

Miniature spatial transcriptomics for studying parasite-endosymbiont relationships at the micro scale

Hailey Sounart^{1#}, Denis Voronin^{2#}, Yuvarani Masarapu¹, Matthew Chung², Sami Saarenpää¹,
Elodie Ghedin^{2*}, Stefania Giacomello^{1*}

¹Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden

²Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States

First shared authors

* Corresponding authors: elodie.ghedin@nih.gov, stefania.giacomello@scilifelab.se

14

15

16

17

10

10

88

24 **Abstract**

25 Several important human infectious diseases are caused by microscale-sized parasitic nematodes
26 like filarial worms. Filarial worms have their own spatial tissue organization and to uncover this
27 tissue structure, we need methods that can spatially resolve these miniature specimens. Most
28 filarial worms evolved a mutualistic association with endosymbiotic bacteria *Wolbachia*,
29 however, the mechanisms underlying the dependency of filarial worms on the fitness of these
30 bacteria remain unknown. As *Wolbachia* is essential for the development, reproduction, and
31 survival of filarial worms, we focused on studying a posterior region containing reproductive
32 tissue and developing embryos of adult female *Brugia malayi* worms. To spatially explore how
33 *Wolbachia* interacts with the worm's reproductive system, we performed a spatial
34 characterization using Spatial Transcriptomics (ST) across our region of interest. We provide a
35 proof-of-concept for miniature-ST to explore spatial gene expression patterns in small sample
36 types, demonstrating the method's ability to uncover nuanced tissue region expression patterns,
37 observe the spatial localization of key *B. malayi* - *Wolbachia* pathway genes, and co-localize the
38 *B. malayi* spatial transcriptome in *Wolbachia* tissue regions. We envision our approach to open
39 up new scenarios for the study of infectious diseases caused by micro-scale parasitic worms.

40

41

42

43

44

45

46

47 **Introduction**

48 The infectious diseases lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness)
49 are two debilitating and far-reaching neglected tropical diseases, affecting more than 150 million
50 of “the poorest of the poor” worldwide¹⁻³. The parasitic nematodes that cause these diseases—
51 *Wuchereria bancrofti*, *Brugia malayi*, and *B. timori* cause lymphatic filariasis and *Onchocerca*
52 *volvulus* causes onchocerciasis—cause severe pathologies such as blindness in onchocerciasis
53 and lymphoedema that can progress to elephantiasis in lymphatic filariasis³. Mass drug
54 administration campaigns of affordable and safe microfilaricidal drugs are used to halt parasite
55 transmission by killing the microfilariae (mf) in the blood or the skin of the infected hosts.
56 However, the long lifespan of the adult worms (8 years for lymphatic filariasis and 20-30 years
57 for river blindness) requires repeated microfilaricidal treatment. Therefore, alternative
58 therapeutic approaches that affect the adult worms are critically needed.

59

60 *Wolbachia* are common intracellular bacteria found in arthropods and filarial nematodes⁴.
61 Filarial parasites that cause lymphatic filariasis and onchocerciasis have evolved a mutualistic
62 association with *Wolbachia* that is essential for worm development, reproduction, and survival⁵.
63 The endosymbiont can be eliminated from the worms by treating infected animals and humans
64 with a small variety of antibiotics (such as doxycycline and rifampicin), which in turn results in
65 the death of the adult worms, ultimately curing the mammalian host of the filarial infection^{4,6-9}.
66 Doxycycline treatment has demonstrated strong effects on the embryogenesis of filarial
67 nematodes, causing apoptosis in developing embryos after 6 days of treatment *in vitro*¹⁰, and
68 eventual embryo clearance from the uterus of females treated *in vivo* during clinical trials^{3,11,12}.
69 To study the molecular processes of the disease-causing filarial worms, *Brugia malayi* has

70 become the model organism, as it can be cultured across all life cycle stages in the laboratory
71 animal model *Meriones unguiculatus*¹³. A number of studies have explored at the molecular level
72 the co-dependencies between *B. malayi* and its *Wolbachia* (*wBm*)^{14–21}. Homeostasis of the
73 mutualistic relationship that evolved between *B. malayi* and *wBm* requires the coordinated
74 regulation of *B. malayi* genes. This dependency on *Wolbachia* for oogenesis and embryogenesis
75 in female worms means that therapeutic approaches that deplete *wBm* in the *B. malayi* worms
76 can cause permanent sterilization of adult females. Due to the large impact *wBm* has on the
77 processes of oogenesis and embryogenesis within the reproductive tissue of adult female *B.*
78 *malayi* worms, we need approaches that can uncover more about the molecular mechanisms
79 occurring in this region of the worm and how such processes are spatially distributed within the
80 different tissue structures.

81
82 Recent transcriptomic and proteomic analyses of whole *B. malayi* adult parasites have led to
83 significant insight into the biology of the worm^{22–24}. However, while comparative proteomic
84 analysis of differences between reproductive tissue, body wall, and digestive tract regions have
85 provided essential information for the whole tissue²², nuanced expression patterns in specific
86 regions of each tissue were likely missed. Therefore, there are specific regions of the worms that
87 are systematically underrepresented in whole-parasite omics such as the head region of the
88 parasites that contain critical tissues at the host-parasite interface, and posterior regions where
89 oogenesis and early embryogenesis occur. Prioritizing omic analyses of these regions will help
90 better understand worm biology, life cycle, and transmission, as well as help gain a better handle
91 on the interface of parasite-host interactions. Thus far, only one study showed spatial-like
92 transcriptomic analysis of the *B. malayi* head region using a combination of highly complex

93 methods, such as low-input tissue capture and RNA tomography, combined with light-sheet and
94 electron microscopy²³. Other, more standard approaches have been used to study other
95 helminths. For example, the first cell atlas of a parasitic worm, *Schistosoma mansoni*, was made
96 using single-cell technology²⁴. However, isolating single cells for filarial nematodes such as *B.*
97 *malayi* is complicated because of the large hypodermal syncytial cells spanning the entire length
98 of the worm body, making this strategy unfeasible. Resolution of *Wolbachia* and *B. malayi* gene
99 expression at the level of individual cells or tissue morphological regions is needed to design
100 more effective therapeutic strategies for lymphatic filariasis. Single-nucleus RNA sequencing
101 offers the possibility of overcoming the anatomical constraints of a single-cell based strategy,
102 however, crucial information provided by having spatial context is lost with such a method.
103 Thus, to resolve the spatial structures within the worm, longitudinal sections can be used with a
104 spatial transcriptomics approach to visualize expression of *B. malayi* genes in specific tissue
105 regions important in the *B. malayi*-wBm relationship.

106
107 Spatial Transcriptomics (ST) is a high-throughput, sequencing-based exploratory method where
108 polyadenylated transcripts are captured by spatially barcoded probes on a slide underneath a
109 tissue section^{25,26}. ST connects tissue morphology to gene expression by overlaying the spatially
110 resolved transcriptome at 55 µm resolution on hematoxylin and eosin stained images^{25,26}. This
111 technique has been used to study a variety of tissue types and disease states across primarily
112 human and mouse tissues²⁷, as well as some plant tissues^{28,29}, typically in the 1-6 mm range.

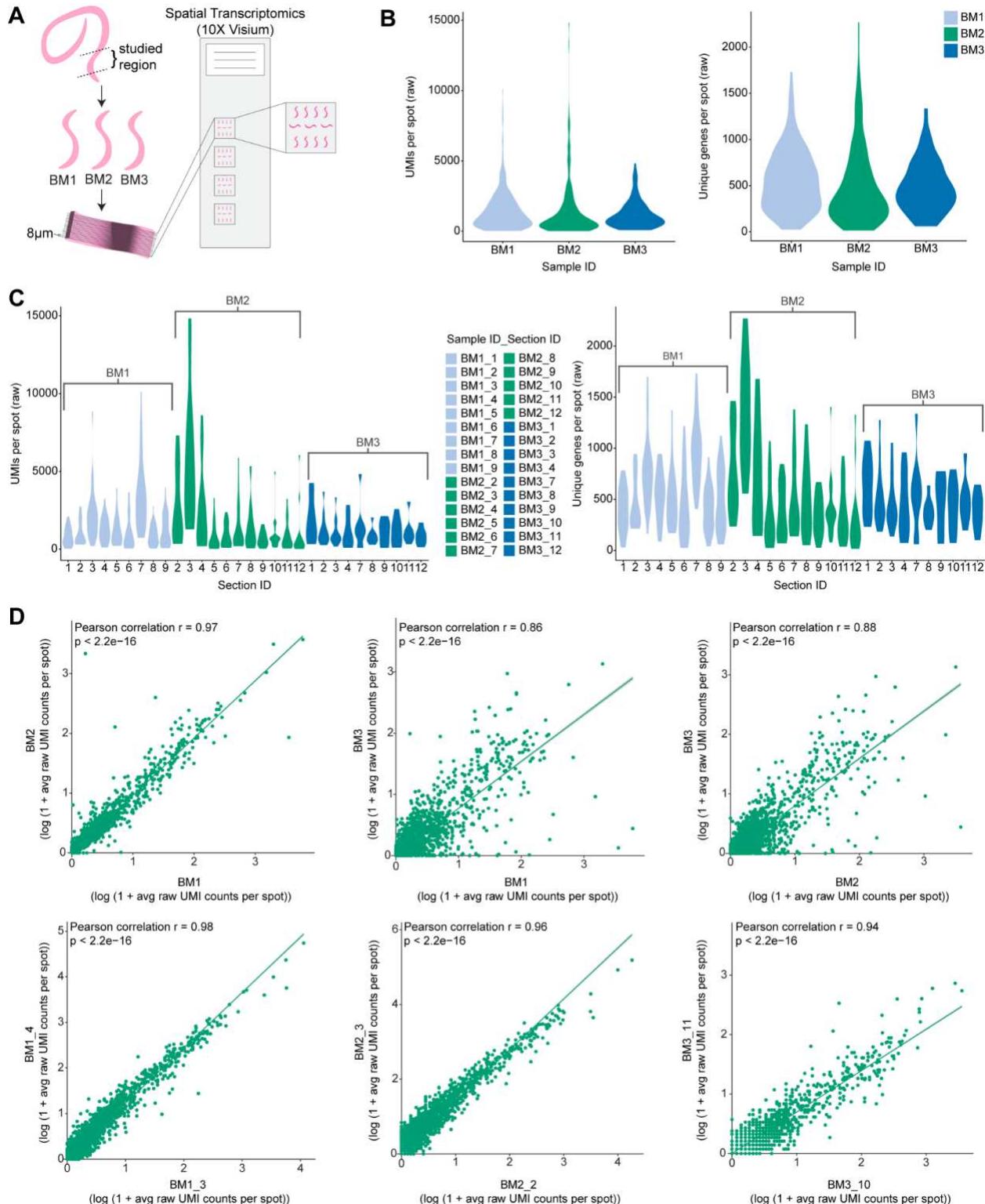
113
114 To enable spatially resolved transcriptomic methods for nematodes at the micro-scale, we
115 focused on *B. malayi* as our model organism. We profile adult female worms that are on average

116 150 μ m in diameter and 43-55 mm in length and focus specifically on a region containing ovary
117 tissue, the beginning of the uterus with fertilized eggs and early embryos, the digestive tract, and
118 the body wall. We have overcome the technical challenge of working with very small tissue sizes
119 by developing sample preparation (fixation and embedding), cryosectioning, and tissue
120 attachment/staining techniques for miniature Spatial Transcriptomics. We utilized such a
121 miniature-ST method to uncover tissue-specific gene expression patterns in *B. malayi*, localize
122 the expression of key glycolytic pathway genes, and co-localize the expression of *B. malayi*
123 genes in tissue areas with and without *Wolbachia*. We studied gene expression patterns in both
124 2D and in 3D across a posterior region of the adult female worms. By developing the highly
125 reproducible miniature-ST method, we are forging a research path to perform spatial
126 characterization of gene expression profiles across tissues of small parasitic worms. A tissue-
127 resolution level understanding of parasitic worm biology could help the development of more
128 targeted therapeutic strategies.

