bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517654; this version posted April 27, 2023. The copyright holder for this preprint (which

10
11
12
13
14
15

16
17

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Accurate microRNA annotation of animal genomes
using trained covariance models of curated microRNA
complements in MirMachine

Sinan Ugur Umu?, Vanessa M. Paynter?, Havard Trondsen?, Tilo Buschmann?, Trine B.
Rounge*®, Kevin J. Peterson®, Bastian Fromm?*

L Department of Pathology, Institute of Clinical Medicine, University of Oslo, Norway

2 The Arctic University Museum of Norway, UiT -The Arctic University of Norway, Tromsg, Norway
8 Independent Researcher, Leipzig, Germany

4 Department of Research, Cancer Registry of Norway, Oslo, Norway

5 Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Norway

6 Department of Biological Sciences, Dartmouth College, Hanover NH, USA

*- corresponding author: Bastian.Fromm@uit.no



mailto:Bastian.Fromm@uit.no
https://doi.org/10.1101/2022.11.23.517654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517654; this version posted April 27, 2023. The copyright holder for this preprint (which

18

19
20
21
22

23
24

25

26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Highlights

An annotation pipeline using trained covariance models of microRNA families

Enables massive parallel annotation of microRNA complements of genomes

MirMachine creates meaningful annotations for very large and extinct genomes

microRNA score to assess genome assembly completeness

Summary

The annotation of microRNAs, an important class of post-transcriptional regulators,
depends on the availability of transcriptomics data and expert knowledge. This led to a
large gap between novel genomes made available and high-quality microRNA
complements. Using >16,000 microRNAs from the manually curated microRNA gene
database MirGeneDB, we generated trained covariance models for all conserved
microRNA families. These models are available in MirMachine, our new tool for the
annotation of conserved microRNA complements from genomes only. We successfully
applied MirMachine to a wide range of animal species, including those with very large
genomes, additional genome duplications and extinct species, where smallRNA
sequencing will be hard to achieve. We further describe a microRNA score of expected
microRNAs that can be used to assess the completeness of genome assemblies.
MirMachine closes a long-persisting gap in the microRNA field facilitating automated
genome annotation pipelines and deeper studies on the evolution of genome regulation,
even in extinct organisms.
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Introduction

MicroRNAs are among the most conserved regulatory elements in animal genomes and
have crucial roles in development and disease!?. They have long been proposed as
disease biomarkers®-°, phylogenetic markers for studying animal systematics®’, and for
understanding the evolution of complexity in metazoans®°. Currently, however, the
annotation and naming of bona fide microRNA complements requires assembled genome
references, small RNA sequencing (smallRNAseq) data from different tissues and
developmental stages, and substantial hands-on curation of the outputs from microRNA
prediction tools!®-12, Because these tools were not designed to handle the amount of
sequencing data or genome assembly sizes available today and often have high false-
positives rates, using them is a tedious process that requires years of training, often
extensive computational resources, experience and substantial amounts of time?®3.
Especially in larger projects that are not focused on microRNAs, but rather might attempt
to annotate them along with other coding and non-coding genes, the required level of
attention to detail is often missing which inevitably results in biologically meaningless
microRNA results'®-'7, as well as thousands of spurious microRNA annotations®. These
shortcomings, coupled with the availability of high-quality and publicly available
microRNA annotations suited for comparative genomics studies led to the construction of
the curated microRNA gene database MirGeneDB81°, MirGeneDB version 2.1 (2022)
now contains microRNA complements for 75 metazoan species spanning all major
metazoan phyla over ~850 million years of animal evolution'®. Since each gene and family
was manually curated in all species in MirGeneDB, highly accurate alignments across
this wide span of animal evolution are available that capture a high proportion of the
sequence variability for each family. Importantly, each microRNA gene and family is
associated with a detailed phylogenetic reconstruction of the evolutionary node of origin
and estimated age. This dataset, hence, represents a starting point to better understand
features of microRNAs ?° and to generate better tools for the prediction of microRNAs.
Despite MirGeneDB curating a relatively large number of phyla, the number of species
currently covered (75 species) is a far cry relative to the thousands of high-quality animal
genomes currently available 2t (Figure 1).
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Figure 1. The number of available animal genome assemblies grows exponentially and with more than
5250 currently (2022) available datasets has dramatically grown (Clark et al., 2016).

Very few of these species have been annotated for microRNAs, or have small RNA
sequencing data published, thus, comparatively little progress has been made on the
suggested microRNA applications (but see 122>-24 for examples using manual curation).
This discrepancy persists because, among other things, no reliable in silico method
currently exists to annotate conserved or species-specific microRNA complements from
genomic references only. Previously, ‘lift-over approaches based on whole-genome
alignments in model organisms have been used to identify microRNA loci across species
2526 put it is unclear how accurate these predictions are on the level of the full microRNA
complement, or how they computationally scale with size or number of aligned genomes
in, for instance, mammals. Despite the availability of computational methods for the
search of short RNAs such as microRNAs?’ and sophisticated machine-learning based
tools for non-coding RNA applications?®, there is currently no approach satisfying the
demands of high precision, low false discovery rates and minimized computational
demand in a fully automated and user-friendly pipeline?®. It is a widely acknowledged
problem for machine learning applications in genomics in general that existing tools are
based on incomplete models3%3L, This is the case for microRNA families from miRBase?®2.
Such models, for instance, covariance models (CMs) of individual RNA classes, families
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97  orgenes, as used to group all RNA-families in the Rfam database??, are technically quite
98 accurate in detection of many non-coding RNA families®3. However, these probabilistic
99  models that flexibly describe the secondary structure and primary sequence consensus
100  of an RNA sequence family, require high quality alignments from curated RNAs ideally
101  coupled with detailed evolutionary information to distinguish families and genes over
102  evolutionary time that, until recently, did not exist for microRNAs.

