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Abstract

Cerebrovascular reactivity (CVR), defined as the cerebral blood flow response to a vasoactive
stimulus, is an imaging biomarker with demonstrated utility in a range of diseases and in typical
development and aging processes. A robust and widely implemented method to map CVR
involves using a breath-hold task during a BOLD fMRI scan. Recording end-tidal CO; (PetCO)
changes during the breath-hold task is recommended to be used as a reference signal for
modeling CVR amplitude in standard units (%BOLD/mmHg) and CVR delay in seconds. However,
obtaining reliable PerCO:2 recordings requires equipment and task compliance that may not be
achievable in all settings. To address this challenge, we investigated two alternative reference
signals to map CVR amplitude and delay in a lagged general linear model (lagged-GLM)
framework: respiration volume per time (RVT) and average gray matter BOLD response (GM-
BOLD). In 8 healthy adults with multiple scan sessions, we compare spatial agreement of CVR
maps from RVT and GM-BOLD to those generated with PerCO.. We define a threshold to
determine whether a PerCO: recording has “sufficient” quality for CVR mapping and perform
these comparisons in 16 datasets with sufficient PetCO and 6 datasets with insufficient PerCOo.
When PerCO: quality is sufficient, both RVT and GM-BOLD produce CVR amplitude maps that
are nearly identical to those from PerCO: (after accounting for differences in scale), with the
caveat they are not in standard units to facilitate between-group comparisons. CVR delays are
comparable to PerCO2 with an RVT regressor but may be underestimated with the average GM-
BOLD regressor. Importantly, when PerCO. quality is insufficient, RVT and GM-BOLD CVR
recover reasonable CVR amplitude and delay maps, provided the participant attempted the
breath-hold task. Therefore, our framework offers a solution for achieving high quality CVR maps
in both retrospective and prospective studies where sufficient PerCO2 recordings are not available
and especially in populations where obtaining reliable measurements is a known challenge (e.g.,
children). Our results have the potential to improve the accessibility of CVR mapping and to
increase the prevalence of this promising metric of vascular health.
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1. Introduction

The regulation of cerebral blood flow (CBF) is critical to maintain proper brain function. One
mechanism that allows for tight regulation of CBF is the dilation and constriction of arterioles to
increase or decrease blood flow, respectively. This mechanism can be characterized by a metric
called cerebrovascular reactivity (CVR), defined as the CBF response to a vasoactive stimulus. It
represents the ability of the brain’s blood vessels to dilate or constrict and is thus an indicator of
vascular health. CVR has gained attention in recent years as an imaging biomarker in a range of
pathologies, including stroke (Krainik et al., 2005), atherosclerotic disease (Donahue et al., 2014),
multiple sclerosis (Marshall et al., 2014), moyamoya disease (Mikulis et al., 2005), sickle cell
anemia (Vaclavu et al., 2019), and brain tumors (Fierstra et al., 2018), among others. In addition,
changes in CVR throughout developmental (Leung et al., 2016b) and aging (McKetton et al.,
2018) processes have been reported.

CVR measurements require two components: 1) a vasoactive stimulus to elicit a change in
blood flow, and 2) a measure of the CBF response. An established approach for CVR
measurements involves administering carbon dioxide (CO2) gas via a face mask during an MRI
scan (Fierstra et al., 2013; Liu et al., 2019; Sleight et al., 2021). CO: acts as a vasodilator, causing
a systemic increase in blood flow, and the resulting blood flow response throughout the brain can
be detected by MRI. Most commonly, the blood oxygenation level-dependent (BOLD) contrast is
used as a surrogate measure of CBF. Alternatively, arterial spin labeling (ASL) may be used to
obtain CBF in quantitative units, but it is currently limited by its low SNR, poor temporal resolution,
and modeling challenges due to altered labeling efficiency in the hypercapnic state (Pinto et al.,
2021).

Other guidance for exemplar CVR measurements include normalizing the blood flow response
to the CO2 change to make the units quantitative and accounting for regional delays in the CVR
response. For quantitative CVR measurements, it is necessary to record the changes in arterial
CO. throughout the gas challenge (Kastrup et al., 2001; Liu et al., 2019; Sleight et al., 2021;
Tancredi and Hoge, 2013). Arterial CO> measurements are invasive, so end-tidal CO», the partial
pressure of CO, at the end of an exhale, may be used as a surrogate (McSwain et al., 2010;
Peebles et al., 2007). By accounting for end-tidal CO. changes (typically in units of mmHg), CVR
can be reported as the blood flow response per unit change of CO2 (%BOLD/mmHg for BOLD or
ACBF/mmHg for ASL). Additionally, it is important to consider not only the amplitude, but also the
timing, or delay, of the blood flow response (Bright et al., 2009; Chang et al., 2008; Duffin et al.,
2015; Moia et al., 2020a). Variations in the response time may occur due to regional variations in
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the timing of arterial blood arrival and local regulation of vessel diameter (Donahue et al., 2016).
Accounting for this delay is not only important to achieve accurate CVR amplitudes but also serves
as a separate metric of vascular health that is sensitive to cerebrovascular pathology (Donahue
et al., 2016; Leung et al., 2016a; Sam et al., 2016; Stickland et al., 2021; Thomas et al., 2014;
Thrippleton et al., 2018).

While gas challenges are typically recommended for robust CVR measurements, the
equipment for gas delivery is expensive and requires technical expertise to operate safely (Liu
and De Vis, 2019). In addition, some patrticipants find wearing a mask uncomfortable and may
experience increased claustrophobia or anxiety, introducing uncontrolled confounding factors in
the data (Urback et al., 2017). Breathing tasks, such as breath-holds (Ratnatunga and Adiseshiah,
1990), deep breaths (Bright et al., 2009; Sousa et al., 2014), and intermittent breath modulations
(Liu et al., 2020), are feasible alternatives to gas challenges. By modulating endogenous CO;
levels, these tasks serve as vasoactive stimuli and can also produce reliable estimates of CVR.
Breath-holds are a particularly common breathing modulation (Urback et al., 2017) and have been
used successfully even in populations with known task-compliance challenges (Dlamini et al.,
2018; Handwerker et al., 2007; Thomason et al., 2005). CVR estimates are comparable between
breath-hold tasks and gas challenges (Kastrup et al., 2001; Tancredi and Hoge, 2013), with robust
measurements across a range of breath-hold durations (Bright and Murphy, 2013; Magon et al.,
2009).

However, obtaining accurate CVR measurements from a breath-hold task still requires reliable
end-tidal CO, measurements, which may not be achieved in all subjects and settings. Besides,
end-tidal CO. measurements require external physiological monitoring equipment (e.g., gas
analyzer), which may not be available in all clinical or research imaging centers. Even in healthy
adults, there are challenges in achieving successful breath-hold performance with end-tidal CO»
recordings. For example, in a recent study of 10 healthy adults (Moia et al., 2021), 3 subjects
were excluded due to “poor performance of the breath-hold task”. There are added difficulties with
cooperation in patient cohorts, particularly in those with cognitive impairments who may struggle
to execute commands (Pujol et al., 1998; Schouwenaars et al., 2021). Obtaining high-quality data
in younger participants also tends to be more challenging, and previous work has reported
inconsistent performance of a breathing task among children and young adults (Stickland et al.,
2021).

The primary complication with breath-hold data quality is obtaining end-tidal CO:2
measurements both before and after the breath-hold, which is critical for characterizing CO»
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changes and measuring CVR in quantitative, normalized units (Bright and Murphy, 2013; Murphy
et al., 2011). This can be achieved by designing the breath-hold task with expirations both before
and after the breath-hold period (Pinto et al., 2021). Unreliable estimates of these expiration end-
tidal COz values may occur if the participant simply does not execute them as instructed, for
example, by performing a brief inspiration instead. In addition, end-tidal CO. measurements are
typically acquired via a nasal cannula, which requires a participant to breathe through their nose
for the duration of the experiment. Lapses in nose-breathing or variations in the pressure of
exhaled air may also lead to inaccurate end-tidal values.

In this work, we aimed to find alternative strategies for mapping CVR amplitude and delay that
could be used in cases where end-tidal CO2 measurements are unavailable or unreliable. We
approached this problem in breath-hold task data using a lagged-general linear model (lagged-
GLM approach) to achieve more accurate CVR amplitude estimates by accounting for regional
variations in CVR delay (Moia et al., 2021, 2020a; Stickland et al., 2021). We then compared
results using end-tidal COz, or two alternative regressors (reference signals), in the lagged-GLM.

First, we investigated another measure of respiratory physiology, respiration volume per time
(RVT) (Birn et al., 2008, 2006). RVT represents changes in both the rate and depth of breathing
and is obtained by continuously measuring chest position via a pressure-sensitive belt worn
around the chest or abdomen. RVT is an attractive alternative to end-tidal CO- because it also
captures whether the participant attempts the breath-hold task. Even if the end-tidal CO:
measurements do not reflect a change during the apnea period, there will be a decrease in RVT
due to the pause in breathing. RVT and end-tidal CO: are highly correlated, have similar overlap
in the variance they explain in the BOLD signal, and consistent latencies at which they affect the
BOLD signal (Chang and Glover, 2009). Additionally, a respiration belt is commonly found in most
scanner set-ups, making it potentially more accessible than end-tidal CO> measurements.

Second, we investigated a data-driven regressor using the average gray matter BOLD
timeseries (GM-BOLD). The main advantage of the GM-BOLD signal is that no external
monitoring equipment is required. Changes in the BOLD timeseries should be evident provided
the participant attempted the breath-hold and achieved periods of hypercapnia (Bright and
Murphy, 2013; Stickland et al., 2021). While the global BOLD signal or “refined” GM-BOLD
regressors have been used in other CVR methods, including techniques that capture both
amplitude and delay (Geranmayeh et al., 2015; Liu et al., 2017; Tong et al., 2011; Tong and
Frederick, 2014; van Niftrik et al., 2016), our proposed approach simultaneously models other
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regressors (e.g., motion confounds) when searching for the optimum delay of the reference signal
and outputs amplitude maps normalized to the input regressor amplitude (Moia et al., 2020a).

