

1 **Collagen constitutes about twelve percent in females and seventeen percent in**
2 **males of the total protein in mice**

3

4 Katharina Tarnutzer¹, Devanarayanan Siva Sankar², Joern Dengjel², and Collin Y.
5 Ewald^{1*}

6

7 ¹ ETH Zürich, Department of Health Sciences and Technology, Institute of
8 Translational Medicine, Schwerzenbach-Zürich, CH 8603, Switzerland.

9 ² Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland

10 *Corresponding author: C.Y.E. collin-ewald@ethz.ch

11

12 **Abstract**

13 Collagen has been postulated to be the most abundant protein in our body, making
14 up one-third of the total protein content in mammals. However, to the best of our
15 knowledge, a direct assessment of the total collagen levels of an entire mammal to
16 confirm this estimate is missing. Here we measured hydroxyproline levels as a proxy
17 for collagen content together with total protein levels of entire mice or of individual
18 tissues. Collagen content normalized to the total protein is approximately 0.1% in the
19 brain and liver, 1% in the heart and kidney, 4% in the muscle and lung, 6% in the
20 colon, 20-40% in the skin, 25-35% in bones, and 40-50% in tendons of wild-type
21 (CD1 and CB57BL/6) mice, consistent with previous reports. Mice consist of 37 mg
22 of collagen and 265 mg of protein per g of body weight. To our surprise, we find that
23 collagen is approximately 12% in females and 17% in males of the total protein
24 content of entire wild-type (CD1 and CB57BL/6) mice. High-Performance Liquid
25 Chromatography approaches confirmed a 10-12% collagen over total protein
26 estimates for female mice. Collagen staining methods and extracellular matrix-
27 enriched proteomics estimated 5-6% of collagens over the total protein extracted.
28 Although collagen type I is the most abundant collagen, the most abundant proteins
29 are albumin, hemoglobin, histones, actin, serpina, and then collagen type I.
30 Analyzing amino acid compositions of mice revealed glycine as the most abundant
31 amino acid. Thus, we provide reference points for collagen, matrisome, protein, and
32 amino acid composition of healthy wild-type mice that are important for tissue and
33 biomaterial engineering and for the comparison of these factors in various disease
34 models.

35

36

37 **Introduction**

38 Progress in biomedical science depends on building models using existing data to
39 predict the outcome of a future experiment and either confirm or adapt the working
40 model ¹. These models then should be derived from data and not from assumptions.
41 One such assumption used as a point of reference is the statement: “collagen is the
42 most abundant protein making up one-third or 30% of total protein in mammals or
43 vertebrates.” We found over 50 publications making such a statement without any
44 reference or citing a review paper. It seems as if this statement is a given textbook
45 fact (BNID 109731) ² (<https://en.wikipedia.org/wiki/Collagen>, accessed 05.10.22);
46 however, the actual quantifications are elusive. The biochemical properties of
47 collagens have been studied since the end of the 18th hundred ³. Given the recent
48 increased interest in collagen research of over 8000 papers published per year (Fig.
49 1a, Supplementary Table 1), it might be essential to have a reference point for
50 collagen levels in tissues and entire organisms. For instance, quantification of
51 collagen levels is important in different disease settings, such as fibrosis (too much
52 collagen deposition ⁴ and 45% of all human deaths ⁵), immune-induced degradation
53 of collagen in arthritis ^{6,7}), more collagen and stiffer tumor environment ^{8,9}, excessive
54 collagen in skin diseases (scleroderma, keloids) ^{10,11}, cancer patient survival
55 correlates with specific collagen types ¹², fibrotic collagen remodeling in
56 cardiovascular diseases ^{13,14}, and aging usually associated with lower collagen levels
57 ¹⁵.

58

59 Collagen is a fascinating biomaterial that is highly biocompatible and used for many
60 biomedical applications in processes, such as wound healing, tissue repair, and
61 dental implants ¹⁶. Collagen-based materials have been used for medical

62 applications already reported by Galan two millennia ago for reconstructive surgery
63 on tendons and wound closure on gladiators ¹⁷. Collagen can survive longer than
64 other biomolecules, such that collagen has been extracted from dinosaur bones ¹⁸,
65 and is used for estimating the age of a specimen ^{19,20}. During evolution, the invention
66 of collagen probably enabled the transitions from unicellular to multicellular
67 organisms solving three major problems, cell and tissue adhesion, mechanical
68 support (skeleton), and protection in the form of barrier function and mechanical
69 shock absorption ²¹. Collagen is characterized by its triple helix repeats of (Gly-X-Y)_n
70 whereby Gly stands for glycine, X and Y can be any amino acid but most commonly
71 are proline and hydroxyproline (reviewed in ^{22,23}). For sterical reasons, the glycine on
72 every third position is essential for adequately forming the triple helix composed of
73 the three collagen chains (reviewed in ^{22,23}). Hydroxyproline is relatively unique to
74 collagens (only in a few other proteins found, e.g., elastin, argonaute-2, HIF-1 α) ²⁴
75 and is essential for stabilizing the collagen triple helix (reviewed in ^{22,23}).

76
77 There are several methods for the detection of collagen levels: quantifying
78 hydroxyproline levels, collagen stainings, densitometry of collagen bands in sodium
79 dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), enzyme-linked
80 immunosorbent assay (ELISA) coupled with collagen antibodies,
81 immunohistochemistry using collagen antibodies, quantitative mass spectrometry
82 enriched for extracellular matrix proteins ^{4,25–29}. The gold standard in the field for
83 assessing collagen levels is via hydroxyproline quantification ^{25,29}.

84
85 Here, we hydrolyzed entire mouse samples to amino acid levels and used
86 hydroxyproline and amino acid levels as a proxy to estimate the total collagen over

87 total protein levels. We find two times lower total collagen levels than previously
88 claimed in the literature. Our proteomics data suggest that collagen might not be the
89 most abundant protein.

90

91

92 **Results**

93 **Quantifying collagen levels of tissues**

94 The importance of collagens for engineering, biological, and medical research is
95 reflected in the exponential increase in publications about collagens over the last 60
96 years (Fig. 1a, Supplementary Table 1). In the literature, it has been stated that
97 collagen makes up about 60-90% of the dry weight of bone, skin, sclera, and tendon
98 (Fig. 1b). These percentages seem to be a given in the field since many of these
99 statements have either no reference or cite review publications (Fig. 1b,
100 Supplementary Table 2). Our literature search to identify the source for these
101 percentages led to a review paper by Grant from 1972³⁰ that summarized the
102 collagen content of various tissues and animals. For the original work, we found two
103 publications by Lowry and colleagues from 1941³¹ and Neuman and Logan 1950³²
104 that measured the collagen content of dried tissue. However, we found no current
105 experimental or quantitative evidence. To fill this gap, we measured total collagen
106 levels in mice. Instead of normalizing to the organs' dry weight, we decided to
107 normalize to total protein levels. We harvested mouse tissues and hydrolyzed them
108 with hydrogen chloride to the amino acid levels (Fig. 1c, Materials and Methods for
109 details). And then we made aliquots of these amino acid homogenates to quantify total
110 collagen and protein levels. A colorimetric read-out was used to determine free
111 hydroxyproline amino acids that were oxidized with chloramine-T to pyrrole and
112 stained with Ehrlich's reagent³³. We normalized these hydroxyproline amino acid

113 levels to a standard curve of rat tail collagen to determine total collagen levels (Fig.
114 1c). We validated our hydroxyproline and collagen quantification with an alternative
115 but comparable protocol approach (Supplementary Fig. 1 and Supplementary Fig. 2
116 a-e). Since standard protein quantification does not work with free amino acids in an
117 acidic environment, we used the color change of genipin when it reacts with amino
118 acids as a read-out ³⁴. We normalized these amino acid levels to a standardized
119 curve of bovine serum albumin protein (BSA) to determine total protein levels (Fig.
120 1c; Materials and Methods for details). Thus, with this protocol, we overcame the
121 obstacle of the insolubility of collagens in the extracellular matrix and were able to
122 quantify total collagen over total protein (Supplementary Fig. 2f).

123

124 **Collagen levels across mice tissues range from 0.1 to 51% of total protein
125 levels**

126 We harvested organs from four weeks old outbred wild-type CD1 female mice and
127 41 weeks old inbred wild-type C57BL/6 male mice and quantified collagen over
128 protein levels (Fig. 1d-i). We found that the brain and liver had the least amount of
129 collagen to protein levels (0.1%; Fig. 1d), heart and kidney around 1%, muscle and
130 lung around 3.5%, colon 5.7%, skin 20%, bone 25-35%, and tendon about 40% of
131 total collagen to the protein of wild-type CD1 female mice (Fig. 1d; Supplementary
132 Table 3). To provide a reference point, we quantified collagen or protein weight per
133 weight of wet tissue (Fig. 1e, 1f; Supplementary Table 3). Next, we quantified
134 collagen over protein levels of 41 weeks old wild-type C57BL/6 male mice and found
135 higher collagen levels for skin (38.5%) and tendon (50.5%) (Fig. 1g; Supplementary
136 Table 4). This difference could be either due to age, gender, or genotype.

137 Furthermore, we noticed a heterogeneity of collagen to protein levels for individual
138 animals' organs within the same cohort (dots in the bar graph represent individual
139 mice; Fig. 1d, 1e). For comparison, we searched the literature for collagen
140 measurements normalized to protein levels (BSA, amino acids, nitrogen; Fig. 1j;
141 Supplementary Table 5). We only found a few studies and included rat tissues as
142 additional reference points. Reassuringly, the collagen over protein values were in
143 similar ranges. Thus, our measurements provide reference values for collagen over
144 protein levels for several organs of wild-type mice.

145

146 **Quantifying total collagen levels normalized to total proteins of entire mice**

147 An accumulating body of literature states the quote: "30% of total protein is collagen
148 in mammals" and the quote: "collagen is the most abundant protein"; however, a
149 reference to the original work that quantified these percentages is missing (Fig. 2a,
150 Supplementary Table 6). None of the over 50 publications we found had an original
151 reference for these statements (Supplementary Table 6). Our literature search to
152 identify the original work for these percentages led to a review paper from 1961 as a
153 probable source³⁵. In this review article, R.D. Harkness states: "A complete analysis
154 of a whole animal has only been performed on mice (Harkness, Harkness & James,
155 1958)³⁶. Collagen formed about a fifth of the total body protein."³⁵ In that
156 referenced study³⁶, Harkness and colleagues dissected nine adult male albino mice,
157 each into five parts (skin, carcass, viscera, femora, quadriceps). They quantified the
158 collagen content of these tissues by multiplying hydroxyproline levels by 7.46 and
159 normalized them to total nitrogen (N) levels as a proxy for protein levels³⁶. Then
160 they added the values of these five parts to estimate the collagen levels of the entire

161 mice. They found that: “Collagen formed 2.6 ± 0.1 % of the body weight and $17.7 \pm$
162 0.7 % of total N in the control animals”³⁶.