103 Taking advantage of the manually curated and evolutionarily informed microRNA
104 complements of 75 metazoan organisms in MirGeneDB 2.1'°, we here built and trained
105  high-quality CMs for 508 conserved microRNA families and integrated them into a fully
106 automated pipeline for microRNA annotation: MirMachine. We show that MirMachine
107  produces highly accurate microRNA annotations in a time-efficient manner from animal
108 genomes of all classes, including very large and recently duplicated genomes, as well as
109  from genomes of extinct species. Using the example of 88 eutherian genomes, we further
110  show that MirMachine predictions can be summarized in a microRNA score that can be
111  used to assess low contiguity or completeness of genome assemblies. MirMachine is
112 freely available (https://github.com/sinanugur/MirMachine) and also implemented as a
113 user-friendly web application (www.mirmachine.orq).
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114 Results

115 Accurate Covariance models of 508 conserved microRNA families

116 16,670 microRNA precursor sequences from 75 species were downloaded from
117  MirGeneDB and all variants from the same genes, antisense loci, and species-specific
118 microRNAs (i.e., not conserved in any other species) were removed arriving at a total of
119 14,953 genes representing 508 families (Figure 2A).
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121 Figure 2: Developing MirMachine covariance models (CMs). A) The MirMachine workflow uses microRNA

122 family-based precursor sequence alignments and structural information to build CMs that B) show very
123 good overall prediction performances when models are run on C) 75 MirGeneDB species using distinct
124 models for protostomes (yellow) and deuterostomes (green) or combined models (not shown).

125  All microRNA genes for each family were aligned, and covariance models (CM) were built
126  (combined models). Given the evolutionary microRNA family definition used by
127  MirGeneDB, microRNA families can include nucleotide differences in mature and seed
128 that are captured and summarized in the models. To get a finer resolution of our models,
129  we then split deuterostome (N=42) and protostome (N=29) representatives and repeated
130  the process to arrive at 388 microRNA family models for deuterostomes and 143
131  microRNA family models for protostomes. Depending on the age of a given microRNA
132 family, the number of species that shared the family, the number of existing paralogues
133 and the degree of conservation between orthologues and paralogues, these models
134 contain between very few and many hundreds of individual sequences (see
135  Supplementary Figure 1 for representative examples).
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137 Supplementary Figure 1: Graphical representation of CMs of representative microRNA families. Conserved
138 base pairs are colored in green. Blue indicates a compensatory mutation relative to the green pairs (dark
139 blue for a double-sided mutation, light blue for a one-sided mutation). Non-canonical paired bases are red,
140  non-base-pairing bases are black. Graphical representations of all CMs used by MirMachine can be found
141  on github (https://github.com/sinanugur/MirMachine-supplementary/tree/main/CM_figures).
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142 Using our workflow (see material and methods), CMs were subsequently trained on the
143 full MirGeneDB dataset to derive optimal cutoffs for their prediction. To measure the
144  prediction accuracy of these models we then used the models on all MirGeneDB species
145 comparing the predictions to the actual complements. An overall very high mean
146  prediction accuracy of 0.975 (Matthews Correlation coefficient (MCC)) for combined
147  models, and 0.975 for deuterostomes, and 0.966 for protostome-models, respectively,
148 was found (Figure 2B, left & Figure 2C). Two microRNA families, MIR-430 and MIR-1677
149  from the deuterostome models, showed substantially lower MCC scores due to a well-
150  known variability within the MIR-430 family®*26 and a combination of low level of
151 complexity and high variation between orthologues in the Diapsida-specific MIR-1677
152  (Supplementary Figure 2).

A MIR-1677 alignment B MIR-1677 Covariance Model of nun-redundant members

153
154  Supplementary Figure 2: A) Alignment of Mir-1677 genes from MirGeneDB shows low conservation that
155  explains poor performance of B) MIR-1677 CMs in MirMachine.

156  Conversely, we observe high mean species accuracies of 0.91 for combined models, 0.92
157  for deuterostomes and 0.92 for the protostome models (Figure 2B, right). The reason that
158  the turtle (Chrysemys picta bellii) has such a low MCC is due to the identification of nearly
159  two thousand likely artifactual hits for MIR-1677.

160  MirMachine CMs models are largely independent of any single species

161  To identify potential effects from circular logic of predicting microRNAs of a species that
162  were included to build the query models, we retrained all models for deuterostomes
163  without including human and all protostome models without including the polychaete
164  Capitella teleta. Those were chosen because of their relatively complete microRNA
165 complements relative to their respective phylogenetic nodes and given the fact that
166  neither has a sister species in our database (unlike e.g. Drosophila or Caenorhabditis),
167 which would have heavily biased microRNA recovery. We then used the new
168  deuterostome and protostome CMs to predict microRNA complements in human and C.
169 teleta, respectively. We found that MCC for H. sapiens only very slightly decreased in
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170  accuracy from 0.97 to 0.96 highlighting the robustness of MirMachine covariance models
171  in deuterostomes. In protostomes, the effect on MCC was stronger for leaving out C.
172  teleta with a decrease from 0.92 to 0.76. Specifically, some families were not found,
173 including the bilaterian families MIR-193, MIR-210, MIR-242, MIR-278, MIR-281, MIR-
174 375, the protostome families MIR-12, MIR-1993 and the lophotrochozoan family MIR-
175 1994, which were still predicted, but fell below a newly defined threshold. This highlights
176  a markable higher sequence divergence within protostomes, which is likely due to the
177  age of the group, the lower number of representative clades, lower number of paralogues
178 and orthologues per family, and a lower number of species in general. The annelid
179  families MIR-1987, MIR-1995, MIR-2000, MIR-2685, MIR-2687, MIR-2689 and MIR-2705
180  were not searched because no models were built given the absence of a second annelid
181  species, highlighting the importance of including at least two representative species for
182  each clade in MirGeneDB™.