The aim of this work was to test if RVT or GM-BOLD timeseries can be used in a lagged-GLM
framework to achieve estimates of CVR amplitude and delay that are spatially similar to those
generated with the gold standard of end-tidal CO;, with the caveat that these alternative CVR
amplitude measurements will no longer be in the standard, normalized units (%BOLD/mmHg) that
are recommended for CVR comparisons across people and sessions (Kastrup et al., 2001;
Murphy et al., 2011; Pinto et al., 2021; Sleight et al., 2021). We assess the agreement between
CVR amplitude and delay maps in breath-hold fMRI datasets with high-quality or “sufficient” end-
tidal CO2data, and in those where end-tidal CO> measurements were sub-optimal or “insufficient”.
We hypothesized that in a lagged-GLM framework, using RVT and GM-BOLD as reference
signals would produce CVR amplitude and delay measurements that are highly correlated with
those produced by high-quality end-tidal CO, measurements. In cases with unreliable end-tidal
CO2 measurements, we hypothesized that RVT or GM-BOLD timeseries could be used to recover
reasonable CVR amplitude and delay maps, provided that the participant attempted the breath-
hold task.

Table 1: Comparison of proposed reference signals for modeling CVR amplitude and delay

CVR delay measurement

PerCO:2
Quantitative (seconds)

RVT
Quantitative (seconds)

GM-BOLD
Quantitative (seconds)

CVR amplitude

Standard

Not standard, arbitrary

Not standard, unitless

acquisition to participant
compliance

breathe through their
nose and start and end
breath-hold on
exhalation

participant's breathing
pattern changes (e.g.,
stomach vs. chest or
shallow vs. deep
breathing), belt must
be positioned correctly

measurement (%BOLD/mmHg) (%BOLD/a.u.) (%BOLD/%BOLD)
Additional equipment Nasal cannula and gas | Respiratory belt N/A
required for acquisition monitoring system (typically comes with
scanner)
Head motion confounds N/A N/A Present
in reference signal
Sensitivity of data Participant must Potential bias if N/A

PerCO:2 = partial pressure of end-tidal COz, RVT = respiration volume per time, GM-BOLD = average blood

oxygenation level dependent signal in gray matter.



https://doi.org/10.1101/2022.11.28.517116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.28.517116; this version posted November 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2. Methods
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Figure 1: Key steps of the CVR modeling methods compared in this manuscript. Reference timeseries are
generated via external recordings or the BOLD MRI data. PerCQO:2 and RVT timeseries are convolved with
canonical response functions. For all methods, modeling is repeated for shifted variations of each reference
time signal. On a voxelwise basis, the shift that optimizes the full model R? is selected. Maps of amplitude
and delay are then generated using these parameters. PerCO: = partial pressure of end-tidal COz, RVT =
respiration volume per time, BOLD = blood oxygenation level dependent, GM = gray matter, HRF =
hemodynamic response function, RRF = respiration response function.

2.1 Participants

A subset of the imaging and physiological data used in this manuscript have been published
previously (Moia et al., 2021, 2020b). The full dataset includes ten healthy subjects (5F, 24-40y
at the start of the experiment) with no history of psychiatric or neurological disorders. All subjects
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completed ten MRI sessions, which were scheduled exactly one week apart at the same time of
day. MRI scanning took place using a 3T Siemens PrismaFit scanner with a 64-channel head coil.
The study was approved by the Basque Center on Cognition, Brain and Language ethics

committee. Informed consent was obtained before each MRI session.

Eight of the ten subjects were included in this analysis (sub-002, sub-003, sub-004, sub-006,
sub-007, sub-008, sub-009, sub-010), based on those with sufficient data quality in the same two
consecutive sessions (ses-02 and ses-03). In addition, two additional sessions were included
from three of the subjects (sub-006, sub-009, sub-010) to capture two consecutive sessions (ses-
07 and ses-08 for sub-006 and sub-010; ses-08 and ses-09 for sub-009) with insufficient end-tidal
COctimeseries (i.e., low power in the dominant frequency range of the breath-hold task, described
in greater detail in Section 2.4.1). These eight subjects have similar demographics to the complete
ten (4F, 27-40 yrs).

2.2 Data collection
2.2.1 Magnetic resonance imaging

Subjects underwent a variety of task-based and resting-state acquisitions during each MRI
session, but the current study focuses on the multi-echo fMRI acquisition during a breath-hold
(BH) task. The multi-echo fMRI protocol was a T2*-weighted, simultaneous multislice (multiband,
or MB), gradient-echo echo planar imaging sequence provided by the Center for Magnetic
Resonance Research (CMRR, Minnesota) with the following parameters: 340 volumes, TR =1.5
s, TEs = 10.6/28.69/46.78/64.87/82.96 ms, flip angle = 70°, MB acceleration factor = 4, GRAPPA
= 2, 52 slices with interleaved acquisition, partial Fourier = 6/8, FoV =211 x 211 mm?, voxel size
= 24 x 24 x 3 mm3, phase encoding = AP, bandwidth = 2470 Hz/px, LeakBlock kernel
reconstruction (Cauley et al., 2014) and SENSE coil combination (Sotiropoulos et al., 2013). Prior
to the fMRI acquisition, single-band reference (SBRef) images were collected for each echo time
to facilitate functional realignment and masking, and a pair of spin-echo echo planar images with
opposite phase-encoding (AP or PA) directions and identical volume layout (TR = 2920 ms, TE =
28.6 ms, flip angle = 70°) were acquired to estimate field distortions. For anatomical co-
registration and tissue segmentation, a T1-weighted MP2RAGE (TR =5 s, TE =2.98 ms, Tl1 =
700 ms, TI12 = 2.5 s, flip angle 1 = 4°, flip angle 2 = 5°, GRAPPA = 3, 176 slices, FoV read = 256
mm, voxel size =1 x 1 x 1 mm 3, TA = 662 s) and a T2-weighted Turbo Spin Echo image (TR =
3.39 s, TE = 389 ms, GRAPPA = 2, 176 slices, FoV read = 256 mm, voxel size =1 x 1 x 1 mm?3,
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TA = 300 s) were acquired. All DICOM files were transformed into NIFTI files with decm2nii and
formatted into Brain Imaging Data Structure (Gorgolewski et al., 2016) with heudiconv (Halchenko
et al., 2019).

2.2.2 Physiological data

During scanning, expired CO. and O: pressures were recorded via a nasal cannula
(Intersurgical) and gas analyzer (ADInstruments ML206). Chest position was measured with a
respiratory effort transducer (BIOPAC) placed around the upper abdomen, on the area of highest
expansion during breathing. These measurements were then transferred to a physiological
monitoring system (BIOPAC MP150) that simultaneously recorded scan triggers. Physiological
signals were sampled at 10 kHz, starting before and continuing after the fMRI scan to allow for
shifting of regressors. Before processing, the files were converted to BIDS with phys2bids (The
phys2bids developers, 2019) and the physiological signals were decimated to 40 Hz to reduce

file sizes.

2.2.3 Breath-hold task

The BH task paradigm included eight repetitions of a 58 s BH trial. Within each trial, there
were four paced breathing cycles (1 cycle = 3 s inhale and 3 s exhale), a 20 s BH, 3 s exhalation,
and 11 s of free recovery breathing (Bright and Murphy, 2013). Participants were cued with visual
instructions projected through a mirror on the head coil. A 15 s resting period was appended to
the start and end of the paradigm to enable shifting of physiological regressors in subsequent
analysis.

Prior to the scan, subjects were instructed about the importance of exhaling through their nose
both before and after the BH period. These exhalations are critical because they provide end-tidal
CO2 measurements to estimate arterial changes in CO: achieved by each BH (Bright and Murphy,
2013). If the exhale is not performed properly or the measurement is unreliable, it is not possible
to obtain a standard CVR estimate in units of %BOLD/mmHg.
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2.3 Data analysis

The MRI images and physiological data used in this study are available on OpenNeuro at
doi:10.18112/openneuro.ds003192.v1.0.1 (Moia, Uruiuela, Ferrer, & Caballero-Gaudes, 2020).
All code for pre-processing of the MRI data has been prepared to be run in a Singularity container,

which is publicly available at https://git.bcbl.eu/smoia/euskalibur container. The pre-processing

pipeline is available at htips:/github.com/smoia/EuskallBUR preproc. Publicly available Python
scripts, peakdet (Markello & DuPre, 2020) and phys2cvr (Moia, Vigotsky, & Zvolanek, 2022), were

used for processing of CO: recordings and computation of CVR parameter maps. The open-
source Rapidtide v2.2.7 toolbox (B. deB Frederick, Salo, & Drucker, 2022) was used for
exploratory analysis (see Discussion Section 4.3). Additional analysis code and details about how
they were implemented for this manuscript are shared in the public GitHub repository:
https://github.com/BrightLab-ANVIL/Zvolanek 2022.

2.3.1 MRI pre-processing

Key MRI pre-processing steps are discussed here, and more detailed information can be
found in Moia and colleagues (2021). MRI pre-processing was performed with a series of custom
scripts combining FSL (Jenkinson et al., 2012), AFNI (Cox, 1996), and ANTs (Tustison et al.,
2014) commands. The T2-weighted image was skull-stripped and co-registered to the MP2RAGE.
The MP2RAGE was segmented into gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) tissues. Then, the MP2RAGE was normalized to a resampled version (2.5 mm
resolution) of the MNI152 6™ generation template (FSL version, 1 mm resolution) (Grabner et al.,
2006). The T2-weighted image was co-registered to the skull-stripped SBRef image of the first
echo. Volume realignment of the functional data was performed using the SBRef of the first echo
as the reference and applying the spatial transformation to all subsequent echoes (Jenkinson et
al.,, 2002; Jenkinson and Smith, 2001). An optimal combination of the different echoes was
created with tedana (DuPre et al., 2021, 2019), which weights each echo timeseries according to
the voxelwise T2* value (Posse et al., 1999). Finally, the pair of spin-echo images with reverse
phase-encoding directions was used to perform field distortion correction with Topup (Andersson
et al., 2003). The optimally-combined, distortion-corrected data were used as the input for CVR

modeling.
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2.3.2 Reference signals

Three different reference signals were generated for each dataset, as depicted in Figure 1:
end-tidal CO (PetCOy), respiration volume per time (RVT), and the average gray matter BOLD
signal (GM-BOLD). End-tidal peaks were identified with a peak detection algorithm and manually
reviewed. Linear interpolation was performed between the end-tidal peaks to create PerCO-
timeseries. Finally, PetCO. timeseries were convolved with the two-gamma variate canonical

hemodynamic response function.

