

1 TITLE: Whole genome sequencing reveals fine-scale climate associated adaptive divergence near the
2 range limits of a temperate reef fish.

3

4 Cameron M. Nugent^{*1}, Tony Kess¹, Matthew K. Brachmann¹, Barbara L. Langille¹, Steven J. Duffy¹,
5 Sarah J. Lehnert¹, Brendan F. Wringe², Paul Bentzen³, Ian R. Bradbury¹

6 *Corresponding author: Cameron.Nugent@dfo-mpo.gc.ca

7 ¹ Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, Newfoundland, Canada

8 ² Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

9 ³ Dalhousie University, Department of Biology, Halifax, Nova Scotia, Canada

10

11 RUNNING TITLE: Climate associated adaptation in cunner

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 **ABSTRACT**

27 Adaptation to ocean climate is increasingly recognized as an important driver of diversity in marine species
28 despite the lack of physical barriers to dispersal and the presence of pelagic stages in many taxa. A robust
29 understanding of the genomic and ecological processes involved in structuring populations is lacking for
30 most marine species, often hindering management and conservation action. Cunner (*Tautogolabrus*
31 *adspersus*), is a temperate reef fish that displays both pelagic early life history stages and strong site-
32 associated homing as adults; the species is also presently of interest for use as a cleaner fish in salmonid
33 aquaculture in Atlantic Canada. Here we produce a chromosome-level genome assembly for cunner and
34 characterize spatial population structure throughout Atlantic Canada using whole genome resequencing.
35 The genome assembly spanned 0.72 Gbp and resolved 24 chromosomes; whole genome resequencing of
36 803 individuals from 20 locations spanning from Newfoundland to New Jersey identified approximately
37 11 million genetic variants. Principal component analysis revealed four distinct regional groups in Atlantic
38 Canada, including three near the range edge in Newfoundland. Pairwise F_{ST} and selection scans revealed
39 consistent signals of differentiation and selection at discrete genomic regions including adjacent peaks on
40 chromosome 10 recurring across multiple pairwise comparisons (*i.e.*, F_{ST} 0.5-0.75). Redundancy analysis
41 suggested significant association of environmental variables related to benthic temperature and oxygen
42 range with genomic structure, again highlighting the previously identified region on chromosome 10. Our
43 results suggest that climate associated adaptation in this temperate reef fish drives regional diversity despite
44 high early life history dispersal potential.

45

46 INTRODUCTION

47 Genetic structuring of marine populations and adaptive differentiation has been shown to evolve despite
48 high dispersal potential as a result of the interplay of environment, life history, and other factors influencing
49 survival. Many marine taxa have life histories that feature pelagic egg and/or larval stages, enabling current-
50 mediated dispersal across large distances which is thought to contribute to the low levels of genetic
51 structuring often observed in marine fish (Levin 1996; Waples 1998; Juanes 2007; Knutsen *et al.* 2022).
52 However, low levels of genetic structuring are not universal in marine species (Schmidt *et al.* 2008) and
53 environmental gradients have been repeatedly associated with regional genetic structure, suggesting that
54 adaptive evolutionary change can occur in response to local environmental differences (De Faveri *et al.*
55 2013; Duranton *et al.* 2018; Jahnke *et al.* 2018; Stanley *et al.* 2018; Knutsen *et al.* 2022; Pratt *et al.* 2022).
56 This is especially true in harsh environments such as range edges, where an individual's ability to tolerate
57 harsh conditions is essential to survival (Schmidt *et al.* 2008; Blank *et al.* 2013; Sylvester *et al.* 2018).
58 Ultimately, understanding the distribution of adaptive diversity in marine species is essential to successful
59 management and conservation of marine resources particularly those threatened by anthropogenic impacts
60 including exploitation and climate change.

61 Population genomics-based examinations of diversity in marine species are revealing the
62 geographic and genomic distribution of differentiation and potential adaptive diversity. Studies using large
63 SNP panels (Sylvester *et al.* 2018; Watson *et al.* 2021), reduced representation sequencing (Pratt *et al.*
64 2022; Sønstebo *et al.* 2022), and whole genome resequencing approaches (Han *et al.* 2020; Knutsen *et al.*
65 2022) have with increasing levels of detail revealed significant climate or environmental associations that
66 localize to discrete genomic regions. For example, recent work combining pooled whole genome
67 sequencing and double-digest sequencing methods, characterized the spatial genetic structure of broad-
68 nosed pipefish (*Syngnathus typhle*). Additionally, comparison to other species with different life-history
69 characteristics demonstrated the roles of fragmented habitat and an absence of a pelagic larval stage in
70 promoting genetic structure (Knutsen *et al.* 2022). Another recent study of two related redfish species
71 (*Sebastes mentella* and *Sebastes fasciatus*) utilized SNPs identified through reduced representation
72 sequencing to assess population genomic structure and reveal its association with spatial distribution
73 (Benestan *et al.* 2021). Research has shown that key regions of the genome harbouring putative adaptive
74 diversity are often influenced by the interplay of genomic structural variation, environment associated
75 selection, recombination, and drift (Moore *et al.* 2014; Sylvester *et al.* 2018; Han *et al.* 2020; Tigano *et al.*
76 2021; Watson *et al.* 2021; Knutsen *et al.* 2022; Pratt *et al.* 2022). Improving clarity of these potential
77 genomic islands of adaptive diversity using high resolution genome sequencing methods can directly inform
78 efforts to manage exploited marine species and help conserve at risk populations (Funk *et al.* 2012).

79 Cunner (*Tautogolabrus adspersus*) are a species of Labridae whose range covers a wide gradient of
80 ecological variation from Chesapeake Bay, USA to the northern edge of Newfoundland, Canada (Moran
81 *et al.* 2019). Like other temperate wrasses, cunner are physiologically adapted to survive at colder
82 temperatures, annually entering a prolonged state of physiological torpor when water temperatures fall
83 below 5°C, which in the northern portion of its range may last 6 months (Bradbury *et al.* 1995; Moran *et*
84 *al.* 2019). Cunner display pelagic egg and larval stages, both of which occur during summer months in
85 Atlantic Canada (Bradbury *et al.* 2003). Adults have been shown to occupy small ranges and accurately
86 home following displacement (Green 1975). As such, there is potential for dispersal in this species, but
87 the genetic structure of cunner has not been characterized in Atlantic Canada. Cunner are presently being
88 considered as a candidate species for use as a cleaner fish within Atlantic salmon net pen aquaculture in
89 Atlantic Canada (Kelly Cove Salmon Ltd. 2012; Chen 2020) where sea lice continue to hamper industry
90 production and growth. However, cunner escapees from net pens could influence the fitness and
91 demography of wild populations (*i.e.* Faust *et al.* 2018; Faust *et al.* 2020) and recent evidence suggests
92 escaped cleaner fish can interbreed with wild conspecifics (*e.g.* Wringe *et al.* 2018). Understanding the
93 potential ecological and genetic impacts of cunner aquaculture escapees on wild populations is an
94 important component to consider as the use of the species in salmon aquaculture production is further
95 developed (Naylor *et al.* 2005; Karlsson *et al.* 2016; Blanco Gonzalez & de Boer 2017).

96 Our main objective was to use whole genome re-sequencing (WGS) to evaluate the geographic and
97 genomic scale of differentiation for cunner in the Northwest Atlantic. The specific goals were to: 1)
98 develop genomic resources for cunner through the creation and quality assessment of the first
99 chromosome-level genome assembly in this species; 2) use this reference genome in conjunction with
100 individual WGS data to explore population level differentiation present in the Northwest Atlantic and its
101 distribution both in space and across the genome; 3) and finally explore the potential drivers of
102 differentiation in this species using environmental association analysis. This research extends previous
103 work quantifying genomic-environmental associations in other marine taxa in the region (Stanley *et al.*
104 2018; Layton *et al.* 2021; Kess *et al.* 2021; Watson *et al.* 2022) and provides one of the first whole
105 genome evaluations of climate associated adaptation in a marine species within Atlantic Canada. The goal
106 was to characterize genomic diversity and population structure across the sampled range and thereby
107 understand the evolutionary history of the species at the northern extreme of their range. Through the
108 wide sampling range and fine scale resolution provided by the WGS methods employed, we aimed to
109 understand the forces shaping genomic diversity in cunner, a marine species with high egg and larval
110 dispersal potential as well as local site fidelity as adults.

111

112 **MATERIALS AND METHODS**

113 ***Sample and tissue collection***

114 Between July 8th and October 19th, 2019, sampling was conducted at 19 locations throughout Atlantic
115 Canada (Table 1; Figure 1) using a combination of angling and traps, with a maximum of 100 individuals
116 collected per location. In total, 1379 fin clip samples were obtained from the sampling locations and a
117 representative subset were selected for DNA extraction and sequencing. An additional 54 individuals
118 from Tuckerton, New Jersey (obtained from pelagic larvae collections in 2012) were included in the set of
119 sequenced samples.

120 ***Reference genome assembly and quality assessment***

121 ***Genome sequencing and assembly***

122 Muscle tissue from a single male adult cunner collected from Alderney Landing in Dartmouth, Nova
123 Scotia, Canada on August 12, 2019, was used for high-quality reference assembly generation as part of
124 the Vertebrate Genome Project (VGP). Library preparation, sequencing, and assembly were performed
125 following the VGP standard assembly pipeline version 1.6 (see Rhee *et al.* 2021 for assembly methods
126 and software details). Sequence information for the reference individual was generated through a
127 combination of PacBio long reads (103.8x coverage), 10x Genomics Illumina reads (88.9x), BioNano
128 optical maps (744.5x), and Arima Hi- C Illumina read pairs (64.9x) and then assembled through the VGP
129 pipeline which is composed of an initial assembly step, followed by scaffolding and final polishing (Rhee
130 *et al.* 2021).

131 ***Genome quality assessment***

132 To assess the completeness and quality of the assembled genome, a Benchmarking Universal Single Copy
133 Orthologs (BUSCO, version 5.2.2.) analysis was conducted. The “actinopterygii_odb10” lineage dataset,
134 which contains 3640 genes derived from 26 species, was used for BUSCO analysis. The following
135 parameters were used: “-m genome -l actinopterygii_odb10”. BUSCO was run in genome mode and the
136 gene predictor used was *metaeuk* (Levy *et al.* 2020).

137 To characterize the distribution of repetitive elements throughout the genome, a *de novo* repeat
138 library was constructed by querying the genome using *RepeatModeler* (v2.0.2), along with the
139 dependencies *RepeatScout* (v1.0.5), *rmblast* (v2.10.0+), and *RECON* (v1.0.8). Library construction was
140 conducted using default parameters over five analysis rounds, along with the LTR discovery pipeline
141 option (-*LTRStruct*). *RepeatMasker* (v4.1.1) was used along with the repeat library to predict and annotate
142 repetitive elements present within the genome (Smit *et al.* 2013).

143 Comparative genomics with other wrasses

144 Whole genome alignment of the cunner reference genome to two closely related wrasse species,
145 humphead wrasse (*Cheilinus undulatus*; Liu *et al.* 2021; accession number: GCF_018320785.1) and New
146 Zealand spotty wrasse (*Notolabrus celidotus*; Rhie *et al.* 2021; accession number: GCF_009762535.1)
147 was conducted to investigate the quality of the cunner genome assembly, identify homologous
148 chromosomes within other species, and search for evidence of differences in genomic architecture.
149 Megablast was used to align the 24 cunner chromosomes (query) to the other wrasse species (subject)
150 with the following parameters: ‘-eval 0.0001 -max_target_seqs 3 -max_hsps 20000 -outfmt 6 -
151 num_threads 32 -word_size 40 -perc_identity 80’. Following megablast, outputs were filtered using a
152 custom Python script adapted from Christensen *et al.* 2018 (from source manuscript, Supplementary
153 script: “Compare_Genome_2_Other_Genome_blastfmt6_ver1.0.py” run with the parameters: ‘-minl 0.01
154 -minl 5000’). The results were visualized in the R programming language and homology blocks
155 tabulated to identify putative homologies. For completeness, the process was repeated aligning the New
156 Zealand spotty wrasse (query) to the humphead wrasse genome (subject).

157 Whole genome resequencing

158 We conducted whole genome resequencing (WGS) for cunner collected from 20 sampling locations
159 (Table 1). Fin clips from individuals were preserved in 95% ethanol and subsequent DNA extraction was
160 conducted using DNeasy 96 Blood and Tissue kits (Qiagen) according to manufacturer's protocols. The
161 quality of extracted DNA was visualized using 1% agarose gel electrophoresis and quantified using
162 Quant-iT PicoGreen ds-DNA Assay kits (Thermofisher) and a fluorescent plate reader. DNA samples
163 were normalized to 15ng / µl. Paired-end whole genome sequencing was conducted on nine lanes of an
164 Illumina NovaSeq6000 S4 at The Genome Quebec Centre d'Expertise et de Services. Manual inspection
165 of resulting file sizes was conducted and samples with forward or reverse read files less than 10% of the
166 average sequence file size for the whole set were considered problematic and removed. The remaining
167 805 samples were processed using a custom bioinformatics pipeline based on the methods initially
168 developed for Atlantic salmon WGS processing (https://github.com/TonyKess/seaage_GWAS). All
169 scripts used in cunner WGS processing are publicly available on GitHub
170 (<https://github.com/CNuge/lowdepth-2-snps>). The pipeline was deployed in a batch fashion on the
171 Compute Canada Graham computing cluster, using the *slurm* scheduler (Yoo *et al.* 2003) and GNU
172 parallel to facilitate parallelized computation (Tang 2018).

