

1 Nutritional and host environments determine community ecology 2 and keystone species in a synthetic gut bacterial community 3

4 Anna S. Weiss ¹, Lisa S. Niedermeier ¹, Alexandra von Strempel ¹, Anna G. Burrichter ¹,
5 Diana Ring ¹, Chen Meng ², Karin Kleigrewe ², Chiara Lincetto ³, Johannes Hübner ³, Bärbel
6 Stecher ^{1,4#}

7

8 ¹ Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine,
9 LMU Munich, Germany

10 ² Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences,
11 Technical University of Munich, Freising, Germany

12 ³ Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig
13 Maximilians University, Munich, Germany

14 ⁴ German Center for Infection Research (DZIF), partner site LMU Munich, Germany

15 [#]corresponding author: stecher@mvp.lmu.de

16

17 Key Words

18 Interaction network, keystone species, hub taxa, pathobiont, minimal consortium, nutritional
19 environment, syncom, microbial community dynamics, sDMDMm2, Oligo-MM

20

21 Abstract

22 Microbe-microbe interactions are critical for gut microbiome function. A challenging task to
23 understand health and disease-related microbiome signatures is to move beyond descriptive
24 community-level profiling towards disentangling microbial interaction networks. Here, we
25 aimed to determine members taking on a keystone role in shaping community ecology of a
26 widely used synthetic bacterial community (OMM¹²). Using single-species dropout
27 communities and metabolomic profiling, we identified *Bacteroides caecimuris* I48, *Blautia*
28 *coccoides* YL58 and *Enterococcus faecalis* KB1 as major drivers of *in vitro* community
29 assembly and elucidated underlying mechanisms of these keystone functions. Importantly,
30 keystone species and bacterial strain relationships were found to strongly vary across different
31 nutritional conditions, depending on the strains' potential to modify the corresponding
32 environment. Further, gnotobiotic mice transplanted with communities lacking *B. caecimuris*
33 I48 and *B. coccoides* YL58 exhibited morphological anomalies and altered intestinal
34 metabolomic profiles, exposing physiologically relevant functions of these keystone
35 community members. In summary, the presented study experimentally confirms the strong
36 interdependency between bacterial community ecology and the biotic and abiotic environment,
37 underlining the context-dependency and conditionality of bacterial interaction networks.

38

39 **Introduction**

40 Symbiotic microbial communities in the mammalian gut are essential for host health. A current
41 challenge in microbiome research is to predict and understand the functional relevance of
42 particular microbial community configurations or “signatures”, associated with health or
43 different diseases (1). Gut microbial community composition is influenced by a variety of
44 abiotic and biotic factors, including temperature, diet, host immune defenses, metabolites and
45 microbe-microbe interactions (2-5). Bacterial interaction networks in particular form the basis
46 of community assembly and structure. However, our understanding of the mechanistic basis
47 underlying these interactions is still incomplete, which greatly limits the functional
48 interpretation of microbiome signatures.

49 The intestinal microbiota is organized as complex trophic network where individual members
50 engage in cooperative and competitive interactions by nutrient degradation, exchange of
51 metabolites and production of inhibitory compounds (6). Pair-wise interactions are often
52 influenced by the presence of one or more other species in the community and the resulting
53 higher-order interactions limit the predictability of models based on pair-wise interactions alone
54 (7, 8). High-throughput sequencing and metabolomics technologies have generated a wealth of
55 data, which can be exploited by modelling approaches to shed light on the underlying processes
56 shaping the microbiome (9, 10). In particular, inference of microbial interaction and co-
57 occurrence networks are powerful tools for delineating microbial community structures (11,
58 12). While the computationally identified bacterial associations may result from true ecological
59 relationships, they cannot be distinguished from associations occurring due to environmental
60 selection (13). Hence, the biological interpretation often remains uncertain and requires
61 experimental validation (14, 15). For this purpose, synthetic model communities are indicated,
62 where members are well-characterized, interactions can be experimentally determined and
63 hypotheses can be verified in a systematic way. These experimental model systems also enable
64 the identification of community members with special importance for the ecosystem, i.e.,
65 keystones in Paine’s sense (16), by allowing the implementation of systematic presence-
66 absence studies (17, 18). Microbial keystone taxa are highly connected taxa, which have a major
67 influence on microbiome composition and function at a particular space or time (19). These
68 taxa often, but not always, have an over-proportional influence in the community, relative to
69 their abundance (20). Hence, identifying and targeting keystone taxa may open new entry points
70 for microbiome-targeted therapies.

71 Here, we aimed to identify keystone members of the Oligo-Mouse-Microbiota (OMM¹²), a gut
72 bacterial model community consisting of twelve species (*Enterococcus faecalis* KB1,
73 *Bifidobacterium animalis* YL2, *Acutalibacter muris* KB18, *Muribaculum intestinale* YL27,
74 *Flavonifractor plautii* YL31, *Enterocloster clostridioformis* YL32, *Akkermansia muciniphila*
75 YL44, *Turicimonas muris* YL45, *Clostridium inocuum* I46, *Bacteroides caecimuris* I48,
76 *Limosilactobacillus reuteri* I49 and *Blautia coccoides* YL58), representing the five major
77 eubacterial phyla of the murine gut microbiota (Fig. 1A) (21). This synthetic community is
78 publicly available, adaptable and stable in gnotobiotic mice (22). In addition, it recapitulates
79 important phenotypes of a complex microbiota in mice, including colonization resistance to
80 pathogens (23) and immune development (24). In the past years, the OMM¹² model has been
81 used by an increasing number of research groups in preclinical disease models, to study gut
82 microbial ecology and evolution and the impact of diet, drugs and phages on the microbiome
83 (25-29). Previous work analyzing mono- and pairwise co-cultures shed light on the metabolic
84 capacity of individual strains and *in vitro* strain-strain interactions in the OMM¹² community
85 (30, 31). Now, we continued to explore the OMM¹² interaction network top-down by generating
86 single-species dropout communities aiming to identify keystone species driving community

87 assembly. We analyzed community assembly and strain relationships in different culture media
88 in an *in vitro* batch culture approach, as well as in gnotobiotic mice. In summary, our findings
89 demonstrate a strong environmental context-dependency and conditionality of the keystone
90 species concept and highlight the need for experimental validation of association networks in
91 the relevant biotic and abiotic environment.

92 **Results**

93 **The carbohydrate environment configures bacterial key species driving community 94 assembly *in vitro***

95 Previous work using the OMM¹² *in vitro* community model revealed the strong impact of
96 different media compositions on community assembly (30). Here, to gain insights into the role
97 of the twelve individual strains in community assembly in different nutritional environments,
98 twelve dropout consortia were generated, each lacking one individual strain at a time.
99 Community assembly of all thirteen communities (twelve drop-out consortia, one OMM¹² full
100 consortium) were studied using a batch culture approach, with slight modifications to the
101 previously published protocol (30). Communities were stabilized for four days with serial
102 dilutions every 24 h (Fig. 1 B) and the absolute abundance of the individual OMM¹² strains at
103 day four of cultivation was determined by qPCR as normalized 16S rRNA copies per ml culture.
104 The chosen rich culture media differ in the supplied carbohydrate sources: AF medium contains
105 glucose as the major carbon source, while APF medium was supplemented with different mono-
106 (arabinose, lyxose, xylose, rhamnose and fucose) and polysaccharides (mucin, xylan and
107 inulin).

108 Of note, while the species richness was the same in both media, with eight of twelve bacteria
109 of the consortium coexisting after four days of cultivation, differences in absolute abundance
110 of the strains were observed between AF and APF media (Fig. S1). Bray-Curtis dissimilarity
111 analysis of the median absolute abundance of the individual strains in all communities revealed
112 clear differences (95% confidence interval) between communities grown in AF medium and
113 APF medium (Fig. 1C). Notably, three dropout communities stood out from the corresponding
114 clusters: the community lacking *E. faecalis* KB1 in AF medium and the communities lacking
115 *B. caecimuris* I48 and *B. coccoides* YL58 in APF medium (Fig. 1C). This suggests that
116 depending on the nutritional environment, different bacterial strains take on a key ecological
117 role in driving community assembly.

118 **Altered community assembly is linked to distinct environmental modifications**

119 We hypothesized that the influence of an individual strain on community assembly is connected
120 to changes in the metabolic environment. To test this, we analyzed spent culture media by
121 untargeted metabolomics. Thereby, a list of unique metabolomics features was curated and
122 compared between fresh and spent media (SM) of the corresponding communities. All samples
123 from communities lacking *E. faecalis* KB1 in AF medium and *B. caecimuris* I48, as well as *B.*
124 *coccoides* YL58 in APF medium showed distinct metabolomic profiles compared to the other
125 communities in the respective media by both, Bray-Curtis dissimilarity analysis (Fig 1D) and
126 hierarchical clustering of significantly changing metabolites (Fig. S2). This indicated that the
127 strains' key role in community assembly is strongly connected to their abilities to modify the
128 chemical environment. Specifically, amino acid production and depletion profiles revealed that
129 only communities including *E. faecalis* KB1 depleted serine and arginine in both culture
130 conditions (Fig. S3). On the other hand, communities lacking *B. caecimuris* I48 in APF medium
131 stood out with lower levels of alanine compared to the medium blank, indicating the importance
132 of this strain for alanine accumulation.

133 Targeted measurements of SCFA levels in the spent culture media further revealed significantly
134 decreased concentrations of acetic acid, propionic acid, isovaleric acid, isobutyric acid and
135 methylbutyric acid in *B. caecimuris* I48 dropout communities cultured in APF medium (Fig.
136 S3). In contrast, communities lacking *E. faecalis* KB1 cultured in AF medium showed
137 significantly increased levels of propionic acid, methylbutyric acid, valeric acid and isovaleric
138 acid and significantly decreased lactic acid concentrations. Of note, butyric acid levels were
139 strongly depleted in communities lacking *F. plautii* YL31 compared to the full consortium. This
140 is in line with information obtained by genome based metabolic models and monoculture *in*
141 *vitro* data identifying this strain as butyrate producer (30). Of note, butyric acid levels were also
142 significantly decreased in the dropout community lacking *B. coccoides* YL58, in which *F.*
143 *plautii* YL31 was as well not detectable (Fig. 2).

144 Analysis of pH changes ($\Delta pH = pH_{SM} - pH_{fresh\ medium}$) in SM revealed that communities
145 lacking *E. faecalis* KB1 showed stronger acidification than the OMM¹² community in both
146 media conditions (Fig. 1E). In APF medium all communities exhibit more acidic spent medium
147 pH ($\Delta pH < -1.0$) compared to communities in AF medium with the exception of the
148 *B. caecimuris* I48 dropout consortium. Here, a less drastic change in pH was found ($\Delta pH > -$
149 0.5), indicating that the strong acidification of APF SM is predominantly due to *B. caecimuris*
150 I48.

151 **Dissecting strain-strain interactions in the community context using dropout consortia**

152 We next compared the absolute abundance of all strains in the corresponding dropout
153 communities to the absolute abundance in the full consortium (Fig. 2). This analysis revealed,
154 that the absence of certain strains have a strong impact on the other strains' abundances. The
155 strains that influenced the highest number of other strains were *E. faecalis* KB1, affecting five
156 and four strains, *B. caecimuris* I48 affecting one and three strains and *B. coccoides* YL58
157 affecting two and two strains in AF and APF medium, respectively (Fig. 2, Fig. S4). This is in
158 line with observations made based on Bray-Curtis dissimilarity analysis of community
159 assembly (Fig. 1D).

160 Specifically, in *E. faecalis* KB1 dropout communities, the abundance of five other species was
161 increased in AF medium. Among those, strains *B. animalis* YL2, *F. plautii* YL31 and *C.*
162 *innocuum* I46 were previously shown to be inhibited in presence of *E. faecalis* KB1 in co-
163 culture (30). In the absence of *B. caecimuris* I48, three strains were more abundant in APF
164 medium (*M. intestinale* YL27, *A. muciniphila* YL44 and *C. innocuum* I46). Of note, *M.*
165 *intestinale* YL27 was completely excluded from the consortium in APF medium in the presence
166 of *B. caecimuris* I48 (Fig. 2, Fig. S4). In the absence of *B. coccoides* YL58, two strains were
167 more abundant (*E. clostridioformis* YL32 in AF and *T. muris* YL45 in APF medium), while the
168 abundance of two strains was decreased (*M. intestinale* YL27 in AF and *F. plautii* YL31 in
169 APF medium). Notably, *M. intestinale* YL27 was only detected in the consortium in the
170 presence of *B. coccoides* YL58, indicating a positive dependency of *M. intestinale* YL27 on *B.*
171 *coccoides* YL58 in the glucose condition but not in APF medium (Fig. 2). Concluding, this
172 underlines that different community members take on a keystone role in community assembly
173 by strongly affecting the abundance of several other strains, depending on the nutritional
174 environment: *E. faecalis* KB1 in AF medium and *B. caecimuris* I48 and *B. coccoides* in APF
175 medium.