129

130 **Results**

131 **Miniature-ST provides reproducible capture of gene expression information**


132 To visualize the spatial localization of *B. malayi* genes in the adult female worm, we first
133 determined if spatial transcriptomics could be applied to an organism of this size (~130-170 μ m
134 in diameter). We adapted the ST technology Visium Spatial Gene Expression assay (10X
135 Genomics)³⁰ for unbiased capture of gene expression information. To apply ST to this small
136 sample type, we faced several technical challenges and developed strategies to overcome these
137 issues in terms of sample preparation, cryosectioning, and tissue attachment to the slides. For

138 sample preparation, we developed several steps to improve downstream cryosectioning and
139 tissue attachment to the Visium slides. These steps involved: i) methanol fixation before
140 embedding the tissue in the Optimal Cutting Temperature (OCT) compound to improve tissue
141 attachment, ii) hematoxylin staining before OCT embedding to visualize the clear worms in the
142 embedded block, and iii) dissecting out smaller, i.e. ~5 mm, pieces greatly facilitated obtaining
143 intact cryosections during sectioning. When cryosectioning the worm tissue, it was difficult to
144 obtain intact, longitudinal sections from such a small specimen (less than 20 total sections per
145 sample). We found that the sample needed to be completely flat to get usable sections through
146 the embedded worm piece. Re-embedding of the small ~5 mm worm specimen onto flattened
147 OCT facilitated acquiring multiple, intact sections throughout a single worm specimen, all of
148 which could be placed on a single Visium slide capture area, which also reduces experimental
149 costs (**Figure 1A**). To understand if our re-embedding approach could affect the gene expression
150 information captured, we included a sample, BM3, that was not re-embedded prior to sectioning.
151 We found that the difference in the embedding technique did not impact the quality of the gene
152 expression information captured as the gene expression patterns were reproducible between
153 samples, but rather the re-embedding technique greatly aided in obtaining intact tissue sections
154 (**Figure 1B-D**). A section thickness of 8 μ m allowed us to collect essentially all the sections
155 throughout an entire worm sample, which could then be aligned and stacked to generate a 3D
156 model of spatial gene expression information. To address the third issue of poor tissue
157 attachment to the Visium slides, we observed that the pre-embedding methanol fixation step, 8
158 μ m thick cryosections, placing multiple sections on the same Visium capture area without
159 overlapping the OCT, and modifying the H&E staining to be performed inside slide cassettes
160 with intermittent warming, improved tissue attachment. To attain a finer image for

161 morphological annotation, we introduced imaging with z-stacks. Overall, the implementation of
162 these technical changes to the Visium protocol enabled us to obtain spatially resolved
163 transcriptomic information from the worm specimens.

164

165 We then applied this newly developed miniature-ST technique to the tissues of selected parts of
166 *B. malayi* adult female worms and generated a ST dataset from 3 worm samples (i.e., samples
167 BM1, BM2, BM3) and across a total of 30 sections (**Figure 1A, Supplementary Table 1**). In
168 total, we captured 7,724 unique *B. malayi* genes from the studied region containing ovary tissue,
169 the beginning of the uterus with fertilized eggs and early embryos, as well as part of the digestive
170 tract and body wall. These represent 66% of the 11,777 *B. malayi* genes in the current genome
171 annotation (WormBase: WBPS14), across 547 spots with an average of ~1,457 unique molecules
172 (UMIs) per spot and ~529 unique genes per capture spot. The number of genes we captured is in
173 the same range as the 8,000-10,000 genes (70-90% of genome) per sequence library captured by
174 a previous bulk RNAseq study across whole worms and different lifecycle stages³¹. We observed
175 similar unique gene and unique molecule distributions per spot across the different samples
176 (**Figure 1B**) and across sections from the same sample (**Figure 1C**). In addition, different
177 samples ($r = 0.86-0.97$, $p < 2.2e-16$) and different sections from the same sample ($r = 0.87-0.98$, p
178 $< 2.2e-16$) had a high correlation in their average gene expression (**Figure 1D**). Such results
179 demonstrate that spatial transcriptomic information was reproducibly captured across samples
180 and sample sections with our miniature-ST method.

181

182 **Figure 1. Reproducibility of miniature-ST.** (A) Overview of the miniature-ST method

183 performed in this study, where cryosections from the posterior region of adult female *Brugia*

184 *malayi* worms containing ovary tissue, the beginning of the uterus with fertilized eggs and early
185 embryos, the digestive tract, and body wall analyzed using Spatial Transcriptomics (ST, Visium).
186 (B) Violin plots of the UMIs and unique genes per capture spot across the different worm
187 samples used in the study. (C) Violin plots of the unique molecules (UMIs) per spot and unique
188 genes per spot across different worm sample sections used in the study. (D) Pearson correlation
189 of the average gene expression between worm samples (top) and sections from the same sample
190 (bottom), p-value < 2.2e-16.

191

192 **Spatially distinct gene expression separation of digestive tract, body wall, and multiple
193 reproductive tissue regions**

194 Given the high reproducibility of the approach, we then performed unsupervised clustering
195 analysis of the miniature-ST data and identified four distinct clusters (**Figure 2A-B**). Differential
196 expression (DE) analysis identified marker genes for each cluster, with 36 DE genes in cluster 1,
197 82 DE genes in cluster 2, 58 DE genes in cluster 3, and 31 DE genes in cluster 4 that
198 significantly changed their expression in each cluster as compared to the other 3 clusters
199 (**Supplementary Table 2A**). The significantly upregulated marker genes (positive logFC,
200 p<0.05) in each cluster were annotated using a previous proteomics study²², which identified
201 each cluster as specifically enriched in a set of highly expressed tissue-specific markers
202 (Methods). Thus, we considered each cluster as representative of the tissue type for which the
203 cluster contained highly expressed tissue specific markers: digestive tract for cluster 1,
204 reproductive tissue for clusters 2 and 4, and body wall for cluster 3 (**Figure 2C, Supplementary
205 Table 2B-F**). Of note, cluster 3 was a mixed cluster with higher enrichment in body wall marker
206 genes (9.3%), but also contained markers for the reproductive tract (4.7%) (**Figure 2C**,

207 **Supplementary Table 2B-C**). When looking at the spatial distribution of cluster 3 on the tissue
208 sections (**Figure 2B**), we observed that the spots localized to both tissue types identified at the
209 gene expression level: the body wall (hypodermal chord, muscles) found towards the exterior
210 part of the worms, and the reproductive tissue located inside the worms. Thus, with a resolution
211 of 55 μ m we observed at both the spatial spot localization level and at the gene expression level a
212 tissue-specific separation by clustering.

213
214 To study how gene expression patterns localize to different morphological structures and to see if
215 there are specific patterns that arise across the entire worm region, we explored different cluster
216 marker gene spatial distributions in 3D by compiling all the consecutive sections from worm
217 sample BM2 (**Figure 2D**). By visualizing the expression patterns of marker genes for the
218 digestive tract, the reproductive tract, or the body wall, we could localize the corresponding
219 tissue region in the 3D reconstruction (**Supplementary Figure 1**). Furthermore, we performed
220 fixed term enrichment analysis to provide an overview of the genes and processes enriched in
221 each cluster (**Figure 2E, Supplementary Table 3A-B**). Cluster 1 contained marker genes
222 associated with the cell surface and interactions between cells and the environment. The most
223 significant DE marker genes for cluster 1 were ones with ribosomal function and its components,
224 ubiquitin functions, and Transthyretin-like family proteins ($p < 0.001$) (**Figure 2E**,
225 **Supplementary Table 3A-B**). Proteins annotated as Transthyretin-like proteins are associated
226 with the cell surface in *B. malayi* and Transthyretin is a protein that transports the thyroid
227 hormone thyroxine and Vitamin A (retinol). In terms of interactions between cells and the
228 environment, we observed a positive expression of genes encoding proteins involved in ion
229 binding activity, ion transmembrane transporter activity, sterol-binding and transfer activity, and

230 ShKT-domain containing proteins (**Figure 2E, Supplementary Table 3A-B**). The largest family
231 of proteins containing ShKT-line domain is found in worms *Caenorhabditis elegans*, *C.*
232 *briggsae*, *B. malayi*, *B. pahangi*, *Ancylostoma ceylanicum*, *S. mansoni*, and *Toxocara canis*^{32,33}.
233 ShKT-domain containing proteins from parasitic nematodes were recently shown to possess
234 immunomodulatory activity via the blockage of voltage-gated potassium channels on human
235 effector memory T cells³². It was also shown that some ShKT-like domain containing proteins
236 were highly expressed along the digestive tract in *C. elegans* adult worms³⁴. Additionally, the
237 expression of a marker for the digestive tract (cluster 1), Bm7941, changed throughout the entire
238 3D worm sample. Specifically, when moving through the 3D model of the worm sample, the
239 elevated expression of Bm7941 shifted from the anterior side to the posterior side, further
240 supporting cluster 1 as localizing to the digestive tract (**Supplementary Figure 1**,
241 **Supplementary Table 2D**).