183  Performance of MirMachine prediction versus MirGeneDB complement

184 To get a comprehensive understanding of the performance of MirMachine on the
185 microRNA complements of MirGeneDB species, we looked in more detail at the
186  performance of CMs, and their respective cut-offs, for a selection of major microRNA
187  families (N=305) including all gene-copies (N=12,430) (Figure 3). When comparing the
188  MirGeneDB complements (Figure 3A) with the predictions from MirMachine (Figure 3B),
189  similarities were striking and overall differences limited to few families (Figure 3C);
190 indicating either potentially false positives (231) or false negatives (421), respectively
191 (Supplementary File 1). These are of further interest as they either represent missed
192  microRNAs in MirGeneDB, or significant deviations from the general CMs and, hence,
193  possibly incorrectly assigned microRNA paralogues in MirGeneDB.

10
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Figure 3: Detailed comparison of MirMachine predictions on 75 MirGeneDB species and 305 representative
microRNA families in the form of banner-plots. Columns are microRNA families sorted by phylogenetic
origin and rows are species. Heatmap indicates number of paralogues / orthologues per family. A) the
currently annotated microRNA complements in MirGeneDB 2.1'°. B) MirMachine predictions for the same
species and families show very high similarity to A. C) Differences between A and B highlighted as potential
false-positives (pink) or false negatives (gray). D) MirMachine predictions below cut-off based on training
of CMs on MirGeneDB show a range of potential random predictions and pseudogenes, highlighting the
effect of curation & machine learning on models.

Finally, we found a substantial number of low-scoring MirMachine predictions of
microRNA families that did not reach the determined cutoff based on trained CMs (Figure
3D) and therefore are not considered bona fide microRNAs. However, we found that
these also contain pseudogenized microRNA orthologues (or paralogues) exemplified by
a hitherto unknown human LET-7 pseudogene that is not found expressed in any
MirGeneDB sample (Figure 4). To our knowledge, this is the first report of, and
MirMachine the respective tool for, pseudogene-predictions of microRNAs.
Pseudogenes, or ‘gene-fossils’, are potentially very useful to determine the rate of gene
duplication and follow the evolution of sequence changes in organisms and might be
included in studies studying cause and consequences of duplications on microRNAs?3.
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A alignment of bona fide human LET-7 members and newly discovered pseudogene

Hsa-Let-7-P1b_pre
Hsa-Let-7-P1c_pre
Hsa-Let-7-P1d_pre
Hsa-Let-7-P2al_pre
Hsa-Let-7-P2a3_pre
Hsa-Let-7-P2a2_pre
Hsa-Let-7-P2b1_pre
Hsa-Let-7-P2b2_pre
Hsa-Let-7-P2b3_pre
’ Hsa-Let-7-P2c1_pre
Hsa-Let-7-P2c2_pre
Hsa-Let-7-P2c3_pre
chr17_pseudogene A

B structure C conservation in 24 primates

14 L LIN28 motif T — - eE )
215 Figure 4: The human Chr.17 LET-7 pseudogene. A) sequence alignment of the currently annotated 12 bona

216  fide LET-7 family members in human and the pseudogene candidate discovered by MirMachine. Non-
217 random sequence similarities, including LIN28 binding sites (pink) are apparent with few noteworthy
218  differences (asterisks) such as in position 2 on the 5" end (red box indicates mature annotation, position 2
219 equals seed-sequence) or a triplet insertion at the 3’ end (blue box indicates star sequence annotation) are
220  indications for non-functionality. B) Structural comparison of a representative bona fide LET-7 member
221 (Hsa-Let-7-P2c1, green triangle) with the pseudogene (yellow triangle) highlights similarities of pseudogene
222 candidate to bona fide microRNA, but points out disruptive nature of nucleotide changes for the structure
223 (asterisks) very likely affecting a potential Drosha processing. C) sequence conservation of bona fide Hsa-
224 Let-7-P2c1 (top) and the pseudogene (bottom) in 24 primate genome (ENSEMBL v100) highlights the
225  sequence conservation of bona fide microRNAs from the loop showing some changes, the star (blue) few
226  changes and the mature (red) showing none, while the pseudogene shows many more changes and seems
227  to be enriched in disruptive changes in the mature / seed region.

228

229 The microRNA complements of eutherians reveal the microRNA score as simple
230 feature for genome contiguity

231  Applying MirMachine to a testcase, we downloaded 89 eutherian genomes currently
232 available in Ensembl that are not curated in MirGeneDB and annotated their conserved
233 microRNA complements. Altogether 38,550 genes in 260 families, in about 4,400 CPU
234 hours, were found and showed an overall very high concordance between species (Figure
235  5A). As expected, Catharrini (pink) and Muridae (light green) specific microRNAs were

