

Contrasting genomic consequences of anthropogenic reintroduction and natural recolonisation in high-arctic wild reindeer

Authors

Hamish A. Burnett^{1,2†}, Vanessa C. Bieker^{1,2}, Mathilde Le Moullec¹, Bart Peeters¹, Jørgen Rosvold³, Åshild Ønvik Pedersen⁴, Love Dalén^{5, 6, 7}, Leif Egil Loe⁸, Henrik Jensen¹, Brage B. Hansen^{1,9*}, Michael D. Martin^{1,2*†}

[†] *corresponding authors*

^{*} *contributed equally*

Author affiliations

¹ Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

² Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

³ Department of Terrestrial Biodiversity, Norwegian Institute for Nature Research (NINA), Trondheim, Norway

⁴ Norwegian Polar Institute, Research Department, Tromsø, Norway

⁵ Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91 Stockholm, Sweden

⁶ Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-10405 Stockholm, Sweden

⁷ Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden

⁸ Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Aas, Norway

⁹ Department of Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), Trondheim, Norway

Corresponding author contact:

Hamish A. Burnett: hamish.a.burnett@ntnu.no

Michael D. Martin: mike.martin@ntnu.no

1 Abstract

2 Anthropogenic reintroduction can supplement natural recolonisation in reestablishing a species' distribution and abundance. However, both reintroductions and recolonisations can give rise to population bottlenecks that reduce genetic diversity and increase inbreeding, potentially causing accumulation of genetic load and reduced fitness. Most current populations of the endemic high-arctic Svalbard reindeer (*Rangifer tarandus platyrhynchus*) originate from recent reintroductions or recolonisations following regional extirpations due to past overharvesting. We investigated and compared the genomic consequences of these two paths to reestablishment using whole-genome shotgun sequencing of 100 Svalbard reindeer across their range. We found little admixture between reintroduced and natural populations. Two reintroduced populations, each founded by 12 individuals around four decades (i.e. 8 reindeer generations) ago, formed two distinct genetic clusters. Compared to the source population, these populations showed only small decreases in genome-wide heterozygosity and increases in inbreeding and lengths of runs of homozygosity. In contrast, the two naturally recolonised populations without admixture possessed much lower heterozygosity, higher inbreeding, and longer runs of homozygosity, possibly caused by serial population bottlenecks and/or fewer or more genetically related founders than in the reintroduction events. Naturally recolonised populations can thus be more vulnerable to the accumulation of genetic load than reintroduced populations. This suggests that in some organisms even small-scale reintroduction programs based on genetically diverse source populations can be more effective than natural recolonisation in establishing genetically diverse populations. These findings warrant

21 particular attention in the conservation and management of populations and species threatened by

22 habitat fragmentation and loss.

23 Introduction

24 Species reintroductions are increasingly being used in ecological restoration and biodiversity
25 conservation programmes (Armstrong & Seddon 2008; Weeks *et al.* 2011; Seddon *et al.* 2014).
26 Most reintroductions involve translocation of a small number of individuals to establish new
27 populations that may be geographically isolated from the species' current range (Frankham 2010).
28 Founding populations are often characterised by having a small effective population size, only a
29 subset of the genetic variation that exists in their source populations, and limited or no gene-flow
30 with other populations (Lynch & Gabriel 1990; Frankham 2010). An alternative to reintroduction
31 by translocations are more passive measures that facilitate natural dispersal and recolonisation of
32 species' ranges (Scott *et al.* 2001). Natural recolonisation processes may differ from
33 reintroductions in that they require some connectivity with other populations. They can therefore
34 be very slow, even in highly mobile species (Larter *et al.* 2000; Hurford *et al.* 2006). Especially in
35 fragmented habitats and in species with low dispersal rates, natural recolonisation (including
36 recolonisation from reintroduced populations) may also involve one or multiple sequential
37 population bottlenecks and relative isolation of recolonised populations (Clegg *et al.* 2002; Pruett
38 & Winker 2005).

39 Due to the often small founder population size, both reintroduced and naturally recolonised
40 populations may initially experience strong genetic drift and accumulate inbreeding because
41 individuals are more likely to share common ancestors, which increases homozygosity (Nei *et al.*
42 1975; Allendorf 1986). The levels of genetic diversity in reintroduced and recolonised populations
43 are however also affected by population growth rate, genetic structure, and immigration (Latch &
44 Rhodes 2005; Biebach & Keller 2010, 2012). For example, inbreeding and genetic drift

45 accumulate over generations at a rate that depends on the population size and the rate of
46 immigration (Whitlock *et al.* 2000; Willi *et al.* 2013). Rapid population growth reduces the
47 duration of a population bottleneck and the degree of genetic drift (Nei *et al.* 1975; Allendorf
48 1986). Immigration counteracts the loss of diversity due to drift by introducing unrelated
49 individuals and novel genetic material that replenishes genetic variation and reduces inbreeding
50 rates (Vucetich & Waite 2000; Latch & Rhodes 2005; Frankham *et al.* 2017). The accumulation
51 of inbreeding and genetic drift can allow low frequency (partially) recessive deleterious alleles
52 that are rarely homozygous (i.e. masked genetic load (Bertorelle *et al.* 2022)) to increase in
53 frequency and even become fixed. Consequently, masked genetic load may be converted to
54 realised genetic load (Wang *et al.* 1999; Bertorelle *et al.* 2022), which is expected to reduce fitness
55 (i.e. inbreeding depression (Charlesworth & Willis 2009)). However, this process exposes
56 deleterious variation to selection, potentially purging strongly deleterious recessive alleles and
57 reducing the fitness consequences of future inbreeding (Hedrick & Garcia-Dorado 2016; Robinson
58 *et al.* 2018). Genetic drift also reduces genetic diversity, including potentially adaptive genetic
59 variation that may be important for evolutionary responses necessary to maintain fitness in
60 changing environments (Frankham 2005; Kardos *et al.* 2021). Together, these genetic
61 consequences can impact both the short- and long-term viability of populations (Frankham 2005;
62 Weeks *et al.* 2011).

63 Consequently, a key goal in the management of reestablishing or fragmented populations is to
64 maximise the genetic diversity and minimise drift and inbreeding (Frankham *et al.* 2017). Several
65 studies have shown that genetic diversity in reintroduced and naturally recolonised populations is
66 often higher in those that receive gene flow from other populations (Latch and Rhodes 2005;
67 Biebach and Keller 2012; Malaney *et al.* 2018), originate from multiple source populations

68 (Williams et al. 2000; Huff et al. 2010; Williams and Scribner 2010; Sasmal et al. 2013; Vasiljevic
69 et al. 2022), and in reintroductions that use multiple translocations (Drauch & Rhodes 2007;
70 Cullingham & Moehrenschlager 2013). Without such mitigating factors, erosion of genetic
71 diversity and accumulation of inbreeding can occur due to isolation and/or slow population growth
72 (Williams *et al.* 2002; Hundertmark & van Daele 2010), and may have detrimental population-
73 level consequences for fitness-related traits (Wisely *et al.* 2008) and population growth rates
74 (Bozzuto *et al.* 2019). Differences in population connectivity and demography between
75 reintroductions and natural recolonisations could therefore result in differing genetic consequences
76 for these two paths to population reestablishment. Reintroduced populations may be more isolated
77 from their source than naturally recolonised populations. However, the sequential reestablishment
78 of habitat that often characterises natural recolonisation can result in cumulative founder effects
79 that severely reduces genetic diversity (Le Corre & Kremer 1998; Clegg *et al.* 2002). Naturally
80 recolonised populations can thus be more vulnerable to the accumulation of genetic load than
81 reintroduced populations in species or environments with limited dispersal possibilities.

82 Recent years have seen increased accessibility of genomic data that provide greater power to study
83 population structure, genetic diversity, and inbreeding (Supple & Shapiro 2018), which are
84 important for understanding the genetic outcomes of reintroductions (Hicks *et al.* 2007; Taylor &
85 Jamieson 2008; Wright *et al.* 2014). One such advantage of genomic data is its utility for
86 quantifying inbreeding using runs of homozygosity (RoH). These RoH occur when breeding
87 between individuals that share common ancestors results in offspring with stretches of
88 homozygosity along segments of their homologous chromosomes that both parents inherited from
89 a common ancestor (Kardos *et al.* 2015, 2016). The ability to quantify the length of RoH segments
90 enables us to distinguish between inbreeding due to recent or more distant shared ancestors of the

91 parents based on the distribution of RoH lengths, giving insights into the demographic history of
92 populations (Druet & Gautier 2017; Kardos *et al.* 2017; Brüniche-Olsen *et al.* 2018).

93 While the success of reintroductions has been studied across a variety of taxa including fish
94 (Drauch & Rhodes 2007), birds (Brekke *et al.* 2011), insects (White *et al.* 2017), and other
95 ungulates (Grossen *et al.* 2018), few studies have been able to evaluate and compare their genetic
96 consequences with those from natural population reestablishments. The wild, endemic Svalbard
97 reindeer (*Rangifer tarandus platyrhynchus* Vrolik, 1829) subspecies, with its strong
98 metapopulation structure (Peeters *et al.* 2020), is a biological system well suited for comparing the
99 genetic consequences of reintroductions to those of natural recolonisations. The number of
100 Svalbard reindeer declined drastically due to overharvesting until 1925, when they were protected,
101 and the subspecies was extirpated from much of the Svalbard archipelago, with evidence of
102 reindeer surviving in four isolated populations totalling ~1000 individuals (Lønø 1959; Le Moullec
103 *et al.* 2019). The subspecies has since largely recovered, with natural recolonisation and
104 anthropogenic reintroductions restoring most of its former range. Accordingly, Svalbard reindeer
105 are now abundant (~22,000 individuals) (Le Moullec *et al.* 2019) with most populations relatively
106 stable or increasing in size (Hansen *et al.* 2019b), and populations previously extirpated are still
107 recovering in number (Le Moullec *et al.* 2019). As environmental conditions are rapidly changing
108 due to climate change (Isaksen *et al.* 2022), including sea-ice coverage (Peeters *et al.* 2020),
109 genetic diversity and differentiation of reindeer populations may be important for their capacity to
110 adapt to these conditions and influence their future population dynamics. Therefore, knowledge of
111 the genetic consequences of the Svalbard reindeer reintroduction and recolonisation events is
112 important for understanding how the metapopulation might respond to environmental change in

113 the future, and to contribute to a broader understanding of the genetic consequences of species
114 reintroductions.

115 Here, we use whole-genome sequencing data to investigate the genetic consequences of two
116 Svalbard reindeer reintroductions (each founded by 12 individuals (Gjertz 1995; Aanes *et al.*
117 2000)) and compare these to natural recolonisation processes in adjacent, comparable habitats with
118 similar ecological conditions. Specifically, we quantify the degree to which the genetic diversity
119 of the source population was retained through the single founder event bottleneck and subsequent
120 rapid population growth (Kohler & Aanes 2004) associated with anthropogenic reintroduction, and
121 whether a signature of this reintroduction could be detected in the form of longer RoH.
122 Additionally, we investigated whether naturally recolonised populations that were not admixed
123 would show different patterns of genetic diversity and inbreeding coefficients compared to
124 reintroduced populations due to the compounding effects of sequential founding events during
125 natural recolonisation.

126 **Results**

127 **Sequencing**

128 Whole-genome sequencing resulted in a mean nuclear genome sequencing depth of 3.3x for the
129 90 samples sequenced to a lower target coverage and 23.4x for 10 deep-sequenced samples, after
130 all filtering (see Fig S1 for distribution of sequencing coverage). Four samples had <0.1x coverage
131 and thus were used only for the site frequency spectrum (SFS) estimates. Genotype likelihoods for
132 8,255,693 variable sites were calculated from the caribou nuclear genome (Taylor *et al.* 2019)
133 mapped sequence data after quality filtering. 6,309,215 of these sites remained after removing

134 scaffolds mapping to the bovine X chromosome. Mean sequencing depth of the mitochondrial
135 genome was >1000x.

136 **Admixture and principal component analyses**

137 Admixture and principal component analysis identified clear genetic structure in the Svalbard
138 reindeer metapopulation (Fig 1 and 2). Principal component analysis of the whole Svalbard
139 metapopulation suggested tight clustering among a “Central Svalbard” group of populations
140 consisting of the reintroduced (Reintroduction 1 and 2), the reintroduction source (ADV), and the
141 naturally recolonised southern Svalbard (STH) populations (Fig 1). The major axis of variation in
142 the PCA (PC1, Fig 1) was driven by variation between this Central Svalbard group and
143 Mitrahalvøya (MTR), while the secondary PC axis was driven by variation between the Eastern
144 (EST) population and both MTR and the Central Svalbard group populations, indicating strong
145 genetic differentiation between these three groups (Fig 1). Admixture analysis further supported
146 these patterns (Fig 2). The optimal number of genetic populations identified using the delta K
147 method was $K=2$ for both the admixture analysis on the whole dataset and the analysis limited to
148 the subset of populations assigned to the Central Svalbard genetic group in the Svalbard-wide $K=2$
149 model (Fig S2). Strongly correlated residuals between individuals in the $K=2$ models examined by
150 EvalAdmix (Fig S3) indicate these models were a poor fit to the data and may fail to capture finer
151 scale structure. Due to this we also present higher K -value models to examine finer-scale genetic
152 structure. On the broadest scale, the $K=2$ model indicated the Central Svalbard group from the
153 PCA share a common ancestral population distinct from the naturally recolonised MTR
154 population, close to the reintroduction 1 site (Fig 2). The $K=3-10$ and $K=5-10$ models suggested
155 that the remnant populations in EST and northeastern Svalbard (NE), respectively, originate from
156 distinct ancestral populations (Fig S4). This was supported by highly correlated residuals within

157 these populations in the models that assigned them as admixed populations (Fig S4). Individuals
158 in the naturally recolonised Wijdefjorden (WDF) population were assigned admixed ancestry from
159 the MTR and NE ancestral populations (models $K=5-8$), or a distinct ancestral population with
160 some admixture with the ancestral NE population (models $K=8-10$).

