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ABSTRACT

Infectious disease dynamics operate across biological scales: pathogens replicate within hosts, but
transmit among hosts and populations. Functional changes in the pathogen-host interaction thus
generate cascading effects from molecular to landscape scales. We investigated within-host dynamics
and among-host transmission of three strains of foot-and-mouth disease viruses (FMDVs) in their
wildlife host, African buffalo. We combined data on viral dynamics and host immune responses with
mathematical models to ask (i) How do viral and immune dynamics vary among FMDV strains?
(SAT1, 2, 3); (ii) Which viral and immune parameters determine viral fitness within hosts?; and (iii)
How do within-host dynamics relate to virus transmission among hosts? Our data reveal contrasting
within-host dynamics among viral strains. However, SAT2 elicited more rapid and effective immune
responses than SAT1 and SAT3. Within-host viral fitness was overwhelmingly determined by
variation among hosts in immune response activation rates against FMDVs, but not by variation
among individual hosts in viral growth rate. By contrast, our analyses investigating across-scale
linkages indicate that viral replication rate in the host correlates with transmission rates among
buffalo; and that adaptive immune activation rate determines the infectious period. Together, these
parameters define the basic reproductive number, R0, of the virus, suggesting that viral invasion
potential may be predictable from within-host dynamics. Future work should test the generality
of these findings by including additional FMDV strains, and create a multi-scale model to link
within-host and between-host dynamics explicitly.
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1 Introduction

Linking pathogen dynamics across biological scales,from cellular and molecular interactions within the host’s tissues to
transmission among individuals and populations, is critical to understanding ecological and evolutionary trajectories of
host-pathogen systems, and represents a central challenge in disease ecology [1–3]. Multi-scale models of infectious
disease dynamics seek to address this challenge by linking mechanistic models representing pathogen-host interactions
at cellular to population scales. Developing the mathematical tools for connecting dynamic processes operating at vastly
different temporal and spatial scales has been an active focus in infectious disease modeling [4–12]; however, these
theoretical innovations have so far not been matched by empirical data generation, providing integrated data sets that
document infection processes in the same host- pathogen system consistently across organizational scales.
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In this study, we leveraged experimental data on within-host dynamics, and among-host transmission of three strains of
foot-and-mouth disease viruses (FMDVs) in their wild reservoir host, African buffalo (Syncerus caffer). We constructed
a data-driven mathematical model to understand the interplay between viral population growth and its limitation by the
host’s immune responses. We then investigated to what extent parameters capturing within-host viral dynamics can
predict variation in viral fitness at within- and among-host scales. Within the host we define fitness as viral production
in terms of both peak and cumulative viral load. As such these are both measures of relative success. At the population
scale fitness is assessed in terms of the basic reproductive number R0, defined as the mean number of secondary
infections caused by a single infected host in a wholly susceptible population. R0 represents the pathogen’s ability to
invade susceptible host populations [13]. Thus, our approach connects within-host viral dynamics to the potential for
pathogen spread in host populations, providing a first step towards integrating data and disease dynamic models across
biological scales in this study system.

FMDVs in African buffalo provide a tractable model system for the study of multi-scale infection processes in natural
populations. FMDVs are highly contagious viruses that cause clinical disease and substantial production losses in
domestic ungulates, while endemic infections in their wildlife reservoir tend to be milder [14, 15]. FMDVs are
ubiquitous in African buffalo [14], with three distinct serotypes circulating in wild buffalo populations essentially
independently in Southern Africa [16–18], allowing meaningful comparisons across sympatric viral strains. FMD is the
most important trade-restricting livestock disease globally, and as a result, well-established methods exist for virus
culture, experimental challenges, diagnostics, and quantifying immune responses [17,19–22]. Previous work has shown
that FMDV strains vary substantially in their transmission dynamics among buffalo hosts [19]; and viral proliferation
and immune response patterns in buffalo have been described [23]. However, the functional interplay of within-host
viral and immune dynamics has not been evaluated in buffalo, compared among Southern African Territories (SAT)
serotypes, or aligned with population-level disease dynamics. In this study, we combined experimental infection data
and a mechanistic mathematical model to ask: (i) How do viral and immune dynamic interactions vary among FMDV
strains?; (ii) Which viral and immune parameters determine viral fitness within hosts?; and (iii) How do within-host
dynamics relate to virus transmission among hosts? Our data and models show that variation among viral strains in
dynamics within buffalo hosts is reflected in variation in transmission dynamics among hosts, demonstrating agreement
in viral dynamics across biological scales.