Respiration recordings were processed using a custom MATLAB script. Maxima and minima
in the belt trace were identified with a peak detection algorithm and manually inspected. The
computation of respiration volume per time (RVT) requires alternating maxima and minima (Birn
et al., 2006), but in an end-exhalation BH task, there are two consecutive minima due to exhales
before and after the hold. To address this, only minima preceding the BH period were included.
Linear envelopes of these maxima and minima were used to compute RVT as previously defined
(Birn et al., 2006). Briefly, the difference in maxima and minima is computed at each timepoint
and divided by the time between successive maxima. The RVT timeseries were then convolved
with the respiration response function (RRF) (Birn et al., 2008). Importantly, all convolved RVT
timeseries were z-normalized (i.e., zero mean and unit standard deviation). The normalization
procedure was implemented to account for the high variability in RVT amplitudes (see
Supplementary Figure S1 and Table S2). All subsequent “RVT” results refer to the convolved,

normalized reference signal.

The average BOLD timeseries in GM was generated from the optimally-combined, distortion-
corrected functional data with phys2cvr (Moia et al., 2022b). An eroded version of the co-
registered GM mask (obtained by zeroing non-zero edge voxels within a 2.5 mm sigma Gaussian
kernel with fsimaths) was used as the ROI for the average timecourse extraction. The reference
signal was then expressed in signal percentage change.

2.3.3 CVR amplitude and delay estimation

Voxelwise hemodynamic CVR amplitude and delay were computed using phys2cvr (Moia et
al., 2022b) to implement a lagged-GLM framework that has been described previously (Moia et
al., 2021, 2020a; Stickland et al., 2021). Each reference signal was considered independently
from the others, but the same procedures outlined below were used for each CVR model.

11
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First, all traces were shifted to maximize the cross-correlation with the up-sampled GM-BOLD
timeseries (40 Hz to match the physiological signals). This “bulk” shift primarily accounts for
measurement delay in the physiological recordings. Then, 61 shifted variants of each regressor
(including the bulk shifted regressor) were created for each reference signal, in 0.3 s increments
(Moia et al., 2020a). These shifts ranged 9 s from the bulk shift. Separate GLMs were created
for each shifted variant. In each case, fMRI data were modelled by a design matrix consisting of
the shifted reference signal and the following nuisance regressors: Legendre polynomials up to
the fourth-order, 6 realignment parameters, and their 6 temporal derivatives. Each lagged-GLM
was fitted via orthogonal least squares (Moia et al., 2020a). The lagged-GLM with the maximum
full model R? was identified for each voxel; its corresponding shift (in seconds) determined the
CVR delay, and its associated beta coefficient was extracted and rescaled to be expressed in
percentage BOLD signal change (%BOLD). Therefore, the lagged-GLM generated two maps for
each reference signal, as depicted in Figure 1: CVR amplitude (in units of %BOLD normalized to
the amplitude of the input regressor) and CVR delay (in seconds). Delay maps were centered on
the median delay across GM voxels. Both CVR amplitude and delay maps were thresholded to
remove voxels at or adjacent to boundary conditions (delay = -9, -8.7, +8.7, 9 seconds) because
they were considered not optimized by the lagged-GLM (Moia et al., 2020a). CVR amplitude and
delay maps were normalized via nearest neighbor interpolation to the MNI152 6" generation

template (FSL version, 1 mm resolution) resampled to 2.5 mm resolution.

2.4 Data summaries and comparisons
2.4.1 Determining sufficient reference signal quality

The quality of reference signals for each dataset was assessed by computing the relative
power in the dominant frequency range of the BH task (0.014 to 0.020 Hz). This range is centered
around 0.017 Hz, which corresponds to the 58 s BH cycle. MATLAB’s bandpower function was
used to compute the total power between 0.014 to 0.020 Hz, as well as the total power in the
signal, between 0 Hz and the Nyquist frequency (i.e., 20 Hz). Relative power was then calculated
using the following equation:

Power in BH frequency range

x 100

Relative power (%) =
p ( /0) Total Power

Reference signals with greater than 50% power in the BH range were deemed “sufficient”, as

more than half of the signal power is in the frequency range of interest. In the time domain, this
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relative power threshold corresponds to reference signals with clear signal changes during each
BH cycle (Figure 2). Reference signals with less than 50% power were categorized as

“insufficient”.

2.4.2 Reference signal cross-correlations

Relationships between the reference signals for each dataset were assessed by computing
the cross-correlation between each pair. The “bulk shifted” PetCO, and RVT signals were used
for these comparisons, which had already been shifted to maximize the cross-correlation with the
GM-BOLD signal during CVR modeling (see Section 2.3.3). The additional cross-correlation was
performed to understand the relationships between signals going into the lagged-GLM and to
check for any remaining offsets that may explain differences in resulting CVR maps. The GM-
BOLD signal was up-sampled to 40 Hz to match the temporal resolution of the physiological
signals. Using MATLAB’s xcorr function, cross-correlations between each pair of reference
signals were computed at 0.025 s increments (i.e., 40 Hz) within a range of £9 s. Pearson
correlations (r) were transformed to Fisher's Z values to facilitate group averaging and

comparisons.

2.4.3 CVR amplitude and delay values

The 98" percentile of brain voxels in each CVR amplitude map (after thresholding of voxels
at the boundary) was computed using the fs/stats function in FSL. For each reference signal, the
kernel density estimation of the distribution of CVR amplitude and CVR delay values was
computed with MATLAB’s ksdensity function. Distributions were computed in gray matter using
the eroded tissue mask (see section 2.3.2).

2.4.4 Spatial correlations between CVR parameter maps

CVR amplitude and delay maps for each reference signal were parcellated using FSL’s

Harvard-Oxford cortical atlas in MNI space (https:/identifiers.org/neurovault.collection:262,

HarvardOxford-cort-maxprob-thr25-1mm), resampled to 2.5 mm resolution. This atlas consists of

48 cortical parcels and was further split into left and right hemispheres to generate a total of 96

cortical parcels. Then, the median CVR parameter (i.e., amplitude or delay) within each parcel
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was computed. The 96 median values from any two corresponding CVR parameter maps (e.g.,
two CVR amplitude maps) were then input to determine “spatial” correlations (i.e., at the level of

the parcels).
Three different types of spatial correlations were performed:

1. Inter-reference: Between CVR parameter maps from different reference signals, within
the same subject and session (e.g., between PgrCO> CVR amplitude and RVT CVR
amplitude for sub-002 ses-02),

2. Inter-session: Between CVR parameter maps from two consecutive sessions, for a given
subject and reference signal (e.g., between PerCO. CVR amplitude maps from ses-02
and ses-03 for sub-002),

3. Inter-quality: Between CVR parameter maps from datasets with sufficient PerCO- quality
and insufficient PerCO- quality, for a given reference signal and subject (e.g., between a
sufficient PeCO2 CVR amplitude map and an insufficient PefCO2 CVR amplitude map for
sub-006).

For all spatial correlations, the Pearson correlation coefficients were computed and transformed
to Fisher's Z. A linear model was fitted, and the beta-coefficients describing the slope were
extracted. The intercept of the linear model was allowed to vary for both CVR amplitude and delay
to account for potential offsets between the two inputs.

3. Results

In the following sections, we first describe the reference signals from all datasets in our study
and distinguish those with sufficient vs. insufficient quality. Then, we show inter-reference and
inter-session comparisons for datasets in which all three reference signals have sufficient quality.
Next, we show inter-quality results (from two sessions) that incorporate one session with
insufficient PerCO. quality. Finally, we present the inter-reference comparisons from only
sessions with insufficient PetCOz quality. All comparisons are repeated for both CVR amplitude
and CVR delay.
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3.1 Reference Signals

Table 2 summarizes relative power at the BH task frequency for PerCO2, RVT, and GM-BOLD
in all datasets included in our study. This metric was used to assess data quality, and each dataset
was classified as “sufficient” or “insufficient” according to the relative power in the PerCO-
timeseries. We chose a subset of the available data, such that 16 datasets included in our study
have sufficient PerCOz quality, and 6 datasets have insufficient PerCO; quality, with relative power
below the 50% threshold and reaching as low as 4.33% (sub-009 ses-08). Across all datasets
considered, insufficient PerCO; traces have 21.1+11.2% relative power (meanzstdev across
subjects), while sufficient PetCOz traces have 68.0+6.57% relative power. Note that all RVT and
GM-BOLD signals have greater than 50% relative power, with most far exceeding the threshold.
Relative power in RVT and GM-BOLD signals is also generally higher than in PerCOg, with relative
power at 85.7+10.8% in RVT signals and 78.7+8.38% in GM-BOLD signals.

Table 2: Classification of reference signals as “sufficient” or “insufficient” based on relative power in the
breath-hold frequency range. “Sufficient” PerCO:z classification is based on relative power >50%. Datasets
with insufficient PerCO2 quality are highlighted in gray.