161 On a finer scale, both the Svalbard-wide PCA (PC3 and PC4, Fig S5) and admixture analysis
162 (model $K=7$, Fig 2) suggested fine-scale structure among the Central Svalbard group, confirmed
163 by PCA and admixture analyses including only Reintroduction 1 & 2, ADV, and STH. For these
164 fine-scale analyses, PC axes 1 and 2 (Fig S6) showed clear segregation between Reintroduction 1,
165 Reintroduction 2, ADV, and STH. Admixture analyses showed low levels of admixture between
166 the distinct ancestral populations corresponding to the two reintroductions, the ADV source
167 population and the naturally recolonised STH population ($K=4$ admixture model, Fig S7).
168 Evidence of admixture between reintroduced and natural populations was found in only one
169 individual “B-13” from KAF (Reintroduction 1) that carried approximately 50% MTR ancestry,
170 and one individual in WDF “T-2” that was assigned approximately 50% Reintroduction 1 and
171 ADV ancestry. This admixture assignment was consistent with the PCA and all K -value admixture
172 models (Figs 2,3 and S4).

173 **Fst analysis**

174 Pairwise F_{ST} estimates showed very strong genetic structure, and largely supported admixture and
175 PCA results (Fig 3). Populations assigned in admixture analyses to the same reintroduction showed
176 lower pairwise F_{ST} values between each other than populations assigned to the other
177 reintroduction. Similar levels of genetic differentiation were found in comparisons between the
178 source population and both groups of reintroduced populations, and between the two groups of
179 reintroduced populations. The naturally recolonised population at MTR was clearly the most

180 genetically distinct, showing extremely high differentiation (>0.35) to all other populations except
181 Widejorden.

182 **Mitochondrial haplotype diversity**

183 We detected 38 variant sites among the 96 full mtDNA genomes, comprising 16 unique haplotypes
184 (Table 1, Fig 4). Haplotypes could be grouped into seven distinct haplogroups with a maximum of
185 two substitutions separating each haplotype from its nearest neighbour (Fig 4C). Mitochondrial
186 DNA haplotype diversity showed a similar pattern to nuclear genetic analyses. Haplotypes in
187 MTR, NE, and EST were not found in any other population except WDF, which carried a mixture
188 of haplotypes found in every population except STH and NE, plus one highly unique haplotype
189 (Fig 4A). Overall, populations with Central Svalbard ancestry (ADV, STH, and reintroductions)
190 shared similar haplogroups, with the notable exception that the most common haplogroup among
191 reintroduced populations and STH was not found in the ADV source population but instead in
192 EST. Within this shared haplogroup, the haplotypes found in STH and the reintroduced
193 populations were mutually exclusive to those in EST, but differed by as little as a single mutation
194 (Fig 4B). The populations KAF and NIF, from Reintroduction 1 and 2 respectively, carried
195 haplotypes belonging to haplogroups not found in other reintroduced populations (Fig 4a). The
196 KAF individual admixed with MTR (Fig 2) carried a unique haplotype from the MTR haplogroup,
197 and almost half of the NIF samples carried haplotypes in a haplogroup otherwise found only in
198 ADV (Fig 4A).

199
200 Haplotype richness was strongly correlated to mean population genome-wide heterozygosity
201 (pearson correlation $r=0.86$, $p=0.013$). Each of the two reintroduction groups (populations

202 combined) had similar haplotype richness to ADV, and higher than all other natural populations
203 except WDF (Table S2 and Fig S8).

204 **Heterozygosity analysis**

205 The median genome-wide heterozygosity for all individuals in this study with coverage $>2.5x$ was
206 3.02×10^{-4} . Populations originating from the first and second reintroductions had slightly lower
207 median genome-wide heterozygosities (3.13×10^{-4} , IQR 4.59×10^{-5} and 3.19×10^{-4} , IQR 4.94×10^{-5}
208 respectively) than the ADV source population (genome-wide heterozygosity 3.31×10^{-4} , IQR
209 1.68×10^{-5} , Fig 5), but overall, there was weak evidence that heterozygosity was different between
210 reintroduced individuals (both populations combined) and those from ADV (Mann-Whitney U
211 test, $W=483$, $P=0.081$). In contrast to the remnant natural and admixed recolonised populations
212 with intermediate heterozygosities (EST, NE, and WDF), the two non-admixed naturally
213 recolonised populations MTR (median 1.89×10^{-4} , IQR 7.14×10^{-5}) and STH (median 2.34×10^{-4} ,
214 IQR 6.37×10^{-5}) had very low heterozygosity. These recolonised populations had markedly lower
215 than the reintroduced populations combined ($W=240$, $P<0.001$ and $W=235$, $P<0.001$ respectively).

216 **Inbreeding**

217 We detected 21,990 RoH longer than 0.5 Mbp across the 83 genomes included in the analysis,
218 ranging from 0.5 Mbp to 12.76 Mbp in length and covering between 3% to 59% of individual's
219 genomes (Fig 6). Both reintroduced populations showed a higher mean inbreeding coefficient
220 ($\text{Reintroduction 1 } F_{\text{ROH}} 0.236 \pm 0.063 \text{ SD, Reintroduction 2 } F_{\text{ROH}} 0.237 \pm 0.033$) relative to their
221 source population in Adventdalen ($F_{\text{ROH}} 0.186 \pm 0.042$). The higher inbreeding in reintroduced
222 populations was due to greater coverage of moderate length RoH (between 1 - 8 Mbp) that resulted
223 in increased median RoH lengths (Fig 6), indicating a reduced effective population size in the more
224 recent past compared to the ADV source population.

225 Non-admixed naturally recolonised populations MTR and STH had the highest inbreeding
226 coefficients (mean F_{ROH} 0.477 ± 0.084 and 0.377 ± 0.07 , respectively) and longest median RoH
227 lengths (Fig 6). We found the strongest signals of recent inbreeding in STH, with a high proportion
228 of individuals' genomes covered by $RoH > 4$ Mbp relative to other populations and a peak in F_{ROH}
229 in the 2-4 Mbp class (Fig. 6B). In MTR, F_{ROH} was highest in the 1-2 Mbp class with a large
230 contribution from all other size classes < 8 Mbp relative to other populations, but very long (> 8
231 Mbp) RoH were rare. The admixed naturally recolonised population in WDF had the highest
232 variation in total F_{ROH} consistent with high variation in the proportion of individuals' shared
233 ancestry. The two remnant natural populations EST and NE both had high F_{ROH} in short RoH
234 classes compared to the ADV population, with EST having low F_{ROH} in intermediate and long size
235 classes comparable to ADV, and the two samples from NE showing relatively high F_{ROH} in all size
236 classes.

237 Discussion

238 By analysing whole genome sequences from more than 100 Svalbard reindeer across their range,
239 we have quantified important genomic consequences and contrasts of population recovery through
240 anthropogenic reintroductions versus natural recolonisations in the previously severely
241 overharvested subspecies. We found strong archipelago-wide genetic structure, including two
242 distinct genetic clusters corresponding to two reintroductions from a common source, with little
243 evidence for extensive admixture between reintroduced and sampled natural populations (Figs 1 -
244 4). Our results show that reintroduced populations also maintained comparative levels of genetic
245 diversity to their source population (Fig 5), although bottleneck effects resulted in a small increase
246 in the length and coverage of RoH across the genomes of reintroduced individuals (Fig 6). This

247 contrasted strongly to non-admixed naturally recolonised populations, which had markedly lower
248 genetic diversity and greater proportion of their genomes comprising RoH. This suggests that non-
249 admixed, naturally recolonised populations may be more vulnerable to the accumulation of genetic
250 load and loss of adaptive variation than reintroduced populations, even when the latter originate
251 from just a handful of individuals.

252 **Effect of reintroduction versus recolonisation on genome-wide diversity**

253 We estimated genome-wide heterozygosity and analysed the distribution of RoH lengths to
254 separate the contribution of ancient and more recent demographic history, associated with
255 reintroduction and recolonisation, to patterns of genome-wide variation. Our analyses identified a
256 weak signal of a population bottleneck in both reintroductions, which had higher total inbreeding
257 coefficients and longer RoH, but no significant reduction in average heterozygosity compared to
258 the source population. Similar genomic signatures of reintroductions have previously been
259 identified, including in European bison *Bison bonasus* (Druet *et al.* 2020), Magpie-robins
260 *Copsychus sechellarum* (Cavill *et al.* 2022), and ibex *Capra ibex* (Grossen *et al.* 2018). The
261 increased inbreeding in reintroduced populations was attributable to a greater proportion of the
262 genome in RoH >1 Mbp, including in the 1-2 and 2-4 Mbp range. These size classes reflect shared
263 ancestry approximately 25-50 and 12-25 generations ago, i.e. before the time of the reintroduction
264 translocation, given an average generation time of 5-6 years. We found only a small increase in
265 the coverage of long RoH (4-8 Mbp), which is the expected length of RoH caused by shared
266 ancestors 6-12 generations ago (around the time of the reintroduction), indicating our analysis may
267 have underestimated RoH lengths. However, generation time may have been reduced in the post-
268 reintroduction period of strong population growth due to an abundance of resources resulting in
269 an earlier age of first reproduction and high fecundity (Giaimo & Traulsen 2022). Nevertheless, a

270 low frequency of long RoH relative to naturally recolonised populations suggests lower levels of
271 recent inbreeding among reintroduced individuals. The founding population sizes of twelve
272 Svalbard reindeer have thus been sufficient to maintain most of the heterozygosity of the source
273 population and avoid serious accumulation of inbreeding in both reintroductions, both of which
274 are a key concern for reintroduced populations (Weeks *et al.* 2011; Frankham *et al.* 2017).

275 We found fewer long RoH in reintroduced Svalbard reindeer than reported for alpine ibex (Grossen
276 *et al.* 2018) and European bison (Druet *et al.* 2020), and our results indicate that, like the source
277 population (ADV), short RoH (i.e. inbreeding due to ancient demography) still contribute the most
278 to the total inbreeding coefficients of reintroduced individuals. Rapid population growth
279 immediately after reintroduction (Aanes *et al.* 2000) and the extensive overlap between
280 generations in reindeer are both characteristics that reduce loss of genetic diversity after population
281 bottlenecks (Nei *et al.* 1975; Allendorf 1986). Furthermore, past and possibly ongoing dispersal
282 among the secondary sub-populations recolonised from the initial reintroduced populations
283 (Hansen *et al.* 2010; Stien *et al.* 2010) may have buffered against the effects of sequential founder
284 events. Similar outcomes have been observed in reintroductions of a range of vertebrate and
285 invertebrate species where rapid population growth occurred after reintroduction (Hicks *et al.*
286 2007; Brekke *et al.* 2011; Murphy *et al.* 2015; White *et al.* 2017). In particular, populations of
287 other ungulates colonised by only a few founding individuals have been shown to retain high levels
288 of heterozygosity as a result of overlapping generations and rapid population expansion (Kaeuffer
289 *et al.* 2007; Kekkonen *et al.* 2012). In contrast, populations reintroduced with few founders that
290 remained small for several generations have shown a pronounced reduction in genetic diversity
291 (Williams *et al.* 2002; Wisely *et al.* 2008).

292 In contrast to the reintroductions, the natural recolonisation of STH and MTR resulted in
293 populations with very low nuclear genome-wide heterozygosity, mtDNA haplotype diversity, and
294 high total inbreeding coefficients with a longer distribution of RoH. In STH, high F_{RoH} across the
295 1-2, 2-4, and 4-8-Mbp size classes, with a peak in the 2-4-Mbp range, indicates small population
296 size around the same time as the reintroductions (i.e. during the recolonisation period) (Fig 6B).
297 STH also has the highest proportion of genomes within $RoH > 4$ Mbp, indicating bottlenecks or
298 small population size more recently than in the reintroduced populations. Long RoH may be
299 particularly significant to conservation as they represent young haplotypes that have been exposed
300 to less selection than older haplotypes, making them more likely to harbour deleterious mutations
301 (Bortoluzzi *et al.* 2020) and have a greater impact on fitness (Szpiech *et al.* 2013; Stoffel *et al.*
302 2021). The very high frequency of short RoH in the MTR genomes suggests this population
303 originates from a source with a historically small population size (i.e. prior to recolonisation), and
304 high coverage of moderate length RoH indicates bottlenecks or small population size during the
305 last 25 generations (i.e. during recolonisation). Both ADV, the two reintroduced populations, and
306 the naturally recolonised STH had similar average proportion of genomes within $RoH < 1$ Mbp,
307 indicating similar demographic histories >50 generations ago, consistent with these populations
308 sharing a common origin as indicated by our admixture results. Therefore, differences in patterns
309 of genome-wide diversity in STH and the reintroduced populations likely reflect differences
310 between anthropogenic reintroductions and natural recolonisation, rather than differences in
311 genetic diversity between their ancestral populations. The extremely low levels of heterozygosity
312 and high inbreeding levels in MTR are thus likely a result of a source population with historically
313 small population size that harboured little genetic diversity prior to recolonisation, in addition to
314 more recent population bottlenecks associated with the recolonisation process. Indeed, this is

315 consistent with the reported population size of reindeer in the isolated North-West Spitsbergen
316 area being only 2-300 individuals, 30 years after the historical overharvesting was ended (Lønø
317 1959).

318 The decreased heterozygosity and increased frequency of longer RoH in naturally recolonised
319 populations likely reflect multiple bottlenecks from a sequential recolonisation process (Peeters *et*
320 *al.* 2020) (potentially involving few dispersing individuals) that was avoided by the direct
321 anthropogenic reintroduction. Sequential dispersal and establishment in isolated peninsulas and
322 valleys during the recolonisation of STH and MTR may have caused cumulative effects from
323 multiple founder-events, reducing effective population sizes and eroding genetic diversity (Le
324 Corre & Kremer 1998; Clegg *et al.* 2002; Pruett & Winker 2005), resulting in increased inbreeding
325 and long RoH (Grossen *et al.* 2018).