2 Results

We conducted transmission experiments in which time series data were collected, both to quantify viral and immune
kinetics within each host and to estimate epidemiological parameters such as transmission rate and infectious period for
one strain of each serotype for primary (acute) FMDV infection.

To elucidate the interactions between viral and immune kinetics, we consider a model linking within-host viral and
immune dynamics [Fig. 1, (1)], which we then fit to three time series for each host: viral load, innate immune response,
and adaptive immune response.We assume that the innate response clears pathogen at rate ¹. The adaptive immune
response, mediated by neutralizing antibodies produced by the host’s B cells, clears pathogen at rate ¶. Upon virus
introduction, the adaptive immune response is activated via two pathways: It ramps up with a rate b independent of the
innate response, and responds to alarm signals induced by innate immune activation with a rate aI(Ä)/(1 + I(Ä)) [24].
Our model includes the pathogen population [P (Ä)], and innate [I(Ä)] and adaptive [A(Ä)] immune effectors, where Ä
refers to time since infection of the host, and initial conditions (densities) I(0) = I0, P (0) = P0, A(0) = A0.
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We assume that the parasite replicates with a logistic growth rate r(1 − P (Ä)/K), with within-host virus carrying
capacity in absence of adaptive immune response, K. Innate immune responses, characterized by a marker of
inflammation (haptoglobin) were assessed during experimental infection of buffalo with FMDVs, which yielded the
most consistent fits compared to other measures of innate immunity that we assessed [see Supp. Material]. Our models
assume that innate immune response effectors are always present at a maintenance level Λ/d in absence of virus. Upon
exposure to virus, the inducible innate immune response is activated at maximum rate k with half saturation constant, µ,
in terms of viral load, and decays at rate d, fixed at mean values inferred in [20].
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Figure 1: (a) Model diagram corresponding to system (1), compartments are pathogen, P , innate immune response, I ,
adaptive immune response, A. (b) Key model quantities and parameters with description

Our model captures the viral and immune dynamics occurring within individual buffalo hosts, and model parameters
are identifiable given the data that we collected [Fig. 2, SI section C]. In particular, we note that across 11 contact
infected hosts the mean average relative error is well below the introduced noise level of 40%.

As an additional reality check for our models, we compared model output against data on fevers mounted by the animals.
The model-inferred time course of immune and viral dynamics was reasonable in the context of clinical signs [see [23]
for details of the temperature data and the shaded boxes in Fig. 2 for visual representation of these inferred fever
quantities]. There was some variability among viral strains and individual hosts in the timing and magnitude of the
fever response to FMDV infection. However, for the most part, buffalo mounted fevers, as viral loads peaked, and
maintained elevated body temperature until most of the virus had been cleared - as one would expect for an acute viral
infection [24].