163

164 There are limitations to this approach of combining and estimating total collagen
165 levels from individual tissue parts. Moreover, quantification of the total collagen of an
166 entire mouse has not been performed before. To address this, we homogenized
167 individual entire mice and hydrolyzed aliquots of these whole mice homogenates
168 with hydrogen chloride to the amino acid levels to determine total collagen over total
169 protein levels of entire mice (Fig. 2b, Materials and Methods for details). We found
170 that 4-week-old outbred wild-type CD1 female mice contained 14.8% of collagen
171 over total protein levels, inbred wild-type C57BL/6 female mice at the age of 4 weeks
172 contained 12.0%, 7- or 21- weeks old had 12.8% of total collagen over total protein
173 (Fig. 2c-e, Supplementary Table 7). Although in wild-type C57BL/6 female mice from
174 4 to 21 weeks, there was no significant change in collagen over protein levels, 7-
175 week C57BL/6 male mice showed higher collagen over protein levels compared to
176 corresponding 7-week C57BL/6 female mice, 16.9% versus 12.8%, respectively (Fig.
177 2c, Supplementary Table 7). This suggests a gender-specific effect on total collagen
178 over protein levels. Furthermore, the 16.9% collagen to the protein content of our 7-
179 week C57BL/6 male mice is comparable to the 17.7 % of the male albino mice
180 determined by Harkness and colleagues³⁶.

181

182 To complement our colorimetric measurements of hydroxyproline and total amino
183 acids levels, we analyzed amino acid levels within the samples with high-
184 performance liquid chromatography (HPLC; Fig. 2f). We found that hydroxyproline
185 (4HP) over total amino acids is 1.6% and 1.3% of 4-week old wild-type CD1 and

186 C57BL/6 female mice, respectively (Fig. 2g, Supplementary Table 8). To convert the
187 hydroxyproline levels to collagen levels, we used the conversion factor of 7.46. We
188 found 11.8% and 10.0% of 4-week-old wild-type CD1 and C57BL/6 female mice,
189 respectively (Fig. 2h, Supplementary Table 8). The conversion factor of 7.46 is an
190 estimate based on hydroxyproline levels of collagens from various tissues of cows,
191 pigs, sheep, chickens, kangaroos, and rats resulting in 13.0-14.4% of hydroxyproline
192 in mammalian collagens ^{32,37}. Since experimental quantification of this conversion
193 factor for mice is missing, we assessed and compared this conversion factor from
194 our data. We found that a conversion factor of 7.46 reflects well collagen estimation
195 from hydroxyproline in whole mouse samples (Supplementary Fig. 2 g-i;
196 Supplementary Table 9). Furthermore, in our HPLC, we also ran a collagen standard
197 to know how much hydroxyproline levels correspond to total collagen levels. When
198 normalizing with this collagen standard, we found 7.75 x (Fig. 2i, Supplementary
199 Table 8). Thus, we obtained comparable results either using a colorimetric approach
200 or HPLC. Taken together, our measurements suggest that, on average female wild-
201 type mice have about $12.3 \pm 1.5\%$ of collagen over total protein. Consistent with the
202 previous measurements by Harkness, Harkness & James, 1958 ³⁶, male wild-type
203 mice showed about 17% of collagen over total protein.

204
205 To assess total collagen levels differently than by using hydroxyproline as a read-out
206 for collagen, we digested our samples with pepsin. We used an adapted version of
207 Sircol staining to quantify soluble collagens ²⁸. For Sircol staining, the dye Sirius red
208 binds collagens and other non-collagenous proteins. By running the samples over
209 columns that retain larger proteins, such as collagens, the accuracy for Sircol
210 collagen quantification is improved ²⁸. We validated this approach using a collagen

211 standard and found similar collagen content with the Sircol method compared to
212 when assessed by hydroxyproline measurements for pure protein samples (Fig. 2j,
213 Supplementary Table 10). From our whole mouse lysates digested with pepsin, we
214 recovered about 5-14 mg collagen per g wet weight, which is about 19-41% of
215 estimated collagen by hydroxyproline measurement (Fig. 2k and Fig. 2l,
216 Supplementary Table 10). Normalizing the Sircol-derived collagen levels (mg
217 collagen / g wet weight) to our total protein estimates (mg protein / g wet weight),
218 resulted in on average 5% of collagen over total protein (Supplementary Table 10).
219 This estimation is lower compared to the 12-17% of collagen content by the
220 hydroxyproline measurements. We speculate that the underestimation is in part due
221 to the lack of proper solubilization of collagen using this approach.

222

223 **Total protein content and amino acid composition of mice**

224 Next, we asked how much total collagen and protein is found in entire mice. In the
225 literature, we found only one publication from 1977 that estimated a total protein of
226 1.5 g and 1.4 g per 3-week-old male or female CB57BL/6J ob/ob mice, respectively,
227 based on nitrogen levels ³⁸. We quantified higher protein levels of 3.8 g of total
228 protein per 4-week-old BL6 wild-type mice (Fig. 3a). We found wild-type mice contain
229 about 4-8 g of total protein and 0.5-1.2 g of total collagen per mouse (Fig. 3a, 3b),
230 which corresponds to 265 mg of protein and 37 mg of collagen per g body weight on
231 average (Supplementary Table 7). The total protein and collagen per mouse were
232 poorly correlated with its total body wet weight (Fig. 3c-f). The collagen levels
233 correlated better, which makes sense since collagens are structural and scaffold
234 proteins important for tissue geometry and size (Fig. 3d).

235

236 Next, we asked what is the relative amino acid composition of mice. We found that
237 glycine with 15% was the most abundant amino acid in mice (Fig. 3g-h,
238 Supplementary Table 8). Proline was 6.5%, and hydroxyproline (4HP) was about
239 1.5% relative to all other amino acids (Fig. 3g-h, Supplementary Table 8). Thus, we
240 provide the first relative amino acid composition of entire mice.

241

242 **Collagen quantification using proteomics**

243 Next, we used a quantitative proteomics approach. To enrich extracellular matrix
244 proteins, we separated whole mouse lysates by SDS-PAGE, gel lanes were cut into
245 five slices per sample, and proteins therein were digested with trypsin overnight.
246 Generated peptides were extracted and analyzed by LC-MS/MS (see Methods for
247 details). Extracted ion currents of peptides were used for label-free quantification
248 employing the iBAQ algorithm ³⁹. For each sample, the relative proportion of all
249 quantified collagen proteins was calculated in comparison to the overall intensity of
250 all proteins. We quantified 4.6 \pm 0.3% for 4-week-old CD1 mice, 4.6 \pm 1.4% for 4-week-
251 old C57BL/6 mice, and 6.4 \pm 0.4% for 21-week-old C57BL/6 mice (Supplementary
252 Table 11). Although these percentages are similar to the Sircol collagen
253 quantifications, these percentages were lower compared to the hydroxyproline
254 measurement, probably due to the crosslinked nature of collagens, and we would
255 expect that trypsin is less efficient in generating measurable peptides.

256

257 **Matreotype of entire mice**

258 To establish matreotypes¹⁵, which is the composition of the ECM (*i.e.*, matrisome)
259 associated with entire mice, we analyzed our ECM-enriched proteomics data
260 according to matrisome category⁴⁰. We detected 167-233 of the 1110 mouse
261 matrisome⁴¹ proteins in 4-week-old CD1, 4-week-old C57BL/6, and 21-week-old
262 C57BL/6 wild-type mice (Fig. 4, Supplementary Table 11). To our surprise, serine
263 protease inhibitors (Serpina1,3) were more abundant than collagen type I (Col1a1,2),
264 followed by fibrillin (Fbn1), elastin (Eln), and collagen type 6 (Col6a1,2)
265 (Supplementary Fig. 3, Supplementary Table 11). Furthermore, considering all
266 detected proteins, albumin (Alb), hemoglobin (Hbb), and parvalbumin (Pvalb) were
267 the most abundant protein, followed by histones, actin (Acta1), serine protease
268 inhibitors (Serpina1,3), and then collagen type I (Col1a1,2) (Supplementary Fig. 3,
269 Supplementary Table 11). Thus, we provide the matrisome atlas of entire mice and
270 found that collagens are not the most abundant protein.

271 **Discussion**

272 Biomedical engineering and science rely on previously quantified reference points to
273 build models and compare health versus disease states. Collagen has been
274 assumed to be the most abundant protein of mammals making up two-thirds of total
275 protein. However, over 50 studies ranging from material engineering to cancer
276 research relied on these reference points without an original reference of such
277 quantification.

278

279 Although nowhere directly stated, this statement might be based on a review paper
280 from 1961 stating that “collagen formed about a fifth of the total body protein”³⁵. This

281 statement was based on the authors' previous study from 1958, where nine male
282 mice carcasses were divided into five parts, and hydroxyproline levels over total
283 nitrogen levels were determined, which were added together, resulting in 17.7% of
284 total collagen over protein ³⁶. Astonishingly, our quantification revealed a similar
285 percentage of 16.8% of total collagen over protein of entire male mice. This suggests
286 that we had a correct reference point but, for an unknown reason, was inflated to
287 30%, an interesting hyperbole that might be worth examining by science
288 philosophers.

289

290 Besides this, we find sex-specific differences in collagen over protein for females of
291 12% and males 17%. We provide reference points for collagen over protein levels for
292 ten tissues. Using proteomics, we find that collagen is not the most abundant protein.
293 We provide the matreotype of entire mice as a reference point for an ECM protein
294 atlas. In addition, we provide reference points for milligram protein per gram mice
295 and amino acid compositions, whereby glycine is the most abundant amino acid.

296

297 Although not systematically examined, there were few reports of collagen over
298 protein ratios for mice and rat tissues. Our estimates were similar to previous
299 estimates even across species. Also, estimating collagen over protein levels using
300 colorimetric compared to HPLC of hydroxyproline levels was similar. However, using
301 collagen staining and proteomics approaches showed internally consistent collagen
302 percentages of 5-6%, which are lower than when quantified the same animals with
303 hydroxyproline quantifications. For both methods, samples need to be separated via
304 either running on a gel or on a column, probably losing material. Furthermore, a
305 lower yield might also be due to the inherent insolubility of the collagen networks ⁴²,

306 and in the case of proteomics, limited protease access to crosslinked peptides and
307 lack of identification of crosslinked peptides, limitations we had not addressed here.
308 A previous study on tendons and ligaments achieved complete solubilization by
309 successive protease and elastase digestion, which allowed the harvesting of more
310 collagen and elastin ⁴³. Thus, such an approach might allow quantifying more
311 collagen over protein levels, which might asymptote to our hydroxyproline to collagen
312 estimations.