326 Our inferences regarding the timing of past demography based on RoH length distributions should
327 be considered only as relative between populations and may not accurately reflect the demographic
328 history in absolute number of generations. Inferences of demographic history using RoH length
329 distributions are imprecise because spatial and temporal variation in generation times and the
330 random nature of recombination result in high variation around the mean expected length of RoH
331 (Druet & Gautier 2017). Moreover, sequencing coverage, sequencing error rates, biased genotype
332 likelihood estimates as well as filtering, and parameter settings can all affect estimates of
333 heterozygosity (Fuentes-Pardo & Ruzzante 2017; de Jager *et al.* 2021; Sánchez-Barreiro *et al.*
334 2021), and thus RoH length and frequency (Duntsch *et al.* 2021). We down-sampled sequence data
335 to allow unbiased comparison between samples and populations with varying levels of coverage,
336 and to maximise the sample size for both the genome-wide heterozygosity and RoH analyses. This

337 may limit the direct comparison of our estimates of heterozygosity to those from other studies
338 using higher-coverage sequence data.

339 RoH analysis using low coverage sequence data is also sensitive to filtering, and may falsely
340 identify multiple short RoH as a single longer RoH, or miss RoH altogether (Duntsch *et al.* 2021).

341 However, the shorter than expected distribution of RoH in reintroduced individuals, given the
342 known timing of the reintroduction bottleneck, suggests our analysis underestimated RoH lengths,

343 and this is consistent with an excess of short (<50-Kbp) gaps between RoH in our data, breaking
344 up otherwise long RoH (Fig S9). Several factors could break up true RoH and contribute to

345 downwardly biased RoH length distributions: (1) Sequencing errors resulting in false
346 heterozygosity can break up RoH, and will have a larger effect on accurate identification of longer

347 RoH (MacLeod *et al.* 2013); (2) Any RoH spanning the genome assembly scaffold edges will be
348 broken up (Brüniche-Olsen *et al.* 2018), thus lacking a chromosome-level genome assembly, we

349 only included scaffolds longer than 10 Mbp in RoH analyses; (3) Errors in mapping sequence reads
350 or structural variation between the caribou reference genome assembly and the Svalbard reindeer

351 genome could also break up long RoH. Reanalysing RoH after allowing one <50-Kbp gap within
352 each 1-Mbp segment (similar to Wilder *et al.* (2022)) gave qualitatively similar results but showed

353 more long RoH which aligned more closely with the known timing of the reintroduction bottleneck
354 (Fig S10).

355 **Genetic structure within the Svalbard reindeer metapopulation**

356 Admixture, F_{ST} , and mitochondrial haplotype analyses identified strong genetic structure across
357 the archipelago, in some cases even over short geographical distances, confirming patterns
358 identified with microsatellite data in Peeters *et al.* (2020). Such genetic structure is typical of
359 ungulate populations with a history of population fragmentation and bottlenecks due to past

360 harvesting pressure (Williams *et al.* 2002; Haanes *et al.* 2010). On a finer scale, this study reveals
361 population structure within the Central Svalbard group, i.e. between the source and reintroduced
362 populations, and among reintroduced populations. The two distinct genetic clusters among
363 reintroduced populations corresponded to the two separate reintroductions to isolated peninsulas
364 on the west coast of Spitsbergen. Pairwise F_{ST} estimates reveal both reintroductions have resulted
365 in a similar degree of genetic divergence from the source population. Founder effects and
366 subsequent genetic drift commonly induce structure between reintroduced populations and their
367 sources, typically reflecting isolation from the source population and subsequent genetic drift
368 (Williams *et al.* 2002; Latch & Rhodes 2005; Brekke *et al.* 2011; Andersen *et al.* 2014; Grossen
369 *et al.* 2018).

370 Close genetic clustering of multiple subpopulations colonised from a common reintroduced
371 founder population is characteristic of populations manipulated by reintroduction programmes
372 (Andersen *et al.* 2014; Grossen *et al.* 2018). We found only weak genetic structure among
373 populations originating from the first reintroduction, except for the rather isolated island PKF,
374 which population showed little admixture with other reintroduced populations (Fig S7), reflecting
375 low dispersal across the sea (Peeters *et al.* 2020). Population monitoring after the reintroduction
376 to BGR (Reintroduction 1) recorded substantial movement between BGR, SAR, and KAF (Hansen
377 *et al.* 2010; Stien *et al.* 2010), but GPS collar data suggest that such exchange of individuals is
378 now rare (Pedersen, Hansen and Le Moullec, unpubl. data). This is consistent with the observed
379 lack of fjord ice in recent decades.

380 Our results indicate little gene flow between reintroduced populations and sampled natural
381 populations. Only one individual from a reintroduced population was identified as admixed with
382 a natural population, with admixture proportions consistent with an F1 offspring resulting from a

383 mating between individuals in reintroduction 1 and MTR genetic clusters. This individual carried
384 a unique haplotype that differs by only a single mutation from MTR haplotypes, suggesting female
385 dispersal from the north. MTR and BGR, the closest population sampled in reintroduction 1, are
386 separated by only 15 km across the mouths of Kongsfjorden and Krossfjorden, a span of water
387 which has rarely or never frozen over since the reintroduction (Pavlova *et al.* 2019; Urbański &
388 Litwicka 2022). This lack of sea ice as a movement corridor, in combination with tide-water
389 glaciers and steep mountains inhibiting alternative dispersal routes, has likely prevented gene flow
390 and contributed to the extreme degree of genetic differentiation between these geographically
391 proximate populations. On the other hand, it is likely that these populations were more closely
392 related in the past, i.e. before the local extirpations due to overharvest and the subsequent
393 reintroduction from central Spitsbergen (to BGR) and recolonisation from the North (to MTR).
394 This illustrates how both reintroductions and recolonisation may cause dramatic changes in
395 population-genetic structuring and diversity.

396 An exception of the clearly separated reintroduced versus naturally recolonised populations
397 occurred along the northern side of Isfjorden in central Svalbard (NIF). We found stronger genetic
398 structure among the two sampled populations in the second reintroduction group (DAU and NIF).
399 Our mtDNA analyses also suggest that introgression possibly occurred from a westward natural
400 recolonisation from an unsampled population carrying a haplotype not sampled in other
401 populations, possibly facilitated by more frequent sea ice in the inner parts of the fjord
402 (Muckenthaler *et al.* 2016). mtDNA haplotypes found in both reintroduction groups and STH were
403 absent from our ADV source population samples, which could also be consistent with
404 introgression from an unsampled natural population. However, these haplotypes may have been
405 present in ADV at the time of reintroduction, but if so it is unclear whether they existed only at

406 low frequencies and increased in reintroduced populations due to founder effects, or if there has
407 been a significant change in the mtDNA haplotype diversity in the ADV source population.

408 **Implications for conservation and management**

409 Small or bottlenecked populations are at risk of reduced fitness due to the accumulation of genetic
410 load (i.e. increased frequency and fixation of recessive deleterious mutations), making it an
411 important consideration in conservation biology (van Oosterhout 2020; Kardos *et al.* 2021;
412 Bertorelle *et al.* 2022). Additionally, severe or extended bottlenecks are expected to reduce
413 genome-wide diversity, including functional genetic variation potentially important for the long-
414 term adaptive potential of populations (Frankham 2005; Kardos *et al.* 2021). Severely bottlenecked
415 recolonised or reintroduced populations of ibex have shown increased realised genetic load
416 compared to less severely bottlenecked populations (Grossen *et al.* 2020). Similarly, bottlenecked
417 populations of corvids *Corvus* spp (Kutschera *et al.* 2020) , Montezuma quail *Cyrtonyx*
418 *montezumae* (Mathur & DeWoody 2021), and rattlesnakes *Sistrurus* spp (Ochoa & Gibbs 2021)
419 show higher realised genetic load than larger populations. Thus, the relatively mild bottleneck
420 effects of the Svalbard reindeer reintroductions suggest they are likely to have retained more
421 functional variation and accumulated less realised load than the natural recolonisations, which
422 probably experienced more severe and repeated bottlenecks. However, while some of the naturally
423 recolonised populations may be at higher risk of reduced fitness due to increased realised genetic
424 load, these populations may also carry fewer highly deleterious recessive mutations due to purging
425 (Glémin 2003; Grossen *et al.* 2020), and inbreeding may have less effect on individual fitness
426 (Mathur & DeWoody 2021).

427 Several management practice recommendations have been put forward to give general guidelines
428 for the number of individuals that need to be reintroduced, and the amount of gene flow required

429 to maintain genetic diversity. For example, approximately 20 effective founders (Willis & Willis
430 2010) and one effective migrant per generation (Vucetich & Waite 2000) have been viewed as
431 sufficient in mammal populations. Despite founder population sizes lower than this, population
432 surveys have shown that both reintroduced and naturally recolonised Svalbard reindeer
433 populations have been expanding (Le Moullec *et al.* 2019), meaning any increase in realised
434 genetic load is not yet severe enough to prevent continued population growth.

435 Svalbard reindeer face rapid environmental change (Hansen *et al.* 2019b) that may have
436 implications for the fitness and viability of populations in future. Thus far, most populations of
437 Svalbard reindeer have experienced a net gain from climate change effects, with a warmer and
438 longer snow-free season leading to increased survival, reproduction and abundances (Albon *et al.*
439 2017; Hansen *et al.* 2019b; Loe *et al.* 2021). However, an increase in winter precipitation or “rain-
440 on-snow” events increases ground ice cover during winter (Peeters *et al.* 2019) which limits access
441 to winter forage (Hansen *et al.* 2010; Loe *et al.* 2016), occasionally destabilising reindeer
442 population dynamics (Kohler & Aanes 2004; but see Stien *et al.* 2010 and Hansen *et al.* 2019a).
443 Any short- or medium-term evolutionary responses to such environmental changes will likely
444 depend on sufficient standing genetic variation for natural selection to act upon (Carlson *et al.*
445 2014). The potentially genetically depleted naturally recolonised populations may have limited
446 ability to adapt to these changes. There is also the potential for environmental changes to
447 accentuate the fitness effects of realised genetic load. Inbreeding depression (i.e. the fitness effects
448 of realised genetic load) can be more severe in stressful environmental conditions (Armbruster &
449 Reed 2005; Fox & Reed 2011). Therefore, previously benign or mildly deleterious variation in
450 reindeer populations may have more severe fitness effects in the future. The Svalbard Archipelago
451 is also experiencing a rapid decline in sea-ice, which acts as a movement corridor important for

452 facilitating gene flow in Svalbard reindeer (Peeters *et al.* 2020). Future sea-ice reductions may
453 further isolate and fragment reindeer populations, so despite the overall population expansion of
454 Svalbard reindeer, accumulation of inbreeding and further loss of diversity in already bottlenecked
455 populations should remain a concern.

456 Our results suggest that anthropogenic reintroductions can sometimes be more effective than
457 natural recolonisations in establishing genetically healthy populations, especially under increased
458 anthropogenic landscape fragmentation, such as that due to sea-ice reductions. This is likely due
459 to a higher number of (potentially more genetically diverse) founders and the avoidance of
460 sequential population bottlenecks that may be an inherent part of the natural recolonisation process
461 in fragmented landscapes. Much of the Svalbard archipelago has been recently recolonised by
462 reindeer (i.e, within the last century; Le Moullec *et al.* 2019), and further sampling may shed more
463 light on whether low diversity and high inbreeding is a general pattern across recolonised
464 populations of Svalbard reindeer, and indeed in other fragmented species. Future research may
465 benefit from fitness and phenotypic data, modern and historical reindeer samples, and molecular
466 methods of quantifying both functional variation and genetic load (Bertorelle *et al.* 2022) to better
467 understand the status of Svalbard reindeer populations and, more generally, how reintroduction
468 and natural recolonisation processes affect genetic load, inbreeding depression, and potential
469 adaptive variation in the wild.

470 Materials and Methods

471 Study area

472 The Norwegian high-arctic Svalbard archipelago lies between the Arctic Ocean, the Barents Sea
473 and the Greenland Sea, approximately 700 km north of mainland Norway (76-81°N, 10-35°E).

474 Only 16% of the archipelago's land area comprises vegetated peninsulas and valleys (Johansen *et*
475 *al.* 2012), which are fragmented by tide-water glaciers and inland and mountains that cover the
476 majority of the land area. Vegetation types on the archipelago include polar deserts, Northern
477 Arctic tundra dominated by prostrate dwarf shrubs and cryptogams, and Middle Arctic tundra
478 dominated by erect dwarf shrubs, forbs, and grasses (Jónsdóttir 2005).

479 **Study species**

480 The Svalbard reindeer is an endemic subspecies that likely colonised the archipelago from Eurasia
481 6700 to 5000 years ago (Kvie *et al.* 2016). The subspecies is the dominant and only large herbivore
482 in the terrestrial ecosystem, with little interspecific competition and almost non-existent predation
483 pressure (but see Derocher *et al.* (2000) and Stempniewicz *et al.* (2021)). Reindeer were
484 overharvested to near-extinction on Svalbard during the 19th and early 20th centuries, before
485 coming under legal protection from hunting in 1925 (Le Moullec *et al.* 2019). By this time, it had
486 been extirpated from much of its former natural range, and isolated remnant populations were
487 largely confined to four regions: the northern, northeastern, and eastern extremes of the
488 archipelago, as well as the central Spitsbergen region (Lønø 1959; Le Moullec *et al.* 2019). After
489 coming under legal protection, the subspecies began to recover but was still absent from much of
490 its range in the 1970s, including the west coast of Spitsbergen. In 1978, 12 surviving individuals
491 (nine females and three males) were translocated from Adventdalen in central Spitsbergen to
492 Brøggerhalvøya on the west coast (Fig 2, (Aanes *et al.* 2000)). In 1984-85 a second translocation
493 reintroduced 12 individuals to Daudmannsøyra, on the north-western edge of Isfjorden (Gjertz
494 1995), however there is no population monitoring data to confirm these survived and established
495 the current population. The reindeer population size at Brøggerhalvøya has been annually
496 monitored since the reintroduction (Aanes *et al.* 2000; Hansen *et al.* 2019b). This has recorded the

497 population's rapid expansion after translocation (from 12 individuals in 1978 to ~360 individuals
498 in 1993), until a combination of high population density and poor winter conditions triggered a
499 population crash (~80 individuals in 1994) and migration to recolonise the nearby peninsulas of
500 Sarsøyra (1994) and Kaffiøyra (1996) to the south, and Prins Karls Forland island (~1994) to the
501 west (Gjertz 1995; Aanes *et al.* 2000).