Relative Power (%) in BH Frequency Range
(0.014 — 0.020 Hz)

Classification of

Subject  Session PerCO; Quality PerCO; RVT GM-BOLD
sub-002 ses-02 Sufficient 725 78.5 74.9
ses-03 Sufficient 56.5 90.2 69.2
sub-003 ses-02 Sufficient 69.5 88.7 87.2
ses-03 Sufficient 61.1 92.5 874
sub-004 ses-02 Sufficient 69.1 859 85.2
ses-03 Sufficient 73.9 54.1 84.7
sub-006 ses-02 Sufficient 81.5 87.0 83.3
ses-03 Sufficient 62.3 65.9 815
ses-07 Insufficient 14.5 79.5 80.8
ses-08 Insufficient 31.2 73.0 80.0
sub-007 ses-02 Sufficient 69.6 95.1 82.1
ses-03 Sufficient 73.7 94.8 85.7
sub-008 ses-02 Sufficient 61.5 87.2 79.5
ses-03 Sufficient 68.2 82.3 68.4
sub-009 ses-02 Sufficient 67.4 95.0 85.8
ses-03 Sufficient 74.5 94.6 86.7
ses-08 Insufficient 4.33 94.0 85.4
ses-09 Insufficient 18.2 91.1 77.3
sub-010 ses-02 Sufficient 66.4 88.5 56.1
ses-03 Sufficient 59.5 84.6 65.1
ses-07 Insufficient 23.7 88.8 70.5
ses-08 Insufficient 34.7 93.6 74.5
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The PerCOz, RVT, and GM-BOLD signals for all datasets, in addition to group averages, are
shown in Figure 2. Sufficient PerCO. datasets with PetCO» timeseries that have >50% relative
power in the BH frequency range are plotted separately from those with insufficient PerCO.. For
sufficient PerCO, traces as well as all RVT and GM-BOLD traces, there are clear peaks
associated with each BH cycle (indicated by the gray bars). These signal changes are expected
due to periods of apnea, which increase PerCO2 and elicit a cerebrovascular response that is
detectable by BOLD fMRI. In contrast, the insufficient PetCO- traces lack consistent peaks for
each BH cycle, and the magnitude of PerCO> changes is smaller. These signal characteristics
likely indicate a failure to perform an exhalation before and after the BH, or exhalation through
the mouth rather than the nose, which would not be captured by the nasal cannula. In these
datasets, insufficient PetCO: traces are not due to a failure to complete the BH task, because
these subjects also have clear cyclic changes in their RVT signals, indicating long durations of a
stable chest position (i.e., periods of apnea).

Fig. 2B illustrates the power spectra corresponding to the reference signals in Fig. 2A. The
BH frequency range is indicated by a dashed rectangle, where most of the signal power is
expected. There are clear peaks within this window for sufficient PetCO: signals, as well as for all
RVT and GM-BOLD signals. However, a peak within the BH frequency range is not evident for
insufficient PetCO> signals, which is consistent with the lack of periodic signal changes for each
BH cycle in the time domain. These power spectra also support the low relative power reported
for insufficient PerCO2 datasets in Table 2.
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Figure 2: A) Reference signals for each dataset (thin lines) and the group average (thick lines). Gray bars

indicate each 20 second breath-hold (BH) cycle. Reference signals from the three compared methods are
depicted: partial pressure of end-tidal COz convolved with the hemodynamic response function (PerCOz),
respiration volume per time convolved with the respiration response function and normalized to unit

variance (RVT), and average BOLD signal percentage change in gray matter (GM-BOLD). Sufficient
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PerCO: datasets (top) indicate those where the PerCO: timeseries has relative power >50% in the BH
frequency range, while insufficient PerCO:z datasets (bottom) indicate those where the PerCO: timeseries
has relative power <50%. B) Power spectra for each dataset (thin lines) and the group average (thick lines),
corresponding to the reference signals plotted in panel A. Dashed rectangles indicate the BH frequency
range (0.014 to 0.020 Hz). Note that there is no peak in this range for the datasets with insufficient PerCO2

timeseries, while a peak is visible for all other reference signals.

All reference signals are highly correlated in datasets with sufficient PerCOz2, while correlations
with insufficient PerCOs timeseries are much lower. Relationships between each pair of reference
signals were characterized by cross-correlations. These results are summarized in
Supplementary Table S1. Datasets with sufficient PetCO2 have large, positive cross-correlation
amplitudes for the three reference signal comparisons (reported as meanztstdev Fisher’s Z values
across subjects): PerCO2 & RVT: 0.96+0.23, PerCO2 & GM-BOLD: 1.19+0.22, GM-BOLD & RVT:
1.04+0.25. As expected, cross-correlations of PetCO2 with RVT and GM-BOLD are lower in
datasets with insufficient PetCO,, while the correlation between RVT and GM-BOLD is preserved
(PerCO2 & RVT: 0.38+0.13, PetCO2 & GM-BOLD: 0.42+0.15, GM-BOLD & RVT: 1.20+0.22).

3.2 Sufficient PerCO: Datasets: CVR Amplitude Comparisons
3.2.1 Inter-reference comparisons

CVR amplitude maps are spatially similar for all reference signals, after accounting for
differences in scale, in datasets with sufficient PerCO2 quality. Fig. 3 shows delay-optimized CVR
amplitude maps generated by each reference signal. For each CVR map, the 98™ percentile of
CVR amplitude across all brain voxels was computed (Supplementary Table S3), and this
magnitude was used as the positive and negative limits of the color scale. With this scaling
method, the CVR amplitude maps look nearly identical, though there are small differences
particularly in voxel clusters throughout WM and CSF regions. The same relative spatial patterns
are observed in all maps: higher amplitudes in cortical GM, lower amplitudes in WM, and negative
amplitudes in CSF-filled regions. However, it is important to draw attention to the fact that the
absolute magnitude of these CVR amplitudes is different between methods. For example, the 98"
percentile CVR amplitudes are 0.78+0.22 %BOLD/mmHg for PerCO. CVR, 1.9910.45
%BOLD/a.u. for RVT CVR, and 2.31+0.21 %BOLD/%BOLD for GM-BOLD CVR.
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Figure 3: Delay-optimized CVR amplitude maps for all 16 datasets with sufficient PerCOz2 quality
transformed to the MNI152 6th generation template space. For each subject, maps from session 02 are
shown on the left and maps from session 03 are shown on the right. A single axial slice of the CVR map
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from each reference signal is shown in each column. Each CVR map is plotted on a separate color scale.
The 98" percentile CVR amplitude value across all voxels was computed for each map (see Table S2 for
the magnitudes) and used as the positive and negative limits of the color scale. Voxels with delays at the
boundary conditions have been removed. Note the different units of CVR amplitude for each reference

signal.

As expected from the qualitative similarity of the CVR amplitude maps, the distributions of
CVR amplitude are similar across GM voxels for each method, though they span a different range
of values. Fig. 4 displays the distribution of CVR amplitude in GM for all datasets with sufficient
PerCOo. For all reference signals, the distributions of CVR amplitude are consistent both within
and between subjects. Note that it may not be appropriate to interpret the range of the CVR
amplitude distributions, because only PetCO, CVR amplitude is in meaningful units. Normalization
of the RVT signal is critical to achieving these similarities in CVR amplitude, as the amplitude of
the RVT measurement itself is arbitrary, with high variability even between two sessions of the
same subject (see Supplementary Figure S1 and Table S2). Supplementary Figure S2 shows the
distribution of CVR amplitudes without normalizing RVT and illustrates the impact on the resulting

unscaled amplitude maps.

20


https://doi.org/10.1101/2022.11.28.517116
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.28.517116; this version posted November 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sufficient Pe+CO, Data: CVR Amplitude Distributions in GM Voxels
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Figure 4: Distributions of CVR amplitude across grey matter (GM) voxels in all sufficient PerCQO:2
datasets. For each subject, distributions from session 02 are plotted in orange and session 03 are plotted
in teal. Each row shows the distribution of CVR amplitude for a different reference signal, with PerCQO:2
CVR on top, RVT CVR in the middle, and GM-BOLD CVR on the bottom. Note that skewness of the
PerCO2 CVR distributions is different from those of the RVT CVR and GM-BOLD CVR because of the
range of the plots (from -2 to +2) which matches closer to the 98% percentiles of the latter.

CVR amplitudes from each reference signal are highly correlated in datasets with sufficient
PerCO2 quality. Fig. 5A shows the spatial correlations between CVR amplitude values generated
by each reference signal (inter-reference correlations) and a visual comparison of these spatial
correlations from session-to-session for each subject. These comparisons are based on CVR
amplitudes from cortical parcels in the Harvard-Oxford atlas. The correlation coefficients, Fisher’s
Z transformed correlations, and slopes for the lines-of-best fit are also summarized in
Supplementary Table S4. All group average inter-reference spatial correlations are significantly
different from zero (PerCO2 & RVT: Z=2.08, p<0.001; PerCO, & GM-BOLD: Z=2.26, p<0.001;
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GM-BOLD & RVT: Z=2.15, p<0.001). There is no significant difference between the strength of
the CVR amplitude spatial correlations for each pairwise comparison between reference signals,
based on a t-test adjusted for non-independent correlations (Howell, 2010) (PerCO2 & RVT vs.
PerCO2 & GM-BOLD: T(13)=0.75, p=0.47; PerCO2 & GM-BOLD vs. GM-BOLD & RVT:
T(13)=0.40, p=0.70; PerCO2> & RVT vs. GM-BOLD & RVT: T(13)=0.35, p=0.73).

There is variability in the slope of the relationship between CVR amplitudes, with the best
reliability between PerCO2 and RVT. In general, RVT and GM-BOLD CVR amplitudes are 2-3
times larger than for PerCO. (average slopes of 2.36+0.71 for PerCO. & RVT, 2.91+0.23 for
PerCO2 & GM-BOLD). However, the magnitudes may not be meaningful due to the arbitrary units
in RVT and GM-BOLD CVR. The reliability of these slopes was assessed with an intraclass
correlation (using a two-way random effects model of absolute agreement), with the following
results: 1CC(2,1)=0.62 for PetCO. & RVT, ICC(2,1)=0.44 for PerCO, and GM-BOLD, and
ICC(2,1)=0.41 for GM-BOLD and RVT. Thus, there is good reliability for PefCO2 & RVT CVR
amplitudes, and fair reliability for the other inter-reference relationships. However, these estimates
may be limited by the small number of repeated measurements and subjects.
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Sufficient PgCO,: spatial correlations between CVR amplitude maps
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Figure 5: A) Inter-reference spatial correlations between PerCO2, RVT, and GM-BOLD CVR amplitude
maps, for each subject and session (summarized in Supplementary Table S4). Each of the three pairwise
comparisons are plotted in a different row. B) Inter-session spatial correlations between CVR amplitude
maps from the same reference signal between two consecutive sessions (summarized in Supplementary
Table S5). The unity line (y=x) is plotted in gray for reference. All correlations were computed using the
median CVR amplitude in 96 cortical parcels, identified from the Harvard-Oxford cortical atlas and
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separated by hemisphere. Each dot in a sub-plot represents the median CVR amplitude in one cortical
parcel. Lines-of-best-fit are shown between each pair of CVR amplitude maps. Pearson correlation
coefficients (r) are listed in the top left corner and slopes for the lines-of-best-fit (8) are displayed in the
bottom right corner.

