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Abstract: 

Reducing disparities is critical to promote equity of access to precision treatments for all patients with 

cancer. While socioenvironmental factors are a major driver behind such disparities, biological differences 

also are likely to contribute. The prioritization of cancer drug targets is foundational for drug discovery, yet 

whether ancestry-related signals in target discovery pipelines exist has not been systematically explored 

due to the absence of data at the appropriate scale. Here, we analyzed data from 611 genome-scale 

CRISPR/Cas9 viability experiments in human cell line models as part of the Cancer Dependency Map to 

identify ancestry-associated genetic dependencies. Surprisingly, we found that most putative associations 

between ancestry and dependency arose from artifacts related to germline variants that are present at 

different frequencies across ancestry groups. In 2-5% of genes profiled in each cellular model, germline 

variants in sgRNA targeting sequences likely reduced cutting by the CRISPR/Cas9 nuclease. Unfortunately, 

this bias disproportionately affected cell models derived from individuals of recent African descent because 

their genomes tended to diverge more from the consensus genome typically used for CRISPR/Cas9 guide 

design. To help the scientific community begin to resolve this source of bias, we report three complementary 

methods for ancestry-agnostic CRISPR experiments. This report adds to a growing body of literature 

describing ways in which ancestry bias impacts cancer research in underappreciated ways. 
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Main Text: 

Cancer outcomes differ widely across individuals of different ancestry groups, due to both 

socioenvironmental factors1,2 and molecular differences in cancer makeup3,4. One source of these outcome 

disparities may be due to differences in treatment response resulting from genetic ancestry-associated 

germline variants. While much attention has focused on pharmacogenetic associations in this regard, a 

systematic evaluation of whether relationships between predictive biomarkers and cancer targets may be 

influenced by ancestry has been challenging due to the absence of reference data. However, recent advances 

in large-scale profiling of cancer dependencies across hundreds of cellular models derived from patients of 

varying ancestry now afford the opportunity to systematically evaluate whether ancestry-associated 

molecular differences translate into differences in cancer dependencies that might affect therapeutic 

response.  

We therefore analyzed ancestry-associated cancer dependencies using data from the Cancer Dependency 

Map [Figure 1A]. This project includes data from genome-scale CRISPR/Cas9 gene essentiality screens 

across 1070 cancer cell lines reflecting 31 cancer lineages to detect essential genes and their relationships 

with predictive molecular biomarkers. These data have led to the discovery of multiple dependency-

associated somatic alterations including WRN dependence in cell lines with microsatellite instability5 and 

PRMT5 dependence in cells with genomic MTAP deletions6 amongst others. Additionally, a similar 

approach has analyzed ancestry-associated compound sensitivity profiles7. We therefore reasoned that 

systematically analyzing the relationship between computationally inferred cell line ancestry and gene 

dependency profiles might allow us to identify ancestry-associated dependencies and discover new 

opportunities for target discovery within and across particular ancestry groups as well as to evaluate whether 

previously unaccounted for sources of bias may exist. 

We systematically cataloged local ancestral haplotypes across the genomes of commonly used cancer cell 

lines, focusing on the 994 (out of 1829 total) cell line models in the Cancer Cell Line Encyclopedia 

collection for which publicly available Affymetrix SNP6 germline variant data have been analyzed8. While 

previous reports have evaluated cell line genetic ancestry at genome scale8–12, we hypothesized that such 

global assessments may preclude the discovery of regional germline associations with dependencies. We 

therefore leveraged germline variants from 10,345,968 SNPs genome-wide to infer local ancestry. 

Specifically, we divided the genome into blocks comprising 0.2 centimorgans (with a median of 580 SNPs 

per block) and characterized each block as deriving from one (homozygous) or two (heterozygous) of five 

major continental genetic ancestry groups: African (AFR), American (AMR), East Asian (EAS), European 

(EUR), and South Asian (SAS) [Figure 1B]. In admixed individuals, individual blocks might derive from 

two of these ancestries, reflecting both maternal and paternal contributions. 