502 Reindeer populations have since then recolonised most of their former range naturally, including
503 southern Spitsbergen, the north coast of Isfjorden (to the east of the reintroduced population at
504 Daudmannsøyra), the north-west coast south to Mitrahalvøya, and Wijdefjorden in north-central
505 Spitsbergen (Le Moullec *et al.* 2019). Populations at Mitrahalvøya, Wijdefjorden, and Southern
506 Spitsbergen appear naturally recolonised from remnant populations, while the origins of the
507 populations along North Isfjorden are unclear, but likely originated from the second reintroduction
508 (Daudmannsøyra) and possibly admixed with naturally recolonising individuals (Peeters *et al.*
509 2020). Genetic evidence suggests the Svalbard reindeer metapopulation has low levels of genetic
510 diversity (Kvie *et al.* 2016; Weldenegodguad *et al.* 2020) and shows strong population structure
511 (Côté *et al.* 2002; Peeters *et al.* 2020), reflecting a history of population bottlenecks and the largely
512 philopatric nature of the species with no large scale migration (Hansen *et al.* 2010).

513 **Sample collection**

514 Genetic data were generated from tissue samples (ear, antler, bone, or fur) collected in 2014-2018
515 from 100 individual reindeer originating from twelve (sub)populations on the Svalbard archipelago
516 (Fig 2, Table S3 Table S1). Based on the extirpation locations reported in Lønø (1959), we
517 categorised these populations as either putative reintroduced or naturally recolonised extirpated
518 populations, or remnant non-extirpated populations. These included six populations believed to
519 have originated from the two translocations (Gjertz 1995; Aanes *et al.* 2000): (1) Brøggerhalvøya

520 (BGR, the initial reintroduction site), Sarsøyra (SAR), Kaffiøyra (KAF), and Prins Karls Forland
521 (PKF) from the first translocation (hereafter collectively referred to as “Reintroduction 1”), and
522 (2) Daudmannsøyra (DAU, the second reintroduction site) and North Isfjorden (NIF) from the
523 second translocation (hereafter referred to as “Reintroduction 2”). Samples were also collected
524 from the source population of the reintroductions (Adventdalen, ADV), from two other remnant
525 populations (Eastern Svalbard (EST), and North East Land (NE)), and the naturally recolonised
526 populations (Mitrahalvøya (MTR), Southern Spitsbergen (STH), Wijdefjorden (WDF). Except
527 those from Daudmannsøyra ($n=8$), which are new in this study, all samples were previously used
528 to generate microsatellite data in a study by Peeters *et al.* (2020).

529 **DNA extraction, library building, and sequencing**

530 DNA was extracted from ear tissue for the eight samples from Daudmannsøyra using a Qiagen
531 (Hilden, Germany) DNeasy Blood & Tissue extraction kit according to the manufacturer’s
532 instructions except for the addition RNase A (details in SI 1). DNA extraction for all other samples
533 ($n = 92$) is described in Peeters *et al.* (2020). Genomic library building was performed for all
534 samples based on the method described in (Carøe *et al.* 2018), and 90 of these were then sequenced
535 to a target depth of 2-3x (see Figure S1 and Table S1 for details). These sequencing data were
536 combined with data from deep-sequencing of the remaining ten samples.

537 **Bioinformatic processing and genotype likelihood calculation**

538 We used Paleomix version 1.2.13.4 (Schubert *et al.* 2014) to map demultiplexed sequence reads
539 to the caribou reference genome assembled from a North American male (Taylor *et al.* 2019). This
540 reference, while more phylogenetically divergent from the Svalbard reindeer, is more contiguous
541 ($N_{50} = 11.765$ Mbp) than the Mongolian reindeer reference ($N_{50} = 0.94$ Mbp; (Li *et al.* 2017)) and

542 more suitable for RoH inbreeding-type analyses. Adapters were trimmed with adapterremoval
543 version 2 (Schubert *et al.* 2016) and the BWA aligner program version 0.7.15 was used with the
544 MEM algorithm (Li 2013) without filtering for mapping quality.

545 To account for the uncertainty in calling genotypes from low-depth sequencing data, we utilised
546 ANGSD v0.93 (Korneliussen *et al.* 2014) to generate genotype likelihood data for each individual,
547 and these, rather than explicitly called genotypes, were used in downstream analyses. Genotype
548 likelihood files were generated in beagle format inferring allele frequencies with fixed major and
549 minor alleles using the command-line arguments *-doGlf 2* (admixture analyses) or *-doGlf3*
550 (inbreeding analyses), *-doMajorMinor 1*, and *-doMaf 1*. Variants were called with a p-value
551 threshold of $1e^{-6}$ (*-SNP_pval 1e-6*) only at sites for which there was sequence data in at least 50
552 individuals (*-minInd 50*). Reads with mapping quality <30 and base quality <20, and those with
553 multiple mapping hits, were filtered out using *-minMapQ 30*, *-minQ 20*, and *-uniqueOnly 1*, and
554 low-quality reads were removed with *-remove_bads 1*. Scaffolds mapped to bovine sex
555 chromosomes by Taylor *et al.* (2019) were removed. To reduce any issues related to paralogs or
556 mapping errors we filtered out sites that had average coverage greater than twice or less than $\frac{1}{3}$ of
557 the genome-wide average in a sub-sample of 10 individuals with equal (3x) coverage. We used the
558 *-C 50* parameter to adjust map quality for reads with a large number of mismatches to the reference
559 genome, and the extended baq model to adjust quality scores around indels (*-baq 2*).

560 **Mitochondrial genome analysis**

561 To analyse mtDNA haplotype diversity, we mapped our sequence data to a 16,357 bp reindeer
562 mtDNA reference assembly (Ju *et al.* 2016). Then, we used the GATK 4.1.8.1 HaplotypeCaller
563 (Depristo *et al.* 2011) to identify SNPs and call mtDNA haplotypes. Four samples were excluded
564 from the analysis due to low coverage (<20x). We specified haploid calls (-ploidy 1), only used
565 reads with a minimum mapping quality of 25 (--minimum-mapping-quality 25) and specified a
566 confidence threshold of 30 for variant calling (-stand-call-conf 30). We then converted the
567 haplotype calls of variable sites to FASTA sequences for each individual. To investigate
568 mitochondrial genetic structure and haplotype diversity, we used pegas v1.1 (Paradis 2010) to
569 construct a median-joining haplotype network based on the raw number of nucleotide differences
570 between sequences. We also used pegas to calculate population haplotype richness rarefied to a
571 sample size of 5 using the Hurlbert (1971) rarefaction method.

572 **Ancestry and admixture analyses**

573 We used the maximum likelihood based clustering analysis software package NGSadmix (Skotte
574 & Albrechtsen 2013) to infer population structure and identify admixture between populations
575 using genotype likelihood data. For admixture analysis, we excluded samples with sequencing
576 depth <0.1x ($n = 4$) and removed two out of three closely related individuals in the reintroduced
577 Daudmannsøyra population identified using NgsRelate (Hanghøj *et al.* 2019), because closely
578 related individuals can bias admixture results (Garcia-Erill & Albrechtsen 2020). We LD pruned
579 the genotype likelihood file based on called genotypes with PLINK v 1.9 (Chang *et al.* 2015) using
580 `--indep-pairwise 50 5 0.3` to specify a window size of 50, step size of 5, and a r^2 threshold of 0.3.
581 Admixture models were run for the number of genetic clusters (K) ranging from 2 – 10, with 10
582 replicates of each. Only sites with a minimum minor allele frequency greater than 0.02 (using -

583 *minMaf* 0.02) and that had data in at least half (46) the 92 individuals in the analysis (using *-minInd*
584 46) were included in the analysis. We ran admixture analyses on the full dataset including all
585 populations (467,146 sites), and also a separate analysis on a subset including only the
586 reintroduction source, reintroduced, and Southern Svalbard populations (427,643 sites). For each
587 value of K , the replicate with the highest likelihood was selected. We calculated ΔK (Evanno *et al.*
588 2005) using CLUMPAK (Kopelman *et al.* 2015), however uneven sampling of ancestral
589 populations and strong genetic drift can bias rule-based model selection (Garcia-Erill &
590 Albrechtsen 2020). Therefore we considered all K models and examined the correlation of
591 residuals using EVALadmix (Garcia-Erill & Albrechtsen 2020) to evaluate and interpret results
592 instead of relying solely on a rule-based model selection procedure.

593 **Principal component analysis**

594 We conducted Principal component analysis (PCA) using the software package PCAngsd (Meisner
595 & Albrechtsen 2018) to estimate a genetic covariance matrix using individual allele frequencies
596 based on the same genotype likelihood data used in the admixture analysis, then computed
597 eigenvectors and eigenvalues using the *eigen* function in R 3.6 (R Core Team 2019). To visualise
598 the data, we plotted the first four PC axes, and used ggplot2 (Wickham 2016) to calculate 95% CI
599 ellipses of the mean principal component coordinates of each natural population and for
600 Reintroduction 1 and 2. We repeated this analysis using only the individuals from the Adventdalen,
601 Southern Spitsbergen, and reintroduced populations to characterise fine-scale population structure.

602 **FST analysis**

603 We quantified population differentiation by estimating pairwise F_{ST} between each population using
604 RealSFS in ANGSD v0.93 based on 2D (pairwise) population site frequency spectra (SFS)

605 including all samples. First, we generated unfolded per-site allele frequencies (SAF) for each
606 population using the *-dosaf 1* argument in ANGSD with the same parameters and site filtering as
607 when generating genotype likelihoods, and specified the reference as the ancestral genome. Then,
608 with the realSFS module in ANGSD, we used the unfolded SAF to generate folded 2D SFS priors
609 for each pair of populations using *-fold 1* since no ancestral states were available to polarise the
610 ancestral/derived alleles. We then input the unfolded SAFs and the folded 2D SFS prior to realSFS
611 to estimate per-site and global F_{ST} , specifying the Hudson estimation method which is more
612 suitable for smaller sample sizes (Bhatia *et al.* 2013) using *-whichFST 1*. Finally, we used the
613 realSFS *fst stat* function to calculate the weighted global F_{ST} for each population pair.

614 **Heterozygosity**

615 We estimated genome-wide heterozygosity for each individual with coverage $>2.5x$ using realSFS
616 in ANGSD v0.93 based on the folded site frequency spectrum of each individual (Korneliussen *et*
617 *al.* 2014). We used the same site filtering and parameters as for the genotype likelihoods described
618 above, however since coverage can bias heterozygosity estimates in our data (see Fig S11), we
619 downsampled each sample to 2.5x coverage using *-DownSample* in ANGSD to allow unbiased
620 comparisons between the maximum number of samples. To estimate heterozygosity in ANGSD,
621 we generated a folded SFS from unfolded SAF separately for each individual and divided the
622 number of heterozygous sites by the total number of non-N sites.

623 **Inbreeding and runs of homozygosity**

624 We used ngsF-HMM (Vieira *et al.* 2016) to identify tracts of individual genomes identical by
625 descent (hereon referred to as RoH), and estimate inbreeding coefficients from genotype
626 likelihoods. This method utilises a hidden Markov model approach to estimate per-site
627 probabilities of being IBD rather than a rule-based method, and can be used with genotype

628 likelihood data so is more appropriate for use with low-depth WGS data. We excluded scaffolds
629 shorter than 10 Mbp from inbreeding analyses, leaving approximately 56% of the assembled
630 genome (1.235 Gbp) covered by 1,640,852 variable sites on 64 scaffolds after filtering. We also
631 applied stricter filtering than with heterozygosity, restricting this analysis to samples with >2.5x
632 coverage based on reads used by ANGSD on the >10-Mbp scaffolds after all filtering parameters,
633 and then down-sampled each to 2.7x coverage using samtools (Li *et al.* 2009) to allow unbiased
634 RoH comparisons between our samples. We inferred the approximate age of inbreeding (i.e. the
635 number of generations back to the common ancestor that an RoH was inherited from) based on
636 RoH lengths, using the equation $G = 100/(2rL)$ where r is the recombination rate and L is the length
637 of RoH in Mbp (Thompson 2013; Kardos *et al.* 2017), assuming a recombination rate similar to
638 red deer (*Cervus elaphus*) of ~ 1 cM/Mbp (Johnston *et al.* 2017).

639 Acknowledgments

640 We thank Andrew Foote and Ingerid Hagen for their useful comments on a preliminary draft of
641 this manuscript. We are also grateful to several volunteers for providing tissue samples, including
642 Karoline Bælum at the Farmhamna trapping station. This study was primarily financed by the
643 Research Council of Norway via FRIMEDBIO award 276080 to BBH, FRIMEDBIO award
644 325589 to MDM, and Arctic Field Grant 295908 to HB. The study also received funding and
645 support from the Research Council of Norway Centres of Excellence SFF-III award 223257, the
646 Svalbard Environmental Protection Fund awards 14/137 and 15/105 to BBH, and the Norwegian
647 Polar Institute for field logistics for some of the data sampling. We acknowledge the following
648 sequencing centres and associates for their invaluable services: Novogene (Cambridge, U.K.), the
649 NTNU Genomics Core Facility (Trondheim, Norway) funded by the NTNU Faculty of Medicine

650 and Health Sciences and the Central Norway Regional Health Authority), the National Sequencing
651 Centre (Oslo, Norway), the Science for Life Laboratory, the Knut and Alice Wallenberg
652 Foundation, the National Genomics Infrastructure funded by the Swedish Research Council, and
653 the Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with
654 massively parallel sequencing and access to the UPPMAX computational infrastructure. Some
655 computational analyses were performed on resources provided by the National Infrastructure for
656 High Performance Computing and Data Storage in Norway (UNINETT Sigma2).