242
243 According to a proteomic analysis, three genes (Bm2751, Bm8720, Bm6643) upregulated in
244 cluster 2 are markers for reproductive tissue (**Figure 2F, Supplementary Table 2A,E**). The
245 expression of these genes in cluster 2 was elevated in the middle, closer to the posterior region,
246 and then shifted towards the anterior part of the worm through the 3D model (**Supplementary**
247 **Figure 1, Supplementary Table 2E**). Cluster 2 covers a substantial internal part of the worm
248 and, according to highly expressed reproductive tissue markers, represents a tissue region
249 containing the ovaries and the uterus. We observed that more than 13% of all up-regulated genes
250 in this cluster are involved in processes associated with oogenesis and early embryogenesis
251 (**Supplementary Table 2A**). According to their *C. elegans* orthologs, these genes are part of the
252 following processes: meiotic chromosome segregation and organization (Bma-cul-2, Bma-cyb-

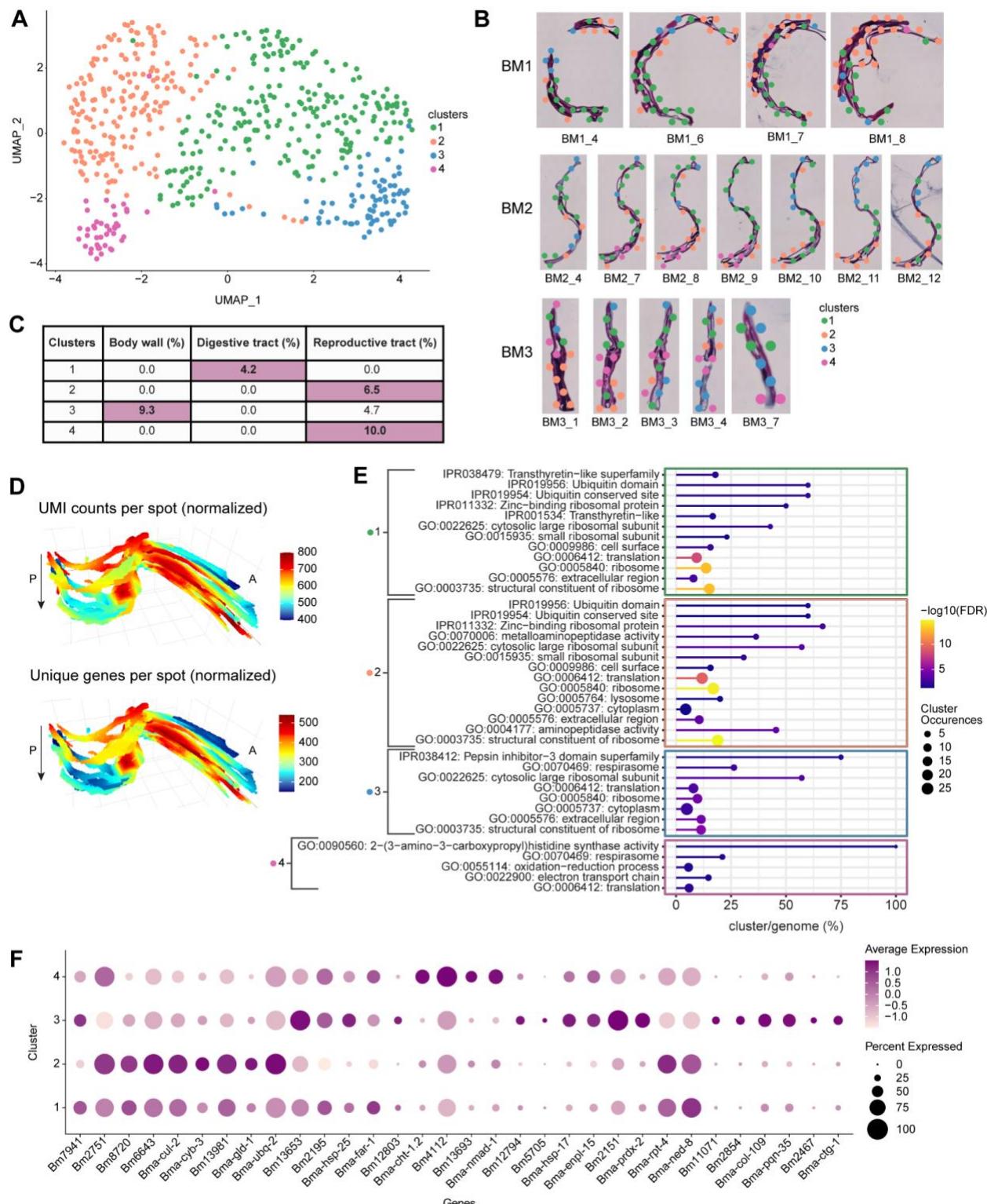
253 3), oocyte maturation (Bma-cyb-3), gamete generation (Bm13981), positive regulation of female
254 gonad development (Bma-gld-1), and polarity specification of the anterior-posterior axis (Bma-
255 ubq-2) (**Figure 2F, Supplementary Table 2A**). This pattern confirms that cluster 2 truly
256 represents the reproductive tissue of worms. Down-regulated genes in cluster 2 consist of heat-
257 shock proteins (Bm13653, Bm2195, Bma-hsp-25) and lipid binding and lipid droplet
258 disassembly processes (Bma-far-1, Bm12803) (**Figure 2F, Supplementary Table 2A**). During
259 oogenesis, lipids are stored for later use in rapid early embryogenesis. Therefore, the down
260 regulation of genes involved in the degradation of stored lipids indicates that cluster 2 is closer to
261 the ovaries than the uterus region of the reproductive tract.

262

263 Clusters 3 and 4 also contained markers for the reproductive tract but appeared to localize to
264 distinct reproductive tract tissue regions. Markers Bma-cht-1.2 and Bm4112 for cluster 4
265 partially overlapped the cluster 2 reproductive tract markers expression pattern; clusters 2 and 4
266 were located closer to one another both in UMAP space and spatially on the tissue sections
267 (**Figure 2A-B**). However, cluster 4 markers could represent a different reproductive tract region
268 than cluster 2 (**Figure 2F, Supplementary 2A,F**). After oocytes are fertilized in the adult female
269 worm reproductive tract, embryos build a shell mainly composed of chitin and develop into
270 microfilaria (a pre-larval worm stage) within this chitin shell. Bma-cht-1.2 is involved in chitin
271 binding activity and thus the region where Bma-cht-1.2 showed elevated expression may
272 represent the viaduct region of the reproductive tract, which connects the ovaries to the uterus; it
273 is where fertilization and very early formation of the embryos occur (**Supplementary Figure 1**,
274 **Supplementary Table 2F**). In addition, cluster 4 displayed significant enrichment of genes
275 encoding proteins with respiration activity, including the electron transport chain, respirosome

276 and oxidative-reduction process, histone (H4), and histone binding proteins synthesis (**Figure**
277 **2E, Supplementary Table 3A-B**). Histones and histone-binding proteins, such as those encoded
278 by Bm4112 and Bm13693, are important for developing embryos in the reproductive tract,
279 which corresponds to the region used in this study. The histone H4 (Bm4112) upregulated in
280 cluster 4 ($p=0.0004$) is an ortholog of *C. elegans* his-10, his-31, and his-64 (**Figure 2F**,
281 **Supplementary Table 2F**). In *C. elegans*, his-10 is responsible for chromatin formation and
282 involved in the defense response to Gram-negative bacteria and the innate immune response. In
283 cluster 4, we also observed higher expression of genes essential in oogenesis, such as Bma-
284 nmad-1, an ortholog of *C. elegans* nmad-1 (**Figure 2F, Supplementary Table 2A**). In *C.*
285 *elegans*, nmad-1 is involved in meiotic chromosome condensation, positive regulation of
286 organelle organization, and positive regulation of oviposition. Due to the upregulation of genes
287 involved in oogenesis and fast-dividing embryos in the early steps of embryogenesis, we
288 conclude that cluster 4 represents the region of the uterus with fast dividing cells of early
289 embryos and this region is adjacent via the viaduct to the ovaries (cluster 2).

290


291 Cluster 2 likely represents the ovarian part of the reproductive tract, cluster 4 the viaduct and
292 uterus portion of the reproductive tract, while cluster 3 contains markers (Bm12794, Bm5705)
293 that represent a third, distinct region of the reproductive tract (**Figure 2F, Supplementary Table**
294 **2C**). Bm12794 and Bm5705 show elevated expression in the posterior part of the worm, a
295 largely distinct pattern from the central, ovarian (cluster 2) and viaduct (cluster 4) reproductive
296 tract marker expression patterns (**Supplementary Figure 1**). The cluster 3 reproductive tract
297 region could correspond to the uterus. Like cluster 1 (digestive tract), cluster 3 includes a
298 substantial set of upregulated heat-shock proteins (Bm13653, Bma-hsp-17, Bma-hsp-25) (**Figure**

299 **2F, Supplementary Table 2A).** Activation of heat shock proteins in the cluster correlated with
300 an upregulation of unfolded protein binding activity (Bma-enpl-1) and peroxidase activity
301 (Bm2151, Bma-prdx-2). However, proteasome-mediated protein catabolic activity (genes: Bma-
302 rpt-4, Bma-cul-2) is downregulated in this cluster. Finally, cluster 3 showed a downregulation of
303 Bma-ned-8 (**Figure 2F, Supplementary Table 2A**). Likely active stress-related processes found
304 in cluster 3 result in the downregulation of Bma-ned-8. In *C. elegans*, ned-8 is involved in the
305 regulation of the apoptotic process through signal transduction by a p53 class mediator. As
306 cluster 3 also has markers of the reproductive tract, we assumed that ned-8 is more involved in
307 this tissue. It was shown that elimination of wBm from *B. malayi* initiates programmed cell death
308 in the germline in ovaries and in the embryos in the uterus¹⁰. The induction of apoptosis was
309 determined through the increase of expression of the cell death protein-3 (*ced-3*) gene, and the
310 increase in the amount of inactive and active (cleaved) CED-3 protein forms in antibiotic treated
311 *B. malayi* worms as compared to untreated (control) worms¹⁰. In addition, cluster 3 had 2x the
312 number of markers for the body wall (Bm11071, Bm2854, Bma-hsp-17) than markers for the
313 reproductive tract (**Figure 2C,F, Supplementary Table 2B-C**), where the body wall consists of
314 muscle, cuticule, hypodermal cells, and nerve cells. These body wall markers (Bm11071,
315 Bm2854, Bma-hsp-17) showed elevated expression in the outer areas of the worm in the first and
316 last sections of the stack (**Supplementary Figure 1**), an expected expression pattern considering
317 the first and last sections will likely contain the outermost portions of body wall when collecting
318 longitudinal sections. Furthermore, Bm11071 and Bm2854 encode predicted cuticle structural
319 constituent proteins as the cuticle forms the outermost region of the body wall, their expression
320 pattern further supports cluster 3 as partially localizing to the body wall region of the worm. In
321 addition to the overexpression of genes that are structural constituents of the cuticle (Bm2854,

322 Bma-col-109, Bm11071), Bma-pqn-35, a gene ortholog of a *C. elegans* gene expressed in
323 muscle cells, was also overexpressed in cluster 3 (**Figure 2F, Supplementary Table 2A**). The
324 upregulation of genes encoding cuticle and muscle-related genes further supports the partial
325 localization of cluster 3 to the body wall tissue region.

326
327 We observed an elevation of expression of Bm2467 and Bma-ctg-1 genes in cluster 3, indicating
328 the increase of fatty acid metabolic processes in the body wall region of the parasite as Bm2467
329 is predicted to enable 3-hydroxyacyl-CoA dehydrogenase activity and enoyl-CoA hydratase
330 activity, and Bma-ctg-1 is a lipid binding protein (**Figure 2F, Supplementary Table 2A**). As the
331 body wall consists of high metabolic tissues, such as muscle and hypodermal cells, the higher
332 activity of metabolic processes is expected in these regions. Interestingly, metabolic processes
333 for lipids/fatty acids turnover were the most significant. Recently, it was shown that *Wolbachia*
334 residing in the hypodermal cells of the parasites induces and uses the glycolytic pathways^{19,35}.
335 We hypothesize that fatty acid metabolism may also be involved in providing carbohydrates to
336 symbiotic bacteria. Overall, the clustering analysis facilitated an exploration of nuanced spatial
337 gene expression patterns, as we could spatially pinpoint the expression of genes and pathways
338 that were differentially regulated in the digestive tract, the body wall, and multiple reproductive
339 tract tissue regions.