At a global level, our results support previous observations8,12 that existing cell lines are overwhelmingly 

derived from individuals of either EUR or EAS ancestry. We assigned a predominant ancestry to cell lines 

that derived over 80% of their DNA from that ancestry group and called those without a predominant 

ancestry <Admixed''. Of the 994 the Cancer Dependency Map cell lines profiled in this study, over 90% of 
them are predominantly EUR (61%) or EAS (30%) [Figure 1B]. Only 41 (4%) of the cell lines were 

predominantly AFR. When taking local ancestry into account, the underrepresentation of AFR genetic 

ancestry was even starker. Cell lines characterized as AFR had large contributions from other (primarily 

European) ancestries; the average AFR genetic ancestry fraction for AFR cell lines was only 89%. In 

contrast, the average EUR and EAS ancestry fractions for EUR and EAS cell lines are 98.5% and 98.9%, 

respectively. Only four cell lines in this analysis were primarily SAS. No cell lines had greater than 80% 

AMR genetic ancestry, though AMR ancestry did comprise 16.3% of the genomes of Admixed cell lines. 

These imbalances in cell line ancestry limited statistical power to detect ancestry-associated dependencies 

among AMR and SAS cell lines and also pointed out limitations to crude continental descriptors. Indeed, 

dividing cell lines to binary ancestry groups without considering their local ancestry makeup would have 
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resulted in the misclassification of all the admixed cell lines profiled in this analysis. Despite the stark 

imbalance across all continental ancestry groups, we did maintain sufficient statistical power to detect 

dependencies associated with cell lines derived from patients of AFR, EAS, or EUR descent [Figure 1C]. 

We next evaluated whether gene dependencies could be discovered that were significantly positively or 

negatively associated with a single local ancestry. This analysis revealed 98 such gene dependencies 

appeared to be associated with either AFR (n = 19), EAS (n = 65), or EUR (n = 56) ancestry; surprisingly, 

we also detected gene dependencies that are associated with American (n = 2) ancestry, even though we 

lacked statistical power to detect such associations [Figure 1D-E]. Many of these dependency associations 

(44/98) had a reciprocal relationship with ancestry: each was both positively associated with either EUR or 

EAS ancestry and negatively associated with the other. This is likely because 91% of the cell lines included 

in our analysis are either European or East Asian. Interestingly, several ancestry-associated dependencies 

related to genes related to tyrosine-kinase signaling including PTPN11 (which encodes SHP2), which is a 

therapeutic target being tested in clinical trials13, and its complex member GRB2 [Supplemental Figure 

1]. 

We hypothesized that these associations between ancestry and dependencies were due to genetic differences 

in germline sequences between individuals of different ancestral groups. We therefore searched among SNP 

loci for dependency qualitative trait loci (d-QTLs) that could explain the differences in dependencies 

between ancestries. Specifically, we looked genome-wide for the SNP whose genotype was most associated 

with each dependency. We detected 96 such SNPs across the 98 dependencies. Two of these SNPs 

(chr9:21340131:A:G and chr9:21338127:A:C) were associated with two different genetic dependencies 

(IFNE and IFNA16; or IFNA6 and IFNA14), respectively; all four genes are in close proximity on 

chromosome 9p. Among the 96 SNPs that had the strongest association with dependencies, the genotypes 

of 35 (36%) were also associated with ancestry [Figure 2A]. The SNPs in cis with their dependency gene 

(< 1 Mb) tended to exhibit more significant associations with dependency than those in trans [Figure 2B]. 

In 41/96 cases the most significant SNPs for each gene were within 1 Mb from the transcription start site 

of the dependency gene [Figure 2C]. Taken together, these data suggest that specific germline variants 

may dictate dependency on a subset of ancestry-associated genetic dependencies. 

We next hypothesized that these d-QTLs conferred differences in gene dependency through their effects on 

expression of the dependency gene. Across the Cancer Dependency Map, gene expression has been 

observed to be the strongest predictor of gene dependence14. Surprisingly, however, the SNP was associated 

with expression of the dependency gene in only 20/98 (20%) of cases (q < 0.05). Even among these, cell 

lines with and without the resistant SNP genotype exhibited median differences in expression of only 8.6%. 

We suspected that even these differences were not biologically meaningful [Figure 2C]. In total, these data 

suggest that on average, d-QTLs are not modulating the expression levels of their associated genes.  