657

658 Author contributions

659 The study was conceived by BBH, HJ, HB, MDM, and VCB. MDM, BBH, HJ, LEL, and LD
660 provided funding for the study. ÅØP, MLM, BBH and BP collected most samples. HB, VCB,
661 BP, and MDM performed laboratory and bioinformatic analyses. HB wrote the manuscript with
662 contributions from all authors.

663

664 Data availability

665 The sequence data generated for this study is available on the European Nucleotide Archive
666 under project accession PRJEB57293.

667

668 References

669 Aanes, R., Sather, B.-E. & Ortsland, N.A. (2000). Fluctuations of an Introduced Population of Svalbard
670 Reindeer : The Effects of Density Dependence and Climatic Variation. *Ecography*.

671 Albon, S.D., Irvine, R.J., Halvorsen, O., Langvatn, R., Loe, L.E., Ropstad, E., *et al.* (2017). Contrasting
672 effects of summer and winter warming on body mass explain population dynamics in a food-limited
673 Arctic herbivore. *Glob. Chang. Biol.*, 23, 1374–1389.

674 Allendorf, F.W. (1986). Genetic drift and the loss of alleles versus heterozygosity. *Zoo Biol.*, 5, 181–190.

675 Andersen, A., Simcox, D.J., Thomas, J.A. & Nash, D.R. (2014). Assessing reintroduction schemes by
676 comparing genetic diversity of reintroduced and source populations: A case study of the globally
677 threatened large blue butterfly (*Maculinea arion*). *Biol. Conserv.*, 175, 34–41.

678 Armbruster, P. & Reed, D.H. (2005). Inbreeding depression in benign and stressful environments.
679 *Heredity* , 95, 235–242.

680 Armstrong, D.P. & Seddon, P.J. (2008). Directions in reintroduction biology. *Trends Ecol. Evol.*, 23, 20–
681 25.

682 Bertorelle, G., Raffini, F., Bosse, M., Bortoluzzi, C., Iannucci, A., Trucchi, E., *et al.* (2022). Genetic load:
683 genomic estimates and applications in non-model animals. *Nat. Rev. Genet.*, 0123456789.

684 Bhatia, G., Patterson, N., Sankararaman, S. & Price, A.L. (2013). Estimating and interpreting FST: The
685 impact of rare variants. *Genome Res.*, 23, 1514–1521.

686 Biebach, I. & Keller, L.F. (2010). Inbreeding in reintroduced populations: The effects of early
687 reintroduction history and contemporary processes. *Conserv. Genet.*, 11, 527–538.

688 Biebach, I. & Keller, L.F. (2012). Genetic variation depends more on admixture than number of founders
689 in reintroduced Alpine ibex populations. *Biol. Conserv.*, 147, 197–203.

690 Bortoluzzi, C., Bosse, M., Derkx, M.F.L., Crooijmans, R.P.M.A., Groenen, M.A.M. & Megens, H.J.
691 (2020). The type of bottleneck matters: Insights into the deleterious variation landscape of small

692 managed populations. *Evol. Appl.*, 13, 330–341.

693 Bozzuto, C., Biebach, I., Muff, S., Ives, A.R. & Keller, L.F. (2019). Inbreeding reduces long-term growth
694 of Alpine ibex populations. *Nature Ecology & Evolution*, 3, 1359–1364.

695 Brekke, P., Bennett, P.M., Santure, A.W. & Ewen, J.G. (2011). High genetic diversity in the remnant
696 island population of hihi and the genetic consequences of re-introduction. *Mol. Ecol.*, 20, 29–45.

697 Brüniche-Olsen, A., Kellner, K.F., Anderson, C.J. & DeWoody, J.A. (2018). Runs of homozygosity have
698 utility in mammalian conservation and evolutionary studies. *Conserv. Genet.*, 19, 1295–1307.

699 Carlson, S.M., Cunningham, C.J. & Westley, P.A.H. (2014). Evolutionary rescue in a changing world.
700 *Trends Ecol. Evol.*, 29, 521–530.

701 Carøe, C., Gopalakrishnan, S., Vinner, L., Mak, S.S.T., Sinding, M.H.S., Samaniego, J.A., *et al.* (2018).
702 Single-tube library preparation for degraded DNA. *Methods Ecol. Evol.*, 9, 410–419.

703 Cavill, E.L., Gopalakrishnan, S., Puetz, L.C., Ribeiro, Â.M., Mak, S.S.T., da Fonseca, R.R., *et al.* (2022).
704 Conservation genomics of the endangered Seychelles Magpie-Robin (*Copsychus sechellarum*): a
705 unique insight into the history of a precious endemic bird. *Ibis*, 164, 396–410.

706 Chang, C.C., Chow, C.C., Tellier, L.C.A.M., Vattikuti, S., Purcell, S.M. & Lee, J.J. (2015). Second-
707 generation PLINK: Rising to the challenge of larger and richer datasets. *Gigascience*, 4, 1–16.

708 Charlesworth, D. & Willis, J.H. (2009). The genetics of inbreeding depression. *Nat. Rev. Genet.*, 10, 783.

709 Clegg, S.M., Degnan, S.M., Kikkawa, J., Moritz, C., Estoup, A. & Owens, I.P.F. (2002). Genetic
710 consequences of sequential founder events by an island-colonizing bird. *Proc. Natl. Acad. Sci. U. S.*
711 A., 99, 8127–8132.

712 Côté, S.D., Dallas, J.F., Marshall, F., Irvine, R.J., Langvatn, R. & Albon, S.D. (2002). Microsatellite
713 DNA evidence for genetic drift and philopatry in Svalbard reindeer. *Mol. Ecol.*, 11, 1923–1930.

714 Cullingham, C.I. & Moehrenschlager, A. (2013). Temporal Analysis of Genetic Structure to Assess
715 Population Dynamics of Reintroduced Swift Foxes. *Conserv. Biol.*, 27, 1389–1398.

716 Depristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., *et al.* (2011). A
717 framework for variation discovery and genotyping using next-generation DNA sequencing data. *Nat.*

718 *Genet.*, 43, 491–501.

719 Derocher, A.E., Wiig, Ø. & Bangjord, G. (2000). Predation of Svalbard reindeer by polar bears. *Polar*
720 *Biol.*, 23, 675–678.

721 Drauch, A.M. & Rhodes, O.E. (2007). Genetic Evaluation of the Lake Sturgeon Reintroduction Program
722 in the Mississippi and Missouri Rivers. *N. Am. J. Fish. Manage.*, 27, 434–442.

723 Druet, T. & Gautier, M. (2017). A model-based approach to characterize individual inbreeding at both
724 global and local genomic scales. *Mol. Ecol.*, 26, 5820–5841.

725 Druet, T., Oleński, K., Flori, L., Bertrand, A.R., Olech, W., Tokarska, M., *et al.* (2020). Genomic
726 Footprints of Recovery in the European Bison. *J. Hered.*, 194–203.

727 Duntsch, L., Whibley, A., Brekke, P., Ewen, J.G. & Santure, A.W. (2021). Genomic data of different
728 resolutions reveal consistent inbreeding estimates but contrasting homozygosity landscapes for the
729 threatened Aotearoa New Zealand hihi. *Mol. Ecol.*, 30, 6006–6020.

730 Evanno, G., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of individuals using the
731 software STRUCTURE: a simulation study. *Mol. Ecol.*, 14, 2611–2620.

732 Fox, C.W. & Reed, D.H. (2011). Inbreeding depression increases with environmental stress: An
733 experimental study and meta-analysis. *Evolution*, 65, 246–258.

734 Frankham, R. (2005). Genetics and extinction. *Biol. Conserv.*, 126, 131–140.

735 Frankham, R. (2010). Challenges and opportunities of genetic approaches to biological conservation.
736 *Biol. Conserv.*, 143, 1919–1927.

737 Frankham, R., Ballou, J.D., Ralls, K., Eldridge, M., Dubash, M.R., Fenster, C.B., *et al.* (2017). *Genetic*
738 *Management of Fragmented Animal and Plant Populations*. OUP Oxford.

739 Fuentes-Pardo, A.P. & Ruzzante, D.E. (2017). Whole-genome sequencing approaches for conservation
740 biology: Advantages, limitations and practical recommendations. *Mol. Ecol.*, 26, 5369–5406.

741 Garcia-Erill, G. & Albrechtsen, A. (2020). Evaluation of model fit of inferred admixture proportions.
742 *Mol. Ecol. Resour.*, 20, 936–949.

743 Giaimo, S. & Traulsen, A. (2022). Generation time in stage-structured populations under fluctuating

744 environments. *Am. Nat.*, in press.

745 Gjertz, I. (1995). Reindeer on Prins Karls Forland, Svalbard. *Polar Res.*, 14, 87–88.

746 Glémin, S. (2003). How are deleterious mutations purged? Drift versus nonrandom mating. *Evolution*, 57,

747 2678–2687.

748 Grossen, C., Biebach, I., Angelone-Alasaad, S., Keller, L.F. & Croll, D. (2018). Population genomics

749 analyses of European ibex species show lower diversity and higher inbreeding in reintroduced

750 populations. *Evol. Appl.*, 11, 123–139.

751 Grossen, C., Guillaume, F., Keller, L.F. & Croll, D. (2020). Purging of highly deleterious mutations

752 through severe bottlenecks in Alpine ibex. *Nat. Commun.*, 11.

753 Haanes, H., Røed, K.H., Flagstad & Rosef, O. (2010). Genetic structure in an expanding cervid

754 population after population reduction. *Conserv. Genet.*, 11, 11–20.

755 Hanghøj, K., Moltke, I., Andersen, P.A., Manica, A. & Korneliussen, T.S. (2019). Fast and accurate

756 relatedness estimation from high-throughput sequencing data in the presence of inbreeding.

757 *Gigascience*, 8, 1–9.

758 Hansen, B.B., Aanes, R. & Sæther, B.-E. (2010). Partial seasonal migration in high-arctic Svalbard

759 reindeer (*Rangifer tarandus platyrhynchus*). *Can. J. Zool.*, 88, 1202–1209.

760 Hansen, B.B., Gamelon, M., Albon, S.D., Lee, A.M., Stien, A., Irvine, R.J., *et al.* (2019a). More frequent

761 extreme climate events stabilize reindeer population dynamics. *Nat. Commun.*, 10, 1–8.

762 Hansen, B.B., Pedersen, Å.Ø., Peeters, B., Le Moullec, M., Albon, S.D., Herfindal, I., *et al.* (2019b).

763 Spatial heterogeneity in climate change effects decouples the long-term dynamics of wild reindeer

764 populations in the high Arctic. *Glob. Chang. Biol.*, 25, 3656–3668.

765 Hedrick, P.W. & Garcia-Dorado, A. (2016). Understanding Inbreeding Depression, Purging, and Genetic

766 Rescue. *Trends Ecol. Evol.*, 31, 940–952.

767 Hicks, J.F., Rachlow, J.L., Rhodes, O.E., Williams, C.L. & Waits, L.P. (2007). Reintroduction and

768 Genetic Structure: Rocky Mountain Elk in Yellowstone and the Western States. *J. Mammal.*, 88,

769 129–138.

770 Huff, D.D., Miller, L.M. & Vondracek, B. (2010). Patterns of ancestry and genetic diversity in
771 reintroduced populations of the slimy sculpin: Implications for conservation. *Conserv. Genet.*, 11,
772 2379–2391.

773 Hundertmark, K.J. & van Daele, L.J. (2010). Founder effect and bottleneck signatures in an introduced,
774 insular population of elk. *Conserv. Genet.*, 11, 139–147.

775 Hurford, A., Hebblewhite, M. & Lewis, M.A. (2006). A spatially explicit model for an Allee effect: why
776 wolves recolonize so slowly in Greater Yellowstone. *Theor. Popul. Biol.*, 70, 244–254.

777 Hurlbert, S.H. (1971). The Nonconcept of Species Diversity: A Critique and Alternative Parameters.
778 *Ecology*, 52, 577–586.

779 de Jager, D., Glanzmann, B., Möller, M., Hoal, E., van Helden, P., Harper, C., *et al.* (2021). High
780 diversity, inbreeding and a dynamic Pleistocene demographic history revealed by African buffalo
781 genomes. *Sci. Rep.*, 11, 1–15.

782 Johansen, B.E., Karlsen, S.R. & Tømmervik, H. (2012). Vegetation mapping of Svalbard utilising
783 Landsat TM/ETM+ data. *Polar Rec.*, 48, 47–63.

784 Johnston, S.E., Huisman, J., Ellis, P.A. & Pemberton, J.M. (2017). A high-density linkage map reveals
785 sexual dimorphism in recombination landscapes in red deer (*Cervus elaphus*). *G3: Genes, Genomes,*
786 *Genetics*, 7, 2859–2870.

787 Jónsdóttir, I.S. (2005). Terrestrial ecosystems on Svalbard: Heterogeneity, complexity and fragility from
788 an arctic island perspective. *Biol. Environ. Proc. R. Ir. Acad.*, 105B, 155–165.

789 Ju, Y., Liu, H., Rong, M., Yang, Y., Wei, H., Shao, Y., *et al.* (2016). Complete mitochondrial genome
790 sequence of Aoluguya reindeer (*Rangifer tarandus*). *Mitochondrial DNA. Part A, DNA mapping,*
791 *sequencing, and analysis*, 27, 2261–2262.

792 Kaeuffer, R., Coltman, D.W., Chapuis, J.L., Pontier, D. & Réale, D. (2007). Unexpected heterozygosity
793 in an island mouflon population founded by a single pair of individuals. *Proceedings of the Royal*
794 *Society B: Biological Sciences*, 274, 527–533.

