

1 **Distinct Differences in Gene Expression Profiles in Early and Late Stage** 2 **Rhodesiense HAT Individuals in Malawi.**

3 Peter Nambala^{1,2}, Julius Mulindwa¹, Harry Noyes³, Joyce Namulondo⁴, Oscar Nyangiri⁴, Enock Matovu⁴,
4 Annette MacLeod⁵ and Janelisa Musaya² on behalf of the TrypanoGEN+ Research Group as Members
5 of the H3Africa Consortium.

6 ¹ Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University,
7 Kampala, Uganda.

8 ² Kamuzu University of Health Sciences, Malawi-Liverpool-Wellcome Trust Clinical Research
9 Programme, Blantyre, Malawi.

10 ³Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom.

11 ⁴ Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal
12 Resources and Biosecurity, Makerere University, Kampala, Uganda.

13 ⁵Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom.

14 **Abstract**

15 *T. b. rhodesiense* is the causative agent of rhodesian Human African trypanosomiasis (r-HAT)
16 in Malawi. Clinical presentation of r-HAT in Malawi varies between the different foci and
17 differs from East African HAT clinical phenotypes. The purpose of this study was to gain more
18 insights into the transcriptomic profiles of patients with early stage 1 and late stage 2 HAT
19 disease in Malawi. Whole blood from individuals infected with *T. b. rhodesiense* was used for
20 RNA-Seq. Control samples were from healthy trypanosome negative individuals matched on
21 sex, age range, and disease focus. Illumina sequence FASTQ reads were aligned to the GRCh38
22 release 84 human genome sequence using HiSat2 and differential analysis was done in R using
23 the DESeq2 package. XGR, ExpressAnalyst and InnateDB algorithms were used for functional

24 annotation and gene enrichment analysis of significant differentially expressed genes. RNA-
25 seq was done on 25 healthy controls and 23 r-HAT case samples of which 3 case samples were
26 excluded for downstream analysis as outliers. 4519 genes were significantly differentially
27 expressed (p adjusted <0.05) in individuals with early stage 1 r-HAT disease (n = 12) and 1824
28 genes in individuals with late stage 2 r-HAT disease (n = 8). Enrichment of innate immune
29 response genes through neutrophil activation was identified in individuals with both early and
30 late stages of the disease. Additionally, lipid metabolism genes were enriched in late stage 2
31 disease. We further identified uniquely upregulated genes (log2 Fold Change 1.4 - 2.0) in stage
32 1 (ZNF354C) and stage 2 (TCN1 and MAGI3) blood. Our data brings new insight into the
33 human transcriptome landscape during *T. b. rhodesiense* infection. We have further identified
34 key biological pathways and transcripts during stage 1 and stage 2 r-HAT. Lastly, we have
35 identified potential diagnostic biomarkers that may be used for staging of r-HAT disease.

36

37 **Introduction**

38 Human African Trypanosomiasis (HAT) is a protozoan disease endemic in sub-Saharan Africa
39 and caused by *Trypanosoma brucei gambiense* (Tbg) and *Trypanosoma brucei rhodesiense*
40 (Tbr). Tbg causes chronic HAT (g-HAT) or sleeping sickness in West and Central Africa with
41 domesticated animals sometimes acting as intermediate hosts (1). Whereas, Tbr causes an acute
42 HAT (r-HAT) disease phenotype and is endemic in Southern and Eastern Africa where wild
43 life and domesticated animals are the major intermediate hosts for disease transmission (2).
44 Tsetse flies of the genus *Glossina* are the vectors of HAT transmission (3). Human Tbr
45 infections are characterized by a hemolymphatic stage 1 (early) and meningoencephalitic stage
46 2 (late) disease. Parasite invasion of central nervous system is a classic characteristic of stage
47 2 r-HAT disease and if untreated, patients die due to a dysfunctional immune response in the

48 central nervous system (4). Early diagnosis of r-HAT is key in reducing disease burden and
49 mortality (5). Unfortunately, diagnosis of r-HAT in endemic areas is dependent on insensitive
50 microscopic examination of blood and the invasive lumbar puncture for collection of cerebral
51 spinal fluid (CSF) used in r-HAT staging (6, 7).

52 There are variations in the clinical presentation of r-HAT that have been observed in endemic
53 countries (8). For instance, r-HAT cases in Uganda frequently present with a more acute
54 clinical presentation compared to r-HAT cases in Malawi that tend to present with a chronic
55 disease phenotype (9). In Malawi HAT cases are reported at the interface of wildlife reserves
56 with human settlements in Nkhotakota and Rumphi (10). Most cases in Nkhotakota present
57 with a chronic stage 1 disease whereas in Rumphi most cases present with acute stage 2 disease
58 (10, 11). Variations in clinical presentation of r-HAT have also been reported between Malawi
59 and Uganda cases and this is associated with parasite genetic diversity and human
60 inflammatory cytokine response (8, 12).

61 Previously, human transcriptome analysis of blood from r-HAT patients in Uganda identified
62 functional enrichment of genes involved in innate immune response pathway to be the most
63 differentially expressed (13). These genes include interleukin 21 (*IL21*), interleukin 1 receptor
64 (*IL1R*), and tumour necrosis factor alpha *TNFA*, as well as immunoglobulin heavy chain
65 variable and classical complement pathway genes, (13). Whereas, upregulated transcripts in
66 the CSF of stage 2 HAT patients were predominantly coding for genes involved in neuro
67 activation and anti-inflammatory, the study identified *IGHD3-10*, *C1QC* and *MARCO* genes
68 as having a fivefold change in stage 1 r-HAT cases compared to healthy controls (13). The dual
69 (host and parasite) transcriptome analysis of transcriptomes found in Ugandan r-HAT samples
70 are unlikely similar to other r-HAT endemic counties such as Malawi. Firstly, Tbr parasite
71 isolates in East Africa are genetically different from Malawi isolates (8). Secondly, clinical
72 presentation of r-HAT in Malawi is more chronic than the acute disease observed in East Africa

73 (9). Thirdly, there is a high level of human genetic diversity between Uganda and Malawi,
74 which might affect human response to diseases (14). Lastly, association studies have found a
75 protective effect of *APOL1* gene polymorphisms in r-HAT disease outcome in Malawi
76 population (15), in contrast to mixed results from association studies of *APOL1* with r-HAT
77 disease outcome in Ugandan population (16, 17). In this study, we examined the differences in
78 the human blood gene expression profiles of r-HAT patients in Malawi. Our results add to the
79 current understanding of the human response to r-HAT disease and have led to identification
80 of potential blood markers for staging of r-HAT.

81 **Results**

82 **RNA-Seq Sample attributes**

83 Samples were collected at Rumphi and Nkhotakota district hospitals during a HAT surveillance
84 as we had previously described (10). In Rumphi district, a total of 37 r-HAT positive cases and
85 25 corresponding r-HAT negative controls were recruited (**Table 1**). Of the 37 r-HAT positive
86 individuals, 26 (70.3%) were males and 11 (29.7%) were females. The mean age of the cases
87 and controls were 34.9 ± 17.2 years and 36.0 ± 17.7 years respectively.

88 In Nkhotakota district, 27 r-HAT cases were recruited and together with 24 corresponding
89 negative controls (**Table 1**). Among the cases, 15 (55.6%) were males and 12 (44.4%) females.
90 The mean age of the cases and controls were 27.2 ± 17.7 years and 33.1 ± 11.8 years respectively.
91 The HAT status of the participants was confirmed by microscopic examination of thick blood
92 smears at recruitment sites and by PCR to detect the *SRA* gene of Tbr parasites as previously
93 described (10).

94 **Table 1.** Demographic details of recruited study participants

r-HAT Focus	r-HAT Case					Negative Controls		
	n=64					n=49		
	Male	female	Mean Age	Stage 1 HAT	Stage 2 HAT	Male	Female	Mean Age
Rumphi	26	11	34.9±17.2	14	23	11	14	36.0±17.7
Nkhotakota	15	12	27.2±17.7	19	8	13	11	33.1±11.8

95

96 RNA-Seq was done on 23 r-HAT cases and 25 healthy control blood samples with RNA
97 concentration >1 μ g (**Table S1**).

98 **Distinct differences in r-HAT cases and control transcriptome profiles**

99 To examine for differences between the blood transcriptomes of individuals infected with Tbr
100 parasites compared with healthy controls, we performed a principal component analysis (PCA)
101 in DEseq2 (18). Three cases were identified as outliers by PCA and removed from downstream
102 analyses. The results show that transcriptomes in individuals infected with Tbr parasites were
103 clearly distinguished from healthy controls on a plot of principal components 1 and 2 (**Fig 1A**).
104 We also observed a stratification when simultaneous comparison of female and male r-HAT
105 cases with corresponding health controls was made using Euclidean distance correlation (**Fig**
106 **S1A**). Lastly, we observed significant differentially expressed genes (DEGs) between stage 1
107 and stage 2 samples against controls (**Fig 1B** and **Fig S1B**). Since clinical presentation of r-
108 HAT in Malawi is focus dependent (10), we next compared transcriptome of infected
109 individuals in Nkhotakota focus against infected individuals in Rumphi focus. No genes were
110 significantly differentially expressed in infected individuals between the two r-HAT foci.

111 **Innate Immune Response Transcripts are Elevated in Stage 1 Patients.**

112 Given the differences observed in the number of DEGs between HAT stage 1 and stage 2 blood
113 relative to controls, we next sought to identify those genes that are significantly enriched in
114 individuals with stage 1 r-HAT disease. First, differential transcriptome analysis was done in
115 stage 1 cases against healthy controls using DeSeq2. A total of 4519/47546 (9.50%) genes were
116 significant differentially expressed between stage 1 cases and healthy controls with adjusted
117 p<0.05 (padj<0.05) (**Fig 2A**). Of the 4519 genes, 54.3% (2454/4519) coded for proteins, 32.2%
118 (1457/4519) for lncRNA and 13.5% (608/4519) for various gene types which include miRNA,
119 snRNA, snoRNA, scaRNA, miscRNA, Tyrosine protein kinase (TEC), immunoglobulins, T

120 cell receptor and Mt-RNA (**Fig S2A**). Of the 2454 protein coding genes, 64.6% (1585/2454)
121 were upregulated (log₂ fold change, log₂FC > 1), 8.2% (201/2454) were down regulated
122 (Log₂FC < -1) and 27.2% (668/2454) were neither upregulated nor downregulated compared
123 to healthy controls. Among upregulated genes: *BMP6*, *ENOSF1*, *EXOSC9*, *SMARCB1*,
124 *LCORL*, *EMC9*, *C12orf73*, *IFI16* were significantly expressed with padj<10e-15 and log₂FC
125 > 2. *BMP6* plays a critical role in cell proliferation and type II cytokine regulation through
126 JAK2 signalling pathway (19). *IFI16* has a critical role in the interaction between the innate
127 immune system and cellular transcriptional regulation through pattern recognition of
128 pathogens. Additionally, upregulation of immunoglobulin light chains (IGKs, IGLs) and
129 immunoglobulin heavy chains (log₂FC 2.0 – 6.0) were identified. IGKs and IGLs are involved
130 in activation of mast cells and neutrophils which results in the release of various pro-
131 inflammatory mediators (20); whereas immunoglobulin heavy chains are central in
132 presentation of antigens (21). All T cell receptor transcripts were downregulated (log₂FC -1.0
133 to -2.1) in Stage 1 cases compared to healthy controls.

