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Abstract

Recurrent network models are instrumental in investigating how behaviorally-relevant
computations emerge from collective neural dynamics. A recently developed class of
models based on low-rank connectivity provides an analytically tractable framework for
understanding of how connectivity structure determines the geometry of
low-dimensional dynamics and the ensuing computations. Such models however lack
some fundamental biological constraints, and in particular represent individual neurons
in terms of abstract units that communicate through continuous firing rates rather than
discrete action potentials. Here we examine how far the theoretical insights obtained
from low-rank rate networks transfer to more biologically plausible networks of spiking
neurons. Adding a low-rank structure on top of random excitatory-inhibitory
connectivity, we systematically compare the geometry of activity in networks of
integrate-and-fire neurons to rate networks with statistically equivalent low-rank
connectivity. We show that the mean-field predictions of rate networks allow us to
identify low-dimensional dynamics at constant population-average activity in spiking
networks, as well as novel non-linear regimes of activity such as out-of-phase oscillations
and slow manifolds. We finally exploit these results to directly build spiking networks
that perform nonlinear computations.

Author summary

Behaviorally relevant information processing is believed to emerge from interactions
among neurons forming networks in the brain, and computational modeling is an
important approach for understanding this process. Models of neuronal networks have
been developed at different levels of detail, with typically a trade off between analytic
tractability and biological realism. The relation between network connectivity, dynamics
and computations is best understood in abstract models where individual neurons are
represented as simplified units with continuous firing activity. Here we examine how far
the results obtained in a specific, analytically-tractable class of rate models extend to
more biologically realistic spiking networks where neurons interact through discrete
action potentials. Our results show that abstract rate models provide accurate
predictions for the collective dynamics and the resulting computations in more
biologically faithful spiking networks.

Introduction 1

Recurrent network models are an essential tool for understanding how the collective 2

dynamics of activity in the brain give rise to computations that underlie behavior. 3
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Network models at different levels of biological detail are typically used to describe 4

different phenomena [Herz et al., 2006,Gerstner and Naud, 2009], but integrating 5

findings across scales of abstraction remains challenging. Networks of excitatory and 6

inhibitory spiking neurons [Brunel, 2000,Gerstner et al., 2014] are a popular class of 7

models which incorporate the key biological fact that neurons interact through discrete 8

action potentials, a.k.a. spikes. Balanced excitatatory-inhibitory spiking networks in 9

particular naturally lead to asynchronous irregular activity [Amit and Brunel, 1997,van 10

Vreeswijk and Sompolinsky, 1996,Troyer and Miller, 1997,Renart et al., 2010,Boerlin 11

et al., 2013a,Hennequin et al., 2017,Rosenbaum and Doiron, 2014,Sanzeni et al., 2022] 12

that captures some of the main features of the spontaneous neural firing in 13

vivo [Shadlen and Newsome, 2001,Destexhe et al., 2001,Shu et al., 2003,Haider et al., 14

2006,London et al., 2010,Sanzeni et al., 2020,Ahmadian and Miller, 2021]. Beyond 15

spontaneous activity, how rich behavioral computations are implemented in spiking 16

networks has been an open issue [Abbott et al., 2016, Ingrosso and Abbott, 17

2019,Tavanaei et al., 2019]. This question has so far been more easily tackled in more 18

abstract models such as recurrent neural networks (RNNs) [Sussillo, 2014,Barak, 19

2017,Yang and Wang, 2020], where individual units are represented in terms of 20

continuous firing rates rather than discrete spikes. A particularly fruitful approach has 21

been to interpret the emerging computations in terms of the geometry of dynamics in 22

the state space of joint activity of all neurons [Sussillo and Barak, 2013,Mante et al., 23

2013,Vyas et al., 2020,Chung and Abbott, 2021], as commonly done with experimental 24

data [Churchland and Shenoy, 2007,Buonomano and Maass, 2009,Cunningham and Yu, 25

2014,Gallego et al., 2017,Saxena and Cunningham, 2019,Jazayeri and Ostojic, 2021]. In 26

particular, in a large class of rate networks in which the connectivity contains a 27

low-rank structure [Hopfield, 1982,Eliasmith and Anderson, 2004,Sussillo and Abbott, 28

2009,Boerlin et al., 2013b,Ahmadian et al., 2015,Pereira and Brunel, 2018,Landau and 29

Sompolinsky, 2018,Beiran et al., 2021b,Landau and Sompolinsky, 2021,Schuessler et al., 30

2020b,Kadmon et al., 2020,Logiaco et al., 2021,Valente et al., 2022a], the geometry of 31

activity and the resulting computations can be analytically predicted from the structure 32

of connectivity [Mastrogiuseppe and Ostojic, 2018,Schuessler et al., 2020a,Beiran et al., 33

2021a,Dubreuil et al., 2022]. A comparable mechanistic picture has so far been missing 34

in spiking networks. 35

A key question is therefore to which extent mechanistic insights from RNNs extend 36

to more biologically plausible spiking models. In this regard, a central underlying issue 37

is exactly how spiking models are related to abstract rate networks [Schaffer et al., 38

2013]. One common approach has been to interpret each unit in a rate network as an 39

average over a sub-population of spiking neurons [Wilson and Cowan, 1972,Amit and 40

Brunel, 1997,Shriki et al., 2003,Wong, 2006,Litwin-Kumar and Doiron, 2012,Hennequin 41

et al., 2014,Baker et al., 2020,Timón et al., 2022,Zenke et al., 2015]. A possible 42

alternative is instead to approximate each individual spiking neuron by a Poisson rate 43

unit [Ostojic and Brunel, 2011], and therefore hypothesize that a full spiking network 44

can be directly mapped onto a rate network with identical connectivity [Tetzlaff et al., 45

2012,Ostojic, 2014,Harish and Hansel, 2015,Nicola and Clopath, 2017,Kim and Chow, 46

2018,Kim et al., 2019]. If this hypothesis is correct, the analytic predictions for the 47

geometry of activity in rate networks should directly translate to spiking networks with 48

a low-rank structure in connectivity. This implies that the geometry of activity and 49

range of dynamics in spiking networks may be much broader than apparent on the level 50

of population-averaged spike trains. 51

To test this hypothesis, we consider a classical spiking network model consisting of 52

excitatory-inhibitory integrate-and-fire neurons [Brunel, 2000], and add low-rank 53

structure on top of the underlying random, sparse connectivity. Varying the statistics of 54

the low-rank structure, we systematically compare the geometry of activity and 55
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dynamical regimes in the spiking model with predictions of networks of rate units with 56

statistically identical low-rank connectivity. We find that rate networks predict well the 57

structure of activity in the spiking network even outside the asynchronous irregular 58

regime, as long as spike-times are averaged over timescales longer than the synaptic and 59

membrane time constants to estimate instantaneous firing rates. In particular, the 60

predictions of the rate model allow us to identify low-dimensional dynamics at constant 61

population-average activity in spiking networks, as well as novel non-linear regimes of 62

activity such as out-of-phase oscillations and slow manifolds. We finally show that these 63

results can be exploited to directly build spiking networks that perform nonlinear 64

computations based on principles identified in rate networks. 65

Results 66

Geometry of the activity in the state space 67

We consider recurrent networks of N neurons, modeled either as rate units or leaky 68

integrate-and-fire (LIF) neurons (Fig. 1 A, see Methods for details). We quantify the 69

activity of each neuron i in terms of its time-dependent firing rate ri(t). In rate 70

networks, each unit is described by the dynamics of its activation xi(t), an abstract 71

variable usually interpreted as the total input or membrane potential [Miller and 72

Fumarola, 2012], and the firing rate is obtained as ri(t) = φ(xi(t)), where φ(x) is the 73

single-unit current-to-rate function that we here choose to be a positive sigmoid. In the 74

LIF network, single-unit firing rates are instead estimated from a running average over 75

spike times, computed using an exponential filter with timescale τf (Fig. 1 C, Methods 76

Eq. (17)). 77

Following a common approach for analyzing neural data [Harvey et al., 78

2012,Cunningham and Yu, 2014], we represent the collective activity at any time point 79

as a vector r(t) = {ri}i=1...N in the activity state space where each axis corresponds to 80

the firing rate ri of one neuron (Fig. 1 D). We then examine the geometry of the 81

dynamical trajectories by projecting at each time point the activity vector r(t) along 82

different directions in that space. Each direction is specified by a vector w = {wi}i=1...N 83

in state space, so that projecting onto it is equivalent to assigning to every neuron a 84

weight wi and computing a weighted average of the activity (Methods Eq. (19)). 85