173 Paired end sequence files were processed using *cutadapt* (version 3.4, Martin 2011) to remove the
174 leading 15 base pairs, known adapter sequences, and base pairs with quality (Q scores) below 10. Any
175 reads less than 40bp in length following trimming were removed entirely. For each sample, *bwa* (version

176 0.7.17, Li & Durbin 2009) was used to conduct a Burrows-Wheeler alignment of the paired end sequence
177 reads against the cunner reference genome assembly (GCA_020745685.1). Resulting bam files were
178 sorted with *samtools* (version 1.13, Danecek *et al.* 2021) and deduplicated using *picard*'s
179 *MarkDuplicates* function (version 2.26.3, Broad Institute 2019). Using *gatk* (version 3.8, McKenna *et al.*
180 2010) indel realignment was conducted via the *RealignerTargetCreator* and *IndelRealigner* functions. The
181 realigned bam files were input to *angsd* (version 0.933, Korneliussen *et al.* 2014) for genotyping,
182 genotype likelihood estimation, and data filtering through the inclusion of the following parameters: -
183 *minMaf* 0.01, *-minMapQ* 30, *-minQ* 20, as well as *-minInd* and *-setMinDepth* both set to 80% of the total
184 individual count. The genotyping and genotype likelihood estimation was conducted on a per
185 chromosome basis.

186

187 ***Characterizing genomic variation within and between populations***

188 *Identifying population substructure with Principal Component Analysis*

189 The program *PCAngsd* (version 1.02, Meisner & Albrechtsen 2018) was used to quantify population
190 structure. This was done twice using matching methods and different data sets: first the complete set of
191 805 samples was considered to assess structure across the entirety of the sampled range, second the 751
192 samples from the Atlantic Canada sampling locations were analyzed to allow for finer scale resolution of
193 population structure within this region of interest. For each analysis, the by-chromosome beagle files
194 containing genotype likelihoods for the samples were merged into a single file and *PCAngsd* was used to
195 estimate the covariance matrix of the genotype likelihoods. The resulting matrix was imported into the R
196 programming environment and principal components (PCs) were obtained through calculation of
197 eigenvalues using the R function *eigen*. The percent variance explained by each principal component was
198 calculated and used to determine the optimal number of PCs for subsequent analyses.

199 Population structure was determined through the *k*-means clustering of individual's values for
200 PCs 1 and 2. Clustering was conducted iteratively, for values of *k* from 1 to 20 and for each *k* the within
201 cluster sum of squares (*wss*) was calculated. A scree plot was generated and used to infer the optimal
202 value of *k* by identifying the inflection point in the *wss* trendline. Final *k*-means clustering with the
203 optimal *k* was conducted and individuals were assigned to putative subpopulations based on their assigned
204 cluster. This information was visualized and retained for subsequent analysis of the genetic differentiation
205 between identified subpopulations.

206 *Assessing genomic differentiation with pairwise *F_{ST}**

207 To identify genomic regions showing differentiation among populations we conducted pairwise
208 comparisons of the distinct Atlantic Canada populations identified in the clustering of PCs of genetic
209 variation and the additional population of New Jersey samples. For each pairwise combination of
210 populations, we used *vcftools* (version 0.1.16, Danecek *et al.* 2011) to estimate Weir & Cockherham's F_{ST}
211 (1984) on a per locus basis and the outputs were loaded into R and visualized using *ggman*
212 (<https://github.com/drveera/ggman>) to identify peaks in F_{ST} . The number and distribution of loci
213 exhibiting F_{ST} values > 0.15 were quantified. Along with visual inspection of the Manhattan plots, we
214 quantified the number of F_{ST} peaks using a custom Python script and examined consistency across the
215 Atlantic Canada comparisons on a SNP-by-SNP basis. An F_{ST} peak was defined as: five or more loci with
216 F_{ST} greater than 0.15 and no more than 100 Kb separating adjacent loci. The location of these peaks
217 across pairwise comparisons was examined to determine their relationship to the geographic distribution
218 of the populations.

219 We conducted an additional PCA of the samples using only the set of markers with $F_{ST} > 0.15$
220 found within the identified F_{ST} peaks. The relevant individuals and markers were subset from the
221 complete beagle file, and the analysis was conducted using *PCAngsd* with the same methods described for
222 the previous PCA. As a control comparison, we repeated this analysis using a random subset (roughly
223 equivalent to the number of outlier loci) of 8,000 markers not found within the F_{ST} peaks.

224 *Selection scan*

225 To search for evidence of polygenic signals of selection between the identified cunner subpopulations, we
226 estimated XP-nSL on a per locus basis for all pairwise population comparisons (Szpiech *et al.* 2021). XP-
227 nSL is an extension of the single-population haplotyped-based statistic nSL (number of segregating sites
228 by length) (Ferrer-Admetlla *et al.* 2014). The XP-nSL statistic compares a query and reference population
229 to measure evidence of selection based on elevated identity by state among haplotypes. To calculate XP-
230 nSL, we filtered full per-chromosome vcf files using *vcftools* (version 0.1.16, Danecek *et al.* 2011) with
231 the parameters: `--maf 0.01, --min-meanDP 5, --max-missing 0.8`. We then used *vcftools* to split the filtered
232 files by population based on PCA cluster assignments. Missing genotypes in the per population, per
233 chromosome vcf files were then imputed using *beagle* (version 4.1, Browning & Browning 2016) and
234 XP-nSL values were calculated for all pairwise comparisons using the program *selscan* with the option `--`
235 *unphased* (version 3.0, Szpiech & Hernandez 2014). The *selscan* function *norm* was used to calculate
236 summary statistics on a 100 Kb window basis, determining the maximum XP-nSL score per window,
237 along with the 1% quantile for the greatest proportion of XP-nSL scores greater than or less than 2, which
238 are respectively indicative of selective sweeps in query and reference populations of a given pairwise
239 comparison.

240 *Linkage Disequilibrium*

241 To search for evidence of reduced recombination and putative inversions we conducted windowed
242 analysis of linkage disequilibrium (LD) for each of the four identified Atlantic populations. For each
243 population, *vcftools* was used on a per chromosome basis to calculate 10 Kb window-limited LD scores
244 (using the parameters: `--geno-r2 --ld-windowed-bp 10000`). A custom Python script (Supplementary File
245 1) was then used to summarize the LD data on a windowed basis, calculating the mean, median, min, and
246 max r^2 values of all pairwise comparisons involving query loci falling within a given 100Kbp window.
247 The data were visually examined in R and the summary statistics were collated with the pairwise F_{ST} and
248 XP-nSL scores.

249 *Association of genetic and environmental variation*

250 We aimed to describe any existing relationships between genetic variation and environmental variation
251 across the Atlantic Canada sampling sites. The R package *sdmpredictors* (Bosch *et al.* 2017) was used to
252 extract a series of 49 marine environment variables for the sampling locations (Supplementary File 2); the
253 variables were derived from Bio-ORACLE (<https://bio-oracle.org/>) and WorldClim
254 (<https://www.worldclim.org/>) data sets. These variables were analyzed and found to display numerous
255 significant correlations; to reduce dimensionality and account for the non-independence of the
256 environmental variables, we conducted a PCA using the R package FactoMineR (Lê *et al.* 2008). Along
257 with the principal components (PCs) of environmental variation, the correlations between raw input
258 variables and the principal axes of variation were obtained to understand the primary contributors to the
259 environmental differences between locations.

260 Three sets of correlations were analyzed. First, the correlation of environmental and genetic variation
261 on a per individual basis was conducted. This was conducted in R using the *lm* function, with PC1 of the
262 Atlantic Canada PCA of the genetic variants from within the F_{ST} peaks used as the response variable, and
263 PC1 of environmental variation as the predictor variable. Linear, quadratic, and cubic models for the
264 environmental PCs were fit and compared. Secondly, this was repeated using the PC1 from the PCA of
265 the complete set of markers in the Atlantic Canada individuals as the response variable. Third, the
266 environmental PCs were associated with genetic variation on a per location (as opposed to per-individual)
267 basis. To do this, minor allele frequencies (MAF) for individuals from each location were obtained using
268 *vcftools*. A random 1% subsample of all MAF values was taken and run through a PCA using
269 *FactoMineR*. In the same manner as the per individual analyses, the correlation of per location PCs of
270 MAF values (a measure of intra-population genetic composition) and environmental PCs were analyzed
271 and visualized in R.

272 A series of redundancy analyses were conducted as a complimentary assessment of the relationship of
273 environmental and genomic variation (Capblancq & Forester 2021). To assess the relationship on a per-
274 individual basis, genotype probabilities for loci within the F_{ST} outlier peaks were imported into R to
275 create the response variables for the redundancy analysis (RDA). To create a set of uncorrelated predictor
276 variables, a series of 30 marine environment variables were analyzed and a set of 6 uncorrelated variables
277 ($r^2 < 0.7$) were selected (Table S3). The environment variables were associated with genotype information
278 based on the location of sample origin and the RDA was run using the R package *vegan* (Dixon 2003).
279 Results were visualized and per-loci weightings of the first two RDA axes were inspected, with scores
280 greater than three standard deviations from the mean being defined as outliers and indicating a marker
281 was significantly associated with the given RDA axis.

282 To disentangle the effects of location and population connectivity from environmental effects on
283 genetics, the per-individual RDA was repeated with a spatial correction added in the form of a
284 conditioning (Z) matrix composed of Moran's Eigenvector Maps (MEMs). To create the conditioning
285 matrix, the R package *adespatial* (Dray *et al.* 2018) was used to construct a distance-based spatial
286 weighting matrix from which the *mem* function was used to generate the MEMs for the 19 Atlantic
287 Canada sampling locations. The first two MEMs were included with the genetic and environmental data
288 on a per-individual basis and then specified as the conditioning matrix within the RDA.

289 Lastly, we repeated the RDA analysis on a per location basis (using minor allele frequencies for
290 each sampling location as the genetic information) to see if the relationship of genetics and environment
291 varied when inspected on different scale. To do this the same random 1% subsample of all MAF values
292 used in the correlation analysis was used as the response matrix and joined to the set of uncorrelated
293 environmental variables on a per location basis. The redundancy analysis and assessment of SNPs
294 associated with environmental variation was repeated using the same methods as described for the first
295 per-individual RDA.

296 **RESULTS**

297 *Draft Reference Genome Assembly and quality assessment*

298 The cunner genome assembly used in this study (NCBI accession number: GCA_020745685.1) contained
299 0.72 Gbp of sequence, across 24 chromosomes and 39 additional unplaced scaffolds. Other species from
300 the Labridae family have reference genomes with 24 chromosomes, suggesting that there is genome wide
301 coverage for cunner (Lie *et al.* 2018; Mattingsdal *et al.* 2018; Liu *et al.* 2021). Overall, the GC content of
302 the cunner genome assembly is 0.413, and the missing nucleotide frequency was 0.0058. BUSCO
303 analysis identified: 3576 (98.3%) complete (3544 (97.4%) single-copy, 32 (0.9%) duplicated), 20 (0.5%)
304 fragmented, and 44 missing BUSCOs. This result further suggests a high-quality genome assembly. The
305 mitochondrial genome was also characterized, and it contained 16,494 bp with no missing nucleotides and
306 GC content of 0.4825.

307 A total of 15.41% (112.8Mb) of the 0.72 Gbp cunner genome was annotated as repetitive
308 elements; of this, transposons accounted for 7.04% of the genome (2.76% class I TEs, and 4.28% class II
309 TEs). The repetitive content of the cunner genome falls at the lower end of the range of values reported
310 for sequenced Labridae genomes, with less repetitive content than corkwing wrasse (*Syphodus melops*;
311 18.8% of 0.61 Gbp genome), ballan wrasse (*Labrus bergylta*: 28.5% of 0.81 Gbp genome), and
312 humphead wrasse (*Cheilinus undulatus*; 46% of 1.2 Gbp genome) (Lie *et al.* 2018; Mattingsdal *et al.*
313 2018; Liu *et al.* 2021).

314 Alignment of the cunner genome to the humphead wrasse (GCF_018320785.1) and New Zealand
315 spotty wrasse (GCF_009762535.1) genomes using megablast and a percent identity threshold of 80%
316 provided further evidence of a high-quality genome assembly, in both cases yielding 24 pairs of
317 homologous chromosomes (Figure 2; Figure S1; Figure S2). This suggests that the genomic architecture
318 of the Labridae family is conserved, with no evidence of Robertsonian fusion or fission events across the
319 three chromosome level genome assemblies examined. The prevailing linear nature of the alignment
320 blocks suggests strong synteny between the different genome assemblies, providing no evidence of either
321 chromosome rearrangements or large-scale genome assembly errors.