313

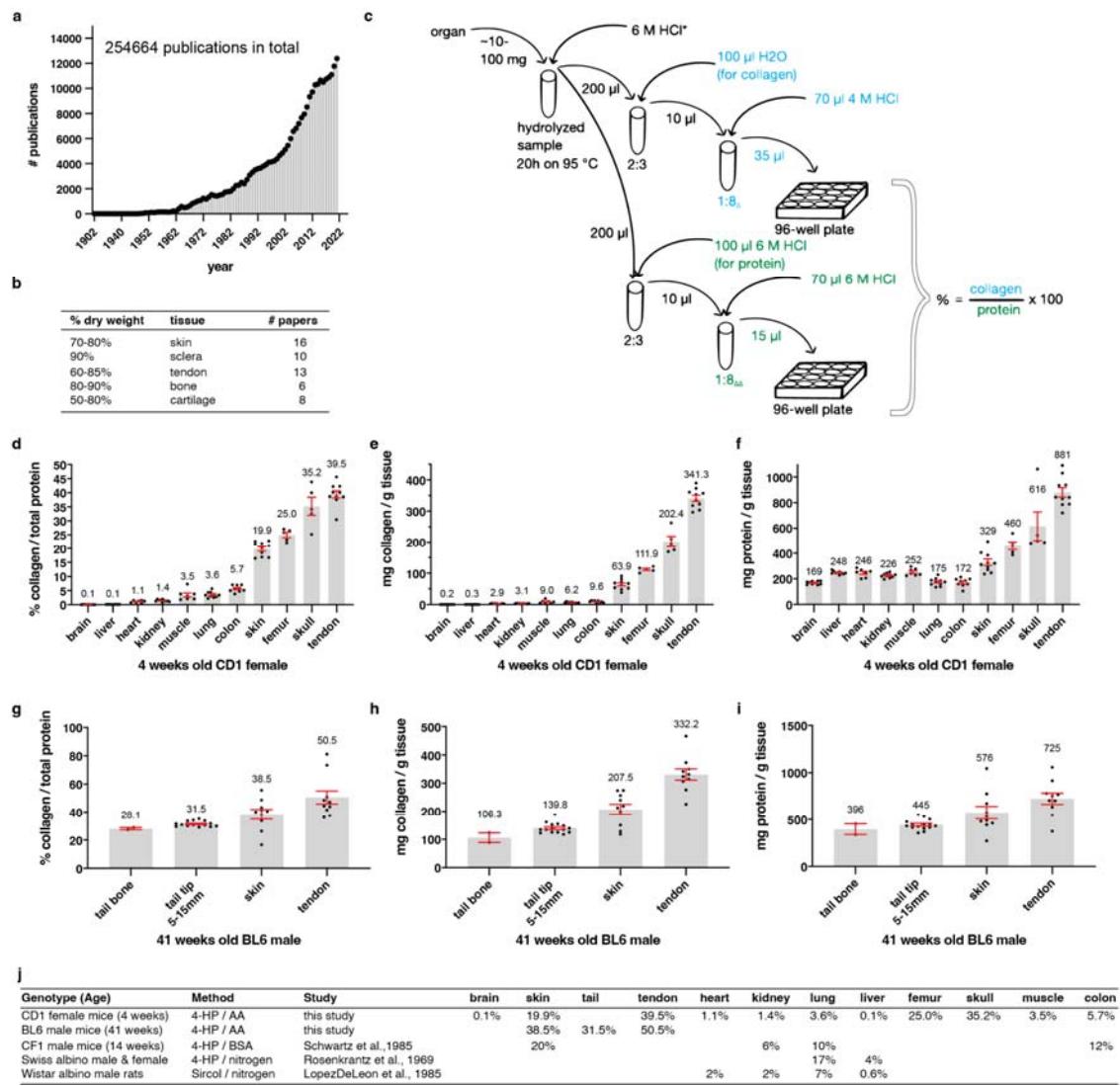
314 Our proteomics analysis revealed collagen type I (Col1a1,2), fibrillin (Fbn1), elastin
315 (Eln), and collagen type 6 (Col6a1,2) as the most abundant core matrisome proteins.
316 This is comparable to a recent meta-analysis of different proteomics studies on
317 articular cartilage, bone, ligament, skeletal muscle, and tendon ⁴⁴. It is also similar to
318 tissues with less ECM, such as mammary glands and liver ^{45,46}. As in our study of
319 entire mouse proteomics, collagen type I is the most abundant collagen in all tissues
320 but shows a wide range across different tissues. This suggests that collagen type I is
321 the most abundant collagen in mammals across tissues.

322

323 In summary, we quantified collagen levels for mice tissues and entire mice. We
324 reconcile assumptions made in textbooks and research papers. Thus, we provide
325 several important reference points to help interpret new findings related to collagen
326 levels.

327

328


329

330

331

332

333 **Figures**

Genotype (Age)	Method	Study	brain	skin	tail	tendon	heart	kidney	lung	liver	femur	skull	muscle	colon
CD1 female mice (4 weeks)	4-HP / AA	this study	0.1%	19.9%	39.5%	1.1%	1.4%	3.6%	0.1%	25.0%	35.2%	5.7%	3.5%	12%
BL6 male mice (41 weeks)	4-HP / AA	this study	38.5%	31.5%	50.5%									
CF1 male mice (14 weeks)	4-HP / BSA	Schwartz et al., 1985	20%											
Swiss albino male & female	4-HP / nitrogen	Rosenkrantz et al., 1969												
Wistar albino male rats	Sircol / nitrogen	LopezDeLeon et al., 1985												

334

335 **Fig. 1. Relative collagen levels in organs**

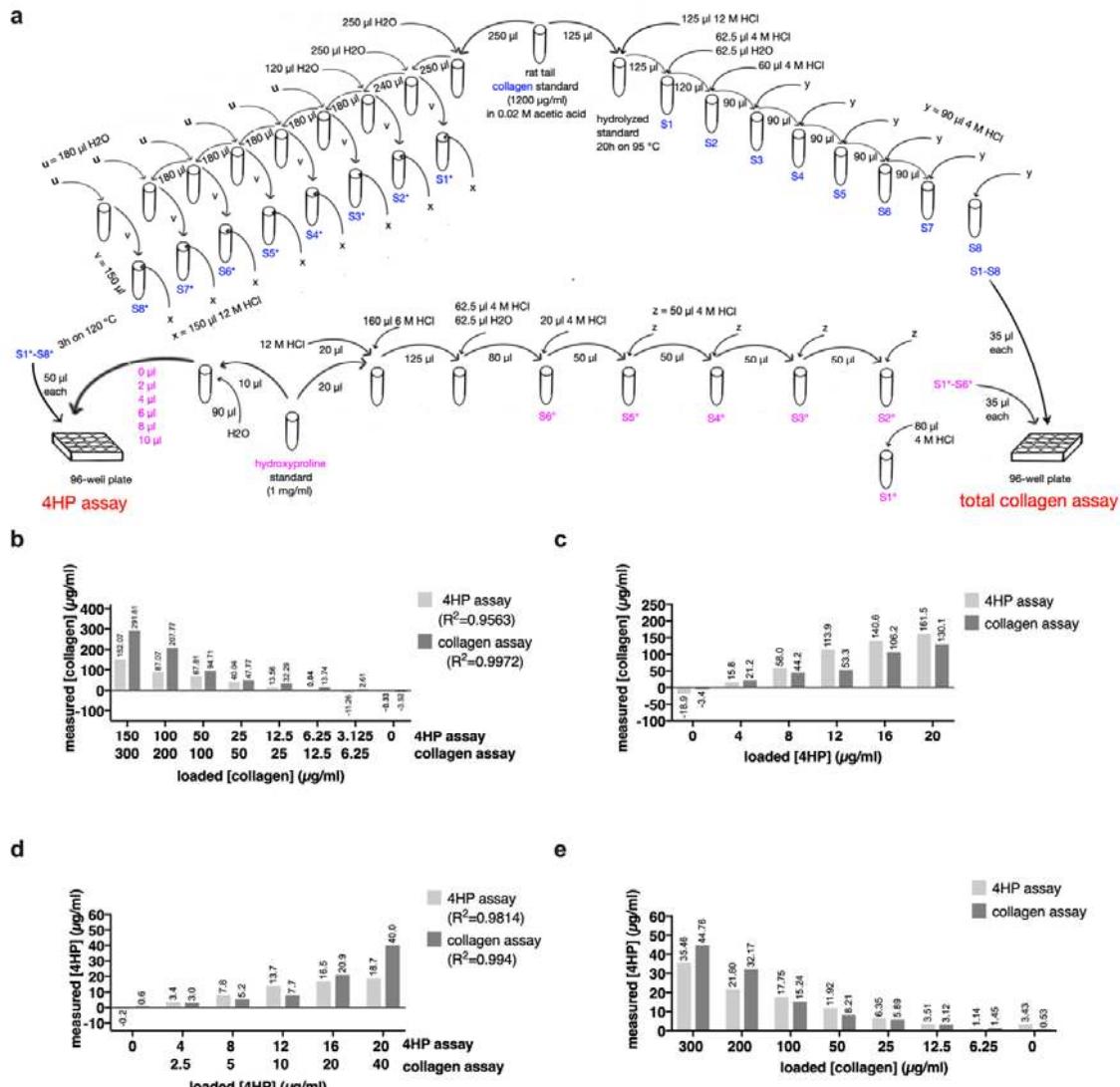
336 **a**, number of publications per year about collagen. See Supplementary Table 1 for details. **b**,
 337 previous studies stating the percentage of collagen in organs normalized to dry weight. See
 338 Supplementary Table 2 for details. **c**, schematic representation of the collagen and protein
 339 quantification assay for organs.

340 * indicates dilution calculation for organs: $v = aw \times D_{\text{organ}} - aw$ ($v = \mu\text{L}$ 6M HCl added to organs,
 341 $aw = \text{organ assay weight (mg)}$, $D_{\text{organ}} = \text{experimentally determined organ specific dilution}$
 342 factor). Δ indicates that liver and brain collagen samples were diluted 1:1 and tendon
 343 collagen samples 1:16. $\Delta\Delta$ indicates that liver and brain protein samples were diluted 1:10.