Analyses of experimental data and works on rate networks commonly examine how 86

collective activity changes along arbitrary directions in state space, where the weight wi 87

of each neuron is chosen independently. In contrast, studies of spiking networks have 88

often focused on firing rates averaged over the whole network or over specific 89

sub-populations [Amit and Brunel, 1997,Shriki et al., 2003,Wong, 2006,Litwin-Kumar 90

and Doiron, 2012,Hennequin et al., 2014,Baker et al., 2020,Timón et al., 2022]. Taking 91

a population average over the whole network is equivalent to projecting activity along 92

the direction (1,1, . . . ,1), which we call the global axis [Kobak et al., 2019]. Similarly, 93

vectors with unit entries on a specific subset of neurons and zeros elsewhere define 94

directions in state space that represent firing rates averaged over specific 95

sub-populations. The goal of the present study is to instead examine how inputs and 96

connectivity in spiking networks shape activity along arbitrary directions of state space, 97

and in particular directions orthogonal to the global axis which correspond to changes in 98

collective activity that modify the pattern of activity but keep the population-averaged 99

activity constant. To this end, we compare the geometry of activity in spiking networks 100

with rate networks based on an identical structure in the connectivity. 101

We specifically focus on networks for which the connectivity matrix contains a 102

November 19, 2022 3/37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2022. ; https://doi.org/10.1101/2022.11.18.517093doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517093
http://creativecommons.org/licenses/by-nc-nd/4.0/


low-rank structure parametrized as 103

Pij =
1

N

R∑
r=1

m
(r)
i n

(r)
j (1)

where m(r) = {m(r)
i }i=1...N and n(r) = {n(r)i }i=1...N for r = 1, . . . , R are connectivity 104

vectors (Fig. 1 B). Rate networks with low-rank connectivity are analytically tractable, 105

in the sense that the geometry of dynamics in state space can be directly predicted from 106

the arrangement of connectivity vectors and inputs, as summarized below. 107

Our key hypothesis is that, for a spiking network in the asynchronous irregular state, 108

each neuron can be directly mapped onto a unit in a rate network with statistically 109

identical connectivity. To test this hypothesis, we start from an LIF network with 110

sparse excitatory-inhibitory connectivity in the inhibition-dominated regime that leads 111

to asynchronous irregular activity [Brunel, 2000] (Methods), and add to this random 112

background an arbitrary low-rank connectivity structure of the type introduced in 113

Eq. (1). We then compare the geometry of the resulting spiking activity to the 114

predictions of a rate model with statistically identical connectivity. 115
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Fig 1. Low-rank connectivity and state space dynamics. A: Illustration of
recurrent neural network architecture, consisting of inputs and recurrent connectivity.
B: Representation of inputs and connectivity in terms of vectors. The input weights
form an input vector I. In spiking networks, the recurrent connectivity is composed of a
sparse excitatory-inhibitory part (zero entries in white, excitatory connections in red,
inhibitory in blue) and a low-rank structure defined by pairs of connectivity vectors m
and n. The illustration shows a unit-rank example (R = 1). C: Left: spike times of
three neurons in the spiking network. Right: dynamics of instantaneous firing rates
computed from spikes using an exponential filter with timescale τf = 100ms. D:
Three-dimensional illustration of low-dimensional dynamics in the activity state space
where each axis represents the firing rate of one neuron. In a unit-rank network, the
activity is expected to be confined to a two-dimensional plane spanned by the vectors,
m and I. We refer to the direction (1,1, . . .1) as the global axis (orange). E:
Projections of activity on two axes: (top) global axis corresponding to the
population-averaged firing rate; (bottom) axis defined by the input vector I.
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Geometry of responses to external inputs 116

We start by examining the geometry of transient dynamics in response to external 117

inputs. We first summarize the predictions of low-rank rate models developed in 118

previous studies [Mastrogiuseppe and Ostojic, 2018]. We then examine whether these 119

predictions hold in networks of integrate-and-fire models with a statistically identical 120

low-rank connectivity structure. 121

Each neuron i receives a step input u(t) (Fig. 2 B) multiplied by a weight Ii. The 122

set of feed-forward weights Ii over neurons form an input vector I = {Ii}i=1...N . This 123

input vector, as well as the connectivity vectors m(r) and n(r) introduced in Eq. 1, 124

each define a specific direction in state space (Fig. 2 A). Previous work [Mastrogiuseppe 125

and Ostojic, 2018,Beiran et al., 2021a] has shown that in rate networks with low-rank 126

connectivity, the dynamics of the activations x(t) = {xi(t)} in response to an input are 127

confined to a subspace of state space spanned by the input vector I and connectivity 128

vectors m(r) for r = 1 . . . R. Focusing on a unit rank network (R = 1), this implies that 129

the activation xi(t) of unit i in the rate network can be expressed as 130

xi(t) = κ(t)mi + v(t)Ii (2)

where κ(t) and v(t) are two scalar variables (Methods). The variable v(t) represents 131

feed-forward activity propagated along the direction I, while κ(t) quantifies activity 132

that recurrent dynamics generate along the direction m. An input along the direction I 133

will generate a non-zero recurrent response κ(t) only if I has a non-zero overlap with the 134

vector n, i.e. if the scalar product nT I is non-zero [Mastrogiuseppe and Ostojic, 2018]. 135

Additional analyses show that the low-dimensional geometry described by Eq. (2) at 136

the level of activations x(t) is largely preserved when applying the non-linear function 137

φ(x) to obtain rates (Methods). More specifically, the projection of the firing rates 138

r(t) = {ri(t)} on an arbitrary axis w is determined by the projection of x(t) on that 139

same axis if the network is in the linear regime, or if the entries of wi of w follow a 140

Gaussian distribution (Eq. (33)), which we assume throughout this study. In low-rank 141

rate networks, the dynamics of r(t) in response to an input therefore dominantly lie in 142

the subspace spanned by the input and connectivity vectors I and m (Fig. 2 E), with 143

the non-linearity generating a potential additional component along the global axis 144

(Methods Eq. (33)). These theoretical predictions were confirmed by a PCA analysis of 145

simulated trajectories of firing rates r(t) (Fig. 2 F). 146

Since the population-averaged firing rate is obtained by projecting r(t) on the global 147

axis (1,1, . . . ,1), the analysis of low-rank rate models predicts that a given input 148

induces a strong change of population-averaged firing rates when the mean of inputs 149

weights over neurons, 〈I〉 = 1
N

∑N
i=1 Ii, is non-zero (Fig. 2 D, left panel), or if both the 150

average 〈m〉 of elements of m and the overlap nT I are non-zero. Conversely, if 〈I〉 = 0 151

and 〈m〉 = 0, inputs evoke changes in single-unit firing rate that essentially average-out 152

on the population-average level (Fig. 2 D, middle and right panel), but instead explore 153

the plane I −m that is orthogonal to the global axis in state space (Fig.2 E, middle 154

and right panel). 155
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Fig 2. Low-dimensional dynamics generated by external inputs in rate
networks with low-rank connectivity. A: Illustration of the geometry in the
activity state-space. The input vector I, the connectivity vectors m and n (green), and
the global axis (1,1, . . . ,1) (orange) define a set of directions and a subspace within
which the low-dimensional dynamics unfold. The overlaps of the vectors I and m with
the global axis predict whether inputs give rise to a change in the population-averaged
activity. The overlap of I with n instead determines whether an input engages
recurrent activity along the direction m. The three columns display three different
arrangements of the input vector (depicted in a different color in each column). Left: I
aligned with the global axis; middle: I orthogonal to both n and the global axis; right:
I aligned with n, but I and m orthogonal to the global axis. B: The input vector is
multiplied by a scalar u(t) which is a step function from t = 1s. C: Individual firing
rates ri(t) for a subset of 10 neurons in each network. D: Population firing rate,
averaged over all neurons in the network. E: Projections of the firing rate trajectory
r(t) onto the (I,m) plane. F: PCA analysis of the firing rate dynamics r(t). Variance
explained by each of the first 8 PCs. Inserts: Projections of the first two PCs onto the
global axis, the input vector I and the connectivity vector m. The connectivity vectors
m and n have a zero mean and unit standard deviation, and are orthogonal to each
other. Vectors n and I are orthogonal except in blue where the overlap is σnI = 1.
Vectors I in gray and blue have a zero mean and unit standard deviation, while vector
I in purple is along the global axis. Network parameters are given in Table 3.
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We compared these predictions of low-rank rate models to the geometry of activity 156

in spiking networks where a low-rank structure was added on top of sparse 157

excitatory-inhibitory connectivity (Fig. 3). Starting from a network in the 158

inhibition-dominated asynchronous irregular state [Brunel, 2000], as expected inputs 159

evoked a change in population-averaged firing rates if the mean of the input vector 〈I〉 160

was non-zero (Fig. 3 D, left panel). Input vectors of zero mean instead elicited patterns 161

of responses across neurons that did not modify the population-averaged firing rate (Fig. 162

3 D, middle and right panel), but explored directions in state space orthogonal to the 163

global axis. These directions were accurately predicted by low-rank rate models: input 164

vectors I orthogonal to the vector n led to responses only along the direction I (Fig. 3 165

E, left and middle panel), while inputs that overlapped with n led to responses in the 166