2.1 Viral and immune dynamics vary among FMDV strains

The three viral strains exhibited contrasting dynamics within buffalo hosts. Relative to experiment start SAT1 attains its
maximum viral load most rapidly, on average 3.30 days post-contact, while SAT2 and SAT3 took 4.28 and 5.89 days,
respectively [SAT1: 2.96-3.59 days; SAT2: 3.80-4.67 days; SAT3: 5.36-6.34 days; Fig. 3c]. Indeed, viral growth rate
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Figure 2: Our model reproduces empirically observed in vivo viral and immune dynamics well, and model parameters
are identifiable. Vertical dashed line indicates maximum randomly drawn infection start time from [25]. Dotted lines
before the maximum start time are a simple random sample of 20 model trajectories from 10,000 generated per host.
Median time trajectories (lines) and 95% confidence intervals (shaded regions). Blue indicates SAT1, purple SAT2, red
SAT3. Haptoglobin used as measure of innate response (light grey shade) [log10(µg/mL)], FMDV viral data (colored
shades) [log10(genome copies/mL)], and Virus neutralization titre [log10(VNT)] used as measure of adaptive response
(dark grey shade). Yellow shaded region indicates times during which fever was detected. (bottom right) Mean average
relative error (ARE) for key model quantities with standard error. Thick black line indicates identifiability threshold
corresponding to introduced noise level of 40%. Lack of fever period for host IDs 2, 22 is not indicative of lack of fever,
but rather of temperature logger malfunction.

was negatively correlated to both time to maximum viral load, latency period, and infection start time (in contact days)
among individual hosts [Fig. 4d,j and Fig. 5a Pearson correlation across median parameter estimates for 11 sample
hosts ϱ = −0.93, p = 2.7 × 10−5; ϱ = −0.85, p = 8 × 10−4; and ϱ = −0.76, p = 0.0043 respectively]. These
relationships point to life history variation among viral strains, where viruses with fast growth rates appear to reach
their within-host peak load quickly post initiation of contact.
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Figure 3: Variation among FMDV serotypes in viral and immune parameters defining within-host dynamics. Violin
plots represent serotype sample mean parameters; daggers indicate statistically significant difference

Host immune responses to FMDV infection also varied by strain. Buffalo activated innate immune responses [k] (as
measured by haptoglobin, an acute inflammatory protein) more rapidly when infected with SAT2 than SAT3, while SAT1
is intermediate between them [SAT1: 0.081, CI 0.0544-0.1100; SAT2: 0.1054, CI 0.0754-0.1391; SAT3: 0.0499, CI
0.0308-0.0750, Fig. 3g]. I0 and innate activation rate were negatively correlated among hosts [ϱ = −0.61, p = 0.048,
Fig. 4a], suggesting that individual hosts with low constitutive innate immunity may compensate by quickly ramping
up innate responses. Buffalo activated adaptive immune responses, as measured by FMDV neutralizing antibody titer
[b], more rapidly for SAT2 than either SAT1 or SAT3 [SAT1: 0.346, CI 0.297-0.406; SAT2: 0.658, 0.557-0.767; SAT3:
0.398, 0.329-0.475]. Among individual buffalo, innate and adaptive activation rates were both strongly predictive of
viral clearance rate [ϱ = 0.82, p = 0.002, ϱ = 0.83, p = 0.002 respectively], indicating variation among hosts in the
speed and effectiveness of their immune responses [Figs. 3,4].

2.2 Which viral & immune parameters determine viral fitness within hosts?

The observed differences in viral dynamics and host responses to infection resulted in differences in viral fitness
among strains: SAT1 attained high maximum and cumulative viral titers in buffalo hosts. SAT2 lagged conspicuously
behind the other two strains in both cumulative and maximum viral load. SAT2’s maximum viral load was 76.1%
[CI 61.3-93.6%] that of SAT1 and 73.0% [55.9-85.2] of SAT1’s and SAT3’s respectively; and its cumulative viral
load was 56.8% [CI 44.4-71.7 %] lower than the fittest strain (SAT1) [Fig. 3e,f]. Total viral production by each host
(cumulative viral load) was driven overwhelmingly by variation among buffalo in adaptive activation rate [Fig. 4f]: a
more rapid adaptive immune activation rate (and correlated efficient adaptive clearance [Fig. 4g], was associated with
lower cumulative viral load [ϱ = −0.93, p = 2.6× 10−5]. By contrast, the viral kinetic parameters we assessed (initial
viral load, viral growth rate) were not associated with variation in within-host viral fitness directly. These findings
suggest that different viral life histories can result in similar fitness in terms of cumulative and maximum viral loads,
which is mediated by the viral interaction with the host’s immune responses.