Surprisingly, across all ancestry-associated dependencies, approximately 50/98 (52%) had expression 

levels below five reads per million, indicating that these genes are weakly expressed or not expressed in a 

majority of the Cancer Dependency Map cell lines [Figure 2D]. The finding that so many genes that 

appeared to underlie ancestry-associated genetic dependencies were only weakly expressed suggested that 

the variations in response to CRISPR/Cas9 targeting of many of these genes might reflect something other 

than true biological differences in gene dependency, such as a technical artifact.  

Indeed, differences in cell line response to these sgRNAs might be due to differences in the efficiency with 

which these sgRNAs were able to induce double strand breaks. The d-QTLs for 47/98 (48%) of ancestry-

associated dependencies were in linkage disequilibrium with SNPs in one or more of the sgRNAs targeting 

the relevant gene [Figure 2E]. Mismatches between a CRISPR/Cas9 sgRNA and the target genome 

preclude guide binding and subsequent genome editing in some circumstances15,16, and the frequency of 

this variation can differ across ancestry groups17,18. CRISPR/Cas9-mediated double strand breaks 
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negatively impact cell viability, and can lead to cell death independent of the genomic locus that is targeted 

by Cas919–22. 

These observations support the hypothesis that variation between CRISPR/Cas9 guide and target sequences 

may explain a substantial fraction of putative ancestry-associated dependency predictions. To 

comprehensively assess this, we deconstructed the consensus gene dependency scores, which aggregate 

signals across multiple sgRNAs, into 407 individual sgRNA scores across the 98 dependencies. We then 

tested the hypothesis that germline SNPs in targeting sequences influenced the differential effects between 

ancestry groups. As expected, we found that differences in sgRNA depletion between EAS and EUR cell 

lines was greater for guides with SNPs than for guides without SNPs [Figure 2F]. Indeed, this association 

extended past ancestry-associated variants. Across all sgRNAs in the Cancer Dependency Map, 5.3% have 

a SNV in their targeting sequence in at least one cell line and 4.3% have such a variant in at least ten cell 

lines [Figure 2G]. Among the latter, which target a total of 2779 genes, 42% of the guides with a SNV in 

their targeting sequence show a significant association between the presence of a variant and guide 

dependency. These guides account for 2.2% of all sgRNAs in DepMap [Figure 2H].  

Single nucleotide mismatches in an sgRNA targeting sequence can prevent guide binding and the cutting 

activity of Cas9, with some positions on the sgRNA being less tolerant to mismatches than others23. In 

particular, mismatches in the sgRNA targeting sequence that are closer to the protospacer adjacent motif 

(PAM) are less tolerant to mismatches than those that are further. We therefore hypothesized that SNV 

mismatches in sgRNA targeting sequences should impact guide dependency as a function of their distance 

from the PAM. To test this hypothesis, we compared the location of each SNV mismatch to the magnitude 

of the difference in dependency between cell lines with and without it. Indeed, mismatches closer to the 

PAM had a greater impact than those that were further. For example, mismatches in the position farthest 

from the PAM were not associated with guide dependence (p = 0.15), whereas mismatches in the position 

closest to the PAM were strongly associated with guide dependence (p < 0.001) [Figure 2H]. The impact 

of mismatches on guide dependence are also significantly correlated with the known impact of mismatches 

on guide cutting activity23 [Supplemental Figure 2]. 

We found ancestry bias in CRISPR guide design across all ancestry groups, cell models, and CRISPR guide 

libraries that we evaluated. However, without explicitly accounting for ancestry effects, individuals of 

predominantly African descent are most affected because people of recent African descent are the most 

genetically diverse of any continent24. This is exemplified when sgRNAs are designed without considering 

human germline variation. To model this, we chose a random autosomal set of 1,000,000 loci with a 

canonical NGG PAM site and corresponding protospacer. We limited the selection of these genomic loci 

to only those that are in protein-coding exons, since most CRISPR-based experiments target coding regions 

and genomic variability is lower in coding regions than non-coding regions. We then mapped SNPs from 

4120 individuals in the individual-level gnomAD dataset to these regions. We found that 62.3% of these 

sgRNAs contained a SNP in at least one individual, and a median of 1.80% of guides were affected in each 

individual [Figure 3A]. Individuals of African descent, however, were most affected by this artifact (2.17% 

in AFR, vs 1.78% in all other ancestry groups). 

