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Abstract

Recurrent network models are instrumental in investigating how behaviorally-relevant
computations emerge from collective neural dynamics. A recently developed class of
models based on low-rank connectivity provides an analytically tractable framework for
understanding of how connectivity structure determines the geometry of
low-dimensional dynamics and the ensuing computations. Such models however lack
some fundamental biological constraints, and in particular represent individual neurons
in terms of abstract units that communicate through continuous firing rates rather than
discrete action potentials. Here we examine how far the theoretical insights obtained
from low-rank rate networks transfer to more biologically plausible networks of spiking
neurons. Adding a low-rank structure on top of random excitatory-inhibitory
connectivity, we systematically compare the geometry of activity in networks of
integrate-and-fire neurons to rate networks with statistically equivalent low-rank
connectivity. We show that the mean-field predictions of rate networks allow us to
identify low-dimensional dynamics at constant population-average activity in spiking
networks, as well as novel non-linear regimes of activity such as out-of-phase oscillations
and slow manifolds. We finally exploit these results to directly build spiking networks
that perform nonlinear computations.

Author summary

Behaviorally relevant information processing is believed to emerge from interactions
among neurons forming networks in the brain, and computational modeling is an
important approach for understanding this process. Models of neuronal networks have
been developed at different levels of detail, with typically a trade off between analytic
tractability and biological realism. The relation between network connectivity, dynamics
and computations is best understood in abstract models where individual neurons are
represented as simplified units with continuous firing activity. Here we examine how far
the results obtained in a specific, analytically-tractable class of rate models extend to
more biologically realistic spiking networks where neurons interact through discrete
action potentials. Our results show that abstract rate models provide accurate
predictions for the collective dynamics and the resulting computations in more
biologically faithful spiking networks.

Introduction

Recurrent network models are an essential tool for understanding how the collective
dynamics of activity in the brain give rise to computations that underlie behavior.
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Network models at different levels of biological detail are typically used to describe
different phenomena [Herz et al., 2006, Gerstner and Naud, 2009], but integrating
findings across scales of abstraction remains challenging. Networks of excitatory and
inhibitory spiking neurons [Brunel, 2000}|Gerstuner et al., 2014] are a popular class of
models which incorporate the key biological fact that neurons interact through discrete
action potentials, a.k.a. spikes. Balanced excitatatory-inhibitory spiking networks in
particular naturally lead to asynchronous irregular activity [Amit and Brunel, 1997|,@
reeswijk and Sompolinsky, 1996,/Troyer and Miller, 1997, [Renart et al., 2010LBoerlin
et al., 2013a,Hennequin et al., 2017[Rosenbaum and Doiron, 2014/[Sanzeni et al., 2022]
that captures some of the main features of the spontaneous neural firing in
vivo [Shadlen and Newsome, 2001, Destexhe et al., 2001,/Shu et al., 2003}/Haider et al., |
[2006, London et al., 2010}[Sanzeni et al., 2020,|Ahmadian and Miller, 2021]. Beyond
spontaneous activity, how rich behavioral computations are implemented in spiking
networks has been an open issue [Abbott et al., 2016, Ingrosso and Abbott, |
2019} Tavanaei et al., 2019|. This question has so far been more easily tackled in more
abstract models such as recurrent neural networks (RNNs) [Sussillo, 2014} Barak, |
[2017/[Yang and Wang, 2020|, where individual units are represented in terms of
continuous firing rates rather than discrete spikes. A particularly fruitful approach has
been to interpret the emerging computations in terms of the geometry of dynamics in
the state space of joint activity of all neurons [Sussillo and Barak, 2013, Mante et al., |
2013||Vyas et al., 2020, Chung and Abbott, 2021], as commonly done with experimental
data [Churchland and Shenoy, 2007,Buonomano and Maass, 2009, Cunningham and Yu/
2014l|Gallego et al., 2017,/Saxena and Cunningham, 2019,[Jazayeri and Ostojic, 2021]. In
particular, in a large class of rate networks in which the connectivity contains a
low-rank structure [Hopfield, 1982|Eliasmith and Anderson, 2004, Sussillo and Abbott,
[2009,Boerlin et al., 2013b,[Ahmadian et al., 2015|[Pereira and Brunel, 2018|[Landau and
Sompolinsky, 2018|Beiran et al., 2021b||Landau and Sompolinsky, 2021} Schuessler et al.]
2020blKadmon et al., 2020}Logiaco et al., 2021}[Valente et al., 2022a], the geometry of
activity and the resulting computations can be analytically predicted from the structure
of connectivity [Mastrogiuseppe and Ostojic, 2018,/Schuessler et al., 2020a},Beiran et al.]
2021a, Dubreuil et al., 2022]. A comparable mechanistic picture has so far been missing
in spiking networks.

A key question is therefore to which extent mechanistic insights from RNNs extend
to more biologically plausible spiking models. In this regard, a central underlying issue
is exactly how spiking models are related to abstract rate networks [Schaffer et al., |
. One common approach has been to interpret each unit in a rate network as an
average over a sub-population of spiking neurons [Wilson and Cowan, 1972,|Amit and

runel, 1997, |Shriki et al., 2003,|Wong, 2006 Litwin-Kumar and Doiron, 2012}[Hennequin
et al., 2014l[Baker et al., 2020,Timén et al., 2022}Zenke et al., 2015]. A possible
alternative is instead to approximate each individual spiking neuron by a Poisson rate
unit [Ostojic and Brunel, 2011], and therefore hypothesize that a full spiking network
can be directly mapped onto a rate network with identical connectivity |Tetzlaff et al.,

012}|Ostojic, 2014, Harish and Hansel, 2015} Nicola and Clopath, 2017, Kim and Chow
2018|[Kim et al., 2019]. If this hypothesis is correct, the analytic predictions for the
geometry of activity in rate networks should directly translate to spiking networks with
a low-rank structure in connectivity. This implies that the geometry of activity and
range of dynamics in spiking networks may be much broader than apparent on the level
of population-averaged spike trains.

To test this hypothesis, we consider a classical spiking network model consisting of
excitatory-inhibitory integrate-and-fire neurons , and add low-rank
structure on top of the underlying random, sparse connectivity. Varying the statistics of
the low-rank structure, we systematically compare the geometry of activity and
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dynamical regimes in the spiking model with predictions of networks of rate units with
statistically identical low-rank connectivity. We find that rate networks predict well the
structure of activity in the spiking network even outside the asynchronous irregular
regime, as long as spike-times are averaged over timescales longer than the synaptic and
membrane time constants to estimate instantaneous firing rates. In particular, the
predictions of the rate model allow us to identify low-dimensional dynamics at constant
population-average activity in spiking networks, as well as novel non-linear regimes of
activity such as out-of-phase oscillations and slow manifolds. We finally show that these
results can be exploited to directly build spiking networks that perform nonlinear
computations based on principles identified in rate networks.

Results

Geometry of the activity in the state space

We consider recurrent networks of N neurons, modeled either as rate units or leaky
integrate-and-fire (LIF') neurons (Fig. [I| A, see Methods for details). We quantify the
activity of each neuron ¢ in terms of its time-dependent firing rate r;(¢). In rate
networks, each unit is described by the dynamics of its activation x;(t), an abstract
variable usually interpreted as the total input or membrane potential [Miller and
Fumarola, 2012], and the firing rate is obtained as r;(t) = ¢(x;(t)), where ¢(z) is the
single-unit current-to-rate function that we here choose to be a positive sigmoid. In the
LIF network, single-unit firing rates are instead estimated from a running average over
spike times, computed using an exponential filter with timescale 74 (Fig. 1 C, Methods
Eq. (I7).