I −m plane (Fig. 3 E, right panel). A PCA analysis confirmed that these 167

low-dimensional projections explained the dominant part of variance in the full 168

trajectories (Fig. 3 F). Altogether, the predictions of low-rank rate models were 169

therefore fully borne out when treating each individual spiking neuron as a rate unit. 170
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Fig 3. Low-dimensional dynamics generated by external inputs in spiking
networks with low-rank structure. A: Illustration of the geometry of input
(varying color) and connectivity vectors (green) with respect to the global axis (orange).
Left: input vector I along the global axis; middle: input vector I orthogonal to n;
right: input vector I along the vector n. B: The input vector is multiplied by a scalar
u(t) which is a step function from t = 1s. C: Raster plot showing action potentials for a
subset of 30 neurons in each network. D: Population firing rate obtained by averaging
instantaneous firing rates of all neurons. E: Projections of the firing rate trajectory r(t)
onto the (I,m) plane. F: PCA analysis of firing rate dynamics r(t). Variance explained
by each of the first 8 PCs. Inserts: Projections of the first 3 PCs onto the global axis
(first row), and vectors I and m. The connectivity vectors m and n have a zero mean
and unit standard deviation, and are orthogonal to each other. Vectors n and I are
orthogonal except in blue where the overlap is nT I/N = 0.4mV2. Vectors I in gray and
blue have a zero mean and unit standard deviation, while vector I in purple is along the
global axis. All analyses were performed on instantaneous firing rates computed using a
filter timescale of τf = 100ms. Network parameters are given in Table 4
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Responses in spiking networks outside of the irregular 171

asynchronous regime 172

Our initial hypothesis was that low-rank rate networks predict well the geometry of 173

responses of spiking networks in the asynchronous irregular regime, where individual 174

neurons can be approximated as independent Poisson processes [Brunel, 2000]. We next 175

asked to which extent the predictions hold outside of this regime, when the spiking 176

activity is either not asynchronous, i.e. exhibits some degree of synchronization and 177

oscillations [Brunel, 2000], or is regular rather than irregular. Following Brunel 2000, we 178

set the network to operate in a specific regime by varying the strength of the inhibition 179

g in the random part of the connectivity, the external input µext and the synaptic delay 180

τdel (Methods). We then examined how much the underlying regime influences the 181

low-dimensional dynamics in response to external inputs in networks with a unit-rank 182

structure. For this, we repeated the PCA analysis in spiking networks with zero-mean 183

input and connectivity vectors, and I overlapping with n as in the right column of 184

Fig. 2. 185

We first considered a network of integrate-and-fire neurons that operates in the 186

synchronous irregular (SI) regime [Brunel, 2000] in which individual neurons fire 187

irregularly (Fig. 4 A, top), but are sparsely synchronised, leading to oscillations in the 188

population rate (Fig. 4 A, bottom). The frequency of these oscillations is set by the 189

synaptic delay τdel, and is therefore high for physiologically realistic values of 190

τdel [Brunel, 2000]. These oscillations can therefore only be observed in the firing rates 191

when the filter timescale τf used for averaging over spikes is comparable to the delays, 192

i.e. of the order of milliseconds (Fig. 4 A, blue). Longer filter timescales instead totally 193

average-out the oscillatory dynamics (Fig. 4 A, orange). We therefore found that the 194

dimensionality and geometry of the responses in state space depend on the filter 195

timescale used to determine single-unit firing rates (Fig. 4 B). Performing a PCA 196

analysis on firing rate trajectories r(t) obtained with a filter timescale of 1ms indicated 197

that the activity was high-dimensional. Indeed, the explained variance was distributed 198

along many principal components (Fig. 4 B, top), with the first PC capturing 199

population-level oscillations along the global axis (insert in Fig. 4 B, top panel), while 200

strong fluctuations were present in other directions (Fig. 4 C). In contrast, for a filter 201

timescale of 100ms the first PC explained a much larger fraction of variance (Fig. 4 B, 202

bottom), and corresponds instead to activity along a combination between the 203

connectivity vector m and the input vector I (insert in Fig. 4 B, bottom), as predicted 204

by the rate model (insert in Fig. 2 F, blue). In between these two extremes, 205

progressively increasing the filter timescale (Fig. 4 C, bottom) shows that for timescales 206

below 10ms, the geometry of activity is dominated by fluctuations along the global axis, 207

while for longer timescales the dynamics are lower-dimensional and reside dominantly in 208

the (m, I) plane as expected from the rate network (Fig. 2 E and F, blue). 209

Given the strong influence of the filter timescale on the results, we repeated the 210

same analysis in the asynchronous irregular (AI) regime, which in Fig. 3 was 211

investigated only using a long timescale of 100ms. We found that the results of the PCA 212

were similar to the SI regime: fluctuations along the global axis dominated at timescales 213

below 10ms, and low-dimensional dynamics predicted by the rate model emerged at 214

longer timescales (Fig. 4, D-F). The main difference between the AI and SI regimes is 215

that the global fluctuations at short timescales are weaker in the AI regime (with an 216

amplitude that decays as the network size is increased), and do not show the periodic 217

structure found in the SI regime (Fig. 4 D). 218

We then examined the role of irregular activity, by turning to networks in which the 219

connectivity consisted only of a low-rank structure without the random E-I part. In 220

such networks, individual neurons fired almost periodically, in contrast to Poisson-like 221

activity in the AI regime. The action potentials of the different neurons were however 222
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highly asynchronous (Fig. 4 G top), and the fluctuations in the population activity were 223

weak even for filter timescales of 1ms (Fig. 4 G bottom). Similarly to SI and AI regime, 224

the dynamics in this network became low-dimensional for long filter timescales (Fig. 4 225

H and I), but the projection along m was higher for all filter timescales, and saturated 226

above 10ms (Fig. 4 I bottom). 227

In summary, our analyses indicate that the predictions of the rate networks for the 228

geometry of responses hold independently of the activity regime in the spiking network 229

if the single neuron firing rates are determined by averaging action potentials on a 230

timescale longer than the synaptic delays. At shorter timescales, the activity is 231

dominated by spiking synchronization that leads to prominent fluctuations along the 232

global axis which corresponds to the population-averaged firing rate. 233
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Fig 4. Influence of firing regime and filter timescales on low-dimensional
dynamics in spiking networks. A-C: Synchronous irregular (SI) regime. A: Top:
raster plot showing action potentials for a subset of 30 neurons in the network. Bottom:
population-averaged firing rate computed using filter time constants of 1ms (blue) and
100ms (orange). B: PCA analysis of trajectories of instantaneous firing rates computed
from spike trains using two different filter time constants (top: 1ms, bottom: 100ms).
Main panels: variance explained by each of the first 8 PCs; inserts: projections of the
first 3 principal components on the global vector, I and m. C: Top: projections of the
firing rate trajectories on the plane defined by vectors m and I. Bottom: Projection of
the first principal component on the global axis (black) and on the vector m (green) as
a function of the filter time constant. D-F: Similar to A-C, for the network in
asynchronous irregular regime shown in the right column of Fig. 3. G-I Similar to A-C,
for a network without the background E-I connectivity. The firing regime was controlled
by varying the inhibition strength in the random EI connectivity, the baseline input and
synaptic delays (see Table 4). The unit-rank connectivity structure was identical to
Fig. 3 right column, with zero-mean input and connectivity vectors. At time t = 1s, a
step input was given along the input vector I that was aligned with n. Network
parameters are given in Table 4.
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Nonlinear autonomous activity in networks with unit-rank 234

structure 235

In previous sections we studied the geometry of dynamics in response to external inputs. 236

We next turned to autonomous dynamics generated by the recurrent connectivity in the 237

absence of inputs. As before, our goal was to determine whether the dynamics in a 238

spiking network with low-rank connectivity are well predicted by a rate network with an 239

analogous low-rank structure in the connectivity. We first summarize the results for rate 240

networks developed in earlier studies, and then compare dynamics in spiking networks 241

with these predictions. 242

In a rate network with unit rank structure, in absence of time-varying external 243

inputs, the low-dimensional dynamics in Eq. (2) are described only by the recurrent 244

variable κ(t). The temporal evolution of κ(t) obeys (Methods): 245

dκ

dt
= −κ+

1

N

N∑
i=1

φ(xi)ni. (3)

The steady state state value of κ is therefore given by: 246

κ =

N∑
i=1

ni φ(xi)/N. (4)

Assuming as previously a Gaussian distribution of the entries (mi, ni) of the 247

connectivity vectors, and using a mean-field analysis in the large N limit, Eq. 4 can be 248

further expressed as (Methods Eq. (39)) 249

κ = 〈n〉〈φ(µ,∆)〉+ σmn κ〈φ′(µ,∆)〉 (5)

where 〈m〉, 〈n〉 and σmn are the mean values and covariance of connectivity vectors m 250

and n, while 〈φ(µ,∆)〉 and 〈φ′(µ,∆)〉 are the mean firing rate and mean gain obtained 251

by averaging the transfer function and its derivative over a Gaussian distribution of 252

mean µ = 〈m〉κ and variance ∆ = σ2
mκ

2 (Methods Eq. (39), Appendix Eq. (50)). 253

Eq. (5) provides a self-consistent equation for the steady state value of κ, which enters 254

implicitly in the r.h.s. through µ and ∆. The two terms in the r.h.s can therefore be 255

interpreted as two different sources of feedback, a first one controlled by the mean 256

values 〈m〉, 〈n〉, and a second one controlled by the covariance σmn between m and n. 257