344 **d** and **g**, the percentage of collagen to the total protein of different CD1 female and C57BL/6
 345 male organs, respectively, calculated as shown in (c). CD1 tissue is derived from 4 weeks old
 346 female mice, and C57BL/6 organs were withdrawn from 41 weeks old male mice. **e** and **h**,
 347 collagen values normalized to wet weight (mg/g). **f** and **i**, protein content normalized to wet
 348 weight (mg/g). **d-i**, shown are means \pm SEM of 2-15 biological replicates (represented by

Total collagen levels in mice

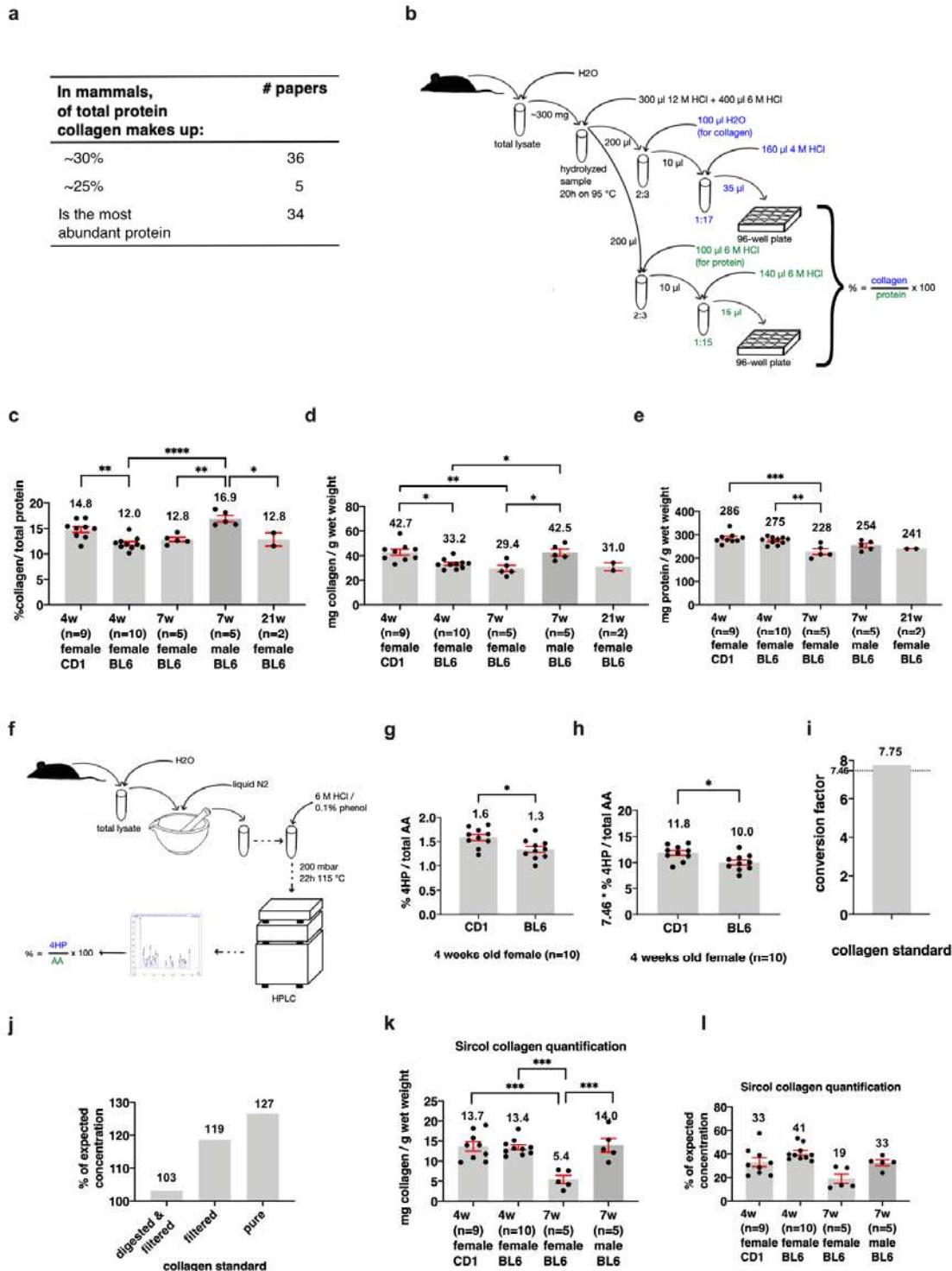
349 dots). Each biological replicate value was derived from 1-3 technical replicates, measured in
350 duplicates. See Supplementary Tables 4 and 5 for details.


351 **j**, an overview of collagen content in different mouse strains and species. See
352 Supplementary Table 5 for details.

353

354

Total collagen levels in mice


355

356 **Supplementary Fig. 1. Collagen validation standard curves of the 4HP and**
 357 **collagen assay**

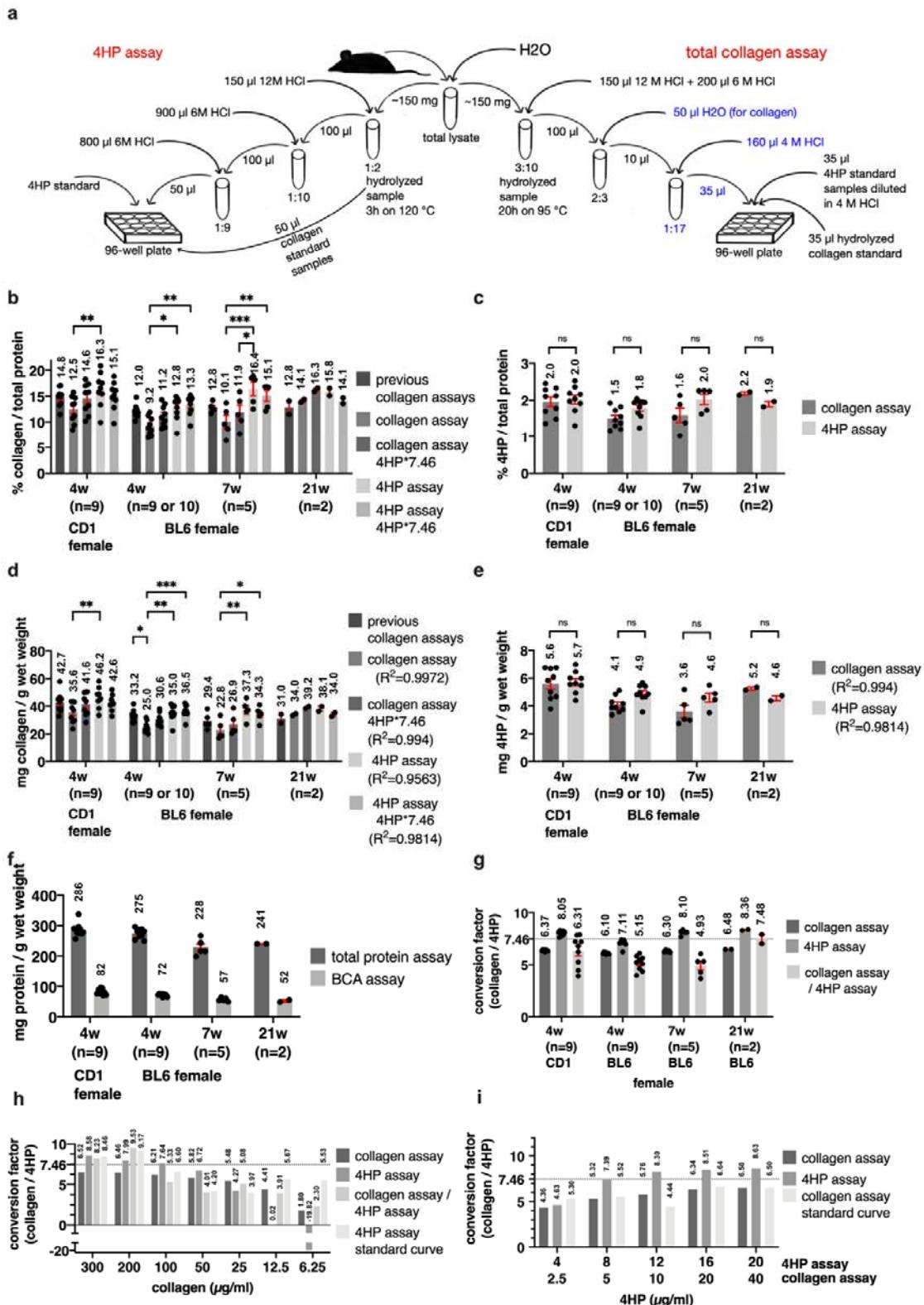
358 **a**, schematic representation of the 4HP and total collagen assay standard curve preparation.
 359 The collagen assay standard (rat tail collagen, 1200 µg/mL) was prepared according to the
 360 protocol for the collagen assay (right). For the 4HP assay (left), 250 µL of the collagen
 361 standard was diluted with 250 µL water (600 µg/mL). This solution was diluted 1:2 with water
 362 (H2O) (300 µg/mL). 240 µL aliquot was mixed with 120 µL water (200 µg/mL). A
 363 180 µL aliquot was transferred to a new tube and diluted with 180 µL H2O (u) (100 µg/mL).
 364 This 1:2 dilution was repeated 4 times (50 µg/mL, 25 µg/mL, 12.5 µg/mL, 6.25 µg/mL). S1* is
 365 the blank. To be in the range of the 4HP standard curve, 150 µL (v) of each sample was
 366 pipetted into a new tube (S1*-S8*) and diluted with 150 µL 12 M HCl (x). After hydrolyzation
 367 (3 h on 120 °C), 50 µL of each sample was pipetted on a 96-well plate. The hydroxyproline
 368 standard (1 mg/mL) was prepared according to the protocol for the 4HP assay (left). The 4HP
 369 assay concentrations need to be divided by 0.05 to convert the concentrations from µg/well
 370 into µg/mL (since 50 µL of each S* were loaded). To be able to generate a 4HP standard
 371 curve on the collagen assay plate (right), the standard was diluted 1:10 with HCl (0.1 mg/mL)

372 in 6M HCl). 125 μ L of this concentration was mixed with 62.5 μ L 4M HCl and 62.5 μ L water.
373 80 μ L of this dilution was transferred and mixed with 20 μ L 4M HCl (S_6^0 = 40 μ g/mL). The
374 further standard concentrations were reached by consecutive 1:2 dilutions. (S_5^0 = 20 μ g/mL,
375 S_4^0 = 10 μ g/mL, S_3^0 = 5 μ g/mL, S_2^0 = 2.5 μ g/mL). S_1^0 is the blank. With the concentrations
376 mentioned, collagen and a 4HP standard curve were generated for each assay. **b** and **d**,
377 depict the measured collagen (b) and 4HP (d) values (μ g/mL), which were used to generate
378 the standard curve and correspond to the loaded, known concentrations. The top row on
379 the x-axis indicates the concentrations (μ g/mL) loaded in the 4HP assay, and the bottom
380 row shows the ones loaded in the collagen assay. R^2 's represents the coefficient of
381 determination of the resulting standard curves. **c**, compares the measured collagen values
382 (μ g/mL) of the two assays correlating with the loaded 4HP concentrations (μ g/mL). For this,
383 the collagen standard curve was considered on the two plates. Since different 4HP
384 concentrations were loaded on the two assays, the rule of proportion was used to make the
385 assays comparable. **e**, compares the measured 4HP values obtained from the loaded
386 collagen concentrations. This time the 4HP standard curve was used on both plates.
387