Following a common approach for analyzing neural data [Harvey et al.,
2012|Cunningham and Yu, 2014], we represent the collective activity at any time point
as a vector r(t) = {r; };=1.. .y in the activity state space where each axis corresponds to
the firing rate r; of one neuron (Fig. [I| D). We then examine the geometry of the
dynamical trajectories by projecting at each time point the activity vector r(¢) along
different directions in that space. Each direction is specified by a vector w = {w; };—1.. N
in state space, so that projecting onto it is equivalent to assigning to every neuron a
weight w; and computing a weighted average of the activity (Methods Eq. )

Analyses of experimental data and works on rate networks commonly examine how
collective activity changes along arbitrary directions in state space, where the weight w;
of each neuron is chosen independently. In contrast, studies of spiking networks have
often focused on firing rates averaged over the whole network or over specific
sub-populations [Amit and Brunel, 1997.[Shriki et al., 2003,|Wong, 2006|(Litwin-Kumar
and Doiron, 2012,[Hennequin et al., 2014 Baker et al., 2020,|Timén et al., 2022]. Taking
a population average over the whole network is equivalent to projecting activity along
the direction (1,1,...,1), which we call the global axis [Kobak et al., 2019|. Similarly,
vectors with unit entries on a specific subset of neurons and zeros elsewhere define
directions in state space that represent firing rates averaged over specific
sub-populations. The goal of the present study is to instead examine how inputs and
connectivity in spiking networks shape activity along arbitrary directions of state space,
and in particular directions orthogonal to the global axis which correspond to changes in
collective activity that modify the pattern of activity but keep the population-averaged
activity constant. To this end, we compare the geometry of activity in spiking networks
with rate networks based on an identical structure in the connectivity.

We specifically focus on networks for which the connectivity matrix contains a

November 19, 2022

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102


https://doi.org/10.1101/2022.11.18.517093
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.18.517093; this version posted November 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

low-rank structure parametrized as

R
1 T T
Py = 5 2omin)” 1)
r=1
where m(") = {ml(.r)}izlmN and n(") = {ngr)}izl_,N for r =1,..., R are connectivity

vectors (Fig. [1| B). Rate networks with low-rank connectivity are analytically tractable,
in the sense that the geometry of dynamics in state space can be directly predicted from
the arrangement of connectivity vectors and inputs, as summarized below.

Our key hypothesis is that, for a spiking network in the asynchronous irregular state,
each neuron can be directly mapped onto a unit in a rate network with statistically
identical connectivity. To test this hypothesis, we start from an LIF network with
sparse excitatory-inhibitory connectivity in the inhibition-dominated regime that leads
to asynchronous irregular activity [Brunel, 2000] (Methods), and add to this random
background an arbitrary low-rank connectivity structure of the type introduced in
Eq. . We then compare the geometry of the resulting spiking activity to the
predictions of a rate model with statistically identical connectivity.
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Fig 1. Low-rank connectivity and state space dynamics. A: Illustration of
recurrent neural network architecture, consisting of inputs and recurrent connectivity.
B: Representation of inputs and connectivity in terms of vectors. The input weights
form an input vector I. In spiking networks, the recurrent connectivity is composed of a
sparse excitatory-inhibitory part (zero entries in white, excitatory connections in red,
inhibitory in blue) and a low-rank structure defined by pairs of connectivity vectors m
and n. The illustration shows a unit-rank example (R = 1). C: Left: spike times of
three neurons in the spiking network. Right: dynamics of instantaneous firing rates
computed from spikes using an exponential filter with timescale 74 = 100ms. D:
Three-dimensional illustration of low-dimensional dynamics in the activity state space
where each axis represents the firing rate of one neuron. In a unit-rank network, the
activity is expected to be confined to a two-dimensional plane spanned by the vectors,
m and I. We refer to the direction (1,1,...1) as the global axis (orange). E:
Projections of activity on two axes: (top) global axis corresponding to the
population-averaged firing rate; (bottom) axis defined by the input vector I.
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Geometry of responses to external inputs

We start by examining the geometry of transient dynamics in response to external
inputs. We first summarize the predictions of low-rank rate models developed in
previous studies [Mastrogiuseppe and Ostojic, 2018]. We then examine whether these
predictions hold in networks of integrate-and-fire models with a statistically identical
low-rank connectivity structure.

Each neuron ¢ receives a step input u(t) (Fig. [2| B) multiplied by a weight I;. The
set of feed-forward weights I; over neurons form an input vector I = {I;};—1. n. This
input vector, as well as the connectivity vectors m(™ and n(") introduced in Eq.
each define a specific direction in state space (Fig. [2| A). Previous work |[Mastrogiuseppe
and Ostojic, 2018|Beiran et al., 2021a] has shown that in rate networks with low-rank
connectivity, the dynamics of the activations x(t) = {z;(¢t)} in response to an input are
confined to a subspace of state space spanned by the input vector I and connectivity
vectors m(") for = 1... R. Focusing on a unit rank network (R = 1), this implies that
the activation z;(t) of unit ¢ in the rate network can be expressed as

i(t) = K(t) mi + v(t); (2)

where £(t) and v(t) are two scalar variables (Methods). The variable v(t) represents
feed-forward activity propagated along the direction I, while x(t) quantifies activity
that recurrent dynamics generate along the direction m. An input along the direction I
will generate a non-zero recurrent response k(t) only if I has a non-zero overlap with the

vector n, i.e. if the scalar product n’ I is non-zero [Mastrogiuseppe and Ostojic, 2018].

Additional analyses show that the low-dimensional geometry described by Eq. at
the level of activations x(t) is largely preserved when applying the non-linear function
¢(x) to obtain rates (Methods). More specifically, the projection of the firing rates
r(t) = {r;(t)} on an arbitrary axis w is determined by the projection of x(t) on that
same axis if the network is in the linear regime, or if the entries of w; of w follow a
Gaussian distribution (Eq. )7 which we assume throughout this study. In low-rank
rate networks, the dynamics of 7(¢) in response to an input therefore dominantly lie in
the subspace spanned by the input and connectivity vectors I and m (Fig. 2| E), with
the non-linearity generating a potential additional component along the global axis
(Methods Eq. ) These theoretical predictions were confirmed by a PCA analysis of
simulated trajectories of firing rates r(t) (Fig. [2| F).

Since the population-averaged firing rate is obtained by projecting (¢) on the global
axis (1,1,...,1), the analysis of low-rank rate models predicts that a given input
induces a strong change of population-averaged firing rates when the mean of inputs
weights over neurons, (I) = % Zf;l I;, is non-zero (Fig. D, left panel), or if both the
average (m) of elements of m and the overlap n” I are non-zero. Conversely, if (I) = 0
and (m) = 0, inputs evoke changes in single-unit firing rate that essentially average-out
on the population-average level (Fig. [2| D, middle and right panel), but instead explore
the plane I — m that is orthogonal to the global axis in state space (Fig E, middle
and right panel).
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Fig 2. Low-dimensional dynamics generated by external inputs in rate
networks with low-rank connectivity. A: Illustration of the geometry in the
activity state-space. The input vector I, the connectivity vectors m and n (green), and
the global axis (1,1,...,1) (orange) define a set of directions and a subspace within
which the low-dimensional dynamics unfold. The overlaps of the vectors I and m with
the global axis predict whether inputs give rise to a change in the population-averaged
activity. The overlap of I with n instead determines whether an input engages
recurrent activity along the direction m. The three columns display three different
arrangements of the input vector (depicted in a different color in each column). Left: I
aligned with the global axis; middle: I orthogonal to both n and the global axis; right:
I aligned with n, but I and m orthogonal to the global axis. B: The input vector is
multiplied by a scalar u(¢) which is a step function from ¢ = 1s. C: Individual firing
rates r;(t) for a subset of 10 neurons in each network. D: Population firing rate,
averaged over all neurons in the network. E: Projections of the firing rate trajectory
r(t) onto the (I, m) plane. F: PCA analysis of the firing rate dynamics r(t). Variance
explained by each of the first 8 PCs. Inserts: Projections of the first two PCs onto the
global axis, the input vector I and the connectivity vector m. The connectivity vectors
m and n have a zero mean and unit standard deviation, and are orthogonal to each
other. Vectors n and I are orthogonal except in blue where the overlap is 0,7 = 1.
Vectors I in gray and blue have a zero mean and unit standard deviation, while vector
I in purple is along the global axis. Network parameters are given in Table
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We compared these predictions of low-rank rate models to the geometry of activity
in spiking networks where a low-rank structure was added on top of sparse
excitatory-inhibitory connectivity (Fig. . Starting from a network in the
inhibition-dominated asynchronous irregular state [Brunel, 2000], as expected inputs
evoked a change in population-averaged firing rates if the mean of the input vector (I)
was non-zero (Fig. |3| D, left panel). Input vectors of zero mean instead elicited patterns
of responses across neurons that did not modify the population-averaged firing rate (Fig.
D, middle and right panel), but explored directions in state space orthogonal to the
global axis. These directions were accurately predicted by low-rank rate models: input
vectors I orthogonal to the vector n led to responses only along the direction I (Fig.
E, left and middle panel), while inputs that overlapped with m led to responses in the
I — m plane (Fig. [3| E, right panel). A PCA analysis confirmed that these
low-dimensional projections explained the dominant part of variance in the full
trajectories (Fig. [3| F). Altogether, the predictions of low-rank rate models were
therefore fully borne out when treating each individual spiking neuron as a rate unit.
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Fig 3. Low-dimensional dynamics generated by external inputs in spiking
networks with low-rank structure. A: Illustration of the geometry of input
(varying color) and connectivity vectors (green) with respect to the global axis (orange).
Left: input vector I along the global axis; middle: input vector I orthogonal to n;
right: input vector I along the vector m. B: The input vector is multiplied by a scalar
u(t) which is a step function from ¢ = 1s. C: Raster plot showing action potentials for a
subset of 30 neurons in each network. D: Population firing rate obtained by averaging
instantaneous firing rates of all neurons. E: Projections of the firing rate trajectory r(t)
onto the (I, m) plane. F: PCA analysis of firing rate dynamics 7(¢). Variance explained
by each of the first 8 PCs. Inserts: Projections of the first 3 PCs onto the global axis
(first row), and vectors I and m. The connectivity vectors m and n have a zero mean
and unit standard deviation, and are orthogonal to each other. Vectors n and I are
orthogonal except in blue where the overlap is n”I/N = 0.4mV?. Vectors I in gray and
blue have a zero mean and unit standard deviation, while vector I in purple is along the
global axis. All analyses were performed on instantaneous firing rates computed using a
filter timescale of 7y = 100ms. Network parameters are given in Table []
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Responses in spiking networks outside of the irregular
asynchronous regime

