato, M. & Nüsslein-Volhard, C. in *Zebrafish: A practical approach* Vol.
984 7 (eds C Nüsslein-Volhard & R Dahm) 7-37 (2002).

985 49 Lister, J. A., Robertson, C. P., Lepage, T., Johnson, S. L. & Raible, D. W. *nacre*
986 encodes a zebrafish microphthalmia-related protein that regulates neural-crest-
987 derived pigment cell fate. *Development* **126**, 3757-3767,
988 doi:10.1242/dev.126.17.3757 (1999).

989 50 Odenthal, J. *et al.* Mutations affecting xanthophore pigmentation in the zebrafish,
990 *Danio rerio*. *Development* **123**, 391-398, doi:10.1242/dev.123.1.391 (1996).

991 51 Parichy, D. M., Ransom, D. G., Paw, B., Zon, L. I. & Johnson, S. L. An orthologue of
992 the kit-related gene *fms* is required for development of neural crest-derived

993 xanthophores and a subpopulation of adult melanocytes in the zebrafish, *Danio rerio*.
994 *Development* **127**, 3031-3044, doi:10.1242/dev.127.14.3031 (2000).

995 52 Parichy, D. M. et al. Mutational analysis of endothelin receptor b1 (rose) during
996 neural crest and pigment pattern development in the zebrafish *Danio rerio*. *Dev Biol*
997 **227**, 294-306, doi:10.1006/dbio.2000.9899 (2000).

998 53 Dooley, C. M. et al. *Slc45a2* and V-ATPase are regulators of melanosomal pH
999 homeostasis in zebrafish, providing a mechanism for human pigment evolution and
1000 disease. *Pigment Cell Melanoma Res* **26**, 205-217, doi:10.1111/pcmr.12053 (2013).

1001 54 Kelsh, R. N. et al. Zebrafish pigmentation mutations and the processes of neural
1002 crest development. *Development* **123**, 369-389, doi:10.1242/dev.123.1.369 (1996).

1003 55 Distel, M., Wullimann, M. F. & Koster, R. W. Optimized Gal4 genetics for permanent
1004 gene expression mapping in zebrafish. *Proc Natl Acad Sci U S A* **106**, 13365-13370,
1005 doi:10.1073/pnas.0903060106 (2009).

1006 56 Mongera, A. et al. Genetic lineage labeling in zebrafish uncovers novel neural crest
1007 contributions to the head, including gill pillar cells. *Development* **140**, 916-925,
1008 doi:10.1242/dev.091066 (2013).

1009 57 Bertrand, J. Y. et al. Haematopoietic stem cells derive directly from aortic
1010 endothelium during development. *Nature* **464**, 108-111, doi:10.1038/nature08738
1011 (2010).

1012 58 Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N. & Engeszer, R. E. Normal
1013 table of postembryonic zebrafish development: staging by externally visible anatomy
1014 of the living fish. *Dev Dyn* **238**, 2975-3015, doi:10.1002/dvdy.22113 (2009).

1015 59 Yelon, D., Horne, S. A. & Stainier, D. Y. Restricted expression of cardiac myosin
1016 genes reveals regulated aspects of heart tube assembly in zebrafish. *Dev Biol* **214**,
1017 23-37, doi:10.1006/dbio.1999.9406 (1999).

1018 60 Kawakami, K. & Shima, A. Identification of the Tol2 transposase of the medaka fish
1019 *Oryzias latipes* that catalyzes excision of a nonautonomous Tol2 element in zebrafish
1020 *Danio rerio*. *Gene* **240**, 239-244, doi:10.1016/s0378-1119(99)00444-8 (1999).

1021 61 Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction kit for Tol2
1022 transposon transgenesis constructs. *Dev Dyn* **236**, 3088-3099,
1023 doi:10.1002/dvdy.21343 (2007).

1024 62 Irion, U., Krauss, J. & Nüsslein-Volhard, C. Precise and efficient genome editing in
1025 zebrafish using the CRISPR/Cas9 system. *Development* **141**, 4827-4830,
1026 doi:10.1242/dev.115584 (2014).

1027 63 Meeker, N. D., Hutchinson, S. A., Ho, L. & Trede, N. S. Method for isolation of PCR-
1028 ready genomic DNA from zebrafish tissues. *Biotechniques* **43**, 610, 612, 614,
1029 doi:10.2144/000112619 (2007).

1030 64 Kane, D. A. & Kishimoto, Y. in *Zebrafish: A practical approach* Vol. 7 (eds C
1031 Nüsslein-Volhard & R Dahm) 95-119 (2002).

1032 65 Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D
1033 microscopic image acquisitions. *Bioinformatics* **25**, 1463-1465,
1034 doi:10.1093/bioinformatics/btp184 (2009).

1035 66 Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and
1036 complexes. *Nucleic Acids Res* **46**, W296-W303, doi:10.1093/nar/gky427 (2018).

1037 67 Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L. & Schwede, T. Modeling protein
1038 quaternary structure of homo- and hetero-oligomers beyond binary interactions by
1039 homology. *Sci Rep* **7**, 10480, doi:10.1038/s41598-017-09654-8 (2017).

1040 68 Studer, G. et al. QMEANDisCo-distance constraints applied on model quality
1041 estimation. *Bioinformatics* **36**, 1765-1771, doi:10.1093/bioinformatics/btz828 (2020).

1042 69 Studer, G. et al. ProMod3-A versatile homology modelling toolbox. *PLoS Comput Biol*
1043 **17**, e1008667, doi:10.1371/journal.pcbi.1008667 (2021).

1044 70 Bienert, S. et al. The SWISS-MODEL Repository-new features and functionality.
1045 *Nucleic Acids Res* **45**, D313-D319, doi:10.1093/nar/gkw1132 (2017).

1046 71 Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. *bioRxiv*,
1047 2021.2010.2004.463034, doi:10.1101/2021.10.04.463034 (2022).

1048 72 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*
1049 596, 583-589, doi:10.1038/s41586-021-03819-2 (2021).
1050 73 Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
1051 preprocessor. *Bioinformatics* 34, i884-i890, doi:10.1093/bioinformatics/bty560 (2018).
1052 74 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-
1053 MEM. *arXiv: Genomics* (2013).
1054 75 Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* 10,
1055 doi:10.1093/gigascience/giab008 (2021).
1056 76 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15-21,
1057 doi:10.1093/bioinformatics/bts635 (2013).
1058 77 McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for
1059 analyzing next-generation DNA sequencing data. *Genome Res* 20, 1297-1303,
1060 doi:10.1101/gr.107524.110 (2010).
1061 78 Brouard, J. S., Schenkel, F., Marete, A. & Bissonnette, N. The GATK joint genotyping
1062 workflow is appropriate for calling variants in RNA-seq experiments. *J Anim Sci
1063 Biotechnol* 10, 44, doi:10.1186/s40104-019-0359-0 (2019).
1064 79 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
1065 genomic features. *Bioinformatics* 26, 841-842, doi:10.1093/bioinformatics/btq033
1066 (2010).
1067 80 Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T.
1068 Tools and best practices for data processing in allelic expression analysis. *Genome
1069 Biol* 16, 195, doi:10.1186/s13059-015-0762-6 (2015).
1070 81 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
1071 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15, 550,
1072 doi:10.1186/s13059-014-0550-8 (2014).
1073 82 Wickham, H. *ggplot2 : elegant graphics for data analysis*. 2nd edn, (Springer
1074 International Publishingr., 2016).
1075