176 **The keystone function of *B. caecimuris* is dependent on the availability of polysaccharides**

177 The pronounced effect *B. caecimuris* I48 had on community assembly in the APF medium,
178 paired with the observation of strongly decreased spent culture medium pH and altered
179 metabolic profiles, suggested a strong interdependency between the availability of
180 polysaccharides and the ability of this strain to degrade polysaccharides. In line with this
181 hypothesis, xylan and inulin concentrations in spent culture media of communities grown in

182 APF medium were significantly reduced in the full community compared to the consortium
183 lacking *B. caecimuris* I48 (Fig. S5). This was further substantiated by the presence of genes
184 encoding the key enzymes of xylan and inulin degradation (32-34) in the *B. caecimuris* I48
185 genome (Fig S5, Tab. S1). To confirm that the strong influence of *B. caecimuris* I48 on
186 community assembly and spent media pH is indeed mediated by the presence of
187 polysaccharides, we generated a polysaccharide deficient variant of APF medium (APF^{mod}).
188 This medium differs from AF medium as the remaining carbohydrate sources are several C5
189 and C6 sugars, excluding glucose (Methods). Comparing community composition and absolute
190 strain abundances (Fig. S5) revealed that *B. caecimuris* I48 was significantly less abundant in
191 APF^{mod} compared to APF medium. Moreover, none of the initially altered strains showed
192 significant changes in absolute abundances compared to the full consortium in APF^{mod} (Fig.
193 S5). Furthermore, in the absence of xylan and inulin, *B. caecimuris* I48 did not acidify the
194 culture medium as observed for APF medium (Fig. 3A). This is in line with the observation that
195 specific SCFAs, namely acetic acid, lactic acid and propionic acid, that were significantly
196 decreased in communities lacking *B. caecimuris* I48 in APF medium, were unaltered in APF^{mod}
197 medium (Fig. 3B, Fig. S6). Taken together, this suggests that the keystone role of *B. caecimuris*
198 I48 in APF medium is strongly linked to its ability to consume xylan and inulin.

199 *E. faecalis* interactions are multifaceted in the community context

200 While *E. faecalis* KB1 was previously shown to dominate strain relationships by metabolic
201 interactions in a glucose-rich environment, the strain also inhibited several other community
202 members by bacteriocin production (*B. animalis* YL2, *F. plautii* YL31, *E. clostridioformis*
203 YL32, *C. innocuum* I46 and *L. reuteri* I49) (30). *E. faecalis* KB1 harbors several bacteriocin-
204 encoding loci (30), including enterocin L50, an enterococcal leaderless bacteriocin with broad
205 target range among Gram-positive bacteria (35). We hypothesized that direct interference
206 competition contributes to the capacity of *E. faecalis* KB1 to dominate community assembly.
207 The inhibitory effect of *E. faecalis* KB1 in the community context was most pronounced for *B.*
208 *animalis* YL2, which is not able to colonize the full OMM¹² consortium, but can only establish
209 itself in a community lacking *E. faecalis* KB1 in both media conditions (Fig. 2, Fig. S4). A
210 phenotyping approach testing *E. faecalis* KB1 mutants with individual deletions in the three
211 loci for enterocin production (enterocin L50 A and B, enterocin O16 and enterocin E96)
212 identified enterocin L50 A and B as the toxin active against the other community members (Fig.
213 S7).

214 Next, we performed batch culture experiments to analyze the phenotype of the *E. faecalis* KB1
215 Δ L50 mutant strain in the community context in AF and APF medium (Fig. 3C, full data set
216 Fig. S8). Interestingly, *B. animalis* YL2 was abundant in the OMM¹² community including the
217 *E. faecalis* KB1 Δ L50 mutant strain but not in the presence of the wildtype in both nutritional
218 conditions. Further, no significant difference in *B. animalis* YL2 absolute abundance was
219 observed in the *E. faecalis* KB1 Δ L50 mutant community compared to the *E. faecalis* KB1
220 dropout community, indicating that interaction is mediated by the enterocin. On the other hand,
221 abundance of *C. innocuum* I46 was also decreased in the *E. faecalis* KB1 Δ L50 mutant
222 community, indicating that the observed negative effect of *E. faecalis* KB1 is not due enterocin
223 production, but is mediated by other means such as substrate competition or end product
224 inhibition in both media conditions (Fig. 3C). Interestingly, the effect of the *E. faecalis* KB1
225 wildtype or the Δ L50 mutant strain on the abundance of *F. plautii* YL31 and *E. clostridioformis*
226 YL32 was not consistent across the two different media, suggesting that the respective changes
227 in absolute abundances of these strains are not solely explainable by interference competition.
228 This highlights that exploitative and interference interactions can occur simultaneously and in
229 a multifaceted fashion.

230 Strain interactions are not transferrable across different nutritional environments

231 As some of the observed strain relationships could not be transferred from one carbohydrate
232 environment to the other, we questioned if testing further nutritional environments may reveal
233 an even higher diversity of bacterial strain relationships in the OMM¹² consortium. Therefore,
234 the full consortium and three dropout consortia lacking the previously identified keystone
235 species *E. faecalis* KB1, *B. caecimuris* I48 and *B. coccoides* YL58 were cultured in three
236 additional commonly used anaerobic culture media. The chosen media differed in their supplied
237 carbohydrate sources and in the composition and origin of other essential medium components
238 (Tab. S2).

239 To obtain a quantitative measure for strain relationships (Fig. S9), we defined the measure r_{abs}
240 as the ratio of the absolute abundance of a given strain y in a dropout community lacking strain
241 x vs. the absolute abundance of strain y in the full consortium: $r_{abs} = \frac{abs_y^{OMM11-x}}{abs_y^{OMM12}}$. A strain
242 relationship was defined as negative, if the abundance of a strain y was increased in a given
243 dropout community, compared to the corresponding strain abundance in the full community
244 ($r_{abs} > 1$). A strain relationship was defined as positive, if the abundance of a strain was
245 decreased in a given dropout community, compared to the corresponding strain abundance in
246 the full community ($r_{abs} < 1$). If a strain y was not detectable in a specific dropout community,
247 but in the full community, the strain relationship was defined as a positive dependency. If a
248 strain y was only detected in a specific dropout community, but never in the presence of the
249 corresponding strain, the interaction outcome was defined as exclusion (Fig. 4A). This analysis
250 revealed a strong variation of strain relationships across different culture media. This even
251 included several cases of contrasting outcomes, as e.g. the relationship between *E. faecalis* KB1
252 and *A. muciniphila* YL44 (Fig. 4A). Only three strain relationships were found to prevail across
253 nutritional environments: the negative influence of *E. faecalis* KB1 on the strains *B. animalis*
254 YL2 and *C. innocuum* I46 and the positive relationship between *B. coccoides* YL58 and *M. intestinale*
255 YL27.

256 The differential impact of *E. faecalis* KB1, *B. caecimuris* I48 and *B. coccoides* YL58 on
257 community assembly in different nutritional environments was once more reflected in their
258 ability to alter the metabolic environment, as differences in pH modification were observed
259 across the different culture media (Fig. 4B). While e.g. communities lacking *E. faecalis* KB1
260 show a more acidic spent culture pH in AF and APF medium, less acidification was observed
261 in GAM, TYG and YCFA medium. Interestingly, while the presence of *E. faecalis* KB1 resulted
262 in exclusion of *B. animalis* YL2 in AF and APF medium due to the enterocin production (Fig.
263 3C), even though still negatively affected, *B. animalis* YL2 coexisted with *E. faecalis* KB1 in
264 GAM (Fig. S9). Again, testing the enterocin mutant strain $\Delta L50$ in the community context in
265 GAM revealed that *B. animalis* YL2 abundance was only significantly increased in the absence
266 of *E. faecalis* KB1 but not in the absence of the toxin only (Fig. 4C). This indicates that in
267 GAM, the enterocin is either not expressed, its effect is overpowered by a simultaneous
268 metabolic interaction or *B. animalis* YL2 is insensitive to the toxin.

269 Community assembly and interactions differ across murine gut regions

270 The observation that community assembly, bacterial interactions and keystone species are
271 strongly dependent on the nutritional environment indicated that OMM¹² community assembly
272 dynamics and strain relationships might differ across the diverse environments of the murine
273 gastrointestinal tract as well. To test this, germ-free mice (n=8-10 mice per group) were
274 colonized with the full OMM¹² consortium and three dropout consortia lacking *E. faecalis* KB1,
275 *B. caecimuris* I48 and *B. coccoides* YL58, respectively. After 20 days of colonization, mice
276 were sacrificed and different regions of the gastrointestinal tract (jejunum, ileum, cecum, colon
277 and feces) were sampled for qPCR analysis (Fig. S10, S11). Generally, lower bacterial loads
278 (16S rRNA copies/g content) and higher variability across individual mice were found in the
279 jejunum and ileum compared to cecum, colon and feces (Fig. 5A). Further, especially dropout

280 communities lacking *B. caecimuris* I48 and *B. coccoides* YL58 showed reduced total bacterial
281 loads in cecum, colon and feces compared to mice colonized with the full consortium (Fig. 5A).
282 Bray-Curtis dissimilarity analysis of community profiles, determined by the absolute
283 abundances of the individual strains across different sampling regions, revealed clear
284 differences between community composition in the upper (jejunum and ileum) and in the lower
285 gastrointestinal tract (cecum, colon and feces) (Fig. 5B). While none of the dropout
286 communities stood out from the cluster of the upper gastrointestinal tract (Fig. 5B), the cecal
287 community lacking *B. caecimuris* I48 showed a distinct profile (adjusted p-value 0.0003
288 Benjamini-Hochberg, Tab. S3), indicating an influential role of this strain in the cecum.
289 Again, determining the measure r_{abs} to quantify strain relationships from absolute strain
290 abundances over the different gut environments revealed that *B. caecimuris* I48 was mainly
291 positively associated with most other strains in the cecum (Fig. 5C, Fig. S10). This is in line
292 with a particularly strong decrease in total bacterial abundance in the murine cecum in mice
293 colonized with the OMM¹¹-*B. caecimuris* I48 community (Fig. 5A). Comparing the relationship
294 of *B. caecimuris* I48 with the other OMM¹² strains over the different gut regions revealed again
295 contrasting relationships across the different sampling sites (Fig. 5C). In 8 of 10 cases, the strain
296 relationship between *B. caecimuris* I48 and one of the corresponding other strains was
297 opposing. Similar observations were made for the reconstruction of strain relationships for the
298 other two dropout communities, lacking *E. faecalis* KB1 and *B. coccoides* YL58 (contrasting
299 strain relationships in 9 and 6 of 10 comparisons, respectively). Of note, quantifying bacterial
300 strain relationships with *B. coccoides* YL58 revealed a strong positive dependency between *B.*
301 *coccoides* YL58 and *F. prausnitzii* YL31, as the latter strain seems to be completely dependent on
302 the presence of *B. coccoides* YL58 to establish itself in the murine gastrointestinal tract. A
303 similar relationship, even though not as pronounced, is observed for *C. innocuum* I46, which
304 was as well positively associated with the presence of *B. coccoides* YL58 across all sampling
305 sites.

306 **Keystone function of *B. caecimuris* and *B. coccoides* is related to altered intestinal 307 physiology and metabolomics profiles in gnotobiotic mice**

308 Mice colonized with communities lacking *B. caecimuris* I48 and *B. coccoides* YL58 exhibited
309 a significantly altered cecal to mouse body weight ratio (Fig. 5D). This ratio is known to be
310 high in germ-free mice and strongly reduced in mice associated with a complex microbiota. For
311 this reason, relative cecal weight is often used as an indicator of the impact of the microbiota
312 on intestinal physiology. Corresponding to the strongly decreased total bacterial loads (Fig.
313 5A), the relative cecal weight was significantly increased in mice colonized with the OMM¹¹-
314 *B. caecimuris* I48 community compared to mice colonized with the full consortium (Fig. 5D).
315 In contrast, even though bacterial loads were decreased in mice colonized with the OMM¹¹-
316 *B. coccoides* YL58 community, the relative cecal weight was strongly decreased in those mice
317 compared to the full consortium control group. Of note, this effect was found to be associated
318 with bloating and hardened cecal tissue (Fig. S12).