Total collagen levels in mice

388

389 **Fig. 2. Collagen content of entire mice**

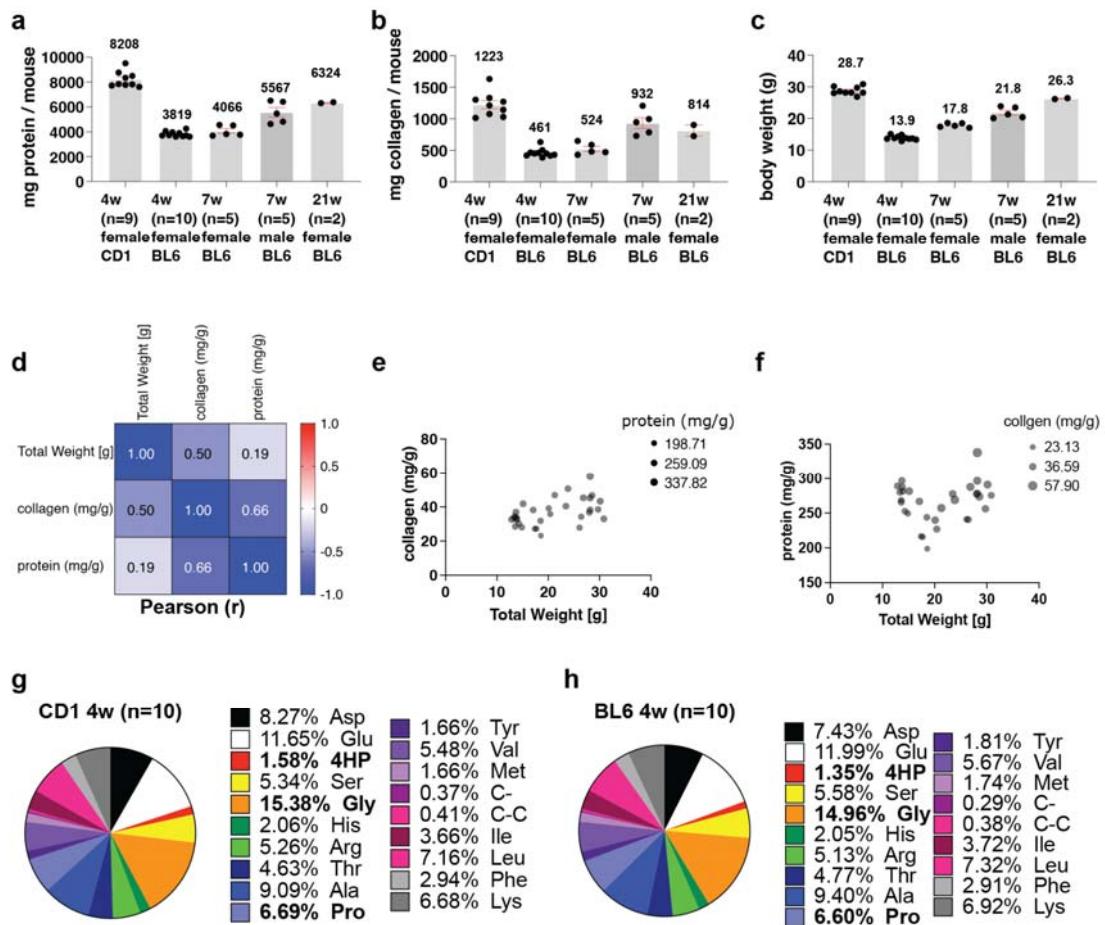

390 **a**, literature indicating a proportion of collagen in mammalian protein. See Supplementary
391 Table 6 for details. **b**, schematic representation of the total collagen and total protein assay
392 procedure. **c**, the percentage of collagen normalized to the total protein of a whole female
393 mouse, calculated as shown in (a). The first bar depicts a CD1 mouse, whereas the others
394 represent C57BL/6 mice. Numbers show the age in weeks (w) or sample size (n). **d**,

Total collagen levels in mice

395 illustrates the amount of collagen per gram wet weight of a mouse (mg/g). **e**, shows the
396 portion of protein per gram wet weight (mg/g). **c-e**, see Supplementary Table 7 for details. **f**,
397 illustrates the amino acid analysis procedure. Some steps are omitted (dashed lines). For
398 detailed information, see Materials and Methods. **g**, shows the proportion (%) of 4HP over
399 total amino acids (AA) of the four weeks old female CD1 and C57BL/6 mice. **h**, depicts the
400 values shown in (f), multiplied with the 4HP to collagen conversion factor (7.46). **g** and **h**,
401 see Supplementary Table 8 for details. **c-e and g-h**, mean \pm SEM, shown is the mean of 2-10
402 biological replicates. Values of biological replicates were derived from 2 (g and h) 3 (c-e)
403 technical replicates. One way ANOVA post-hoc Tukey, **: $p \leq 0.01$. **i**, illustrates the
404 experimentally derived conversion factor of the collagen standard. See Supplementary
405 Table 8. **j**, % of the expected collagen standard concentration used in the previous assays
406 when measured with the Sircol assay (1200 μ g/mL equals 100 percent). See Supplementary
407 Table 10. **k**, illustrates the amount of collagen per gram wet weight (mg/g). See
408 Supplementary Table 10. **l**, shows the percentage of the expected collagen concentration
409 (see (d)) when measured with the Sircol collagen quantification. See Supplementary Table
410 10.

411

412

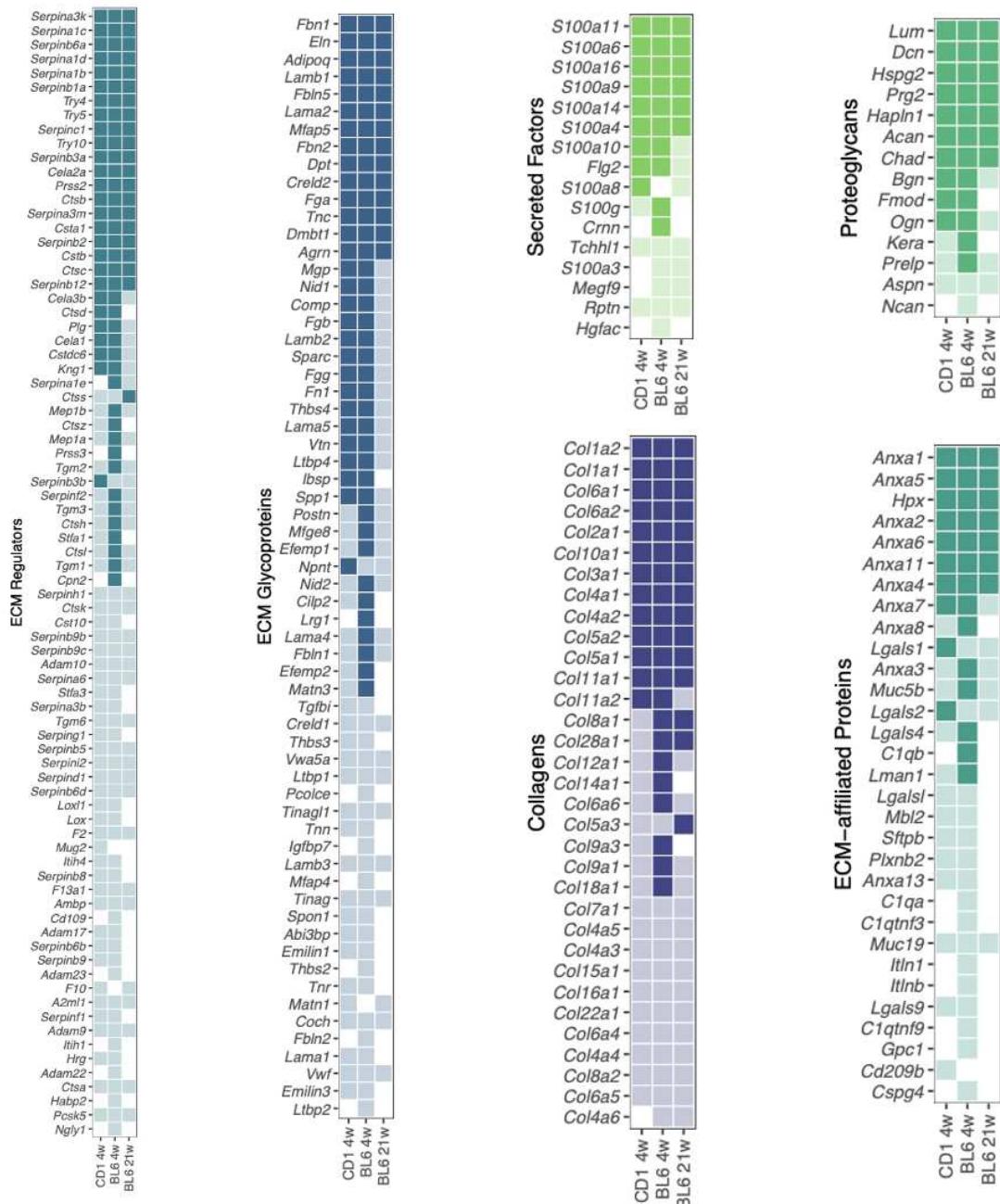

413

414 Supplementary Fig. 2. Comparison of the 4HP and collagen assay

415 **a**, schematic representation of the 4HP and total collagen assay procedure. The mice were
416 diluted with water and aliquoted. An equal amount of the total lysate was used for the 4HP
417 assay and for the collagen assay. For the total collagen assay, the lysates were diluted 3:10
418 to a final 6M HCl concentration and hydrolyzed for 20h at 95°C. This hydrolysate was
419 diluted 2:3 with water and 1:17 with 4M HCl. 35 µL of the normal hydrolyzed collagen
420 standard, 35 µL of 4HP standard samples derived from the 4HP assay standard solution,
421 and 35 µL of the samples were loaded on a 96-well plate. For the 4HP assay, the lysates
422 were diluted 1:2 with 12M HCl and hydrolyzed for 3h at 120°C. The hydrolysate was further
423 diluted (1:10 and 1:9) with 6M HCl. 50 µL of these samples and 50 µL of the collagen
424 standard dilutions, which were not further diluted after hydrolyzation, were loaded on a 96-
425 well plate next to the normal 4HP standard.
426 **b** and **c**, show a percentage of collagen (b) or 4HP (c) to protein comparison of the different
427 assays. The mean of the 3 previous protein assays was used for normalization. **d** and **e**,
428 compare values (mg/g) of collagen or 4HP, respectively. **b** and **d**, 7.46 is the 4HP to collagen
429 conversion factor cited in the literature (Neuman and Logan, 1950). The 4HP concentration
430 of the corresponding assay is multiplied by this factor to get the collagen concentration. **f**,
431 depicts the protein levels (mg/g) from the total protein assay and the BCA assay. **g**,
432 illustrates the means \pm SEM of the empirical conversion factors of the animal groups
433 mentioned on the x-axis. The factor is derived by dividing the collagen concentration of a
434 sample by its 4HP concentration. Three different methods were used to calculate it. Either
435 the values used for the calculation were taken from the same plate (collagen assay, 4HP
436 assay) or from different plates (collagen assay / 4HP assay).
437 **b-g**, the first group consists of 4 weeks old CD1 females. The others are C57BL/6 females.
438 The numbers indicate the age in weeks (w). Shown is the mean \pm SEM of 2-10 biological
439 replicates. (values of biological replicates are derived from 1-3 technical replicates), 2way
440 ANOVA posthoc Tukey (a,c) or Sidak (b,d).
441 **h** and **i** show the conversion factors calculated by using the collagen and 4HP standard
442 curves, respectively. Four or three different methods were used to calculate it. Either the
443 values used for the calculation were taken from the same plate (collagen assay, 4HP assay),
444 from different plates (collagen assay / 4HP assay), or the calculation was done by using the
445 measured values and the concentrations indicated in the x-axis (4HP assay standard curve
446 or collagen assay standard curve, respectively). See Supplementary Table 9 for details.