2.3 How do within-host dynamics relate to virus transmission among hosts?

To explore how within-host FMDV dynamics might scale up to affect viral transmission among hosts, we compared
parameters fit to our within-host model to population-scale parameters derived from the same set of experiments [19].
These analyses indicate that variation in viral growth rate among buffalo correlates tightly and negatively with latent
period [Fig. 5a], such that buffalo harboring fast-growing viral populations progress to the infectious class more rapidly.
Further, viral growth rate within the host may correlate with variation among viral strains in transmission rates [Fig.
5b]: Fast growing SAT1 transmitted among buffalo most readily, followed by SAT2, while SAT3’s slower-paced time to
within-host maximum was matched by slower transmission among hosts. Variation among hosts in the rate at which
adaptive immune responses against FMDV were activated correlated with each host’s infectious period [Fig. 5c].

Together, the transmission rate and infectious period determine the basic reproductive number (R0) of the virus which
can be calculated as R0 = (transmission rate)·(infectious period). Our data on cross-scale linkages in viral dynamics
suggest that viral invasion potential may be predictable from within-host dynamics. We explored this idea by comparing
R0 established previously [19] by observing transmission of FMDV between hosts, with R0 calculated based on within
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Figure 4: Co-variation between parameters capturing viral and immune dynamics within buffalo hosts. Blue indicates
SAT1, green SAT2, red SAT3. Scatter plots show median parameter estimates from 10,000 replications for each host
generated by Monte-Carlo simulations. Pairs of parameters that have significant Pearson correlations are framed in
solid black lines.

host viral and immune kinetic parameters: We estimated transmission rate and infectious period as linear functions
of viral growth rate and adaptive activation rate, respectively, and computed R0 as their product [see [Fig.5b,c]]. Our
data on three strains of FMDV demonstrate a good match between R0 estimated from within-host parameters with
R0 measured by observing disease transmission among hosts. However, more than three strains of FMDV will need
to be studied to test the robustness of this finding. We then compared these basic reproductive numbers derived from
within-host viral dynamic parameters [Fig. 5d] to reproductive numbers estimated by observing transmission among
hosts in our experiments [19], and found that both estimates of R0 match qualitatively [Fig. 5d inset].

3 Discussion

In this study, we used time series data from viral challenge experiments involving 11 buffalo acutely infected with three
strains of FMDVs (4, 4 and 3 buffalo per strain) to parameterize a mathematical model capturing the dynamics of viral
growth and its curtailment by the host’s immune responses. We sought to determine: (i) How do viral and immune
dynamics vary among FMDV strains?; (ii) Which viral & immune parameters determine viral fitness within hosts?;
and (iii) How do within-host dynamics relate to virus transmission among hosts? Despite the moderate number of host
individuals included in the study, identifiability analysis of our model parameters suggests that our models capture
the data well: Identifability analysis yielded robust interval estimates for model parameters by replicating the sample
10,000 times as well as a metric (average relative error) to assess whether or not model parameters can be reliably
identified from available data. Here we found that our model parameters were practically identifiable at an introduced
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(a) (b)

(c) (d)