Our initial hypothesis was that low-rank rate networks predict well the geometry of
responses of spiking networks in the asynchronous irregular regime, where individual
neurons can be approximated as independent Poisson processes |[Brunel, 2000]. We next
asked to which extent the predictions hold outside of this regime, when the spiking
activity is either not asynchronous, i.e. exhibits some degree of synchronization and
oscillations [Brunel, 2000], or is regular rather than irregular. Following Brunel 2000, we
set the network to operate in a specific regime by varying the strength of the inhibition
g in the random part of the connectivity, the external input pe,;: and the synaptic delay
Tdel (Methods). We then examined how much the underlying regime influences the
low-dimensional dynamics in response to external inputs in networks with a unit-rank
structure. For this, we repeated the PCA analysis in spiking networks with zero-mean
input and connectivity vectors, and I overlapping with n as in the right column of
Fig. 2

We first considered a network of integrate-and-fire neurons that operates in the
synchronous irregular (SI) regime [Brunel, 2000| in which individual neurons fire
irregularly (Fig. [4| A, top), but are sparsely synchronised, leading to oscillations in the
population rate (Fig. [4| A, bottom). The frequency of these oscillations is set by the
synaptic delay 74.;, and is therefore high for physiologically realistic values of
Tder |[Brunel, 2000]. These oscillations can therefore only be observed in the firing rates
when the filter timescale 7; used for averaging over spikes is comparable to the delays,
i.e. of the order of milliseconds (Fig. 4] A, blue). Longer filter timescales instead totally
average-out the oscillatory dynamics (Fig. [4| A, orange). We therefore found that the
dimensionality and geometry of the responses in state space depend on the filter
timescale used to determine single-unit firing rates (Fig. 4| B). Performing a PCA
analysis on firing rate trajectories r(t) obtained with a filter timescale of 1ms indicated
that the activity was high-dimensional. Indeed, the explained variance was distributed
along many principal components (Fig. [4| B, top), with the first PC capturing
population-level oscillations along the global axis (insert in Fig. 4| B, top panel), while
strong fluctuations were present in other directions (Fig. [4| C). In contrast, for a filter
timescale of 100ms the first PC explained a much larger fraction of variance (Fig. 4| B,
bottom), and corresponds instead to activity along a combination between the
connectivity vector m and the input vector I (insert in Fig. 4| B, bottom), as predicted
by the rate model (insert in Fig. 2| F, blue). In between these two extremes,
progressively increasing the filter timescale (Fig. 4| C, bottom) shows that for timescales
below 10ms, the geometry of activity is dominated by fluctuations along the global axis,
while for longer timescales the dynamics are lower-dimensional and reside dominantly in
the (m, I) plane as expected from the rate network (Fig. [2| E and F, blue).

Given the strong influence of the filter timescale on the results, we repeated the
same analysis in the asynchronous irregular (AI) regime, which in Fig. [3| was
investigated only using a long timescale of 100ms. We found that the results of the PCA
were similar to the SI regime: fluctuations along the global axis dominated at timescales
below 10ms, and low-dimensional dynamics predicted by the rate model emerged at
longer timescales (Fig. [4] D-F). The main difference between the AI and SI regimes is
that the global fluctuations at short timescales are weaker in the AI regime (with an
amplitude that decays as the network size is increased), and do not show the periodic
structure found in the SI regime (Fig. [4| D).

We then examined the role of irregular activity, by turning to networks in which the
connectivity consisted only of a low-rank structure without the random E-I part. In
such networks, individual neurons fired almost periodically, in contrast to Poisson-like
activity in the Al regime. The action potentials of the different neurons were however
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highly asynchronous (Fig. 4| G top), and the fluctuations in the population activity were
weak even for filter timescales of 1ms (Fig. [4| G bottom). Similarly to SI and AT regime,
the dynamics in this network became low-dimensional for long filter timescales (Fig.
H and I), but the projection along m was higher for all filter timescales, and saturated
above 10ms (Fig. [4T bottom).

In summary, our analyses indicate that the predictions of the rate networks for the
geometry of responses hold independently of the activity regime in the spiking network
if the single neuron firing rates are determined by averaging action potentials on a
timescale longer than the synaptic delays. At shorter timescales, the activity is
dominated by spiking synchronization that leads to prominent fluctuations along the
global axis which corresponds to the population-averaged firing rate.
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Fig 4. Influence of firing regime and filter timescales on low-dimensional
dynamics in spiking networks. A-C: Synchronous irregular (SI) regime. A: Top:
raster plot showing action potentials for a subset of 30 neurons in the network. Bottom:
population-averaged firing rate computed using filter time constants of 1ms (blue) and
100ms (orange). B: PCA analysis of trajectories of instantaneous firing rates computed
from spike trains using two different filter time constants (top: lms, bottom: 100ms).
Main panels: variance explained by each of the first 8 PCs; inserts: projections of the
first 3 principal components on the global vector, I and m. C: Top: projections of the
firing rate trajectories on the plane defined by vectors m and I. Bottom: Projection of
the first principal component on the global axis (black) and on the vector m (green) as
a function of the filter time constant. D-F: Similar to A-C, for the network in
asynchronous irregular regime shown in the right column of Fig. [3} G-I Similar to A-C,
for a network without the background E-I connectivity. The firing regime was controlled
by varying the inhibition strength in the random EI connectivity, the baseline input and
synaptic delays (see Table . The unit-rank connectivity structure was identical to
Fig. [3| right column, with zero-mean input and connectivity vectors. At time t = 1s, a
step input was given along the input vector I that was aligned with n. Network
parameters are given in Table El
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Nonlinear autonomous activity in networks with unit-rank
structure

In previous sections we studied the geometry of dynamics in response to external inputs.

We next turned to autonomous dynamics generated by the recurrent connectivity in the
absence of inputs. As before, our goal was to determine whether the dynamics in a
spiking network with low-rank connectivity are well predicted by a rate network with an
analogous low-rank structure in the connectivity. We first summarize the results for rate
networks developed in earlier studies, and then compare dynamics in spiking networks
with these predictions.