134 *T.b. rhodesiense* infections are known to disrupt the circadian rhythm which results in sleep
135 disturbance in infected individuals (4, 22-24). For this, we observed that circadian rhythm
136 *CIPC* (*clock interacting pacemaker*) was differentially expressed (padj<1.59E-6) and down
137 regulated (log₂FC -1.9) suggesting a disruption of circadian rhythm in patients with stage 1
138 disease compared to healthy individuals. However, *period circadian regulator 1* (*PER1*)
139 transcripts were not differentially expressed but were upregulated (log₂FC 1.7). *clock*
140 *circadian regulator* (*CLOCK*) transcripts which is also central in circadian rhythm was neither
141 differentially expressed nor upregulated.

142 Functional annotation of the principal component gene ontology (25), identified immune
143 system function as having the most enriched genes with high loadings on the selected principal
144 components (**Table S2**). Immune effector process, neutrophil activation, neutrophil

145 degranulation, neutrophil activation involved in immune response and neutrophil mediated
146 immunity were among differentially expressed immunological functions (p-value<10E-12).
147 Neutrophils have been previously shown to have a fundamental role in innate immune response
148 against trypanosome parasites (26, 27).

149 To determine other biological processes enriched during stage 1 of Tbr infection, upregulated
150 genes were analysed in ExpressAnalyst using the PANTHER biological process database (28,
151 29). This identified 18 biological process which include immune system process, immune
152 response, macrophage activation, natural killer cell activation, response to interferon gamma,
153 cell recognition, receptor mediated endocytosis and blood coagulation (**Fig 2B**). The blood
154 coagulation system may be activated by pro-inflammatory cytokines and modulate
155 inflammatory response to blood pathogens (30).

156 **Enrichment of Lipid Metabolic Process Pathway in stage 2 r-HAT Cases**

157 To determine blood transcriptomes that were enriched in stage 2 patients, we compared stage
158 2 blood against healthy controls. There were 1824/37922 (4.81%) significant DEGs (padj<0.05)
159 of which 850/1824 (46.6 %) coded for proteins, 643/1824 (35.3 %) for lncRNA and 331/1824
160 (18.1 %) for various gene types (**Fig 3A and Fig S1B**). Additionally, 75/850 (8.8%) of the
161 protein coding genes were highly upregulated (log2FC 2.0 - 4.3) relative to healthy controls
162 with *BMP6*, *ENOSF1*, *IFI16*, *SMARCB1* and *C12orf73* genes significantly expressed with
163 padj<9.79E-10. Whereas 17/850 (2.0%) protein coding genes were highly downregulated
164 (log2FC -2.0 to -3.7) with *UGT2B28* significantly expressed (padj<9.81E-5). All upregulated
165 gene (375/850) were analysed in ExpressAnalyst to identify pathways enriched in the
166 biological process in PANTHER biological process database. This identified translation
167 (padj<9.19E-6), immune system process (padj<3.59E-4) and immune response (padj<0.004)
168 as the most significant enriched biological pathways in stage 2 r-HAT cases (**Fig 3B**).

169 Additionally, lipid metabolic process, lipid transport, muscle organ development and cellular
170 amino acid catabolic process were uniquely enriched in stage 2 biological processes.

171 **Blood Markers for Stage 1 and Stage 2 r-HAT in Malawi**

172 Next, we compared significantly expressed ($\text{padj} < 0.05$) CDS in stage 1 (2454 CDS) and stage
173 2 (850 CDS) blood. We identified 632 CDS that were differentially expressed in both stage 1
174 and stage 2 r-HAT disease (**Fig 4A**). Among the 632 CDS, *ZNF354C* was upregulated (log2FC
175 1.9) in stage 1 only, whereas *TCN1* (log2FC 2.0) and *MAGI3* (log2FC 1.4) were upregulated
176 in stage 2 blood only (**Fig 4B**). Overexpression of *ZNF354C* has a crucial role in inhibition of
177 endothelial cell sprouting (31). *TCN1* expression in blood is negatively associated with poor
178 verbal memory performance (32). Among CDS only expressed in stage 1 blood, 71 genes were
179 upregulated with $\text{log2FC} > 3.0$ (**Fig S3A**). On the other hand, *DMD*, *NOXRED1*, *HBB*, *PROK2*,
180 *LIMS2*, *CD14* were the top upregulated ($\text{log2FC} > 1.9$) genes significant differentially
181 expressed in stage 2 disease only (**Fig S3B**). *CD14* is an antigen receptor mainly expressed by
182 macrophages during innate immune response and *HBB* is a crucial for synthesis of β -globin
183 which form the main structure of the human haemoglobin A (33). To determine the biological
184 processes enriched by genes which were differentially expressed in either stage 1 or stage 2 r-
185 HAT, we also subjected the gene list to ExpressAnalyst in biological pathways. This identified
186 enrichment of circadian rhythm and regulation of translation in stage 2 blood and translation,
187 immune system process, viral process in stage 1 blood among other pathways (**Fig S4A and**
188 **S4B**).

189 **Neutrophils underlie Differentially Expressed Blood Cells in r-HAT Disease in Malawi.**

190 The transcriptional map of human blood cells provides a comprehensive understanding of
191 physiological haematopoiesis (34). We used a custom R script that uses normalised read counts
192 produced by DESeq2 to obtain the proportions of different leukocyte types present in each

193 sample. In a principal component analysis of the data PC1 largely separated cases from controls
194 and explained 25% of the variance in the data (**Fig S5A**). The transformed bulk RNAseq to
195 single cell proportions data had the expected normal distribution (**Fig S5B**). We identified 12
196 blood cell types with significantly different relative abundance ($p<0.05$) in r-HAT cases and
197 controls (**Fig 5A, Fig S6 and Table S3**). Meta-myelocytes (metaN) had the greatest difference
198 in proportions ($p<7.4E-6$) followed by NKP ($p<6.1E-4$) and hMDP ($p<6.3E-4$). Meta-
199 myelocytes are neutrophil precursors and their presence in blood circulation is an indication of
200 severe acute inflammation (35). To understand the immunological pathways involved in r-HAT
201 in Malawi patients, we subjected all upregulated CDS to reactome immune system pathway
202 visualisation (36). This identified neutrophils and macrophages as one of the early responders
203 to trypanosome infection as well (**Fig 5B**).

204 **Discussion**

205 Our previous study showed that clinical presentation of r-HAT in Malawi is focus dependent
206 with most r-HAT cases in Nkhotakota focus presenting with stage 1 disease and in Rumphi
207 focus mostly presenting with stage 2 disease (10).

208 In this study we have presented transcriptome data from blood of stage 1 and stage 2 r-HAT
209 cases in Nkhotakota and Rumphi foci in Malawi. Nonetheless, blood samples in both stages of
210 r-HAT showed a detectable stratification between cases and healthy controls.

211 Our data also showed activation of innate immune system in both stage 1 and stage 2 disease.
212 Hematopoietic progenitor neutrophils (Metamyelocytes) were the most significantly ($p<7.4E-$
213 6) expressed blood cells responding to Tbr infection in humans followed by NKP and hMDP
214 which are all central in coordinating and effecting an innate immune response. Presence of
215 Metamyelocytes in blood is an indication of acute inflammation, which is consistent with
216 proinflammatory profiles in r-HAT (12). Circulating neutrophil life span is about 48hrs, at the

217 same time BMP6 which is involved in cell proliferation was a significant DEG ($p_{adj} < 10E-11$)
218 and upregulated in both stage 1 & stage 2 r-HAT. This suggests that innate immune response
219 through neutrophil activation might have a central role in responding to blood parasitaemia in
220 Malawi r-HAT patients. Candidate genes in neutrophil activation have also been identified to
221 respond to *Trypanosoma congolense* infection in cattle (37). Whereas, in mice infected with *T.*
222 *brucei brucei* (Tbb) neutrophils were recruited at the site of tsetse fly bite but were not able to
223 immobilise motile trypanosomes but aided in the establishment of Tbb blood infection (27).
224 This implicates the dynamic role of neutrophils in responding to various trypanosome parasite
225 infections in different mammalian hosts and future research should consider delineating the
226 role of neutrophils in human Tbr infections.

227 We also observed upregulation ($\log_2 FC 1.9$) of CD14 transcripts in blood from stage 2 r-HAT
228 patients. CD14 is involved in activation of macrophages and regulation of macrophage
229 metabolic profiles (38), which was consistent with our finding of activated lipid metabolic
230 process, lipid transport and cellular amino acid metabolic process in stage 2 blood only (**Fig**
231 **3B**). Macrophages are involved in clearance of tissue pathogens. At the same time,
232 trypanosomes are known to localise in adipose tissue underneath the skin when there's an
233 influx of host adaptive immune responses induced by trypanosome variant surface
234 glycoproteins, thereby sustaining host infection in the absence of blood trypanosome
235 parasitaemia (39). Our results might suggest macrophage infiltration in Tbr infected individuals
236 in Malawi, consistent with findings in mice models infected with Tbr (40).

237 Trypanosome infections are known to disrupt circadian rhythm in vivo and in vitro (23), and
238 here, we found that *CIPC* and *PER1* genes were down regulated and upregulated respectively
239 in stage 1 blood. This suggest that subtle disruption of host circadian system by the
240 trypanosome parasite may start early in infection during hemolymphatic stage, although sleep
241 disturbance is only observed in late stage 2 r-HAT (41, 42).

242 Comparison of DEGs in stage 1 and stage 2 blood identified *ZNF354C* significant differentially
243 expressed in blood of both stages of r-HAT but upregulated in stage 1 only. Whereas *TCN1*
244 and *MAGI3* were only upregulated in stage 2 blood and neither upregulated nor downregulated
245 in stage 1 blood but significant differentially expressed in both stage 1 and stage 2 compared
246 to healthy controls. These have a diagnostic potential of being used as blood markers to
247 diagnose stage 1 and stage 2 r-HAT cases without need of the invasive lumbar puncture
248 collection of CSF, which is currently used for diagnosis of late stage 2 disease. Unlike in a
249 similar study in Uganda r-HAT patients which identified *C1QC*, *MARCO* and *IGHD3-10*
250 upregulated in both blood and CSF, these transcripts were neither upregulated nor significantly
251 differentially expressed in Malawi r-HAT patients. This supports the need for personalised
252 medicine but not universal medicine in the treatment of r-HAT as infected individuals in
253 different disease focus respond differently to trypanosome infection.

254 In conclusion, this study has compared transcriptomes differentially expressed and upregulated
255 in blood of stage 1 and stage 2 r-HAT cases in Malawi. We have identified transcripts
256 significant differentially expressed and upregulated in each stage of r-HAT disease. We have
257 identified neutrophils as significant responders of blood trypanosome infection in both stages
258 of the disease, and macrophages as possible responders in patients with late stage disease. We
259 have also identified transcripts that may potentially be used as novel biomarkers in future
260 research for diagnosis of stage 1 and stage 2 r-HAT in Malawi without the need of lumbar
261 puncture. Our study has provided insights into human responses to trypanosome infection in
262 Malawi r-HAT patients.