340

341

342 **Figure 2. Tissue region specific spatial gene expression patterns.** (A) UMAP showing the
 343 four clusters of *Brugia malayi* transcriptome data. (B) Spatial distribution of the four clusters on

344 tissue sections from *B. malayi* samples. Magnification 20x. (C) Percent of differential expressed
345 marker genes per cluster enriched for specific tissue regions. (D) 3D model of the UMIs and
346 unique genes per spot across worm BM2. Magnification 20x. A: Anterior, P: Posterior, arrow
347 indicates first to last section through the worm. (E) Significantly overrepresented functional
348 terms for each cluster (FDR<0.05) (F) Dotplot depicting expression of *B. malayi* cluster marker
349 genes across the different clusters.

350

351 **Spatial localization of key *B. malayi* glycolytic enzyme genes**

352 We next focused specifically on the spatial expression patterns of key glycolytic enzyme-related
353 genes that are important in the *B. malayi* - *Wolbachia* mutualistic relationship. Pyruvate is one of
354 the most essential metabolites for prokaryotic cells. *Wolbachia* has the full complement of genes
355 that can use pyruvate for gluconeogenesis and for energy metabolism via the tricarboxylic acid
356 cycle (TCA cycle)³⁵. However, *Wolbachia* is missing some key enzymes that are needed for
357 making pyruvate¹⁹. In previous studies, we showed that glycolysis and other pathways that
358 produce pyruvate in filarial worms (such as *B. malayi*) provide pyruvate to *Wolbachia*^{19,35}.
359 Glycolytic enzymes were shown to play an important role in maintaining the mutualistic
360 association between wBm and *Brugia* worms. We analyzed the genes involved in *B. malayi*
361 pyruvate metabolism between clusters and between different tissues of the worm. We
362 hypothesized that we could define the source and location of the pyruvate used by *Wolbachia*.
363 We looked specifically for genes associated with glycolysis (the pathway that produces
364 pyruvate), gluconeogenesis (the pathway where pyruvate is used to synthesize glucose, and
365 precursors for nucleotide biosynthesis), lactate dehydrogenase (where lactate is converted to

366 pyruvate and the reverse), and enzymes that convert cysteine amino acids to pyruvate

367 (**Supplementary Table 4**).

368

369 Although many glycolysis genes were captured by our miniature-ST method and can be explored

370 in our shiny app (<https://giacomellolabst.shinyapps.io/brugiaST-shiny/>), we focused on three

371 genes (Bma-aldo-1, Bm5699, Bma-ldh-1) that were found among our cluster marker DE genes

372 (**Figure 3A, Supplementary Table 2A**). Bma-aldo-1(aldolase-1) and Bm5699 (glyceraldehyde

373 3-phosphate dehydrogenase) encode an enzyme for glycolysis, and showed increased expression

374 in the digestive tract (cluster 1) and body wall (cluster 3) clusters, but were downregulated in the

375 reproductive tract clusters (clusters 2 and 4) (**Figure 3A-C, Supplementary Table 2A**). wBm

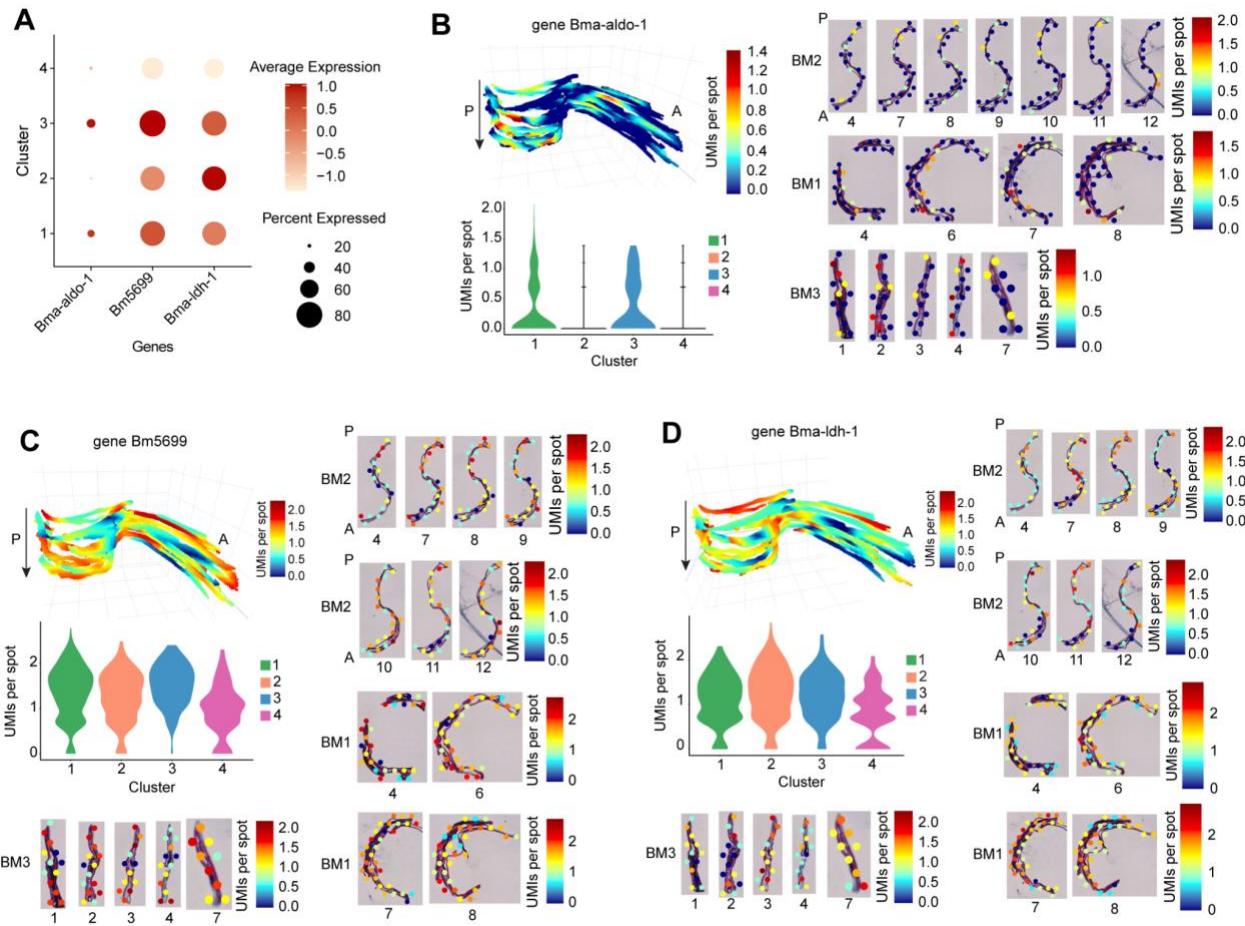
376 are located in the hypodermal cells (part of the body wall) and in the ovaries, oocytes and

377 developing embryos within the uterus. However, it is most abundant in the lateral chord (part of

378 the body wall) as compared to the oocytes and embryo, where few wBm are found. We suspect

379 that presence of *Wolbachia* in the body wall, where bacterial load is at its highest, could induce

380 the expression of glycolytic enzymes, resulting in the production of pyruvate thus ensuring


381 bacterial survival; this is not the case in reproductive tissue^{16,19,35}. The third gene, Bma-ldh-1

382 (lactate dehydrogenase or LDH) showed elevated expression in cluster 2 (reproductive tract) and

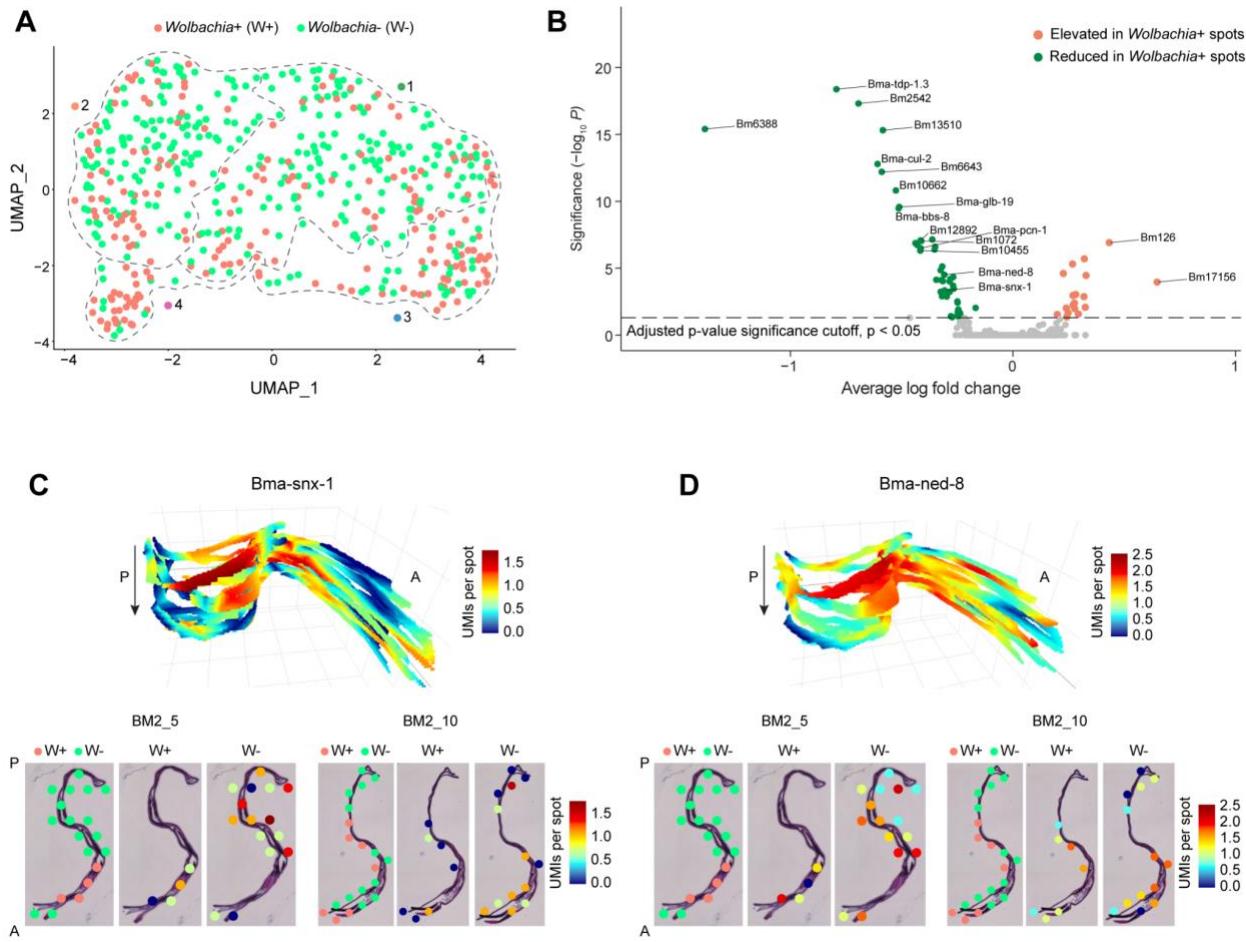
383 was downregulated in cluster 3 (reproductive tract and body wall) (**Figure 3A,D**,

384 **Supplementary Table 2A**). LDH converts lactate to pyruvate and pyruvate to lactate, which

385 may be a reason for the differential expression of this enzyme between clusters 1 and 3.