319 Next, we analyzed intestinal samples of mice colonized with full and dropout communities
320 using targeted and untargeted metabolomics. In line with the observation that the absence of
321 strains *B. caecimuris* I48 and *B. coccoides* YL58 had a pronounced influence on overall
322 bacterial loads, bacterial community assembly and the host, strongly altered metabolomics
323 profiles were observed for cecal content of mice colonized with communities lacking these
324 species compared to the full consortium control (Fig. 5E). In contrast, cecal metabolomic
325 profiles of mice colonized with the *E. faecalis* KB1 dropout consortium did not differ from the
326 full consortium control. Targeted analysis of SCFAs revealed pronounced differences in SCFA
327 concentrations in the cecal content across mice colonized with the different consortia (Fig. S13).
328 Specifically, a significant decrease in propionic acid, butyric acid, valeric acid, isovaleric acid,
329 isobutyric acid and 2-methylbutyric acid was found in the cecal content of mice colonized with

330 the *B. caecimuris* I48 dropout community compared to mice colonized with the full consortium.
331 Contrasting, cecal content of mice colonized with communities lacking *B. coccoides* YL58
332 showed significantly increased levels of isovaleric acid and lactic acid, and significantly
333 decreased levels of valeric acid and isobutyric acid compared to the full consortium control.
334 Concluding, we found that *B. caecimuris* I48 and *B. coccoides* YL58 have a particular strong
335 influence on community assembly, total bacterial loads and the metabolomic profile in the cecal
336 content. Most strikingly, the important role of *B. coccoides* YL58 on total bacterial abundance
337 (Fig. 5A) and the host (Fig. 5DE) was not directly inferable from analyzing community
338 composition only (Fig. 5B, Fig. S10, Fig. S11) but became apparent by analyzing physiologic
339 changes in the host and metabolomics profiles.

340 Discussion

341 A central challenge in microbiome research is to move beyond descriptive community-level
342 profiling towards a functional understanding of microbiome signatures. Omics-based
343 approaches have limited traceability of individual community members and experimental
344 means to mechanistically resolve interaction networks. Complementary, the use of synthetic
345 communities provides a reductionist tool to mechanistically resolve interspecies interactions
346 and identify keystone species (17, 18, 36).

347 Here, we explored the OMM¹² interaction network using single-strain dropout communities
348 across various culture media conditions and in gnotobiotic mice. This revealed that distinct
349 species drive the community assembly in different environments. Specifically, we identified
350 three environment-dependent keystone species, *E. faecalis* KB1, *B. caecimuris* I48 and *B.*
351 *coccoides* YL58. Importantly, the kind and extent of how the three species affected community
352 composition differed across culturing conditions and between sampling sites in the murine gut.
353 While *E. faecalis* KB1, a low-abundant member of the mouse microbiome, strongly influenced
354 community assembly *in vitro* by substrate competition and enterocin production, only minor
355 changes in the bacterial abundance of the other community members, metabolomics profiles
356 and physiology of the host were observed in intestinal regions of gnotobiotic mice stably
357 colonized with a *E. faecalis* KB1 dropout community. This difference could be due to the
358 overall low relative absolute abundance of *E. faecalis* in the gut of OMM¹² mice (30). Increased
359 abundance of *E. faecalis* is found in neonates (37), in antibiotic-treated individuals, graft-
360 versus-host disease or inflammatory bowel disease mouse models, suggesting other
361 environments, where *E. faecalis* potentially takes on a keystone role (38). Our *in vitro* data
362 suggest, that enterocin-mediated competition is dependent on the nutritional environment, as it
363 was observed in all media conditions except for GAM – and apparently also not in the gut of
364 healthy gnotobiotic mice. Of note, colicin or microcin-dependent competition of *E. coli* and
365 *Salmonella* is also not seen in healthy mice but takes place in the inflamed gut where iron is
366 limiting and both species are highly abundant (39, 40).

367 In contrast to *E. faecalis* KB1, communities lacking *B. caecimuris* I48 showed distinctly altered
368 metabolomics profiles across culturing conditions and in the murine cecum. *In vivo*, the
369 presence of *B. caecimuris* I48 was positively associated with most other species, whereas *in*
370 *vitro*, more negative strain relationships with other community members were detected. *B.*
371 *caecimuris* I48's keystone role *in vitro* was linked to the presence of the polysaccharides xylan
372 and inulin. Bacteroidetes generally break down dietary polysaccharides outside of their
373 cytoplasm using surface-associated glycoside hydrolases (41, 42). Inulin as supplemented
374 nutrient source was previously also shown in mice to boost *Bacteroides* species and generate
375 altered SCFA profiles (33). Certain *Bacteroides* species also supply inulin breakdown products
376 to other community members by cross-feeding (6). These results suggest that exclusive

377 nutrients enable specific species to take on a keystone role, a concept that might be generalized,
378 but requires further experimental validation.

379 Most interestingly, the influential role of *B. coccoides* YL58 *in vivo* became only apparent in
380 hindsight of the strongly reduced cecal/body weight ratio and altered cecal metabolomics
381 profiles. From analyzing community assembly in the murine cecum, *B. coccoides* YL58 would
382 not have been inferred as species strongly affecting community structure. Most strikingly, from
383 overall reduced total bacterial abundance in the lower murine gut an increase in cecal to mouse
384 body weight ratio would have been expected; instead it was significantly reduced. The
385 mechanisms underlying the role of *B. coccoides* YL58 in microbiota-host cross-talk will be
386 subject of future work. Besides, *B. coccoides* YL58 was found to be positively associated with
387 several other strains *in vitro* as well as *in vivo*. We hypothesize that this influential role of
388 *B. coccoides* YL58 is linked to its important function as a hydrogen consumer in the OMM¹²
389 community (30, 43). We reason that increased levels of hydrogen in the absence of this strain
390 could alter the energy balance of hydrogen producing fermentation reactions. In line with this,
391 particularly butyrate producing strains *C. innocuum* I46 and *F. prausnitzii* YL31 are strongly
392 reduced in the absence of *B. coccoides* YL58.

393 Our previous work showed similarity of OMM¹² community structure in a polysaccharide
394 supplemented culture medium to that in the murine cecum (30). Nevertheless, we discovered
395 distinct differences in directionality and mechanisms in the underlying strain relationships
396 between the two conditions. Reasons for the observed differences could be manifold, but most
397 likely include the absence of host derived factors, such as antimicrobial peptides (44), oxygen
398 concentration gradients (45) and dynamic pH regulation (46) in the batch culture setup, as well
399 as the lack of structural and spatial heterogeneity, that is present within the lumen of the
400 gastrointestinal tract (47, 48). Hence, while communities similar in compositions can be
401 constructed across different environments, the underlying bacterial interaction networks and
402 therefore resulting overall community functions might differ distinctly.

403 While we set out to determine universal keystone species of a model gut bacterial community,
404 we found that the keystone species concept is difficult to apply due to its context-dependency
405 and conditionality (20, 49, 50). Overall, we conclude that true “keystone-ness” of a bacterial
406 species that applies across different *in vitro* and *in vivo* conditions is rarely observed. Our data
407 provides an experimental proof that keystone functions of focal microbes can differ in different
408 nutritional and host-associated environments. The presented insights into the sensitivity and
409 dependency of bacterial interactions on the corresponding nutritional environment provided by
410 this and other studies urge the need for a concrete specification of the keystone species concept:
411 a) what key role does a specific strain take on (e.g. shaping the abundance of specific other
412 strains or a concrete metabolic function) and b) in which specific nutritional or chemical
413 environment was this observed (e.g. detailed description of cultivation conditions or sampling
414 region, ideally backed up with additional datasets on physiological and chemical markers).

415 We conclude that alterations in a community’s interaction network may be overlooked by
416 studying community composition and community-derived correlation and interaction networks.
417 Hence, making use of controllable community models, traceable nutritional environments and
418 a combination of metagenomics and metabolomics approaches is needed to pave the way to
419 elucidate the role of individual species in community functions and delineate general principles
420 of how bacterial interactions shape microbiome function.

421 **Methods**

422 **Generation of bacterial dropout communities**

423 Bacterial monocultures and subcultures were grown for 24 h each in 10 ml AF medium (30).
424 Dropout community inocula were prepared by first diluting the monocultures in fresh AF to

425 OD600nm 0.1 (BioTek, Epoch2 Microplatereader) under anaerobic conditions. Strains that had
426 an OD600nm < 0.1 were used undiluted. For the generation of each dropout community
427 inoculum, 500 μ l of the monoculture dilution or the undiluted monoculture were mixed in a
428 glass culture bottle. Accordingly, eleven different monocultures were used for each dropout
429 community inoculum. The culture bottles with the dropout community inocula were
430 hermetically sealed, discharged from the tent, filled into vials sealed with butyl rubber stoppers
431 (10% glycerol) and frozen at -80°C. Biological replicates were generated from independently
432 prepared monocultures in separately prepared batches of medium.

433 The following strains were used in this study: *Enterococcus faecalis* KB1 (DSM32036),
434 *Bifidobacterium animalis* YL2 (DSM26074), *Acutalibacter muris* KB18 (DSM26090),
435 *Muribaculum intestinale* YL27 (DSM28989), *Flavonifractor plautii* YL31 (DSM26117),
436 *Enterocloster clostridioformis* YL32 (DSM26114), *Akkermansia muciniphila* YL44
437 (DSM26127), *Turicimonas muris* YL45 (DSM26109), *Clostridium innocuum* I46
438 (DSM26113), *Bacteroides caecimuris* I48 (DSM26085), *Limosilactobacillus reuteri* I49
439 (DSM32035) and *Blautia coccoides* YL58 (DSM26115).

440

441 **Culture conditions for dropout community experiments**

442 Bacterial communities were cultivated in 24 well plates (TPP) under anaerobic conditions,
443 thereby diluting the thawed inoculum 1:10 in 1 ml fresh media. Inocula were spiked with 100 μ l
444 fresh *M. intestinale* YL27 monoculture, to increase reliability of growth of this strain in the
445 community. Bacterial communities were grown in five different media (Tab. S2): **AF** (30) ,
446 **APF** (18.5 g.l⁻¹ brain-heart infusion glucose-free, 15 g.l⁻¹ trypticase soy broth glucose-free,
447 5 g.l⁻¹ yeast extract, 2.5 g.l⁻¹ K₂HPO₄, 1 mg.l⁻¹ haemin, 2.5 g.l⁻¹ sugar mix (1:1 arabinose,
448 fucose, lyxose, rhamnose, xylose), 2 g.l⁻¹ inulin, 2 g.l⁻¹ xylan, 0.025%.l⁻¹ mucin, 1 l dH₂O,
449 0.5 mg.l⁻¹ menadione, 3% heat-inactivated fetal calf serum, 0.5 g.l⁻¹ cysteine-HCl·H₂O, 0.4 g
450 Na₂CO₃), modified **GAM** (Himedia Labs), **TYG** (10 g.l⁻¹ tryptone peptone from casein, 5 g.l⁻¹
451 yeast extract, 2 g.l⁻¹ glucose, 0.5 g.l⁻¹ L-cysteine HCl, 100 ml.l⁻¹ 1M K₂PO₄ pH 7.2, 40 ml.l⁻¹
452 TYG salt solution (0.05 g MgSO₄·7H₂O, 1 g NaHCO₃, 0.2 g NaCl in 100 ml H₂O), 1 ml.l⁻¹
453 CaCl₂ (0.8%), 1 ml.l⁻¹ FeSO₄ (0.4 mg/ml), 1 ml hematine-histidine (pH 8, 0.2M), 1 ml vitamin
454 K3 (1 mg/ml), 858 ml H₂O), **YCFA** (10 g.l⁻¹ casitone, 2.5 g.l⁻¹ yeast extract, 2 g.l⁻¹ glucose,
455 2 g.l⁻¹ starch, 2 g.l⁻¹ cellobiose, 4 g.l⁻¹ NaHCO₃, 1 g.l⁻¹ L-cysteine, 0.45 g.l⁻¹ K₂HPO₄, 0.45 g.l⁻¹
456 KH₂PO₄, 0.9 g.l⁻¹ NaCl, 0.09 g.l⁻¹ MgSO₄·7H₂O, 0.09 g.l⁻¹ CaCl₂, 10 mg.l⁻¹ hemin, 1.1⁻¹ mg
457 resazurin, 100 μ l biotin (1 mg/10ml in H₂O), 100 μ l cobalamin (1 mg/10ml in EtOH), 100 μ l
458 p-aminobenzoic acid (3 mg/10ml in H₂O), 100 μ l folic acid (5mg/10ml in DMSO), 100 μ l
459 pyridoxamin (15 mg/10ml in H₂O), 1 l dH₂O, 100 μ l Thiamine (5 mg/10ml Stock in H₂O), 100
460 μ l Riboflavin (5 mg/10ml Stock in H₂O)). For the polysaccharide deficient variant APF^{mod} of
461 APF inulin, xylan and mucin were left out. Over the total cultivation time of 96 h, 10 μ l of the
462 culture were transferred from one well into a new well with 1 ml of fresh medium every 24h
463 (1:100 dilution). For sampling the 24 well plates were discharged from the tent and samples
464 were rapidly processed. For each community culture the full volume (1 ml) was centrifuged at
465 12,000 rpm for 1 min, the cell pellet was frozen at -20°C and the supernatant was kept for pH
466 measurement and metabolomics analyses.