263

264 **Methods**

265 **Ethics, Study sites and sample collection**

266 We have recently described r-HAT surveillance and study participants recruitment (10). This
267 study was approved by Malawi National Health Sciences Research Committee (Protocol
268 Number: 19/03/2248). Consent and accent were obtained from each study participant before
269 sample collection. Briefly, sample collection was done during active and passive r-HAT
270 surveillances conducted for 18 months from July 2019 to December 2020. Both r-HAT cases
271 and healthy controls were confirmed to be infected with trypanosome parasites or not by
272 microscopic examination of thick blood films during the surveillance period. Upon obtaining
273 consent, 2ml whole blood samples were collected into Paxgene® tubes from r-HAT cases and
274 matching trypanosome negative healthy individuals and stored at -20°C until processing.
275 Healthy controls were matched for sex, age group and disease focus. For r-HAT positive
276 individuals, samples were collected before initiation of HAT treatment and all patients were
277 thereafter treated following the national HAT treatment guidelines.

278 **RNA sequencing and analysis**

279 RNA was extracted from the preserved Paxgene® blood as previously described (43). A
280 minimum of 1µg of total RNA was shipped to the Center for Genomics Research at the
281 University of Liverpool for sequencing. Samples were checked for quality using an Agilent
282 Bioanalyzer and samples with RNA < 1µg were excluded. Libraries were prepared from total
283 RNA using the QIASeq FastSelect rRNA, Globin mRNA depletion and [NEBNext Ultra II](#)
284 [Directional RNA Library Prep Kit](#) and were sequenced to a target depth of 30 million reads
285 on the Illumina® NovaSeq (100 million reads for samples infected with Tbr parasites). FASTQ
286 reads were aligned to the GRCh38 release 84 human genome sequence obtained from Ensembl
287 (44) using HiSat2 (45) and annotated using the *Homo sapiens* GRCh38.104.gtf file from
288 Ensembl. Genes that were differentially expressed between phenotypes were identified using
289 DEseq2 (46). The proportions of different cell types in each sample were estimated using
290 Bisque (47). Single cell reference sequence data from bone marrow and peripheral blood from

291 Chinese donors was obtained from 7551 individual human blood cells representing 32
292 immunophenotypic cell types (34). Network analysis of enriched genes was done using XGR
293 (48), InnateDB (49) and ExpressAnalyst (28).

294

295 **Conflict of Interest**

296 The authors declare that the research was conducted in the absence of any commercial or
297 financial relationships that could be construed as a potential conflict of interest.

298

299 **Author Contributions**

300 **Peter Nambala:** Conceptualization, Methodology, Investigation, Formal analysis, Writing -
301 original draft. **Harry Noyes:** Conceptualization, Methodology, Formal analysis, Writing -
302 review & editing. **Julius Mulindwa:** Conceptualization, Writing - review & editing,
303 Methodology, Formal analysis, Supervision. **Joyce Namulondo:** Formal analysis. **Oscar**
304 **Nyangiri:** Formal analysis. **Enock Matovu:** Conceptualization, Supervision. **Annette**
305 **MacLeod:** Conceptualization. **Janelisa Musaya:** Conceptualization, Writing - review &
306 editing, Methodology, Supervision, Formal analysis.

307

308 **Funding**

309 This study was funded through the Human Heredity and Health in Africa (H3Africa; Grant ID
310 H3A-18-004) from the Science for Africa Foundation. H3Africa is jointly supported by
311 Wellcome and the National Institutes of Health (NIH). The views expressed herein are those
312 of the author(s) and not necessarily of the funding agencies.

313 **Acknowledgement**

314 We would like to acknowledge Nkhotakota and Rumphi district health offices for their
315 assistance in sample collection.