Multiple factors need to be optimized during the CRISPR sgRNA design process, including maximizing 

the likelihood that the guide will introduce the intended cut, minimizing the likelihood that the guide will 

introduce non-specific cuts at additional genomic loci, and minimizing the likelihood of mismatch between 

the sgRNA and its target due to human variation. For this latter factor, we submit that differences in variant 

frequencies across populations should be accounted for, to ensure equal efficacy across populations.  

Indeed, accounting for human variation in sgRNA design without explicitly accounting for differences in 

variation across populations does not eliminate the bias against individuals of African ancestry. We mapped 

germline variants from gnomAD to sgRNA targeting sequences from six genome-scale CRISPR libraries 
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(Avana23, Calabrese25, Dolcetto25, GeCKOv226,27, MinLibCas928, TKOv329, and HSANGERV30) [Figure 

3A]. Among these seven libraries, five (Avana, Calabrese, Dolcetto, GeCKOv2, and MinLibCas9) were 

designed without attempting to avoid SNP loci in sgRNA targeting sequences. The other two (TKOv3 and 

HSANGERV) excluded sgRNAs targeting loci with a SNP listed in the db38 and Ensembl 1000 genomes 

databases, respectively. As might be expected, the five libraries that did not account for SNP variants had 

the greatest fraction of guides that failed due to human variation, especially in individuals of African descent 

[Figure 3A]. However, all libraries had higher failure rates in African individuals compared to other 

ancestry groups. Indeed, the ratio between failure rates in African individuals vs other populations was 

surprisingly constant across all six libraries, ranging from 1.21-1.71. The absolute failure rate was highest 

in the Calabrese and Dolcetto CRISPRi libraries, likely because these guides map to non-coding regions of 

the genome. 

Although the absolute number of affected CRISPR guides in each individual is small (0.06-4.97% across 

the six libraries), the impact of this artifact on target discovery in cancer may be large. In the Avana library, 

for example, 10-36 genes in the COSMIC Cancer Gene Census31, are affected by this artifact in each 

individual [Figure 3B]. Many such genes, including EGFR, NOTCH2, ATM, and FGFR3, play important 

roles in cancer including as oncogenes or tumor suppressors [Figure 3C, Supplemental Figure 3]. 

Accounting for ancestry-associated human genetic variation can lead to large changes in CRISPR library 

design. We sought to design an ancestry-agnostic CRISPR library (herein referred to as <Taferielt=) by 
specifically avoiding regions with high variability in African populations. First, we leveraged the CRISPR 

sgRNA design tool CRISPick23,25 to provide a ranked ordering of sgRNAs with the highest expected cutting 

rates for each gene while minimizing off-target effects. We then selected the four best sgRNAs for each 

gene that excluded SNPs with high frequencies in all populations or specifically in African populations (see 

Methods). We found that these were the four CRISPick top-ranked sgRNAs for only 2,222 (11.5%) of 

genes. This process resulted in similar rates of mismatches in African individuals (median 0.23%) as in 

individuals of other ancestry groups (also 0.23%) [Figure 3A].  

We also developed new analytical methods to correct for this artifact in existing data. Specifically, we re-

calibrated the CRISPR screening data in DepMap to reduce the impact of sgRNA mismatches on the gene-

level dependency scores. The corrected version of this dataset was included in the 22Q2 DepMap release. 

This artifact does not just affect large-scale CRISPR libraries; rather, it affects all CRISPR-based 

experiments. We have therefore also developed a web-based tool (www.ancestrygarden.org) that facilitates 

the discovery of sgRNA sequences that have high mismatch rates across ancestry groups both for the 

CRISPR libraries profiled in this study and for custom user-input sgRNA sequences. 