795 Kardos, M., Armstrong, E.E., Fitzpatrick, S.W., Hauser, S., Hedrick, P.W., Miller, J.M., *et al.* (2021). The

796 crucial role of genome-wide genetic variation in conservation. *Proc. Natl. Acad. Sci. U. S. A.*, 118.

797 Kardos, M., Luikart, G. & Allendorf, F.W. (2015). Measuring individual inbreeding in the age of

798 genomics: Marker-based measures are better than pedigrees. *Heredity*, 115, 63–72.

799 Kardos, M., Qvarnström, A. & Ellegren, H. (2017). Inferring individual inbreeding and demographic

800 history from segments of identity by descent in Ficedula flycatcher genome sequences. *Genetics*,

801 205, 1319–1334.

802 Kardos, M., Taylor, H.R., Ellegren, H., Luikart, G. & Allendorf, F.W. (2016). Genomics advances the

803 study of inbreeding depression in the wild. *Evol. Appl.*, 9, 1205–1218.

804 Kekkonen, J., Wikström, M. & Brommer, J.E. (2012). Heterozygosity in an Isolated Population of a

805 Large Mammal Founded by Four Individuals Is Predicted by an Individual-Based Genetic Model.

806 *PLoS One*, 7, 1–8.

807 Kohler, J. & Aanes, R. (2004). Effect of winter snow and ground-icing on a Svalbard reindeer population:

808 Results of a simple snowpack model. *Arct. Antarct. Alp. Res.*, 36, 333–341.

809 Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A. & Mayrose, I. (2015). Clumpak: A

810 program for identifying clustering modes and packaging population structure inferences across K.

811 *Mol. Ecol. Resour.*, 15, 1179–1191.

812 Korneliussen, T.S., Albrechtsen, A. & Nielsen, R. (2014). ANGSD: Analysis of Next Generation

813 Sequencing Data. *BMC Bioinformatics*, 15, 356.

814 Kutschera, V.E., Poelstra, J.W., Botero-Castro, F., Dussex, N., Gemmell, N.J., Hunt, G.R., *et al.* (2020).

815 Purifying Selection in Corvids Is Less Efficient on Islands. *Mol. Biol. Evol.*, 37, 469–474.

816 Kvie, K.S., Heggenes, J., Anderson, D.G., Kholodova, M.V., Sipko, T., Mizin, I., *et al.* (2016).

817 Colonizing the high arctic: Mitochondrial DNA reveals common origin of Eurasian archipelagic

818 reindeer (*Rangifer tarandus*). *PLoS One*, 11, 1–15.

819 Larter, N.C., Sinclair, A.R.E., Ellsworth, T., Nishi, J. & Gates, C.C. (2000). Dynamics of reintroduction

820 in an indigenous large ungulate: the wood bison of northern Canada. *Animal Conservation forum*, 3,

821 299–309.

822 Latch, E.K. & Rhodes, O.E. (2005). The effects of gene flow and population isolation on the genetic
823 structure of reintroduced wild turkey populations: Are genetic signatures of source populations
824 retained? *Conserv. Genet.*, 6, 981–997.

825 Le Corre, V. & Kremer, A. (1998). Cumulative effects of founding events during colonisation on genetic
826 diversity and differentiation in an island and stepping-stone model. *J. Evol. Biol.*, 11, 495–512.

827 Le Moullec, M., Pedersen, Å.Ø., Stien, A., Rosvold, J. & Hansen, B.B. (2019). A century of
828 conservation: The ongoing recovery of svalbard reindeer. *J. Wildl. Manage.*, 83, 1676–1686.

829 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv*
830 *Preprint*, 1–3.

831 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., *et al.* (2009). The Sequence
832 Alignment/Map format and SAMtools. *Bioinformatics*, 25, 2078–2079.

833 Li, Z., Lin, Z., Ba, H., Chen, L., Yang, Y., Wang, K., *et al.* (2017). Draft genome of the reindeer
834 (*Rangifer tarandus*). *Gigascience*, 6, 1–5.

835 Loe, L.E., Hansen, B.B., Stien, A., Albon, S.D., Bischof, R., Carlsson, A., *et al.* (2016). Behavioral
836 buffering of extreme weather events in a high-Arctic herbivore. *Ecosphere*, 7, 1–13.

837 Loe, L.E., Liston, G.E., Pigeon, G., Barker, K., Horvitz, N., Stien, A., *et al.* (2021). The neglected season:
838 Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer.
839 *Glob. Chang. Biol.*

840 Lønø, O. (1959). *Reinen på Svalbard*. Norsk Polarinstitutt, Oslo, Norway.

841 Lynch, M. & Gabriel, W. (1990). Mutation load and the survival of small populations. *Evolution*, 44,
842 1725–1737.

843 MacLeod, I.M., Larkin, D.M., Lewin, H.A., Hayes, B.J. & Goddard, M.E. (2013). Inferring demography
844 from runs of homozygosity in whole-genome sequence, with correction for sequence errors. *Mol.*
845 *Biol. Evol.*, 30, 2209–2223.

846 Mathur, S. & DeWoody, J.A. (2021). Genetic load has potential in large populations but is realized in
847 small inbred populations. *Evol. Appl.*, 14, 1540–1557.

848 Meisner, J. & Albrechtsen, A. (2018). Inferring population structure and admixture proportions in low-
849 depth NGS data. *Genetics*, 210, 719–731.

850 Muckenthaler, S., Nilsen, F., Korosov, A. & Sandven, S. (2016). Sea ice cover in Isfjorden and Hornsund,
851 Svalbard (2000–2014) from remote sensing data. *Cryosphere*, 10, 149–158.

852 Murphy, S.M., Cox, J.J., Clark, J.D., Augustine, B.C., Hast, J.T., Gibbs, D., *et al.* (2015). Rapid growth
853 and genetic diversity retention in an isolated reintroduced black bear population in the central
854 appalachians. *J. Wildl. Manage.*, 79, 807–818.

855 Nei, M., Maruyama, T. & Chakraborty, R. (1975). The Bottleneck Effect and Genetic Variability in
856 Populations. *Evolution*, 29, 1.

857 Ochoa, A. & Gibbs, H.L. (2021). Genomic signatures of inbreeding and mutation load in a threatened
858 rattlesnake. *Mol. Ecol.*, 30, 5454–5469.

859 van Oosterhout, C. (2020). Mutation load is the spectre of species conservation. *Nature Ecology and*
860 *Evolution*, 4, 1004–1006.

861 Paradis, E. (2010). Pegas: An R package for population genetics with an integrated-modular approach.
862 *Bioinformatics*, 26, 419–420.

863 Pavlova, O., Gerland, S. & Hopp, H. (2019). Changes in Sea-Ice Extent and Thickness in Kongsfjorden,
864 Svalbard (2003–2016). In: *The Ecosystem of Kongsfjorden, Svalbard. Advances in Polar Ecology*,
865 vol 2. Springer, Cham, pp. 105–136.

866 Peeters, B., Le Moullec, M., Raeymaekers, J.A.M., Marquez, J.F., Røed, K.H., Pedersen, Å., *et al.* (2020).
867 Sea ice loss increases genetic isolation in a high Arctic ungulate metapopulation. *Glob. Chang. Biol.*,
868 26, 2028–2041.

869 Peeters, B., Pedersen, Å.Ø., Loe, L.E., Isaksen, K., Veiberg, V., Stien, A., *et al.* (2019). Spatiotemporal
870 patterns of rain-on-snow and basal ice in high Arctic Svalbard: Detection of a climate-cryosphere
871 regime shift. *Environ. Res. Lett.*, 14.

872 Pruett, C.L. & Winker, K. (2005). Northwestern song sparrow populations show genetic effects of
873 sequential colonization. *Mol. Ecol.*, 14, 1421–1434.

874 R Core Team. (2019). R: A Language and Environment for Statistical Computing.

875 Robinson, J.A., Brown, C., Kim, B.Y., Lohmueller, K.E. & Wayne, R.K. (2018). Purgation of Strongly

876 Deleterious Mutations Explains Long-Term Persistence and Absence of Inbreeding Depression in

877 Island Foxes. *Curr. Biol.*, 28, 3487–3494.e4.

878 Sánchez-Barreiro, F., Gopalakrishnan, S., Ramos-Madrigal, J., Westbury, M.V., de Manuel, M.,

879 Margaryan, A., *et al.* (2021). Historical population declines prompted significant genomic erosion in

880 the northern and southern white rhinoceros (*Ceratotherium simum*). *Mol. Ecol.*, 30, 6355–6369.

881 Sasmal, I., Jenks, J.A., Waits, L.P., Gonda, M.G., Schroeder, G.M. & Datta, S. (2013). Genetic diversity

882 in a reintroduced swift fox population. *Conserv. Genet.*, 14, 93–102.

883 Schubert, M., Ermini, L., Sarkissian, C.D., Jónsson, H., Ginolhac, A., Schaefer, R., *et al.* (2014).

884 Characterization of ancient and modern genomes by SNP detection and phylogenomic and

885 metagenomic analysis using PALEOMIX. *Nat. Protoc.*, 9, 1056–1082.

886 Schubert, M., Lindgreen, S. & Orlando, L. (2016). AdapterRemoval v2: Rapid adapter trimming,

887 identification, and read merging. *BMC Res. Notes*, 9, 1–7.

888 Scott, T.A., Wehtje, W. & Wehtje, M. (2001). The need for strategic planning in passive restoration of

889 wildlife populations. *Restor. Ecol.*, 9, 262–271.

890 Seddon, P.J., Griffiths, C.J., Soorae, P.S. & Armstrong, D.P. (2014). Reversing defaunation: Restoring

891 species in a changing world. *Science*, 345, 406–412.

892 Skotte, L. & Albrechtsen, A. (2013). Estimating Individual Admixture Proportions from. *Genetics*, 195,

893 693–702.

894 Stempniewicz, L., Kulaszewicz, I. & Aars, J. (2021). Yes, they can: polar bears *Ursus maritimus*

895 successfully hunt Svalbard reindeer *Rangifer tarandus platyrhynchus*. *Polar Biol.*, 44, 2199–2206.

896 Stien, A., Loel, L.E., Mysterud, A., Severinsen, T., Kohler, J. & Langvatn, R. (2010). Icing events trigger

897 range displacement in a high-arctic ungulate. *Ecology*, 91, 915–920.

898 Stoffel, M.A., Johnston, S.E., Pilkington, J.G. & Pemberton, J.M. (2021). Mutation load decreases with

899 haplotype age in wild Soay sheep. *Evolution Letters*, 5, 187–195.

900 Supple, M.A. & Shapiro, B. (2018). Conservation of biodiversity in the genomics era. *Genome Biol.*, 19,
901 1–12.

902 Szpiech, Z.A., Xu, J., Pemberton, T.J., Peng, W., Zöllner, S., Rosenberg, N.A., *et al.* (2013). Long runs of
903 homozygosity are enriched for deleterious variation. *Am. J. Hum. Genet.*, 93, 90–102.

904 Taylor, R.S., Horn, R.L., Zhang, X., Brian Golding, G., Manseau, M. & Wilson, P.J. (2019). The Caribou
905 (*Rangifer tarandus*) genome. *Genes*, 10, 4–9.

906 Taylor, S.S. & Jamieson, I.G. (2008). No evidence for loss of genetic variation following sequential
907 translocations in extant populations of a genetically depauperate species. *Mol. Ecol.*, 17, 545–556.

908 Thompson, E.A. (2013). Identity by descent: Variation in meiosis, across genomes, and in populations.
909 *Genetics*, 194, 301–326.

910 Urbański, J.A. & Litwicka, D. (2022). The decline of Svalbard land-fast sea ice extent as a result of
911 climate change. *Oceanologia*, 64, 535–545.

912 Vieira, F.G., Albrechtsen, A. & Nielsen, R. (2016). Estimating IBD tracts from low coverage NGS data.
913 *Bioinformatics*, 32, 2096–2102.

914 Vucetich, J.A. & Waite, T.A. (2000). Is one migrant per generation sufficient for the genetic management
915 of fluctuating populations? *Anim. Conserv.*, 3, 261–266.

916 Wang, J., Hill, W.G., Charlesworth, D. & Charlesworth, B. (1999). Dynamics of inbreeding depression
917 due to deleterious mutations in small populations: Mutation parameters and inbreeding rate. *Genet.*
918 *Res.*, 74, 165–178.

919 Weeks, A.R., Sgro, C.M., Young, A.G., Frankham, R., Mitchell, N.J., Miller, K.A., *et al.* (2011).
920 Assessing the benefits and risks of translocations in changing environments: A genetic perspective.
921 *Evol. Appl.*, 4, 709–725.

922 Weldenegodguad, M., Pokharel, K., Ming, Y., Honkatukia, M., Peippo, J., Reilas, T., *et al.* (2020).
923 Genome sequence and comparative analysis of reindeer (*Rangifer tarandus*) in northern Eurasia. *Sci.*
924 *Rep.*, 10, 1–14.

925 White, D.J., Watts, C., Allwood, J., Prada, D., Stringer, I., Thornburrow, D., *et al.* (2017). Population

926 history and genetic bottlenecks in translocated Cook Strait giant weta, *Deinacrida rugosa*:
927 recommendations for future conservation management. *Conserv. Genet.*, 18, 411–422.

928 Whitlock, M.C., Ingvarsson, P.K. & Hatfield, T. (2000). Local drift load and the heterosis of
929 interconnected populations. *Heredity* , 84, 452–457.