316

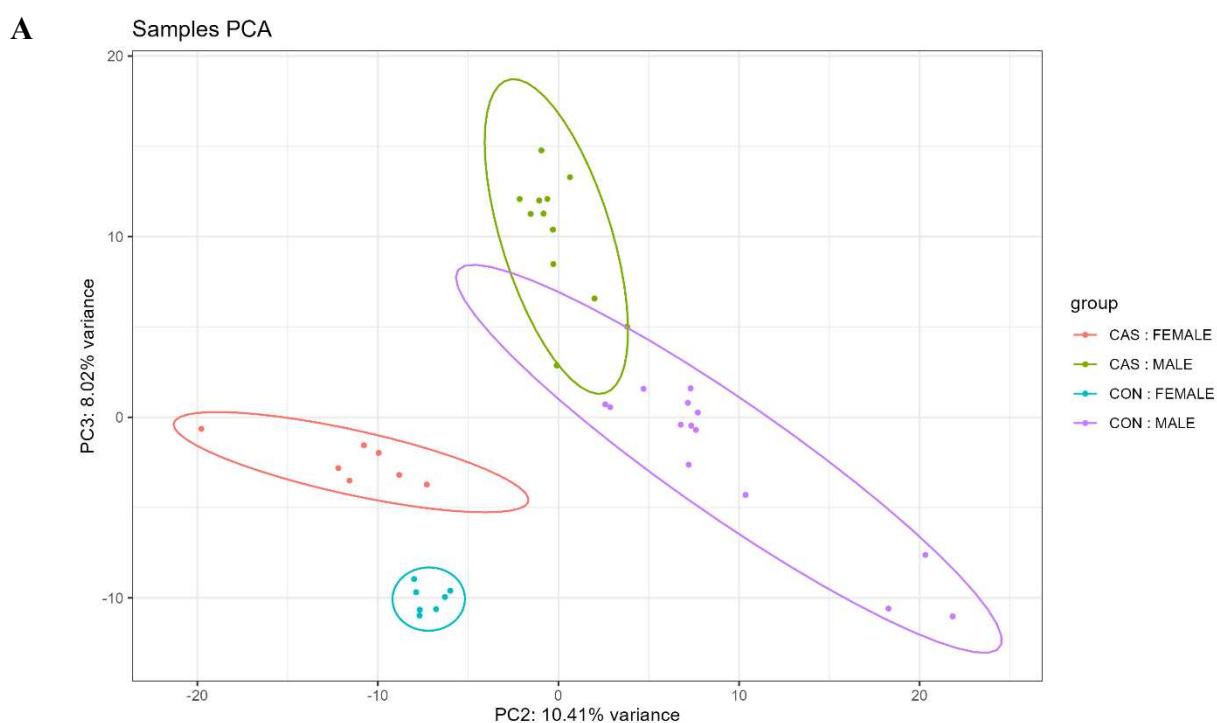
317

318

319

320

321


322

323

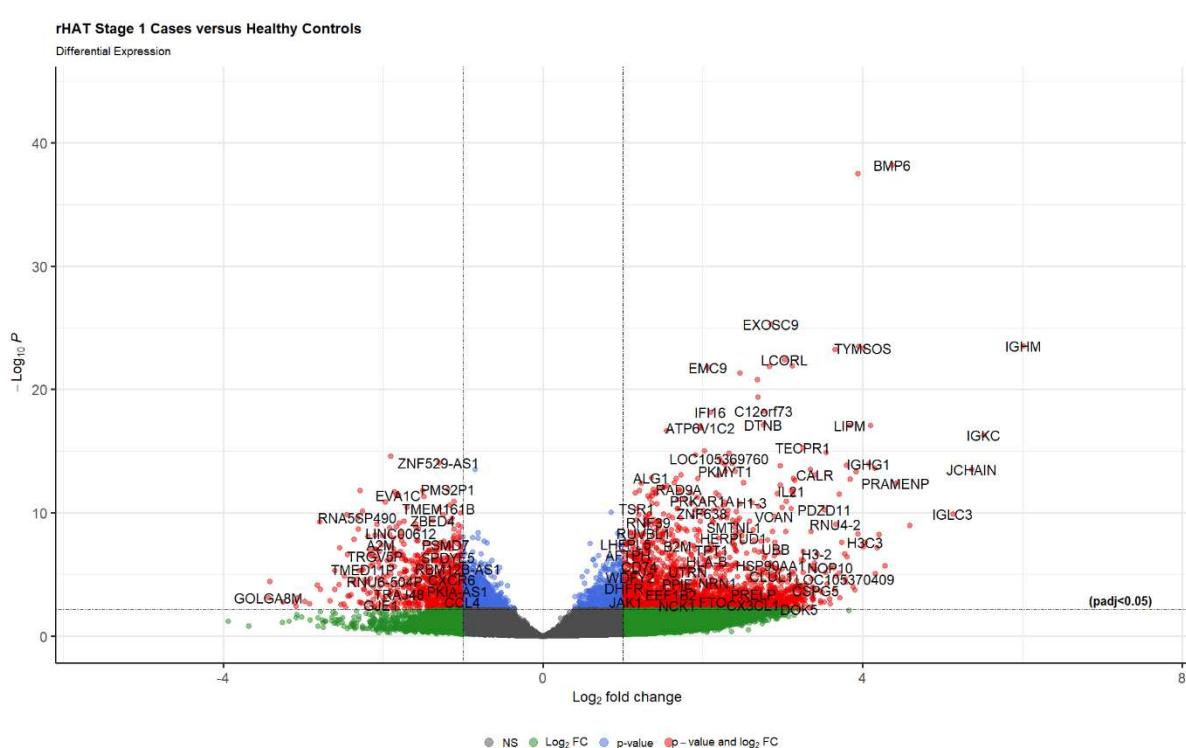
324

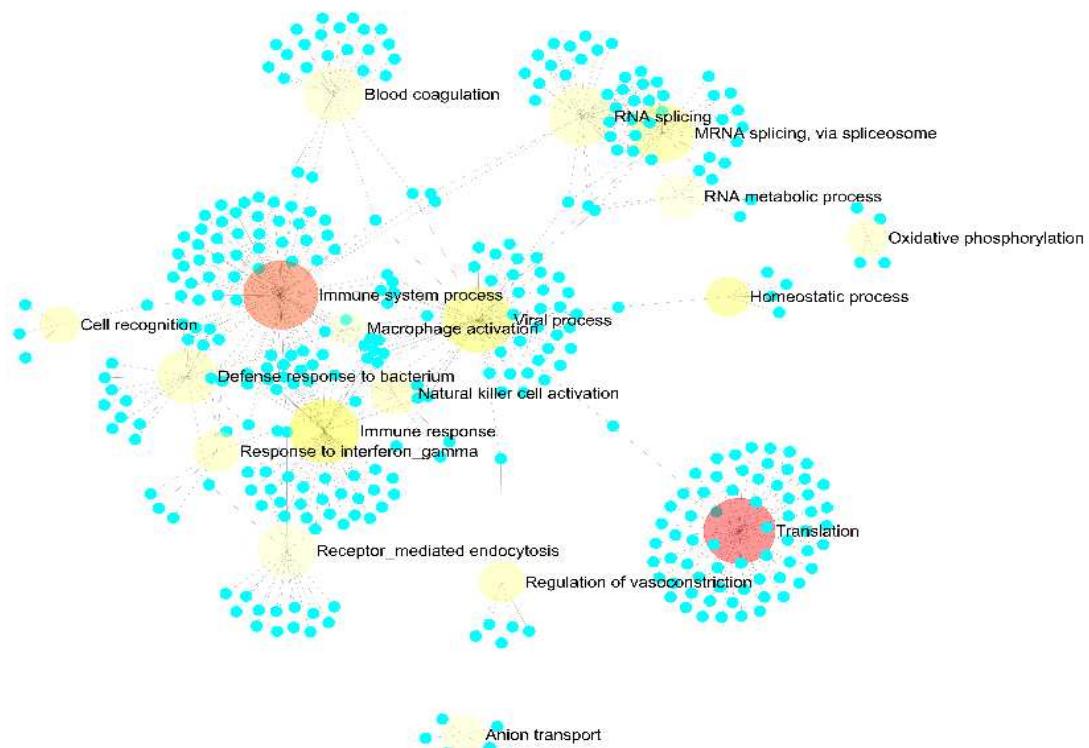
325

326 **Fig 1**

327

328

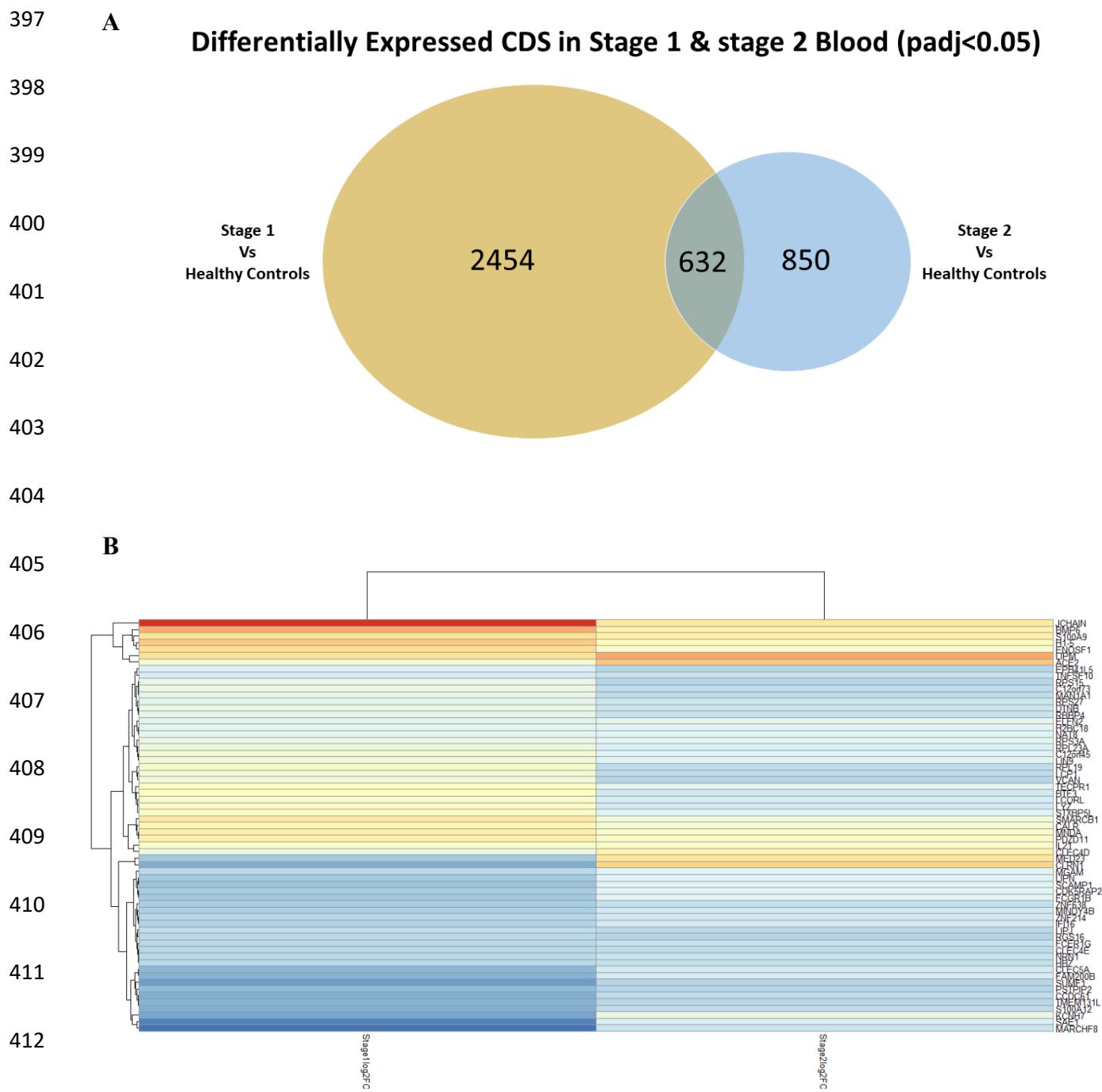

B


Fig 1 Stratification of Differentially Expressed genes (DEGs). **(A)** Principal component analysis (PCA) values for r-HAT cases vs healthy controls grouped into males and females. **(B)** 3D volcano plot showing distribution and relationship of DEGs in Stage 1, Stage 2 and Controls. Grey dots represent non-significant genes, dark blue dots are genes expressed in controls only, red dots are genes expressed in stage 1 only, green dots are genes expressed in stage 2 only, orange are genes expressed in both stage 1 and stage 2, purple dots are genes expressed in controls plus stage 1 and light blue dots are genes expressed in controls plus stage 2.

345 **Fig 2**

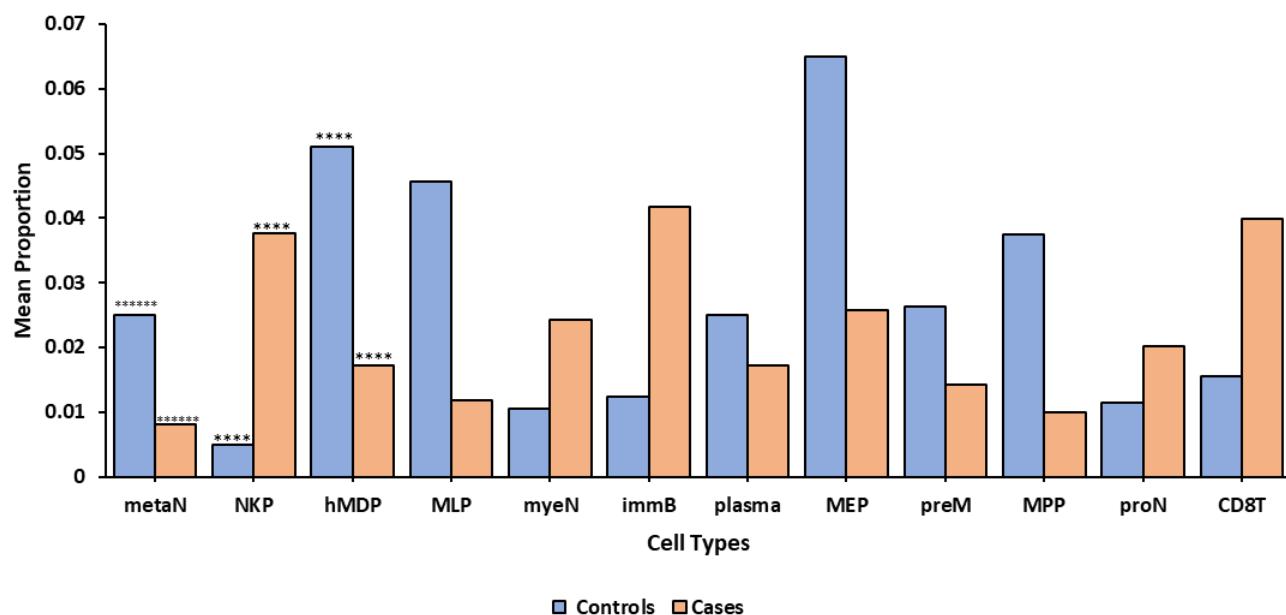
346 **A**

B

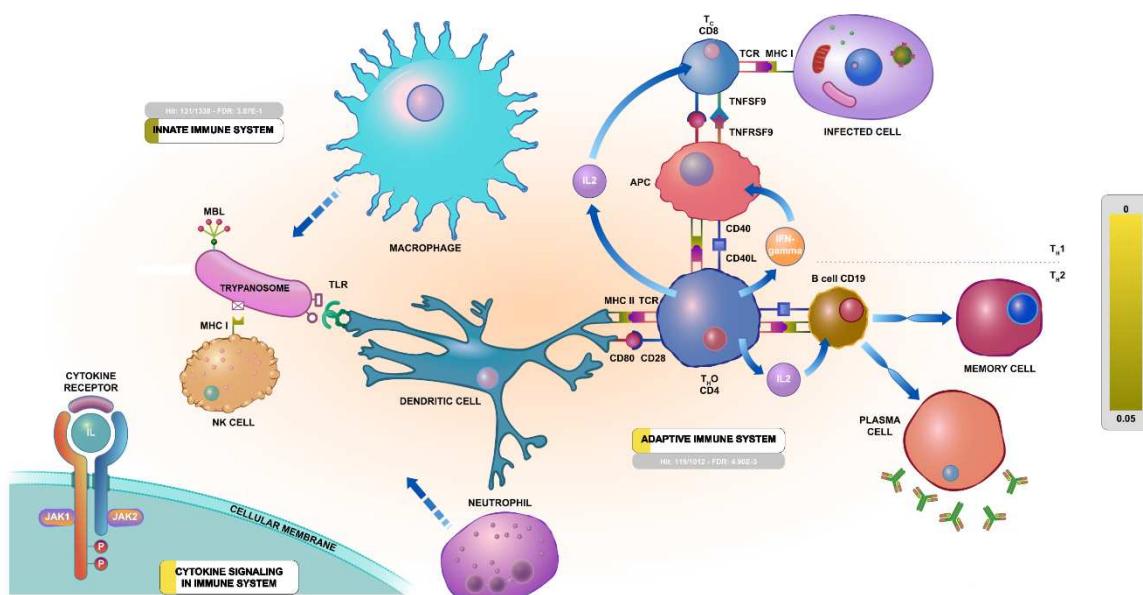

Fig 2 DEGs and network analysis in Stage 1 case. **(A)** Volcano plot showing genes that were significant (padj<0.05) DEG, upregulated ($\log_2\text{FC} > 1.0$) and downregulated ($\log_2\text{FC} < -1$). **(B)** ExpressAnalyst network graph of upregulated protein coding genes. The root of the nodes was color coded according to significance with light yellow representing less significant and red more significant. Translation and immune system process were the most enriched biological pathways in stage 2 blood.