447

448



449

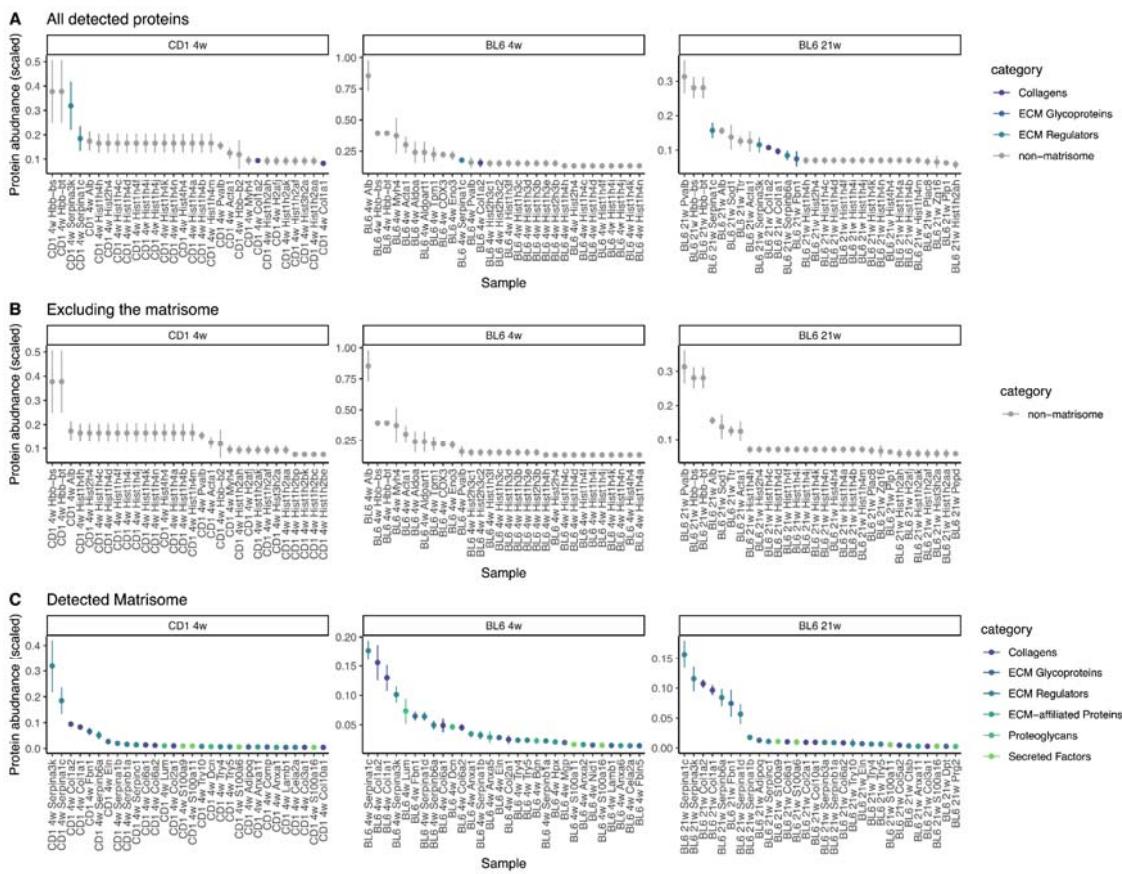
450 **Fig. 3. Protein and collagen content of a mouse and its mean body weight**

451 **a**, shows the protein content (mg) of mice. **b**, illustrates the collagen content(mg) of mice. **c**,
 452 depicts the mice's body weight (g). **a-c**, mean \pm SEM, shown is the mean of 2-10 biological
 453 replicates. Values of biological replicates were derived from 3 technical replicates. **d**,
 454 Pearson multivariate correlation matrix. **e**, collagen correlation with body weight (bubble
 455 size indicates corresponding protein levels). **f**, protein correlation with body weight (bubble
 456 size indicates corresponding collagen levels). See Supplementary Table 7 for details. **g**, Pie
 457 chart representation of the amino acid composition of 4 weeks old CD1 mice (n= sample
 458 size). See Supplementary Table 8. **h**, Pie chart representation of the amino acid composition
 459 of 4 weeks old C57BL/6 mice. See Supplementary Table 8.

460

461

462 **Fig. 4. Matreotype atlas of the wild-type murine proteome**


463 Comparative analysis of all matrisome proteins which could be quantified in at least one of
 464 the three animal cohorts: wild-type CD1 (4 weeks) and C57BL/6 at four and twenty-one
 465 weeks old. Solid squares represent proteins that were observed to be abundant (> median)
 466 in the respective cohort, transparent squares indicate low abundance (<= median), and
 467 white squares highlight non-observable protein-cohort combinations. Details are in
 468 Supplementary Table 11.

469

470

471

472

473

474

Supplementary Fig. 3. Top 30 most abundant proteins of wild-type mice

475 The scaled protein abundances are displayed in horizontal panels for each mouse cohort
 476 (CD1 4 weeks, BL6 4 weeks, BL6 21 weeks) for all detected proteins (a), all non-matrisome
 477 proteins (b), and exclusively the matrisome (c). The matrisome membership is represented
 478 by the color of each data point indicating its matrisome category. Details are in
 479 Supplementary Table 11.
 480

481

482 **Methods and Materials**

483

484 **Sample preparation**

485 *Mouse Tissue*

486 CD1 mice were provided by the institute of laboratory animal science (University of
487 Zürich; AniMatch). The Veterinary office approved all other animals of the Canton of
488 Zürich (Licence Nr. ZH092-19). All experiments were performed post-mortem.

489

490 *Total mouse lysate*

491 We used inbred C57BL/6 and outbred CD1 mice for the total lysate experiments (9
492 to 10 CD1 and 10 C57BL/6 mice, all 4 weeks old female, and 12 C57BL/6 mice
493 (male: 5 x 7 weeks, female: 5 x 7 weeks and 2 x 21 weeks). These mice were
494 euthanized, frozen at -20°C and then individually mixed with a NutriBullet 600 Series
495 after having added 40 mL of distilled water (Sigma-Aldrich) to the 4 weeks old
496 C57BL/6 mice, 50 mL to the CD1, and 20 mL to the 7-21 weeks old C57BL/6 mice.
497 This mixture was filled into 50 mL tubes and was bead-bounced for 3 x 10 to 6 x 10
498 minutes. Then 500 µL was aliquoted into cryotubes and sonicated for 20 seconds to
499 homogenize it completely. Despite homogenizing, the hair remained in the samples
500 and was not filtered out. The aliquots were snap-frozen and stored at -80°C.

501

502 *Organ samples*

503 Mice were euthanized, and skin punches (5 mm, Biopsy punch, Stiefel) were
504 collected from the shaved back. To harvest the tail skin, the tail was cut, and the skin
505 was flayed. A 5 mm piece of the tail skin was cut with a razor blade 3 cm and 3.5 cm
506 away from the tip because, at this distance, the skin looked uniformly in the different
507 age cohorts. Lung, heart, liver, colon, kidney, skull, brain, femur, tail, and hamstring
508 muscle were dissected, snap frozen, and stored at -80°C.

509

510 **Amino acid analysis**

511 Whole mouse lysate aliquots were pestled in liquid nitrogen and sent to Analytical
512 Research Services (Bern, Switzerland) for amino acid analysis. They measured the
513 probes according to Bidlingmeyer *et al.*⁴⁷. In brief, 25 µL of the homogenate was
514 pipetted for hydrolysis into a glass tube (6 x 50 mm) and vacuum-speed dried, then
515 25 µL 6M HCl with 0.1% phenol was added. For hydrolysis, 200 µL 6M HCl / 0.1%
516 phenol was pipetted into a vessel with frit, and the glass tube was placed inside. The
517 vessel was flooded with nitrogen and sealed under a vacuum (ca. 200 mbar).
518 Samples were hydrolyzed for 22h at 115°C. Then they were dried and resuspended
519 in 350 µL 0.1% trifluoroacetic acid (TFA). After a short centrifugation, the
520 supernatant was diluted 1:10 with water. An aliquot of 10 µL was transferred into a
521 tube and dried. After the reaction with phenylisothiocyanate (PITC) the aliquot was
522 dried again and dissolved in 50 µL high-performance liquid chromatography (HPLC)
523 Eluent A. 20 µL was injected into an HPLC (Dionex with P680 HPLC pump, ASI 100
524 (automated sample injector), thermostatted column compartment TCC-100 and
525 ultimate 3000 RS diode array detector).

526

527 **Quantification of total collagen and protein**

528 *Total mouse lysates*

529 *Collagen and protein assay*

530 To quantify the total collagen normalized to the total protein of the total lysate, the
531 QuickZyme total collagen and total protein assays (Biosciences) were performed
532 according to the manufacturer's protocol. The QuickZyme total collagen assay is
533 based on a colorimetric read-out for free hydroxyproline amino acids. Free
534 hydroxyproline is oxidized with Chloramine-T to pyrrole and then stained with
535 Ehrlich's reagent ⁴⁸. Pure rat tail collagen was hydrolyzed, and different
536 concentrations were loaded according to the protocol on the assay plate to be able
537 to generate a standard collagen curve, which was used to determine the total
538 collagen content in our samples.

539

540 The QuickZyme total protein assay is based on a colorimetric read-out. Hydrolyzed
541 free amino acids are assessed by using genipin, and the color change acts as a
542 read-out ³⁴. According to the protocol, a standard curve of pre-hydrolyzed bovine
543 serum albumin (BSA) was employed to determine total protein concentration. Before
544 conducting the assays, the samples were vortexed for 10 seconds. 300 mg of the
545 aliquot was used for the lysis, ensuring that all hair in the sample was weighed. 300
546 µL 12M HCl (VWR chemicals) and 400 µL 6M HCl were added. This mixture was
547 hydrolyzed at 95°C for 20h to the amino acids. The hydrolyzed samples were
548 centrifuged for 10 min at 13000 x g. The amino acid homogenate was split to assess
549 collagen and protein levels.