467

468 **pH measurements**

469 pH measurements of bacterial supernatants were performed using a refillable, glass double
470 junction electrode (OrionTM PerpHecTTM ROSSTM, Thermo Scientific).

471

472 **Metabolomic profiling of bacterial supernatants and cecal content**

473 For metabolomics, 500 μ l supernatant or cecal content was transferred to a Spin-X
474 centrifugation tube and centrifuged at 14,000 rpm for 2 min. The membrane was discarded and
475 the flow-through snap frozen in liquid nitrogen.

476 The untargeted analysis was performed using a Nexera UHPLC system (Shimadzu) coupled to
477 a Q-TOF mass spectrometer (TripleTOF 6600, AB Sciex). Separation of the spent media was
478 performed using a UPLC BEH Amide 2.1x100, 1.7 μ m analytic column (Waters Corp.) with
479 400 μ L/min flow rate. The mobile phase was 5 mM ammonium acetate in water (eluent A) and
480 5 mM ammonium acetate in acetonitrile/water (95/5, v/v) (eluent B). The gradient profile was
481 100% B from 0 to 1.5 min, 60% B at 8 min and 20% B at 10 min to 11.5 min and 100% B at
482 12 to 15 min. A volume of 5 μ L per sample was injected. The autosampler was cooled to 10°C
483 and the column oven heated to 40°C. Every tenth run a quality control (QC) sample which was
484 pooled from all samples was injected. The spent media samples were measured in a randomized
485 order. The samples have been measured in Information Dependent Acquisition (IDA) mode.
486 MS settings in the positive mode were as follows: Gas 1 55, Gas 2 65, Curtain gas 35,
487 Temperature 500°C, Ion Spray Voltage 5500, declustering potential 80. The mass range of the
488 TOF MS and MS/MS scans were 50 - 2000 *m/z* and the collision energy was ramped from 15 -
489 55 V. MS settings in the negative mode were as follows: Gas 1 55, Gas 2 65, Cur 35,
490 Temperature 500°C, Ion Spray Voltage -4500, declustering potential -80. The mass range of
491 the TOF MS and MS/MS scans were 50 - 2000 *m/z* and the collision energy was ramped from
492 -15 - -55 V.

493 The "msconvert" from ProteoWizard were used to convert raw files to mzXML (de-noised by
494 centroid peaks). The bioconductor/R package xcms was used for data processing and feature
495 identification. More specifically, the matched filter algorithm was used to identify peaks (full
496 width at half maximum set to 7.5 seconds). Then the peaks were grouped into features using
497 the "peak density" method (51). The area under the peaks was integrated to represent the
498 abundance of features. The retention time was adjusted based on the peak groups presented in
499 most of the samples. To annotate possible metabolites to identified features, the exact mass and
500 MS2 fragmentation pattern of the measured features were compared to the records in HMDB
501 (52) and the public MS/MS database in MSDIAL (53), referred to as MS1 and MS2 annotation,
502 respectively. The QC samples were used to control and remove the potential batch effect, t-test
503 was used to compare the features' intensity from spent media with fresh media. For Bray-Curtis
504 dissimilarity analysis of metabolomics profiles features with more than 80% NA values across
505 the analysed samples were removed. The associated untargeted metabolomics data are available
506 on the MassIVE repository (54) with ID MSV000090704.

507
508 **Targeted short chain fatty acid (SCFA) measurement**
509 The 3-NPH method was used for the quantitation of SCFAs (55). Briefly, 40 μ L of the SM or
510 cecal content and 15 μ L of isotopically labeled standards (ca 50 μ M) were mixed with 20 μ L
511 120 mM EDC HCl-6% pyridine-solution and 20 μ L of 200 mM 3-NPH HCL solution. After 30
512 min at 40°C and shaking at 1000 rpm using an Eppendorf Thermomix (Eppendorf, Hamburg,
513 Germany), 900 μ L acetonitrile/water (50/50, v/v) was added. After centrifugation at 13000
514 U/min for 2 min the clear supernatant was used for analysis. A Qtrap 5500 Qtrap mass
515 spectrometer coupled to an Exion-LC (both Sciex) was used for the targeted analysis. The
516 electrospray voltage was set to -4500 V, curtain gas to 35 psi, ion source gas 1 to 55, ion source
517 gas 2 to 65 and the temperature to 500°C. The MRM-parameters were optimized using
518 commercially available standards for the SCFAs. The chromatographic separation was
519 performed on a 100 \times 2.1 mm, 100 Å, 1.7 μ m, Kinetex C18 column (Phenomenex,
520 Aschaffenburg, Germany) column with 0.1% formic acid (eluent A) and 0.1% formic acid in
521 acetonitrile (eluent B) as elution solvents. An injection volume of 1 μ L and a flow rate of 0.4
522 mL/min was used. The gradient elution started at 23% B which was held for 3 min, afterward
523 the concentration was increased to 30% B at 4 min, with another increase to 40% B at 6.5 min,
524 at 7 min 100% B was used which was held for 1 min, at 8.5 min the column was equilibrated
525 at starting conditions. The column oven was set to 40°C and the autosampler to 15°C. Data

526 acquisition and instrumental control were performed with Analyst 1.7 software (Sciex,
527 Darmstadt, Germany).

528
529 **Enzymatic assay to determine polysaccharide concentrations**
530 Inulin was measured enzymatically using the Fructan HK Assay Kit (Megazyme Bray, Ireland)
531 according to instructions. Samples were used directly, starting with protocol point E. Assay
532 volume was reduced 20-fold to allow measurements in 96 well plate format.

533 Xylan was measured enzymatically as xylose after acid hydrolysis using the D-Xylose Assay
534 Kit (Megazyme Bray, Ireland) according to instructions. Xylan was hydrolysed as described in
535 Sample Preparation Example c) in the kit protocol and further measured using the given
536 microplate assay procedure.

537
538 **Construction of exchange vectors for the engineering of *E. faecalis***
539 Vector pLT06 was used for the deletion of enterocins L50A-L50B, Ent96 and O16 in *E. faecalis*
540 strain KB1 (56). A list of all the primers used is provided in Table S4. DNA fragments of 500-
541 1000 bp upstream and downstream of the gene targeted for deletion (homologous arms 1 and
542 2) were amplified by PCR, using primers to insert restriction sites. *Bam*HI and *Sall* restriction
543 sites were added to arms 1, and *Sall* and *Pst*I sites were added to arms 2. The PCR products of
544 the arms were digested using the appropriate restriction enzymes and ligated with pLT06. The
545 ligated products were transformed into NEB 10-beta Competent *E. coli* for propagation and
546 grown on LB plates containing Chloramphenicol (Cm) at 30°C. Colonies were screened for the
547 presence of the inserts using primers pLT06_FW_b and pLT06_RV_b. Positive clones were
548 grown overnight in liquid LB medium containing Cm at 30°C. The plasmids were purified using
549 the PureYield™ Plasmid Miniprep System (Promega) according to the manufacturer's
550 protocol. The inserts from each construct were sequenced to ensure that no mutations arose
551 during cloning. The resulting exchange vectors were used to generate the respective deletion
552 mutants.

553
554 **Construction of *E. faecalis* KB1 enterocin mutant strains**
555 Deletion mutant strains of *E. faecalis* KB1 were engineered by homologous recombination
556 through double cross-over method, as described previously (56). In brief, deletion exchanged
557 vectors were transformed by electroporation into *E. faecalis* KB1. Transformed bacteria were
558 grown on Brain Heart Infusion (BHI) agar plates containing Cm (20µg/ml) and X-Gal
559 (40µg/ml) at 30°C. Blue colonies were inoculated into 5.0 ml of Tryptic Soy Broth (TSB)
560 containing Cm (20 µg/ml) and grown overnight at 30°C. On the next day, the cultures were
561 serially diluted and plated on BHI containing Cm and X-Gal and incubated overnight at 44°C,
562 to force single-site integration by homologous recombination. Light blue colonies were
563 passaged by duplicating them on a BHI plate containing Cm and X-Gal, and then they were
564 screened for the targeted integration using PCR with primers flanking the site of integration.
565 Positive integration clones were grown overnight in TSB with no selection at 30°C. On the next
566 day, the cultures were serially diluted and plated on BHI containing X-Gal only and incubated
567 overnight at 44°C, to force the second site recombination event. The resulting white colonies
568 were passaged by duplicating them on a BHI plate with no selection, and screened for the
569 deletion of the target genes and loss of the plasmid by PCR. Genomic DNA from colonies
570 containing the deletions was amplified and sequenced to confirm gene deletions.

571
572 **DNA extraction and purification of *in vitro* and *in vivo* community samples**
573 gDNA extraction using a phenol-chloroform based protocol was performed as described
574 previously (57). First, three small spatula spoons of 0.1 mm zirconia/silica beads (Roth), 500
575 µl extraction buffer (200 mM Tris-HCl, 200 mM NaCl, 20 mM EDTA in ddH₂O, pH 8,
576 autoclaved), 210 µl 20% SDS and 500 µl phenol:chloroform:isoamylalcohol (lower phase)

577 were added to the sample. Bacterial cells were lysed with the TissueLyser LT (Qiagen) set on
578 max. speed (50 s-1) for 4 min. Following, samples were centrifuged at 5 min at full speed
579 (14.000 x g). The supernatant was transferred to new 1.5 ml tubes with 500 µl
580 phenol:chloroform:isoamylalcohol. After mixing by inversion the samples were centrifuged
581 again. The supernatant was transferred to new 2 ml tubes containing 1 ml 96% ethanol (p.a.)
582 and 50 µl sodium acetate 3M and mixed by inversion. The samples were centrifuged for min.
583 30 min at max. speed (14.000 x g) at 4°C. Subsequently, the supernatant was discarded. The
584 pellet was resuspended in 500 µl ice-cold 70% ethanol, mixed by inversion and centrifuged 15
585 min at max. speed at 4°C. The supernatant was discarded and the pellet was air dried for 5 min.
586 For dissolving, the pellet was resuspended in 150 µl TE buffer (pH 8.0) and stored at 4°C over
587 night. For gDNA purification the NucleoSpin® gDNA Clean-up kit from Macherey-Nagel was
588 used.

589

590 **Quantitative PCR of bacterial 16S rRNA genes**

591 Quantitative PCR was performed as described previously (21). 5 ng gDNA was used as a
592 template for qPCR. Strain-specific 16S rRNA primers and hydrolysis probes were used for
593 amplification. Standard curves were determined using linearized plasmids containing the 16S
594 rRNA gene sequence of the individual strains. The standard specific efficiency was then used
595 for absolute quantification of 16S rRNA gene copy numbers of individual strains.

596

597 **Genome screening for polysaccharide utilization loci in *B. caecimuris* I48**

598 The genome of *B. caecimuris* I48 was screened for polysaccharide utilization loci (PUL)
599 specific for inulin and xylan degradation found in literature (32, 33) and a PUL database
600 (http://www.cazy.org/PULDB/index.php?sp_name=Bacteroides+caecimuris+I48&sp_ncbi=).
601 Sequences of key enzymes for inulin and xylan degradation were blasted against the
602 *B. caecimuris* I48 genome (<https://www.ncbi.nlm.nih.gov/nuccore/CP065319>) and names of
603 key enzymes were checked in genome annotations of *B. caecimuris* I48 via word search (“1,4-
604 beta-xylanase”, “beta-xylosidase”, “inulinase” and similar versions). Genome annotations
605 around hits for key enzymes were screened for typical PUL structures (Table S1).

606

607 **Spot assays**

608 Bacterial cultures and subcultures were grown for 24 hours each in 10 ml AF medium at 37°C
609 under anaerobic conditions without shaking. Monocultures were diluted to OD_{600nm} 0.1 in fresh
610 AF medium. To generate a dense bacterial lawn, monoculture inocula were diluted in 3 ml LB
611 soft agar to OD_{600nm} 0.01 and poured on an AF medium agar plate. After drying all respective
612 other bacteria were spotted onto the bacterial lawn in duplicates in a volume of 5 µl with
613 OD_{600nm} 0.1. Plates were incubated at 37°C for 24h under anaerobic conditions.

614

615 **Mice**

616 All animal experiments were approved by the local authorities (Regierung von Oberbayern and
617 Lower Saxony). Mice were housed under germfree conditions in flexible film isolators (North
618 Kent Plastic Cages) or in Han-gnotocages (ZOONLAB). The mice were supplied with
619 autoclaved ddH₂O and Mouse-Breeding complete feed for mice (Ssniff) ad libitum. For all
620 experiments, female and male mice between 6-20 weeks were used and animals were randomly
621 assigned to experimental groups. Mice were not single-housed and kept in groups of 2-6
622 mice/cage during the experiment. All animals were scored twice daily for their health status.