322 *Whole genome resequencing and characterizing genomic variation*

323 The whole genome resequencing pipeline yielded 11,574,435 molecular markers for the 805 wild cunner
324 individuals. The average depth of sequencing for the 751 Atlantic Canada individuals was 13.95x
325 (standard deviation = 6.52), while the 54 samples from Tuckerton NJ (TUK) displayed lower depth of
326 coverage with an average of 2.40x (standard deviation = 0.73). There are several possible reasons for the

327 reduced coverage within the TUK samples, the most likely seems to be that the samples were smaller
328 (collected as larvae in plankton sampling) and older (collected in 2012) so DNA degradation may have
329 resulted in decreased sequencing yields.

330 The PCA of the complete set of 805 individuals showed that principal component 1 (PC1 =
331 5.70%) explained the largest proportion of variation and separated the TUK samples from the Atlantic
332 Canada samples (Figure S3). Along the secondary axis of variation, there was evidence of clusters
333 forming within the Atlantic Canada samples. The PCA of genomic variation for only the 751 Atlantic
334 Canada samples was conducted to resolve population structure in this region. This PCA resulted in first
335 and second principal components (PCs) that explained 0.64% of the genomic variance and 0.23% of
336 genomic variance respectively (Figure S4). PC1 provided the most interpretable structure to the data;
337 individuals from the same sampling locations tended to cluster together on PC1, suggesting this axis was
338 in some manner related to geography. Along the PC2 axis, there were two outlier individuals from the
339 Alderney (ALD) sampling location identified that were determined to be duplicate samples and,
340 conservatively, were removed prior to the k -means clustering and other analyses (additional screening
341 revealed no evidence of additional duplicate samples). Subsequent k -means clustering of the PCs for the
342 749 individuals resolved individuals into four groups that had distinct geographic distributions (Figure 3;
343 Figure S5). Based on the k -means clustering of their genomic PCs, the Atlantic Canada cunner samples
344 were assigned to four populations: Nova Scotia & New Brunswick (NSNB), Northwest Newfoundland
345 (NWNL), Northeast Newfoundland (NENL), and Southeast Newfoundland (SENL) (Figure 3).

346 *Characterizing genomic differentiation*

347 Comparison of the Canadian subpopulations to the New Jersey (NJ) samples demonstrated elevated
348 genome wide F_{ST} (Table 2), suggesting high genetic divergence of the NJ samples from the Atlantic
349 Canada subpopulations. Across the pairwise comparisons of the Atlantic Canada populations, the
350 genome-wide, per-loci F_{ST} values were low, with a mean of genome-wide $F_{ST} = 3.2e-3$ for all the pairwise
351 comparisons (Table 2). Distinct peaks were observed within the pairwise comparisons, and the
352 distribution of high F_{ST} loci deviated from expected for selectively neutral loci, with clustering of
353 excessive numbers of outliers providing evidence of signatures of selection. The number and magnitude
354 of F_{ST} peaks in the pairwise comparisons appeared to relate to the location of the different populations,
355 although not directly to their geographic distance from one another (Figure 4; Table 2; Table S1). The
356 highest levels of genetic differentiation were seen between the NSNB and SENL populations, with 7837
357 markers displaying F_{ST} greater than 0.15 as well as the highest genome-wide F_{ST} amongst the pairwise
358 comparisons ($F_{ST} = 0.005886$). The adjacent NENL and SENL showed the lowest divergence of any
359 comparisons with only 71 markers with F_{ST} greater than 0.15.

360 A search of the genome wide F_{ST} data of the Atlantic Canada comparisons for significance peaks
361 identified 241 in total across the six pairwise comparisons (Table S1; Figure 4). There were several
362 regions of low differentiation identified: chromosome 19 possessed no F_{ST} peaks across any comparisons
363 and chromosomes 13, 16, 17, and 20 contained peaks in only the NSNB to SENL comparison.
364 Chromosome 10 had the most prominent differentiation signal, with peaks recorded for each of the six
365 pairwise comparisons and peaks in matching locations in four of the six pairwise comparisons. There
366 were additional synonymous F_{ST} peaks observed on chromosomes 8, 9, and 15, and to a lesser extent on
367 chromosomes 7, 11, and 23.

368 The reduced PCA utilizing only outlier loci ($n = 7698$) from within the 241 F_{ST} significance
369 peaks revealed that these loci explained a larger portion of shared variation characterizing population
370 genetic clusters than when using the whole genome data and that the same relationship of the
371 subpopulations was identified, albeit with less distinct boundaries between the subpopulations (Figure
372 S6). The first and second PC axes explained 14.72% and 3.06% of the variance respectively (Figure S6).
373 The control analysis of 8000 random markers from outside of the adaptive peaks, explained less variance
374 ($PC1 = 0.649\%$, $PC2 = 0.257\%$), but produced the same relationship of the subpopulations in the PC
375 space (Figure S7).

376 *Scan for evidence of selection*

377 The selection scan revealed evidence of selection in the form of regions of the genome with XP-nSL
378 outlier values (defined as 100 Kb windows containing a locus with an XP-nSL score ≥ 10 or ≤ -10) across
379 the pairwise comparisons (Figure S8). Additionally, these signatures of selection were consistently
380 observed in regions of the genome characterized as F_{ST} peaks. The strongest signatures of selection were
381 observed on chromosome 8 (at 8.1Mb) and on chromosome 10 in the region of 1.2-1.5Mb (Figure 5),
382 both of which were identified in four of the six pairwise comparisons and aligned with observed F_{ST}
383 peaks (Figure 4; Figure 5; Figure S8). Other regions with evidence of selection (on chromosomes 4, 5, 9,
384 10, 11, 15, and 23) also co-localized with F_{ST} peaks (Figure 4; Figure S8).

385 *Evidence of reduced recombination*

386 Calculated LD scores were queried to search for areas of reduced recombination. These results were
387 compared to genomic differentiation and selection results to search for evidence of population-specific
388 structural variants associated with adaptive divergence of the populations. None of the Atlantic Canada
389 populations displayed evidence of population-specific regions of elevated LD. Across populations, there
390 was recurring evidence of elevated per-window median r^2 (>0.05) at several regions of the genome,
391 specifically on chromosomes 5, 13, and 18 (Figure S9). This suggests reduced recombination or structural

392 variants in these genomic regions across the sampled range of cunner. There was no evidence of the
393 elevated LD regions being associated with signals of adaptive divergence; only the LD peak on
394 chromosome 5 was on the same chromosome as a recurring signal of adaptive divergence, but the
395 location of elevated LD was greater than 4Mb from the observed F_{ST} significance peak.

396 *Association of genetic and environmental variation*

397 The environmental data for the 19 Atlantic Canada locations featured numerous highly correlated
398 variables. PCA allowed for these correlated variables to be summarized along their principal axes of
399 variation. Assessment of the correlation of the principal components with the input environmental
400 variables allowed for the environmental variables significantly contributing to the axes of variation to be
401 identified. The first five principal component axes explained 88.95% percent of the cumulative variance
402 for the environmental values (PC1= 48.30% variance explained, PC2 = 19.67%, PC3 = 9.81%, PC4 =
403 6.36%, PC5 = 4.81%). The first PC, explaining almost half of the total environmental variation, displayed
404 significant correlations with many input variables; there were significant r^2 values greater than 0.85 for
405 each of the following inputs: *BO2_dissoxrange_bdmax*, *BO2_dissoxmean_bdmax*,
406 *BO2_temprange_bdmax*, *BO2_tempmin_bdmax*, *BO2_tempmean_bdmax*, *BO2_tempmax_bdmax*,
407 *BO2_icecovermean_ss*, *BO_calcite*, and less than -0.85 (a negative correlation of equal magnitude) for:
408 *BO_dissox*, *BO2_salinitymean_bdmax* (Bosch *et al.* 2017), indicating that these predictors significantly
409 contributed to this PC of environmental variation. These predictors suggests that the primary axes of
410 environmental variation was related to temperature and oxygen range at the sea bottom.

411 There was a significant correlation observed between PC1 of the environmental variation and
412 PC1 of per-individual genetic variation from within the F_{ST} peaks ($n_{loci} = 7698$) for the Atlantic Canada
413 samples (Figure 6). This correlation was best explained by linear model with a second order (quadratic)
414 term for the environmental PC1 variable ($r^2 = 0.5579$, $p < 2.2e-16$). The correlated principal axes of
415 environmental variation and per-individual genetic variation suggest that genetic variation is organized
416 along an environmental gradient that, on a geographic scale, progresses from Nova Scotia around the
417 North of Newfoundland to its southeast coast (Figure 4; Figure 6A). A quadratic correlation between PC1
418 of the environmental variation and PC1 of per-individual genetic variation was also observed using the
419 complete marker set of the Atlantic Canada samples ($r^2 = 0.60$, $p < 2.2e-16$), which showed that this
420 correlation of genetic differences and environmental variation was detectable using the complete genome
421 as well as when the analysis considered the 7698 markers from the adaptive peaks (Figure S10).

422 The PCA of per-location MAF explained 13.25% and 12.5% of variation respectively along PC1
423 and PC2. The primary axes of variation (PC1) appeared to exclusively separate the Raleigh

424 Newfoundland population (part of the NWNL subpopulation) from the other locations. This population's
425 separation along the primary axes of variation for MAF is likely a result of a smaller sample size (n = 11)
426 relative to the other locations (Table 1). The second PC displayed a significant linear correlation with PC1
427 of environmental variation (Figure S11). The strong correlation of environmental and genetic variation is
428 therefore still detected if genetic variation is considered on a per population, as opposed to per individual,
429 basis.

430 The relationship of genetics and environment for the Atlantic Canada sampling sites was then re-
431 examined using a series of redundancy analyses. The selection of uncorrelated ($r^2 < 0.7$) environmental
432 variables yielded six values for use as the predictor matrix: *BO2_curvelmean_bdmean*,
433 *BO2_lightbotrange_bdmax*, *BO2_ppmean_bdmax*, *BO2_silicatemean_bdmax*, *BO2_tempmin_ss*,
434 *BO2_temprange_ss*. The RDA of per-individual genetic variation for markers within the F_{ST} peaks was
435 first performed, and the adjusted r^2 of the model was 0.041, suggesting that 4.1% of the genetic variation
436 in the model was explained by the environment (Figure 6B) The model displayed a pattern similar to the
437 one observed in the correlation of principal components, with individuals associating along the same
438 environmental gradient (Figure 3; Figure 6). The first two RDA axes explained 79.6% and 8.3% of
439 variation, with subsequent axes showing reduced importance. Inspection of RDA loading values showed
440 only a single marker on chromosome 10 with a loading for RDA1 more than 3 standard deviations from
441 the mean, lowering the stringency of this test to 2.5 standard deviations showed 34 markers potentially
442 associated with this RDA axis, 31 of which were located on chromosome 10, one from chromosome 7
443 and one from chromosome 5.

444 Repeating the per-individual analysis with MEM-based spatial correction led to a reduction in the
445 adjusted r^2 of the model to 0.01; the magnitude of the separation of populations also decreased, but the
446 pattern of the clustering of individuals from the same population were still observed in the ordination plot
447 when spatial structure was accounted for (Figure S12). The first two axes of variation explained a smaller
448 proportion of variation (RDA1 = 56.47%, RDA2 = 14.04%). Relative to the non-spatially corrected plot,
449 there was a change to the markers displaying association with the primary RDA axis. When the spatial
450 correction was applied, 239 makers had RDA1 loadings greater than 3 standard deviations from the mean,
451 and notably this included 94 loci from chromosome 7 and 93 loci from chromosome 9 (with no loci from
452 chromosome 10). Overall, these analyses further support the adaptive divergence of cunner along an
453 environmental gradient and give some further indication of the relationship of the regions of selection
454 relative to environmental conditions.

455

456 **DISCUSSION**

457 Adaptation to ocean climate is increasingly recognized as an important driver of diversity in marine
458 species (De Faveri *et al.* 2013; Duranton *et al.* 2018; Jahnke *et al.* 2018; Stanley *et al.* 2018; Knutsen *et*
459 *al.* 2022; Pratt *et al.* 2022) and understanding of the evolutionary and ecological process involved is
460 increasingly central to management and conservation action (Lehnert *et al.* 2019; Pratt *et al.* 2022). Here
461 we developed the first genomic resources for the temperate reef fish, cunner, by producing a
462 chromosome-level genome assembly, demonstrating the high quality of the assembly through comparison
463 to closely related species, and identifying millions of genetic variants for cunner. This information was
464 then used to characterize the genetic structure of wild populations throughout Atlantic Canada and New
465 Jersey, identify regions of genomic differentiation among populations, and associate genomic variation
466 with an environmental gradient. Our analysis identified four distinct regional populations throughout
467 Atlantic Canada consistent with fine scale geographic structuring despite pelagic egg and larval stages in
468 this species. The genomic distribution of differentiation, genomic signatures of selection, and
469 environmental association analysis all suggest adaptation to regional differences in ocean climate is a strong
470 driver of differentiation across the study area. This study extends a growing body of genomic analyses
471 supporting a role for ocean climate in driving fine geographic scale differentiation in marine taxa despite
472 apparent high dispersal potential during the early life history (Lehnert *et al.* 2018; Stanley *et al.* 2018;
473 Watson *et al.* 2021; Knutsen *et al.* 2022). These results suggest that climate associated adaptation has
474 driven the evolution of regional diversity in cunner, despite the potential for wide dispersal and reveal
475 how the interplay of climate, adaptive diversity, and life history can structure marine populations.