Previous works analyzed the bifurcations in networks with a symmetric transfer 258

function [Mastrogiuseppe and Ostojic, 2018], or positive transfer function with non-zero 259

〈m〉 and 〈n〉 [Mastrogiuseppe and Ostojic, 2018,Shao and Ostojic, 2022]. The respective 260

contributions of the two sources of feedback in networks with a positive transfer 261

function have so far not been examined. 262

To extend previous studies, we therefore analyzed the bifurcations obtained by 263

separately increasing each source of feedback in Eq. (5) in networks with a positive 264

transfer function. For σmn = 0, the feedback is generated only by the first term, and we 265

controlled it by changing 〈n〉 while keeping 〈m〉 fixed. As the non-linearity in that term 266

is given by 〈φ〉(κ), which is a positive sigmoid (Fig. 5 A, insert), increasing 〈n〉 beyond 267

a critical value leads to a bifurcation to two asymmetric states with low and high values 268

of κ (Fig. 5 A). Since the mean 〈m〉 of the vector m is non-zero, these two values of κ 269

correspond to two states with a low and a high population-averaged firing rate (Fig. 5 270

C), as usually found when positive feedback is high [Lerchner and Latham, 271

2015,Mastrogiuseppe and Ostojic, 2018,Shao and Ostojic, 2022]. 272

In contrast, when 〈m〉 = 〈n〉 = 0 and σmn 6= 0, the recurrent feedback is generated 273

only by the second term in Eq. (5), for which the non-linearity is given by κ〈φ′(0,∆)〉. 274
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Independently of the precise form of φ, κ〈φ′(0,∆)〉 as function of κ is in general 275

symmetric around zero (Fig. 5 D, insert). In consequence, increasing σmn beyond a 276

critical value leads to the emergence of two symmetric fixed points for κ (Fig. 5 D), 277

which correspond to two activity states with different patterns of activity (Fig. 5 E), 278

but identical population-averaged firing rates (Fig. 5 F). 279

In summary, a mean-field analysis of rate networks with unit-rank connectivity 280

predicts two qualitatively different types of bifurcations and bistable states depending 281

on whether the connectivity vectors m and n have zero or non-zero mean. We therefore 282

examined whether these two types of bifurcations appeared when increasing the overlap 283

between n and m in spiking networks with unit-rank connectivity added on top of a 284

random EI background. Increasing 〈n〉 with non-zero 〈m〉 and zero σmn is in fact 285

equivalent to increasing the mean excitation in the underlying EI connectivity [Shao 286

and Ostojic, 2022]. In agreement with previous studies [Brunel, 2000], we found that 287

this could lead to the emergence of an asymetric bistability between a low and a high 288

average activity state (Fig. 5 G-I). Increasing σmn in networks with 〈m〉 = 〈n〉 = 0 289

instead gives rise to a bifurcation to two symmetric activity patterns with equal 290

population-averaged firing rates (Fig. 5 J-L). The predictions of the mean-field analysis 291

in low-rank rate networks were therefore directly verified in spiking networks, and 292

allowed us to identify a novel bifurcation to two symmetric states of activity. 293
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Fig 5. Nonlinear autonomous activity in networks with unit-rank
connectivity structure. A-F: Rate networks. A-C: connectivity vectors m and n
with non-zero means 〈m〉, 〈n〉, and zero covariance σmn. A: Fixed points of the collective
variable κ as a function of the overlap nTm/N , low (black) and high (red) activity state.
Insert: RHS of the equation dκ/dt (Eq. (5)), κ (yellow) and 〈n〉〈φ〉(κ) (gray), shown for
the overlap nTm/N = 10. Fixed points (red dots) correspond to the intersections of κ
and 〈n〉φ(κ) which is a positive function. The bifurcation therefore leads to a low and a
high state. B: Illustration of the single-unit firing rates in the two states when
nTm/N = 10 (dashed line in A, green) for 100 units. Top: low activity state. Bottom:
high activity state. C: Population-averaged firing rate as a function of nTm/N .
D-F: same as A-C, for connectivity vectors m and n with zero means 〈m〉, 〈n〉, and
non-zero covariance σmn. D: Fixed points of the collective variable κ as a function of
the overlap nTm/N . Insert: RHS of the equation dκ/dt (Eq. (5)), κ (yellow) and
κ〈φ′〉(κ) (gray), shown for the overlap nTm/N = 11.2. Fixed points (red dots)
correspond to the intersection of κ and κ〈φ′〉(κ), which is symmetric around the y axis.
The bifurcation therefore leads to two symmetric states (red and blue) on top of the low
activity state. E: Illustration of the single-unit firing rates in the two symmetric states.
F: Population-averaged firing rate as a function of nTm/N .
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Fig 5 (previous page). G-L: Simulations of the spiking network. G-I: connectivity
vectors m and n with non-zero means 〈m〉, 〈n〉 and zero covariance σmn. G: bifurcation
to low and high states as 〈n〉 is increased. H: raster plots of the spiking activity in the
two states when nTm/N = 1.35mV (dashed line in J, green) for 20 neurons. Top:
activity of 20 neurons in the high state. Bottom: activity of all (12500) neurons in the
low state. The activity in the low state is highly sparse [Brunel, 2000]. I:
population-averaged firing rate in the two states. J-L: same as G-I connectivity vectors
m and n with zero means 〈m〉, 〈n〉 and non-zero covariance σmn. J: bifurcation to two
symmetric states as σmn is increased. K: raster plots of the spiking activity in the two
states when nTm/N = 32mV (dashed line in J, green) for 20 neurons. L:
population-averaged firing rate in the two states. Dots: simulations, lines: Monte Carlo
integration predictions. Network parameters are shown in Tables 5, 6.

Geometry of nonlinear autonomous activity in rank-two 294

networks 295

Going beyond unit-rank connectivity, we next examined non-linear autonomous 296

dynamics in network with a rank-two structure. As before, we first summarize the 297

analyses of rate networks performed in previous studies, and then compare the 298

dynamics in spiking networks with those predictions. 299

A rank-two connectivity structure is defined by two pairs of vectors (m(1),n(1)) and 300

(m(2),n(2)): 301

Jij =
1

N
(m

(1)
i n

(1)
j +m

(2)
i n

(2)
j ). (6)

In absence of external inputs, the activation dynamics x(t) are confined to the 302

two-dimensional plane spanned by the vectors m(1) and m(2), so that, in analogy to Eq. 303

(2) the activation xi of unit i can be expressed as: 304

xi(t) = κ1(t)m
(1)
i + κ2(t)m

(2)
i . (7)

Here κ1(t) and κ2(t) are two collective variables that describe the projection of x on the 305

connectivity vectors m(1) and m(2). 306

Previous works [Schuessler et al., 2020a,Beiran et al., 2021a] have shown that in 307

low-rank rate networks with Gaussian connectivity vectors, non-linear dynamics are 308

fully determined by the eigenspectrum of the connectivity matrix. A rank-R matrix 309

defined as in Eq. (1) has in general R non-zero eigenvalues, that coincide with the 310

eigenvalues of the R×R overlap matrix Jov obtained from scalar products between 311

pairs of connectivity patterns [Schuessler et al., 2020a]: 312

J (ov)
rs = n(r)Tm(s)/N. (8)

For rank-one networks, the overlap matrix reduces to a single parameter given in Eq. 313

(38), while for rank-two networks it is a 2× 2 matrix. In the following, we focus on 314

connectivity vectors with zero-mean entries, in which case for large N the overlap 315

matrix converges to 316

Jov =

(
σn1m1 σn1m2

σn2m1 σn2m2

)
(9)

where σnrms
is the covariance between the entries of vectors n(r) and m(s). A 317

mean-field analysis then predicts that such networks have a fixed point at (0, 0), the 318

stability of which is determined by the eigenvalues of φ′Jov (Methods). 319

We specifically examined connectivity structures with two different forms of the 320

overlap matrix, that lead to different configurations of eigenvalues and thereby generate 321

November 19, 2022 15/37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2022. ; https://doi.org/10.1101/2022.11.18.517093doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517093
http://creativecommons.org/licenses/by-nc-nd/4.0/


qualitatively different types of nonlinear dynamics in rate networks [Beiran et al., 322

2021a]. 323

We first consider rank-two networks with overlap matrices of the form: 324

J (ov) =

(
σ −σw
σw σ

)
. (10)

Such matrices have two complex conjugate eigenvalues σ ± iσw. A mean-field analysis 325

predicts spiral dynamics around the origin that decays to zero if φ′(0)σ < 1, or generate 326

limit cycle in the m(1) −m(2) plane if φ′(0)σ > 1. On the other hand, φ′(0)σw 327

determines the frequency of these oscillations. Simulations of rate networks for 328