550 For the collagen assay, the hydrolysate was diluted (2:3) with water to reach a final
551 HCl concentration of 4M. The same dilution was conducted with the samples for the
552 protein assay but with 6M HCl. Then the samples were further diluted to be in the
553 range of the standard curve (collagen samples dilution was 1:17 with 4M HCl, and
554 protein samples dilution was 1:15 with 6M HCl). These dilutions were loaded on the
555 96-well plates (one for the collagen assay and one to conduct the protein assay),
556 and the buffer and color reagent required were added. After 1h incubation time at
557 60°C for the collagen plate and at 85°C for the protein plate, the plates were placed
558 on ice for 5 min or 7 min, respectively, and absorbance was measured at 570 nm
559 (CLARIOstar, BMG Labtech, CLARIOstar-Data Analysis, 3.1).
560 To calculate the total milligram collagen or protein per gram of an entire mouse, the
561 dilution factor for homogenizing the mouse was considered.
562

563 *Hydroxyproline assay*

564 Hydroxyproline concentrations were measured according to the Hydroxyproline
565 Assay Kit (Sigma-Aldrich) protocol. This assay also detects free 4HP that is oxidized
566 with Chloramine-T to pyrrole and stained with Ehrlich's reagent ⁴⁸. Samples were
567 diluted 1:2 with 12 M HCl and hydrolyzed at 120°C for 3 hours. Activated charcoal
568 was added, and tubes were centrifuged at 10000 x g for 3 minutes. 50 µL of the
569 standard collagen samples (see 3.2.3.1.3) were loaded onto the plate, and the other
570 samples were diluted further in two steps (1:10 and 1:9) to be in the range of the
571 hydroxyproline standard curve. Into the plate, 50 µL of the final dilution was loaded
572 and dried at 60°C. 100 µL of Chloramine T/Oxidation Buffer mixture was added and
573 incubated at room temperature for 5 minutes. 100 µL of the diluted DMAB reagent
574 (DMAB: perchloric acid/Isopropanol=1:1) was added to each well and incubated for

575 90 minutes at 60°C. Absorbance was measured at 560 nm. The results were
576 multiplied by the hydroxyproline to collagen conversion factor (7.46), as stated in
577 Neuman *et al.*⁴⁹.

578

579 *Collagen and hydroxyproline standard preparation*

580 To verify the collagen content of the samples, standard collagen concentrations, and
581 hydroxyproline standard concentrations were loaded on the assay plates used for
582 the assays comparison and prepared as follows.

583

584 For the collagen assay, the collagen assay standard (rat tail collagen, 1200 µg/mL
585 (Bioscience)) was prepared according to protocol. To be able to generate a 4HP
586 standard curve on the collagen assay plate, the 4HP standard (1 mg/mL (Sigma-
587 Aldrich)) was diluted 1:10 with HCl (0.1 mg/mL in 6M HCl). 125 µL of this
588 concentration was mixed with 62.5 µL 4M HCl and 62.5 µL water. 80 µL of this
589 dilution was transferred and mixed with 20 µL 4M HCl (40 µg/mL). The further
590 standard concentrations were reached by consecutive 1:2 dilutions. (20 µg/mL, 10
591 µg/mL, 5 µg/mL, 2.5 µg/mL). 4M HCl was used as blank.

592

593 For the 4HP assay, 250 µL of the collagen standard was diluted with 250 µL water
594 (600 µg/mL). This solution was diluted 1:2 with water (300 µg/mL). 240 µL of the last
595 dilution was mixed with 120 µL of water (200 µg/mL). A 180 µL aliquot was
596 transferred to a new tube and diluted with 180 µL H2O (100 µg/mL). This 1:2 dilution
597 was repeated 4 times (50 µg/mL, 25 µg/mL, 12.5 µg/mL, 6.25 µg/mL), and a water
598 blank was prepared. To be in the range of the 4HP standard curve, 150 µL of each
599 sample and blank were pipetted into a new tube and diluted with 150 µL 12M HCl.

600 After hydrolyzation (3h at 120°C), 50 µL of each sample was pipetted on a 96-well
601 plate. The hydroxyproline standard (1 mg/mL) was prepared according to the
602 protocol for the 4HP assay.

603

604 *Sircol™ Soluble Collagen Assay*

605 Total collagen concentrations were also measured with the Sircol™ Soluble
606 Collagen Assay (biocolor life science assay). 100 mg of the total lysates were mixed
607 with 1mL 0.1 mg/mL pepsin in 0.5M acetic acid (Merck) and put at 4°C overnight.
608 The next day, 500 µL 0.32 mg/mL pepsin in 0.5M acetic acid (Merck) was added and
609 again left overnight at 4°C. 1 mL of this solution was then transferred into an Amicon
610 Ultra-2 Centrifugal Filter Unit (Millipore). This unit was centrifuged for 60 minutes at
611 3220 rcf. The flow-through was discarded, and the collagen remaining in the filter
612 was collected by spinning the inverted tube for 2 minutes at 1000 rcf. 0.5M acetic
613 acid (Merck) was added to reach 500 µL. 50 µL of this solution was pipetted into a
614 new tube, and the Sircol assay was performed according to protocol. Finally, 1 mL
615 alkali reagent was added. 200 µL was pipetted on a 96-well plate.

616

617 The rat tail collagen standard, 1200 µg/mL (Bioscience) used in the collagen assay
618 was also measured with three different pre-treatments. In the first treatment, 100 µL
619 of the standard was digested and filtered like the samples described above. 150 µL
620 0.5M acetic acid was then added to the collagen collected in the tube. For the
621 second, 120 µL of the standard was diluted with 880 µL 0.5M acetic acid and only
622 filtered like the samples. This time 0.5M acetic acid was added to reach 200 µL. 50
623 µL of each collagen standard sample was transferred in separate tubes, and 50 µL
624 0.5M acetic acid was added. Finally, 30 µL of the untreated collagen standard was

625 diluted with 70 μ L 0.5M acetic acid. The Sircol assay was performed according to
626 protocol. After having added 1 mL alkali reagent, 200 μ L of the differently treated
627 standards were transferred to a 96-well plate.

628

629 *Bicinchoninic acid (BCA) protein assay*

630 Total protein concentrations were also measured with the PierceTM BCA Protein
631 Assay Kit (Thermo Scientific). This assay combines the protein-induced biuret
632 reaction with the colorimetric detection of the resulting cuprous cation (Cu^{1+}) by BCA
633 ⁵⁰.

634

635 The standard for this assay was prepared according to the protocol. In the first
636 replicate, samples were vortexed, and hairs were included. For the second replicate,
637 the samples were sonicated for 20 seconds, and hairs were excluded, and for the
638 last replicate, samples were not pretreated. The total lysate was diluted (3:10 and
639 2:3). 25 μ L of the final dilution was pipetted into a 96-well microplate. 200 μ L of the
640 BCA working reagent was added before shaking the plate for 30 seconds on a plate
641 shaker. Afterward, the plate was covered and incubated at 37°C for 30 minutes. The
642 plate was cooled to room temperature, and absorbance was measured at 562 nm.

643

644 *Organs*

645 To quantify collagen normalized to protein levels in organs, the QuickZyme total
646 collagen and total protein assays (Biosciences) were conducted. For most organs,
647 0.1 g of frozen organ tissue was weighted and used for the assay. For skin tissue, a
648 skin punch (or half of a skin punch) was weighted, and for the skull and femur, 0.01 g

649 was used. Organs were diluted with 6M HCl using the following formula: $v = aw \times$
650 $D_{\text{organ}} - aw$ ($v = \mu\text{L}$ 6M HCl added to organs, aw = organ assay weight (mg), $D_{\text{organ}} =$
651 experimentally determined organ specific dilution factor, $D_{\text{colon}} = 12.5$, $D_{\text{femur}} = 74.2$,
652 $D_{\text{lung}} = 10.9$, $D_{\text{skin or tendon}} = 73.5$, $D_{\text{muscle}} = 11.2$, $D_{\text{brain}} = 5.7$, $D_{\text{heart}} = 11.0$, $D_{\text{liver}} = 7.3$,
653 $D_{\text{skull}} = 98.2$, $D_{\text{kidney}} = 10.8$) and hydrolyzed at 95°C for 20h. The hydrolyzed samples
654 were processed like the total mouse lysates, meaning diluted to 4M HCl (2:3) with
655 water if collagen was intended to be measured. Protein samples were diluted 2:3
656 with 6M HCl. To finally be within the range of the standard curve, the samples were
657 diluted further. The liver and brain samples were diluted 1:1 for collagen and 1:10 for
658 protein measurements. Tendon samples were processed like skin samples, but
659 collagen samples were diluted 1:16. All other organs were diluted 1:8 for protein and
660 collagen measurements.

661

662 **Statistical analysis**

663 Statistical analysis was performed with GraphPad Prism 8.0 using a one-way or two-
664 way analysis of variance (ANOVA) followed by a posthoc Tukey's, Dunnett, or Sidak
665 multiple comparisons test or a two-tailed unpaired t-test with a 95% confidence
666 interval. Normal distribution of the values was assumed. Values represent means \pm
667 SD. * $P \leq 0.05$, ** $P \leq 0.01$, *** $P \leq 0.001$, and **** $P \leq 0.0001$.

668

669 **Quantitative proteomic analysis of mouse samples**

670 Mouse samples were dissolved in 10 mM Tris-HCl buffer containing 4% SDS, pH
671 7.5, followed by sonication for 2 minutes. SDS-PAGE loading buffer was added, and
672 protein samples were heated for 10 minutes at 95°C, treated with 1 mM DTT, and

673 alkylated using 5.5 mM iodoacetamide for 10 minutes at room temperature. Samples
674 were fractionated on 4-12% gradient gels, and proteins were in-gel digested with
675 trypsin (Promega), five fractions per sample. Tryptic peptides were purified by
676 STAGE tips, and LC-MS/MS measurements were performed on a QExactive Plus
677 mass spectrometry coupled to an EasyLC 1200 nanoflow-HPLC (all Thermo
678 Scientific). MaxQuant software (version 1.6.2.10)⁵¹ was used for analyzing the MS
679 raw files for peak detection, peptide quantification, and identification using a Uniprot
680 mouse database (version April 2016). Carbamidomethylcysteine was set as fixed
681 modification, and oxidation of methionine was set as variable modification. The
682 MS/MS tolerance was set to 20 ppm, and four missed cleavages were allowed for
683 Trypsin/P as enzyme specificity. Based on a forward-reverse database, protein and
684 peptide FDRs were set to 0.01, the minimum peptide length was set to seven, and at
685 least one unique peptide had to be identified. The match-between run option was set
686 to 0.7 minutes. MaxQuant results were analyzed using Perseus software (version
687 1.6.2.3)⁵².

688

689 To calculate the relative abundance of collagen proteins compared to the detected
690 proteome, replicate iBAQ values of respective groups were averaged, and the
691 percentage of collagens was obtained by this formula: sum of collagen iBAQ
692 values*100/sum of iBAQ values of all proteins.

693

694 **Matrisome annotation of proteomics data**

695 Peptide annotations below a Q-value of 0.05 were augmented with the murine
696 matrisome annotations (<http://matrisomedb.pepchem.org>)⁴⁰. Protein abundances for

697 each mouse strain and age group are illustrated by the matrisome category as a tile
698 map. Mean abundances above the overall median protein abundance are displayed
699 in full color, transparent if below, and white if not detected.

700

701

702

703

704 **Author Contributions**

705 All authors participated in designing the research, executing the experiments, and
706 analyzing and interpreting the data. KT and CYE wrote the manuscript in
707 correspondence with the other authors.