370 **Fig 3**

390 **Fig 3** DEGs and network analysis in Stage 2 case versus healthy controls. **(A)** Volcano plot showing significant
 391 DEGs ($\text{padj} < 0.05$) that were upregulated ($\log_2 \text{FC} > 1.0$) and downregulated ($\log_2 \text{FC} < -1.0$). **(B)** ExpressAnalyst
 392 network graph of protein coding genes that were upregulated in stage 2 blood relative to controls. The root of
 393 the nodes was color coded according to significance with light yellow representing less significant and red
 394 more significant. Translation, immune system process and lipid metabolic process were the most enriched
 395 biological pathways in stage 2 blood.


396 **Fig 4**

420 **Fig 5**


421 **A**

422 **Mean proportions of Significantly (p<0.05, t-test) Expressed Blood Cell Types in r-HAT**

429 **Controls** **Cases**

430 **B**

449 **Fig 5** Immune system Blood cells activated in r-HAT. **(A)** Blood cell types that had significantly different
450 proportions in r-HAT cases and controls ($p<0.05$, t-test). See table S3 for full cell type names. $****p < 6E-04$,
451 $*****p < 7E-06$ **(B)** Visualized output of innate and adaptive immune system pathways interaction in r-HAT
452 cases based on DEGs loaded into Reactome pathway database (36). Yellow represents more significant and
453 darker yellow less significant. Macrophages, neutrophils and NK cells participate in innate immune response
454 which results in significant activation of cytokine signaling pathway (FDR: $2.94E-4$). Dendritic cells link innate
455 immune system and activation of adaptive immune system through activation of CD4+ TH cells. Activated CD4

456 cells release IL2 and IFN-gamma that activates CD8+ T cells and B cells to differentiate into plasma cells for
457 antibody production.

458 **Supplementary Tables**

459 **Table S1.** Summary on blood samples from r-HAT cases used for RNA
460 sequencing.

SAMPLE ID	HAT FOCUS	SEX	AGE	R-HAT STAGE	RNA (μG)
MN03TR	Nkhotakota	F	18	1	1.1
MN04TR	Nkhotakota	F	21	1	1.58
MN06TR	Nkhotakota	M	25	1	1.62
MN07TR	Nkhotakota	M	56	1	1.18
MN09TR	Nkhotakota	M	24	2	>2.0
MN010TR	Nkhotakota	F	10	1	1.54
MN011TR	Nkhotakota	F	21	2	>2.0
MN012TR	Nkhotakota	M	24	1	>2.0
MN013TR	Nkhotakota	F	6	1	>2.0
MN014TR	Nkhotakota	M	4	1	>2.0
MN019TR	Nkhotakota	M	56	1	>2.0
MN020TR	Nkhotakota	F	40	1	1.08
MN024T	Nkhotakota	M	28	2	8.8
MN030T	Nkhotakota	F	15	2	2.56
MN031T	Nkhotakota	M	17	1	2.56
MN034T	Nkhotakota	M	22	2	9.72
MR039TR	Rumphi	M	46	2	>2.0
MR041TR	Rumphi	M	26	2	1.72
MR044TR	Rumphi	M	32	1	1.64
MR102TR	Rumphi	M	24	2	3.04
MR036TR	Rumphi	M	60	2	>2.0
MR105TR	Rumphi	F	28	2	4.43
MR106TR	Rumphi	M	30	2	3.8

461

462

463

464

465

467 **Table S2:** PCA2GO Functional Annotation of Immune biological functions significantly enriched p<10E-10) in Stage 1 and stage 2 r-HAT cases. DEGs =
 468 Differentially expressed genes.

Gene Ontology	Immunological Function	Stage 1 DE	Stage 1 p-value of	Stage2 DE	Stage2 p-value
		Genes	DEGs	Genes	of DEGs
GO:0002252	Immune effector process	51/1256	1.40E-15	48/1210	7.57E-12
GO:0045321	leukocyte activation	50/1268	8.65E-15	50/1237	1.31E-12
GO:0001775	Cell activation	52/1422	4.68E-14	52/1387	7.47E-12
GO:0002443	Leukocyte mediated immunity	39/840	6.74E-14	36/810	1.92E-10
GO:0042119	Neutrophil activation	28/495	2.84E-12	28/491	8.99E-11
GO:0002274	Myeloid leukocyte activation	32/649	2.88E-12	32/643	1.27E-10
GO:0036230	Granulocyte activation	28/501	3.78E-12	28/497	1.19E-10
GO:0006955	Immune response	63/2204	4.28E-12	64/2103	1.62E-10
GO:0043312	Neutrophil degranulation	27/481	8.43E-12	28/477	4.61E-11
GO:0002283	Neutrophil activation involved in immune response	27/484	9.72E-12	28/480	5.31E-11
GO:0002446	Neutrophil mediated immunity	27/495	1.62E-11	28/490	8.58E-11
GO:0002444	Myeloid leukocyte mediated immunity	28/546	2.85E-11	28/541	8.11E-10
GO:0002366	Leukocyte activation involved in immune response	32/711	3.08E-11	33/698	2.42E-10
GO:0002263	Cell activation involved in immune response	32/715	3.55E-11	33/702	2.80E-10
GO:0043299	Leukocyte degranulation	27/531	7.91E-11	28/527	4.51E-10
GO:0002275	Myeloid cell activation involved in immune response	27/543	1.30E-10	28/539	7.47E-10
GO:0002376	Immune system process	74/3118	2.68E-10	77/3008	4.72E-9

469

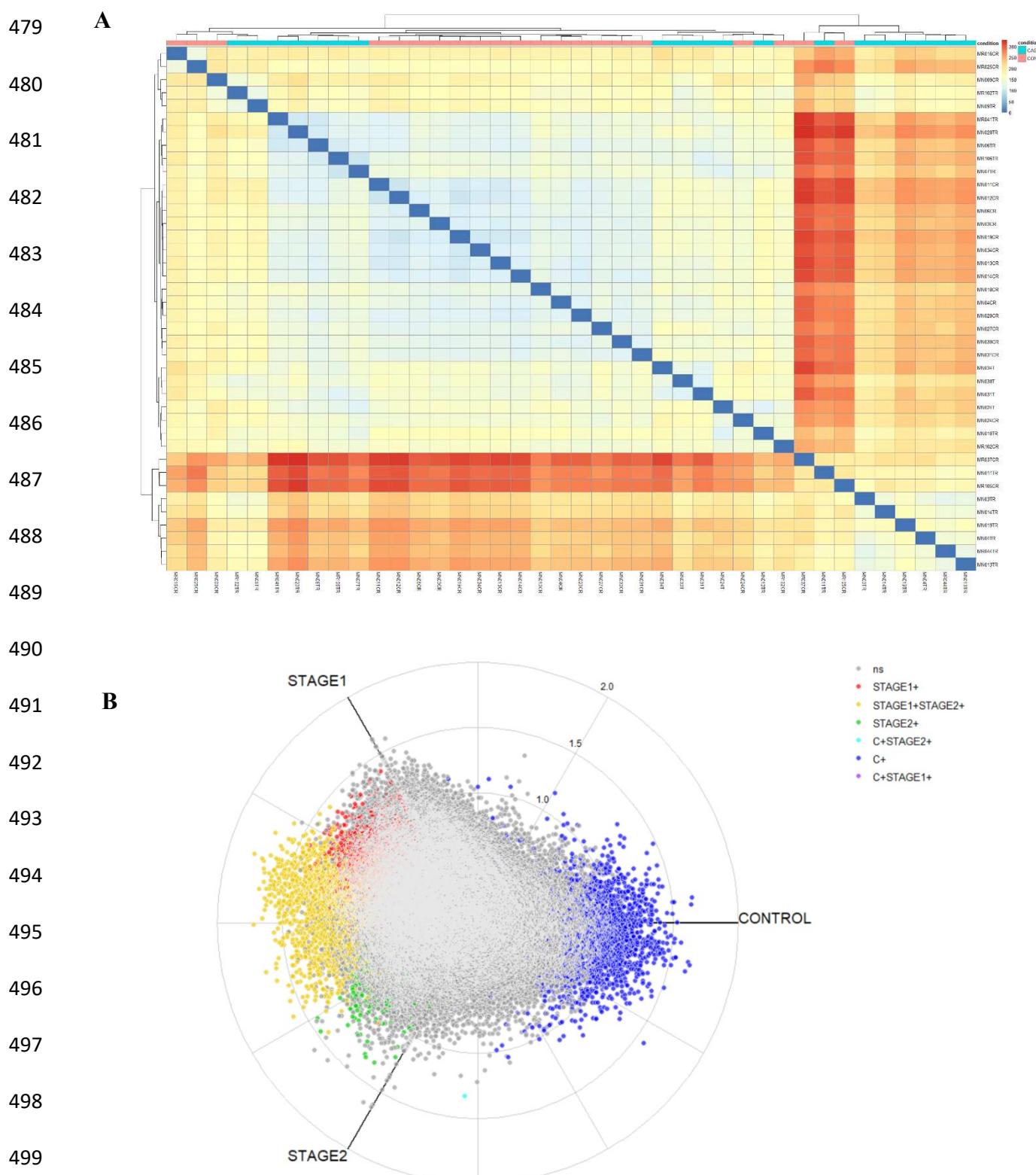
470 **Table S3:** Mean proportion by and p-values (t-test) of cell type for cases and controls.

Cell Type Abbreviation	Full Cell Type Name	Mean of Cases	Mean of Controls	Mean Difference	p-Value (t-test of CAS vs CON)
metaN	Meta-myelocyte	0.008144	0.024921	0.016776642	0.000007356
NKP	Natural killer progenitor	0.0376	0.005025	0.032574543	0.000608379
hMDP	Human monocyte-dendritic progenitor	0.017143	0.050956	0.033812759	0.000625394
MLP	Multi-lymphoid progenitor	0.01181	0.045602	0.033791638	0.001753953
myeN	Myelocyte	0.024252	0.010507	0.013745726	0.004156435
immB	Immature B lymphocyte	0.04164	0.012412	0.029227973	0.006327324
plasma	Plasma cells	0.017188	0.025015	0.007826678	0.010696056
MEP	Megakaryocyte–erythroid progenitor	0.025675	0.064903	0.039228534	0.011838218
preM	Pre-monocyte	0.014212	0.026374	0.012161921	0.013904749
MPP	Multi-potent progenitor	0.009874	0.037404	0.027530134	0.014930755
proN	Pro-myelocyte	0.02025	0.011471	0.008779258	0.029865929
CD8T	CD8 T-helper	0.039784	0.015558	0.024226424	0.031372518
regB	regulatory B cells	0.017841	0.046317	0.028475456	0.05464077
kineNK	Cytokine natural killer	0.019987	0.029325	0.009337392	0.056628973
matureN	Mature neutrophils	0.008926	0.003806	0.005120196	0.06528435
GMP	granulocyte/monocyte progenitor	0.011928	0.000471	0.011456411	0.070773567
CD4T	CD4 T-helper	0.047214	0.022466	0.02474757	0.076720819
CMP	Multipotent common myeloid progenitor	0.061713	0.027791	0.033921159	0.082486356
ery	Erythrocytes	0.277417	0.226845	0.050572677	0.105307824
preB	Precursor B lymphocyte	0.017942	0.032148	0.014205465	0.159322202
claM	Classical monocytes	0.018357	0.012335	0.006021536	0.215157411
nonM	Non-classical monocytes	0.020461	0.027314	0.006852195	0.224520598
toxiNK	Cytotoxic natural killer	0.004444	0.006744	0.002299807	0.238366919
interM	Intermediate monocyte	0.016918	0.010066	0.006852145	0.24649224
LMPP	Lympho-myeloid primed progenitor	0.04841	0.073465	0.025054531	0.339792864
memB	Memory B lymphocytes	0.030201	0.021041	0.009160112	0.404516409
HSC	Hematopoietic stem cells	0.01893	0.013814	0.005115975	0.490063317
cMOP	Common monocyte progenitor	0.016631	0.012838	0.003792378	0.495129766
CLP	Common lymphoid progenitor	0.011293	0.008161	0.003131858	0.584340877
proB	Progenitor B lymphocytes	0.020959	0.025184	0.00422504	0.584554591
naiB	Naïve B lymphocytes	0.039013	0.043473	0.004459464	0.686283191
BNK	Peripheral Blood natural killer	0.023842	0.02625	0.002408283	0.846255276