φ′(0)σ > 1 show that the firing rates of individual units oscillate strongly (Fig. 6 A, 329

top), but out of phase, so that oscillations are not visible at the level of the population 330

average (Fig. 6 A, bottom). Projecting r(t) on the m(1) −m(2) plane however uncovers 331

a clear limit cycle (Fig. 6 B) that corresponds to oscillations of κ1(t) and κ2(t) (Fig. 6 332

C). 333

To check whether qualitatively similar dynamics occur in spiking networks, we added 334

a rank-two structure with complex eigenvalues on top of random excitatory-inhibitory 335

connectivity. As the two parts of the connectivity are independent, the spectrum of the 336

full connectivity matrix consists of a continuous bulk corresponding to the random part 337

and discrete outliers given by the eigenvalues of the rank-two structure [Rajan and 338

Abbott, 2006,Tao, 2011,Mastrogiuseppe and Ostojic, 2018]. For large values of σ, 339

simulations of the resulting spiking network show that the firing rates of individual 340

neurons oscillate strongly (Fig. 6 D, top), but out of phase with each other, so that 341

oscillations on the population-averaged level are weak (Fig. 6 D, bottom). Projections 342

of the population rate r on the plane m(1) −m(2) however identified clear limit cycles 343

(Fig. 6 E, F). 344

We next turned to rank-two structure with overlap matrices of the form: 345

Jov =

(
σ 0
0 σ

)
. (11)

The resulting connectivity matrices have two degenerate real eigenvalues σ, and 346

mean-field analyses of rate networks have shown that in the limit N →∞, as σ is 347

increased this leads to a continuum of fixed points arranged on a ring in the 348

m(1) −m(2) plane [Mastrogiuseppe and Ostojic, 2018,Beiran et al., 2021a,Beiran et al., 349

2021b]. In finite-size networks, sampling fluctuations of random connectivity vectors 350

breaks the exact degeneracy, so that only a small number of points on the ring attractor 351

remain actual stable fixed points while the rest form a slow manifold: dynamics quickly 352

converge to the ring, after which they slowly evolve on it until reaching a fixed point 353

(Fig. 6 H, I). 354

We verified that analogous dynamics emerge in spiking networks with a degenerate 355

rank-two structure added on top of the random excitatory-inhibitory connectivity 356

matrix. As in rate networks, dynamics quickly converge to a ring in the m(1) −m(2)
357

plane, after which they evolve along the ring towards stable fixed points (Fig. 6 K, L). 358

Different instances of the rank-two structure generated with identical statistics lead to 359

different fixed points that are all located on the same ring (Fig. 6 K). In spiking 360

networks, the fluctuations in activity are stronger than in rate networks because of a 361

combination of spiking noise, random excitatory-inhibitory connectivity and fluctuations 362

in low-rank connectivity, but the low-dimensional dynamics are qualitatively similar. 363

In summary, mean-field analyses of rate networks with low-rank connectivity allow 364

us to identify analogous non-trivial dynamical regimes in networks of spiking neurons. 365
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Fig 6. Nonlinear dynamics in networks with rank-two structure. A-F:
Connectivity structure with two complex-conjugate eigenvalues. A-C: Rate networks. A:
Top: illustration of the single-unit firing rates for the first 100 neurons. Bottom:
population-averaged firing rate. B: Projections of the firing rates r(t) on the
m(1) −m(2) plane. Insert: overlap matrix. C: Projections of the firing rates r(t) on
vectors m(1) and m(2) as a function of time. D-F: Analogous to (A-C), spiking network.
D: Top: raster plots of the spiking activity for first 50 neurons. Bottom panel:
population firing rate. E: Projections of the firing rates r(t) on the m(1) −m(2) plane.
Insert: overlap matrix. F: Projections of the firing rates r(t) on vectors m(1) and m(2)

as a function of time.
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Fig 6 (previous page). (G-I) Rate network dynamics for an overlap matrix that has
two real, degenerate eigenvalues. (G) Top panel: illustration of the single-unit firing
rates for the first 100 neurons. Bottom panel: population firing rate. (H) Projections of
the firing rates r(t) on the m(1) −m(2) plane. Insert: overlap matrix. (I) Projections of
the firing rate r(t) on vectors m(1) and m(2) as a function of time. (J-L) same analysis
as in (G-I) for a spiking model. (J) Top panel: raster plots of the spiking activity for
first 50 neurons. Bottom panel: population firing rate. (K) Projections of the firing
rates r(t) on the m(1) −m(2) plane. Insert: overlap matrix. (L) Projections of the
firing rate r(t) on vectors m(1) and m(2) as a function of time. Different colors in the
middle column (B,E,H,K) corresponds to network instances with different connectivity
vectors but identical statistics. Network parameters are shown in Tables 7, 8.

Perceptual decision making task 366

Our results so far show that the geometry and firing regimes in networks of spiking 367

neurons can be predicted from the statistics of low-rank connectivity by following the 368

principles identified in rate networks. In a final step, here we illustrate how this finding 369

can be exploited to directly implement computations in spiking networks. We consider 370

the perceptual decision-making task [Gold and Shadlen, 2007] in which a network 371

receives a noisy scalar stimulus along a random input vector I, and needs to report the 372

sign of its temporal average along a random readout vector w. 373

Previous works have identified requirements on rank-one network to perform this 374

task [Dubreuil et al., 2022]. They showed that a unit-rank network was sufficient to 375

implement the task, with connectivity statistics requiring a strong overlap σnI to 376

integrate inputs, and an overlap σmn ≈ 1 to generate a long integration timescale via 377

positive feedback. We built a spiking network based on an analogous connectivity 378

configuration. 379

Fig. 7 illustrates the dynamics in the network in response to two inputs with 380

positive and negative means. The two inputs lead to different patterns of activity with 381

opposite readout values (Fig. 7 A-B), but similar population averaged firing rates (Fig. 382

7 C). As expected from the theory of low-rank networks, the dynamics evolve in a 383

two-dimensional plane spanned by the input pattern I and the output connectivity 384

pattern m (Fig. 7 D), as observed in experimental data [Mante et al., 2013]. The 385

psychometric curve generated by the network strongly depends on the values of the 386

connectivity overlaps (Fig. 7 E). 387
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Fig 7. Spiking network implementation of the perceptual decision-making
task. A: Top panel: two instances of the fluctuating input signal with a positive
(orange) and a negative (blue) mean. Bottom panel: network readout of the activity
generated by the two inputs. B: Raster plots for the first 50 neurons. C: Population
firing rate. D: Dynamics projected onto the I −m plane. E: Psychometric function
showing the fraction of positive outputs at different values of the overlap σnm. Orange
color corresponds to positive (u = 0.512), while blue to negative mean-input
(u = −0.512). Parameters: N = 12500, σu = 1, σnI = 0.26, σmw = 2.1, σm2 = 0.02,
τf = 100ms

Discussion 388

In this study, we set out to examine how far theoretical predictions for the relation 389

between connectivity and dynamics in recurrent networks of rate units translate to 390

networks of spiking neurons. To this end, we compared the population activity in rate 391

networks with low-rank connectivity to networks of integrate-and-fire neurons in which 392

a low-rank structure was added on top of random, sparse excitatory-inhibitory 393

connectivity. Altogether, we found the geometry of low-pass filtered activity in spiking 394

networks is largely identical to rate networks when the low rank structure in 395

connectivity is statistically identical. In particular, this allowed us to identify novel 396

regimes of linear and non-linear dynamics in spiking networks, and construct networks 397

that implement specific computations. 398

A widespread experimental observation across cortical areas is that sensory inputs 399

lead to both increases and decreases of activity in individual neurons, so that different 400

stimuli are often indistinguishable at the population-average level albeit they induce 401

distinct patterns of responses [Wohrer et al., 2013,Bagur et al., 2018,Kobak et al., 2019]. 402

Within the state-space picture, this implies that the responses take place primarily 403

along directions orthogonal to the global axis [Kobak et al., 2019], suggesting that 404

behaviorally-relevant computations may rely on dynamics along these dimensions 405

complementary to the population-average. So far, most studies on spiking networks 406

have however focused on averaging spiking activity either over the whole network or 407

over sub-populations. Here we instead show that, when a low-rank connectivity 408

structure is included in the connectivity, spiking networks naturally lead to rich 409

dynamics along dimensions orthogonal to the global axis. Our results therefore open the 410

door to a closer match between spiking models and analyses of experimental data. 411