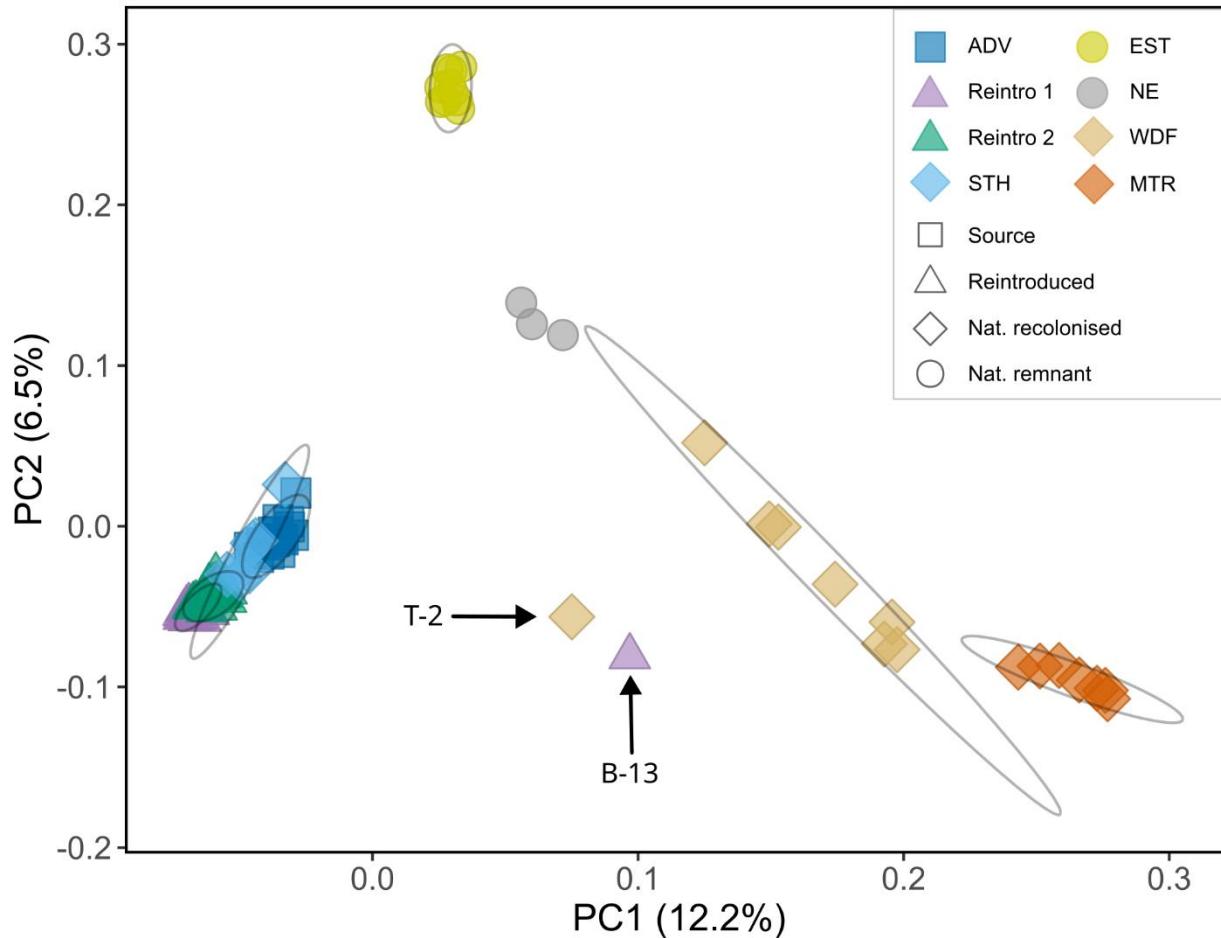
930 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

931 Wilder, A.P., Dudchenko, O., Curry, C., Korody, M., Turbek, S.P., Daly, M., *et al.* (2022). A
932 Chromosome-Length Reference Genome for the Endangered Pacific Pocket Mouse Reveals Recent
933 Inbreeding in a Historically Large Population. *Genome Biol. Evol.*, 14.

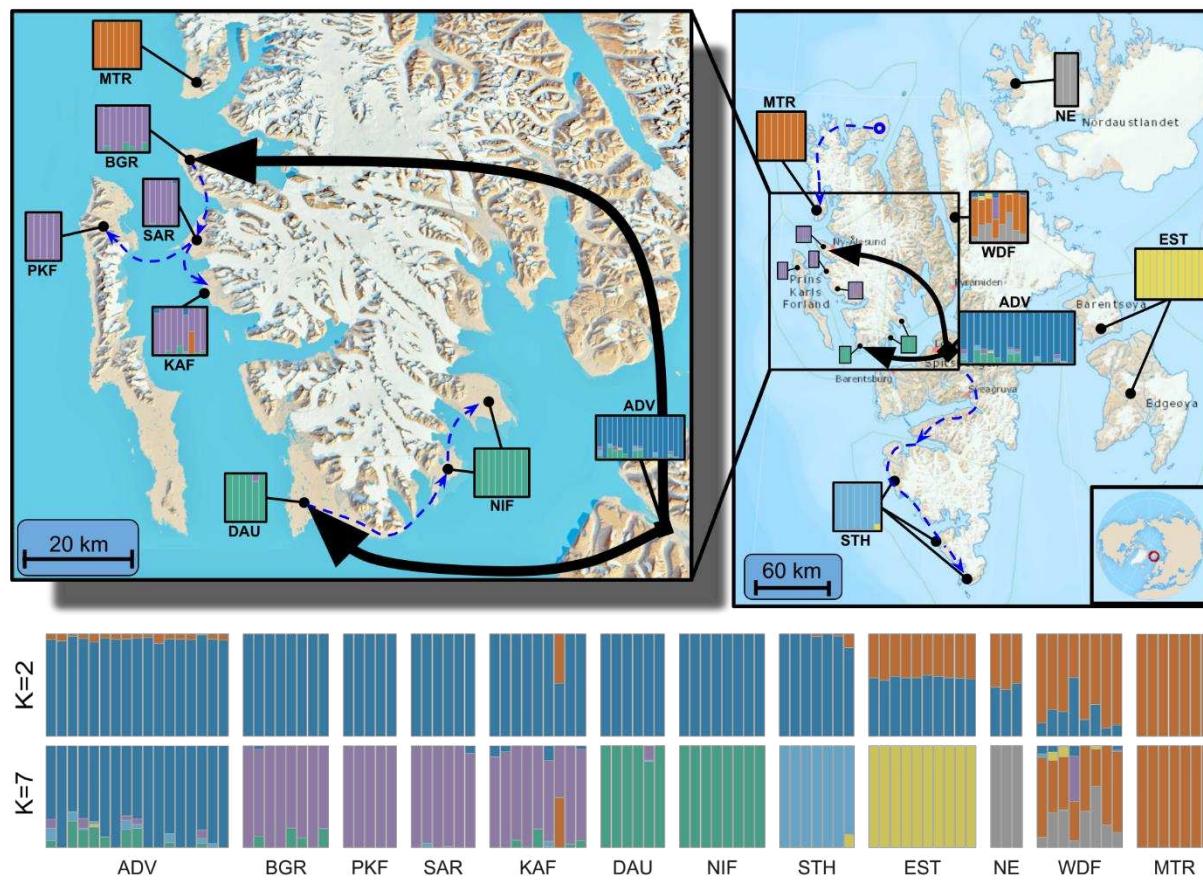
934 Williams, B.W. & Scribner, K.T. (2010). Effects of multiple founder populations on spatial genetic
935 structure of reintroduced American martens. *Mol. Ecol.*, 19, 227–240.

936 Williams, C.E., Serfass, T.L., Cogan, R. & Rhodes, O.E., Jr. (2002). Microsatellite variation in the
937 reintroduced Pennsylvania elk herd. *Mol. Ecol.*, 11, 1299–1310.

938 Williams, R.N., Rhodes, O.E. & Serfass, T.L. (2000). Assessment of Genetic Variance Among Source
939 and Reintroduced Fisher Populations. *J. Mammal.*, 81, 895–907.

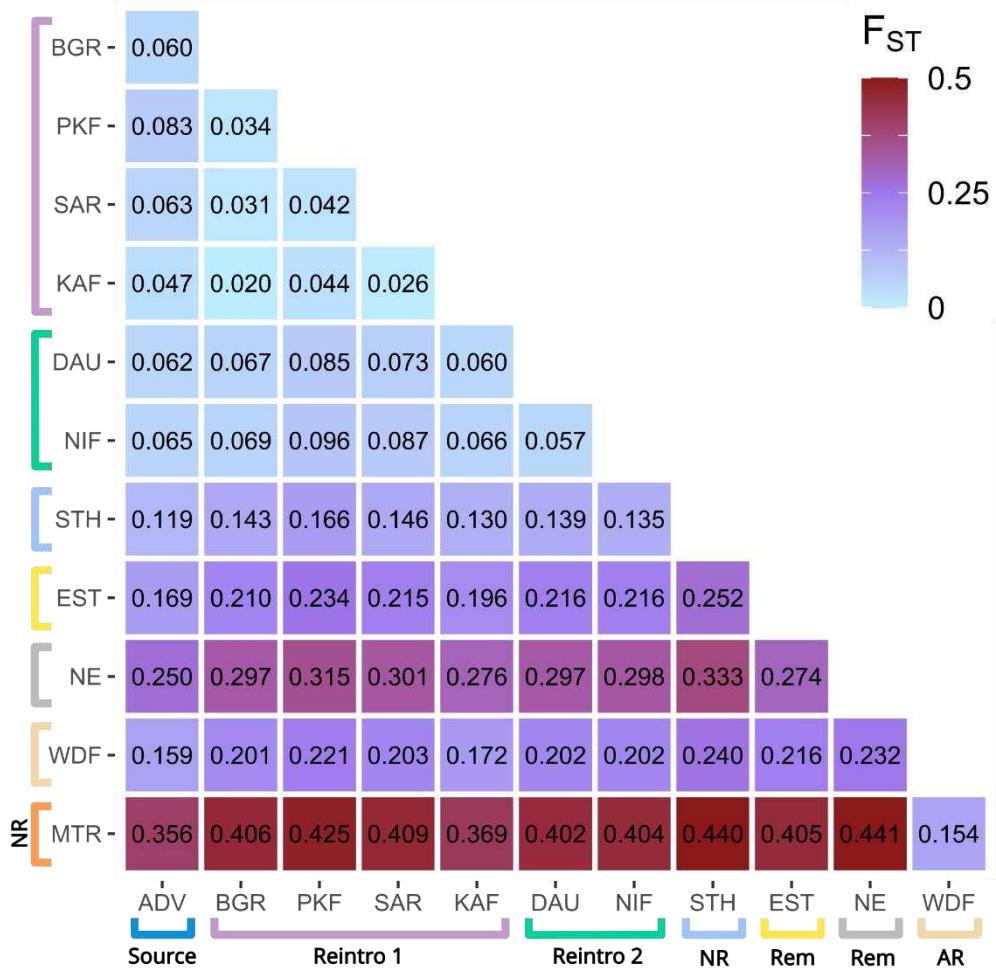

940 Willis, K. & Willis, R.E. (2010). How many founders, how large a population? *Zoo Biol.*, 29, 638–646.

941 Willi, Y., Griffin, P. & Van Buskirk, J. (2013). Drift load in populations of small size and low density.
942 *Heredity* , 110, 296–302.

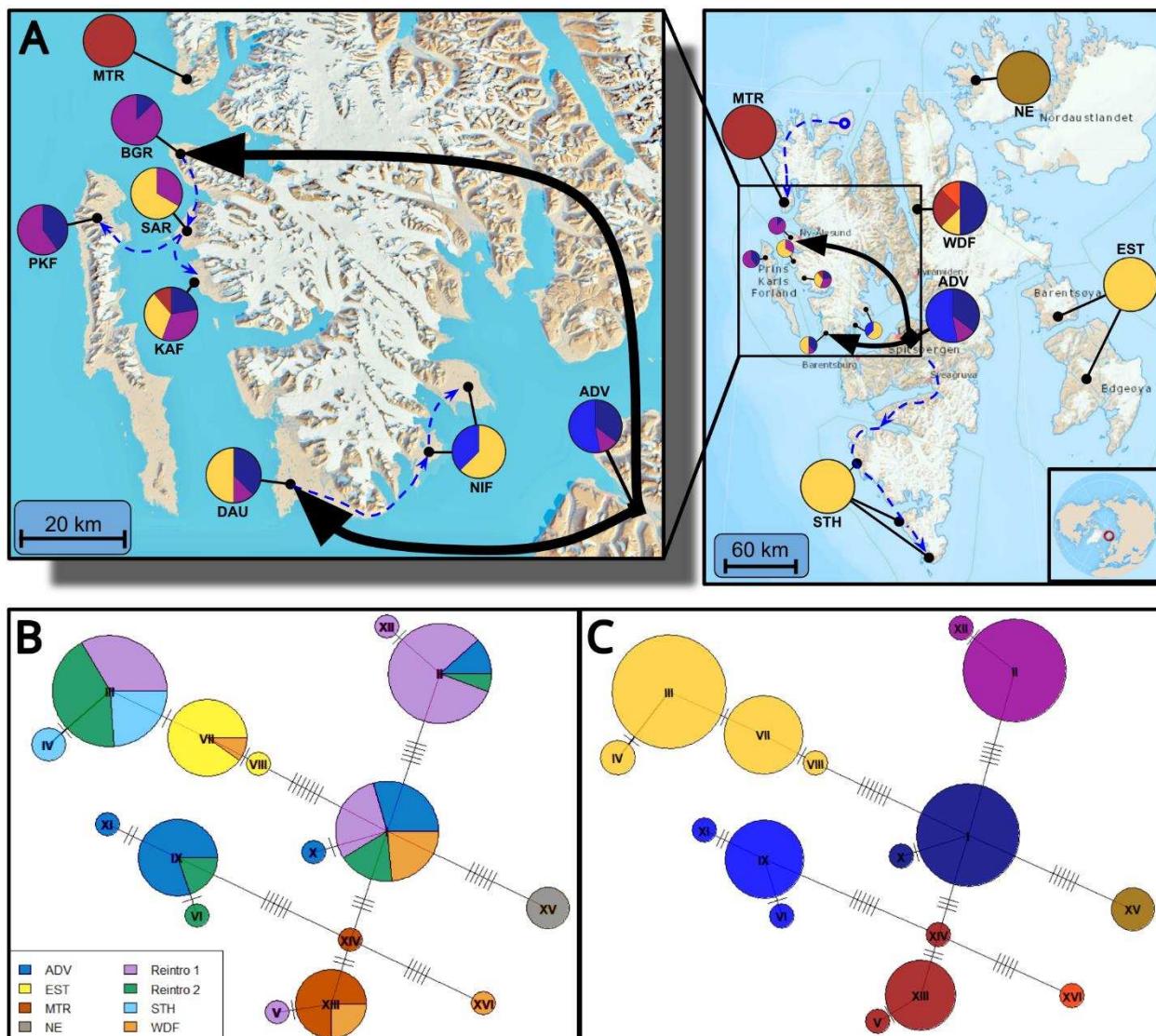

943 Wisely, S.M., Santymire, R.M., Livieri, T.M., Muetting, S.A. & Howard, J. (2008). Genotypic and
944 phenotypic consequences of reintroduction history in the black-footed ferret (*Mustela nigripes*).
945 *Conserv. Genet.*, 9, 389–399.