3.2.2 Inter-session comparisons

For all reference signals, the resulting CVR amplitude maps are highly similar between
sessions, provided that there was sufficient PefCO2 data in each subject. Inter-session spatial
correlations were similar for each reference signal with no significant differences in average
Fisher’s Z across subjects (PerCOz: Z=1.62, RVT: Z=1.50, GM-BOLD: Z=1.75). The inter-session
spatial correlations are depicted in Fig. 5B and summarized in Supplementary Table S5. There is
nearly a 1:1 relationship in the CVR amplitude maps between consecutive sessions for each
reference signal (average slopes: PerC02=1.001£0.23, RVT=0.911£0.26, GM-BOLD=0.95+0.07).
Excluding the outlier of sub-006, the average slope for RVT increases to 0.97+0.21.

3.3 Sufficient PerCO: Datasets: CVR Delay Comparisons
3.3.1 Inter-reference comparisons

The CVR delay maps generated by PerCO2 and RVT reference signals show similar spatial
variation, while GM-BOLD delay maps have smaller delay magnitudes and reduced contrast,
among datasets with sufficient PetCO. quality. Fig. 6 displays CVR delay maps generated by
each reference signal. Since CVR delay is expressed in quantitative units of seconds for all
reference signals, CVR delay maps are centered around the GM median to fairly compare
between reference signals. In general, PetCOz2and RVT delay maps characterize more extreme
relative delays than GM-BOLD delay maps (indicated by more yellow and violet voxels throughout
PerCOz and RVT maps).
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Figure 6: CVR delay maps for all datasets with sufficient PerCO:z quality, transformed to the MNI152 6th
generation template space. For each subject, maps from session 02 are shown on the left and maps from
session 03 are shown on the right. A central, axial slice of the CVR delay map from each reference signal
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is shown in each column. CVR delay maps have been normalized to the median delay in grey matter (GM).
Voxels at boundary conditions (absolute delay = +/- 8.7s, 9s) have also been removed. Negative values
indicate regions with earlier hemodynamic responses relative to median delay in GM, while positive values
indicate those with later responses.

The distributions of CVR delay for each reference signal (Fig. 7) support the observation that
that PerCO2 and RVT CVR delay maps show similar spatial variation while there is reduced
contrast in GM-BOLD delay maps. The shape of PerCO2 and RVT delay distributions are
generally similar: both are slightly right skewed and centered just below 0 seconds. On the other
hand, GM-BOLD delay distributions are narrower and zero-centered, with a high proportion of
voxels exhibiting delay values near 0 seconds. In addition, the GM-BOLD delay distributions are
less smooth, with several small peaks apparent for some datasets (e.g., sub-003 ses-02,
indicated by the orange trace). Finally, PerCO. and RVT distributions are more variable between
subjects, while GM-BOLD distributions have a relatively consistent shape.
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Sufficient PerCO, Data: CVR Delay Distributions in GM Voxels
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Figure 7: Distributions of CVR delay for each reference signal in all datasets with sufficient PerCQO:2 quality.
CVR delay values have been normalized to the median delay in grey matter. For each subject, distributions
from session 02 are plotted in orange and session 03 are plotted in teal. Each row shows the distribution
of CVR delay for a different reference signal, with PerCQO: delay on top, RVT delay in the middle, and GM-
BOLD delay on the bottom.

The slopes of inter-reference relationships (Fig. 8A) further illustrate the narrower range of
delays observed with the GM-BOLD reference signal (Figs 6 and 7). PetCO. and RVT delay
values are nearly proportional, with an average slope of 0.9310.35. Excluding the outlier of sub-
002 ses-02, the average slope becomes 0.99%-0.06. However, as demonstrated in the maps, GM-
BOLD delay values tend to underestimate delay relative to PerCO. and RVT. See middle and
bottom rows of Fig. 8A, respectively, and note the switch in axes; this manifests as slopes >1 for
GM-BOLD with PerCO- and slopes <1 for GM-BOLD with RVT.
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When comparing maps of CVR delay across the three reference signals (Fig. 8A), we see
significant spatial correlations for all comparisons, although they are weaker on average
compared to the spatial correlations of CVR amplitude (Fig. 5A). The corresponding spatial
correlation coefficients, Fisher Z transformed correlations, and slopes for the lines-of-best fit are
summarized in Supplementary Table S6. All group average inter-reference spatial correlations
are significantly different from zero (PerCO. & RVT: Z=1.18, p<0.001; PerCO, & GM-BOLD:
Z=1.35, p<0.001; GM-BOLD & RVT: Z=1.09, p<0.001). There were no significant differences in
the average spatial correlations between each pair of reference signals, based on a t-test adjusted
for non-independent correlations (Howell, 2010) (PerCO2> & RVT vs. PerCO. & GM-BOLD:
T(13)=0.59, p=0.57; PerCO2 & GM-BOLD vs. GM-BOLD & RVT: T(13)=1.02, p=0.33; PerCO:> &
RVT vs. GM-BOLD & RVT: T(13)=0.43, p=0.67). However, there are two datasets with RVT delay
values that are poorly correlated with other reference signals (sub-002 ses-02 and sub-006 ses-
03). These poor correlations are supported by low cross-correlations between the RVT and GM-
BOLD reference signals in each dataset (0.46 and 0.64, respectively, Table S1), which may drive
poor optimization in the lagged-GLM and cause more voxels to be near boundary conditions.
Local variations in BOLD signal features may introduce regional differences in the success of
optimization, overall leading to poor spatial agreement between RVT delay maps with other
reference signals. This is consistent with the CVR delay maps shown in Fig. 6 for these datasets.

The slope of the relationship between CVR delay values from a given pair of reference signals
is generally more consistent compared to CVR amplitudes, consistent with the common
quantitative units (seconds) of CVR delay achieved with all three methods. This is demonstrated
by the inter-subject consistency of slopes for each best-fit line in Fig. 8A. In addition, the inter-
session reliability of the slopes was assessed with an intraclass correlation (using a two-way
random effects model of absolute agreement). There is good reliability between PerCO2 and GM-
BOLD delays (ICC(2,1)=0.73) and between GM-BOLD and RVT delays (ICC(2,1)=0.63).
However, there is poor reliability between PerCO2 and RVT delays (ICC(2,1)=0.35). As with CVR
amplitude, these ICC estimates may be limited by the small number of repeated measurements

and subjects.
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Sufficient P;CO,: spatial correlations between CVR delay maps
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Figure 8: A) Inter-reference spatial correlations between PerCOz, RVT, and GM-BOLD CVR delay maps,
for each subject and session (summarized in Supplementary Table S6). Each of the three pairwise
comparisons are plotted in a different row. The unity line (y=x) is plotted in gray for reference. B) Inter-
session spatial correlations between CVR delay maps from the same reference signal between two

consecutive sessions (summarized in Supplementary Table S7). All correlations were computed using the
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median CVR delay in 96 cortical parcels, identified from the Harvard-Oxford cortical atlas and separated by
hemisphere. Each dot in a sub-plot represents the median CVR delay in one cortical parcel. Lines-of-best-
fit are shown between each pair of CVR delay maps. Pearson correlation coefficients (r) are listed in the

top left corner and slopes for the lines-of-best-fit (8) are displayed in the bottom right corner.

3.3.2 Inter-session comparisons

CVR delay maps for each reference signal are also highly spatially correlated between two
consecutive sessions, provided the PerCO: quality was sufficient. These inter-session spatial
correlations for CVR delay are summarized in Fig. 8B and Supplementary Table S7. There were
no significant differences in average Fisher's Z across subjects (PerCOz: Z=1.11, RVT: Z=1.14,
GM-BOLD: Z=1.21). The average slope between delays from consecutive sessions is also similar
for each reference signal (average slope for PerCO2: 0.83£0.22, RVT: 0.81+£0.21, GM-BOLD:
0.87+0.11).

3.4 Insufficient PerCO2 Datasets
3.4.1 Inter-quality comparisons

As described in Section 3.1, a total of 6 datasets were identified as having insufficient PetCO>
quality, based on the relative power content at the BH task frequency. Fig. 9 shows the reference
signals, power spectra, and resulting CVR maps from datasets with sufficient and insufficient
PerCO2 quality within the same example subject (inter-quality comparison). Not surprisingly, the
CVR amplitude and delay maps generated by an insufficient PetCO, timeseries do not show
physiologically plausible spatial variations (Fig. 9B). Despite the insufficient task-related
information within the PerCO. timeseries, the RVT and GM-BOLD timeseries still demonstrate
modulations consistent with the 8 cycles of the BH task and clear peaks in their power spectra.
Therefore, consistent with our hypothesis, the resulting RVT and GM-BOLD CVR parameter maps
are comparable to those from the dataset with sufficient PetCO2 quality.
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Figure 9: Example reference signals, power spectra, and CVR maps for two datasets in the same subject
(sub-009) with A) sufficient PerCO2 quality (ses-02) and B) insufficient PerCO:z quality (ses-08). The
insufficient PerCO:2 timeseries can be distinguished by the absence of a peak in the power spectrum at the
breath-hold task frequency (0.014 to 0.020 Hz, indicated by dashed lines). CVR amplitude and delay maps
are comparable between the two datasets, for all reference signals except insufficient PerCOz. Note that
the RVT timeseries and power spectra are plotted on different scales for visualization purposes. CVR maps
are scaled to 98" percentile values, which can be found in Table S2. Also note that only the PerCO2 CVR
amplitude map is in quantitative units (%BOLD/mmHg), compared to RVT CVR (%BOLD/a.u.) and GM-
BOLD CVR (%BOLD/%BOLD,).
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The inter-quality spatial correlations between CVR parameter maps from insufficient and
sufficient quality datasets support the qualitative observations in Fig. 9, in that the maps generated
by RVT and GM-BOLD timeseries recover spatial information that is lost by those from the
insufficient PerCO; trace. For each reference signal’'s CVR map from an insufficient PerCO-
session, a spatial correlation was performed with the respective parameter map from the first
sufficient PetCO. session (ses-02) in the same subject. Table 4 summarizes the Fisher's Z
transformed spatial correlation coefficients and the slope of the best-fit line between these data.
When the reference signal is “insufficient PetCOy”, the average spatial correlations with a map
computed using sufficient PerCO- data acquired in a different scan session are not significant for
either CVR amplitude (Z=1.11£0.53) or CVR delay (Z=0.25+0.53), using Zi=1.13 for N=6 at
alpha=0.05. In contrast, the inter-session spatial correlations for RVT and GM-BOLD CVR
amplitude and delay maps are significant between sufficient and insufficient datasets. This is
expected, since the categorization of “sufficient” datasets was based on PerCO2 quality, with RVT

and GM-BOLD signals surpassing the relative power criterion in all datasets.