Our starting hypothesis was that spiking networks in the asynchronous irregular 412

regime can be directly mapped onto rate networks with identical connectivity, by 413

identifying each integrate-and-fire neuron with a rate unit. Here we tested a restricted 414
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version of this hypothesis by focusing exclusively on low-rank structure in the 415

connectivity. We found that the population dynamics in spiking networks with a 416

superposition of random and low-rank connectivity match well the predictions of rate 417

networks with connectivity given by an identical low-rank part. To which extent these 418

results extend to more general types of connectivity remains to be determined. A key 419

feature of a low-rank connectivity structure is that it leads to discrete, isolated 420

eigenvalues in the complex plane [Rajan and Abbott, 2006,Tao, 2011,Mastrogiuseppe 421

and Ostojic, 2018,Logiaco et al., 2021,Herbert and Ostojic, 2022] (or singular values on 422

the real line [Bondanelli and Ostojic, 2020,Benaych-Georges and Nadakuditi, 2011], 423

while purely random connectivity in general generates a continuously distributed bulk of 424

eigenvalues [Sompolinsky et al., 1988a,Sommers et al., 1988]. We expect that our 425

findings hold as long as the eigenspectrum (or singular value distribution) consists of 426

discrete outliers well separated from the random bulk, in which case the connectivity 427

can be accurately approximated by a low-rank structure [Shao and Ostojic, 2022]. 428

Networks performing specific computations typically rely on such outliers in the 429

connectivity spectrum [Ingrosso and Abbott, 2019,Schuessler et al., 2020b,Susman 430

et al., 2021], so that our results may help explain in which case functional spiking 431

networks can be directly built from trained rate networks [Nicola and Clopath, 432

2017,Kim and Chow, 2018,Kim et al., 2019]. 433

A surprising result of our analyses is that rate networks predict well the activity in 434

spiking networks even outside of the asynchronous irregular regime, i.e. when neurons 435

spike regularly, or with some degree of synchrony. Indeed we found that our results hold 436

as long as spike-trains are averaged over timescales longer than the synaptic or 437

membrane time constants. When do spiking networks then qualitatively differ from 438

their rate-based counter-parts? Do spikes have a potential advantage over rate-based 439

computations? One regime we have not explored here is ultra-sparse activity, in which 440

each neuron emits only a handful of spikes in response to a stimulus. In this regime, 441

information can be encoded in the precise timing of isolated spikes of individual 442

neurons [Masquelier and Thorpe, 2007,Masquelier et al., 2009,Kheradpisheh et al., 443

2018], and a comparison with state-space trajectories predicted by rate-based models 444

may be less useful. The ultra-sparse firing regime provides a fruitful framework for 445

energy-efficient neuromorphic computing [Zenke et al., 2021], and suggests a potential 446

computational role for spikes distinct from rate-based coding. It remains to be 447

determined which parts of the brain may function in this regime. An alternative 448

possibility is that action potentials play mainly an implementational role, as a biological 449

mechanism for transmitting information across long distances over myelinated axons, 450

and therefore act as a discretization of a fundamentally continuous underlying signal. 451

Ultimately, the computational and implementational interpretations of action potentials 452

are not mutually exclusive, and it is likely that spikes play different functional roles in 453

different brain structures or species. 454
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Materials and methods

Rate network model

We consider rate networks of N units. Each unit is described by its activation xi(t),
with dynamics evolving according to [Sompolinsky et al., 1988b]:

τ ẋi(t) = −xi(t) +
N∑
j=1

Jij φ(xj) + Iiu(t). (12)

Here u(t) is the input amplitude shared by all units, Ii is the weight of the external
input on unit i, and φ(x) = 1 + tanh(x− xoff ) is the firing rate transfer function. The
firing rate of unit i is therefore ri = φ(xi).

The recurrent connectivity matrix J consists of a rank R structure P , represented
as a sum of of R unit-rank terms, where the r-th term is given by the outer product of
two vectors m(r), n(r):

Pij =
1

N

R∑
r=1

m
(r)
i n

(r)
j . (13)

We refer to vectors m(r) = {m(r)
i }i=1...N , n(r) = {n(r)i }i=1...N as the right and left

connectivity vectors, and to I = {Ii}i=1...N as the input vector.

In this study, we focus on the case where the entries m
(r)
i , n

(r)
i , Ii of connectivity

and input vectors are generated independently for each unit from a Gaussian
distribution with means 〈mr〉, 〈nr〉, 〈I〉, standard deviations σmr

, σnr
, σI and

covariances σxy (x, y ∈ {nr,mr, I}).
To simulate network activity, Eq. (12) was discretised using Euler’s method with

time step dt, for a total simulation time trun. Network parameters are shown in Tables
3, 5, 7.

Spiking network model

We consider networks of N leaky-integrate and fire neurons [Brunel, 2000], where the
membrane potential of neuron i evolves according to:

τm
dVi
dt

= −Vi + µ0 +
√
τmσ0ξi(t) + µreci (t) + Ii u(t). (14)

Here τm is the membrane time constant, µ0 a constant baseline input, ξi(t) a white
noise independent for each neuron, σ0 the amplitude of the noise, µreci total recurrent
input defined below, and Ii, u(t) the weights and the amplitude of the external input.

An action potential, or ”spike”, is generated when the membrane potential crosses
the threshold Vthr. The membrane potential is then reset to the value of Vr, and
maintained at that value during a refractory period tref .

The total recurrent input to neuron i is given by

µreci (t) = τm

N∑
j=1

Jij
∑
k

δ(t− t(k)j − τdel) (15)

where Jij is strength of the synaptic connection from neuron j to neuron i, t
(k)
j is the

time of the kth spike of the presynaptic neuron j, τdel is the synaptic delay and δ(t) is
the delta function.

The connectivity matrix J consists of a sum of a full-rank excitatory-inhibitory part
JEI and a low-rank structure P :
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Notation Description
N number of neurons
C number of EI connections each neuron receives
J excitatory synaptic strength
g relative inhibition strength
τm membrane time constant
µrec total recurrent input
µ0 baseline input
σ0 amplitude of the noise
Vthr threshold potential
Vr reset potential
τref refractory period
τdel synaptic delay
τf filter time constant
|I| amplitude of the vector I
trun simulation run time
δ(t) delta function

Table 1. List of notations for spiking network models.

J = JEI + P . (16)

The low-rank structure is identical to Eq. (13), while JEI is a sparse, random
excitatory-inhibitory matrix identical to [Brunel, 2000]. Each neuron receives inputs
from C neurons, C being much smaller of the total number of neurons N . The fraction
of non-zero connections is fc = C/N = 0.1, where 80% of incoming connections are
excitatory and the rest are inhibitory. All non-zero excitatory synapses have the same
strength J , while non-zero inhibitory synapses have the strength −g J .

The network was simulated using the Euler method implemented in Brian2
package [Stimberg et al., 2019] with simulation step dt and simulation time trun.

Single-neuron firing rates were computed from spikes using an exponential filter with
a time constant τf . The instantaneous rate of i-th neuron at time t is given by

τf
dri(t)

dt
= −ri(t) +

∑
δ(t− tk) (17)

where δ(t− tk) is the delta function centered at tk. In the case of multiple trials, rates
ri are averaged over trials:

〈ri〉 =
1

Ntr

Ntr∑
k=1

ri(k) (18)

The parameter notations for spiking models are summarized in Table 1. Parameters
whose value do not change over different simulations/figures are given in Table 2. If
different values are used in a specific figure, these value are specified in a dedicated
table (Tables 4, 6, 8).

Geometry of responses to external inputs

To characterize the geometry of activity in the high-dimensional state space, we
examined the projections of the firing rate trajectories r(t) = {ri(t)}i=1...N on an
arbitrary direction w = {wi}i=1...N , defined as:

〈wT r(t)〉 =
1

N

N∑
i=1

wiri(t). (19)
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Variable Value
N 12500
C 1250
τm 20ms
τref 0.5ms
dt 1ms
σ0 0.71mV
Vthr 20mV
Vr 10mV
τdel 1.5ms

Table 2. Common parameters in Fig. 3-7

In particular, taking w to be the global axis where wi = 1 for all i, the projection gives
the population-averaged firing rate:

〈r〉(t) =
1

N

N∑
i=1

ri(t). (20)

Based on previous works [Mastrogiuseppe and Ostojic, 2018,Schuessler et al.,
2020a,Beiran et al., 2021a,Dubreuil et al., 2022], below we summarize the predictions of
low-rank rate models for the geometry of activity, and then describe a method for
verifying these predictions using principal components analysis.

Rate networks

In rate networks with a low-rank connectivity matrix, the dynamics of the activations
x(t) = {xi(t)}i=1...N are explicitly confined to a low-dimensional subspace of state
space [Beiran et al., 2021a,Dubreuil et al., 2022,Valente et al., 2022b], meaning that
projections of x(t) are non-zero only on vectors w belonging to this subspace. Here we
first reproduce the derivation of the geometry of the activations x(t) [Beiran et al.,
2021a,Dubreuil et al., 2022]. We then explore the implications for the geometry of firing
rates r(t) where ri(t) = φ(xi(t)).