In a rate network with unit rank structure, in absence of time-varying external
inputs, the low-dimensional dynamics in Eq. are described only by the recurrent
variable x(t). The temporal evolution of k(t) obeys (Methods):

dk 1 &
i + N ;gb(gci) n;. (3)

The steady state state value of x is therefore given by:

N
K=" o) /. (4)

Assuming as previously a Gaussian distribution of the entries (m;,n;) of the
connectivity vectors, and using a mean-field analysis in the large N limit, Eq. [4 can be
further expressed as (Methods Eq. (39))

k= (n)(¢(1, A)) + omn k(¢ (1, A)) ()

where (m), (n) and o,,, are the mean values and covariance of connectivity vectors m
and n, while {(¢(u, A)) and (¢’ (i, A)) are the mean firing rate and mean gain obtained
by averaging the transfer function and its derivative over a Gaussian distribution of
mean p = (m)k and variance A = o2 k% (Methods Eq. , Appendix Eq. )

Eq. provides a self-consistent equation for the steady state value of k, which enters
implicitly in the r.h.s. through p and A. The two terms in the r.h.s can therefore be
interpreted as two different sources of feedback, a first one controlled by the mean
values (m), (n), and a second one controlled by the covariance o,,, between m and n.
Previous works analyzed the bifurcations in networks with a symmetric transfer
function |[Mastrogiuseppe and Ostojic, 2018], or positive transfer function with non-zero
(m) and (n) |[Mastrogiuseppe and Ostojic, 2018}|Shao and Ostojic, 2022]. The respective
contributions of the two sources of feedback in networks with a positive transfer
function have so far not been examined.

To extend previous studies, we therefore analyzed the bifurcations obtained by
separately increasing each source of feedback in Eq. in networks with a positive
transfer function. For o,,, = 0, the feedback is generated only by the first term, and we
controlled it by changing (n) while keeping (m) fixed. As the non-linearity in that term
is given by (¢)(k), which is a positive sigmoid (Fig. A, insert), increasing (n) beyond
a critical value leads to a bifurcation to two asymmetric states with low and high values
of x (Fig. p| A). Since the mean (m) of the vector m is non-zero, these two values of x
correspond to two states with a low and a high population-averaged firing rate (Fig.
C), as usually found when positive feedback is high |Lerchner and Latham,
2015[Mastrogiuseppe and Ostojic, 2018, Shao and Ostojic, 2022].

In contrast, when (m) = (n) = 0 and o, # 0, the recurrent feedback is generated
only by the second term in Eq. (), for which the non-linearity is given by r(¢/(0,A)).
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Independently of the precise form of ¢, k(¢'(0,A)) as function of & is in general
symmetric around zero (Fig. [5| D, insert). In consequence, increasing o,,, beyond a
critical value leads to the emergence of two symmetric fixed points for x (Fig. [5| D),
which correspond to two activity states with different patterns of activity (Fig E),
but identical population-averaged firing rates (Fig. |5 F).

In summary, a mean-field analysis of rate networks with unit-rank connectivity
predicts two qualitatively different types of bifurcations and bistable states depending
on whether the connectivity vectors m and n have zero or non-zero mean. We therefore
examined whether these two types of bifurcations appeared when increasing the overlap
between n and m in spiking networks with unit-rank connectivity added on top of a
random EI background. Increasing (n) with non-zero (m) and zero o,,, is in fact
equivalent to increasing the mean excitation in the underlying EI connectivity [Shao
and Ostojic, 2022]. In agreement with previous studies |[Brunel, 2000|, we found that
this could lead to the emergence of an asymetric bistability between a low and a high
average activity state (Fig. |p| G-I). Increasing o.,,, in networks with (m) = (n) =0
instead gives rise to a bifurcation to two symmetric activity patterns with equal
population-averaged firing rates (Fig. |5 J-L). The predictions of the mean-field analysis
in low-rank rate networks were therefore directly verified in spiking networks, and
allowed us to identify a novel bifurcation to two symmetric states of activity.
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Fig 5. Nonlinear autonomous activity in networks with unit-rank
connectivity structure. A-F: Rate networks. A-C: connectivity vectors m and n
with non-zero means (m), (n), and zero covariance oy,,. A: Fixed points of the collective
variable & as a function of the overlap n”m/N, low (black) and high (red) activity state.
Insert: RHS of the equation dx/dt (Eq. (), & (yellow) and (n)(¢) (k) (gray), shown for
the overlap nTm/N = 10. Fixed points (red dots) correspond to the intersections of x
and (n)¢(k) which is a positive function. The bifurcation therefore leads to a low and a
high state. B: Illustration of the single-unit firing rates in the two states when
nTm/N = 10 (dashed line in A, green) for 100 units. Top: low activity state. Bottom:
high activity state. C: Population-averaged firing rate as a function of n”m/N.

D-F: same as A-C, for connectivity vectors m and n with zero means (m), (n), and
non-zero covariance o,,,. D: Fixed points of the collective variable x as a function of
the overlap n”m/N. Insert: RHS of the equation dr/dt (Eq. (5)), s (yellow) and
k{¢') (k) (gray), shown for the overlap n”m/N = 11.2. Fixed points (red dots)
correspond to the intersection of x and k(¢')(k), which is symmetric around the y axis.
The bifurcation therefore leads to two symmetric states (red and blue) on top of the low
activity state. E: Illustration of the single-unit firing rates in the two symmetric states.
F: Population-averaged firing rate as a function of n”m/N.
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Fig 5 (previous page). G-L: Simulations of the spiking network. G-I: connectivity
vectors m and m with non-zero means (m), (n) and zero covariance o,,,. G: bifurcation
to low and high states as (n) is increased. H: raster plots of the spiking activity in the
two states when n?m/N = 1.35mV (dashed line in J, green) for 20 neurons. Top:
activity of 20 neurons in the high state. Bottom: activity of all (12500) neurons in the
low state. The activity in the low state is highly sparse |Brunel, 2000]. I:
population-averaged firing rate in the two states. J-L: same as G-I connectivity vectors
m and n with zero means (m), (n) and non-zero covariance o,,,. J: bifurcation to two
symmetric states as o,,, is increased. K: raster plots of the spiking activity in the two
states when n”'m/N = 32mV (dashed line in J, green) for 20 neurons. L:
population-averaged firing rate in the two states. Dots: simulations, lines: Monte Carlo
integration predictions. Network parameters are shown in Tables @

Geometry of nonlinear autonomous activity in rank-two
networks

Going beyond unit-rank connectivity, we next examined non-linear autonomous
dynamics in network with a rank-two structure. As before, we first summarize the
analyses of rate networks performed in previous studies, and then compare the
dynamics in spiking networks with those predictions.

A rank-two connectivity structure is defined by two pairs of vectors (m(), n(1)) and
(m® n®).
1 INE! 2) (2
Jij = N(mz( )nS- ) +m£ )ng- )). (6)

In absence of external inputs, the activation dynamics x(t) are confined to the

two-dimensional plane spanned by the vectors m") and m(?, so that, in analogy to Eq.

the activation x; of unit ¢ can be expressed as:
2i(t) = k() mi + ko (t) m?. (7)

Here k1(t) and ko(t) are two collective variables that describe the projection of @ on the
connectivity vectors m®) and m(?.

Previous works [Schuessler et al., 2020al[Beiran et al., 2021a] have shown that in
low-rank rate networks with Gaussian connectivity vectors, non-linear dynamics are
fully determined by the eigenspectrum of the connectivity matrix. A rank-R matrix
defined as in Eq. has in general R non-zero eigenvalues, that coincide with the
eigenvalues of the R x R overlap matrix J°¥ obtained from scalar products between
pairs of connectivity patterns [Schuessler et al., 2020a]:

Jﬁg’”) = n(T)Tm(S)/N. (8)
For rank-one networks, the overlap matrix reduces to a single parameter given in Eq.
, while for rank-two networks it is a 2 x 2 matrix. In the following, we focus on
connectivity vectors with zero-mean entries, in which case for large IV the overlap

matrix converges to
Jov — (Unlml Uﬂ1m2> (9)

Onymi  Onameg

where 0, . is the covariance between the entries of vectors n(") and m(®). A
mean-field analysis then predicts that such networks have a fixed point at (0,0), the
stability of which is determined by the eigenvalues of ¢’ J°¥ (Methods).