387 **Figure 3. *B. malayi* glycolytic enzyme genes spatial distribution.** (A) Dotplot depicting
388 expression of glycolysis genes across the different clusters. (B-D) 3D model of gene expression
389 in sample BM2, 2D gene expression across select clusters from all 3 samples, and gene
390 expression distribution in a violin plot across the clusters for glycolysis genes Bma-aldo-1 (B),
391 Bm5699 (C), and Bma-ldh-1 (D). Magnification 20x. A: Anterior, P: Posterior, arrow indicates
392 first to last section through the worm.

393


394 **Co-localization of *B. malayi* genes in *Wolbachia*+ compared to *Wolbachia*- regions of the
395 tissue**

396 When capturing polyadenylated transcripts using the miniature-ST method, we detected
397 unspecific capture of *Wolbachia* tRNA and rRNA and inferred that this signal would be
398 indicative of wBm localization. We ran our miniature-ST library reads against the *Wolbachia*
399 tRNA and rRNA gene sequences, as those are typically the most highly abundant transcripts in
400 an organism. We detected at least 1 UMI from 33 tRNA/rRNA *Wolbachia* genes across 206
401 spots (39.5% of spots) in the worm samples (**Figure 4A**). We colocalized *B. malayi* gene
402 expression in relation to *Wolbachia* by determining the *B. malayi* DE genes between spots
403 containing *Wolbachia* (*Wolbachia+*) and spots lacking *Wolbachia* (*Wolbachia-*) in worms and
404 identified 65 DE genes ($p < 0.05$) with 48 downregulated genes and 17 upregulated genes (**Figure**
405 **4B, Supplementary Table 5**). The presence of *Wolbachia* in the tissue is associated with a
406 significant downregulation in expression of *B. malayi* genes that are predicted to encode proteins
407 with functions that include protease and peptidase activity, endopeptidase activity, and
408 proteosome-mediated protein catabolic process. This results in the potential reduction of
409 proteolysis in *Wolbachia+* tissue of female worms. We hypothesized that the inhibition of
410 proteolysis in *Wolbachia+* tissue protects bacterial proteins, including those that are involved in
411 the interaction with the host.

412

413 Across the downregulated genes in *Wolbachia+* spots, two genes caught our attention: Bma-snx-
414 1 and Bma-ned-8 (**Figure 4B-D, Supplementary Table 5**). Bma-snx-1 is an ortholog of *C.*
415 *elegans* snx-1, and it is predicted to enable phosphatidylinositol binding activity (SNX). SNX
416 proteins promote phagosome-lysosome fusion and are involved in apoptosis and autophagy-
417 mediated elimination of apoptotic cells^{36,37}. The inhibition of SNX proteins in *Wolbachia+* tissue
418 indicates that *Wolbachia* could be suppressing the late steps of autophagy and

419 endosomal/phagosomal degradation by blocking their fusion with lysosomes. *Wolbachia* itself is
420 surrounded by a host-derived vacuole and can be recognized as a phagosome in the cytoplasm of
421 host cells³⁸. Therefore, SNX proteins could play a role in protecting *Wolbachia* in the cytoplasm
422 of eukaryotic cells. Bma-ned-8, an ortholog of *C. elegans* ned-8, contains ubiquitin-like domains
423 and is also involved in regulation of the apoptotic process during embryogenesis of *C. elegans*
424 worms³⁹. As these genes are downregulated in tissue with *Wolbachia*, we hypothesized that the
425 presence of *Wolbachia* can decrease apoptotic processes in developing embryos and ned-8 plays
426 a key role in this regulation (**Figure 4B-D, Supplementary Table 5**). It is known that the
427 elimination of *Wolbachia* increases intensive apoptosis in germ cells and in developing embryos
428 of antibiotic-treated females (7 days treatment)¹⁰. However, elimination of the bacteria reduces
429 support of worm biological processes and, consequently, could induce programmed cell death in
430 the reproductive system of the worms. It is also possible that the elimination of *Wolbachia* has a
431 direct effect on the expression of genes that regulate apoptotic processes in *B. malayi* worms.

432

433 **Figure 4. Co-localization of *B. malayi* genes in *Wolbachia*+ versus *Wolbachia*- spots. (A)**
434 UMAP showing spots with presence (*Wolbachia*+/W+) or absence (*Wolbachia*-/W-) of
435 *Wolbachia*. Dotted lines outline the different clusters from Figure 2A. (B) Volcano plot showing
436 the differentially expressed genes in *Wolbachia*+ versus *Wolbachia*- spots. (C-D) 3D model and
437 2D images of gene expression in sample BM2 for two differentially expressed genes, Bma-snx-1
438 (C) and Bma-ned-8 (D), between *Wolbachia*+ (W+) and *Wolbachia*- (W-) spots. Magnification
439 20x. A: Anterior, P: Posterior, arrow indicates first to last section through the worm.

440

441

442

443 **Discussion**

444 In this work, we present miniature-ST, a method to analyze the spatial transcriptome of samples
445 on the micrometer scale. We modified embedding, cryosectioning, fixation and staining steps to
446 enable the analysis of the spatial structures composing small pathogens, such as parasitic filarial
447 worms, that cause a variety of infectious diseases. Our spatially-resolved characterization of
448 filarial parasitic nematode *Brugia malayi*'s transcriptome in a posterior region of the worm, in
449 addition to the spatial capture of its endosymbiont *Wolbachia*, unveiled 2D and 3D tissue-
450 specific gene expression patterns and the co-localization of *B. malayi* genes to specific tissue
451 regions containing *Wolbachia*.

452

453 We applied our miniature-ST approach to visualize the spatial localization of *B. malayi* genes
454 along a region in the adult female worms (contains ovary tissue, the beginning of the uterus with
455 fertilized eggs and early embryos, part of the digestive tract, and body wall) in a series of 30
456 cryo-sections across three different worms. We captured 66% of the genes in the annotated *B.*
457 *malayi* genome with similar expression profiles across samples and sections, demonstrating the
458 ability of the miniature-ST method to reproducibly capture a significant portion of the worm's
459 transcriptome with spatial resolution. We identified an enriched set of tissue specific markers –
460 annotated according to a previous proteomics study²² – in each cluster, indicating each cluster
461 represented a distinct tissue type: digestive tract for cluster 1, reproductive tissue for clusters 2
462 and 4, and body wall for cluster 3. By constructing a 3D model of all consecutive sections
463 throughout an entire worm sample, we observed that these tissue-specific gene expression
464 patterns also shifted in the third dimension/z-plane, from anterior to posterior, through the worm
465 region. Furthermore, fixed term enrichment analysis revealed genes and processes enriched in

466 each cluster/tissue. Specifically, the analysis showed the expression of genes associated with the
467 cell surface, cuticle, and interactions between cells and the environment in the cluster 1 for the
468 body wall; cluster 2 for the reproductive tissue contains more than 13% of all up-regulated genes
469 that are involved in processes associated with oogenesis and early embryogenesis. Expression of
470 marker genes for both clusters also shifted through the z-plane of the 3D model of the worm,
471 further supporting the cluster's tissue specific localization. In addition, we showed the spatial
472 localization of key *B. malayi* glycolytic enzyme genes that are essential for *Wolbachia*-worms
473 symbiosis^{19,35}. For example, two glycolytic enzyme genes (Bma-aldo-1(aldolase-1) and Bm5699
474 (glyceraldehyde 3-phosphate dehydrogenase)) were observed to be upregulated in *Wolbachia*
475 abundant tissue regions and downregulated in more *Wolbachia* deficient tissue regions, which
476 led us to hypothesize that *Wolbachia* may induce the expression of glycolytic enzymes.

477 Increased expression of glycolytic enzymes results in the production of pyruvate, of which
478 *Wolbachia* is dependent on *B. malayi* for, and thus could be a mechanism to ensure bacterial
479 survival. By spatially localizing key *B. malayi* - *Wolbachia* relationship genes, we provide a new
480 spatial, three dimensional context to the *B. malayi* - wBm relationship. Miniature-ST facilitates
481 the separation of different tissue regions, opening up the possibility of exploring genes and
482 pathways of interest within the distinct spatial structures and across the three dimensional
483 reconstruction of these parasitic worms.

484

485 To further explore the *B. malayi* - wBm relationship, we identified regions of the tissue
486 containing *Wolbachia* (*Wolbachia*+ spots), leveraging unspecific capture of *Wolbachia*
487 transcripts by poly-d(T) capture, and explored how *B. malayi* genes are modulated in different
488 tissue regions in the presence and absence of *Wolbachia*. Our co-localization analysis unveiled a

489 potential reduction of proteolysis in the *Wolbachia*+ tissue of the female worms, protecting
490 bacterial proteins from degradation and thus maintaining the bacterial interaction with the *B.*
491 *malayi* host. Moreover, our data illuminated new insights into understanding the role of
492 autophagy in regulation of *Wolbachia*-host symbiosis³⁸. Autophagy is a key host intracellular
493 defense mechanism that regulates the bacterial population abundance inside host cells. Co-
494 localization analysis of *B. malayi* genes suggests that *Wolbachia* could be suppressing the late
495 steps of autophagy and endosomal/phagosomal degradation by blocking phagosomal fusion with
496 lysosomes. Specifically, SNX proteins (promote phagosomal fusion with lysosomes, autophagy,
497 and apoptosis) expression was downregulated in *Wolbachia*+ spots, and thus could play a role in
498 protecting *Wolbachia* in the cytoplasm of eukaryotic cells. Even though our capture of
499 *Wolbachia* was unspecific, we could spatially distinguish worm tissue regions containing
500 *Wolbachia* and elucidate the regulation of *B. malayi* genes in those areas with miniature-ST.
501 Furthermore, our 3D model further refined the spatial distribution of the genes involved in these
502 molecular processes, providing new, multidimensional spatial context to their expression in
503 relation to *Wolbachia*. Future studies exploring the spatial co-localization of *B. malayi* gene
504 expression in relation to *Wolbachia* could further address the symbiotic relationship of these two
505 organisms. For example, future experiments will involve studying antibiotic treated worms to
506 understand how antibiotic-induced *Wolbachia* clearance impacts gene expression of the worms.
507 An ideal next step would be to directly identify *Wolbachia* genes in the worms to facilitate more
508 in-depth co-localization studies, especially in response to antibiotic treatment.
509
510 The miniature-ST method could be extended to the full *B. malayi* adult worm or to other
511 developmental stages. Additional studies could include parasitic worms within human tissue,

512 providing a spatial exploration of the parasite actively infecting host tissue and opening up the
513 possibility of studying multilevel organism co-localization (*Wolbachia* endosymbionts inside the
514 parasite and the parasite inside human host tissue). Limitations of the study include a spatial
515 resolution of 55 μm , which does not yet allow single cell resolution. Imaging based spatial
516 approaches offer the possibility of high, even subcellular, resolution; however, such methods
517 focus on a specific set of target genes, making it difficult to design gene probes for species with a
518 poorly annotated reference. ST, as a sequencing-based approach, is highly suitable for species
519 that are not well annotated. Although working with small samples poses technical challenges, an
520 advantage is the possibility of collecting all sections through the entire worm to construct a 3D
521 model of the gene expression patterns throughout the entire worm sample. Additionally, 3D
522 reconstruction of spatial gene expression throughout the length of an entire worm, all tissue types
523 included, would provide a wealth of information to explore. A 3D model not only confirms the
524 localization of certain expression patterns to specific morphological regions, but also can provide
525 new insights based on how these patterns shift throughout the entire specimen. Constructing a
526 tissue atlas from small-scaled tissue is also economically advantageous, since all tissue sections
527 can be collected for one sample on a single Visium capture area. The spatial gene expression
528 information we collected across all sections from *B. malayi* is presented in a shiny app
529 (<https://giacommellobst.shinyapps.io/brugiaST-shiny/>), offering the possibility for further
530 exploration.