For low-rank connectivity, the dynamics of xi(t) are given by

τ ẋi(t) = −xi(t) +
1

N

N∑
j=1

R∑
k=1

m
(k)
i n

(k)
j φ(xj) +

Nin∑
s=1

I
(s)
i us(t), (21)

where for completeness we included Nin scalar inputs us(t) along input vectors I(s)

with s = 1 . . . Nin.
We start by assuming that at time 0, the initial state x(0) lies in the subspace

spanned by m(r) and I(s), i.e. that 〈wTx(0)〉 6= 0 if and only if w is a linear
combination of m(r) for r = 1 . . . R and I(s) for s = 1 . . . Nin. This assumption can be
made without loss of generality. Indeed, if it is not full-filled, the initial state x(0) can
be included as an additional input with us(t) = δ(t) and I(s) = x(0) in Eq. (21).

It is then straightforward to show by induction from Eq. (21) that for any t,
〈wTx(t)〉 6= 0 if and only if w is a linear combination of m(r) and I(s). The activations
x(t) therefore lie for any t in the the subspace spanned by m(r) and I(s). Assuming for
simplicity that these vectors form an orthogonal set, the activation of the i-th neuron xi,
can be written as:

xi(t) =
R∑
r=1

κr(t)m
(r)
i +

Nin∑
s=1

vs(t)I
(s)
i . (22)
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Here κr and vs are scalar latent variables that correspond to the coordinates of x(t)
along the vectors m(r) and I(s), and can be computed by projecting x(t) on normalized
directions m(r)/||m(r)||2 and I(s)/||I(s)||2:

xTm(r)/||m(r)||2 = κr (23)

xT · I(s)/||I(s)||2 = vs. (24)

Projecting Eq. (21) on the vector I(s)/||I(s)||2, we then obtain

τ
dvs
dt

= −vs + us(t), (25)

while the projection on m(r)/||m(r)||2 gives

τ
dκr
dt

= −κr +
1

N

N∑
j=1

n
(r)
j φ(xj). (26)

Inserting Eq. (22) into Eq. (26) then leads to the following dynamical system:

τ
dκr
dt

= −κr + κrecr (27)

κrecr =
1

N

N∑
i=1

n
(r)
i φ

(
R∑
l=1

κlm
(l)
i +

Nin∑
s=1

vsI
(s)
i

)
. (28)

To simplify notations, from here on we consider unit-rank networks with a single
input (R = 1 and Nin = 1, we therefore drop the indices r and s), where the entries of
m, n and I are generated from a joint Gaussian distribution with means 〈m〉, 〈n〉, 〈I〉,
standard deviations σm, σn, σI and covariances σxy for x, y ∈ {m,n, I}. In the limit
N →∞, the sum over j in Eq. (28) can then be replaced by an integral over the joint
Gaussian distribution, which can be computed using Stein’s Lemma for Gaussian
integrals [Schuessler et al., 2020a,Beiran et al., 2021a,Dubreuil et al., 2022]. The
dynamics for κ then become (Methods):

τ
dκ

dt
= −κ+ 〈n〉〈φ(µ,∆)〉+ (σnmκ+ σnIv)〈φ′(µ,∆)〉 (29)

where the brackets denote the following Gaussian integral

〈f(µ,∆)〉 =

∫
dx(2π)−

1
2 exp−x

2/2 f(µ+
√

∆x)) (30)

and

µ = 〈I〉v + 〈m〉κ
∆ = (κσm)2 + (v σI)

2.
(31)

We next turn to the geometry of firing rates r(t) where ri(t) = φ(xi(t)), and
examine the projection of r(t) on an arbitrary direction w in the activity state space:

〈wTφ(x)〉 =
1

N

N∑
j=1

wj φ(xj)

=
1

N

N∑
j=1

wjφ (κ(t)mi + v(t)Ii) .

(32)
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In linear networks (i.e. when φ(x) = x), firing rates are equivalent to activations
x(t), and therefore their dynamics are confined to the subspace spanned by m and I.
The projection of r(t) on any direction orthogonal to m and I is therefore zero. In
particular, the projection on the global axis is non-zero only if 〈I〉 6= 0, or if 〈m〉 6= 0
and κ 6= 0.

Here we focus on non-linear networks, and directions w with entries generated from
a joint Gaussian distribution with entries of m and I, specified by a mean 〈w〉, variance
σ2
w, and covariances σwm and σwI . As for Eq. (28), the r.h.s. of Eq. (32) can be

replaced by a Gaussian integral, and, using Stein’s Lemma, be expressed as (see
Appendix):

〈wT r〉 = 〈w〉〈φ(µ,∆)〉+ σwmκ(t)〈φ′(µ,∆)〉+ σwIv(t)〈φ′(µ,∆) 〉. (33)

In Eq. (33), the first term in the r.h.s. represents the population-averaged firing rate,
i.e. the projection of r(t) on the global axis. Indeed, taking wi = 1/N for i = 1 . . . N ,
only the first term is non-zero. Moreover, Eqs. (30),(31) show that changes in the
population averaged firing-rate 〈φ(µ,∆)〉 can be induced either through the mean input
µ by non-zero means 〈I〉 and 〈m〉, or through the variance of the input ∆ by non-zero
variances σI and σm of the input and connectivity vectors.

The last two terms in Eq. (33) respectively represent the projection of firing rates on
the zero-mean parts of m and I, i.e. changes in r(t) along directions orthogonal to the
global axis. Altogether, Eq. (33) therefore predicts that the projection of the firing rate
vector r(t) is zero on any direction w orthogonal to the global axis, m and I.
Interestingly, for Gaussian connectivity vectors considered here, the geometry of firing
rate dynamics is therefore largely equivalent to linear networks (i.e. to the geometry of
x(t)). The main difference is that in the non-linear case, the heterogeneity across
neurons quantified by the input variance ∆ can induce a non-zero component along the
global axis even when 〈I〉 = 0 and 〈m〉 = 0.

These theoretical predictions are verified through simulations in Fig. 2. The
corresponding network parameters are given in Table 3.

Principal Component Analysis

In order to extract the low-dimensional subspace of the population activity from
simulations, we performed dimensional reduction via a standard Principal Component
Analysis (PCA). First, we construct the matrix X in which every column corresponds
to the time trace of firing rates X[:, i] = ri(t). The matrix X is then normalized by
subtracting the mean in every column. We compute the principal components (PCs) as
the normalized eigenvectors of the correlation matrix C = XTX, sorted in decreasing
order of their eigenvalues λi. The activity matrix X is then projected on the
orthonormal basis generated by the PC vectors, yielding X ′ = XE where E is the
N ×N matrix with columns formed by PC components. The variance explained by
each component is the corresponding entry on the diagonal of the rotated correlation
matrix C ′ = X ′TX ′. For rate networks, we run PCA on individual trial, as we did not
include noise in the dynamics. For spiking networks we run the PCA on firing rates
averaged over trials Ntr (see Tables 6, 8).

Geometry of nonlinear autonomous activity in unit-rank
networks

Rate network

We now turn to the autonomous activity in unit-rank networks without external inputs.
The autonomous dynamics of the collective variable κ are described by Eqs. (27), (28)
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Notation Description
N 1000
σm 1
σn 1
σI 1 (gray, blue), 0 (purple)
σnI 1
〈I〉 0 (gray, blue), 1 (purple)
τm 100ms
trun 5s
dt 1ms
u(t) input amplitude

Table 3. Parameters Fig. 2

Variable Value
C 1250
σm 2
σn 20mV
τref 0.5ms
τdel 1.5ms
τf 1− 100ms
trun 2s
σnI 0.4mV2

Fig. 3 Fig. 4 A-C Fig. 4 D-F Fig. 4 G-I
J 0.1mV 0.1mV 0.1mV 0mV
g 5 6 5 5
µ0 40mV 80mV 40mV 30mV
|I|, global 22.5mV -/- -/- -/-
|I|, orthogonal 125mV -/- /- -/-
|I|, along 125mV 50mV 50mV 50mV

Table 4. Parameters Fig. 3 and 4
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Variable Value
σm 2
σn 6
τm 100ms
trun 20s
dt 10ms
xoff 2.9

Panels A-C Panels D-F
µm 2 0
µn 0.1− 6 0
σmn 0 0.1− 10
Nnets 1 1
Ntr 4 8

Table 5. Parameters Fig. 5, rate

in which the external input is zero:

dκ

dt
= −κ+

1

N

N∑
i=1

niφ (κmi) . (34)

Any fixed point κ0 obeys:
κ0 = F (κ0). (35)

where

F (κ) =
1

N

N∑
i=1

niφ (κmi) , (36)

The stability of κ0 is determined by linearizing Eq. 34, yielding:

dκ

dt
|κ=κ0 = −1 +

1

N

∑
nimiφ

′(κ0mi). (37)

The stability of κ0 is therefore controlled by the overlap

〈nTφ′m〉 =
1

N

N∑
i=1

nimiφ
′(κ0mi). (38)

In the large N limit, replacing the sum with a Gaussian integral and applying Stein’s
lemma, the r.h.s in Eq. (36) can be further expressed as

F (κ) = 〈n〉〈φ(µ,∆)〉+ σmn κ〈φ′(µ,∆)〉. (39)

To examine the effects of the two terms in F (κ), in the results we vary the overlap
either by setting σmn = 0 and changing 〈n〉 or by setting 〈m〉, 〈n〉 = 0 and changing
σmn. To compute F (κ), we approximate the Gaussian integrals 〈φ′〉, 〈φ〉 in Eq. (39)
using the Monte-Carlo method. Specifically, we choose an array of values for κ, and for
each element compute the corresponding F (κ) (Eq. (36)) by averaging over 50 different
realisation of vectors m and n. We then determine the fixed point by solving for
κ = F (κ). The predicted population-averaged firing rate can then be computed as
1
N

∑
i φ(κmi).