623

624 **Mouse experiments**

625 Germ-free C57Bl/6J mice were colonized with defined bacterial consortia (OMM¹², OMM¹¹-
626 *E. faecalis* KB1, OMM¹¹-*B. caecimuris* I48, OMM¹¹-*B. coccoides* YL58). Mice were
627 inoculated as described previously (22). Mice were inoculated two times (72h apart) with the

628 bacterial mixtures (frozen glycerol stocks) by gavage (50 μ l orally, 100 μ l rectally). All mice
629 were sacrificed by cervical dislocation at 20 days after initial colonization. Intestinal content
630 from ileum, cecum, colon and feces were harvested, weighed and frozen at -20°C before DNA
631 extraction. Cecal content was sampled in a 2 ml bead beater tube (FastPrep-
632 Tubes Matrix D, MP Biomedical), weighed, snap-frozen in liquid nitrogen and stored at -80°C
633 previous to metabolomics analyses.

634 **Statistical analysis**

635 For comparison of absolute abundance levels of OMM¹² strains between experiments,
636 Wilcoxon test was performed using R Studio (version 1.2.5001). Obtained p-values below 0.05
637 were considered as statistically significant. The vegdist function of the R library *vegan* version
638 2.5–4 (<https://github.com/vegandevelopers/vegan>) was employed to obtain Bray-Curtis
639 dissimilarities between the samples based on absolute abundances. Permutational multivariate
640 analyses of variance (PERMANOVA) were performed in R using the function Adonis (method
641 “bray” with 9,999 permutations). Obtained p values were adjusted using the Benjamini-
642 Hochberg method.

643 **Data analysis and Figures**

644 Data was analyzed using R Studio (Version 1.2.5001). Heatmaps were generated using the R
645 *pheatmap* package (<https://github.com/raivokolde/pheatmap>). Plots were generated using the R
646 *ggplot2* package (<https://ggplot2.tidyverse.org>) and *ggpubR* package
647 (<https://github.com/kassambara/ggpubr>). Figures were partly generated using BioRender
648 (<https://biorender.com>) and Affinity Designer (Version 1.10.4.1198).

649
650

651 **Figure Legends**

652 **Figure 1: Community assembly of the full consortium and single-species dropout 653 communities in different media.**

654 (A) Overview of bacterial members of the OMM¹² consortium. Colored boxes indicate
655 eubacterial phyla represented in the model community: Bacillota (green), Bacteroidota
656 (orange), Pseudomonadota (red), Actinomycetota (blue) and Verrucomicrobia (purple).

657 (B) Experimental workflow depicting *in vitro* dropout-community analysis. For the twelve
658 dropout communities and the full consortium bacterial mono-cultures were prepared and
659 inocula mixed accordingly. Generated community inocula were validated and frozen in glycerol
660 stock vials. Thawed inocula were cultured in different media for four days with serial dilutions
661 every 24 h. Culture supernatants from densely grown community cultures (spent media) were
662 sterile-filtered, samples for pH measurements and mass spectrometry were collected and the
663 bacterial pellet stored for qPCR analysis.

664 (C) Principle coordinate analysis of community structure in AF and APF medium. Bray-Curtis
665 dissimilarity analysis was performed on absolute abundances of the individual strains (median
666 of three technical replicates) comparing the OMM¹² and the twelve OMM^{11-x} communities
667 (three biological replicates each) in the two different culture media. Culture media are depicted
668 in different colors. Grey ovals cluster each culture medium with a 95% confidence interval,
669 outliers from the corresponding clusters are highlighted with a black ring.

670 (D) Principle coordinate analysis of metabolomic profiles of community SM. Bray-Curtis
671 dissimilarity analysis was performed on untargeted metabolomic profiles of the individual
672 communities comparing the OMM¹² and the twelve OMM^{11-x} communities (three biological
673 replicates) in the two different culture media AF and APF medium. Culture media are depicted
674 in different colors. Grey ovals cluster each culture medium with a 95% confidence interval,
675 outliers from the corresponding clusters are highlighted with a black ring.

676 (E) Environmental modification by community growth in AF and APF. To quantify the
677 environmental modification by the different communities, the pH of the community spent
678 medium (SM) was determined. The ΔpH was calculated by subtracting the SM pH from fresh
679 medium pH. Significant differences between OMM¹² ΔpH and OMM^{11-x} ΔpH are depicted by
680 asterisks (t-test, p values denoted as * <0.05 , ** <0.01 , *** <0.005 , **** <0.0001).
681
682

683 **Figure 2: Dissecting strain-strain interactions in the community context using dropout**
684 **consortia**

685 Community composition of the full consortium and all dropout communities. Absolute
686 abundances of all OMM¹² strains after four days of dilution in batch culture in AF and APF
687 media were determined by qPCR as normalized 16S rRNA copies per ml culture. Median
688 absolute abundances are shown with the corresponding upper and lower percentile for all
689 individual strains. Significant differences between the full community cultures (N=9) and the
690 dropout communities (N \geq 6) in the two different culture media are depicted by asterisks
691 (Wilcoxon test, p values denoted as * < 0.05 ** < 0.01 , *** < 0.005 , **** < 0.0001).
692 Communities in which the absolute abundance of a strain changed significantly are marked in
693 red, corresponding dropout communities are marked in blue. Composition of communities
694 lacking the previously identified keystone species *E. faecalis* KB1, *B. caecimuris* I48 and *B.*
695 *coccoides* YL58 is additionally shown in Fig. S4 as subset reduced in complexity.
696
697

698 **Figure 3: Dissecting mechanisms underlying keystone function of *B. caecimuris* I48 and**
699 ***E. faecalis* KB1 in the community context.**

700 (A) Environmental modification by OMM¹² and OMM¹¹-*B. caecimuris* I48 communities grown
701 in AF, APF and APF^{mod} media. To quantify the environmental modification by community
702 growth, the pH of the community spent medium (SM) was determined. The ΔpH was calculated
703 by subtracting SM pH from fresh medium pH. Significant differences between ΔpH of OMM¹²
704 and OMM¹¹-*B. caecimuris* I48 communities are depicted by asterisks (t-test, p values denoted
705 as ns = not significant, **** < 0.0001).

706 (B) Influence of *B. caecimuris* I48 on SCFA production. Selected SCFA concentrations in
707 community spent media as determined by targeted metabolomics analysis of SM were
708 compared between the full consortium and the OMM¹¹-*B. caecimuris* I48 dropout community
709 (t-test, p-value < 0.05 is marked with *, ns = not significant).

710 (C) Community composition of the full consortium, the OMM¹¹-*E. faecalis* KB1 dropout
711 community and the OMM¹² community with a *E. faecalis* KB1 ΔL50 mutant strain grown in
712 AF and APF media. Absolute abundances of all OMM¹² strains after four days of dilution in
713 batch culture were determined by qPCR as normalized 16S rRNA copies per ml culture. Median
714 absolute abundances are shown with the corresponding upper and lower percentile for all
715 individual strains. Significant differences between the full community cultures and the dropout
716 communities (N=9 each) in the different culture media are depicted by asterisks (Wilcoxon test,
717 p values denoted as * < 0.05 ** < 0.01 , *** < 0.005 , **** < 0.0001).
718

719 **Figure 4: Analysis of strain interactions across different culture media.**

720 (A) Circular heatmaps depicting strain relationships inferred from changes in absolute strain
721 abundances in the three dropout communities lacking *E. faecalis* KB1, *B. caecimuris* I48 and
722 *B. coccoides* YL58, respectively. Rings depict different culture media, colors indicate the
723 relationship type as determined by r_{abs} : negative strain relationship in red, positive strain
724 relationship in blue, exclusion in yellow (strain y only detected in a specific dropout community
725 but never in the presence of the corresponding strain), positive dependency in purple (strain y

726 not detectable in a specific dropout community but in the full community), absolute strain
727 abundance under the detection limit (DTL) in grey. Significantly changed absolute abundances
728 in the corresponding dropout communities compared to the full consortium are depicted by
729 asterisks (Wilcoxon test, p values denoted as * < 0.05). The corresponding raw data set is shown
730 in Fig. S9.

731 (B) Environmental modification by community growth in different media. To quantify the
732 environmental modification of the five different media AF, APF, GAM, TYG and YCFA by
733 growth of the full consortium and the three dropout communities OMM¹¹-*E. faecalis* KB1,
734 OMM¹¹-*B. caecimuris* I48 and OMM¹¹-*B. coccoides* YL58, the pH of the community spent
735 medium (SM) was determined. The ΔpH was calculated by subtracting SM pH from fresh
736 media pH. Significant differences between OMM¹² SM pH and OMM^{11-x} SM pH are depicted
737 by asterisks (t-test, p values denoted as * < 0.05 ** < 0.01, *** < 0.005, **** < 0.0001).

738 (C) Absolute abundances of *B. animalis* YL2 in the full consortium, the OMM¹¹-*E. faecalis*
739 KB1 dropout community and the OMM¹² community with a *E. faecalis* KB1 ΔL50 mutant
740 strain grown in AF, APF and GAM media. Absolute abundances of all OMM¹² strains after
741 four days of dilution in batch culture were determined by qPCR as normalized 16S rRNA copies
742 per ml culture. Median absolute abundances are shown with the corresponding upper and lower
743 percentile for all individual strains. Significant differences between the full community cultures
744 and the dropout communities (N=9 each) in the different culture media are depicted by asterisks
745 (Wilcoxon test, p values denoted as * < 0.05 ** < 0.01, *** < 0.005, **** < 0.0001).

746

747 **Figure 5: Community assembly and interactions across different regions of the murine**
748 **gastrointestinal tract.**

749 (A) Community assembly across different regions of the murine intestine. Germ-free C57Bl/6J
750 mice were inoculated with the full OMM¹² consortium and the three dropout communities
751 OMM¹¹-*E. faecalis* KB1, OMM¹¹-*B. caecimuris* I48 and OMM¹¹-*B. coccoides* YL58,
752 respectively (N=8-10 mice per group). Absolute abundances of all OMM¹² strains 20 days after
753 initial inoculation were determined by qPCR as normalized 16S rRNA copies per g gut content
754 and summed up for each mouse. Median sum of absolute abundances are shown with the
755 corresponding upper and lower percentile. Significantly changed sum absolute abundances in
756 mice colonized with the corresponding dropout communities compared to mice colonized with
757 the full consortium are depicted by asterisks (Wilcoxon test, p values denoted as ns = not
758 significant, * < 0.05 ** < 0.01, *** < 0.005, **** < 0.0001).

759 (B) Principle coordinate analysis of community structure in different regions on the murine
760 intestine. Bray-Curtis dissimilarity analysis was performed on absolute abundances of
761 individual mice colonized with the OMM¹² or the three dropout communities OMM¹¹-*E.*
762 *faecalis* KB1, OMM¹¹-*B. caecimuris* I48 and OMM¹¹-*B. coccoides* YL58 in the different
763 regions of the mouse gut (N=8-10 mice per group). Gut regions are shown in shapes,
764 communities in different colors. Ovals cluster only samples from the murine cecum for each
765 colonization (colors) with a 95% confidence interval. The corresponding statistical analysis is
766 shown in Tab. S3.

767 (C) Circular heatmaps depicting strain relationships inferred from changes in absolute strain
768 abundances in the three dropout communities lacking *E. faecalis* KB1, *B. caecimuris* I48 and
769 *B. coccoides* YL58, respectively. Rings depict different sampling regions of the murine
770 intestine, colors indicate the relationship type as determined by r_{abs} : negative strain relationship
771 in red, positive strain relationship in blue, positive dependency in purple (strain y not detectable
772 in a specific dropout community but in the full community), absolute strain abundance under
773 the detection limit (DTL) in grey. Significantly changed absolute abundances in the
774 corresponding dropout communities compared to the full consortium are depicted by asterisks
775 (Wilcoxon test, p values denoted as * < 0.05). The corresponding raw data set is shown in Fig.
776 S10.

777 (D) Ratio of cecal to mouse body weight of mice colonized with the full consortium or the three
778 dropout communities lacking *E. faecalis* KB1, *B. caecimuris* I48 and *B. coccoides* YL58,
779 respectively. Median cecal to mouse body weight ratios are shown with the corresponding upper
780 and lower percentile (N=8-10 mice per group). Significantly changed ratios in mice colonized
781 with the corresponding dropout communities compared to mice colonized with the full
782 consortium are depicted by asterisks (t-test, p values denoted as ns = not significant, * < 0.05
783 ** < 0.01, *** < 0.005, **** < 0.0001).

784 (E) Principle coordinate analysis of metabolomic profiles of samples from the murine cecum.
785 Bray-Curtis dissimilarity analysis was performed on untargeted metabolomic profiles of cecal
786 samples of mice colonized with the full consortium OMM¹² or the three dropout communities
787 lacking *E. faecalis* KB1, *B. caecimuris* I48 and *B. coccoides* YL58 (N=5 per group).
788 Communities are depicted in different colors. Grey ovals cluster the corresponding colonization
789 type with a 95% confidence interval.