12
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236  only found in the respective representatives, but surprisingly, six species (Figure 5, yellow
237 arrows) showed substantial absences of microRNA families. We therefore wondered
238  whether these absences indicate microRNA losses due to biological simplifications (see
239  22), proposed random events3”:38, or whether they might be due to technical reasons’.
240  Given that the outlier species (Alpaca, Shrew, Hedgehog, Tree shrew, Pika, and Sloth)
241  have no particularly reduced morphology, we reasoned that the source might be technical
242  and recovered N50 contiguity values for all genomes. We found that all six genomes had
243  substantially lower N50 values than all other genomes, indicating that microRNAs might
244  be able to predict completeness of genome assemblies (Figure 5B). Therefore, we next
245 developed a simple microRNA scoring system defined as the percentage of expected
246  conserved microRNA families found from a genome (in this case including 175 microRNA
247  families found in most eutherians according to MirGeneDB *°, and showed that microRNA
248  scores below 80% correlate with very poor N50 values <10kb and that N50 values of
249  100kb indicate microRNA scores of 90% and higher (Figure 5C, red and blue lines). A
250  noteworthy exception is the microbat Myotis lucifugus with a N50 of 64kb and a microRNA
251  score of 74%, which might be explainable by previously suggested genome evolution
252  mode through loss94°,

13
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A de novo prediction of microRNA complements for 89 Eutherian genomes available from Ensembl not in MirGeneDB
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254 Figure 5: MirMachine predicts conserved microRNA complements of 89 eutherian mammals available on
255 Ensembl and not currently represented in MirGeneDB. A) banner plot of results for MirMachine predictions
256  on 88 eutherian mammalian species for selected range of major microRNA families and genes showed
257  very strong homogeneity of microRNA complements in general and identified a number of clear outliers
258 (yellow arrows, including Alpaca, Shrew, Hedgehog, Tree shrew, Pika, and Sloth). B) Stacked histogram
259  sorted by N50 values). Outlier species (yellow arrows: same as in A)) all have very low N50 values,
260 indicating an artificial absence of these phylogenetically expected microRNA families. C) The microRNA
261 score predicts the assembly contingency and is the proportion of phylogenetically expected microRNA
262  families that are found in respective genomes (here eutherians). microRNA scores below 80% (red
263 horizontal line) tend to have low N50 values (red vertical line indicates N50 below 10,000 nucleotides),
264  while scores above 90% indicate N50 higher than 10,000 nucleotides. Noteworthy exception is the bat
265 Myotis lucifugus which might be explainable by previously suggested genome evolution mode through loss
266 39,40_
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267  MirMachine predicts microRNAs from extinct organisms and very large genomes

268  High quality in silico annotation of genomes is particularly important for organisms where
269  no high quality RNA is likely to ever become available. This is the case for species such
270  as mammoths that went extinct millennia or even millions of years ago (but see 4*). Using
271 available data from extinct and extant elephantids*?>43, we ran MirMachine on 16
272  afrotherian genomes, including the hyrax (Procavia capensis) from Ensembl and the
273  tenrec (Echinops telfair)) from MirGeneDB, and 14 elephantids including extant savanna
274  elephants (Loxodonta africana), forest elephants (Loxodonta cyclotis) and asian
275 elephants (Elephas maximus) respectively (Figure 6A, green elephantid silhouettes), but
276  also extinct american mastodon (Mammuthus americanum), straight-tusked elephants
277  (Palaeoloxodon antiquus), columbian mammoth (Mammuthus columbi) and the woolly
278  mammoths (Mammuthus primigenius) (Figure 6A, red elephantid silhouettes). We find a
279  very high degree of similarities between afrotherians, and striking congruence between
280  extinct and extant species which indicates the high accuracy of the MirMachine workflow.
281  More so we find patterns of microRNA losses that could be phylogenetically informative
282  (Figure 6A, arrows). For instance, we do not find MIR-210 in any of the elephant species,
283  which might be a elephantid specific loss (Figure 6A, pink arrow), we further find that P.
284  antiquus and L. cyclotis have both lost MIR-1251 (Figure 6A, light blue arrow), and a
285 shared loss of MIR-675 and MIR-1343 (Figure 6A, purple arrows), both supporting
286  previously identified sister group relationships*?.

287

A extinct and extant genomes of elephantids are similar and show phylogentically informative microRNA patterns

B

288 )
289 Figure 6: MirMachine enables microRNA complement annotations from extinct and very large genomes. A)

290 MirMachine predictions from afrotherians show no clear differences between extinct and extant genomes,
291 but likely phylogenetically informative losses of microRNA families (colored arrows). B) MirMachine
292 predictions in organisms with extensive genome expansions (pink arrows) show no expansion of
293 microRNAs, but organisms with known genome duplications (green arrows) do. A number of shared
294 microRNA copiews in sterlet (A. ruthenus) and paddlefish (P. spatula) support a common genome
295  duplication event in the last common ancestor of Acipenseriformes (yellow arrows).

296
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297 A pertaining challenge for microRNA prediction and annotation of extant species, is the
298 occurrence of additional whole genome duplication events and, not necessarily
299  connected, extreme genome expansions. This often leads to computational challenges
300 where identical copies are hard to distinguish based on read-mappings or genomes are
301 simply so large that existing pipelines need extensive computational resources often
302 facing programmatic limits. Therefore, we next investigated the performance of
303 MirMachine in vertebrate species with very large genomes and of known additional
304 rounds of genome duplications. For the first group, we included the axolotl (Ambystoma
305 mexicanum) with a genome of 28 Gbp and the african lungfish (Protopterus annectens)
306  with a genome of bigger than 40 Gbp into our analysis. For the second group we included
307 the African clawed frosh (Xenopus laevis) with known allotetraploid genome# and the
308 zebrafish (Danio rerio) from MirGeneDB, the sterlet (Acipenser ruthenus) with proposed
309 sturgeon specific genome duplication and occurrence of segmental rediploidization*®, as
310 well as the american paddlefish (Polyodon spathula) with a recently shown genome
311 duplication which was, however, interpreted as sturgeon independent*¢. We combined
312 these species with the gray bichir (Polypterus senegalus) that has a moderately sized
313  (e.g., human-sized) genome and no unique known genome duplication events, along with
314 13 other MirGeneDB species representing a range of Olfactores, vertebrates,
315 gnathostomes, Osteichthyes, Sarcopterygii and Tetrapoda representatives (Figure 6B).
316  We find that MirMachine ran very well on all genomes using 32 cores and under 2 hours
317  per species, whereas the lungfish ran the longest (around 3 hours 45 mins). As expected,
318 we find that the size of the genomes do not affect the microRNA complements (Figure
319 6B, pink arrows), but that organisms with additional whole genome duplications (Figure
320 6B, green arrows) clear trace of duplications (also see 23). A curious observation was that
321 sterlet and paddlefish showed very consistent microRNA copy-number patterns, in
322  particular in the retention of additional MIR-138, MIR-146, MIR-148, MIR-192 and MIR-
323 208 copies (Figure 6B, orange arrows) indicating a likely common origin of genome
324  duplication at the last common ancestor (Acipenseriformes), or very similar retention
325 pressure in the more unlikely case of independent duplication. Altogether MirMachine is
326  a suitable tool for the annotation of microRNA complements from extinct and very large
327 genomes alike.