708

709 **Acknowledgments**

710 We thank Dr. Cyril Statzer for his assistance in the analysis and visualization of the
711 proteomic dataset, Jasmin Mantl for help harvesting samples and initial work
712 establishing protocols, Philippe Bugnon (LTK1 Kurse) and AniMatch for CD1 mice,
713 Frank Zauke for literature references, John Hourihan, Jan Gebauer, Mats Paulsson,
714 Matthias Chiquet, Peter Bruckner, and Ewald lab members for discussion and
715 comments on the manuscript.

716

717 **Conflict of Interest**

718 The authors report no conflict of interest.

719

720 **Funding sources**

721 This work was supported by the Swiss National Science Foundation [163898 and
722 190072] to CYE.

723

724

725 **References**

- 726 1. Glass, D. J. *Experimental Design for Biologists, Second Edition*. (Cold Spring
727 Harbor Laboratory Press, 2014).
- 728 2. Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers—the
729 database of key numbers in molecular and cell biology. *Nucleic Acids Res* **38**, D750–
730 D753 (2010).
- 731 3. Whitslar, W. H. A Study of the Chemical Composition of the Dental Pulp. *Am J
732 Dent Sci* **23**, 350–355 (1889).
- 733 4. Teuscher, A. C., Statzer, C., Pantasis, S., Bordoli, M. R. & Ewald, C. Y. Assessing
734 Collagen Deposition During Aging in Mammalian Tissue and in *Caenorhabditis
735 elegans*. *Methods Mol Biology Clifton NJ* **1944**, 169–188 (2019).
- 736 5. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. *Nat Rev Immunol* **4**,
737 583–594 (2004).
- 738 6. Landewé, R. B. M. et al. Arthritis instantaneously causes collagen type I and type
739 II degradation in patients with early rheumatoid arthritis: a longitudinal analysis. *Ann
740 Rheum Dis* **65**, 40 (2006).
- 741 7. Elango, J. et al. Paradoxical Dual Role of Collagen in Rheumatoid Arthritis: Cause
742 of Inflammation and Treatment. *Bioeng* **9**, 321 (2022).
- 743 8. Xu, S. et al. The role of collagen in cancer: from bench to bedside. *J Transl Med*
744 **17**, 309 (2019).
- 745 9. Socovich, A. M. & Naba, A. The cancer matrisome: From comprehensive
746 characterization to biomarker discovery. *Seminars in Cell & Developmental Biology*
747 **89**, 157–166 (2019).
- 748 10. Andrews, J. P., Marttala, J., Macarak, E., Rosenbloom, J. & Uitto, J. Keloids: The
749 paradigm of skin fibrosis — Pathomechanisms and treatment. *Matrix Biol* **51**, 37–46
750 (2016).
- 751 11. Perlish, J. S., Lemlich, Gabrielle. & Fleischmajer, Raul. Identification of Collagen
752 Fibrils in Scleroderma Skin. *J Invest Dermatol* **90**, 48–54 (1988).
- 753 12. Izzi, V., Davis, M. N. & Naba, A. Pan-Cancer Analysis of the Genomic Alterations
754 and Mutations of the Matrisome. *Cancers* **12**, 2046 (2020).
- 755 13. Rodriguez-Feo, J., Sluijter, J., Kleijn, D. & Pasterkamp, G. Modulation of
756 Collagen Turnover in Cardiovascular Disease. *Curr Pharm Design* **11**, 2501–2514
757 (2005).
- 758 14. Horn, M. A. & Trafford, A. W. Aging and the cardiac collagen matrix: Novel
759 mediators of fibrotic remodelling. *J Mol Cell Cardiol* **93**, 175–185 (2015).
- 760 15. Ewald, C. Y. The Matrisome during Aging and Longevity: A Systems-Level
761 Approach toward Defining Matreotypes Promoting Healthy Aging. *Gerontology* **66**,
762 266–274 (2020).
- 763 16. Meyer, M. Processing of collagen based biomaterials and the resulting materials
764 properties. *Biomed Eng Online* **18**, 24 (2019).
- 765 17. Nutton, V. Ancient Medicine. (2012) doi:10.4324/9780203081297.
- 766 18. Schweitzer, M. H. et al. Biomolecular Characterization and Protein Sequences of

767 the Campanian Hadrosaur *B. canadensis*. *Science* **324**, 626–631 (2009).

768 19. Harvey, V. L., Egerton, V. M., Chamberlain, A. T., Manning, P. L. & Buckley, M.

769 Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating

770 Ancient Bone. *Plos One* **11**, e0150650 (2016).

771 20. Rybczynski, N. et al. Mid-Pliocene warm-period deposits in the High Arctic yield

772 insight into camel evolution. *Nat Commun* **4**, 1550 (2013).

773 21. Garrone, R. Collagen, a common thread in extracellular matrix evolution. *Proc*

774 *Indian Acad Sci - Chem Sci* **111**, 51–56 (1999).

775 22. Ricard-Blum, S. The collagen family. *Cold Spring Harbor perspectives in biology*

776 **3**, a004978–a004978 (2011).

777 23. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. *Annual review*

778 *of biochemistry* **78**, 929–958 (2009).

779 24. Belostotsky, R. & Frishberg, Y. Catabolism of Hydroxyproline in Vertebrates:

780 Physiology, Evolution, Genetic Diseases and New siRNA Approach for Treatment.

781 *Int J Mol Sci* **23**, 1005 (2022).

782 25. Bielajew, B. J., Hu, J. C. & Athanasiou, K. A. Collagen: quantification,

783 biomechanics and role of minor subtypes in cartilage. *Nat Rev Mater* **5**, 730–747

784 (2020).

785 26. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by

786 proteomics of normal and tumor extracellular matrices. *Molecular & cellular*

787 *proteomics* **11**, M111.014647 (2012).

788 27. Capella-Monsonís, H., Coentro, J. Q., Graceffa, V., Wu, Z. & Zeugolis, D. I. An

789 experimental toolbox for characterization of mammalian collagen type I in biological

790 specimens. *Nature Protocols* **13**, 507–529 (2018).

791 28. Lareu, R. R., Zeugolis, D. I., Abu-Rub, M., Pandit, A. & Raghunath, M. Essential

792 modification of the Sircol Collagen Assay for the accurate quantification of collagen

793 content in complex protein solutions. *Acta biomaterialia* **6**, 3146–3151 (2010).

794 29. Gameil, A. H. M., Yusof, F., Azmi, A. S. & Puad, N. I. M. Progress in the

795 detection and quantification of collagens: a review. *Iop Conf Ser Mater Sci Eng* **1192**,

796 012005 (2021).

797 30. Grant, M. E. & Prockop, D. J. The biosynthesis of collagen. 1. *The New England*

798 *journal of medicine* **286**, 194–199 (1972).

799 31. Lowry, O. H., Gilligan, D. R. & Katersky, E. M. The determination of collagen and

800 elastin in tissues with results obtained in various normal tissues from different

801 species. *The Journal of biological chemistry* **139**, 795–804 (1941).

802 32. NEUMAN, R. E. & LOGAN, M. A. The determination of collagen and elastin in

803 tissues. *The Journal of biological chemistry* **186**, 549–556 (1950).

804 33. Prockop, D. J. & UDENFRIEND, S. A specific method for the analysis of

805 hydroxyproline in tissues and urine. *Analytical biochemistry* **1**, 228–239 (1960).

806 34. Lee, S.-W., Lim, J.-M., Bhoo, S.-H., Paik, Y.-S. & Hahn, T.-R. Colorimetric

807 determination of amino acids using genipin from *Gardenia jasminoides*. *Anal Chim*

808 *Acta* **480**, 267–274 (2003).

809 35. HARKNESS, R. D. Biological functions of collagen. *Biological reviews of the*

810 *Cambridge Philosophical Society* **36**, 399–463 (1961).

811 36. HARKNESS, M. L., HARKNESS, R. D. & JAMES, D. W. The effect of a protein-
812 free diet on the collagen content of mice. *The Journal of physiology* **144**, 307–313
813 (1958).

814 37. NEUMAN, R. E. & LOGAN, M. A. The determination of hydroxyproline. *The*
815 *Journal of biological chemistry* **184**, 299–306 (1950).

816 38. Lin, P. Y., Romsos, D. R. & Leveille, G. A. Food intake, body weight gain, and
817 body composition of the young obese (ob/ob) mouse. *J Nutrition* **107**, 1715–23
818 (1977).

819 39. Schwahnäusser, B. et al. Global quantification of mammalian gene expression
820 control. *Nature* **473**, 337–342 (2011).

821 40. Shao, X., Taha, I. N., Clauser, K. R., Gao, Y. (Tom) & Naba, A. MatrisomeDB:
822 the ECM-protein knowledge database. *Nucleic Acids Res* **48**, D1136–D1144 (2019).

823 41. Naba, A. et al. The extracellular matrix: Tools and insights for the “omics” era.
824 *Matrix Biol* **49**, 10–24 (2016).

825 42. Last, J. A. & Reiser, K. M. Collagen biosynthesis. *Environ Health Persp* **55**, 169–
826 177 (1984).

827 43. Sato, N. et al. Proteomic Analysis of Human Tendon and Ligament: Solubilization
828 and Analysis of Insoluble Extracellular Matrix in Connective Tissues. *J Proteome*
829 *Res* **15**, 4709–4721 (2016).

830 44. McKee, T. J., Perlman, G., Morris, M. & Komarova, S. V. Extracellular matrix
831 composition of connective tissues: a systematic review and meta-analysis. *Sci Rep-*
832 *uk* **9**, 10542 (2019).

833 45. Arteel, G. E. & Naba, A. The liver matrisome – looking beyond collagens. *Jhep*
834 *Reports* **2**, 100115 (2020).

835 46. Goddard, E. T. et al. Quantitative extracellular matrix proteomics to study
836 mammary and liver tissue microenvironments. *Int J Biochem Cell Biology* **81**, 223–
837 232 (2016).

838 47. Bidlingmeyer, B. A., Cohen, S. A. & Tarvin, T. L. Rapid analysis of amino acids
839 using pre-column derivatization. *J Chromatogr B Biomed Sci Appl* **336**, 93–104
840 (1984).

841 48. Prockop, D. J. & Udenfriend, S. A specific method for the analysis of
842 hydroxyproline in tissues and urine. *Anal Biochem* **1**, 228–239 (1960).

843 49. Neuman, R. E. & Logan, M. A. THE DETERMINATION OF COLLAGEN AND
844 ELASTIN IN TISSUES. *J Biol Chem* **186**, 549–556 (1950).

845 50. Smith, P. K. et al. Measurement of protein using bicinchoninic acid. *Anal*
846 *Biochem* **150**, 76–85 (1985).

847 51. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates,
848 individualized p.p.b.-range mass accuracies and proteome-wide protein
849 quantification. *Nat Biotechnol* **26**, 1367–1372 (2008).

850 52. Tyanova, S. et al. The Perseus computational platform for comprehensive
851 analysis of (prote)omics data. *Nat Methods* **13**, 731–740 (2016).