However, it is important to note the differences in PerCO2 CVR maps are not as dramatic for
all datasets with insufficient PerCO- quality. These maps are presented in Supplementary Figure
S3. Specifically, amplitude maps from some insufficient PetCO- traces have reasonable quality,
while the delay maps remain noisy. For example, the CVR amplitude maps obtained with
insufficient PerCO- are similar to those obtained with RVT and GM-BOLD for sub-006 ses-07,
sub-009 ses-09, and sub-010 ses-08. These datasets also have higher inter-quality spatial
correlations, as indicated by the Fisher’s Z values in Table 4. The relative power in the insufficient
PerCO: signals for these three datasets (Table 2) far exceeds the relative power of 4.33% in the
example case highlighted in Fig. 9, indicating that there may have been some sufficient BH trials
to generate reasonably good CVR amplitude maps. While some insufficient PefCO2 CVR
amplitude maps are similar, the CVR delay maps still have noticeable regional differences (e.g.,
more negative delays and reduced tissue contrast), though less extreme than shown in Fig. 9.
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Table 4: Inter-quality spatial correlations between each reference signal’s CVR map from an insufficient
PerCO:2 quality dataset and the corresponding CVR map from a sufficient PerCO: dataset

Inter-Quality Spatial Correlations

. . CVR Amplitude CVR Delay

Subject Mguriclent Sufficent | peco RVT GM-BOLD PerCO; RVT GM-BOLD

Bz p z p z B z sz p z
SUb006  ses07 ses0Z | 130 173 118 183 100 188 | 043 054 06/ 094 060 090
ses-08 ses02 | 098 122 104 155 101 170| 044 046 062 107 077 123
sub-009  ses-08 ses02 [ 006 026 102 164 101 176| 082 05 079 129 109 142
ses-09 ses02 | 055 142 08 170 09 175| 051 078 079 102 054 085
sub-010  ses07 ses02 [ 098 074 105 144 093 166| 029 071 075 149 079 120
ses-08 ses02 | 115 130 112 138 119 167 | 063 117 068 125 081 150
Average| 084 111 104 158 102 174'| 025 070 072 118 077 121"
SDev| 046 053 o011 o017 o002 o008| 053 026 007 021 019 026

B = coefficient of slope for best-fit line to correlation. Z = Fisher’s Z transformation of correlation coefficient.
*Indicates Fisher’s Z is significantly different from 0 at alpha = 0.05 (critical Z = 1.13 for N = 6).

3.4.2 Inter-reference comparisons

Similarly, the inter-reference spatial correlations within each insufficient PetCO. dataset
demonstrate the corrupted CVR amplitude and CVR delay maps generated by the PetCOz traces.
These results can be found in Supplementary Table S9. Correlations of PetCO2 CVR amplitude
with RVT and GM-BOLD CVR amplitude are expectedly lower (Z=1.44+0.73 and Z=1.41+0.69,
respectively) compared to those between GM-BOLD and RVT (Z=2.56+0.13), which still have
sufficient power at the task frequency. This difference is especially apparent in sub-009 ses-08
and sub-010 ses-07.

The same pattern of low spatial correlations with results derived from PerCO: is evident in the
CVR delay values (Z=0.75%0.38 for correlation of delays with insufficient PefCO2 CVR and RVT;
Z=0.66x0.37 with insufficient PefCO> CVR and GM-BOLD, and Z=1.340+0.22 with RVT and GM-
BOLD). In addition, the average spatial correlations for CVR delay are all considerably lower than
those for CVR amplitude of the same pairwise comparison.

4. Discussion

In this study, we tested whether RVT or GM-BOLD can be used in a lagged-GLM framework
to achieve estimates of CVR amplitude and delay that are spatially correlated with estimates from
PerCO.. We tested this in breath-hold data in healthy adults, including datasets where PerCOs,
RVT, and GM-BOLD reference signals had sufficient power (>50%) at the task frequency, and
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datasets where only the PetCO-timeseries had insufficient power. We found that in datasets with
sufficient quality, all reference signals are highly correlated. Correspondingly, CVR amplitude
maps are spatially similar for all reference signals, after accounting for differences in scale.
However, both RVT and GM-BOLD CVR amplitudes are not in standard CVR units of
%BOLD/mmHg. Regarding CVR delay, the maps generated by PerCO. and RVT show similar
spatial variation, while GM-BOLD delay maps have a smaller range and reduced contrast. Finally,
when PerCO: is insufficient, RVT and GM-BOLD can be used to recover spatially similar CVR
amplitude and delay maps, provided that the participant attempted the breath-hold task. We

explore each of these findings in further detail in the following sections.

4.1 Reference signals are highly correlated in breath-hold data with sufficient PerCO-
quality

The high cross-correlation amplitudes observed between PegrCO», RVT, and GM-BOLD
signals are expected and consistent with previous reports in the literature. Each of these signals
captures the physiological processes occurring during a breath-hold, marked by a cessation of
breathing, increased arterial CO2 concentration, increased CBF, and an increased BOLD signal
that eventually returns to baseline (Bright et al., 2009; Kastrup et al., 1999; Thomason et al.,
2005). PerCO2 and RVT have separately been shown to correlate with the resting-state BOLD
timeseries (Birn et al., 2008, 2006; Wise et al., 2004). Additionally, Chang et al. demonstrated
that PetCO2 and RVT (convolved with the respiration response function) are highly correlated and
account for similar spatial and temporal variations in the resting-state BOLD signal (Chang and
Glover, 2009).

In breath-hold data, these cross-correlations are magnified due to the alternating periods of
task and rest, which lead to large coupled amplitude fluctuations in PerCO2, RVT, and GM-BOLD
that are approximately sinusoidal at the task frequency (Pinto et al., 2021). These quasi-sinusoidal
variations are critical to our approach for determining sufficient PerCO- based on relative power
at the task frequency. While this strategy can be easily implemented to quality check PerCO>
recordings, it requires periodic breathing modulation and thus cannot easily be translated to

evaluate the quality of natural PerCO:z fluctuations in resting-state data.

The reference signals we considered are not exhaustive. The near-sinusoidal fluctuations in
the BOLD response during a quasi-periodic breath-hold task can be modeled using a Fourier

series, with a sine-cosine pair at the task frequency and additional harmonics, to estimate both
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CVR amplitude and delay (Lipp et al., 2015; Murphy et al., 2011; Pinto et al., 2016; van Niftrik et
al., 2016). Additionally, many studies use different variations of a global BOLD signal to model
CVR, rather than a respiratory-derived signal, due to the known influence of arterial CO;
fluctuations on the BOLD signal (Geranmayeh et al., 2015; Liu et al., 2017; Tong et al., 2011;
Tong and Frederick, 2014; van Niftrik et al., 2016). As we have demonstrated with GM-BOLD,
there are clear breath-hold effects in the average BOLD response, leading to CVR measurements
that are comparable to those derived from PerCO:..

4.2 CVR amplitude maps are comparable between reference signals, but RVT and GM-
BOLD amplitudes are not in standard CVR units

Based on the high cross-correlations between input reference signals, it is not surprising that
the resulting CVR amplitude maps are also highly correlated. In fact, CVR maps from each
reference signal look nearly identical when scaled to the 98" percentile CVR amplitude.
Regardless of the method used to model CVR, this visualization scaling approach may facilitate
qualitative comparisons of CVR maps, longitudinally, between cohorts, and between protocols.
Our CVR visualization approach also indicates the method used to model CVR may not be critical
for qualitative comparisons, which is consistent with the current ethos regarding the “multiverse”
of analysis pipelines in the functional neuroimaging community (Botvinik-Nezer et al., 2020;
Dafflon et al., 2022; Steegen et al., 2016; Taylor et al., 2022).

Despite the qualitative similarities between CVR maps, there are important differences in the
absolute magnitudes of CVR amplitude. Both RVT and GM-BOLD CVR are not in standard CVR
units, which is an important caveat, particularly for comparing CVR between cohorts or with
literature values. In these cases, it is still best to use PerCO: as a reference signal, because the
resulting CVR amplitude in units of %BOLD/mmHg is physiologically meaningful. There is also
between-subject variability in the slope of the relationship between CVR amplitudes, likely driven
in part by the arbitrary units of RVT and GM-BOLD CVR. Overall, RVT CVR had the most reliable
relationship with PerCO2 CVR amplitude, suggesting that this might be a better alternative than
GM-BOLD to capture differences in CVR amplitude.

However, our results indicate that RVT and GM-BOLD would still be useful in many cases,
such as making relative comparisons between brain regions within a subject and identifying focal
pathology. In addition, the CVR maps for RVT and GM-BOLD were consistent between scan
sessions. With these steady measurements, it could be possible to compare longitudinally within
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a subject, provided that a breath-hold task is used to induce modulations and there is sufficient
power at the task frequency.

We observed that normalizing the RVT timeseries before inputting it to the lagged-GLM is
critical to achieve reasonable CVR amplitude values. RVT is reported in arbitrary units (a.u.)
because the magnitude of RVT varies across experimental setups and is sensitive to the tightness
of the respiration belt and its placement on the body (i.e., chest vs. abdomen). Thus, there is high
variability in the scale of RVT fluctuations across datasets (Supplementary Fig. S1 and Table S2).
The resulting CVR amplitude maps are impacted by this variability because they are scaled to the
amplitude of the reference signal. If RVT is not normalized, there are large differences in the range
of amplitude values, which could be misleading if CVR maps are plotted on a fixed scale
(Supplementary Fig. S2).