328  MirMachine models outperform existing Rfam models

329 In the most recent Rfam update (v. 14) an expanded assembly of microRNA models
330 based on miRBase was released®?. As mentioned here before, and stated elsewhere, a
331 major concern in microRNA research has been the quality of this online repository of
332 published microRNA candidates!4’—5 with estimates of two out of three false-positive
333  entries. Thus, the database contains more false positives than microRNAs. These are for
334 instance numerous tRNA, rRNA or other fragments, but also incorrectly annotated bona
335  fide microRNAs that strongly influence interpretations of data. In addition to the false

16


https://doi.org/10.1101/2022.11.23.517654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517654; this version posted April 27, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

336 positives, numerous miRBase annotations are imprecise and have varying precursor
337 annotation forms (with or without flanking regions of varying lengths) and not both arms
338 are annotated, 3’ ends are incorrect, and in a few cases even 5 are not correctly
339 annotated which substantially affects target predictions (for details see 1). Further, it uses
340 an outdated nomenclature which is inconsistent in that members of the same microRNA
341 family are not named the same way making the identification of family members
342  cumbersome. This problem has to a large extent been transferred to Rfam and their
343  microRNA family models in particular (e.g. MIR-95 family member Hsa-Mir-95-P4

344  (https://mirgenedb.org/show/hsa/Mir-95-P4) with own model
345 https://rnacentral.org/rna/URS0002313758/9606, or MIR-15 member Hsa-Mir-15-P1d
346  https://mirgenedb.org/show/hsa/Mir-15-P1d) with own model

347  (https://rnacentral.org/rna/URS000062BB4A/9606 (see Supplementary File 2). This all
348 has been addressed in the manually curated microRNA gene database
349  MirGeneDB.org'*® and MirMachine, respectively.

350 Regardless, we tested the performance of 523 Rfam microRNA models, that we curated
351 to be of animal origin, on the 75 MirGeneDB species and found that 36,931 microRNAs
352  were predicted (compared to 16,913 MirMachine and the 15,846 microRNA annotations
353 in MGDB 2.1). Given that the number of conserved microRNA families is a focus of
354  MirGeneDB and very unlikely to be expanded in the future!3, this much higher number of
355 predictions suggests that Rfam predictions contain thousands of false positives (FPSs).
356  We further looked for performance of highly conserved families (see materials and
357 methods). Rfam models had MCCs of 0.96, 0.94, 0.96 and 0.89 for microRNA families
358 LET-7, MIR-1, MIR-196 and MIR-71 respectively. The same family performances for
359  MirMachine were 0.97, 0.98, 0.97, 0.97. Thus, as expected, Rfam model had comparable
360 performance for these correctly assigned, and deeply conserved families, but performed
361  poorly for incorrectly assigned microRNAs.

362 MirMachine outperforms whole genome alignment approaches

363 We compared the performance of MirMachine with a whole-genome alignment approach
364  as used previously in ‘lift-over’ approaches in e.g. Drosophila genus 226, Using the 470-
365 way mammalian species MULTIZ genome alignment based on the human genome, we
366 tested how accurate these predictions are on the level of the full microRNA complement
367 and how they computationally scale with size or number of aligned genomes in, in this
368 case, mammals. We find that most human microRNA loci indeed produced alignments in
369 most species, but that there was a substantial number of 1) missing families and genes
370 and 2) a very high number of false positives calls in these microRNA alignments
371  (Supplementary Figure 3 & github).
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Whole genome alignments miss many real microRNAs and include many false-positives

A WGA can be used to report alignments of microRNAs B MirMachine predictions of 90 eutherians (Ensembl)
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373 Supplementary Figure 3: When comparing overall performance of (A) alignments reported for each of the
374 470 mammalian species, the overall impression is that many microRNA loci in human are aligned in a
375 majority of mammalian genomes. However, when comparing to the MirMachine output (B), a humber of
376  bona fide microRNA families are not reported (red arrows) due to their absence in the human reference
377 (red box: murid microRNA families). Additionally, a high number families and genes that are not expected
378 (pink boxes) given the phylogenetic level of the species (i.e. not Eutherian, not Catharrini) is reported, which
379  seems unlikely to be correct. This also goes for very high number of copies in a number of species (pink
380  arrows left site of A) that would indicate genome duplication, which have not been reported, and likely are
381 false calls.

382  Specifically, on average, for the 90 eutherian genomes we had previously analyzed with
383  MirMachine, more than 90 false positives per species were reported from WGA on
384  average (Supplementary Figure 4).