790 References

- 791 1. Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, et al. Challenges in
792 microbial ecology: building predictive understanding of community function and dynamics.
793 ISME J. 2016;10(11):2557-68.
- 794 2. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in
795 early life shapes the immune system. Science. 2016;352(6285):539-44.
- 796 3. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and
797 health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577-89.
- 798 4. Baumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria
799 in the gut. Nature. 2016;535(7610):85-93.
- 800 5. Huus KE, Ley RE. Blowing Hot and Cold: Body Temperature and the Microbiome.
801 mSystems. 2021;6(5):e0070721.
- 802 6. Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the
803 gut microbiota. Nature. 2016;533(7602):255-9.
- 804 7. Sanchez-Gorostiaga A, Bajic D, Osborne ML, Poyatos JF, Sanchez A. High-order
805 interactions distort the functional landscape of microbial consortia. PLoS Biol.
806 2019;17(12):e3000550.
- 807 8. Bairey E, Kelsic ED, Kishony R. High-order species interactions shape ecosystem
808 diversity. Nature Communications. 2016;7(1):12285.
- 809 9. Tackmann J, Matias Rodrigues JF, von Mering C. Rapid Inference of Direct Interactions
810 in Large-Scale Ecological Networks from Heterogeneous Microbial Sequencing Data. Cell
811 Syst. 2019;9(3):286-96 e8.
- 812 10. Li C, Lim KM, Chng KR, Nagarajan N. Predicting microbial interactions through
813 computational approaches. Methods. 2016;102:12-9.
- 814 11. Shang Y, Sikorski J, Bonkowski M, Fiore-Donno AM, Kandeler E, Marhan S, et al.
815 Inferring interactions in complex microbial communities from nucleotide sequence data and
816 environmental parameters. PLoS One. 2017;12(3):e0173765.
- 817 12. Xia LC, Ai D, Cram J, Fuhrman JA, Sun F. Efficient statistical significance
818 approximation for local similarity analysis of high-throughput time series data. Bioinformatics.
819 2013;29(2):230-7.
- 820 13. Deutschmann IM, Lima-Mendez G, Krabberød AK, Raes J, Vallina SM, Faust K, et al.
821 Disentangling environmental effects in microbial association networks. Microbiome.
822 2021;9(1):232.
- 823 14. Faust K. Open challenges for microbial network construction and analysis. ISME J.
824 2021;15(11):3111-8.
- 825 15. Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses in
826 microbial ecology. The ISME Journal. 2019;13(11):2647-55.

827 16. Paine RT. A note on trophic complexity and community stability. *The American*
828 *Naturalist*. 1969;103:91-3.

829 17. Venturelli OS, Carr AC, Fisher G, Hsu RH, Lau R, Bowen BP, et al. Deciphering
830 microbial interactions in synthetic human gut microbiome communities. *Mol Syst Biol*.
831 2018;14(6):e8157.

832 18. Wang M, Osborn LJ, Jain S, Meng X, Weakley A, Yan J, et al. Strain dropouts reveal
833 interactions that govern the metabolic output of the gut microbiome. *bioRxiv*.
834 2022:2022.07.25.501461.

835 19. Berry D, Widder S. Deciphering microbial interactions and detecting keystone species
836 with co-occurrence networks. *Frontiers in Microbiology*. 2014;5.

837 20. Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of
838 microbiome structure and functioning. *Nat Rev Microbiol*. 2018;16(9):567-76.

839 21. Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh HJ, Ring D, et al. Genome-
840 guided design of a defined mouse microbiota that confers colonization resistance against
841 *Salmonella enterica* serovar *Typhimurium*. *Nat Microbiol*. 2016;2:16215.

842 22. Eberl C, Ring D, Munch PC, Beutler M, Basic M, Slack EC, et al. Reproducible
843 Colonization of Germ-Free Mice With the Oligo-Mouse-Microbiota in Different Animal
844 Facilities. *Front Microbiol*. 2019;10:2999.

845 23. Eberl C, Weiss AS, Jochum LM, Durai Raj AC, Ring D, Hussain S, et al. *E. coli* enhance
846 colonization resistance against *Salmonella Typhimurium* by competing for galactitol, a context-
847 dependent limiting carbon source. *Cell Host Microbe*. 2021;29(11):1680-92 e7.

848 24. Hoces D, Lan J, Sun W, Geiser T, Staubli ML, Cappio Barazzone E, et al. Metabolic
849 reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle.
850 *PLoS Biol*. 2022;20(9):e3001743.

851 25. Maier L, Goemans CV, Wirbel J, Kuhn M, Eberl C, Pruteanu M, et al. Unravelling the
852 collateral damage of antibiotics on gut bacteria. *Nature*. 2021;599(7883):120-4.

853 26. Wotzka SY, Kreuzer M, Maier L, Arnoldini M, Nguyen BD, Brachmann AO, et al.
854 *Escherichia coli* limits *Salmonella Typhimurium* infections after diet shifts and fat-mediated
855 microbiota perturbation in mice. *Nat Microbiol*. 2019;4(12):2164-74.

856 27. Lourenço M, Chaffringeon L, Lamy-Besnier Q, Pédrón T, Campagne P, Eberl C, et al.
857 The Spatial Heterogeneity of the Gut Limits Predation and Fosters Coexistence of Bacteria and
858 Bacteriophages. *Cell Host & Microbe*. 2020;28(3):390-401.e5.

859 28. Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, et al. Microbiome-
860 derived inosine modulates response to checkpoint inhibitor immunotherapy. *Science*.
861 2020;369(6510):1481-9.

862 29. Nowosad CR, Mesin L, Castro TBR, Wichmann C, Donaldson GP, Araki T, et al.
863 Tunable dynamics of B cell selection in gut germinal centres. *Nature*. 2020;588(7837):321-6.

864 30. Weiss AS, Burrichter AG, Durai Raj AC, von Strempe A, Meng C, Kleigrewe K, et al.
865 In vitro interaction network of a synthetic gut bacterial community. *ISME J*. 2022;16(4):1095-
866 109.

867 31. Perez Escriva P, Fuhrer T, Sauer U. Distinct N and C Cross-Feeding Networks in a
868 Synthetic Mouse Gut Consortium. *mSystems*. 2022;7(2):e0148421.

869 32. Despres J, Forano E, Lepercq P, Comtet-Marre S, Jubelin G, Chambon C, et al. Xylan
870 degradation by the human gut *Bacteroides xylooligosolvens* XB1A(T) involves two distinct gene
871 clusters that are linked at the transcriptional level. *BMC Genomics*. 2016;17:326.

872 33. Chijiwa R, Hosokawa M, Kogawa M, Nishikawa Y, Ide K, Sakanashi C, et al. Single-
873 cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut
874 microbiota. *Microbiome*. 2020;8(1):5.

875 34. Lapebie P, Lombard V, Drula E, Terrapon N, Henrissat B. Bacteroidetes use thousands
876 of enzyme combinations to break down glycans. *Nat Commun*. 2019;10(1):2043.

877 35. Cintas LM, Casaus P, Holo H, Hernandez PE, Nes IF, Håvarstein LS. Enterocins L50A
878 and L50B, two novel bacteriocins from *Enterococcus faecium* L50, are related to
879 staphylococcal hemolysins. *J Bacteriol.* 1998;180(8):1988-94.

880 36. Gutiérrez N, Garrido D. Species Deletions from Microbiome Consortia Reveal Key
881 Metabolic Interactions between Gut Microbes. *mSystems.* 2019;4(4).

882 37. Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. Multi-kingdom
883 ecological drivers of microbiota assembly in preterm infants. *Nature.* 2021;591(7851):633-8.

884 38. Wu-Chuang A, Bates KA, Obregon D, Estrada-Pena A, King KC, Cabezas-Cruz A.
885 Rapid evolution of a novel protective symbiont into keystone taxon in *Caenorhabditis elegans*
886 microbiota. *Sci Rep.* 2022;12(1):14045.

887 39. Nedialkova LP, Denzler R, Koeppel MB, Diehl M, Ring D, Wille T, et al. Inflammation
888 fuels colicin Ib-dependent competition of *Salmonella* serovar *Typhimurium* and *E. coli* in
889 enterobacterial blooms. *PLoS Pathog.* 2014;10(1):e1003844.

890 40. Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA, et al.
891 Microcins mediate competition among Enterobacteriaceae in the inflamed gut. *Nature.*
892 2016;540(7632):280-3.

893 41. Wexler AG, Goodman AL. An insider's perspective: *Bacteroides* as a window into the
894 microbiome. *Nat Microbiol.* 2017;2:17026.

895 42. Cheng J, Hu J, Geng F, Nie S. *Bacteroides* utilization for dietary polysaccharides and
896 their beneficial effects on gut health. *Food Science and Human Wellness.* 2022;11(5):1101-10.

897 43. Smith NW, Shorten PR, Altermann EH, Roy NC, McNabb WC. Hydrogen cross-feeders
898 of the human gastrointestinal tract. *Gut Microbes.* 2019;10(3):270-88.

899 44. Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in
900 homeostasis and pathology. *EMBO Mol Med.* 2013;5(10):1465-83.

901 45. Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J, Laughlin A, et al. Correlation
902 between intraluminal oxygen gradient and radial partitioning of intestinal microbiota.
903 *Gastroenterology.* 2014;147(5):1055-63 e8.

904 46. Pereira FC, Berry D. Microbial nutrient niches in the gut. *Environ Microbiol.*
905 2017;19(4):1366-78.

906 47. Riva A, Kuzyk O, Forsberg E, Siuzdak G, Pfann C, Herbold C, et al. A fiber-deprived
907 diet disturbs the fine-scale spatial architecture of the murine colon microbiome. *Nat Commun.*
908 2019;10(1):4366.

909 48. Tropini C, Earle KA, Huang KC, Sonnenburg JL. The Gut Microbiome: Connecting
910 Spatial Organization to Function. *Cell Host Microbe.* 2017;21(4):433-42.

911 49. Cotté-Jones HEW, & Whittaker, R.J. The keystone species concept: A critical
912 appraisal. *Frontiers of Biogeography.* 2012;4(3):117-27.

913 50. Muller EEL, Faust K, Widder S, Herold M, Martínez Arbas S, Wilmes P. Using
914 metabolic networks to resolve ecological properties of microbiomes. *Current Opinion in
915 Systems Biology.* 2018;8:73-80.

916 51. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. XCMS: processing mass
917 spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and
918 identification. *Anal Chem.* 2006;78(3):779-87.

919 52. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al.
920 HMDB 4.0: the human metabolome database for 2018. *Nucleic Acids Res.* 2018;46(D1):D608-
921 d17.

922 53. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-
923 independent MS/MS deconvolution for comprehensive metabolome analysis. *Nat Methods.*
924 2015;12(6):523-6.

925 54. FAIRsharing.org: MassIVE; Mass Spectrometry Interactive Virtual Environment
926 [Internet]. 2022.

927 55. Han J, Lin K, Sequeira C, Borchers CH. An isotope-labeled chemical derivatization
928 method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-
929 tandem mass spectrometry. *Anal Chim Acta*. 2015;854:86-94.

930 56. Thurlow LR, Thomas VC, Hancock LE. Capsular polysaccharide production in
931 *Enterococcus faecalis* and contribution of CpsF to capsule serospecificity. *J Bacteriol*.
932 2009;191(20):6203-10.

933 57. Herp S, Brugiroux S, Garzetti D, Ring D, Jochum LM, Beutler M, et al. *Mucispirillum*
934 *schaedleri* Antagonizes *Salmonella* Virulence to Protect Mice against Colitis. *Cell Host*
935 *Microbe*. 2019;25(5):681-94 e8.

936

937 **Acknowledgements**

938 The authors thank S. Hussain for technical support and members of the Stecher laboratory for
939 helpful feedback and discussions. This research received funding by the German Research
940 Foundation (DFG, German Research Foundation, Projektnummer 395357507– SFB 1371,
941 Projektnummer 279971426 and 315980449), the European Research Council (ERC) under the
942 European Union’s Horizon 2020 research and innovation program (Grant Agreement 865615),
943 the German Center for Infection Research (DZIF) and the Center for Gastrointestinal
944 Microbiome Research (CEGIMIR).

945 **Author contributions**

946 A.S.W conceived and designed the experiments. A.S.W., L.S.N., A.v.S., A.G.B. and D.R.
947 performed the experiments. A.S.W., L.S.N, C.M. and K.K. analyzed the data. C.M., K.K., C.L.
948 and J.H. contributed materials, strains or analysis tools. A.S.W. and B.S. coordinated the
949 project. A.S.W. and L.S.N. wrote the original draft and all authors reviewed and edited the draft
950 manuscript.