Figure 5: Consilience across scales; (a) Viral growth rate is negatively correlated with latent period (b) sample mean
viral growth rate has apparent positive trend with transmission rate (c) adaptive activation rate is negatively correlated
with infectious period (d) R0, a population level quantity which summarizes transmisibility, may be viewed as a
function of viral growth rate and adaptive activation rate. Estimate of R′ obtained from immune scale parameters
predicts estimate from population scale model well. Immune parameters (r,b) are from this work and population scale
parameters (1/µ, 1/ϵ, ´) are from [19]. Points represent median parameter estimates for each contact infected host.
Both infectious and latent period were assumed to be gamma distributed, with fit means for latent period: 0.5 days [95%
CI 0.02-2.4], 1.3 days [0.1- 3.5] 2.8 days [0.5, 7.0] and shape parameters 1.2 [0.1-8.7], 1.6 [0.2-9.2], 1.6 [0.2-8.3] for
SAT1-SAT 3 respectively [19]. Similarly, for infectious period, means were estimated at 5.7 days [4.4-7.4], 4.6 days
[3.5-6.3], and 4.2 days [3.2, 5.8], and shape parameters 11.8 [3.5-33.5], 8.7 [2.4-27.0], 11.8 [3.3-35.3]

noise level of 40% (chosen to cover the original data), and that our results correspond well with independently estimated
metrics of fever within the same hosts.

Our results uncover variation among viral strains in within-host dynamics. SAT1 was able to transmit most rapidly,
leading to an early peak in viral load, just 3-4 days post start of contact. SAT2 achieved its maximum viral load
somewhat more slowly, reaching its peak viral load about a day later than SAT1. By contrast, SAT 3 appeared to follow
a strikingly different strategy, attaining its peak viral load a full three days later than SAT1. However, interestingly,
despite the large disparity between SAT1 and SAT3 in the time course of viral proliferation within the host, within-host
fitness of these strains was quite similar: SAT1 and SAT3 attained similar maximum and cumulative viral loads. By both
of these measures, SAT2 had sharply reduced fitness compared to the other two strains - despite kinetic similarities with
SAT1. This contrast appeared related to differences in host immune responses to the three strains. SAT2 elicited much
more rapid and effective innate and adaptive immune responses than SAT1 and SAT3. Differences in viral production
among individual hosts were thus mediated by variation in viral interactions with the host’s immune responses: fast,
effective adaptive immune responses limited cumulative viral production within a given host. Rapid activation of
adaptive immune responses also curtailed each host’s infectious period; thus, the host’s antibody responses shut down
viral production and the potential for transmission to other hosts. Taken together, these findings suggest that different
viral life histories – characterized by variation in latency period, and time to maximum population size within the host
relative to contact days – can result in similar viral fitness in terms of the amount of virus produced in an individual
host. Indeed, adaptive immune activation rate and cumulative viral production were so tightly correlated [ϱ = −0.93]
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as to be practically synonymous, indicating that viral fitness as measured by cumulative production in an individual
host near exclusively reflected how speedily the host was able to mount a neutralizing antibody response to infection.
At least within the parameter space defined by the viral strains and buffalo that we worked with, no other parameters of
the virus-host interaction played a significant role in determining the viral production of each host.