471

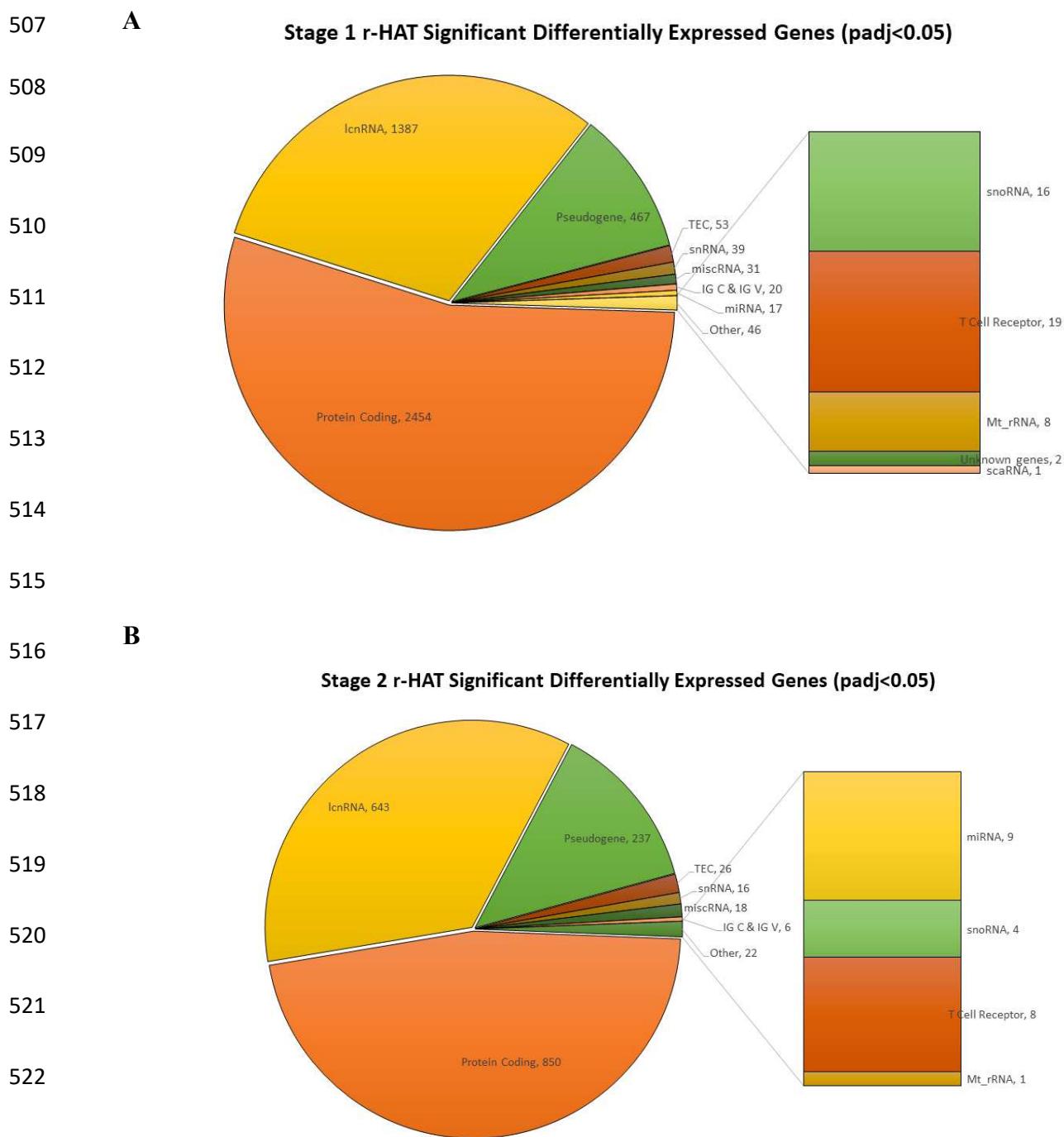
472

473


474

475

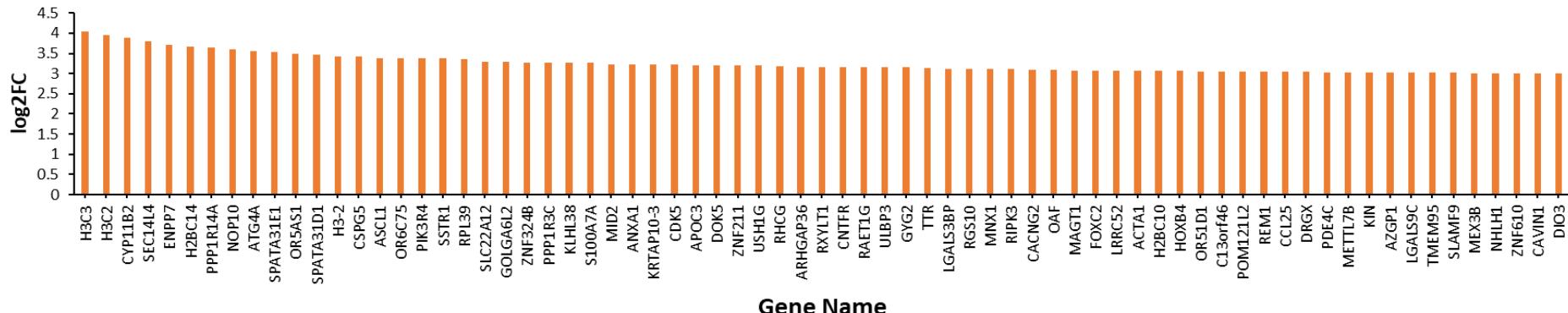
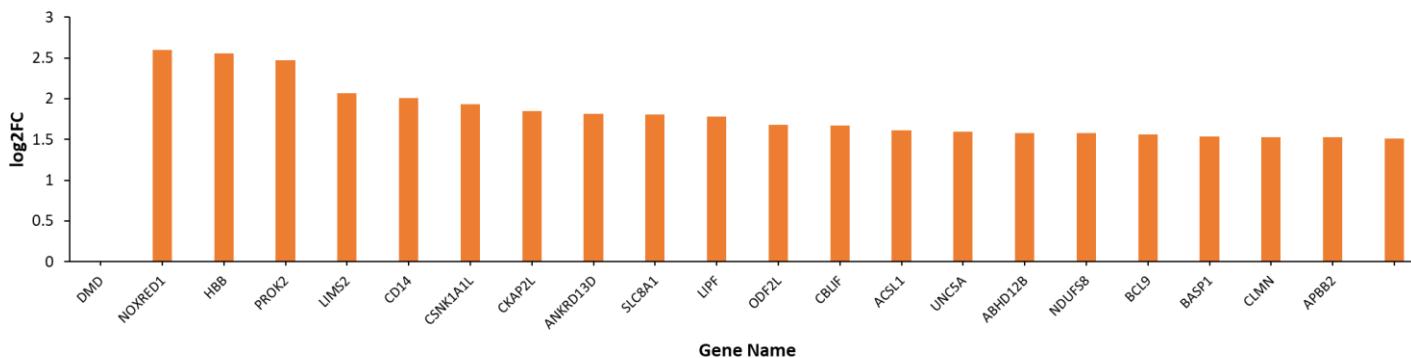
476


477 **Supplementary Figures**

478 **Fig S1**

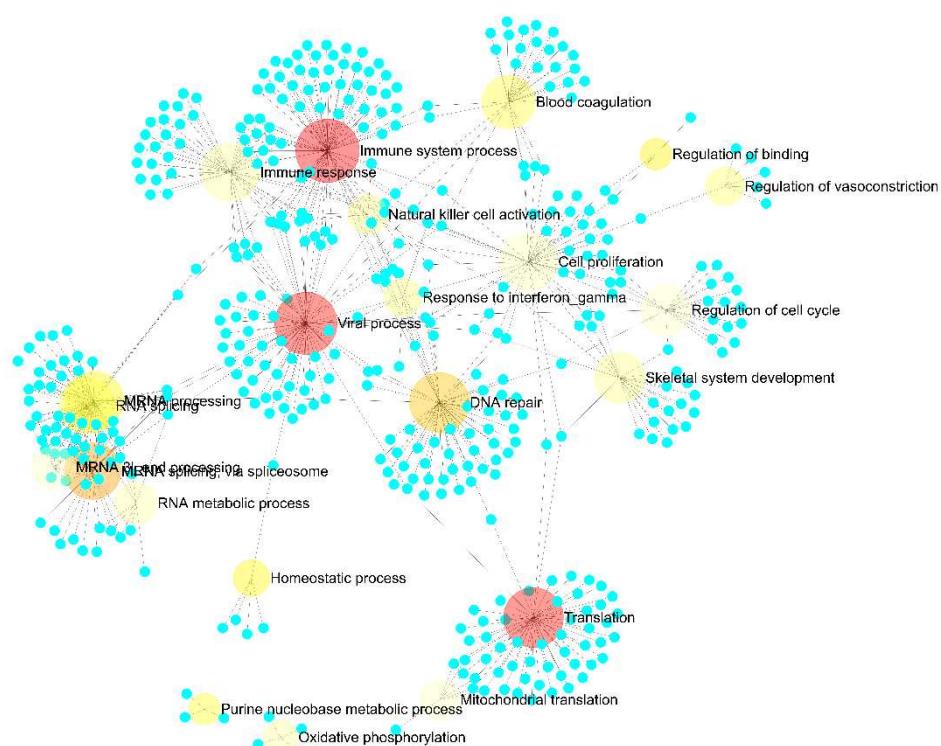
500 **Fig S1** Differential gene expression in r-HAT cases vs controls. **(A)** Sample to sample hierarchical clustering
501 heatmap with complete linkage of cases vs controls. **(B)** Radial plot of the distribution and interception of DEGs
502 in Stage1 and Stage 2 blood vs control blood. Grey color represents genes that were not significant; red
503 represents genes enriched in stage 1 only; green represents genes enriched in stage 2 only; blue represents
504 genes enriched in controls only; light blue genes in cases and control; pink represents genes enriched in both
505 stage1 and controls; and yellow represents genes enriched in both stage 1 and stage 2 blood

506 **Fig S 2**

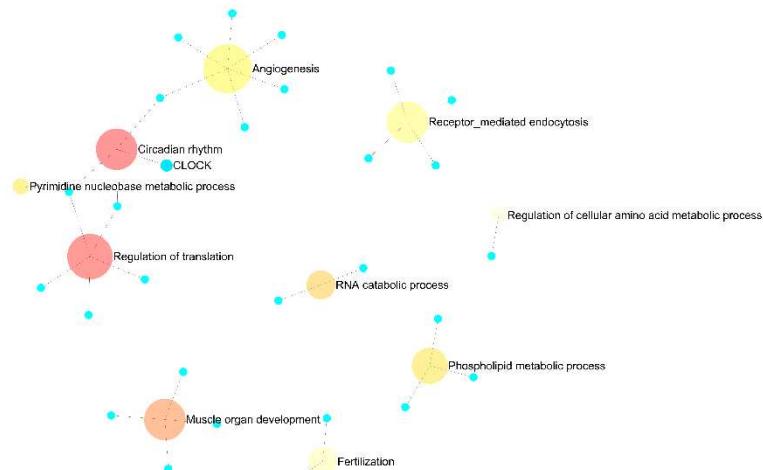


524 **Fig S2** Significant differentially expressed genes. Gene types that were significant differentially expressed in
525 Stage 1 (A) and Stage 2 (B) r-HAT. Protein coding genes were the most differential expressed followed by
526 lncRNA and pseudogenes in both stage 1 and 2 r-HAT.