18


https://doi.org/10.1101/2022.11.23.517654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517654; this version posted April 27, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

. e ] . )
A large number of likely false-positives in WGA-based microRNA calling
600
A BWGA_all
B MirMachine_conserved
©
c
>
L
v
<
=
o
o
—
kS
IS
«“
o
hut
[}
o)
>
c || s
B .¢Z
< <
Z 5
532
e =
25
£
£
8=
g5
U U
£z
53
o)
385 - i J

386  Supplementary Figure 4: Comparison of the subset of species from the 470 MULTIZ WGA (A — pink) and
387 our Ensembl based 90 eutherians analysis (A —green). On average, more than 90 false positives are found
388  per genome using WGA (B).

389 To investigate the nature of these likely false calls, we selected 10 microRNA families
390 (see Supplementary Figure 3 small pink arrows at the bottom) with origin in eutherians
391 and Catharrini that were reported in non-eutherians and outside Catharrini, respectively,
392 and carefully checked all alignments to investigate sequence conservation
393  (Supplementary Figure 5). We found that alignments reported from outside the expected
394  groups are too distinct from the reference and are obviously no microRNAs. In an attempt
395 to verify the effect of nucleotide difference between bona fide genes and the aligned
396 regions bearing substantial changes, we took the example of Catharrini-specific MIR-
397 4677 (Supplementary Figure 5 B&C) and, for subset of representative mammals, made
398  structure predictions and were able to show that already slightly changed locus in other
399  primates created structures less likely to be processed as microRNAs (middle structure),
400  with other non-primate mammals showing almost random structures (yellow bar). These
401 results clearly show that WGA based approaches have pitfalls that the MirMachine
402  pipeline avoids.

19


https://doi.org/10.1101/2022.11.23.517654
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517654; this version posted April 27, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

~
Whole genome alignments can identify orthologous loci, but cannot distinguish between real microRNAs and non-genes
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404  Supplementary Figure 5: Unexpected microRNA alignments show substantial variation in species not
405 belonging to the group of known evolutionary origin of the microRNA family. Selection of unexpected reports
406  of microRNA presence of A) eutherian-specific and B) Catharrini-specific microRNA families in non-
407 eutherian and non-Catharrini species shows that, while having alignment reported, substantial difference
408 intheir aligned-to sequences. This indicates that these are either 1) incorrect alignments or 2) that aligned
409 loci do not contain microRNA genes. In C) (MIR-4677 detail) clear differences in nucleotide composition
410  shows the effect of these sequences on the actual structure of the putative microRNAs clearly ruling out a
411 processing as microRNA. A&B) Each plot highlights the differences to the human reference (white = 100%
412  conserved sites)

413
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414  MirMachine functions & options

415  All models (total, protostome and deuterostome) were implemented into the standalone
416  MirMachine workflow which is available under https://github.com/sinanugur/MirMachine,
417  and the web app www.mirmachine.org. MirMachine also contains the curated “node of
418  origin” information from MirGeneDB that can be used to limit the microRNA gene search
419  to phylogenetically expected microRNA families, substantially reducing the search space
420 and shortening the necessary run-time. Several other options, such as the search for
421  single families (e.g. “LET-7") or families of a particular node (e.g. “Bilateria”) are available,
422  too. In the web app, genome accession numbers can be provided avoiding the need for
423  down- and upload circles.
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424 Discussion

425 The existence of thousands of animal genome assemblies is massively mismatched by
426  the availability of annotations of important gene-regulatory elements such as microRNAs.
427 Here, we have presented MirMachine as an important first step to overcome this
428 discrepancy and the need for small RNA sequencing data or extensive expert manual
429  curation. This is particularly valuable for organisms, tissues, or developmental time points,
430 where expression datasets will be very difficult to acquire and, hence, microRNA
431  detection based on smallRNA sequencing reads impossible. The unique combination of
432  well-established covariance model approaches trained on manually curated and
433 phylogenetically informed microRNA family models built from more than 16,000
434  microRNAs of 75 metazoan species makes MirMachine very sensitive to detect
435 paralogues of a family in a given organism (low false-negative rate) and very robust
436  against wrong predictions (low false-positive rates). MirMachine’s ability to accurately
437  predict full conserved microRNA complements from genome assemblies, as exemplified
438 by our analysis of nearly 90 eutherian genomes from Ensembl, will not only enable large
439  comparative microRNA studies and automated genome annotation for microRNAs, but
440 also showed the potential of microRNAs for the assessment of genome assembly
441  completeness (Figure 5). Because of the near-hierarchical evolution of microRNAs, they
442  have a very strong potential not only as taxonomic markers as used in e.g. miRTrace®®
443  or sRNAbench®, but to also outperform approaches that are based on selected sets of
444  protein-coding genes such as BUSCQO®! or OMATrk®2 (Paynter et al in prep). Those heavily
445  rely on the correct identification of orthologues of selected single copy protein-coding
446  genes, which are much more variable than microRNAs, do only represent a subset of
447  protein coding genes and, hence, cannot be used to accurately assess or measure rates
448  of genomic loss or completeness directly. By comparing N50 values and a herein
449  established microRNA score, we have shown that microRNA complements predicted by
450  MirMachine are suited to assess genome completeness and contiguity. This might have
451  wide-reaching consequences for future applications as a microRNA score could become
452  a standard measure for genome annotation pipelines.