476 *Population structure and cunner life history*

477 Our clustering analyses revealed four genetically distinct cunner populations that were regionally distinct
478 and strongly suggestive of fine scale population structure throughout Atlantic Canada. The strong signal
479 of population structure is surprising given the early life history of cunner, but the findings closely
480 resemble those of other Labridae. Geographically and genetically distinct populations have previously
481 been identified in Goldsinny wrasse (*Ctenolabrus rupestris*), a closely related Labridae species found
482 along the Atlantic coastlines of Europe and North Africa, as well as the Sea of Marmara, the Black Sea
483 and parts of the Mediterranean Sea (Jansson *et al.* 2020). Furthermore, work on corkwing wrasse
484 (*Syphodus melops*) has identified a major genetic break between Scandinavia and more southern
485 populations (Knutsen *et al.* 2013) despite a seemingly continuous marine environment. This population
486 structure was attributed to the corkwing wrasse's requirement for rock substrate and its short pelagic
487 larval phase of 2-3 weeks (Knutsen *et al.* 2013). These concordant trends of regional population structure
488 for multiple related species found on both sides of the Atlantic Ocean suggest that geographic structuring

489 may not be species-specific and instead be common among Labridae species, possibly result from
490 common life history patterns.

491 The four genetically distinct cunner populations we have identified in Atlantic Canada may be the
492 result of adaptation to local habitat differences that result in increased survival rates and recruitment in the
493 presence of dispersal and gene flow. As adults, cunner are found primarily in nearshore reefs, but the
494 species has a pelagic egg and larval stage (lasting three weeks) that facilitate wide dispersal (Levin 1996;
495 Juanes 2007). Larval dispersal is followed by a three-to-four-week settlement period, in which cunner use
496 the structure of their habitat for shelter against predation and as refuge for their nightly period of torpor
497 (Juanes 2007). Research on Nova Scotia cunner has shown that the survival of the settlement period
498 correlates with habitat complexity (Tupper & Boutilier 1997). Cunner larvae may disperse widely, but
499 their adaptive genetic predisposition to success in a habitat may strongly impact their recruitment (*i.e.*
500 regional differences in the type of shelter available and also physiological or behavioural differences that
501 are conducive to survival in a given type of shelter). This is supported by examination of the
502 subpopulation assignments of individual samples relative to their sampling locations and some evidence
503 of apparent first-generation migrants between clusters along the Newfoundland northeast coast. Genetic
504 cluster assignment for individuals collected at a location show strong evidence of geographic structure
505 (96.5% average intra-location concordance), but there were also locations where individuals clustering to
506 different genetic subpopulations are identified in sympatry (Table S2). This observation of both strong
507 population structure driven by specific adaptive peaks in the genome and putative evidence of genetic
508 admixture across populations suggests that dispersal may be occurring, but that migrants may face strong
509 local selection pressure resulting in fitness reductions.

510 *Relation of genomic and environmental variation*

511 The correlation of the genetic and climatic gradients supports the hypothesis that the genetic divergence
512 of populations is associated with an environmental gradient, and likely adaptive in nature. The gradient of
513 environmental variation appears to be a more important indicator of genetic similarity and connectivity
514 than the geographic proximity of populations. For example, while the NSNB and SENL subpopulations
515 are not the most geographically distant of the pairwise population comparisons, they are the most
516 dissimilar genetically, as evidenced by both the genomic variation PCs and their pairwise F_{ST}
517 comparisons (Figure 4; Table 2). They occur on the extremes of the environmental gradient, suggesting
518 that the environmental characteristics, and not geographic distances, are the main correlate with genomic
519 diversity (Figure 6). The main contributing variables to the primary axis of environmental variation were
520 related to temperature and oxygen range at the sea bottom. Cunner inhabit the sea floor and enter
521 temperature-dependent daily and seasonal states of torpor in which they bury themselves into substrate or

522 hide in crevices (Bradbury *et al.* 1995; Moran *et al.* 2019). The primary axis of environmental variation is
523 therefore suggestive of a relationship to cunner life history; future analysis of the genes under selection
524 may further elucidate the mechanisms under selection and the relationship between environment,
525 behavior, and survival.

526 The association of environmental and genetic gradients was repeatable across different scales
527 (per-individual and per-location) and methods (linear modelling and RDA), suggesting the presence of a
528 strong underlying biological signal. The additional RDA with the application of a MEM-based spatial
529 correction reduced the strength of the association between environment and genetics. This spatial
530 correction is likely to be overly stringent because it is reliant on a Cartesian, distance-based spatial
531 weighting matrix (Bauman *et al.* 2018). The true connectivity of the populations is likely more nuanced
532 than the connections in the distance-based spatial weighting matrix would indicate (Bauman *et al.* 2018).
533 For example, the connectivity of the SENL and NENL populations is overestimated by Cartesian
534 distances as the Isthmus of Avalon presents a barrier to migration that would greatly increase the
535 migration distances between geographically proximal populations. The differences between the spatial
536 corrected and non-spatial corrected RDA are nonetheless of interest. The presence of the strong
537 environmental association with the markers on chromosome 10 when no correction is applied, and the
538 absence of this association in the spatial corrected RDA suggests that this peak of adaptive divergence is
539 related to cunner population structure and connectivity, possibly representing an adaptive locus
540 favourable to survival in certain environments that has spread to adjacent populations through migration
541 and dispersal. The results indicate the peak on chromosome 10 is associated with the environmental
542 gradient but may also be influenced by the cunner population's geographic structure and connectivity,
543 while the regions of differentiation on chromosomes 7 and 9 seem to be associated with the gradient of
544 environmental differentiation even when the population structure is accounted for.

545 The sampling locations employed in this study are not an exhaustive representation of the range
546 of cunner (Moran *et al.* 2019) and key genetic differences may be found in individuals from more
547 southern locations. Within Atlantic Canada, multiple marine species have exhibited a biogeographic break
548 at 44.61°N (± 0.25) that relates to a climatic gradient driven by seasonal temperature minima in the
549 northwest Atlantic (Stanley *et al.* 2018). The southernmost sampling location in the analysis of Atlantic
550 Canada population structure was Dartmouth, NS (ALD), found at a latitude of 44.663°N. The sampled
551 range of Atlantic Canada cunner is therefore exclusively north of this multi-species biogeographic break.
552 Our single sampling location from south of this location, Tuckerton NJ, was an extreme geographic
553 outlier that was more than 5 degrees of latitude further south than the next closest sample and had a
554 significantly smaller sample size. Comparisons of the four Atlantic Canadian subpopulations to the New

555 Jersey (NJ) samples all demonstrated mean genome wide F_{ST} in excess of 0.12, which did not allow for
556 fine scale differences between these southern samples and their northern counterparts to be resolved. The
557 magnitude and genome wide distribution of Atlantic Canada differentiation with NJ suggests significant
558 variation exists across the complete range of cunner that remains to be fully explored.

559 The observed genetic structuring within Atlantic Canada represents the northern extreme of the
560 range of cunner, where severe environmental conditions may be contributing to the selective pressures
561 and adaptive diversity. For example, cunner experience months-long physiological torpor in response to
562 prolonged periods of low temperature (Bradbury *et al.* 1995; Moran *et al.* 2019). This is a radically
563 different environment than the southern limits of the cunner range; the complete absence of sea ice in
564 Tuckerton NJ and habitats of similar latitudes would possibly allow cunner to entirely forgo yearly torpor
565 cycles and the associated selective pressures (Bosch *et al.* 2017). There remains the potential for
566 significant adaptive differentiation outside the area of sampling in the present study due to large
567 environmental and potential life history differences. Additional sampling from an increased area could
568 explore if the observed genetic structuring is exclusive to the northern edge of cunner's habitable range
569 where environmental gradients are extreme and if their dispersal-enabling life history results in more
570 *panmictic* populations within more moderate environments.

571 *Relationship of adaptive divergence and observed population structure*

572 The pairwise comparison of the populations revealed signals of adaptive divergence against a
573 genomic background of low inter-population differentiation, which provided evidence of environmentally
574 associated population structure. Both the number of F_{ST} peaks and the magnitude of co-localized F_{ST}
575 peaks related to the identified fine scale population structure and environmental gradient within Atlantic
576 Canada. There was lack of association between regions of adaptive divergence and signals of reduced
577 recombination (LD), meaning there was no evidence to suggest that the regions under selection were
578 associated with structural variants (SVs) (*e.g.* inversions) housing conserved polygenic haplotypes
579 protected from recombination. The well described relationship between structural genomic variants and
580 evolutionary adaptation (Mérot *et al.* 2020; Oomen *et al.* 2020) makes this result surprising. There are
581 several non-biological causes that may have led to a lack of elevated LD near the adaptive peaks. If there
582 was more pronounced LD at other neutral locations in the genome, then SVs in the regions of the adaptive
583 peaks may have been overlooked due to not being outlier values. Secondly but perhaps less likely, these
584 adaptive peaks may occur in regions of the genome where meiotic recombination occurs normally and
585 may be indicative of monogenic or otherwise acute genetic differences (Mérot *et al.* 2020; Oomen *et al.*
586 2020).

587 The reduced PCA of only loci from adaptive divergence peaks showed that there was a large
588 contribution of these loci to the genomic structure of populations, with PC1 explaining a 14.72% of
589 variation. This was higher than the variance explained in the initial genome wide PCA, where PCs 1 and 2
590 explained 0.64% and 0.23% of the observed variation respectively. This suggests that most of the genome
591 shows minimal genetic differentiation and that the adaptive peaks provide a large contribution to
592 population differences. The relationship of the populations in the PC space remained the same as in the
593 reduced PCA and the PCA of complete genetic variation, but the boundaries between the four populations
594 were not as clearly resolved in the former. Work in Atlantic salmon within Atlantic Canada has also
595 shown a pattern of low genome wide differentiation with regions of elevated differentiation (Moore *et al.*
596 2014). A more extreme version of this pattern has been observed in research on another marine species,
597 Atlantic herring (*Clupea harengus*), in which a PCA utilizing 794 significant F_{ST} outliers explained 43%
598 of variation along the first principal component axes (Han *et al.* 2020). Within herring, a higher amount of
599 variation was explained by lower number of loci relative to the present study of cunner. Therefore,
600 although the importance of the peaks of adaptive divergence in resolving cunner population structure is
601 high, these loci do not appear to be the exclusive source of genetic differences between the populations
602 and there are likely also neutral genetic differences that have evolved outside of the main regions of
603 differentiation. The existence of neutral differences is supported by the control analysis of 8000 random
604 markers from outside of the adaptive peaks, which explained less variance (PC1 = 0.649%, PC2 =
605 0.257%) but still revealed the same relationship spatial structure of the populations within the PC space
606 (Figure S7). Overall, this supports the existence of strong genetic structure that is primarily, but not
607 exclusively, the result of adaptive divergence to environmental differences.

608 Conclusion

609 Characterization of genome wide genetic diversity of cunner samples from throughout Atlantic Canada
610 has shown evidence of fine scale population structure and an association of genomic diversity with an
611 environmental gradient at the northern limits of the species range. Evidence suggests that the differences
612 between populations are adaptive responses to environmental variation, with low genome-wide
613 divergence of populations and signals of differentiation and selection localizing to specific regions of the
614 genome. The functions of the regions of the genome undergoing adaptive selection are not characterized
615 at present, but given knowledge of cunner life history, an association with post-settlement survival and
616 recruitment seems likely. As genomic resources for the species are expanded, future work examining the
617 proximal mechanisms under adaptive selection can be explored in more detail. Expansion of the sampled
618 range of cunner can show if the observed pattern of adaptive responses to environmental variation extends
619 into the more southern range of cunner. The cunner population structure that we have identified within

620 Atlantic Canada warrants consideration in aquaculture policy and management decisions that aim to
621 promote the responsible and environmentally informed future use of cunner as a cleaner fish within
622 Atlantic Canadian aquaculture.

623

624 ACKNOWLEDGEMENTS

625 We thank Olivier Fedrigo for coordination of DNA extraction and sequencing for the genome assembly at
626 VGP Rockefeller. Funding and support for this project was provided by Fisheries and Oceans Canada
627 funding programs, the Aquaculture Collaborative Research and Development Program (ACRDP) in
628 partnership with: Newfoundland Aquaculture Industry Association (NAIA), Grieg NL Seafarms Ltd.,
629 Cooke Aquaculture Inc., and Mowi Canada East, and the Program for Aquaculture Regulatory Research.
630 Nell den Heyer assisted with collection of cunner samples in Cape Breton. Tony Einfeldt assisted with
631 collection of cunner samples in Southern Nova Scotia. Members of the Bradbury and Bentzen labs
632 assisted with sample collection in Newfoundland and Nova Scotia.