On the other hand, acute transmission rates, the per day expected number of successfully infected contacts of the three
strains, estimated in previous work [19], appear to follow variation in median viral replication rate per serotype, and not
viral population size. SAT1 had the most rapid time to peak load and transmission rate, SAT2’s were intermediate, and
SAT3’s were the lowest; whereas patterns of viral load did not match up to transmission rate variation among strains.
These observations are based on a sample size of three strains: unlike our other trait associations, which evaluated
variation in viral and immune dynamics across 11 hosts, our estimates of viral transmission rate are group averages. This
difference arises because we cannot distinguish which individual hosts transmitted infection during our experiments -
we merely recorded the timing of new infections in each group. Whole genome sequencing of virus recovered from
each buffalo during the experiments might allow us to pinpoint who infected whom, elevating the precision of our
transmission rate estimates to the individual level. However, even for a rapidly evolving RNA virus such as FMDV,
genomic differentiation of experimental strains during a single cycle of transmission from needle-infected to in-contact
hosts may not prove sufficient to identify donor and recipient hosts with confidence. As such, a greater number of
viral strains would ideally need to be studied to assess the generality of these findings. Two additional observations are
consistent with the finding that viral transmissibility appears to be related to within-host replication rate. We found
that infection start time, latency period, and time to maximum viral load were all negatively correlated to viral growth
rate. Variation in pathogen contagiousness is often related to differences in the infectious dose that is sufficient to cause
infection in a new host [26] – indeed, FMDVs are notoriously able to transmit with tiny amounts of inoculum. Just a
few virions suffice to propagate infections of some FMDVs to susceptible hosts [27,28] contributing to these pathogens’
hallmark contagiousness. Similarly, short incubation periods can contribute to the rapid spread of highly transmissible
pathogens [26, 29–31]. As such, these observations lend credence to the idea that aggressive within-host replication in
FMDVs may be indicative of high transmission capacity among hosts. It is important to note that our findings linking
viral growth rate and transmission rate refer specifically to transmission during acute infection. In addition, FMDVs
can transmit from carrier buffalo that retain virus in follicular dendritic cells of the palatine tonsils [32] long after the
virus has been cleared from the blood. For the FMDV strains we studied, we previously estimated that SAT1 and SAT3
transmit from carrier hosts at much reduced (approx. two orders of magnitude lower) rates compared to transmission
from acutely infected hosts, and carrier transmission of SAT2 is even rarer, if it occurs at all [19]. Nonetheless, at least
for SAT1 and SAT3, viral transmission from carrier hosts may play a crucial role in maintaining long-term persistence
of these viruses in buffalo populations, by sparking epidemics in newly susceptible calf cohorts. As such, future
work should extend examination of linkages between within- and among-host dynamics of FMDVs to viral growth,
maintenance and transmission in carrier hosts.

Bringing together two key findings – that adaptive immune activation drives the duration of the infectious period in
each host, and viral growth rate may determine the acute viral transmission rate among hosts – we estimated R0, the
virus’ basic reproductive number from within-host dynamic parameters. We showed that estimates based on viral
replication rate and adaptive activation rate qualitatively matched R0 estimates previously derived from observed
transmission events among experimentally infected and naive buffalo [19], suggesting that viral invasion potential may
be predictable from within-host dynamics. With just three viral strains and 11 host individuals to work with, these
findings are necessarily tentative. We assumed linear relationships linking viral replication and transmission rates, and
adaptive activation rate with infectious period, when in fact these functions may follow more complex shapes; and our
power to evaluate how well R0 estimated from within vs among host processes match, is limited. Nonetheless, the
possibility of predicting pathogen behavior in host populations from within-host experiments is tantalizing: studying
pathogen strains in individual animals is far more tractable than investigating their behavior at the population scale; yet
predicting which pathogen strains are likely to spread and persist in host populations of interest is an urgent priority in
the face of globally accelerating pathogen emergence. Our study illustrates the value of taking a functional approach
to understanding the consequences of viral diversity. By documenting variation among viral strains in terms of their
life history traits, rather than focusing on genomic variation, we were able to bridge biological scales from kinetics
within individual animals to transmission among hosts. This was effectively an information reduction step - zooming
out to extract relevant life history signal from a sea of genomic noise to understand viral dynamics across scales. Future
work could explore whether a functional approach to viral dynamics can be extrapolated down, leveraging in vitro
studies of viral kinetics to predict viral life history traits and interactions with the host; and should test the generality
of our findings by expanding the number viral strains that are included. This would also allow parameterization of
multi-scale models that link within-host and between-host dynamics explicitly, and model validation through evaluating
viral dynamics and population structure in natural host populations.

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 3, 2022. ; https://doi.org/10.1101/2022.12.02.518883doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518883
http://creativecommons.org/licenses/by-nc/4.0/


Consilience in disease ecology

4 Summary of materials and methods

For each strain, four buffalo were needle infected and allowed to contact four naive buffalo. These naive buffalo were
then captured on contact days 0, 2, 4, 6, 9, and 12 during the acute phase and again at 28 days post infection for
measurement of viral and immune parameters [see [19, 23]]. The impact of route of infection on model parameters is
discussed extensively in the supplementary information. We find that there were significant differences between needle
and contact infected hosts, and focus our analysis here on the contact infected hosts (ie. animals infected via a natural
route of infection).