951 **Competing interests**

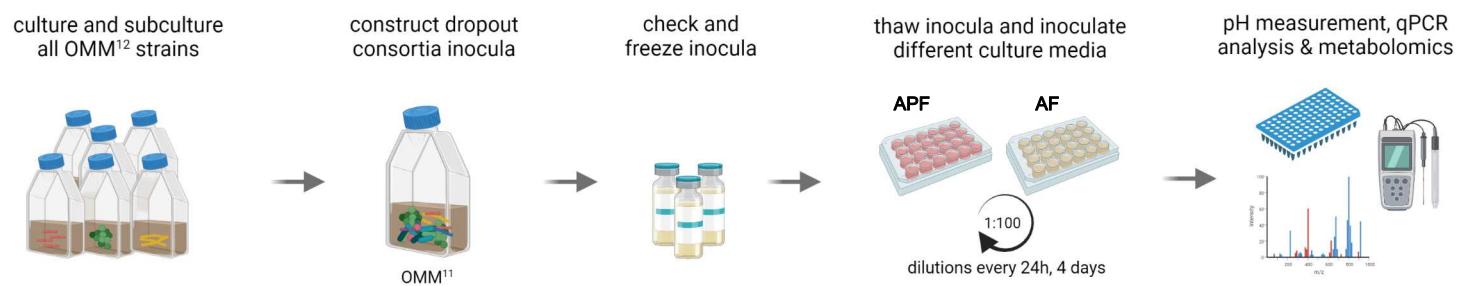
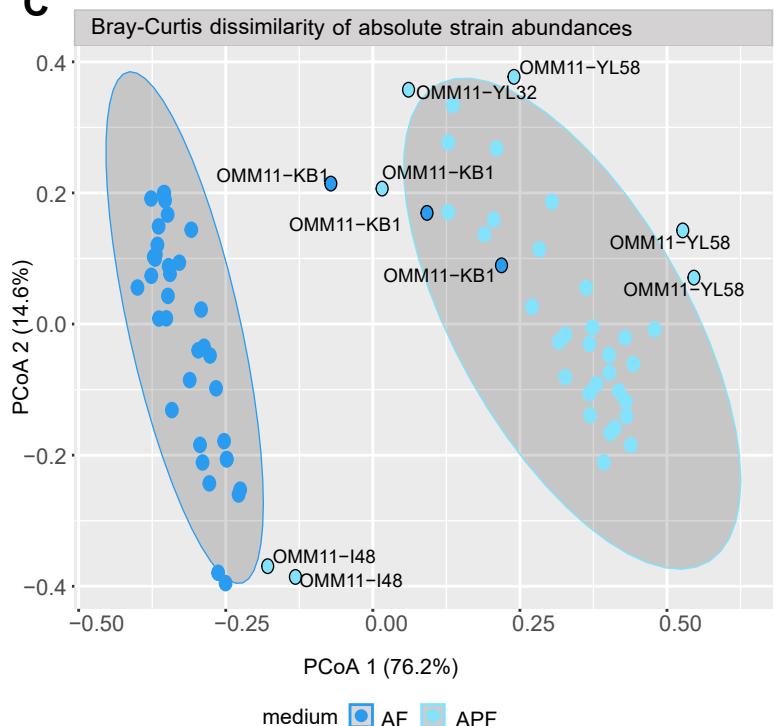
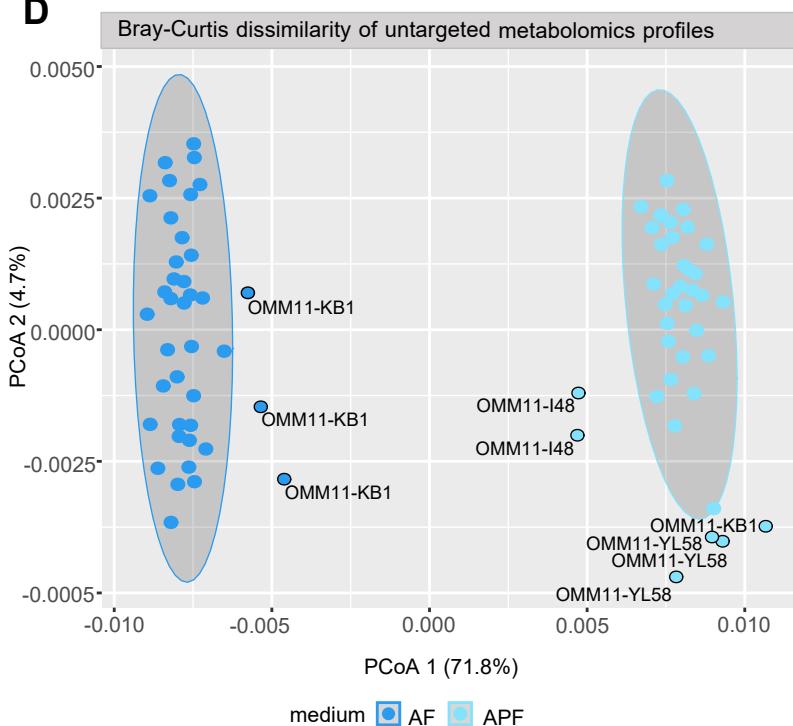

952 The authors declare no competing financial interests.

Figure 1


A

Bacillota	Bacteroidota	Pseudomonadota	Actinomycetota	Verrucomicrobiota
Lactobacillales	Bacteroidales	Burkholderiales	Bifidobacteriales	Verrucomicrobiales
<i>Enterococcus faecalis</i> KB1	<i>Muribaculum intestinalis</i> YL27	<i>Turicimonas muri</i> YL45	<i>Bifidobacterium animalis</i> YL2	<i>Akkermansia muciniphila</i> YL44
<i>Limosilactobacillus reuteri</i> I49	<i>Bacteroides caecimuris</i> I48			
Erysipelotrichales				
<i>Clostridium innocuum</i> I46				
Lachnospirales				
<i>Enterocloster clostridioformis</i> YL32				
<i>Blautia coccoides</i> YL58				
Oscillospirales				
<i>Acutalibacter muris</i> KB18				
<i>Flavonifractor plautii</i> YL31				


B

C

D

E

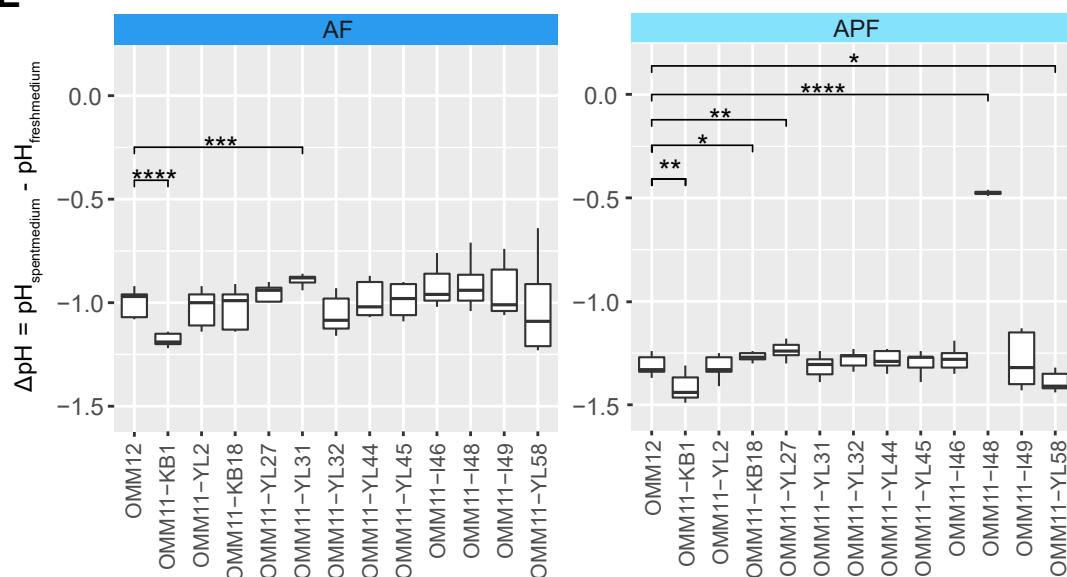
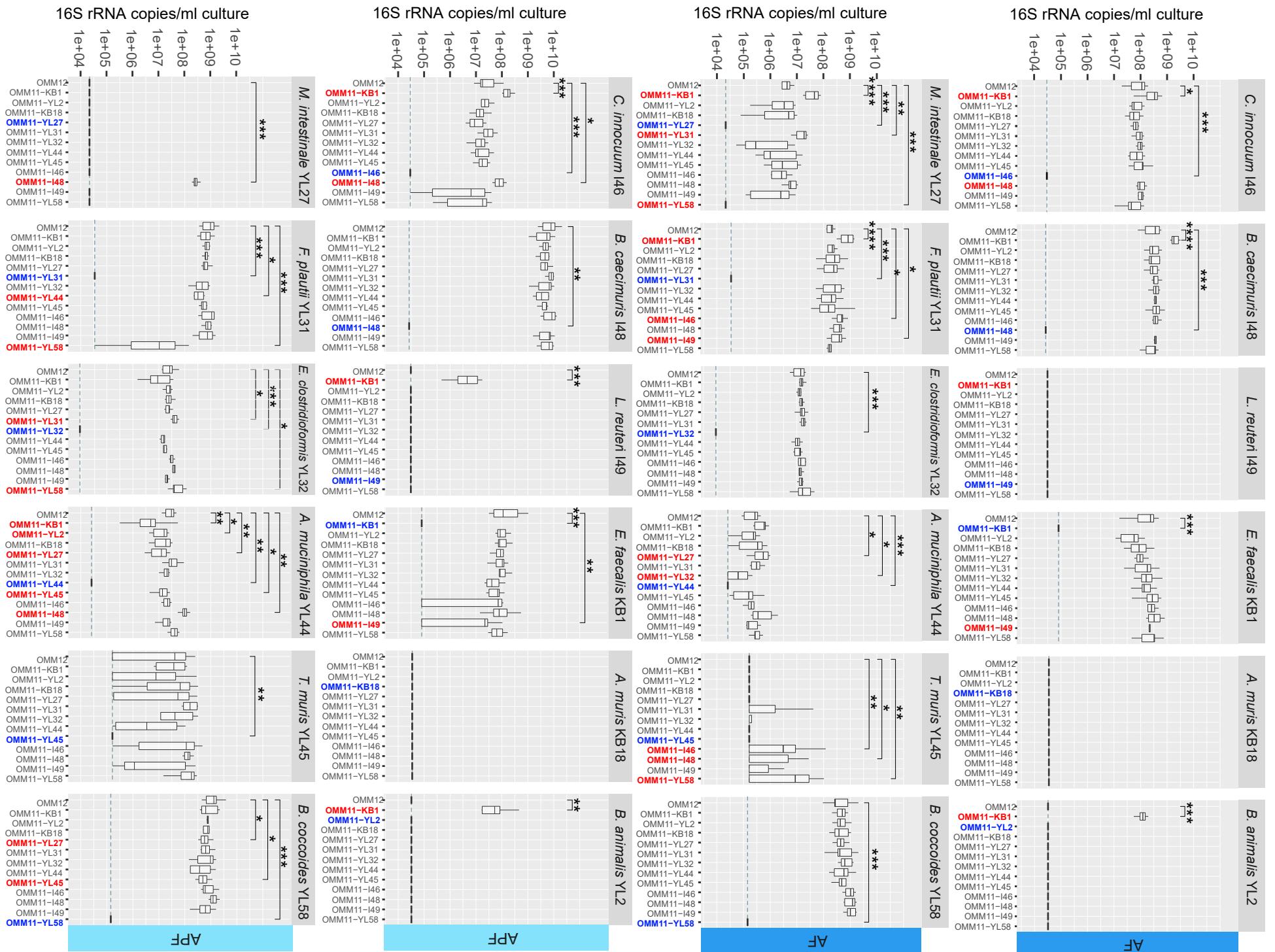
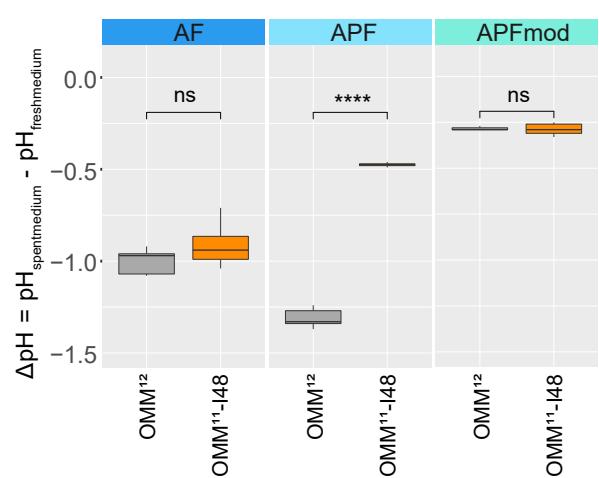