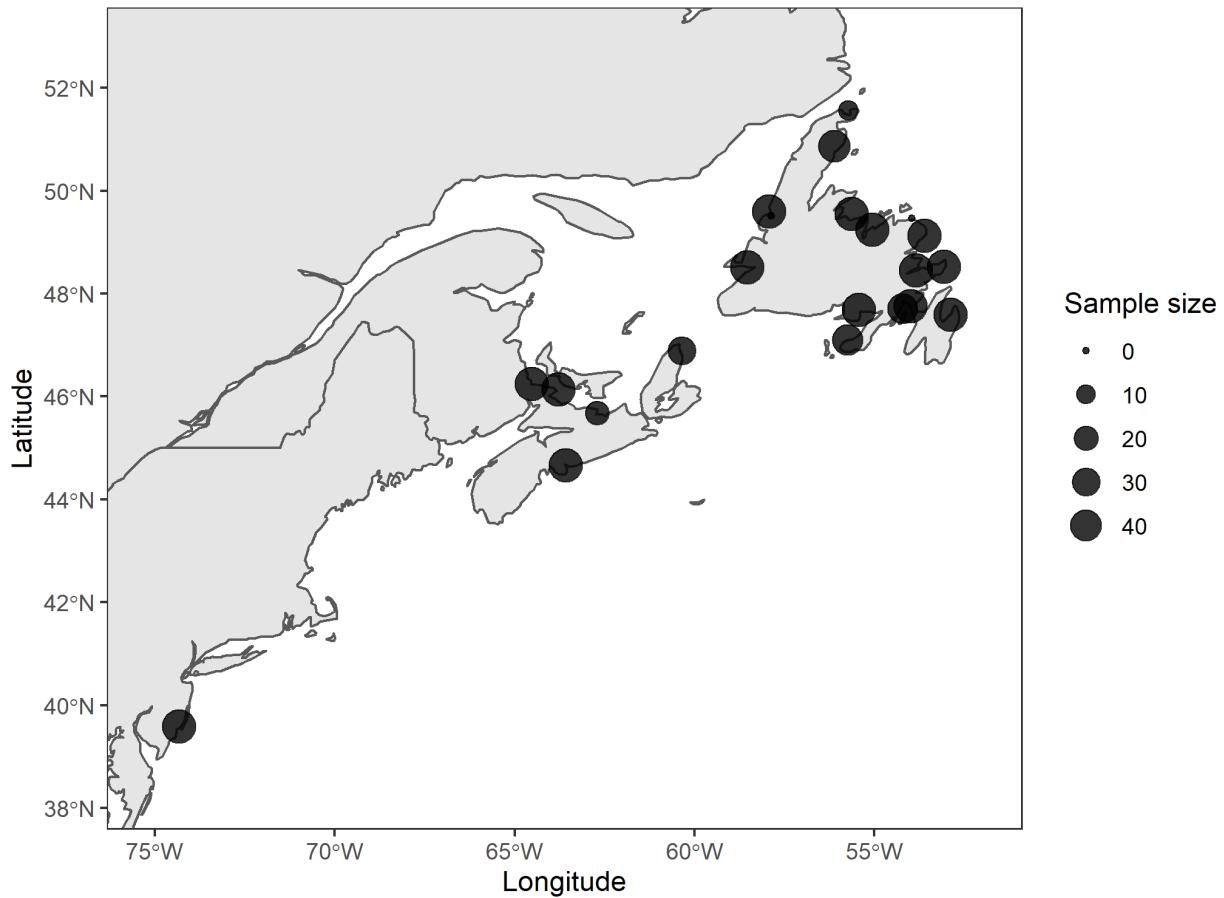
633

634 **TABLES AND FIGURES**

635

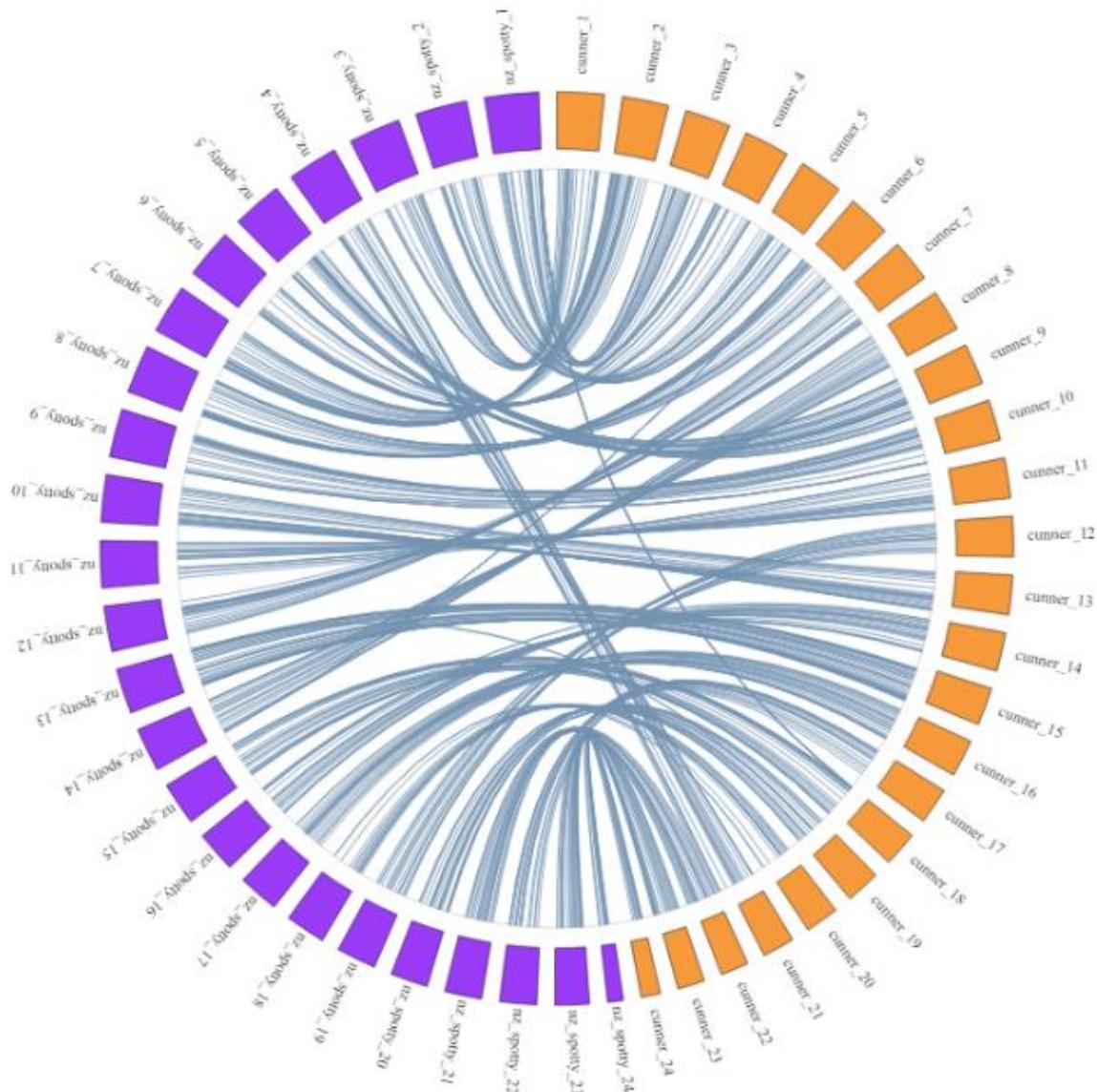
636 **Table 1.** Cunner sampling locations and sample sizes used in the analyses of population structure and
637 genomic diversity. The ALD population initially consisted of 45 sequenced samples, but analysis of the
638 genetic information was suggestive of the two samples being duplicates of each other. Conservatively,
639 these samples were therefore both removed and only 43 samples were used in subsequent analyses. The
640 Assigned subpopulation indicates the predominant k -means cluster assignments of individuals from each
641 location (which averaged 96.5% intra-location concordance), deviations from the majority location
642 assignment can be observed in Table S2)

Sampling location	ID	Latitude	Longitude	Number of sequenced samples	Assigned subpopulation
Dartmouth, NS	ALD	44.663	-63.57	43	
Cape Tamentine, NB	CTR	46.134	-63.777	44	Nova Scotia & New Brunswick (NSNB)
Shediac, NB	PDC	46.2401	-64.5286	47	
Pictou, NS	PIC	45.67441	-62.70471	19	
White Point, NS	WHI	46.88637	-60.348711	30	
Raleigh, NL	RAL	51.56469	-55.732035	11	
Rocky Harbour, NL	RKH	49.59103	-57.918966	46	Northwestern Newfoundland (NWNL)
Roddickton, NL	ROD	50.86504	-56.129756	40	
Stephenville, NL	STE	48.51383	-58.537785	46	
Brighton, NL	BTN	49.54746	-55.63737	46	
Bonavista Bay, NL	BVA	48.445	-53.845	46	
Conception Bay, NL	CBS	47.593	-52.887	44	Northeastern Newfoundland (NENL)
Trinity Bay, NL	CTB	48.516	-53.076	44	
Lewisporte, NL	LWP	49.24239	-55.056441	43	
Valleyfield, NL	VAL	49.12228	-53.609837	43	
Arnolds Cove, NL	ARN	47.75792	-54.007292	46	
Bar Haven North, NL	BHN	47.70929	-54.21512696	32	Southeastern Newfoundland (SENL)
Grand Bank, NL	GBA	47.0993	-55.751118	36	
Pool's Cove, NL	PLC	47.68018	-55.43038	43	
Tuckerton, NJ	TUK	39.58443	-74.323018	54	New Jersey (NJ)


643

644

645


646

647

648

649 **Figure 1.** Map of cunner sampling locations. The size of the points is reflective of the number of samples
650 from each location that were sequenced and used in population genomic analyses. For more information
651 on sampling locations see Table 1.

652

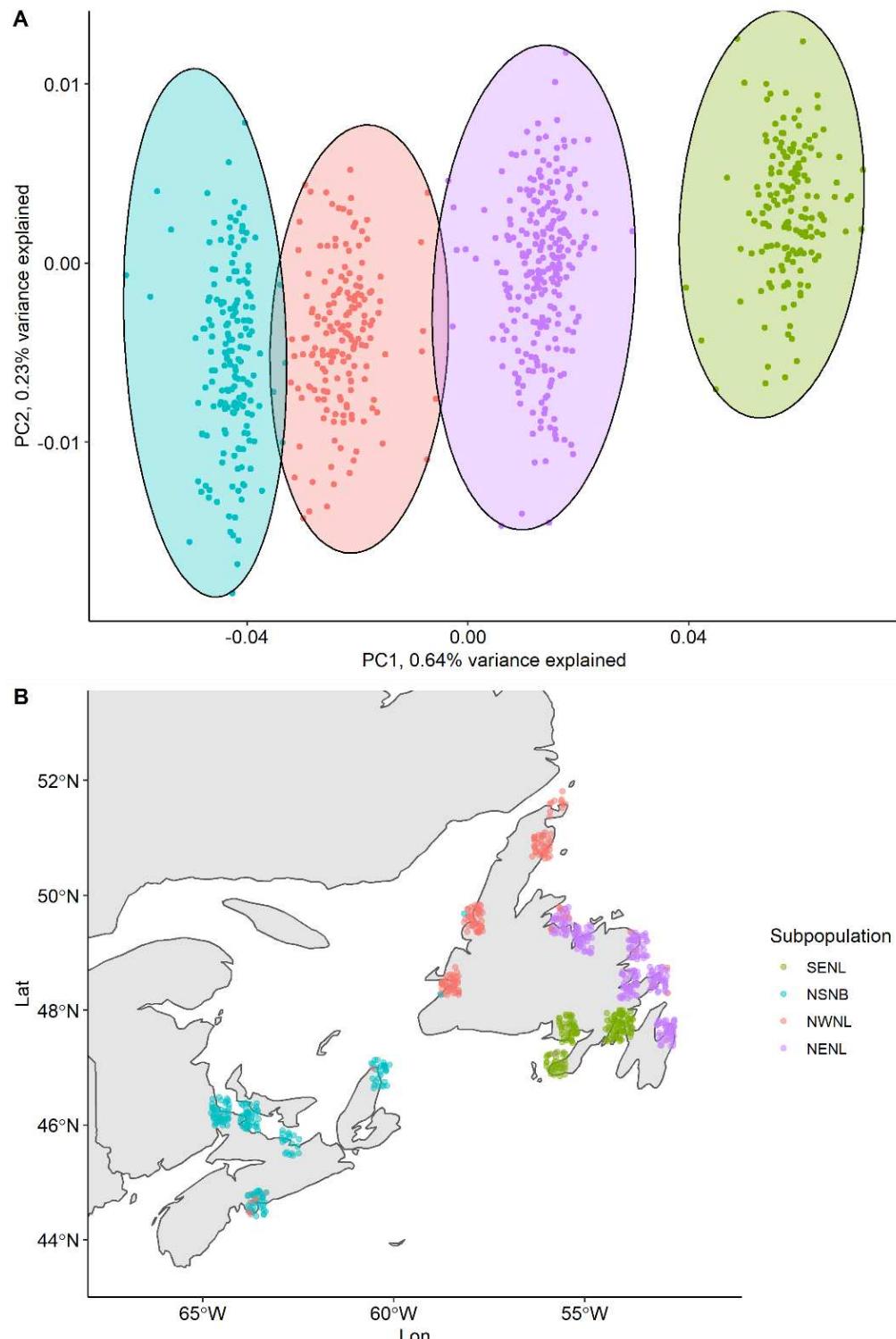
653

654 **Figure 2.** Circos plot displaying the alignment of the cunner genome to the New Zealand spotty wrasse
655 genome. The orange rectangles represent the 24 chromosomes of cunner and the purple rectangles
656 represent the 24 chromosomes of New Zealand spotty wrasse, both of which are numerically ordered
657 from the top to the bottom of the plot. The blue lines indicate homologous regions of the two genomes
658 identified via the megablast alignment of the cunner genome (query) to the New Zealand spotty wrasse
659 genome (subject). Alternative visualization of the data can be found in Figure S2.