We specifically examined connectivity structures with two different forms of the
overlap matrix, that lead to different configurations of eigenvalues and thereby generate
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qualitatively different types of nonlinear dynamics in rate networks [Beiran et al.,
2021a).
We first consider rank-two networks with overlap matrices of the form:

JW”:<U _%). (10)

Ow o

Such matrices have two complex conjugate eigenvalues o + io,,. A mean-field analysis
predicts spiral dynamics around the origin that decays to zero if ¢’(0)o < 1, or generate
limit cycle in the m™) — m(® plane if ¢’(0)o > 1. On the other hand, ¢'(0)o,,
determines the frequency of these oscillations. Simulations of rate networks for
¢'(0)o > 1 show that the firing rates of individual units oscillate strongly (Fig. [6 A,
top), but out of phase, so that oscillations are not visible at the level of the population
average (Fig. |§| A, bottom). Projecting 7(t) on the m") — m(® plane however uncovers
a clear limit cycle (Fig. [6| B) that corresponds to oscillations of 1 (t) and k2 (t) (Fig. [6]
C).

To check whether qualitatively similar dynamics occur in spiking networks, we added
a rank-two structure with complex eigenvalues on top of random excitatory-inhibitory
connectivity. As the two parts of the connectivity are independent, the spectrum of the
full connectivity matrix consists of a continuous bulk corresponding to the random part
and discrete outliers given by the eigenvalues of the rank-two structure [Rajan and
Abbott, 2006} Tao, 2011, Mastrogiuseppe and Ostojic, 2018]. For large values of o,
simulations of the resulting spiking network show that the firing rates of individual
neurons oscillate strongly (Fig. |§| D, top), but out of phase with each other, so that
oscillations on the population-averaged level are weak (Fig. |§| D, bottom). Projections
of the population rate 7 on the plane m(?) — m(? however identified clear limit cycles
(Fig. |§| E, F).

We next turned to rank-two structure with overlap matrices of the form:

JoU — (g 2) . (11)

The resulting connectivity matrices have two degenerate real eigenvalues o, and
mean-field analyses of rate networks have shown that in the limit N — oo, as o is
increased this leads to a continuum of fixed points arranged on a ring in the

m® — m plane [Mastrogiuseppe and Ostojic, 2018||Beiran et al., 20214, Beiran et al.|
2021Db)|. In finite-size networks, sampling fluctuations of random connectivity vectors
breaks the exact degeneracy, so that only a small number of points on the ring attractor
remain actual stable fixed points while the rest form a slow manifold: dynamics quickly
converge to the ring, after which they slowly evolve on it until reaching a fixed point
(Fig. |§| H, I).

We verified that analogous dynamics emerge in spiking networks with a degenerate
rank-two structure added on top of the random excitatory-inhibitory connectivity
matrix. As in rate networks, dynamics quickly converge to a ring in the m®) — m/(
plane, after which they evolve along the ring towards stable fixed points (Fig. |§| K, L).
Different instances of the rank-two structure generated with identical statistics lead to
different fixed points that are all located on the same ring (Fig. |§| K). In spiking
networks, the fluctuations in activity are stronger than in rate networks because of a
combination of spiking noise, random excitatory-inhibitory connectivity and fluctuations
in low-rank connectivity, but the low-dimensional dynamics are qualitatively similar.

In summary, mean-field analyses of rate networks with low-rank connectivity allow
us to identify analogous non-trivial dynamical regimes in networks of spiking neurons.
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Fig 6. Nonlinear dynamics in networks with rank-two structure. A-F:
Connectivity structure with two complex-conjugate eigenvalues. A-C: Rate networks. A:
Top: illustration of the single-unit firing rates for the first 100 neurons. Bottom:
population-averaged firing rate. B: Projections of the firing rates r(t) on the

m®) —m(® plane. Insert: overlap matrix. C: Projections of the firing rates r(t) on
vectors m(Y) and m(? as a function of time. D-F: Analogous to (A-C), spiking network.
D: Top: raster plots of the spiking activity for first 50 neurons. Bottom panel:
population firing rate. E: Projections of the firing rates r(t) on the m® — m® plane.
Insert: overlap matrix. F: Projections of the firing rates r(t) on vectors m® and m®
as a function of time.
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Fig 6 (previous page). (G-I) Rate network dynamics for an overlap matrix that has
two real, degenerate eigenvalues. (G) Top panel: illustration of the single-unit firing
rates for the first 100 neurons. Bottom panel: population firing rate. (H) Projections of
the firing rates r(t) on the m™®) —m® plane. Insert: overlap matrix. (I) Projections of
the firing rate r(t) on vectors m™) and m(? as a function of time. (J-L) same analysis
as in (G-I) for a spiking model. (J) Top panel: raster plots of the spiking activity for
first 50 neurons. Bottom panel: population firing rate. (K) Projections of the firing
rates r(t) on the m() — m(® plane. Insert: overlap matrix. (L) Projections of the
firing rate 7(t) on vectors m") and m(® as a function of time. Different colors in the
middle column (B,E,H,K) corresponds to network instances with different connectivity
vectors but identical statistics. Network parameters are shown in Tables |Z|,

Perceptual decision making task

Our results so far show that the geometry and firing regimes in networks of spiking
neurons can be predicted from the statistics of low-rank connectivity by following the
principles identified in rate networks. In a final step, here we illustrate how this finding
can be exploited to directly implement computations in spiking networks. We consider
the perceptual decision-making task |Gold and Shadlen, 2007 in which a network
receives a noisy scalar stimulus along a random input vector I, and needs to report the
sign of its temporal average along a random readout vector w.

Previous works have identified requirements on rank-one network to perform this
task |[Dubreuil et al., 2022]. They showed that a unit-rank network was sufficient to
implement the task, with connectivity statistics requiring a strong overlap o, to
integrate inputs, and an overlap o,,, =~ 1 to generate a long integration timescale via
positive feedback. We built a spiking network based on an analogous connectivity
configuration.

Fig. [7] illustrates the dynamics in the network in response to two inputs with
positive and negative means. The two inputs lead to different patterns of activity with

opposite readout values (Fig. [7| A-B), but similar population averaged firing rates (Fig.

|z| C). As expected from the theory of low-rank networks, the dynamics evolve in a
two-dimensional plane spanned by the input pattern I and the output connectivity
pattern m (Fig. [7] D), as observed in experimental data [Mante et al., 2013]. The
psychometric curve generated by the network strongly depends on the values of the
connectivity overlaps (Fig. [7 E).
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Fig 7. Spiking network implementation of the perceptual decision-making
task. A: Top panel: two instances of the fluctuating input signal with a positive
(orange) and a negative (blue) mean. Bottom panel: network readout of the activity
generated by the two inputs. B: Raster plots for the first 50 neurons. C: Population
firing rate. D: Dynamics projected onto the I — m plane. E: Psychometric function
showing the fraction of positive outputs at different values of the overlap oy.,. Orange
color corresponds to positive (u = 0.512), while blue to negative mean-input

(w = —0.512). Parameters: N = 12500, o, = 1, 0,7 = 0.26, 0y = 2.1, 7,2 = 0.02,

7y = 100ms

Discussion

In this study, we set out to examine how far theoretical predictions for the relation
between connectivity and dynamics in recurrent networks of rate units translate to
networks of spiking neurons. To this end, we compared the population activity in rate
networks with low-rank connectivity to networks of integrate-and-fire neurons in which
a low-rank structure was added on top of random, sparse excitatory-inhibitory
connectivity. Altogether, we found the geometry of low-pass filtered activity in spiking
networks is largely identical to rate networks when the low rank structure in
connectivity is statistically identical. In particular, this allowed us to identify novel
regimes of linear and non-linear dynamics in spiking networks, and construct networks
that implement specific computations.

A widespread experimental observation across cortical areas is that sensory inputs
lead to both increases and decreases of activity in individual neurons, so that different
stimuli are often indistinguishable at the population-average level albeit they induce

distinet patterns of responses [Wohrer et al., 2013|Bagur et al., 2018||Kobak et al., 2019].