The corresponding results are shown in Fig. 5. Network parameters are given in
Table 5.
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Variable Value
σm 2
σn 20mV
trun 1.2s
τf 100ms

Panels G-I Panels J-L
C 4000 1250
µm 0.01 0
µn 0− 150mV 0
σmn 0 0− 40mV
J 0.2mV 0.1mV
g 4.8 5
µ0 17.7mV 40mV
τref 2ms 0.5ms
τdel 2.5ms 1.5ms
Nnets 5 7
Ntr 3 2

Table 6. Parameters Fig. 5, SNN

Spiking network

In Fig. 5 the overlap is varied as in the rate network, either through 〈n〉 or the
covariance σmn. We run the dynamics for Nnets different network instances keeping the
overlap nTm/N fixed, while resampling connectivity vectors m and n from Gaussians
with mean 〈m〉, 〈n〉 and variance σm, σn respectively. The dynamics for each network
instance is run for Ntr number of trials. In every trial, we resample the initial
membrane potential V (0) from a Gaussian distribution. At a fixed overlap, for each
network configuration and at each trial, the collective variable is computed as
κcurr = 1

N

∑
i rini. To get the plot in Fig. 5 we first set a threshold κtr that is a

boundary between zero state and the the high state (Fig. 5 G) or two symmetric states
(Fig. 5 J). Then we average over all collective variables κcurr that have |κcurr| < κthr to
compute low states. For those |κcurr| > κthr, we average over all positive or over all
negative κcurr values to get the high states or the two symmetric states. The
parameters used for simulating spiking model in Fig. 5 are presented in Table 6

Geometry of nonlinear autonomous activity in rank-two
networks

We extend the previous results to rank-two networks where the autonomous dynamics
are described by two collective variables κ1 and κ2 (Eq. (22)). Projecting Eq. (21) onto
m(1) and m(2) gives

τ
dκ1
dt

= −κ1 +
1

N

N∑
i=1

n
(1)
i φ(κ1m

(1)
i + κ2m

(2)
i ) = G1(κ1, κ2)

τ
dκ2
dt

= −κ2 +
1

N

N∑
i=1

n
(2)
i φ(κ1m

(1)
i + κ2m

(2)
i ) = G2(κ1, κ2)

(40)

Assuming zero-mean Gaussian connectivity vectors, replacing sums by integrals in
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τm 100ms
Variable Value
trun 10s
dt 1ms

Panels A-C Panels G-I
σm2

1
1 1

σn2
1

7.24 7.24

σm2
2

1 1

σn2
2

3.63 3.63

σm1n1 2 2
σm1n2

0.8 0
σm2n1

−0.8 0
σm2n2 2 2
Nnets 3 15
Ntr 5 3

Table 7. Parameters Fig. 6, rate

the N →∞ limit, and applying Stein’s lemma leads to:

dκ1
dt

= −κ1 + (σn1m1κ1 + σn1m2κ2)〈φ′(µ,∆)〉

dκ2
dt

= −κ2 + (σn2m1
κ1 + σn2m2

κ2)〈φ′(µ,∆)〉
(41)

where

µ = 0

∆ = σm2
1
κ21 + σm2

2
κ22.

(42)

For zero-mean connectivity vectors, (κ1, κ2) = (0, 0) is always a fixed point. A linear
analysis shows that its stability is given by the eigenvalues of φ′(0)Jov [Schuessler et al.,
2020a,Beiran et al., 2021a], where φ′(0) is the gain at zero, and Jov the overlap matrix :

Jov =

(
σn1m1 σn1m2

σn2m1
σn2m2

)
. (43)

For Fig. 6, we ran simulations for Nnets network instances and Ntr trials for each
instance, and plot the projections without averaging over trials. The parameters used
for simulating rate and spiking model in Fig. 6 are presented in Tables 7 and 8.

Perceptual decision-making task

We start from a network in AI regime as in Section Geometry of responses to external
inputs, and add a unit rank structure on top of the random part.

In each trial, the model was run for trun = 1020ms: a fixation epoch of duration
Tfix = 100ms was followed by a simulation epoch of Tstim = 800ms, delay epoch of
Tdel = 100ms and a decision epoch Tdec = 20ms. The feed-forward input to neuron i on
trial k was

IFFi (t) = Iiu
(k)(t) (44)

where during the stimulation, u(k) = ū(k)(t) + ψ(k)(t), with ψ(k)(t) a zero-mean
Gaussian white noise of standard deviation σu = 1. Connectivity vectors and the input
vector were generated from a Gaussian distribution with zero mean. The standard
deviation of vector m was σm2 = 0.02, and the covariance between pairs of vectors
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Variable Value
C 1250
J 0.1mV
g 5
tref 0.5ms
τdel 1.5ms
τf 20ms

Panels D-F Panels J-L
σm2

1
1 1

σn2
1

82.4mV 26mV

σm2
2

1 1

σn2
2

46mV 26mV

σm1n1 30mV 25mV
σm1n2

8mV 0
σm2n1

−8mV 0
σm2n2 26mV 25mV
Nnets 3 35
Ntr 1 1
trun 1.2s 3s

Table 8. Parameters Fig. 6, SNN

σmn = 0.016, σnI = 0.26, σmw = 2.1. During the decision epoch, a single readout was
evaluated by output of the network is defined by readout value:

z =
1

N

N∑
j=1

wi ri (45)

where w is a readout vector generated from a Gaussian with zero mean and
On trial k, if the mean of the readout if above zero, we label the output as 1, and as

0 otherwise. At every value of the overlap, psychometric curve is computed by plotting
the fraction of trials that had an output 1. The network was run for 30 trials at each
overlap.

Appendix A: Mean-field theory and gaussian
integrals

Using the mean-field theory, we derive in detail the projection in Eq. (32) for the
rank-one case, which can then be extended to higher ranks. Vectors m, I and w are
generated as

m = σmX (46)

I = σI Y , (47)

w = σmw/σmX + σIw/σIY +
√
σ2
w − (σ2

mw/σ
2
m + σ2

Iw/σ
2
I )Z (48)

where X,Y and Z are independent vectors generated from a Gaussian distribution
with zero mean and unit standard deviation, σm, σI , σw standard deviations of vectors
m, I,w and σmw, σIw overlaps of vectors w and m, I respectively.

The dynamics in Eq. (32) consist of a sum over the N units in the network. In the
limit of large networks with defined statistics, the sum over N elements corresponds to
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the empirical average over the distribution of its elements. Therefore, we can replace
the sum by an integral over the distribution P (m,n, I).

w · φ(x) =
1

N

N∑
j=1

wjφ (κmi + vsIi) =

=

∫
dmdI dw P (m, I, w)wφ(κm+ vsI)

=

∫
dXdY dZP (X,Y, Z)w(X,Y, Z)φ(κm(X,Y, Z) + vsI(X,Y, Z))

(49)

We represented the integral in Eq. (49) as a function of variables X, Y and Z, which
are independent, so that the joint distribution obeys P (X,Y, Z) = P (X)P (Y )P (Z).
Eq. (49) then becomes:

w · φ(x) =

=

∫∫∫
P (X)P (Y )P (Z)dXdY dZ

(
σmw
σm

X +
σIw
σI

Y +

√
σ2
w −

σ2
mw

σ2
m

−
σ2
Iw

σ2
I

Z

)
·

· φ (κrσmX + vsσIY ) =

=
σmw
σm

∫
Xφ (κrσmX + vsσIY )P (X)dX

∫
P (Y )dY

∫
P (Z)d(Z)+

+
σIw
σI

∫
Y φ (κrσmX + vsσIY )P (Y )dY

∫
P (X)dX

∫
P (Z)d(Z)+

+

√
σ2
w −

σ2
mw

σ2
m

−
σ2
Iw

σ2
I

∫∫
φ (κrσmX + vsσIY )P (X)P (Y )dXdY

∫
ZP (Z)dZ =

= σmwκr(t)〈φ′(µr,∆)〉+ σIwvs(t)〈φ′(µs,∆)〉
(50)

where µr = κrσm, µs = vsσI and ∆ = (κrσm)2 + (vsσI)
2. In the last line we use the

Gaussian integral notation:

〈f(µ,∆)〉 =

∫
dx(2π)−

1
2 exp−x

2/2 f(µ+
√

∆x) (51)
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