527

528

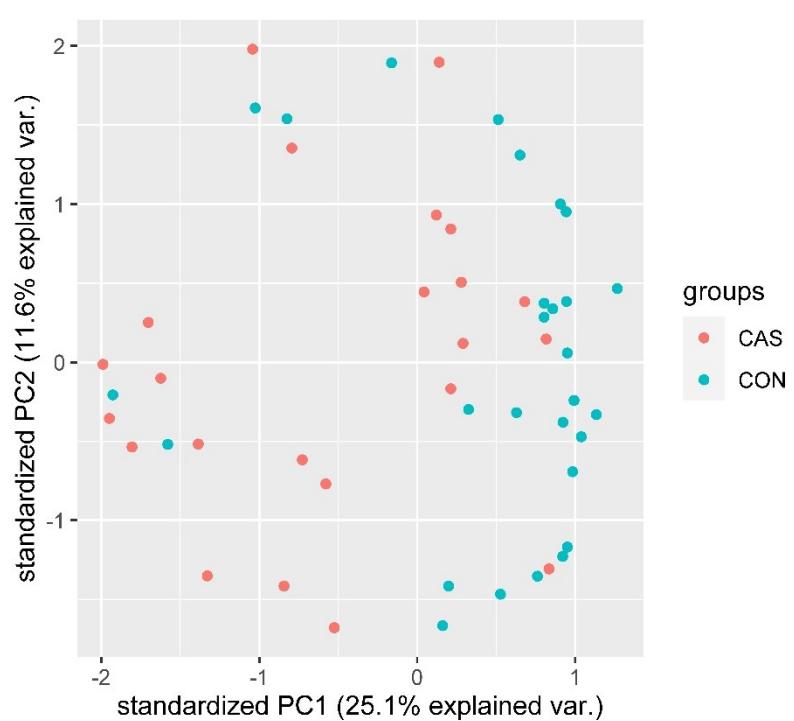

529

530

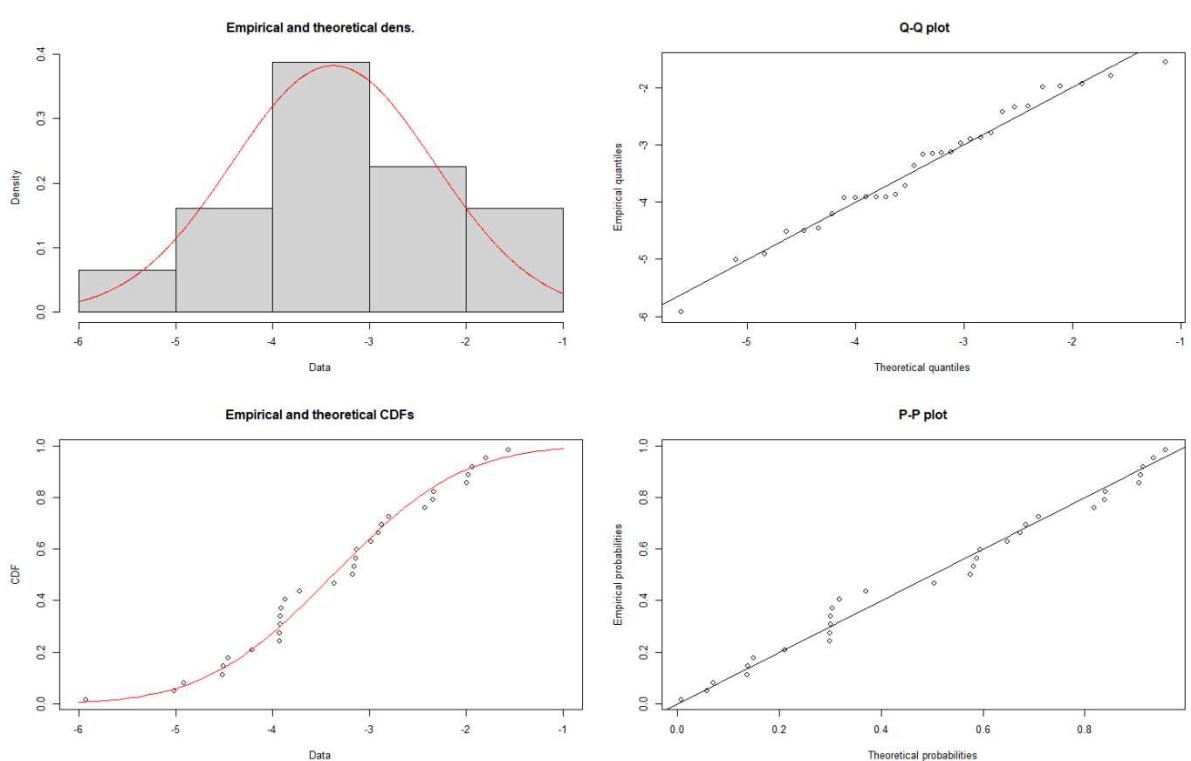

531 **Fig S3**532 **A****Gene Upregulated ($\log_{2}FC > 3$) in Stage1 r-HAT Only****B****Genes Upregulated ($\log_{2}FC > 1.5$ in Stage 2 r-HAT only)****Fig S3** List of genes specifically upregulated in blood of stage 1 ($\log_{2}FC > 3.0$) only (A), and (B) in stage 2 (B, $\log_{2}FC > 1.5$) only.

546 **Fig S4**

547 **A**

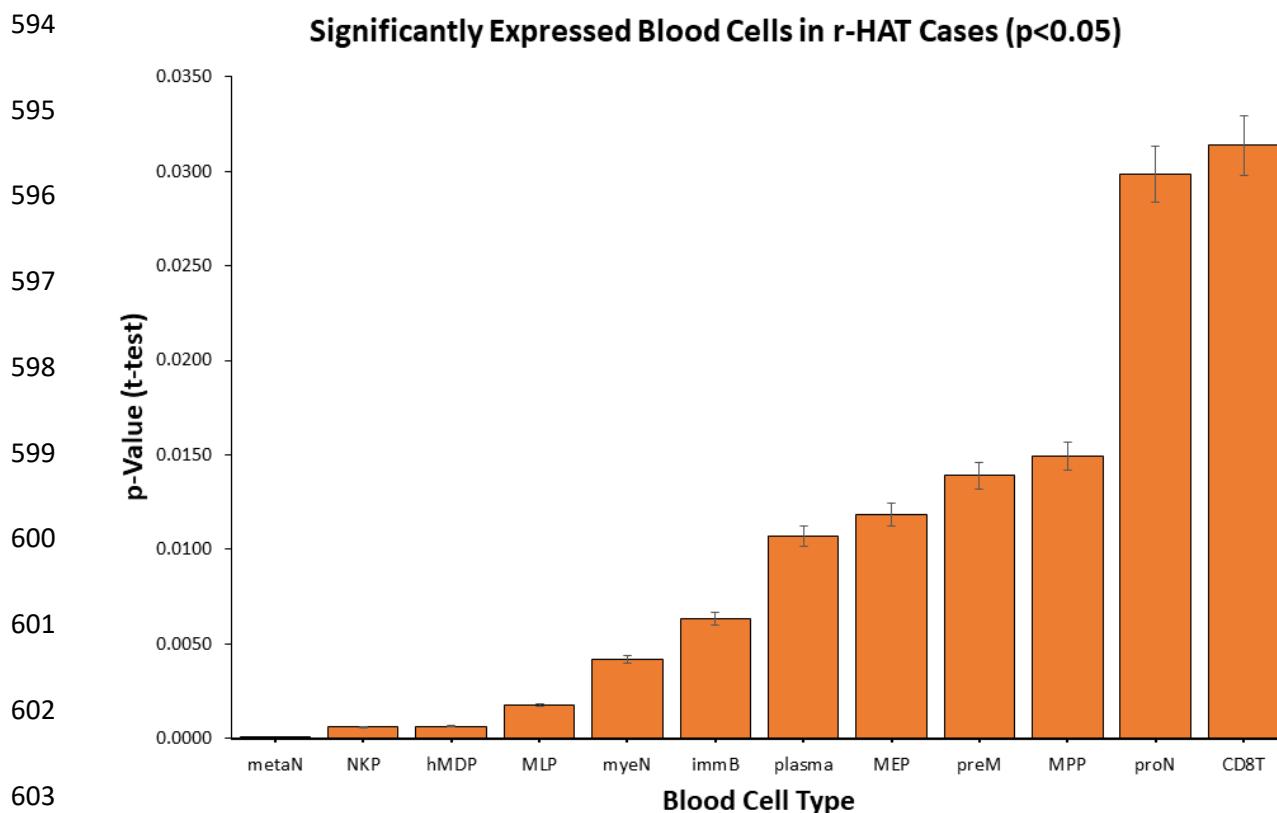

B

564 **Fig S4** Biological pathways enriched in genes DE in Stage 1 blood only **(A)** and in Stage 2 blood only **(B)**. Images generated by ExpressAnalyst.


569 **Fig S5**

570 **A**

578


579 **B**

589

590 **Fig S5** Stratification of single blood cells in cases versus controls. **(A)** 1st and 2nd principal components of the
591 proportions of different cell types by phenotype. The cases and controls are separated along PC1. **(B)** Plots
592 showing normal distribution of the transformed bulk RNA-Seq data into blood single cell RNA-seq data.

593 **Fig S6**

604 **Fig S6** Blood cell types that had significantly different proportions in r-HAT cases and controls (p<0.05, t-test).
605 See table S3 for full cell type names.