Within the state-space picture, this implies that the responses take place primarily
along directions orthogonal to the global axis [Kobak et al., 2019], suggesting that
behaviorally-relevant computations may rely on dynamics along these dimensions
complementary to the population-average. So far, most studies on spiking networks
have however focused on averaging spiking activity either over the whole network or
over sub-populations. Here we instead show that, when a low-rank connectivity
structure is included in the connectivity, spiking networks naturally lead to rich
dynamics along dimensions orthogonal to the global axis. Our results therefore open the
door to a closer match between spiking models and analyses of experimental data.
Our starting hypothesis was that spiking networks in the asynchronous irregular
regime can be directly mapped onto rate networks with identical connectivity, by
identifying each integrate-and-fire neuron with a rate unit. Here we tested a restricted
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version of this hypothesis by focusing exclusively on low-rank structure in the
connectivity. We found that the population dynamics in spiking networks with a
superposition of random and low-rank connectivity match well the predictions of rate
networks with connectivity given by an identical low-rank part. To which extent these
results extend to more general types of connectivity remains to be determined. A key
feature of a low-rank connectivity structure is that it leads to discrete, isolated
eigenvalues in the complex plane [Rajan and Abbott, 2006}/Tao, 2011, Mastrogiuseppe
and Ostojic, 2018||Logiaco et al., 2021}[Herbert and Ostojic, 2022| (or singular values on
the real line [Bondanelli and Ostojic, 2020|Benaych-Georges and Nadakuditi, 2011],
while purely random connectivity in general generates a continuously distributed bulk of
eigenvalues [Sompolinsky et al., 1988al[Sommers et al., 1988]. We expect that our
findings hold as long as the eigenspectrum (or singular value distribution) consists of
discrete outliers well separated from the random bulk, in which case the connectivity
can be accurately approximated by a low-rank structure [Shao and Ostojic, 2022].
Networks performing specific computations typically rely on such outliers in the
connectivity spectrum [Ingrosso and Abbott, 2019}[Schuessler et al., 2020bl[Susman

et al., 2021], so that our results may help explain in which case functional spiking
networks can be directly built from trained rate networks [Nicola and Clopath,

2017, Kim and Chow, 2018, Kim et al., 2019).

A surprising result of our analyses is that rate networks predict well the activity in
spiking networks even outside of the asynchronous irregular regime, i.e. when neurons
spike regularly, or with some degree of synchrony. Indeed we found that our results hold
as long as spike-trains are averaged over timescales longer than the synaptic or
membrane time constants. When do spiking networks then qualitatively differ from
their rate-based counter-parts? Do spikes have a potential advantage over rate-based
computations? One regime we have not explored here is ultra-sparse activity, in which
each neuron emits only a handful of spikes in response to a stimulus. In this regime,
information can be encoded in the precise timing of isolated spikes of individual
neurons [Masquelier and Thorpe, 2007, Masquelier et al., 2009,/Kheradpisheh et al.,
2018], and a comparison with state-space trajectories predicted by rate-based models
may be less useful. The ultra-sparse firing regime provides a fruitful framework for
energy-efficient neuromorphic computing |Zenke et al., 2021, and suggests a potential
computational role for spikes distinct from rate-based coding. It remains to be
determined which parts of the brain may function in this regime. An alternative
possibility is that action potentials play mainly an implementational role, as a biological
mechanism for transmitting information across long distances over myelinated axons,
and therefore act as a discretization of a fundamentally continuous underlying signal.
Ultimately, the computational and implementational interpretations of action potentials
are not mutually exclusive, and it is likely that spikes play different functional roles in
different brain structures or species.
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Materials and methods

Rate network model

We consider rate networks of N units. Each unit is described by its activation x;(t),
with dynamics evolving according to [Sompolinsky et al., 1988b]:

N
Tii(t) = —ZZ?i(t) + Z Jij ¢($]) =+ I,-u(t). (12)

j=1

Here u(t) is the input amplitude shared by all units, I; is the weight of the external
input on unit ¢, and ¢(z) = 1 + tanh(x — z,¢) is the firing rate transfer function. The
firing rate of unit ¢ is therefore r; = ¢(x;).

The recurrent connectivity matrix J consists of a rank R structure P, represented
as a sum of of R unit-rank terms, where the r-th term is given by the outer product of
two vectors m(™), n("):

R
1 T T
Py = 5 2omn”. (13)
r=1

We refer to vectors m(™) = {mz(-r)}izl___N, n(r) = {nY)}i:l,_N as the right and left
connectivity vectors, and to I = {I;};,—1..n as the input vector.

In this study, we focus on the case where the entries mgr), n,lm, I; of connectivity
and input vectors are generated independently for each unit from a Gaussian
distribution with means (m,), (n,), (I}, standard deviations o,,,, oy, , o5 and
covariances oy (z,y € {n,, m,,I}).

To simulate network activity, Eq. was discretised using Euler’s method with
time step dt, for a total simulation time ¢,,,. Network parameters are shown in Tables

BB [

Spiking network model

We consider networks of N leaky-integrate and fire neurons [Brunel, 2000], where the
membrane potential of neuron ¢ evolves according to:

dvi
dt

T St = Vi 1o+ v/Tno0€i(8) + (1) + T u(t). (14)
Here 7, is the membrane time constant, pg a constant baseline input, &;(t) a white
noise independent for each neuron, o( the amplitude of the noise, p]° total recurrent
input defined below, and I;, u(t) the weights and the amplitude of the external input.

An action potential, or ”spike”, is generated when the membrane potential crosses
the threshold V;j,.. The membrane potential is then reset to the value of V., and
maintained at that value during a refractory period ¢,.y.

The total recurrent input to neuron ¢ is given by

N
PEEt) = T D Jig 30t — 18 — ) (15)
j=1 k

where J;; is strength of the synaptic connection from neuron j to neuron ¢, tlg-k) is the
time of the k" spike of the presynaptic neuron j, 74¢; is the synaptic delay and () is
the delta function.

The connectivity matrix J consists of a sum of a full-rank excitatory-inhibitory part
JFI and a low-rank structure P:
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Notation | Description

N number of neurons

C number of EI connections each neuron receives
J excitatory synaptic strength
g relative inhibition strength
T membrane time constant
Hrec total recurrent input

1o baseline input

00 amplitude of the noise

Vinr threshold potential

V. reset potential

Tref refractory period

Tdel synaptic delay

Tf filter time constant

] amplitude of the vector I
trun simulation run time

o(t) delta function

Table 1. List of notations for spiking network models.

J=J + P (16)

The low-rank structure is identical to Eq. , while JZ! is a sparse, random
excitatory-inhibitory matrix identical to [Brunel, 2000]. Each neuron receives inputs
from C neurons, C' being much smaller of the total number of neurons N. The fraction
of non-zero connections is f. = C'/N = 0.1, where 80% of incoming connections are
excitatory and the rest are inhibitory. All non-zero excitatory synapses have the same
strength J, while non-zero inhibitory synapses have the strength —g J.

The network was simulated using the Euler method implemented in Brian2
package [Stimberg et al., 2019] with simulation step dt and simulation time ¢, y,.

Single-neuron firing rates were computed from spikes using an exponential filter with
a time constant 7. The instantaneous rate of i-th neuron at time ¢ is given by

T )+ Y00 (17)

where §(t — t,) is the delta function centered at ¢. In the case of multiple trials, rates
r; are averaged over trials:

Ny

(re) = Nl S (k) (18)

k=1

The parameter notations for spiking models are summarized in Table [I] Parameters
whose value do not change over different simulations/figures are given in Table [2| If
different values are used in a specific figure, these value are specified in a dedicated

table (Tables [4] [6] [§).
Geometry of responses to external inputs

To characterize the geometry of activity in the high-dimensional state space, we
examined the projections of the firing rate trajectories r(t) = {r;(¢)};=1.. ; on an
arbitrary direction w = {w;};=1.. n, defined as:

T 1
(wir(t)) = N Zwﬂ”z(t) (19)
i=1
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Variable | Value
N 12500
C 1250

T 20ms
Tref 0.5ms
dt 1ms

0o 0.71mV
VQW 20mV
V. 10mV
Tdel 1.5ms

Table 2. Common parameters in Fig.

In particular, taking w to be the global axis where w; = 1 for all 7, the projection gives
the population-averaged firing rate:

=53, (20)

Based on previous works [Mastrogiuseppe and Ostojic, 2018|Schuessler et al.,
2020al[Beiran et al., 2021ayDubreuil et al., 2022], below we summarize the predictions of
low-rank rate models for the geometry of activity, and then describe a method for
verifying these predictions using principal components analysis.