660

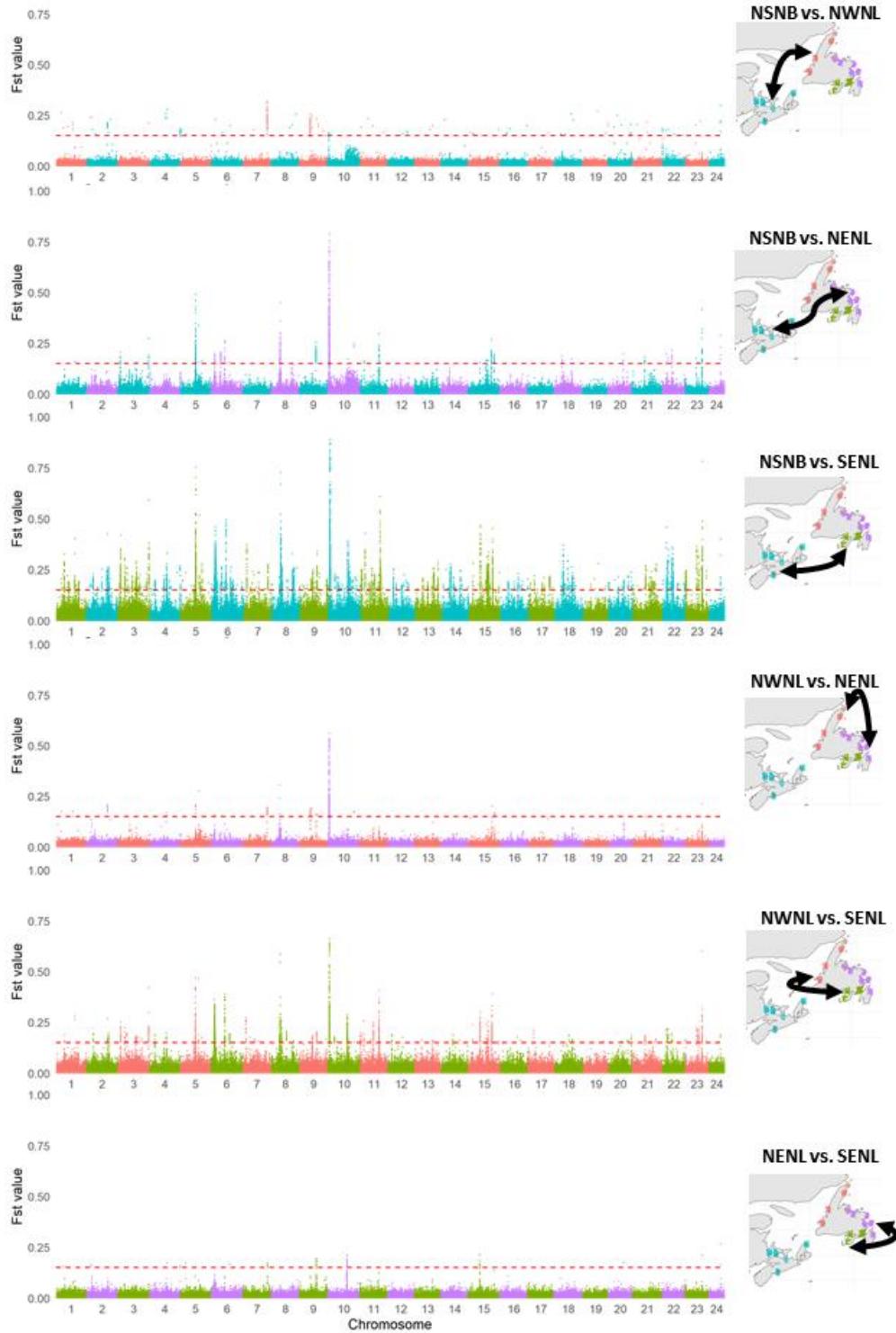
661

662

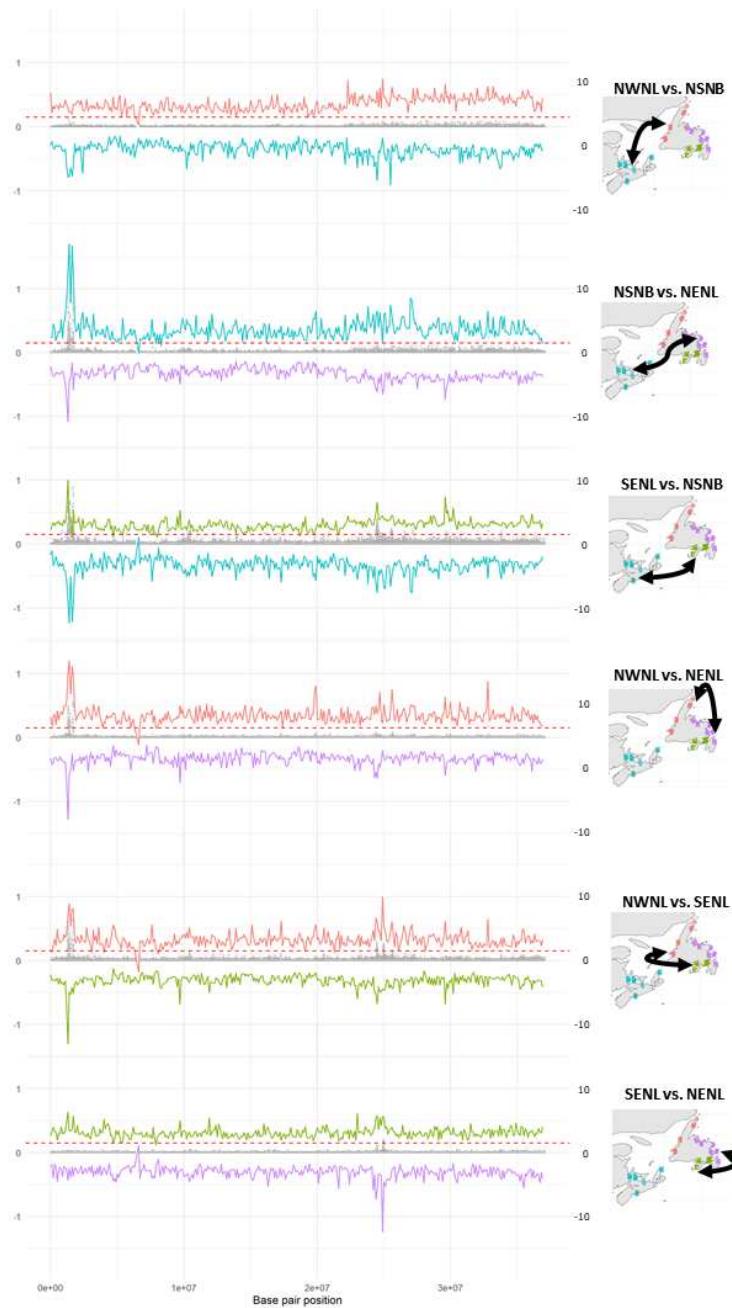

663 **Table 2.** Summary statistics of the genomic differentiation (F_{ST}) for all pairwise comparisons of cunner
664 populations. The table gives the number of loci with an F_{ST} value greater than 0.15 ($n_{loci} F_{ST} > 0.15$), the
665 mean genome wide F_{ST} for a given comparison (μF_{ST}) and the maximum F_{ST} observed for the comparison
666 ($Max F_{ST}$) for all of the pairwise comparisons of the four Atlantic Canada populations: Nova Scotia
667 (NSNB), Northwest Newfoundland (NWNL), Northeast Newfoundland (NENL), and Southeast
668 Newfoundland (SENL), as well as the set of samples from New Jersey (NJ). The vertical and horizontally
669 aligned population designations indicate the pairwise comparison of populations that corresponds to a
670 given cell.

671

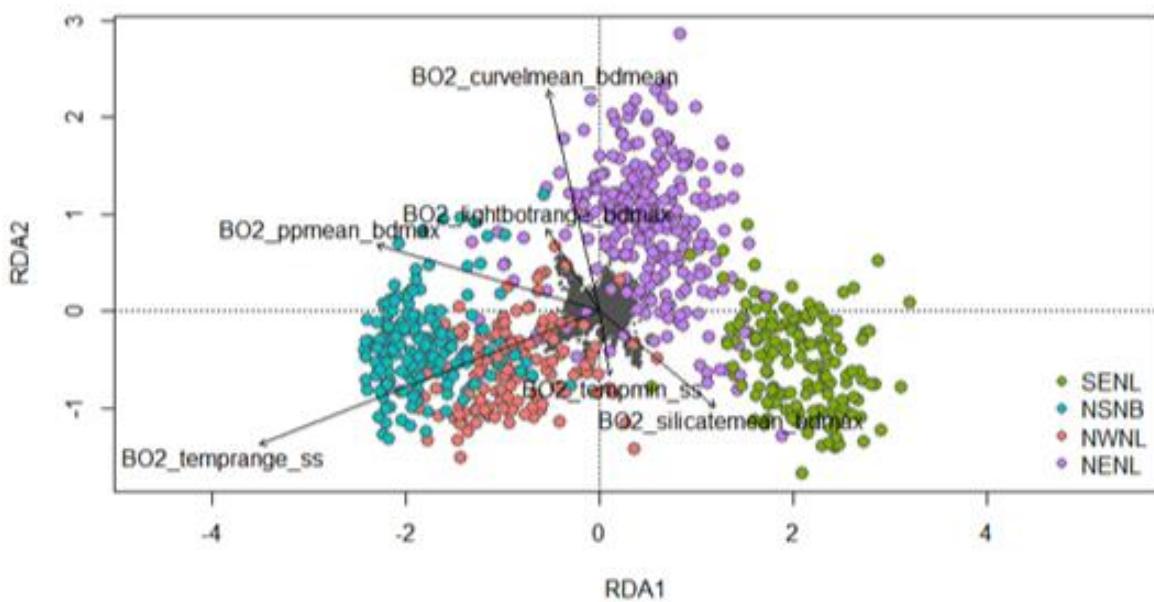
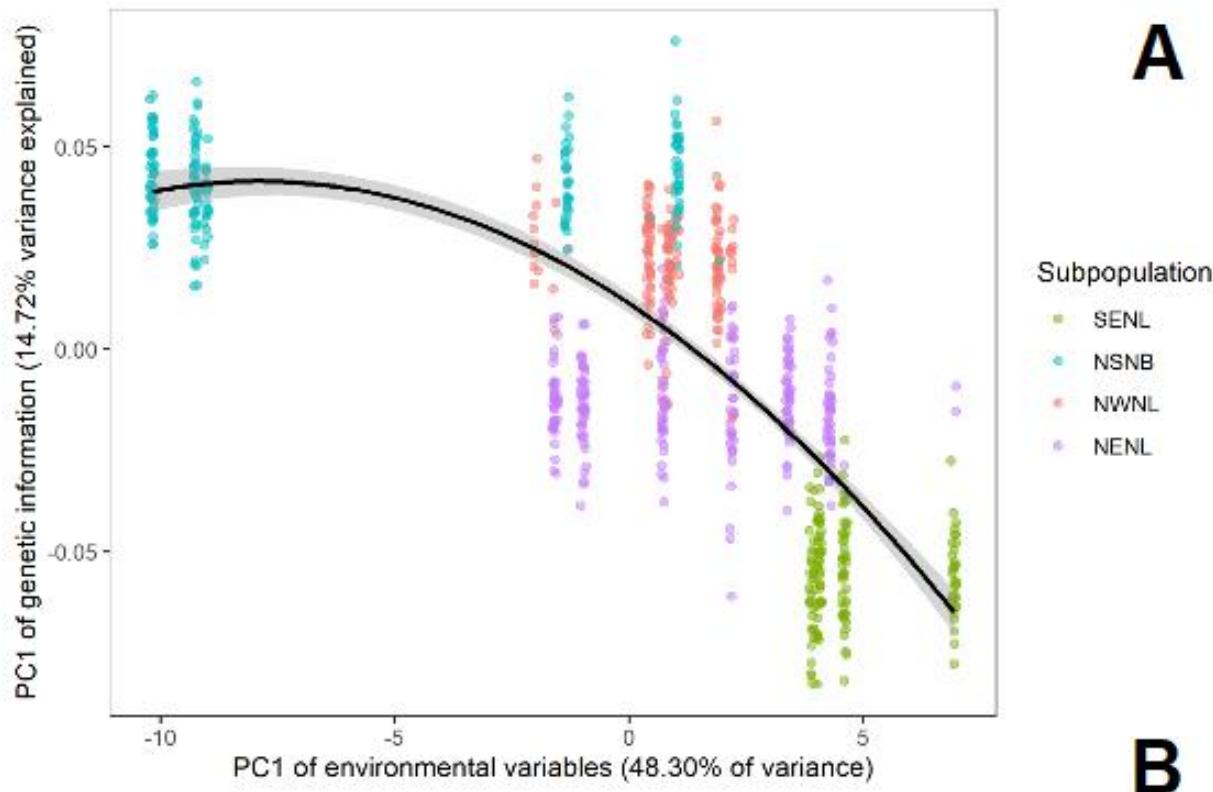
NSNB				
$n_{loci} F_{ST} > 0.15$	212			
μF_{ST}	4.75e-3			
$Max F_{ST}$	0.317			
		NWNL		
$n_{loci} F_{ST} > 0.15$	841	276		
μF_{ST}	0.0021	9.84e-4		
$Max F_{ST}$	0.785	0.562		
		NENL		
$n_{loci} F_{ST} > 0.15$	7837	2084	71	
μF_{ST}	0.005886	0.0038	0.001206	
$Max F_{ST}$	0.888	0.663	0.266	
		SENL		
$n_{loci} F_{ST} > 0.15$	2793403	2867699	2570222	2745019
μF_{ST}	0.124	0.123	0.129	0.120
$Max F_{ST}$	1	1	1	1
				NJ