4.3 CVR delay maps are comparable for PerCO2 and RVT, but GM-BOLD may
underestimate delay variability

In datasets with sufficient PerCO; quality, RVT and GM-BOLD both produce delay maps that
are highly correlated with those from PerCOg, but the delay magnitudes tend to be smaller when
GM-BOLD is the reference signal. This is evident in the narrower distributions of GM-BOLD delay
values (Fig. 7) and in the biased slopes from inter-reference spatial correlations with PerCO, and
RVT delays (Fig. 8A). Thus, GM-BOLD may underestimate the true delay value, particularly for
voxels with larger absolute PerCO; delays.

There are a few potential reasons for the narrower distribution of GM-BOLD delay values. We
normalized delay maps to the GM median to compare between reference signals and participants.
Many GM voxels will be well-characterized by the average BOLD timeseries and have similar
delay values that are reduced to zero after this spatial normalization step. Additionally, the GM-
BOLD signal (after the T2-weighted combination of the echoes) might be more affected by motion-
related effects than other reference signals (Moia et al., 2021). For example, peaks or slow drifts
in the GM-BOLD timeseries due to head motion could bias the optimum delay estimated for a
given voxel. More likely, the GM-BOLD signal is “blurring” the breath-hold response due to the
wide variation in relative timing across the brain (Tong et al., 2019). This has been addressed
previously with the concept of making a “refined” or “dynamic” global signal regressor that
accounts for voxel-specific variations in delay to recover a source signal (Erdogan et al., 2016;

Frederick et al., 2012; Tong and Frederick, 2014). Our approach using the average response
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across GM voxels is well-established but more simplistic and may have restricted the sensitivity
to a wider range of delays. An average signal from the cerebellum (Donahue et al., 2016; Liu et
al., 2021), sagittal sinus (Pillai and Mikulis, 2015; van Niftrik et al., 2016), or other small ROls
(Erdogan et al., 2016) could also be used to mitigate this issue. However, the cerebellum is
sensitive to noise (Diedrichsen et al., 2010; van der Zwaag et al., 2015) and these ROls are
arbitrary for CVR analysis.

To address limitations attributed to the GM-BOLD regressor, we performed a post hoc
exploratory analysis to compare CVR delays using a “refined” GM-BOLD approach. The refined
GM-BOLD regressor used in this analysis was generated by Rapidtide v2.2.7, a data-driven
algorithm that uses the refined GM-BOLD timeseries as a regressor, for which it iteratively
considers a voxel-by-voxel fit across a range of temporal offsets using a cross-correlation method
(Frederick et al., 2012, 2016). We considered a temporal range of £9 s with 0.3 s increments to
match the lagged-GLM (specific command options are detailed in Table S11, and we refer the
reader to the Rapidtide documentation (Frederick et al., 2022a) to explore more in-depth details
about the settings). This algorithm further differs from the lagged-GLM processing method by also
temporally smoothing the average GM-BOLD response with a band-pass filter (0.009-0.15 Hz)
and “despeckling” using a spatial median filter to correct erroneous time delays due to
autocorrelation in the probe regressor (Frederick, 2017). Additionally, motion parameters and
Legendre polynomials are regressed from the data before the cross-correlation fit, in contrast to
being included in the lagged-GLM. Fig. 10 shows a comparison between the original GM-BOLD
approach and a refined GM-BOLD approach for a representative subject (sub-008). Results for
all subjects with sufficient PerCO. data quality can be found in Supplementary (Figures S4-S7,
Table S10). The refined GM-BOLD regressor is similar to the GM-BOLD time series yet smoother,
with high frequencies removed (Fig. 10A).

CVR delay maps generated using the refined GM-BOLD approach depict greater visual
contrast between gray matter and white matter in comparison to the CVR delay maps generated
with the average GM-BOLD approach (Fig. 10B). Furthermore, the distribution of delays
generated from a CVR delay map using the refined GM-BOLD approach show a skewness
towards larger positive delays (Fig. 10C). The delay values from both methods are highly
correlated and the slopes of the spatial correlations are greater than 1, indicating that the refined
GM-BOLD approach depicts more extreme delays across most of the cortex in comparison to the
GM-BOLD approach (Fig. 10D). Thus, using a refined GM-BOLD timeseries as a regressor may
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partially compensate for the smaller distribution in delays attributed to the lagged-GLM with a
standard GM-BOLD timeseries.

Comparison of CVR Delays with GM-BOLD and Refined GM-BOLD Regressors

A. Regressors B. CVR Delay Maps
GM-BOLD  Refined GM-BOLD
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Figure 10: A) Reference signal for sub-008 from GM-BOLD (blue) and Refined GM-BOLD (yellow) in ses-
02 (top) and ses-03 (bottom). B) CVR delay map for sub-008, transformed to MNI space. Maps from ses-
02 are shown on the top row, and maps from ses-03 are shown on the bottom row. An axial slice from two
compared methods is shown in each column: GM-BOLD (left) and Refined GM-BOLD (right). CVR delay
maps using the GM-BOLD approach have been normalized to the GM median delay with voxels at
boundary conditions (absolute delay = +/- 8.7s, 9s) removed. Refined GM-BOLD delay maps are re-
centered to Os and exclude voxels where the similarity function failed (Frederick et al., 2022a). C) CVR
delay distribution for sub-008 across GM-BOLD (solid line) and Refined-GM (dashed line) from ses-02
(orange) and ses-03 (teal). D) Inter-reference spatial correlation between GM-BOLD and Refined GM-
BOLD delay maps for sub-008 in ses-02 (orange) and ses-03 (teal) with respective best-fit-lines and an
identity line (black) for comparison. Each point represents the median delay value in one of the 96 cortical
parcels from the Harvard-Oxford cortical atlas. Correlation coefficient (R) for each session is listed on the
top left, and the slopes for the lines-of-best-fit (/beta) for each session are listed on the bottom right.
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4.4 When PerCO: quality is insufficient, maps of CVR amplitude and delay can be achieved
with RVT or GM-BOLD as reference signals

We have demonstrated that in breath-hold fMRI data, if a participant attempts the task but
PerCO:2 quality is poor, RVT or GM-BOLD can be used to create CVR amplitude and delay maps.
Based on comparisons with sufficient PetCO2 quality data, RVT seems the best alternative to
generate CVR amplitude and delay maps that are highly correlated and have consistent
relationships with those obtained with PerCO2 measurements. In addition, RVT still generates
CVR measurements that are normalized to a respiratory-derived measure. If opting for a global
signal like GM-BOLD, it would be best to use a refined GM-BOLD regressor to account for
potential under-estimation of CVR delay.

We also proposed a method to define a “sufficient” PerCO- trace for CVR mapping, using a
relative power threshold >50% at the breath-hold task frequency. However, this threshold is
slightly arbitrary and may need to be adjusted for specific cases, with a holistic evaluation of
reference signals and their resulting CVR amplitude and delay maps. In fact, some of the datasets
with insufficient PerCO:; still showed reasonably good CVR amplitude maps (Fig. S3). However,
the corresponding CVR delay maps are less similar to those generated by sufficient quality
timeseries and should give cause for caution when interpreting the CVR amplitude maps, due to
potential mis-fitting of the reference signal. For example, there are several regions of negative
CVR amplitudes in the map for sub-010 ses-07 (indicated by blue voxels in the corresponding
map of Fig.S3), which resemble the vascular “steal” phenomenon and could be mis-characterized
as pathology (Conklin et al., 2010; Poublanc et al., 2013; Sam et al., 2016). Therefore, insufficient
PerCO2 CVR maps should be interpreted carefully, particularly in clinical cases.

Although these are promising results to recover CVR maps retrospectively or in low resource
settings, we still recommend trying to obtain sufficient PerCO, estimates from a breathing
modulation for the highest quality CVR maps. There are suggestions throughout the literature on
how to implement robust breath-hold tasks (Bright and Murphy, 2013; Murphy et al., 2011; Pinto
et al.,, 2021; Scouten and Schwarzbauer, 2008; Urback et al., 2017). In brief, it is strongly
recommended to incorporate a training session before the scan to ensure that participants
understand and comply with task instructions (Kannurpatti et al., 2010; Magon et al., 2009; Zaca
et al., 2014). Monitoring respiratory signals throughout the task is also encouraged to ensure
quality of the recording and assess task performance (Bulte and Wartolowska, 2017). In addition,
cueing strategies (e.g., text, symbolic, or auditory) should be carefully considered to make
instructions intuitive for the target population. Lastly, other breathing tasks might be more feasible
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than a breath-hold, such as intermittent breath modulation (Liu et al., 2020) or paced deep
breathing (Bright et al., 2009; Sousa et al., 2014; Stickland et al., 2021). With these alternative
methods, a similar approach to determine relative power at the task frequency could still be
implemented, though the limitations of extending our findings to other breathing modulations are
discussed in Section 4.7.

4.5 Potential impacts and examples of utility

The use of alternative reference signals to generate CVR amplitude and delay maps has a
range of potential impacts. The framework proposed here using RVT or GM-BOLD reference
signals makes prospective CVR mapping accessible to any imaging centers that lack the
equipment and personnel necessary to monitor and post-process respiratory gas recordings. A
respiration belt should be integrated with most scanning set-ups, and the GM-BOLD signal
requires no additional monitoring. All lagged-GLM regression analyses, with the exception of the
RVT computation, are based on open-source software (peakdet, phys2cvr, and rapidtide) to
facilitate the modeling steps for future applications. In addition, these findings present the
opportunity to retrospectively generate CVR maps in breath-hold data where PerCO. data was
not collected or had insufficient quality.

Potentially most impactful, a method to acquire robust CVR amplitude and delay maps even
in datasets with insufficient PetCO- quality has important implications for populations where it may
be difficult to obtain reliable end-tidal measurements. This includes children, where previous work
has demonstrated reasonable task compliance but poor PerCO: quality, either due to mouth
breathing or failure to perform end-exhales. It also includes aging cohorts and clinical populations
(both pediatric and adults), who may similarly have difficulty following the steps needed for
sufficient quality PetCO2 (Handwerker et al., 2007; Thomason et al., 2005).