4.1 Model Fitting

In this section we denote pathogen data for host j as X
(j)
P and the data for host j collectively as Xj . Parameter estimates

were obtained by taking a weighted sum of the numerical solutions to the model model compartments as objective
function. All program files and data generated by the fitting process are available on GitHub and are archived together
in citeable format in the Zenodo repository (done upon submission). Data was collected for contact infected hosts on
contact days t = {0, 2, 4, 6, 9, 12, 28} and for needle infected hosts on contact days t = {−2, 0, 2, 4, 6, 9, 12, 28}. For
our data fitting we first randomly draw an infection start time, Ä0 ∈ (0, t∗ − 1) according to the posterior distributions
obtained for each host in [25], where t∗ is the time of the first measured positive viral load in contact days. Once done
obtain initial estimates for initial viral load, P0, and viral growth rate, r, given Ä0 and assuming a simple exponential
growth model up to time t∗, that is for host i:

P (Ä) = P0e
r̃τ Ä

(j)
0 ≤ Ä ≤ Ä∗i , (2)

where r̃ is the net viral growth rate (in presence of innate immune response). There are two implicit biological
assumptions inherent to this fitting. First, that since the innate immune response is always present estimating r is this
way will account for killing of the pathogen by the innate response (thus providing a lower bound for r), and second that
prior to the presence of sufficient adaptive immune response pathogen growth will be exponential (instead of logistic).
The second is a common assumption in the literature when estimating viral growth rates [33, 34]. This estimate of P0

was retained and fixed, while this estimate for viral growth rate was used as a lower bound and initial estimate for viral
growth rate when simultaneously fit with other model parameters when we consider the following viral-immunological
model (obtained by setting ¹, a = 0):































dI

dÄ
= Λ+

kP (Ä)

µ + P (Ä)
I(Ä)− dI(Ä)

dP

dÄ
=

[

r

(

1−
P (Ä)

K

)

− ¶A(Ä)

]

P (Ä),

dA

dÄ
= bA(Ä)P (Ä),

(3)

This simplification is numerically justified in that when fit these quantities were approximately O(10−10) (see program
files on GitHub).

4.2 Practical Identifiability Analysis and Uncertainty Quantification

In order to assess identifiability, confidence in our fitting procedure, and differences in both mean across and within
serotype, we conducted uncertainty analysis via Monte Carlo simulations. This analysis was carried out in the following
manner (see [35] for detailed review of identifiability analysis for non-linear ODE models). Under the assumption that
the measurement error is independently and normally distributed with variation relative in magnitude to the measured

total at each data point, X
(j)
i,k :

X
(j)
i,k = g(u

(j)
i,k , p̂|Ä0) + ϵ

(j)
i ϵ

(j)
i ∼ n(0, X

(j)
i,k · s2), (4)

where u(Ä) = [I(Ä), P (Ä), A(Ä)]T , g is the true set of values at each time, and p̂ the set of true parameter values given
randomly drawn Ä0, draw M start times (M = 10, 000 for each host). First, we fit the model to the original data given
drawn Ä0. Next generate a new dataset according to equation (4) and refit the model. Finally for each randommly drawn
infection start time calculate the average relative error between model fit parameters from the baseline data and the
generated data. The results of this analysis both indicate that the key model parameters and associated quantities are all
practically identifiable assuming the 40% noise level in measurement error as indicated by average relative error (ARE)
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for all parameters, pξ, 1 ≤ À ≤ ℓ,

AREξ =





100

M

M
∑

j=1

∣

∣

∣
[pξ − p̂ξ]τj

0

∣

∣

∣

p̂ξ|τj

0



 ≤ 40% (5)

(see figure 2 and Supplementary Materials).
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