672

673


674

675 **Figure 3. A)** Scatter plot of Principal Components (PCs) of genetic variation for 749 cunner individuals
676 from Atlantic Canada. The coloured ellipses denote the genetic populations identified through k -means
677 clustering of PCs and the cluster to which individuals were assigned. **B)** Map of sampling locations where
678 colour-coordinated points represent individuals and the subpopulation to which they were assigned in the
679 k -means clustering.



680

681 **Figure 4.** The genomic differentiation of all pairwise comparisons of cunner populations. Manhattan plots
682 of the per locus pairwise F_{ST} comparisons for the Atlantic Canada subpopulations. The dashed red line
683 indicates an F_{ST} threshold of 0.15. The alternating colours indicate the breakpoints between
684 chromosomes, and the text and map to the right of a given Manhattan plot indicates the pairwise
685 comparison shown.

686

687 **Figure 5.** Evidence of differentiation and selection on cunner chromosome 10 for all pairwise
688 comparisons of cunner populations. The grey dots indicate the per locus pairwise F_{ST} comparisons for the
689 Atlantic Canada subpopulations. The y axis on the left-hand side of the plots relate to the F_{ST} values and
690 the y axis on the right side of the plots relate to the XP-nSL scores. The dashed red line indicates an F_{ST}
691 threshold of 0.15. Chromosome 10 minimum and maximum normalized XP-nSL scores for 100kb
692 windows of each pairwise comparison of Atlantic Canada populations. The top and bottom lines indicate
693 the minimum and maximum XP-nSL scores respectively. The minimum and maximum for each pairwise
694 comparison indicates the population that the XP-nSL values relate to (i.e. in the first comparison NSNB
695 vs. NWNL, the maximal XP-nSL is evidence of selection in NWNL and is therefore red, while the
696 minimum XP-nSL is evidence of selection in NSNB and is therefore teal).

697

698 **Figure 6.** A) Scatter plot showing the relationship of the principal axes of environmental and genomic
699 variation. Each point is an individual, and these are coloured by the subpopulation assignment for their
700 location of origin (see Table 1). The x-axis is PC1 of environmental variation across the sampling
701 locations (48.3% variance explained) and the y-axis is per-individual PC1 of genetic variation for the
702 markers found within the F_{ST} peaks ($n_{loci} = 7698$, 14.72% variance explained). The quadratic line of best

703 fit is shown in black, with 95% confidence intervals in the flanking grey, the r^2 of the correlation was
704 0.5579 ($p < 2.2\text{e-}16$). A version of the plot using PC1 of the complete set of genetic markers can be found
705 in Figure S7. B) Ordination plot of the per-individual ($n=749$) RDA that used the six uncorrelated
706 environmental variables (Table S3) as a predictor matrix and the genotype probabilities of the 7,698
707 markers from within the identified F_{ST} peaks as the response matrix. No correction for spatial structure
708 was here applied (see Figure S8 for spatial correction version). The adjusted r^2 of the model was 0.041,
709 suggesting the constrained ordination explained approximately 4.1% of the genetic variation. Note that
710 this value is likely an underestimate, as to increase resolution the response matrix was one-hot encoded
711 (three columns per marker with the unique genotype probabilities) as opposed to dosage encoded. The
712 small grey dots represent the genotype probabilities (response) and the larger points represent the
713 individuals coloured by their population of origin. The black arrows represent the uncorrelated
714 environmental predictors. The relative arrangement of the points and arrows on the plot represents their
715 relationship with the RDA ordination axes (RDA1 = 0.7958 proportion variance explained, RDA2 =
716 0.083 proportion variance explained).

717

718

719

720

721

722

723

724 **REFERENCES**

725 Ahmed, N., & Thompson, S. (2019). The blue dimensions of aquaculture: A global synthesis. *Science of*
726 *the Total Environment*, 652, 851-861.

727 Bauman, D., Drouet, T., Fortin, M. J., & Dray, S. (2018). Optimizing the choice of a spatial weighting
728 matrix in eigenvector-based methods. *Ecology*, 99(10), 2159-2166.

729 Benestan, L. M., Rougemont, Q., Senay, C., Normandeau, E., Parent, E., Rideout, R., ... & Parent, G. J.
730 (2021). Population genomics and history of speciation reveal fishery management gaps in two
731 related redfish species (*Sebastes mentella* and *Sebastes fasciatus*). *Evolutionary applications*,
732 14(2), 588-606.

733 Blanco Gonzalez, E., & de Boer, F. (2017). The development of the Norwegian wrasse fishery and the
734 use of wrasses as cleaner fish in the salmon aquaculture industry. *Fisheries Science*, 83(5), 661-
735 670.

736 Blank, L., Sinai, I., Bar-David, S., Peleg, N., Segev, O., Sadeh, A., Kopelman N.M., Templeton A.R.,
737 Merilä J., & Blaustein, L. (2013). Genetic population structure of the endangered fire salamander
738 (*Salamandra infraimmaculata*) at the southernmost extreme of its distribution. *Animal*
739 *Conservation*, 16(4), 412-421

740 Bosch, S., Tyberghein, L., & De Clerck, O. (2017). sdmpredictors: an R package for species distribution
741 modelling predictor datasets. [Doctoral dissertation, Ghent University]. Ghent University Campus
742 Repository. <https://biblio.ugent.be/publication/8526368/file/8526372.pdf#page=49>.

743 Bradbury, C., Green, J. M., & Bruce-Lockhart, M. (1995). Home ranges of female cunner, *Tautogolabrus*
744 *adspersus* (Labridae), as determined by ultrasonic telemetry. *Canadian Journal of Zoology*, 73(7),
745 1268-1279.

746 Bradbury, C., Green, J. M., & Bruce-Lockhart, M. (1998). Daily and seasonal activity patterns of female
747 cunner, *Tautogolabrus adspersus* (Labridae), in Newfoundland. *Oceanographic Literature*
748 *Review*, 2(45), 405.

749 Bradbury, I. R., Snelgrove, P. V., & Pepin, P. (2003). Passive and active behavioural contributions to
750 patchiness and spatial pattern during the early life history of marine fishes. *Marine Ecology*
751 *Progress Series*, 257, 233-245.

752 Broad Institute (2019) Picard Toolkit GitHub Repository. <https://broadinstitute.github.io/picard/>.

753 Browning, B. L., & Browning, S. R. (2016). Genotype imputation with millions of reference samples. *The*
754 *American Journal of Human Genetics*, 98(1), 116-126.

755 Browning, S. R., & Browning, B. L. (2007). Rapid and accurate haplotype phasing and missing-data
756 inference for whole-genome association studies by use of localized haplotype clustering. *The*
757 *American Journal of Human Genetics*, 81(5), 1084-1097.

758 Curran, M. C. (1992). The Behavioral Physiology of Labroid Fishes. [Doctoral dissertation,
759 Massachusetts Institute of Technology and Woods Hole Oceanographic Institution]. Woods Hole
760 Open Access Server. <https://hdl.handle.net/1912/5527>.

761 Chen, Z. (2020). Proof of concept: efficacy of cleaner fish, cultured juvenile cunner (*Tautogolabrus*
762 *adspersus*), for sea lice (*Lepeophtheirus salmonis*) mitigation and control in Atlantic salmon
763 (*Salmo salar*). [Doctoral dissertation, Memorial University of Newfoundland]. Memoria
764 University Research Repository. <http://research.library.mun.ca/id/eprint/15071>.

765 Christensen, K. A., Leong, J. S., Sakhrai, D., Biagi, C. A., Minkley, D. R., Withler, R. E., ... & Devlin,
766 R. H. (2018). Chinook salmon (*Oncorhynchus tshawytscha*) genome and transcriptome. *PloS One*, 13(4), e0195461.

768 Capblancq, T., & Forester, B. R. (2021). Redundancy analysis: A Swiss Army Knife for landscape
769 genomics. *Methods in Ecology and Evolution*, 12(12), 2298-2309.

770 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., ... & 1000 Genomes
771 Project Analysis Group. (2011). The variant call format and VCFtools. *Bioinformatics*, 27(15),
772 2156-2158.

773 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., ... & Li, H. (2021). Twelve
774 years of SAMtools and BCFtools. *Gigascience*, 10(2), giab008.

775 DeFaveri, J., Jonsson, P. R., & Merilä, J. (2013). Heterogeneous genomic differentiation in marine
776 threespine sticklebacks: adaptation along an environmental gradient. *Evolution*, 67(9), 2530-2546.

777 De Mitcheson, Y. S., & Liu, M. (2008). Functional hermaphroditism in teleosts. *Fish and Fisheries*, 9(1),
778 1-43.

779 Dew, C. B. (1976). A contribution to the life history of the cunner, *Tautogolabrus adspersus*, in Fishers
780 Island Sound, Connecticut. *Chesapeake Science*, 17(2), 101-113.

781 Dixon, P. (2003). VEGAN, a package of R functions for community ecology. *Journal of Vegetation
782 Science*, 14(6), 927-930.

783 Liu, D., Wang, X., Guo, H., Zhang, X., Zhang, M., & Tang, W. (2021). Chromosome-level genome
784 assembly of the endangered humphead wrasse *Cheilinus undulatus*: Insight into the expansion of
785 opsins genes in fishes. *Molecular Ecology Resources*, 21(7), 2388-2406.

786 Dray, S., Blanchet, G., Borcard, D., Guenard, G., Jombart, T., Larocque, G., ... & Dray, M. S. (2018).
787 Package 'adespatial'. R Package, 2018, 3-8.

788 Duranton, M., Allal, F., Fraïsse, C., Bierne, N., Bonhomme, F., & Gagnaire, P. A. (2018). The origin and
789 remolding of genomic islands of differentiation in the European sea bass. *Nature
790 communications*, 9(1), 1-11.

791 Faust, E., Halvorsen, K. T., Andersen, P., Knutsen, H., & André, C. (2018). Cleaner fish escape salmon
792 farms and hybridize with local wrasse populations. *Royal Society Open Science*, 5(3), 171752.

793 Faust, E., Jansson, E., André, C., Halvorsen, K. T., Dahle, G., Knutsen, H., ... & Glover, K. A. (2021).
794 Not that clean: Aquaculture-mediated translocation of cleaner fish has led to hybridization on the
795 northern edge of the species' range. *Evolutionary Applications*, 14(6), 1572-1587.

796 Ferrer-Admetlla, A., Liang, M., Korneliussen, T., & Nielsen, R. (2014). On detecting incomplete soft or
797 hard selective sweeps using haplotype structure. *Molecular Biology and Evolution*, 31(5), 1275-
798 1291.

799 Fitzpatrick, M. C., & Keller, S. R. (2015). Ecological genomics meets community-level modelling of
800 biodiversity: Mapping the genomic landscape of current and future environmental adaptation.
801 *Ecology Letters*, 18(1), 1-16.

802 Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). Harnessing genomics for
803 delineating conservation units. *Trends in Ecology & Evolution*, 27(9), 489-496.

804 Gemmell, N. J., Todd, E. V., Goikoetxea, A., Ortega-Recalde, O., & Hore, T. A. (2019). Natural sex
805 change in fish. *Current Topics in Developmental Biology*, 134, 71-117.

806 Godwin, J. (2009, May). Social determination of sex in reef fishes. In *Seminars in Cell & Developmental*
807 *Biology* (Vol. 20, No. 3, pp. 264-270). Academic Press.