946 Wright, D.J., Spurgin, L.G., Collar, N.J., Komdeur, J., Burke, T. & Richardson, D.S. (2014). The impact
947 of translocations on neutral and functional genetic diversity within and among populations of the
948 Seychelles warbler. *Mol. Ecol.*, 23, 2165–2177.

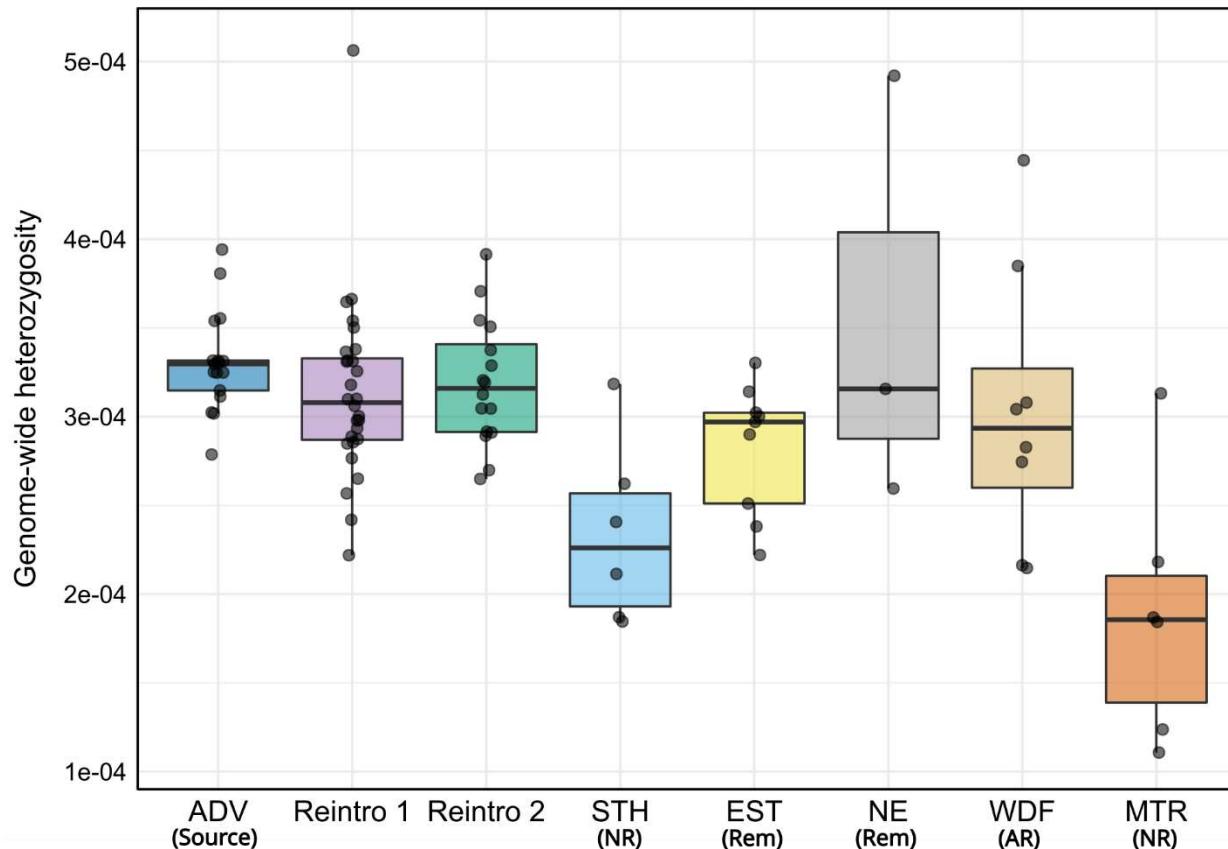
Figures



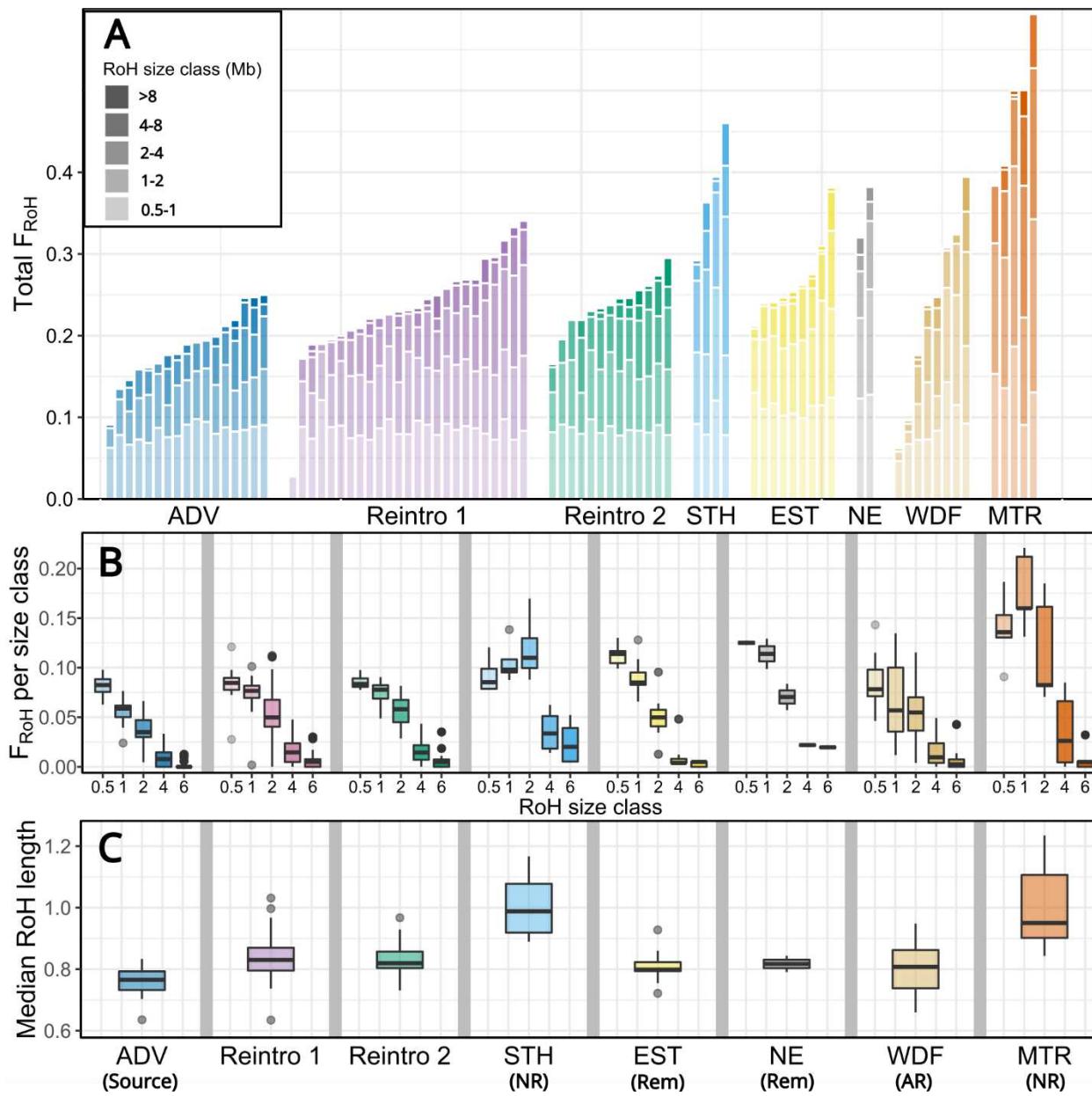
949 **Figure 1.** Principal component analysis plot showing PC 1 and 2. Shapes indicate type of Svalbard reindeer population
950 and colours indicate sample population. Ellipses represent the 95% CI of the mean PC coordinates for each natural
951 population (except NE due to too few samples) and each reintroduction group. Based on NGSadmix $K=2$ model results,
952 two individuals (T-2 and B-13) that represented admixture between strongly differentiated populations were not
953 included in population ellipse calculations. ADV: Adventdalen; BGR: Brøggerhalvøya; SAR: Sarsøya; KAF:
954 Kaffiøyra; PKF: Prins Karls Forland; DAU: Daudmannsøyra; NIF: North Isfjorden; WDF: Wijdefjorden; MTR:
955 Mitrahalvøya; STH: Southern Spitsbergen; EST: Eastern Svalbard; NE: North East Land.



956 **Figure 2.** Admixture analysis results from NGSadmix analysis of Svalbard reindeer nuclear genomes. Upper:
957 Admixture proportions for model $K=7$ (bars) and mtDNA haplogroup composition (pie charts), shown at population
958 locations. Arrows indicate translocations for reintroduction 1 and 2; Lower: Admixture proportions for $K=2$ and $K=7$
959 models. Vertical bars represent individual reindeer and colours correspond to genetic cluster assignment. Black arrows
960 indicate reintroduction translocations and dashed blue lines indicate assumed natural recolonisation routes. Maps
961 obtained from the Norwegian Polar Institute (toposvalbard.npolar.no). ADV: Adventdalen; BGR: Brøggerhalvøya;
962 SAR: Sarsøyra; KAF: Kaffiøyra; PKF: Prins Karls Forland; DAU: Daudmannsøyra; NIF: North Isfjorden; WDF:
963 Wijdefjorden; MTR: Mitrahalvøya; STH: Southern Spitsbergen; EST: Eastern Svalbard; NE: North East Land.


964

965
966 **Figure 3.** Pairwise FST heatmap for each Svalbard reindeer population based on folded SFS. Coloured brackets
967 correspond to admixture groups assigned by the $K=7$ model. NR - Non-admixed naturally recolonised population;
968 NR: Non-admixed naturally recolonised population; AR: Admixed naturally recolonised population; Rem: Natural
969 remnant population. ADV: Adventdalen; BGR: Brøggerhalvøya; SAR: Sarsøyra; KAF: Kaffiøyra; PKF: Prins Karls
970 Forland; DAU: Daudmannsøyra; NIF: North Isfjorden; WDF: Wijdefjorden; MTR: Mitrahalvøyra; STH: Southern
971 Spitsbergen; EST: Eastern Svalbard; NE: North East Land.



972 **Figure 4.** Svalbard reindeer mtDNA haplotype analysis. A) Population haplotype composition. Colours indicate
973 haplogroups shown in panel C. Black arrows indicate reintroduction translocations and dashed blue lines indicate
974 assumed natural recolonisation routes; B) Median joining mitochondrial haplotype network constructed using
975 uncorrected number of nucleotide differences (colours represent populations); C) Grouping of haplotypes into
976 haplogroups connected by links with less than 3 nucleotide differences. Maps obtained from the Norwegian Polar
977 Institute (toposvalbard.npolar.no). ADV: Adventdalen; BGR: Brøggerhalvøya; SAR: Sarsøyra; KAF: Kaffiøyra;
978 PKF: Prins Karls Forland; DAU: Daudmannsøyra; NIF: North Isfjorden; WDF: Wijdefjorden; MTR: Mitrahalvøya;
979 STH: Southern Spitsbergen; EST: Eastern Svalbard; NE: North East Land.

981 **Figure 5.** Svalbard reindeer genome-wide heterozygosity estimates using sequence data downsampled to 2.5x
982 coverage. Reintroduced populations grouped into Reintroduction 1 and 2 based on the admixture analyses. NR:
983 Non-admixed naturally recolonised population; AR: Admixed naturally recolonised population; Rem: Natural
984 remnant population. ADV: Adventdalen; BGR: Brøggerhalvøya; SAR: Sarsøyra; KAF: Kaffiøyra; PKF: Prins Karls
985 Forland; DAU: Daudmannsøyra; NIF: North Isfjorden; WDF: Wijdefjorden; MTR: Mitrahalvøya; STH: Southern
986 Spitsbergen; EST: Eastern Svalbard; NE: North East Land.

987

988

989 **Figure 6.** A) Cumulative total F_{RoH} from the five Runs of Homozygosity (RoH) size classes (0.5-1 Mbp, 1-2 Mbp,
 990 2-4 Mbp, 4-8 Mbp, and >8 Mbp) with each bar representing an individual Svalbard reindeer genome; B) Proportion
 991 of individual genomes within RoH of each size classes; C) Median RoH lengths of individuals in each population.
 992 NR: Non-admixed naturally recolonised population; AR: Admixed naturally recolonised population; Rem: Natural
 993 remnant population. ADV: Adventdalen; BGR: Brøggerhalvøya; SAR: Sarsøyra; KAF: Kaffiøyra; PKF: Prins Karls
 994 Forland; DAU: Daudmannsøyra; NIF: North Isfjorden; WDF: Wijdefjorden; MTR: Mitrahalvøya; STH: Southern
 995 Spitsbergen; EST: Eastern Svalbard; NE: North East Land.