Rate networks

In rate networks with a low-rank connectivity matrix, the dynamics of the activations
x(t) = {x;(t) }i=1.. v are explicitly confined to a low-dimensional subspace of state
space |Beiran et al., 2021a,Dubreuil et al., 2022|[Valente et al., 2022b], meaning that
projections of x(t) are non-zero only on vectors w belonging to this subspace. Here we
first reproduce the derivation of the geometry of the activations x(t) [Beiran et al.,
2021alDubreuil et al., 2022]. We then explore the implications for the geometry of firing
rates r(t) where r;(t) = ¢(x;(t)).

For low-rank connectivity, the dynamics of x;(¢) are given by

Tai(t) = —a(t % SN mnl o(ay) + ZI() us(t), (21)

j=1k=1

where for completeness we included N, scalar inputs us(t) along input vectors I ()
with s =1... N;,.

We start by assuming that at time 0, the initial state 2(0) lies in the subspace
spanned by m(") and I®), i.e. that <wa(0)> # 0 if and only if w is a linear
combination of m™ for r =1...R and I® for s =1...N;,. This assumption can be
made without loss of generahty Indeed, if it is not full- fllled the 1n1t1a1 state x(0) can
be included as an additional input with us(t) = 6(t) and I 5 — = z(0) in Eq. (21).

It is then straightforward to show by induction from Eq . that for any t,
(wTx(t)) # 0 if and only if w is a linear combination of m(") and I®). The activations
x(t) therefore lie for any ¢ in the the subspace spanned by m(") and I S). Assuming for
simplicity that these vectors form an orthogonal set, the activation of the i-th neuron z;,

can be written as:
R Nin
= ket m” + > v 1. (22)
r=1 s=1
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Here , and v, are scalar latent variables that correspond to the coordinates of z(t)
along the vectors m(") and I®), and can be computed by projecting 2(t) on normalized
directions m(™ /||m("||? and T() /||T¢)||2:
2"m® /||m"||* = &, (23)
z” IO/ 19|? = v,. (24)

Projecting Eq. on the vector I*)/||I(*)||2, we then obtain

Tdvs B
dt

—vg + us(t), (25)

while the projection on m(") /||m(")||? gives
N

d”r T
T " Z ()(15173 (26)

Inserting Eq. into Eq. then leads to the following dynamical system:

dky
T ; = —Ky + K£,.°° (27)
K€ = Z (T)¢ (Z /{lm )+ szl( )> (28)
=1

To simplify notations, from here on we consider unit-rank networks with a single
input (R =1 and N;, = 1, we therefore drop the indices r and s), where the entries of
m, n and I are generated from a joint Gaussian distribution with means (m), (n), (I),
standard deviations ¢y,, 0y, o7 and covariances o4y for z,y € {m,n,I}. In the limit
N — o0, the sum over j in Eq. can then be replaced by an integral over the joint
Gaussian distribution, which can be computed using Stein’s Lemma for Gaussian
integrals [Schuessler et al., 2020alBeiran et al., 2021aj,Dubreulil et al., 2022]. The
dynamics for k then become (Methods):

T% =—K+ <TL> <¢(N7 A)> + (Unmn + CTn[’U)<¢/(,LL, A)> (29)

where the brackets denote the following Gaussian integral

) = [ dwom) o™ s+ VD) (30)

and

1= (Iyo + (m)x

A = (kow)? + (vor)?. 51

We next turn to the geometry of firing rates r(t) where r;(t) = ¢(x;(t)), and
examine the projection of r(¢) on an arbitrary direction w in the activity state space:

T 1 =
(wTo(a) = 5 D w; o(a;)

o (52)
=N Z w;o (k(t)m; +v(t);).
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In linear networks (i.e. when ¢(x) = x), firing rates are equivalent to activations
x(t), and therefore their dynamics are confined to the subspace spanned by m and I.
The projection of r(t) on any direction orthogonal to m and I is therefore zero. In
particular, the projection on the global axis is non-zero ouly if (I) # 0, or if (m) # 0
and x # 0.

Here we focus on non-linear networks, and directions w with entries generated from
a joint Gaussian distribution with entries of m and I, specified by a mean (w), variance
o2, and covariances 0., and o,r. As for Eq. , the r.h.s. of Eq. can be
replaced by a Gaussian integral, and, using Stein’s Lemma, be expressed as (see
Appendix):

(whr) = (W){d(n, A)) + Twms ()& (1, A)) + owrv(t) (e (1, A)). (33)

In Eq. , the first term in the r.h.s. represents the population-averaged firing rate,
i.e. the projection of r(¢) on the global axis. Indeed, taking w; = 1/N for i =1... N,
only the first term is non-zero. Moreover, Eqs. , show that changes in the
population averaged firing-rate (¢(u, A)) can be induced either through the mean input
1 by non-zero means (I) and (m), or through the variance of the input A by non-zero
variances oy and o, of the input and connectivity vectors.

The last two terms in Eq. respectively represent the projection of firing rates on
the zero-mean parts of m and I, i.e. changes in 7(¢) along directions orthogonal to the
global axis. Altogether, Eq. therefore predicts that the projection of the firing rate
vector 7(t) is zero on any direction w orthogonal to the global axis, m and I.
Interestingly, for Gaussian connectivity vectors considered here, the geometry of firing
rate dynamics is therefore largely equivalent to linear networks (i.e. to the geometry of
(t)). The main difference is that in the non-linear case, the heterogeneity across
neurons quantified by the input variance A can induce a non-zero component along the
global axis even when (I) = 0 and (m) = 0.

These theoretical predictions are verified through simulations in Fig. [2| The
corresponding network parameters are given in Table [3]

Principal Component Analysis

In order to extract the low-dimensional subspace of the population activity from
simulations, we performed dimensional reduction via a standard Principal Component
Analysis (PCA). First, we construct the matrix X in which every column corresponds
to the time trace of firing rates X[:,¢] = r;(¢). The matrix X is then normalized by
subtracting the mean in every column. We compute the principal components (PCs) as
the normalized eigenvectors of the correlation matrix C' = X7 X, sorted in decreasing
order of their eigenvalues \;. The activity matrix X is then projected on the
orthonormal basis generated by the PC vectors, yielding X’ = X E where E is the

N x N matrix with columns formed by PC components. The variance explained by
each component is the corresponding entry on the diagonal of the rotated correlation
matrix ¢/ = X'TX'. For rate networks, we run PCA on individual trial, as we did not
include noise in the dynamics. For spiking networks we run the PCA on firing rates
averaged over trials Ny, (see Tables @, .

Geometry of nonlinear autonomous activity in unit-rank
networks

Rate network

We now turn to the autonomous activity in unit-rank networks without external inputs.
The autonomous dynamics of the collective variable x are described by Egs. ,
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Notation | Description

N 1000

Om 1

On 1

or 1 (gray, blue), 0 (purple)
OnJl 1

(I) 0 (gray, blue), 1 (purple)
T, 100ms

trun 5s

dt 1ms

u(t) input amplitude

Table 3. Parameters Fig.

Variable Value
C 1250
Om 2
on 20mV
Tref 0.5ms
Tdel 1.5ms
Ty 1 — 100ms
trun 2s
OnIl 0.4H1V2

Fig. H Fig. @A—C Fig. @ D-F | Fig. @ G-1
J 0.1mV 0.1mV 0.1lmV OmV
g 5 6 5 5
1o 40mV 80mV 40mV 30mV
|1], global 22.5mV | -/- -/- -/-
|I|, orthogonal | 125mV | -/- /- -/-
|1], along 125mV | 50mV 50mV 50mV

Table 4. Parameters Fig. [3| and
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Variable | Value
Om 2
On 6
T 100ms
trun 20s
dt 10ms
Toff 2.9
Panels A-C | Panels D-F
Hm 2 0
Ln 0.1-6 0
Omn 0 0.1 —10
Nnets 1 1
Ny, 4 8

Table 5. Parameters Fig. [5| rate

in which the external input is zero:

dk 1 <
i —k+ N;n@ (kmy;) (34)
Any fixed point k¢ obeys:
ko = F(ko). (35)
where
1 XN
F(k) = N ; ni¢ (km;) (36)
The stability of k¢ is determined by linearizing Eq. yielding:
dk 1
E\f;:mo =+ 5 Z nim; @' (Kom;). (37)

The stability of kg is therefore controlled by the overlap
1N
(n"¢'m) = N ; nim; ¢ (kom;). (38)

In the large N limit, replacing the sum with a Gaussian integral and applying Stein’s
lemma, the r.h.s in Eq. can be further expressed as

F(r) = (n){¢(1, D)) + omn £(¢' (1, A)). (39)

To examine the effects of the two terms in F(k), in the results we vary the overlap
either by setting o,,, = 0 and changing (n) or by setting (m), (n) = 0 and changing
Omn- To compute F(r), we approximate the Gaussian integrals (¢}, (¢) in Eq. (39)
using the Monte-Carlo method. Specifically, we choose an array of values for k, and for
each element compute the corresponding F(x) (Eq. ) by averaging over 50 different
realisation of vectors m and n. We then determine the fixed point by solving for
t = F(k). The predicted population-averaged firing rate can then be computed as
L5, é(xms).