531
532 In conclusion, we present miniature-ST, a method to unlock the potential for exploratory studies
533 of small infectious pathogens at a spatial scale. We provide the spatial characterization of *B.*
534 *malayi* gene expression in a region of adult female worms, an important step in being able to

535 spatially resolve micro-scale disease-causing pathogens that have their own spatial tissue
536 structure. We not only spatially resolved the parasitic worm *B. malayi*, but also its endosymbiotic
537 bacteria, *Wolbachia*, opening up the possibility of exploring how *B. malayi* gene expression is
538 spatially co-localized to *Wolbachia*. By spatially capturing the *B. malayi* transcriptome, this
539 study forges a new path for studies that aim to spatially resolve gene expression information in
540 other parasitic worms responsible for human infectious diseases. We envision our miniature-ST
541 approach can be readily applied to other small pathogenic worms, providing new insights into
542 the spatial organization of gene expression in these instigators of a multitude of infectious
543 diseases.

544

545 **Methods**

546 **Ethics statement**

547 All animal work conducted by the NIH/NIAID Filariasis Research Reagent Resource Center
548 (FR3) followed the national and international guidelines outlined by the National Institutes of
549 Health Office of Laboratory Animal Welfare and was approved by the University of Georgia
550 Athens.

551 **Parasite material and treatment**

552 *B. malayi* parasites recovered from the peritoneal cavity of infected gerbils (*Meriones*
553 *unguiculatus*) were obtained from FR3, University of Georgia, Athens. Adult *B. malayi* female
554 worms were placed in 7 ml of complete culture medium (RPMI-1640 supplemented with 10%
555 FBS, 100 U/mL penicillin, 100 mg/mL streptomycin, 2 mM L-glutamine), 2 worms per well in
556 6-well plate, and incubated at 37°C under 5% CO₂ conditions.

557 Worms were incubated in the media for 2-3 days to assure they were alive, then worms were
558 washed 3 times in PBS and fixed in 100% cold methanol (-20°C) for 5 min. Fixed samples were
559 briefly stained with hematoxylin. This step is required to facilitate the visualization of the worms
560 in an OCT block in future steps. A region of interest was then cut (**Supplementary Figure 2**)
561 and placed in a vinyl specimen mold followed by the addition of OCT compound, and
562 immediately frozen. Blocks were stored at -80°C.

563 **Total RNA extraction - RNA quality**

564 To verify the RNA quality of the *B. malayi* samples, we extracted RNA from a portion of the
565 worm. Methanol fixed, OCT-embedded *B. malayi* adult female tissue (see section “Parasite
566 material and treatment”) was cryosectioned longitudinally to 8 μ m thickness with a CryoStar
567 NX70 cryostat (ThermoFisher). All sections (~11-16 sections per block) throughout 2-3
568 embedded worm pieces were collected in Lysing Matrix D tubes (MP Biomedicals, 2mL, Cat
569 Ref. 6913100). The extraction was done with replicates of the originally embedded blocks and
570 re-embedded blocks where the worm piece was re-embedded onto flattened OCT on a cryo
571 chuck from the same batch as those used for Spatial Transcriptomics. The sections in Lysing
572 Matrix D tubes were stored at -80°C overnight. Total RNA was extracted using the RNeasy Plus
573 Mini Kit (Qiagen, Cat No. 74136) with the modifications that 350 μ l Buffer RLT Plus + β -
574 mercaptoethanol was added to each Lysing D matrix tube (5 μ l of β -mercaptoethanol (2-
575 Mercaptoethanol, Sigma-Aldrich, M6250), added to 500 μ l of Buffer RLT Plus (from kit) per
576 sample). The samples were run in a FastPrep-24 5G (MP Biomedicals) for 40 seconds at 6.0
577 m/sec, centrifuged for 5 min at 12000 rpm. The water phase was collected and transferred to a
578 gDNA Eliminator spin column (provided in the kit) that was sealed with parafilm and

579 centrifuged for 30 s at 10000 rpm. The flow-through containing RNA and proteins was
580 transferred to an eppendorf tube (provided by kit); the beads were added to the same gDNA
581 Eliminator column, and the column sealed with parafilm and centrifuged for 30 s at 10000 rpm.
582 The flow-through containing RNA and proteins was then transferred to the previous aliquot in
583 the eppendorf tube and 250 μ l 96-100% ethanol (Ethanol 96%, VWR, #20823.290 and Ethanol
584 absolute, VWR, #20816.298) was added. The manufacturer's instructions were then followed
585 from the RNeasy Plus Mini Handbook (09/2020) protocol for tissue samples from step 6,
586 including the optional step 10, through step 11 and the RNA was eluted in 10 μ l RNase free
587 water (provided by kit). The concentration of extracted total RNA was determined with the RNA
588 HS Qubit assay (Invitrogen by Thermo Fisher Scientific, REF Q32852) following the
589 manufacturer's instructions. Total RNA was diluted, when needed, to between 2-5ng and RIN
590 values determined using the Agilent RNA 6000 Pico Kit following the manufacturer's
591 instructions. The originally embedded samples showed an RNA quality of 6.2-7.9 RIN and the
592 re-embedded samples showed an RNA quality of 7.3-8.4 RIN, demonstrating that the RNA
593 quality of worms undergoing re-embedding treatment was not impacted by the re-embedding
594 procedure.

595 **Spatial Transcriptomics**

596 **Tissue collection**

597 Methanol fixed, OCT-embedded *Brugia malayi* adult female worm pieces (see section "Parasite
598 material and treatment") were cryosectioned longitudinally to 8 μ m thickness with a CryoStar
599 NX70 cryostat (ThermoFisher). Samples BM1 and BM2 were sectioned with the re-embedding
600 technique described in the section "Total RNA extraction - RNA quality" while sample BM3 was

601 sectioned from the original OCT block. We collected as many sections as possible (30 total) from
602 the 3 worm samples (BM1, BM2, and BM3) onto Visium Spatial Gene Expression Slides (10X
603 Genomics, PN: 2000233). Slides containing tissue sections were stored at -80°C overnight before
604 experimental processing.

605 **Modified H&E Staining**

606 Spatial Transcriptomics on *B. malayi* adult female reproductive tissue was performed as specified
607 by the 10X Genomics Visium Spatial Gene Expression User Guide³⁰, with the following
608 described modifications. Slides with tissue sections were removed from the -80°C, placed on dry
609 ice in a sealed container, incubated at 37°C for 5 minutes in a Thermoblock (ThermMixer with
610 Thermoblock, Eppendorf) with a heated lid (ThermoTop, Eppendorf), and then placed into an
611 ArrayIT metallic hybridization cassette (ArrayIt, AHC1X16) for steps 1.2.d to 1.2.x of the
612 protocol. Step 1.2.b was prepared as stated. For step 1.2.d, 75µL of isopropanol (Millipore
613 Sigma, I9516-25ML) was added to each tissue section well, making sure each tissue section was
614 uniformly covered by the solution. Step 1.2.e was performed as stated. Instead of steps 1.2.f-
615 12.g, isoproporanol (Millipore Sigma, I9516-25ML) was removed from each well and then each
616 section was washed with 75µL of RNase and DNase free MQ water, and the wash was repeated
617 two times for a total of three washes. Step 1.2.h was performed as stated. The slide was then
618 warmed at 37°C for 1.5 minutes in a Thermoblock (ThermMixer with Thermoblock, Eppendorf)
619 with a heated lid (ThermoTop, Eppendorf). For step 1.2.i, 75µL of Mayer's Hematoxylin
620 (Agilent Technologies, S330930-2) was added to each tissue section well, making sure each
621 tissue section was uniformly covered by the solution. For step 1.2.j, the slide was incubated for 3
622 minutes at room temperature. Instead of steps 1.2.k-1.2.o, Mayer's Hematoxylin (Agilent

623 Technologies, S330930-2) was removed from each well and then each section was washed with
624 75 μ L of RNase and DNase free MQ water, and the wash was repeated three times for a total of
625 four washes. The slide was then air dried and warmed at 37°C for 1.5 minutes in a Thermoblock
626 (ThermMixer with Thermoblock, Eppendorf) with a heated lid (ThermoTop, Eppendorf). For
627 step 1.2.p, 75 μ L of Dako Bluing Buffer (Agilent Technologies, CS70230-2) was added to each
628 tissue section well, making sure each tissue section was uniformly covered by the solution. For
629 step 1.2.q, the slide was incubated for 1 minute at room temperature. Instead of steps 1.2.r-1.2.t,
630 the Dako Bluing Buffer (Agilent Technologies, CS70230-2) was removed from each well and
631 then each well washed with 75 μ L of RNase and DNase free MQ water, and the wash was
632 repeated two times for a total of three washes. The slide was air dried and then warmed at 37°C
633 for 1.5 minutes in a Thermoblock (ThermMixer with Thermoblock, Eppendorf) with a heated lid
634 (ThermoTop, Eppendorf). For step 1.2.u, 75 μ L of Eosin Mix (100 μ L Eosin Y Solution + 900 μ L
635 Tris-Acetic Acid Buffer (0.45 M, pH 6.0)) was added to each tissue section well, making sure
636 each tissue section was uniformly covered by the solution. For step 1.2.v, the slide was incubated
637 for 45 seconds at room temperature. Instead of steps 1.2.w-1.2.y, the Eosin mix (100 μ L Eosin Y
638 Solution + 900 μ L Tris-Acetic Acid Buffer (0.45 M, pH 6.0)) was removed from each well and
639 then each well washed with 75 μ L of RNase and DNase free MQ water, the wash was the
640 repeated two times for a total of three washes. The slide was then removed from the ArrayIT
641 metallic hybridization cassette (ArrayIt, AHC1X16) and air dried. Step 1.2.z was performed as
642 stated. A cover glass (Menzel-Gläser, PN: 12392108, 22x22mm #1, 631-1339) was mounted on
643 the slide with 280 μ L of 85% glycerol (Sigma, 49767-100ML).

644 **Microscope & Imaging**

645 For imaging, first an overview 20x image was taken, followed by each individual tissue section
646 imaged with 10 z-stack planes, 2 μ m apart at 20x. Hematoxylin & Eosin brightfield images were
647 acquired with a Zeiss AxioImager.Z2 VSlide Microscope using the Metasystems VSlide
648 scanning system with Metafer 5 v3.14.179 and VSlide software. The microscope had an upright
649 architecture, and used a widefield system; a 20x air objective with the numerical aperture (NA)
650 0.80 was used. The camera was a CoolCube 4m with a Scientific CMOS (complementary metal-
651 oxide-semiconductor) architecture and monochrome with a 3.45 x 3.45 μ m pixel size. All
652 brightfield images were taken with a Camera Gain of 1.0 and an Integration Time/Exposure time
653 of 0.00004-0.00008 seconds.