606

607

608

609

610

611

612

613

614

615 References

- 616 1. Buscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. *Lancet*
617 (London, England). 2017;390(10110):2397-409.
- 618 2. Kennedy PG. Clinical features, diagnosis, and treatment of human African trypanosomiasis
619 (sleeping sickness). *The Lancet Neurology*. 2013;12(2):186-94.
- 620 3. Leak SGA. Tsetse biology and ecology: their role in the epidemiology and control of
621 trypanosomiasis. Wallingford: CAB International, in association with the International Livestock
622 Research Institute, Nairobi, Kenya; 1998. xxiii + 568 pp. p.
- 623 4. Bentivoglio M, Bertini G. Alive and Ticking: *Trypanosoma brucei* Assaults the Circadian Clocks.
624 *Trends in parasitology*. 2018;34(4):265-7.
- 625 5. Bukachi SA, Wandibba S, Nyamongo IK. The treatment pathways followed by cases of human
626 African trypanosomiasis in western Kenya and eastern Uganda. *Ann Trop Med Parasitol*.
627 2009;103(3):211-20.
- 628 6. Cattand P, de Raadt P. Laboratory diagnosis of trypanosomiasis. *Clinics in laboratory medicine*.
629 1991;11(4):899-908.
- 630 7. Chappuis F, Loutan L, Simarro P, Lejon V, Buscher P. Options for field diagnosis of human
631 african trypanosomiasis. *Clinical microbiology reviews*. 2005;18(1):133-46.
- 632 8. MacLean L, Chisi JE, Odiit M, Gibson WC, Ferris V, Picozzi K, et al. Severity of human african
633 trypanosomiasis in East Africa is associated with geographic location, parasite genotype, and host
634 inflammatory cytokine response profile. *Infection and immunity*. 2004;72(12):7040-4.
- 635 9. MacLean LM, Odiit M, Chisi JE, Kennedy PG, Sternberg JM. Focus-specific clinical profiles in
636 human African Trypanosomiasis caused by *Trypanosoma brucei* rhodesiense. *PLoS neglected tropical*
637 *diseases*. 2010;4(12):e906.
- 638 10. Nambala P, Mulindwa J, Chammudzi P, Senga E, Lemelani M, Zgambo D, et al. Persistently
639 High Incidences of *Trypanosoma brucei* rhodesiense Sleeping Sickness With Contrasting Focus-
640 Dependent Clinical Phenotypes in Malawi. *Front Trop Dis*. 2022;3:824484.
- 641 11. Chisi J, Nkhoma A, Sternberg J. Presentation of trypanosomiasis in nkhotakota. Malawi
642 medical journal : the journal of Medical Association of Malawi. 2007;19(4):140-1.
- 643 12. Kamoto K, Chiwaya A, Nambala P, Chammudzi P, Senga E, Chisi J, et al. Plasma cytokines
644 quantification among *Trypanosoma brucei* rhodesiense sleeping sickness cases and controls in
645 Rumphi, Malawi. Malawi medical journal : the journal of Medical Association of Malawi.
646 2021;33(4):230-5.
- 647 13. Mulindwa J, Matovu E, Enyaru J, Clayton C. Blood signatures for second stage human African
648 trypanosomiasis: a transcriptomic approach. *BMC medical genomics*. 2020;13(1):14.
- 649 14. Mulindwa J, Noyes H, Ilboudo H, Pagani L, Nyangiri O, Kimuda MP, et al. High Levels of Genetic
650 Diversity within Nilo-Saharan Populations: Implications for Human Adaptation. *Am J Hum Genet*.
651 2020;107(3):473-86.
- 652 15. Kamoto K, Noyes H, Nambala P, Senga E, Musaya-Mwalija J, Kumwenda B, et al. Association
653 of APOL1 renal disease risk alleles with *Trypanosoma brucei* rhodesiense infection outcomes in the
654 northern part of Malawi. *PLoS neglected tropical diseases*. 2019;13(8):e0007603.
- 655 16. Kimuda MP, Noyes H, Mulindwa J, Enyaru J, Alibu VP, Sidibe I, et al. No evidence for association
656 between APOL1 kidney disease risk alleles and Human African Trypanosomiasis in two Ugandan
657 populations. *PLoS neglected tropical diseases*. 2018;12(2):e0006300.
- 658 17. Cooper A, Ilboudo H, Alibu VP, Ravel S, Enyaru J, Weir W, et al. APOL1 renal risk variants have
659 contrasting resistance and susceptibility associations with African trypanosomiasis. *eLife*. 2017;6.
- 660 18. Marini F, Binder H. *pcaExplorer*: an R/Bioconductor package for interacting with RNA-seq
661 principal components. *BMC Bioinformatics*. 2019;20(1):331.
- 662 19. Ye F, Xu H, Yin H, Zhao X, Li D, Zhu Q, et al. The role of BMP6 in the proliferation and
663 differentiation of chicken cartilage cells. *PloS one*. 2019;14(7):e0204384.

- 664 20. Braber S, Thio M, Blokhuis BR, Henricks PA, Koelink PJ, Groot Kormelink T, et al. An association
665 between neutrophils and immunoglobulin free light chains in the pathogenesis of chronic obstructive
666 pulmonary disease. *Am J Respir Crit Care Med.* 2012;185(8):817-24.
- 667 21. Schroeder HW, Jr., Cavacini L. Structure and function of immunoglobulins. *J Allergy Clin
668 Immunol.* 2010;125(2 Suppl 2):S41-52.
- 669 22. Rijo-Ferreira F, Bjorness TE, Cox KH, Sonneborn A, Greene RW, Takahashi JS. Sleeping Sickness
670 Disrupts the Sleep-Regulating Adenosine System. *J Neurosci.* 2020;40(48):9306-16.
- 671 23. Rijo-Ferreira F, Carvalho T, Afonso C, Sanches-Vaz M, Costa RM, Figueiredo LM, et al. Sleeping
672 sickness is a circadian disorder. *Nature communications.* 2018;9(1):62.
- 673 24. Rijo-Ferreira F, Takahashi JS. Sleeping Sickness: A Tale of Two Clocks. *Front Cell Infect
674 Microbiol.* 2020;10:525097.
- 675 25. Bruckskotten M, Looso M, Cemic F, Konzer A, Hemberger J, Kruger M, et al. PCA2GO: a new
676 multivariate statistics based method to identify highly expressed GO-Terms. *BMC Bioinformatics.*
677 2010;11:336.
- 678 26. Alfituri OA, Quintana JF, MacLeod A, Garside P, Benson RA, Brewer JM, et al. To the Skin and
679 Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host.
680 *Frontiers in immunology.* 2020;11:1250.
- 681 27. Caljon G, Mabille D, Stijlemans B, De Trez C, Mazzone M, Tacchini-Cottier F, et al. Neutrophils
682 enhance early *Trypanosoma brucei* infection onset. *Scientific reports.* 2018;8(1):11203.
- 683 28. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics
684 platform for comprehensive gene expression profiling and meta-analysis. *Nucleic Acids Res.*
685 2019;47(W1):W234-W41.
- 686 29. Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, et al. PANTHER version 16:
687 a revised family classification, tree-based classification tool, enhancer regions and extensive API.
688 *Nucleic Acids Res.* 2021;49(D1):D394-D403.
- 689 30. Levi M, van der Poll T. Inflammation and coagulation. *Crit Care Med.* 2010;38(2 Suppl):S26-34.
- 690 31. Oo JA, Irmer B, Gunther S, Warwick T, Palfi K, Izquierdo Ponce J, et al. ZNF354C is a
691 transcriptional repressor that inhibits endothelial angiogenic sprouting. *Scientific reports.*
692 2020;10(1):19079.
- 693 32. Akkouh IA, Ueland T, Andreassen OA, Brattbakk HR, Steen VM, Hughes T, et al. Expression of
694 TCN1 in Blood is Negatively Associated with Verbal Declarative Memory Performance. *Scientific reports.*
695 2018;8(1):12654.
- 696 33. Cao A, Galanello R. Beta-thalassemia. *Genet Med.* 2010;12(2):61-76.
- 697 34. Xie X, Liu M, Zhang Y, Wang B, Zhu C, Wang C, et al. Single-cell transcriptomic landscape of
698 human blood cells. *National science review.* 2021;8(3):nwaa180.
- 699 35. King TC. Inflammation, Inflammatory Mediators, and Immune-Mediated Disease. Elsevier's
700 Integrated Pathology2007. p. Pages 21-57.
- 701 36. Sidiropoulos K, Viteri G, Sevilla C, Jupe S, Webber M, Orlic-Milacic M, et al. Reactome
702 enhanced pathway visualization. *Bioinformatics.* 2017;33(21):3461-7.
- 703 37. Noyes H, Brass A, Obara I, Anderson S, Archibald AL, Bradley DG, et al. Genetic and expression
704 analysis of cattle identifies candidate genes in pathways responding to *Trypanosoma congolense*
705 infection. *Proceedings of the National Academy of Sciences of the United States of America.*
706 2011;108(22):9304-9.
- 707 38. de Macedo LH, Souza COS, Gardinassi LG, Faccioli LH. CD14 regulates the metabolomic profiles
708 of distinct macrophage subsets under steady and activated states. *Immunobiology.*
709 2022;227(2):152191.
- 710 39. Capewell P, Cren-Travaille C, Marchesi F, Johnston P, Clucas C, Benson RA, et al. The skin is a
711 significant but overlooked anatomical reservoir for vector-borne African trypanosomes. *eLife.* 2016;5.
- 712 40. Machado H, Bizarra-Rebelo T, Costa-Sequeira M, Trindade S, Carvalho T, Rijo-Ferreira F, et al.
713 *Trypanosoma brucei* triggers a broad immune response in the adipose tissue. *PLoS pathogens.*
714 2021;17(9):e1009933.

- 715 41. Kennedy PG. Diagnostic and neuropathogenesis issues in human African trypanosomiasis.
716 International journal for parasitology. 2006;36(5):505-12.
- 717 42. Kennedy PG. Human African trypanosomiasis of the CNS: current issues and challenges. The
718 Journal of clinical investigation. 2004;113(4):496-504.
- 719 43. Mulindwa J, Leiss K, Clayton C. High-Throughput Sequencing for Trypanosome Transcriptome
720 Characterization. Methods in molecular biology (Clifton, NJ). 2020;2116:83-98.
- 721 44. Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, et al. Ensembl 2021.
722 Nucleic Acids Res. 2021;49(D1):D884-d91.
- 723 45. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and
724 genotyping with HISAT2 and HISAT-genotype. Nature biotechnology. 2019;37(8):907-15.
- 725 46. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
726 seq data with DESeq2. Genome biology. 2014;15(12):550.
- 727 47. Jew B, Alvarez M, Rahmani E, Miao Z, Ko A, Garske KM, et al. Accurate estimation of cell
728 composition in bulk expression through robust integration of single-cell information. Nature
729 communications. 2020;11(1):1971.
- 730 48. Fang H, Knezevic B, Burnham KL, Knight JC. XGR software for enhanced interpretation of
731 genomic summary data, illustrated by application to immunological traits. Genome medicine.
732 2016;8(1):129.
- 733 49. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, et al. InnateDB: systems biology
734 of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res.
735 2013;41(Database issue):D1228-33.

736

737