453  We have also shown that it is possible to use MirMachine’s ‘below cutoff’ predictions for
454  the study of pseudogenes, which could enable better understanding of dosage-level
455  regulation or gene- and genome duplication events, in general?3. Using several so far
456  uncharted vertebrate genomes of either extreme size (axolotl, lungfish) and comparing
457  them to smaller, but secondarily duplicated genomes, we could show that MirMachine
458  works on such large genomes and confirm that the size of assemblies does not matter
459  for the number of microRNAs, but that genome duplication events do. By directly
460 comparing the outputs of MirMachine counts for microRNA paralogues in sterlet and
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461 paddlefish, we found patterns of microRNA duplicates that support a common genome
462  duplication of the two species.

463  Finally, we employed MirMachine on extinct species genomes’ and could show that
464  besides similarity to extant representatives, several absences /losses of microRNAs were
465 observed within the elephantids that suggest a phylogenetic signal. These findings are
466  exciting as they might give clues on the genome regulation differences in organisms,
467  where actual RNA will be hard or impossible to get by. Importantly, at this stage, we have
468 not yet made sequence-based comparisons of the microRNAs between any of the
469  species. This is an untapped area for future development.

470 A comparison to whole genome alignment (WGA) approaches revealed that there is
471  indeed a high number of alignments in mammalian genomes relative to human microRNA
472  loci, but that there are several false positive and false negative calls rendering this
473 approach as inferior to MirMachine. However, the identification of loci that do show
474  sequence similarity, but have no microRNA function could be an interesting avenue for
475  future research on the evolution and pseudogenization of microRNAs. Furthermore, WGA
476  based approaches aiming at microRNA complement wide analyses require substantial
477  computational resources and skills and, hence, should not be considered sustainable for
478  the standardized annotation of full microRNA complements.

479  MirMachine currently provides predictions as community standard file formats GFF or
480 FASTA that are named by family and coordinates, but not according to their possible
481  paralogue or orthologue nomenclature?. This is due to the fact that the required syntenic
482  information is often not available and not currently analyzed by our pipeline. Furthermore,
483  MirMachine does not predict species specific microRNAs which can play crucial roles in
484  evolution?*. MirMachine predictions are a solid foundation for future smallRNAseq driven
485  annotation efforts of novel microRNAs and synteny-supported annotation of paralogues
486  and orthologues.

487  Per design MirMachine can only predict conserved microRNAs based on MirGeneDB-
488  derived CMs. However, there are a number of tools to predict novel microRNA candidates
489  from genomes using different methodologies but are all not based on a curated reference
490 and, hence, might be of limited value (see 63%4). We strive to address those issues in the
491  future, but would like to stress, in the meantime and in general, that manual curation is a
492  crucial step that should never be disregarded, even though MirMachine heavily reduces
493  the need for extensive and week-long efforts.

494  The decision to create protostome and deuterostome specific microRNA family models
495 can be seen as a first step toward group-specific microRNA gene-family models that
496 might increase the accuracy of MirMachine further in the future. Variability of model
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497 performance based on evolutionary age of families has not been studied here, but the
498  addition of more taxa to MirGeneDB will be an invaluable improvement for group-specific
499  microRNA family prediction and paralogue-specific modeling of microRNAs. We stress
500 that for pre-bilaterian groups of Cnidaria and Porifera MirMachine currently only provides
501 asmall set of microRNA models, as these groups show comparable little conservation of
502  their microRNA complements and aberrant microRNA structures®-%8, Another important
503 areaof possible expansion clearly are plant microRNAs, that currently suffer from multiple
504 non-overlapping available databases and potentially stronger curation problems than
505 observed in animals (see 5869),

506  MirMachine is freely available as a standalone tool or web application. It enables even
507 non-microRNA experts to annotate conserved microRNA complements regardless of the
508 availability of small RNA sequencing data. Thus, it has a strong potential to close the
509 ever-increasing gap between existing high-quality genomes’®"* and their microRNA
510 annotations. A possible addition of MirMachine into the standard genome annotation
511  pipelines of Refseq and Ensembl is currently discussed. The availability of thousands of
512 metazoan genomes and their microRNA annotations will pave the way toward the
513  promise of microRNAs and a true postgenomic era.

514
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STARMethods

Software and algorithms

Source

Identifier

MirGeneDB

Fromm et al.
2021

doi.org/10.1093/nar/gkab1101

mafft-xinsi v7.475 Katoh et al., | doi.org/10.1093/bib/bbx108
2019

HMMER (esl-weight) Wheeler and | doi.org/10.1093/bioinformatics/btt403
Eddy, 2013

RNAalifold v2.4.17 Lorenz et al., |doi.org/10.1186/1748-7188-6-26
2011

Infernal 1.1.4 Nawrocki, E.P., | doi.org/10.1093%2Fbioinformatics%2F
and Eddy, S.R. | btt509
2013

cmsearch Nawrocki, E.P., [ doi.org/10.1093%2Fbioinformatics%2F
and Eddy, S.R. | Dbtt509
2013

cmcalibrate Nawrocki, E.P., | doi.org/10.1093%2Fbioinformatics%2F
and Eddy, S.R. | btt509
2013

Covariance models (CM)

Eddy, S.R., and
Durbin, R. 1994.

doi.org/10.1093/nar/22.11.2079

Snakemake v6.10.0

Molder et al.
2021

f1000research.com/articles/10-33/v1

MirMachine v0.2.11.2022 | This study github.com/sinanugur/MirMachine
MirMachine workflow This study Supplementary figure 2
MirMachine CM models This study github.com/sinanugur/MirMachine/tree/

master/mirmachine/meta/cms

MirMachine web app

Trondsen, 2022

https://mirmachine.org
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MirMachine prediction | This study github.com/sinanugur/MirMachine-
GFF files supplementary/tree/main/results
MirMachine figure data This study github.com/sinanugur/MirMachine-
supplementary/tree/main/tables
R language R Core Team | https://cran.r-project.org/
2022
R- chie Lai etal. 2012 doi:10.1093/nar/gks241
517
518