While we use computational methods that derive continental ancestry groupings to highlight the importance 

of using diverse reference genomes for developing molecular tools, such continental labels can 

unintentionally conflate problematic uses of race and human genetic variation. A <multidimensional and 
continuous conceptualization of ancestry= can resolve some of these issues32,33. However, there is a lack of 

consensus on optimal ways to describe and visualize human genetic variation that are both precise and 

prevent harm to all people, including groups that have been negatively impacted by racist categorizations. 

Herein, we highlight a critical flaw in current CRISPR guide design practices, and we demonstrate the 

impact this artifact has on discovery of genetic dependencies in cancer. Earlier work also found that genetic 

variation within CRISPR/Cas9 sgRNA targeting sequences17, particularly at therapeutically relevant loci18, 

impacts sgRNA binding. However, until recently it was not possible to systematically understand the impact 

of this artifact on cancer target discovery. Furthermore, although the potential for this artifact was described 

over five years ago, most sgRNA design platforms still do not correct for it. We hope to raise awareness of 

this issue and proposed and implemented a series of solutions to mitigating it. 
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We previously found that ancestry-associated artifacts can frequently arise in descriptive genomic data34; 

here we find that this also extends to functional genomic data. These findings highlight how widespread 

such ancestry-associated artifacts are across cancer research, often in ways that are invisible to researchers. 

The causes of cancer disparities are complex and multifactorial, but biases in basic and pre-clinical research 

can form an important component. If we hope to make cancer outcomes equitable it is imperative that all 

forms of ancestry bias are eliminated from cancer research. 
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Figures: 

 

Figure 1: A pan-cancer analysis of ancestry-associated genetic dependencies. A) Schematic detailing 

how the Cancer Dependency Map dataset was leveraged to identify ancestry-associated genetic 

dependencies. B) Genomic fraction for each of five major ancestry groups for 994 the Cancer Dependency 

Map cancer cell lines. C) Power calculation to determine the minimum signal size (difference in Chronos 

scores) capable of being detected for each ancestry group. A Chronos score difference of 1 represents the 

difference between <common essential= and unexpressed genes in the Dependency Map. D) Volcano plot 

of ancestry associations among genetic dependencies. E) Heatmap indicating the breakdown of ancestry-

associated dependencies across ancestry groups. 
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Figure 2: Many apparent ancestry-associated dependencies result from SNP mismatches in sgRNA 

targeting sequences. A) Allele frequency of SNPs that map to sgRNA targeting sequences for ancestry-

associated genes. B) Significance of the association between the SNP and the gene dependency score for 

cis and trans d-QTLs. Cis d-QTLs are defined as those within 1 megabase of the transcription start site of 

the gene in question. C) Association between d-QTL SNPs and expression levels of the associated d-QTL 

gene. D) Median expression values for all ancestry-associated dependencies (blue) vs common essential 

dependencies (grey) across all cell lines profiled in DepMap. E) Heatmap indicating loci where SNPs reside 

on sgRNA target sequences for sgRNAs that target ancestry-associated genes. F) Violin plots indicating 

the distribution of associations between ancestry and gene dependency (as FDR q-values, vertical axis) for 

dependencies with SNVs in the targeting sequence for at least one sgRNA in at least one cell line (left), vs. 

all other ancestry-associated dependencies (right). Only dependencies associated with East Asian and 

European cell lines are shown. G) Histogram indicating the number of sgRNAs (vertical axis) against the 

fraction of Cancer Dependency Map cell lines harboring an SNV in that sgRNA (horizontal axis). H) 

Boxplot showing the association of individual sgRNA depletion scores between cell lines with and without 

a SNP in the sgRNA targeting sequence (vertical axis) against the location of the SNP in that targeting 

sequence (horizontal axis). Blue dots indicate the experimentally derived impact of a mismatch in each 

position from Doench et. al23. 
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Figure 3: Individuals of African descent are more affected by sgRNA-targeting sequence mismatches 

than other ancestry groups. A) Histograms indicating the frequency (x-axis) which SNPs map to the 

targeting sequences of guides across 8 CRISPR libraries. Samples are divided into those of African ancestry 

(orange) and those of other ancestry groups (grey). B) Histogram indicating the number of individuals in 

gnomAD (vertical axis) against the number of COSMIC Cancer Gene Census genes for which that 

individual’s genome differs from the sgRNA targeting sequence. C) The frequency at which sgRNAs from 

the Avana library are affected by this artifact (orange bars) for 8 selected cancer-associated genes across 