Overall, improved accessibility to CVR mapping can increase the prevalence of this
informative metric of vascular health. Several reviews have described the utility of CVR mapping
for understanding disease mechanisms and as a biomarker to triage patients for therapeutic
interventions and track the efficacy of these interventions (Blair et al., 2015; Gupta et al., 2012;
Juttukonda and Donahue, 2019; Pillai and Mikulis, 2015; Sleight et al., 2021; Smeeing et al.,
2016). Aside from clinical populations, CVR mapping is also recommended in healthy cohorts to
isolate differences in the BOLD response that may be due to differences in vascular rather than

neural processes (Handwerker et al., 2007; Thomason et al., 2007; Tsvetanov et al., 2015).
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4.6 Alternative approaches to address compliance challenges in CVR mapping

While we ideally recommend using a breathing task and respiratory-derived signal for CVR
mapping, alternative methods without end-tidal CO. recordings or in resting-state have been
proposed to address the challenges associated with breathing tasks. These methods are
reviewed in detail by Pinto et al., 2021, but we discuss key comparisons. As described in Section
4.4, the Rapidtide algorithm can generate a probe regressor from the global BOLD signal or
another reference timeseries and use temporal cross-correlation with each voxel timeseries to
determine maximum correlations and corresponding time delays (Frederick et al., 2016) (Tong
and Frederick, 2014). The correlation metrics are surrogates for CVR, although the outputs are
not in the standard CVR units (%BOLD/mmHg) that allow for comparison across subjects,
particularly if the global signal is used as the probe. With a PerCO: probe, the Rapidtide outputs
could potentially be modified to obtain CVR amplitude in normalized units.

From resting-state data, the global BOLD signal can be bandpass filtered to approximate
arterial CO: fluctuations and used as a regressor to estimate CVR (Liu et al., 2017). In addition,
resting-state metrics such as the amplitude of low frequency fluctuations (ALFF) or fractional
ALFF (fALFF) have demonstrated high correlations with CVR derived from CO> challenges (Di et
al., 2013; Golestani et al., 2016; Kazan et al., 2016). However, this relationship is controversial
(Moia et al., 2022a). For instance, Moia et al., 2022 shows, in the same dataset used in this study,
that resting-state metrics (RSFA, ALFF, fALFF) have highly variable inter-subject relationships
with breath-hold CVR measures.

Additionally, the lagged-GLM has been previously performed with PerCO. from resting-state
data, but the delay optimization procedure was less successful, leading to noisy estimates of CVR
amplitude and delay (Stickland et al., 2021). This was hypothesized to be due to the smaller
fluctuations in the resting-state signal relative to a breathing task and the confounds of low-
frequency oscillations from neural activity and other physiological processes that may disrupt the
optimization procedure (Caballero-Gaudes and Reynolds, 2017; Liu, 2016; Murphy et al., 2013).
The increased BOLD sensitivity and data quality associated with the multi-echo acquisition in our
study also helps to improve the CVR estimates (Moia et al., 2021). Similar results would be
expected for alternative resting-state reference signals.

Although these alternative methods provide some insight into cerebrovascular physiology,

each is missing a key characteristic of robust CVR measurements. Namely, none of these
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methods simultaneously use a breathing modulation to challenge the vascular system, normalize
the BOLD changes to a reference signal that accounts for variability in breathing task

performance, and correct for regional delays in CVR response time (Stickland et al., 2021).

4.7 Limitations and future work

The comparisons laid out in this study are valid only for breath-hold task fMRI data in healthy
individuals. The alternative reference signals considered here may not be highly correlated with
PerCO:2 in paced deep breathing tasks and may have insufficient variability in resting state to
produce reasonable CVR maps. Using a paced hyperventilation task to induce hypocapnia, Vogt
and colleagues (2011) found that RVT convolved with the respiration response function was less
strongly correlated to BOLD signal changes than PerCO2 convolved with an empirically derived
response function. They conjectured that the uncoupling of the signals was due to the higher rate
of CO» reduction during hyperventilation relative to the slower rate of metabolic CO2 production,
which is captured by the PerCOzregressor but not in the canonical respiration response (Vogt et
al., 2011). This could potentially be addressed with optimization of the respiration response
function for hypocapnia.

Furthermore, to achieve RVT or GM-BOLD CVR maps that are comparable to those from
PerCOs, the participant must attempt the breath-hold task with repeated periods of apnea. These
changes in chest position are necessary to generate an RVT signal that has sufficient power at
the task frequency. Similarly, the periods of apnea are required to induce a rise in arterial CO2
levels and the successive increase in CBF detected by the GM-BOLD signal. Achieving this level
of task compliance could still be difficult in some cohorts, although there is a breadth of literature

demonstrating successful use of breath-hold tasks (Pinto et al., 2021; Urback et al., 2017).

In participants with cerebrovascular pathology, careful consideration should be given to the
reference signal and lagged-GLM parameters. For example, the average gray matter signal might
be biased by regions with atypical perfusion dynamics. This could be addressed by averaging
across normal-appearing tissue, or by using global signal refinement procedures as described in
Section 4.4. Hemodynamic delays are also longer in many pathologies, such as steno-occlusive,
small vessel disease, and dementia (Atwi et al., 2019; Duffin et al., 2015; Hartkamp et al., 2012;
Holmes et al., 2020; McKetton et al., 2019; Thrippleton et al., 2018). The delay range used in the
lagged-GLM step should be extended to reflect those that are physiologically plausible for a given

condition. Using a lagged-GLM approach, delays in the range of 9 seconds are consistently
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reported in healthy individuals (Bright et al., 2009; Donahue et al., 2016; Moia et al., 2021, 2020a;
Sousa et al., 2014; Stickland et al., 2021), while in a case of unilateral moyamoya, delays

exceeded 10 seconds in the affected hemisphere (Stickland et al., 2021).

Our choice to use a multi-echo fMRI acquisition rather than a more commonly used single
echo protocol may also limit the generalizability of our findings. In fact, the GM-BOLD signal used
in our study benefits from the boost in SNR achieved from the optimal combination of 5 echoes
(Cohen and Wang, 2019; Moia et al., 2021). If a multi-echo fMRI approach is not feasible, spatial
smoothing or cortical parcellation could be used as alternatives to boost SNR at the cost of spatial
definition. Results from CVR mapping will also be sensitive to the quality of the input fMRI data,
from acquisition to the pre-processing and denoising steps applied (Caballero-Gaudes and
Reynolds, 2017). As with all fMRI acquisitions, we recommend mitigating motion confounds

during the scan and modelling these noise sources in the lagged-GLM (Moia et al., 2021).

CVR map quality and accuracy could be further improved by refining the response functions
used to model the effects of PerCO2 and respiration fluctuations on the BOLD signal. We assumed
canonical response functions for the HRF (Friston et al., 1998) and RRF (Birn et al., 2008) used
to model PerCO2 and RVT, respectively. While we have accounted for regional variations in the
timing of these responses, we have not incorporated flexible response shapes. Spatial
heterogeneity in the amplitude and timing of BOLD responses to respiratory variation is apparent
in resting-state data, with notable differences between primary sensory regions and frontoparietal
regions (Chen et al., 2020; Pinto et al., 2017). The inclusion of temporal and derivative basis sets
in the lagged-GLM as described by Chen at al., 2020 may better account for this variability. In
addition, response functions have been shown to vary between subjects and even between
sessions from the same subject (Kassinopoulos and Mitsis, 2019). Kassinopoulos and Mitsis
(2019) proposed a framework to estimate subject-specific response functions by using a
combination of optimization techniques to estimate parameters of the double gamma functions,
which could also be implemented to generate more accurate reference signals. Similarly, they
could be estimated from the subject-specific global or GM-BOLD signals (Falahpour et al., 2013),
but importantly the estimated response functions should be tested in other datasets to avoid
circularity. Regardless of the approach, differences in response functions are especially important
to consider in cohorts that may have atypical hemodynamics, as in older adults and
cerebrovascular pathology (D’Esposito et al., 2003). Future work should re-evaluate consistency

between CVR maps with region-specific and/or subject-specific response functions.
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We encourage collaboration among stakeholders in the CVR community and suggest
integration among the existing approaches that aim to address the feasibility of physiological
modeling and CVR mapping. For example, a refined GM-BOLD regressor could be extracted from
existing algorithms such as Rapidtide (Frederick et al., 2022b) or seeCVR (Bhogal, 2022) and
incorporated into the lagged-GLM. Alternatively, standard implementations of CVR modeling
algorithms, including Rapidtide, seeCVR, and quantiphyse (Craig et al., 2022), could be modified
to input RVT as a reference signal not already supported. Machine learning may also be a
promising tool to address challenges with reference signal quality. For example, Agrawal et al.,
2022 successfully used the respiratory waveform in resting-state data to predict CO, and derive
PerCO- using a fully convolutional neural network (Agrawal et al., 2022). However, their method
does not maintain PerCO2 in quantitative units of mmHg either, which would be preferred for
modeling CVR amplitude. A separate study proposed two deep learning architectures (again a
convolutional neural network and a fully connected single-unit network) to reconstruct respiratory
variation signals from the fMRI data itself (Salas et al., 2021). Future work could adapt these
models to predict a “sufficient” PerCO> trace from insufficient PerCO; data, from a respiration
trace, or from the fMRI data in the context of a breath-hold task. This would be especially
promising if the algorithm is able to scale the resulting PerCO- signal in standard units (i.e.,
%BOLD/mmHg).

5. Conclusion

End-tidal CO, (PerCO2) is commonly used as a reference signal to facilitate modeling of
cerebrovascular reactivity (CVR) in BOLD fMRI data, but the PerCO. recordings may be
unavailable or unreliable in many settings. We demonstrate that respiration volume per time
(RVT) or the average gray matter BOLD response during a breath-hold task can be used in a
lagged general linear model framework to obtain estimates of CVR amplitude and delay.
Furthermore, CVR maps from these reference signals have good spatial agreement with those
from the gold standard reference of PerCOs-. In datasets with sub-optimal or “insufficient” PerCO»
recordings, RVT and GM-BOLD can also be used to recover reasonable CVR amplitude and
delay maps, provided that the participant achieved periods of apnea during the breath-hold task.
This framework offers a solution to obtain non-quantitative CVR amplitude and quantitative delay
maps when reliable PerCO: recordings are unavailable due to limitations in resources or

participant compliance.
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