519 Creation of high-quality CMs

520  MicroRNA precursor sequences were downloaded from MirGeneDB as FASTA files. We
521 separated them into separate files based on microRNA family and we then aligned each
522 microRNA family using the mafft v7.475 aligner (mafft-xinsi)’? and created multiple
523  sequence alignments (MSAa) of microRNA families. We chose mafft since it considers
524  secondary structure. We filtered out identical or highly similar sequences using the esl/-
525  weight v0.48 tool (-f --idf 0.90 --rna) from HMMER package’® to reduce bias due to
526  overrepresentation of highly similar sequences. RNAalifold also expects non-identical
527 sequences. The secondary structures of the MSAs were predicted by RNAalifold v2.4.17
528  (-r --noPS)’4. Lastly, CMs for each microRNA family were generated (cmbuild) and
529 calibrated (cmcalibrate) using Infernal” and the default setting. Cmcalibrate is a
530 necessary step to calibrate E-value parameters of CMs. We used the same workflow to
531 create deuterostome and protostome specific CMs. In short, the MirGeneDB FASTA
532  sequences were subsetted for deuterostome and protostome species.

533

534

535 Determining accuracy of MirMachine predictions

536  First, we used the cmsearch function of Infernal to predict microRNA regions. In this study,
537 true positives (TPs) are correctly predicted microRNA families and false positives (FPs)
538 are false predictions. False negatives (FNs) refer to microRNA annotations available in
539  MirGeneDB but not predicted by MirMachine. Using MirGeneDB and MirMachine, we
540 extracted all true positives, false positives, and false negative predictions. We can
541 calculate an approximation to the Matthews correlation coefficient (MCC) by using the
542 geometric mean of sensitivity and precision. This metric is sensitive to both false
543  negatives and false positives.

544 A standard cmsearch run reports bit score value of each prediction, which is a statistical
545 indicator measuring the quality of an alignment score. We determined an optimal bit score
546 value for each microRNA family to maximize MCC scores. We then filtered any
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547  MirMachine hits lower than the optimal cut-off points. We reported MCC values (and other
548 metrics) before and after filtering. See Supplementary figure 3 for an overview of
549  MirMachine training workflow.

Create Covariance models Search Models
(CMs)
MirGeneDB microRNA FASTA files Tree file in Newick format
Multiple sequence alignments Use node name to get target Genome FASTA file of
(MSA) (mafft-xinsi) microRNA families target species

: J
Filtering low variation (esl-weight) Config YAML files

|
* [

| MSA of microRNA families ‘ '

I

Predict secondary structures
(RNAalifold) |

Prediction results (GFF)

Search target genome
(cmsearch) and parse results

k3
| Secondary structures of ‘
microRNAs

Apply bitscore cut-offs

Create and calibrate (CMs) \
(cmbuild and cmcalibrate) \ Determine bitscore | MirGeneDB family
- cut-offs = counts

L] | Filtered grediction results (GFF) ‘
| CMs of microRNA families ‘

550
551 Supplementary Figure 6. A summary of MirMachine workflow: high-quality CMs were

552  generated using Infernal based on MirGeneDB v2.1 microRNA families. Bitscore cut-offs
553  were determined using MirGeneDB to maximize MCC scores. We use the cutoffs to filter
554  out low quality predictions.

555

556  Benchmarking MirMachine models

557 We retrained MirMachine CM models by excluding two species: Homo sapiens and
558 Capitella teleta and compared MirMachine performance on these species. Another
559  benchmarking was done using Rfam models. We downloaded all microRNA models (523
560 in total) from the Rfam database (v 14)32. We predicted microRNA families using Rfam
561 models and compared their model performance with MirMachine on selected families
562 (e.g. LET-7, MIR-1, MIR-71, MIR-196). These families were selected because they are
563  highly conserved and contain low false-positives or false negatives in Rfam. We also
564  reported the total number of microRNA predictions done by both methods.

565

566  MirMachine command line (CLI) tool

567  The main MirMachine engine was written in Snakemake 76 and the CLI wrapper in Python
568 and R. The documentation of the MirMachine CLI tool is available at our GitHub
569 repository. It is also available as a BioConda package /7 for easy installation.
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570

571  MirMachine WebApplication implementation

572  We implemented the web application using a software stack primarily composed of
573  Django, React and Nginx. The application wraps the MirMachine CLI tool to provide a
574  simpler, interactive interface for users. It is hosted at the Norwegian Research and
575 Education Cloud (NREC), utilizing their sHPC (shared High Performance Computing)
576  resources ‘8. Itis available at https:/mirmachine.org.

577

578 Available Genome Assemblies

579 Lists of reference genomes of invertebrates, vertebrate mammalians and other
580 vertebrates were downloaded from NCBI GenBank on 1/24/2022 7°. Analysis of yearly
581 submitted reference genomes was conducted using Python and customized scripts.

582

583 Covariance Model based structure plots

584 The Covariance Model based plots were generated using the R4ARNA- package in R-
585 chie®® run on R Studio version 4.2.0. The arc diagrams along with the grid-based
586 alignment, were created with a multiple sequence alignment of all respective microRNA
587  family members and its corresponding secondary structure as input. Within the R4ARNA
588 package, covariation was plotted, and the arc was colored based on the conservation
589  status relative to the multiple sequence alignment provided.

590

591 Whole genome alignment comparisons

592  Multiple genome alignment of 470 mammals generated with multiz as described in Hecker
593 et al8, which was kindly provided by Michael Hiller (available at
594  http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz470way/), was intersected with
595  human microRNA annotations from MirGeneDB.
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