Figure 2
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

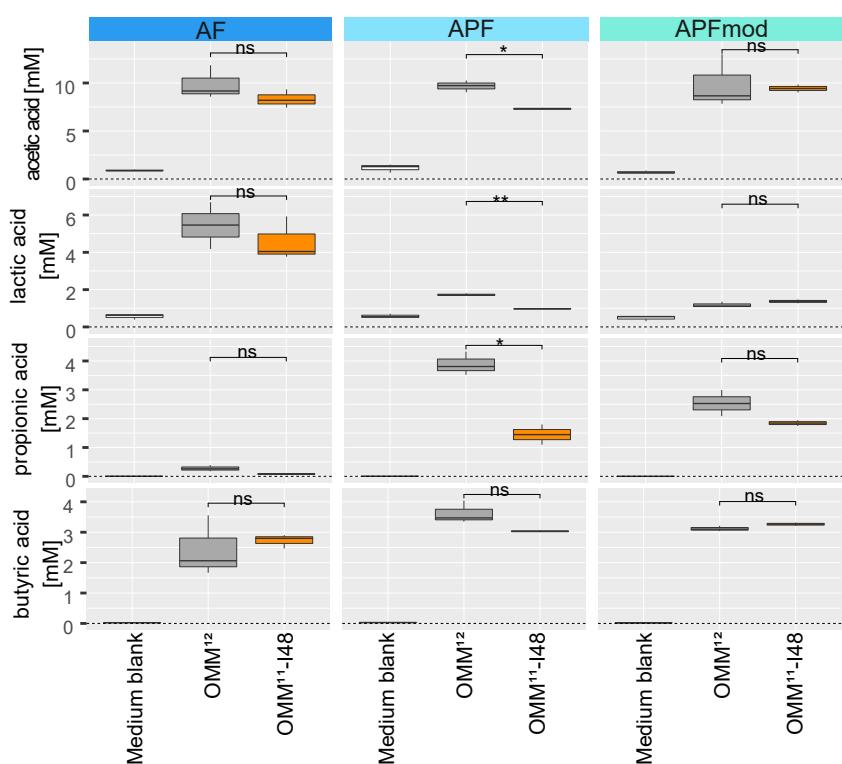
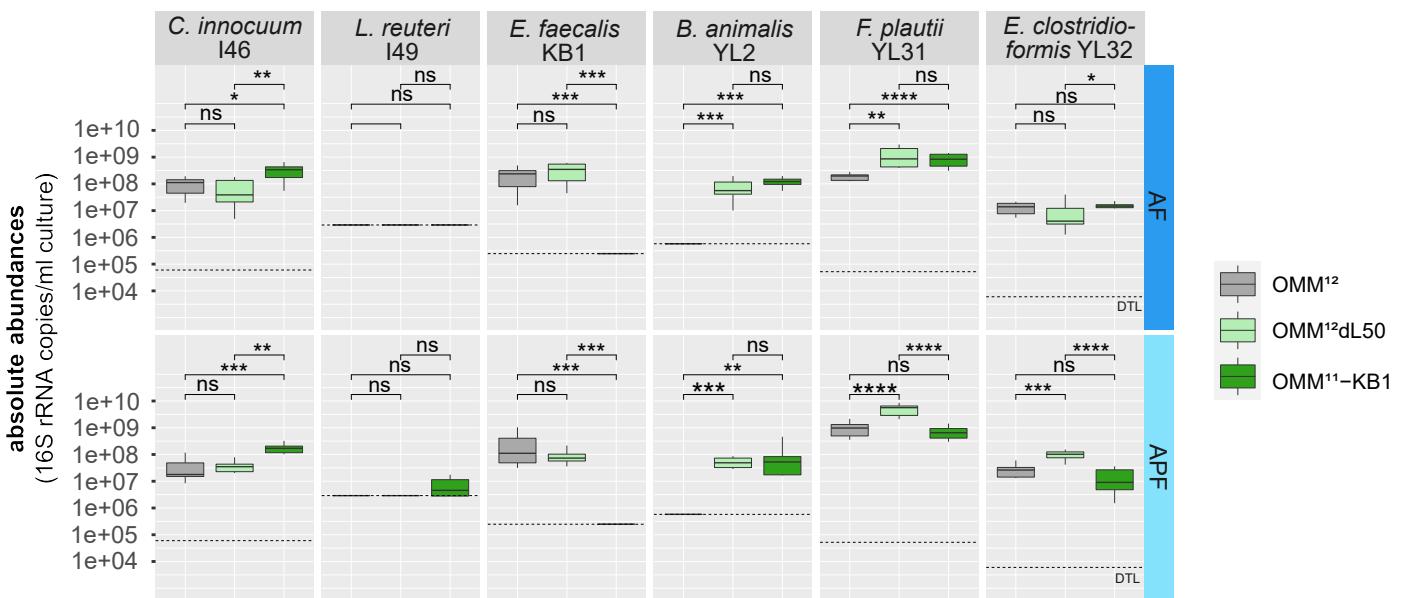
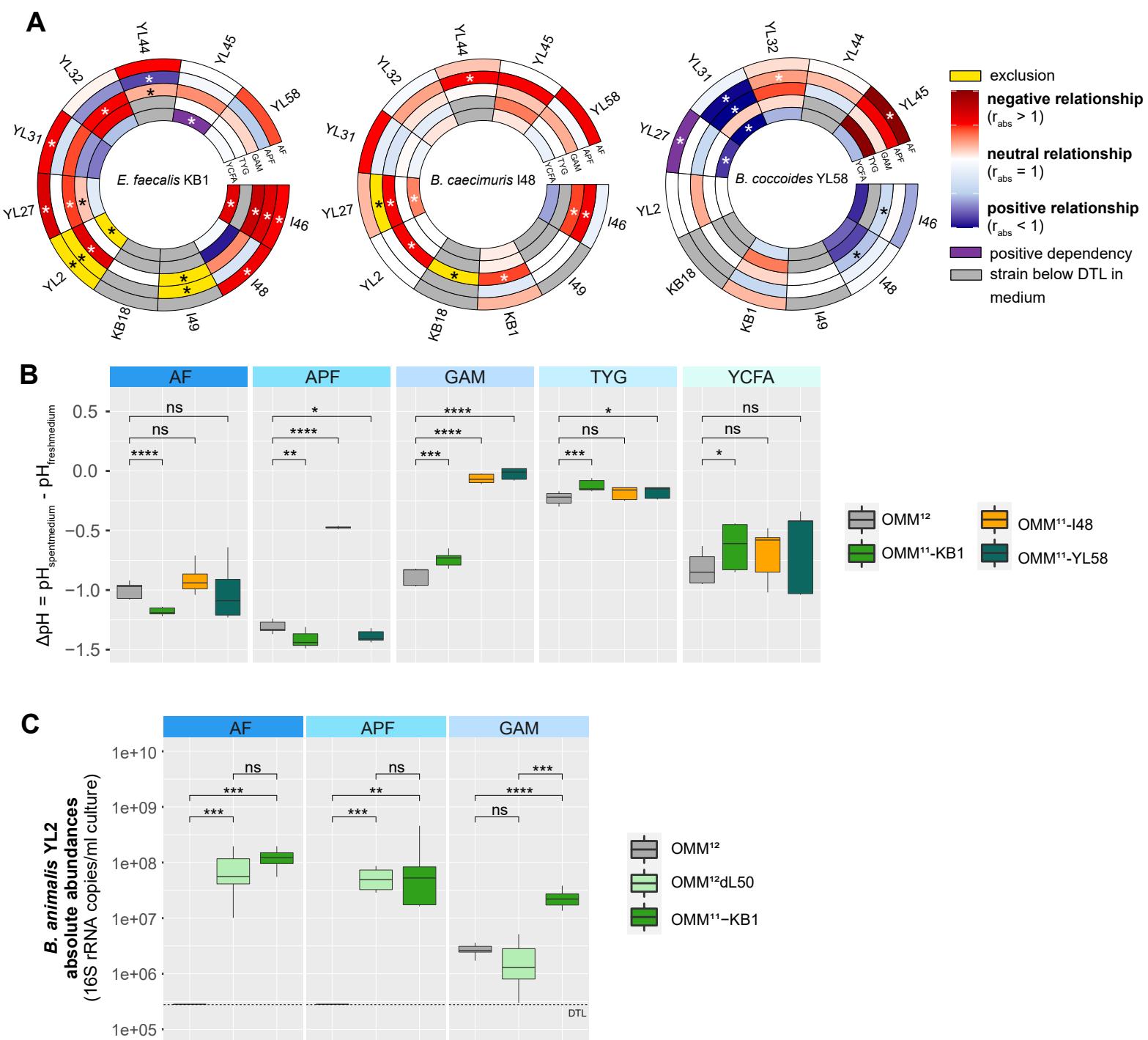


Figure 3


A


B

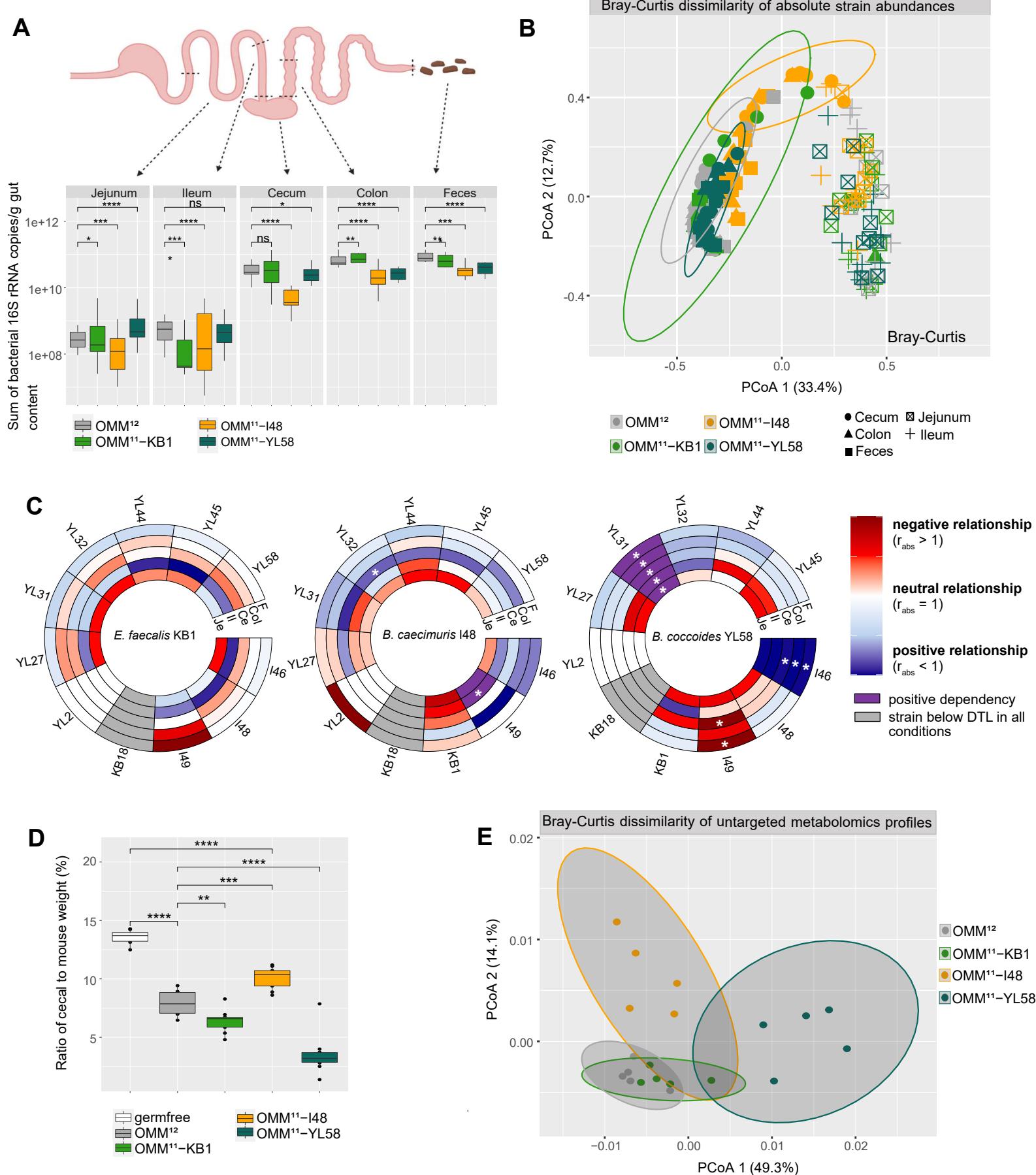

C

Figure 4

Figure 5