The corresponding results are shown in Fig. |5l Network parameters are given in
Table [
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Variable | Value
Om 2
On 20mV
trun 1.2s
Ty 100ms
Panels G-I | Panels J-L
C 4000 1250
Lm 0.01 0
L 0—150mV | 0
Omn 0 0 —40mV
J 0.2mV 0.1mV
g 4.8 )
1o 17.7mV 40mV
Tref 2ms 0.5ms
Tdel 2.5ms 1.5ms
Nnets 5 7
Ny, 3 2

Table 6. Parameters Fig. |5, SNN

Spiking network

In Fig. |5 the overlap is varied as in the rate network, either through (n) or the
covariance o,,,. We run the dynamics for N, different network instances keeping the
overlap nTm/N fixed, while resampling connectivity vectors m and n from Gaussians
with mean (m), (n) and variance o,,, o, respectively. The dynamics for each network
instance is run for Ng. number of trials. In every trial, we resample the initial
membrane potential V(0) from a Gaussian distribution. At a fixed overlap, for each
network configuration and at each trial, the collective variable is computed as

Keurr = % ZZ rin;. To get the plot in Fig. |5| we first set a threshold k. that is a
boundary between zero state and the the high state (Fig. [5| G) or two symmetric states
(Fig. [5| J). Then we average over all collective variables Ky that have |Keyrr| < Ktnr to
compute low states. For those |keyrr| > Kinr, We average over all positive or over all
negative K¢y values to get the high states or the two symmetric states. The
parameters used for simulating spiking model in Fig. [5] are presented in Table [f]

Geometry of nonlinear autonomous activity in rank-two
networks

We extend the previous results to rank-two networks where the autonomous dynamics
are described by two collective variables k1 and ko (Eq. ) Projecting Eq. onto
m® and m® gives

N
d 1
e St ) =G
= (40)
drs 1 <= (@) W (2)
P = o+ Y P o(mm (Y + kam() = Gala,a)

i=1

Assuming zero-mean Gaussian connectivity vectors, replacing sums by integrals in
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Tm 100ms
Variable | Value
trun 10s
dt 1ms

Panels A-C | Panels G-I
Om2 1 1
T2 7.24 7.24
Tm32 1 1
T2 3.63 3.63
Omyn, 2 2
Omyns 0.8 0
Omany -0.8 0
Omans 2 2
Npets 3 15
Ny, 5 3

Table 7. Parameters Fig. @ rate

the N — oo limit, and applying Stein’s lemma leads to:

% = —K1 + (Onym, K1 + Onymok2) (@' (1, A)) "
% = —#2 + (Tnam K1+ Tngma w2) (9 (1, A))
where
o (42)

2 2
A = 0,267 + 033

For zero-mean connectivity vectors, (k1,k2) = (0,0) is always a fixed point. A linear
analysis shows that its stability is given by the eigenvalues of ¢'(0)J°" [Schuessler et al.!
2020al[Beiran et al., 2021a|, where ¢’(0) is the gain at zero, and J° the overlap matrix :

JO’U — <0n1m1 gﬂ1m2> . (43)

angml U’I’Lz mo

For Fig. @], we ran simulations for NV,.;s network instances and Ny, trials for each
instance, and plot the projections without averaging over trials. The parameters used
for simulating rate and spiking model in Fig. [6] are presented in Tables [7] and

Perceptual decision-making task

We start from a network in Al regime as in Section [Geometry of responses to external |
and add a unit rank structure on top of the random part.

In each trial, the model was run for %,.,, = 1020ms: a fixation epoch of duration
T'ti = 100ms was followed by a simulation epoch of T4, = 800ms, delay epoch of
T4er = 100ms and a decision epoch Tye. = 20ms. The feed-forward input to neuron i on
trial k£ was

IFE () = Lu™ (1) (44)

where during the stimulation, «*) = a@(®)(t) 4 ¢ *)(t), with 1*)(t) a zero-mean
Gaussian white noise of standard deviation o, = 1. Connectivity vectors and the input
vector were generated from a Gaussian distribution with zero mean. The standard
deviation of vector m was ¢,,2 = 0.02, and the covariance between pairs of vectors
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Variable | Value
C 1250
J 0.1mV
g 5
Lref 0.5ms
Tdel 1.5ms
Ty 20ms

Panels D-F | Panels J-L
T3 1 1
Op2 82.4mV 26mV
Tm32 1 1
Tn2 46mV 26mV
Omany 30mV 25mV
Omans SmV 0
Omany —8mV 0
Omans 26mV 25mV
Npets 3 35
Ny, 1 1
trun 1.2s 3s

Table 8. Parameters Fig. @ SNN

Omn = 0.016, 0,7 = 0.26, 0,y = 2.1. During the decision epoch, a single readout was
evaluated by output of the network is defined by readout value:

1 N

where w is a readout vector generated from a Gaussian with zero mean and

On trial k, if the mean of the readout if above zero, we label the output as 1, and as
0 otherwise. At every value of the overlap, psychometric curve is computed by plotting
the fraction of trials that had an output 1. The network was run for 30 trials at each
overlap.

Appendix A: Mean-field theory and gaussian
integrals

Using the mean-field theory, we derive in detail the projection in Eq. for the
rank-one case, which can then be extended to higher ranks. Vectors m, I and w are
generated as

m = o, X (46)
= 07 Y, (47)
W = /0w X+ 0ruforY +\Jo% — (02, /0% + 0%, /0D Z (48)

where X,Y and Z are independent vectors generated from a Gaussian distribution
with zero mean and unit standard deviation, o,,, 07, 0., standard deviations of vectors
m, I, w and 0,,,, 07, Overlaps of vectors w and m, I respectively.

The dynamics in Eq. consist of a sum over the N units in the network. In the
limit of large networks with defined statistics, the sum over N elements corresponds to
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the empirical average over the distribution of its elements. Therefore, we can replace
the sum by an integral over the distribution P(m,n, I).

N
w- o) = % D w6 (kmy +v,li) =
j=1

(49)

/dmd[de(m,I,w)wqﬁ(mm—f—vsl)
= /dXdeZP(X7 Y, 2)w(X,Y, Z)p(cm(X,Y, Z) + v, I(X,Y, Z))
We represented the integral in Eq. as a function of variables X, Y and Z, which

are independent, so that the joint distribution obeys P(X,Y, Z) = P(X)P(Y)P(Z).
Eq. then becomes:

w- gz
Omuw OIw Ugnw O—%
P(X (Z)dXdYdZ [ T x + Ty 4 w Tl 7).
Om or Om o7
c ¢ (kromX +v501Y) =

= Jmw /ng FrOm X + 0,07Y) (X)dX/P(Y)dY/P(Z Az

O’H’L

4w /Y¢ FrOm X + v507Y) (Y)dY/P(X)dX/P Z)d(Z)+

+ \/ag, _ T wa //925 KromX + vg UIY)P(X)P(Y)dXdY/ZP(Z)dZ:

= ok (t )<¢ (NT?A» + orwvs (1) (¢ (1s, A))

(50)

where i, = K0, jts = vs07 and A = (k,.0,)? + (vso7)?. In the last line we use the
Gaussian integral notation:

7.8 = [ datam) e V) (51)
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