808 Green, J. M., & Farwell, M. (1971). Winter habits of the cunner, *Tautogolabrus adspersus* (Walbaum
809 1792), in Newfoundland. *Canadian Journal of Zoology*, 49(12), 1497-1499.

810 Green, J. M. (1975). Restricted movements and homing of the cunner, *Tautogolabrus adspersus*
811 (Walbaum)(Pisces: Labridae). *Canadian Journal of Zoology*, 53(10), 1427-1431.

812 Han, F., Jamsandekar, M., Pettersson, M. E., Su, L., Fuentes-Pardo, A. P., Davis, B. W., ... & Andersson,
813 L. (2020). Ecological adaptation in Atlantic herring is associated with large shifts in allele
814 frequencies at hundreds of loci. *Elife*, 9, e61076.

815 Jansson, E., Besnier, F., Malde, K., André, C., Dahle, G., & Glover, K. A. (2020). Genome wide analysis
816 reveals genetic divergence between Goldsinny wrasse populations. *BMC Genetics*, 21(1), 1-15.

817 Juanes, F. (2007). Role of habitat in mediating mortality during the post-settlement transition phase of
818 temperate marine fishes. *Journal of Fish Biology*, 70(3), 661-677.

819 Karlsson, S., Diserud, O. H., Fiske, P., & Hindar, K.. (2016). Widespread genetic introgression of escaped
820 farmed Atlantic salmon in wild salmon populations. *ICES Journal of Marine Science*, 73(10),
821 2488-2498.

822 Kelly Cove Salmon Ltd. (2012) Utilization of the Cunner (*Tautogolabrus adspersus*), a Wrasse, as a
823 Means of Sea Lice Removal in Commercial Salmon Farms. [https://www.dfo-
824 mpo.gc.ca/aquaculture/sustainable-durable/rapports-reports/2011-12/M03-eng.htm](https://www.dfo-mpo.gc.ca/aquaculture/sustainable-durable/rapports-reports/2011-12/M03-eng.htm)

825 Kelly, N. I., Alzaid, A., Nash, G. W., & Gamperl, A. K. (2014). Metabolic depression in cunner
826 (*Tautogolabrus adspersus*) is influenced by ontogeny, and enhances thermal tolerance. *PLoS One*,
827 9(12), e114765.

828 Kess, T., Bentzen, P., Lehnert, S. J., Sylvester, E. V., Lien, S., Kent, M. P., ... & Bradbury, I. R. (2020).
829 Modular chromosome rearrangements reveal parallel and nonparallel adaptation in a marine fish.
830 *Ecology and Evolution*, 10(2), 638-653.

831 Kess, T., Einfeldt, A. L., Wringe, B., Lehnert, S. J., Layton, K. K., McBride, M. C., ... & Bradbury, I. R.
832 (2021). A putative structural variant and environmental variation associated with genomic
833 divergence across the Northwest Atlantic in Atlantic Halibut. *ICES Journal of Marine Science*,
834 78(7), 2371-2384.

835 Knutson, H., Jorde, P. E., Gonzalez, E. B., Robalo, J., Albretsen, J., & Almada, V. (2013). Climate
836 change and genetic structure of leading edge and rear end populations in a northwards shifting
837 marine fish species, the corkwing wrasse (*Syphodus melops*). *PLoS One*, 8(6), e67492.

838 Knutson, H., Catarino, D., Rogers, L., Sodeland, M., Mattingdal, M., Jahnke, M., ... & Jorde, P. E.
839 (2022). Combining population genomics with demographic analyses highlights habitat patchiness
840 and larval dispersal as determinants of connectivity in coastal fish species. *Molecular Ecology*.

841 Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: analysis of next generation
842 sequencing data. *BMC Bioinformatics*, 15(1), 1-13.

843 Lamm, M. S., Liu, H., Gemmell, N. J., & Godwin, J. R. (2015). The need for speed: neuroendocrine
844 regulation of socially-controlled sex change. *Integrative and Comparative Biology*, 55(2), 307-
845 322.

846 Layton, K. K. S., Snelgrove, P. V. R., Dempson, J. B., Kess, T., Lehnert, S. J., Bentzen, P., ... &
847 Bradbury, I. R. (2021). Genomic evidence of past and future climate-linked loss in a migratory
848 Arctic fish. *Nature Climate Change*, 11(2), 158-165.

849 Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R package for multivariate analysis. *Journal of*
850 *Statistical Software*, 25, 1-18.

851 Lehnert, S. J., DiBacco, C., Van Wyngaarden, M., Jeffery, N. W., Ben Lowen, J., Sylvester, E. V., ... &
852 Bradbury, I. R. (2019). Fine-scale temperature-associated genetic structure between inshore and
853 offshore populations of sea scallop (*Placopecten magellanicus*). *Heredity*, 122(1), 69-80.

854 Levin, P. S. (1996). Recruitment in a temperate demersal fish: Does larval supply matter?. *Limnology and*
855 *Oceanography*, 41(4), 672-679.

856 Levy Karin, E., Mirdita, M., & Söding, J. (2020). MetaEuk—sensitive, high-throughput gene discovery,
857 and annotation for large-scale eukaryotic metagenomics. *Microbiome*, 8(1), 1-15.

858 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform.
859 *Bioinformatics*, 25(14), 1754-1760.

860 Liu, H., Todd, E. V., Lokman, P. M., Lamm, M. S., Godwin, J. R., & Gemmell, N. J. (2017). Sexual
861 plasticity: a fishy tale. *Molecular Reproduction and Development*, 84(2), 171-194.

862 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
863 *EMBnet.journal*, 17(1), 10-12.

864 Meisner, J., & Albrechtsen, A. (2018). Inferring population structure and admixture proportions in low-
865 depth NGS data. *Genetics*, 210(2), 719-731.

866 Mérot, C., Oomen, R. A., Tigano, A., & Wellenreuther, M. (2020). A roadmap for understanding the
867 evolutionary significance of structural genomic variation. *Trends in Ecology & Evolution*, 35(7),
868 561-572.

869 Moore, J. S., Bourret, V., Dionne, M., Bradbury, I., O'Reilly, P., Kent, M., ... & Bernatchez, L. (2014).
870 Conservation genomics of anadromous Atlantic salmon across its North American range: outlier
871 loci identify the same patterns of population structure as neutral loci. *Molecular Ecology*, 23(23),
872 5680-5697.

873 Moran, C. J., Carlowicz, R. M., & Gerry, S. P. (2019). A temperate labrid fish demonstrates
874 compensatory mechanisms to feed at torpor-inducing temperatures. *Journal of Zoology*, 307(2),
875 125-130.

876 Naylor, R., Hindar, K., Fleming, I. A., Goldburg, R., Williams, S., Volpe, J., ... & Mangel, M. (2005).
877 Fugitive salmon: Assessing the risks of escaped fish from net-pen aquaculture. *BioScience*, 55(5),
878 427-437.

879 Oomen, R. A., Kuparinen, A., & Hutchings, J. A. (2020). Consequences of single-locus and tightly linked
880 genomic architectures for evolutionary responses to environmental change. *Journal of Heredity*,
881 111(4), 319-332.

882 Ortega-Recalde, O., Goikoetxea, A., Hore, T. A., Todd, E. V., & Gemmell, N. J. (2020). The genetics and
883 epigenetics of sex change in fish. *Annual Review of Animal Biosciences*, 8, 47-69.

884 Pottle, R. A., & Green, J. M. (1979). Territorial behaviour of the north temperate labrid, *Tautogolabrus*
885 *adspersus*. *Canadian Journal of Zoology*, 57(12), 2337-2347.

886 Pratt, E. A., Beheregaray, L. B., Bilgmann, K., Zanardo, N., Diaz-Aguirre, F., Brauer, C., ... & Möller, L.
887 M. (2022). Seascape genomics of coastal bottlenose dolphins along strong gradients of
888 temperature and salinity. *Molecular Ecology*.

889 Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., ... & Jarvis, E. D. (2021).
890 Towards complete and error-free genome assemblies of all vertebrate species. *Nature*, 592(7856),
891 737-746.

892 Sayer, M. D. J., Gibson, R. N., & Atkinson, R. J. A. (1993). Distribution and density of populations of
893 goldsinny wrasse (*Ctenolabrus rupestris*) on the west coast of Scotland. *Journal of Fish Biology*,
894 43, 157-167.

895 Sayer, M. D. J., & Reader, J. P. (1996). Exposure of goldsinny, rock cook and corkwing wrasse to low
896 temperature and low salinity: survival, blood physiology and seasonal variation. *Journal of Fish
897 Biology*, 49(1), 41-63.

898 Schmidt, P. S., Serrão, E. A., Pearson, G. A., Riginos, C., Rawson, P. D., Hilbush, T. J., ... & Rand, D. M.
899 (2008). Ecological genetics in the North Atlantic: environmental gradients and adaptation at
900 specific loci. *Ecology*, 89(sp11), S91-S107.

901 Seymour, E. A., & Bergheim, A. (1991). Towards a reduction of pollution from intensive aquaculture
902 with reference to the farming of salmonids in Norway. *Aquacultural Engineering*, 10(2), 73-88.

903 Shanks, A. L. (2009). Pelagic larval duration and dispersal distance revisited. *The Biological Bulletin*,
904 216(3), 373-385.

905 Smit, A.F.A., Hubley, R. & Green, P. (2013) RepeatMasker Open-4.0.
906 <http://www.repeatmasker.org>.

907 Stanley, R. R., DiBacco, C., Lowen, B., Beiko, R. G., Jeffery, N. W., Van Wyngaarden, M., ... &
908 Bradbury, I. R. (2018). A climate-associated multispecies cryptic cline in the northwest Atlantic.
909 *Science Advances*, 4(3), eaao929.

910 Sylvester, E. V., Beiko, R. G., Bentzen, P., Paterson, I., Horne, J. B., Watson, B., ... & Bradbury, I. R.
911 (2018). Environmental extremes drive population structure at the northern range limit of Atlantic
912 salmon in North America. *Molecular Ecology*, 27(20), 4026-4040.

913 Szpiech, Z. A., Novak, T. E., Bailey, N. P., & Steviston, L. S. (2021). Application of a novel haplotype-
914 based scan for local adaptation to study high-altitude adaptation in rhesus macaques. *Evolution
915 Letters*, 5(4), 408-421.

916 Tange, O. (2018). GNU parallel Mar. 2018.

917 Tigano, A., Jacobs, A., Wilder, A. P., Nand, A., Zhan, Y., Dekker, J., & Therkildsen, N. O. (2021).
918 Chromosome-level assembly of the Atlantic silverside genome reveals extreme levels of sequence
919 diversity and structural genetic variation. *Genome Biology and Evolution*, 13(6), evab098.

920 Tupper, M., & Boutilier, R. G. (1997). Effects of habitat on settlement, growth, predation risk and
921 survival of a temperate reef fish. *Marine Ecology Progress Series*, 151, 225-236.

922 Waples, R. S. (1998). Separating the wheat from the chaff: patterns of genetic differentiation in high gene
923 flow species. *Journal of Heredity*, 89(5), 438-450.

924 Waples, R. S., Punt, A. E., & Cope, J. M. (2008). Integrating genetic data into management of marine
925 resources: how can we do it better?. *Fish and Fisheries*, 9(4), 423-449.

926 Warner, R. R. (1984). Mating behavior and hermaphroditism in coral reef fishes. *American Scientist*,
927 72(2), 128-136.

928 Watson, K. B., Lehnert, S. J., Bentzen, P., Kess, T., Einfeldt, A., Duffy, S., ... & Bradbury, I. R. (2022).
929 Environmentally associated chromosomal structural variation influences fine-scale population
930 structure of Atlantic Salmon (*Salmo salar*). *Molecular Ecology*, 31(4), 1057-1075.

931 Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure.
932 *Evolution*, 1358-1370.

933 Wringe, B. F., Jeffery, N. W., Stanley, R. R., Hamilton, L. C., Anderson, E. C., Fleming, I. A., ... &
934 Bradbury, I. R. (2018). Extensive hybridization following a large escape of domesticated Atlantic
935 salmon in the Northwest Atlantic. *Communications Biology*, 1(1), 1-9.

936 Yoo, A. B., Jette, M. A., & Grondona, M. (2003, June). Slurm: Simple linux utility for resource
937 management. In *Workshop on job scheduling strategies for parallel processing* (pp. 44-60).
938 Springer, Berlin, Heidelberg.

939

940

941

942 CONFLICT OF INTERESTS

943 We declare we have no competing interests.

944

945

946 AUTHOR CONTRIBUTIONS

947 The study was designed by IRB, TK, and CMN. Sample collection was done by TK, SJD, SJL, and BFW.

948 Analysis design was done by CMN, TK, MKB, BLL, and IRB. Bioinformatics analyses and data

949 visualizations were conducted by CMN. Initial manuscript preparation was done by CMN. All authors

950 contributed to the revisions of the manuscript.

951

952 SUPPORTING INFORMATION

953 Additional supporting information may be found in the online version of the article at the publisher's

954 website.