654 **cDNA synthesis & Library Construction**

655 After imaging, the 10X Genomics Visium Spatial Gene Expression User Guide³⁰ protocol was
656 resumed from step 2.1.a using a Visium Spatial Gene Expression assay (10X Genomics) kit, with
657 the modifications specified here. For step 2.1.e, the tissue sections were permeabilized for 2
658 minutes. For step 4.2.d, 19 cycles were used to amplify the cDNA for each sample subarray. For
659 step 5.5.d, 14 cycles were used for the Sample Index PCR for BM1 and BM2 samples and 15
660 cycles for sample BM3.

661 **Sequencing**

662 The average library length was assessed using the BioAnalyzer DNA High Sensitivity kit
663 (Agilent, 5067-4626) on an Agilent 2100 BioAnalyzer. Library concentration was determined
664 with a Qubit dsDNA BR Assay kit (Thermo Fisher Scientific, Q32850). Libraries were diluted to

665 2nM, pooled, and sequenced on an Illumina NextSeq 2000 with paired-end, dual index
666 sequencing. Read 1 was sequenced for 28 cycles and Read 2 was sequenced with 150 cycles.
667 Run type and parameters following those specified in the Visium Spatial Gene Expression User
668 Guide sequencing instructions³⁰.

669 **Data Analysis**

670 **Data Pre-processing**

671 TSO adaptor sequences from the 5' end of transcripts and poly(A) sequences from the 3' end of
672 transcripts in the Read 2 raw fastq sequence files were trimmed using cutadapt (v2.3) with a
673 custom bash script (<https://github.com/ludvigla/VisiumTrim>). TSO sequences were defined as a
674 non-internal 5' adapter with an error tolerance of 0.1, poly-A homopolymers were defined as a
675 regular 3' adapter of 10 As with an error tolerance of 0, and the minimum overlap was defined as
676 5 bp. Sequence quality was evaluated before and after trimming with FastQC v0.11.8⁴⁰ and
677 MultiQC v1.8⁴¹. 10X Genomics Loupe Browser v4.0.0 was used to manually select spots under
678 tissue sections in the H&E jpeg images. Spots under any portion of tissue were selected to
679 maximize the initial number of spots in the dataset. The resulting json files can be found in the
680 Mendeley dataset specified under “Data Availability”.

681 **Data Processing - Generation of raw counts**

682 Genomic sequence and annotation files for *B. malayi* were acquired from WormBase: WBPS14
683 and for *Wolbachia* were acquired as RefSeq: NC_006833.1. The *Brugia malayi* genome GFF3
684 annotation file (brugia_malayi.PRJNA10729.WBPS14.annotations.gff3.gz) was converted to
685 GTF using gffread (with parameters -T -o) from cufflinks (v2.2.1); the GTF file was then filtered

686 to remove all history exons (any exon labeled “history” in the second column of the GTF file).
687 The *Wolbachia* gtf annotation file (GCF 000008385.1 ASM838v1 genomic.gtf.gz) was used to
688 map to *Wolbachia* tRNA and rRNA genes to visualize areas of *Brugia malayi* that contained
689 *Wolbachia*. The *Wolbachia* gtf annotation file (GCF 000008385.1 ASM838v1 genomic.gtf.gz)
690 was modified to change “CDS” in column 3 to “exon” to include all genes in the index. 10X
691 Genomics Space Ranger v1.2.0 was used to build a combined *Brugia malayi-Wolbachia*
692 reference with spaceranger mkref and specifying each organism genome fasta file and annotation
693 gtf file as inputs. TSO and poly(A) adaptor trimmed paired fastq files were processed with 10X
694 Genomics Space Ranger v1.2.0 with spaceranger count and inputting the corresponding
695 Hematoxylin & Eosin (H&E) images in jpeg format, the custom *Brugia malayi-Wolbachia*
696 reference, and the image manual alignment json file output from 10X Genomics Loupe Browser
697 v4.0.0.

698 **Quality Control - Data Filtering**

699 The filtered count matrices (filtered_feature_bc_matrix.h5) and tissue H&E images output from
700 Space Ranger v1.2.0 were analyzed in R (v4.0.3) *Wolbachia* and *B. malayi* genes were separated
701 into different count matrices. *B. malayi* gene types were based on gene annotations (these
702 annotation files can be found in the github repository specified under “Code availability”).
703 Protein coding genes were defined as “protein coding” in the “biotype” column of the annotation
704 file. Mitochondrial and ribosomal protein coding genes were defined by the “annotation”
705 column. The *B. malayi* genes were filtered to contain only protein coding genes, and
706 mitochondrial and ribosomal protein coding genes were filtered out. The *B. malayi* data was
707 further filtered by removing spots with fewer than 30 unique genes, fewer than 50 and greater

708 than 10,000 unique transcript molecules (UMIs), more than 3% of UMIs belonging to
709 mitochondrial genes, and more than 30% of UMIs belonging to ribosomal genes and removing
710 genes with less than 1 spot per gene and less than 1 unique transcript molecule (UMI) count per
711 gene. The *Wolbachia* count matrix was filtered to remove the same spots as were filtered out
712 from the *B. malayi* count matrix. Data filtering was performed using the *STUtility* package
713 (v1.0)⁴² that works on top of the toolkit for single cell analysis Seurat (v3.2.3)⁴³ in R (v4.0.3).

714 **Data Normalization**

715 Each worm sample was split into its own filtered count matrix for normalization. Normalization
716 was performed using the SCTransform function from Seurat with default parameters except
717 unique gene counts regressed out and not returning only variable genes (vars.to.regress =
718 "nFeature_RNA", return.only.var.genes = FALSE). After normalization, individual sample count
719 matrices were integrated using Seurat functions SelectIntegrationFeatures with default
720 parameters except "nfeatures = 7000" to acquire the integration features, followed by the
721 PrepSCTIntegration Seurat function with default parameters. MergeSTData was run with default
722 parameters to merge the normalized count matrices into a single object. Normalization was
723 performed using the *STUtility* package (v1.0)⁴² that works on top of the toolkit for single cell
724 analysis Seurat (v3.2.3)⁴³ in R (v4.0.3).

725 **Clustering Analysis**

726 On the SCTransform normalized count matrix, dimensionality reduction was performed using
727 Principal Component Analysis (PCA) with RunPCA on the SCT assay and the integration
728 features (output from SelectIntegrationFeatures function in the "Data Normalization" section) as

729 features. Sample batch effects were removed using RunHarmony⁴⁴ (group.by.vars and vars_use
730 as worm_sample) applied on the PCA-computed matrix using 10 dimensions, theta of 0, and
731 maximum iteration of 80. Clustering was performed with Seurat functions FindNeighbors,
732 FindClusters, and RunUMAP on the harmony integrated data with 10 dimensions (dims = 1:10),
733 a k parameter of 10 (k.param = 10), and resolution of 0.3 (resolution = 0.3). Clustering analysis
734 was performed using the *STUtility* package (v1.0)⁴² that works on top of the toolkit for single cell
735 analysis Seurat (v3.2.3)⁴³ in R (v4.0.3).

736 **Differential Expression Analysis**

737 To find the differentially expressed marker genes per cluster, the Seurat function
738 "FindAllMarkers" was used with default settings, except for specifying the SCT assay (assay =
739 "SCT") and a log fold change threshold of 0.1 (logfc.threshold = 0.1). Only upregulated and
740 downregulated genes with p-value < 0.05 were considered. Differential expression analysis was
741 performed using the *STUtility* package (v1.0)⁴² that works on top of the toolkit for single cell
742 analysis Seurat (v3.2.3)⁴³ in R (v4.0.3). We used a previous proteomics study²² (the list of
743 proteins enriched in each dissected tissue can be obtained in the WormMine database) to
744 annotate the different clusters based on the differentially expressed (DE) marker genes for each
745 cluster. The previous proteomic study indicated a set of proteins that were enriched in specific
746 tissues²², specifically the body wall, digestive tract, and reproductive tract. The proteins enriched
747 for each of these specific tissue type(s) can be considered as markers for those tissues where they
748 were highly expressed. Therefore, we used these markers to validate our clustering analysis. We
749 looked at the proportion of these tissue specific marker genes in each cluster to assign a cluster to
750 a specific tissue type.

751 **Functional Term Enrichment Analysis**

752 For the functional term enrichment analysis, InterPro description and GO terms for each gene
753 were identified using BioMart⁴⁵. Significantly over-represented functional terms in each cluster
754 were identified using Fisher's exact test (FDR <0.05).

755 **Co-localization analysis**

756 We considered spots where at least 1 *Wolbachia* gene UMI was detected as *Wolbachia*+ spots
757 and the spots that did not capture *Wolbachia* were considered *Wolbachia*-negative. Differential
758 Expression Analysis (DEA) was run between *Wolbachia*+ and *Wolbachia*- spots using the Seurat
759 function “FindMarkers” with both wilcox and DESeq2 tests using default settings, except for
760 specifying the SCT assay (assay = "SCT"), a log fold change threshold of 0.1 (logfc.threshold =
761 0.1), with ident.1 set to *Wolbachia*+ spots and ident.2 to *Wolbachia*- spots. All DESeq2 DE
762 genes were also found by wilcox, and values from both with p-value < 0.05 are included in
763 **Supplementary Table 5**. Colocalization analysis was performed using the *STUtility* package
764 (v1.0)⁴² that works on top of the toolkit for single cell analysis Seurat (v3.2.3)⁴³ in R (v4.0.3).

765 **3D Figure**

766 The tissue images used in the alignment were pre-processed using Adobe Photoshop 2022
767 (v23.2.1) to remove background and to separate each section of the worm into one image. The
768 posterior and anterior regions of the separated worm sections were manually aligned using
769 ‘ManualAlignImages()’ and the 3D model was made using ‘Create3DStack()’ from *STUtility*
770 package (v1.0). The 3D images for the genes of interest were generated using ‘FeaturePlot3D()’,
771 also from the *STUtility* package (v1.0) in R (v4.2.0).

772 **Shiny app**

773 The gene expression heatmap images on the shinyapp were generated using “ST.FeaturePlot()”
774 (dark.theme = T for better color contrast to aid the visualization) and cluster images using
775 “FeatureOverlay()” from the *STUtility* package (v1.0) in R (v4.2.0). Shiny theme ‘sandstone’ was
776 applied as part of the overall design aesthetics. The app is hosted on <https://www.shinyapps.io> for
777 public access.

778 **Statistics and reproducibility**

779 The spatial transcriptomics data presented in the Main and Supplementary Figures are generated
780 from $n = 3$ biological replicates of *Brugia malayi* adult female worms.

781 **Data availability**

782 Raw sample sequence fastq files are available on NCBI SRA under the accession PRJNA870734.
783 Processed gene count matrices, related metadata, corresponding ST tissue H&E microscopy
784 images, and 3D model HTML files are available in the Mendeley dataset under Reserved DOI:
785 [10.17632/8f62vydg3z.1](https://doi.org/10.17632/8f62vydg3z.1).

786 The gene expression information for all the *B. malayi* genes from the normalized SCT assay are
787 available for visualization on our publicly available app:
788 <https://giacomellolabst.shinyapps.io/brugiaST-shiny/>

789 **Code availability**

790 The scripts used to generate count matrices from raw sequence fastq files and related R scripts
791 used to analyze count matrices for quality control and filtering, normalization, clustering and
792 differential expression analysis, colocalization analysis, and 3D figure generation can be

793 accessed from our github repository [Brugia malayi study](#)

794 (https://github.com/giacomellolab/Brugia_malayi_study).