978 individuals of African descent.  
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Supplemental Figure 1: Comparison of GRB2 and PTPN11 dependence in European and East Asian 

cell lines. Chronos gene dependency scores for A) GRB2 and B) PTPN11 were compared between 

European and East Asian cell lines. 
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Supplemental Figure 2: Impact of SNV position on sgRNA cutting activity. Comparison between the 

impact of SNV mismatches from Doench et al.23 (y-axis) with the impact of SNV mismatches across all 

genes in DepMap (x-axis). 
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Supplemental Figure 3: Impact of sgRNA mismatches on individuals of recent African descent. The 

frequency at which sgRNAs from the Avana library are affected by this artifact (orange bars) in at least 

10% of individuals for all COSMIC tier1 genes. 
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Methods: 

Data sources: CRISPR gene effect, guide-level sgRNA scores, RNA-seq gene expression datasets, and cell 

line metadata files (Version 22Q1) were downloaded from the Cancer Dependency Map portal 

(depmap.org). Both the summarized gnomAD and the individual level (HGDP + 1KG) gnomAD data 

(v3.1.2) were downloaded from gnomad.broadinstitute.org. Guide targeting sequences for each of the 

genome-scale CRISPR libraries were downloaded from the addgene website.  

Processing SNP6 genotyping calls: Publicly available SNP6 birdseed files8 for  994 CCLE cell lines were 

converted to VCF files as described here (https://software.broadinstitute.org/cancer/cga/contest_prepare2). 

The resulting VCF files were merged with bcftools. Genotype calls were phased with Eagle (v2.4) and 

missing genotypes were imputed with Minimac4 (v1.6.6) using the TOPMed reference panel. 

Local ancestry inference: Local ancestry was inferred for 994 CCLE cell lines with RFMix v2 as previously 

described3,34. A set of 2504 unrelated samples profiled as part of the 1000 genomes project were used as a 

reference panel. The CCLE and 1000 genomes samples were filtered to an intersecting set of variants. 

RFMix was run with a minimum window size of 0.2 cM.  

Identification of ancestry-associated genetic dependencies: For each gene, cell lines were first binned by 

their ancestry assignment at the transcription start site of the gene in question. The significance of the 

association for each ancestry group was computed with a Wilcoxon test comparing cell lines of one ancestry 

group against cell lines of all other ancestry groups and correcting for multiple comparisons using the False 

Discovery Rate method35. 

Mapping germline variants to sgRNA targeting sequences: We aligned all sgRNA targeting sequences to 

GRCh38 and discarded those that did not map uniquely to only one genomic loci. SNPs within each 

individual sample profiled in the HGDP + 1KG gnomAD callset were mapped to each individual guide and 

guides with a mismatch in at least one allele were identified (Supplemental Table 2).  

Correcting for ancestry bias in The Cancer Dependency Map: We first identified all mismatches between 

the targeting sequences of guides in the Avana library and the genomic sequences in each individual cell 

line. Guides with mismatches were excluded only for cell lines with a mismatch when calculating the gene-

level dependency (Chronos) score. While this method will reduce the impact of mismatches on false 

negatives in CRISPR screens, one caveat is that the rate of impacted guides is higher in cell lines with AFR 

genetic ancestry. This results in a higher rate of eliminated guides in cell lines with AFR genetic ancestry 

than in cell lines from other genetic ancestry groups. 

Designing an ancestry-agnostic CRISPR library: The top ten sgRNAs for each gene were computed using 

the CRISPick guide design tool (portals.broadinstitute.org/gpp/public). We then attempted to identify four 

sgRNAs where there are no mismatches across all samples profiled in gnomAD. For genes lacking four 

such guides, we selected the guides with the lowest mismatch rates. We imposed the additional restriction 

that the mismatch frequency within guides may not be present at greater than a 2.5 times rate in AFR 

individuals than in non-AFR individuals. The identified guide-gene groups were compiled into an ancestry-

agnostic <Taferielt= CRISPR library. 
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