795 References

- 796 1. Hotez, P. J. *et al.* The global burden of disease study 2010: interpretation and implications
797 for the neglected tropical diseases. *PLoS Negl. Trop. Dis.* **8**, e2865 (2014).
- 798 2. Slatko, B. E., Luck, A. N., Dobson, S. L. & Foster, J. M. Wolbachia endosymbionts and
799 human disease control. *Mol. Biochem. Parasitol.* **195**, 88–95 (2014).
- 800 3. Taylor, M. J., Hoerauf, A. & Bockarie, M. Lymphatic filariasis and onchocerciasis. *Lancet*
801 **376**, 1175–1185 (2010).
- 802 4. Hoerauf, A. *et al.* Wolbachia endobacteria depletion by doxycycline as antifilarial therapy
803 has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study.
804 *Med. Microbiol. Immunol.* **197**, 335 (2008).
- 805 5. Bandi, C., Trees, A. J. & Brattig, N. W. Wolbachia in filarial nematodes: evolutionary
806 aspects and implications for the pathogenesis and treatment of filarial diseases. *Vet.*
807 *Parasitol.* **98**, 215–238 (2001).
- 808 6. Bandi, C. *et al.* Effects of tetracycline on the filarial worms *Brugia pahangi* and *Dirofilaria*
809 *immitis* and their bacterial endosymbionts Wolbachia. *Int. J. Parasitol.* **29**, 357–364 (1999).
- 810 7. Hoerauf, A., Mand, S., Adjei, O., Fleischer, B. & Büttner, D. W. Depletion of wolbachia
811 endobacteria in *Onchocerca volvulus* by doxycycline and microfilaridermia after ivermectin
812 treatment. *Lancet* **357**, 1415–1416 (2001).
- 813 8. Specht, S. *et al.* Efficacy of 2- and 4-week rifampicin treatment on the Wolbachia of
814 *Onchocerca volvulus*. *Parasitol. Res.* **103**, 1303–1309 (2008).
- 815 9. Turner, J. D. *et al.* Albendazole and antibiotics synergize to deliver short-course anti-

816 Wolbachia curative treatments in preclinical models of filariasis. *Proc. Natl. Acad. Sci. U.*
817 *S. A.* **114**, E9712–E9721 (2017).

818 10. Landmann, F., Voronin, D., Sullivan, W. & Taylor, M. J. Anti-filarial activity of antibiotic
819 therapy is due to extensive apoptosis after Wolbachia depletion from filarial nematodes.
820 *PLoS Pathog.* **7**, e1002351 (2011).

821 11. Turner, J. D. *et al.* Macrofilaricidal activity after doxycycline only treatment of Onchocerca
822 volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. *PLoS Negl.*
823 *Trop. Dis.* **4**, e660 (2010).

824 12. Klarmann-Schulz, U. *et al.* Comparison of Doxycycline, Minocycline, Doxycycline plus
825 Albendazole and Albendazole Alone in Their Efficacy against Onchocerciasis in a
826 Randomized, Open-Label, Pilot Trial. *PLOS Neglected Tropical Diseases* vol. 11 e0005156
827 Preprint at <https://doi.org/10.1371/journal.pntd.0005156> (2017).

828 13. Williams, S. A. Deep within the Filarial Genome: Progress of the Filarial Genome Project.
829 *Parasitol. Today* **15**, 219–224 (1999).

830 14. Foster, J. *et al.* The Wolbachia genome of *Brugia malayi*: endosymbiont evolution within a
831 human pathogenic nematode. *PLoS Biol.* **3**, e121 (2005).

832 15. Wu, B. *et al.* The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of
833 *Brugia malayi* as a potential anti-filarial drug target. *PLoS Negl. Trop. Dis.* **3**, e475 (2009).

834 16. Melnikow, E. *et al.* A potential role for the interaction of Wolbachia surface proteins with
835 the *Brugia malayi* glycolytic enzymes and cytoskeleton in maintenance of endosymbiosis.
836 *PLoS Negl. Trop. Dis.* **7**, e2151 (2013).

837 17. Gill, A. C., Darby, A. C. & Makepeace, B. L. Iron necessity: the secret of Wolbachia's
838 success? *PLoS Negl. Trop. Dis.* **8**, e3224 (2014).

839 18. Lustigman, S. *et al.* Potential involvement of *Brugia malayi* cysteine proteases in the
840 maintenance of the endosymbiotic relationship with Wolbachia. *Int. J. Parasitol. Drugs*
841 *Drug Resist.* **4**, 267–277 (2014).

842 19. Voronin, D. *et al.* Glucose and Glycogen Metabolism in *Brugia malayi* Is Associated with
843 Wolbachia Symbiont Fitness. *PLoS One* **11**, e0153812 (2016).

844 20. Grote, A. *et al.* Defining *Brugia malayi* and Wolbachia symbiosis by stage-specific dual
845 RNA-seq. *PLoS Negl. Trop. Dis.* **11**, e0005357 (2017).

846 21. Curran, D. M. *et al.* Modeling the metabolic interplay between a parasitic worm and its
847 bacterial endosymbiont allows the identification of novel drug targets. *Elife* **9**, (2020).

848 22. Morris, C. P. *et al.* A Proteomic Analysis of the Body Wall, Digestive Tract, and
849 Reproductive Tract of *Brugia malayi*. *PLoS Negl. Trop. Dis.* **9**, e0004054 (2015).

850 23. Airs, P. M. *et al.* Spatial transcriptomics reveals antiparasitic targets associated with
851 essential behaviors in the human parasite *Brugia malayi*. *PLoS Pathog.* **18**, e1010399
852 (2022).

853 24. Diaz Soria, C. L. *et al.* Single-cell atlas of the first intra-mammalian developmental stage of
854 the human parasite *Schistosoma mansoni*. *Nat. Commun.* **11**, 6411 (2020).

855 25. Salmén, F. *et al.* Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in
856 mammalian tissue sections. *Nat. Protoc.* **13**, 2501–2534 (2018).

857 26. Ståhl, P. L. *et al.* Visualization and analysis of gene expression in tissue sections by spatial
858 transcriptomics. *Science* **353**, 78–82 (2016).

859 27. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to
860 spatial transcriptomics for biomedical research. *Genome Med.* **14**, 68 (2022).

861 28. Giacomello, S. *et al.* Spatially resolved transcriptome profiling in model plant species. *Nat*

862 *Plants* **3**, 17061 (2017).

863 29. Giacomello, S. A new era for plant science: spatial single-cell transcriptomics. *Curr. Opin.*
864 *Plant Biol.* **60**, 102041 (2021).

865 30. 10X Genomics. Visium Spatial Gene Expression Reagent Kits User Guide, Document
866 Number CG000239, Rev A. (2019).

867 31. Choi, Y.-J. *et al.* A deep sequencing approach to comparatively analyze the transcriptome
868 of lifecycle stages of the filarial worm, *Brugia malayi*. *PLoS Negl. Trop. Dis.* **5**, e1409
869 (2011).

870 32. Chhabra, S. *et al.* Kv1.3 channel-blocking immunomodulatory peptides from parasitic
871 worms: implications for autoimmune diseases. *FASEB J.* **28**, 3952–3964 (2014).

872 33. McNeilly, T. N. *et al.* Niche-specific gene expression in a parasitic nematode; increased
873 expression of immunomodulators in *Teladorsagia circumcincta* larvae derived from host
874 mucosa. *Sci. Rep.* **7**, 7214 (2017).

875 34. El Hassani, R. A. *et al.* Dual oxidase2 is expressed all along the digestive tract. *Am. J.*
876 *Physiol. Gastrointest. Liver Physiol.* **288**, G933–42 (2005).

877 35. Voronin, D. *et al.* Pyruvate produced by *Brugia* spp. via glycolysis is essential for
878 maintaining the mutualistic association between the parasite and its endosymbiont,
879 *Wolbachia*. *PLoS Pathog.* **15**, e1008085 (2019).

880 36. Cheng, S., Liu, K., Yang, C. & Wang, X. Dissecting Phagocytic Removal of Apoptotic
881 Cells in *Caenorhabditis elegans*. *Methods Mol. Biol.* **1519**, 265–284 (2017).

882 37. Norris, A. *et al.* SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative
883 microdomains on endosomes. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E307–E316 (2017).

884 38. Voronin, D., Cook, D. A. N., Steven, A. & Taylor, M. J. Autophagy regulates *Wolbachia*

885 populations across diverse symbiotic associations. *Proc. Natl. Acad. Sci. U. S. A.* **109**,
886 E1638–46 (2012).

887 39. Jones, D. & Candido, E. P. The NED-8 conjugating system in *Caenorhabditis elegans* is
888 required for embryogenesis and terminal differentiation of the hypodermis. *Dev. Biol.* **226**,
889 152–165 (2000).

890 40. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data.
891 <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

892 41. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results
893 for multiple tools and samples in a single report. *Bioinformatics* **32**, 3047–3048 (2016).

894 42. Bergensträhle, J., Larsson, L. & Lundeberg, J. Seamless integration of image and molecular
895 analysis for spatial transcriptomics workflows. *BMC Genomics* **21**, 482 (2020).

896 43. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888–1902.e21
897 (2019).

898 44. Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with
899 Harmony. *Nat. Methods* **16**, 1289–1296 (2019).

900 45. Smedley, D. *et al.* BioMart--biological queries made easy. *BMC Genomics* **10**, 22 (2009).

901

902 Acknowledgements

903 This work was supported in part by the Division of Intramural Research (DIR) of the
904 NIAID/NIH (D.V., E.G.). S.G. was supported by the Swedish Research Council VR grant 2020-
905 04864. The *Brugia malayi* parasites (NR-48892) were provided by the NIH/NIAID Filariasis
906 Research Reagent Resource Center for distribution through BEI Resources, NIAID, NIH. We
907 thank Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) for

908 providing computational infrastructure. We thank Ludvig Larsson for his discussions on analysis
909 of the Spatial Transcriptomics data.

910

911 **Author Information**

912 **Author's Contributions**

913 H.S. and D.V. performed investigatory experiments, developed methodology, analyzed and
914 visualized the data, worked on validation, curated the data, conducted project administration, and
915 wrote the manuscript. H.S. and M.C. implemented software for formal analysis of the data. Y.M.
916 generated the 3D visualization, set up the shiny app analyses, and gave input for the formal
917 analysis of the data. S.S. aided in methodology and software implementation for formal analysis
918 of the data. S.G. and E.G. conceptualized, designed, led and supervised the study, developed
919 methodology, acquired funding and resources, conducted project administration, and wrote and
920 edited the manuscript.

921 **Materials & Correspondence**

922 Correspondence to Stefania Giacomello (stefania.giacomello@scilifelab.se) and Elodie Ghedin
923 (elodie.ghedin@nih.gov).

924

925 **Ethics declarations**

926 **Competing interests**

927 H.S., Y.M., S.S., S.G. are scientific advisors to 10X Genomics, Inc. that holds IP rights to the ST
928 technology. S.G. holds 10X Genomics stocks.