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Abstract

Despite the increasing abundance of whole transcriptome data, few methods are
available to analyze global gene expression across phylogenies. Here, we present a
new software package (CAGEE) for inferring patterns of increases and decreases in
gene expression across a phylogenetic tree, as well as the rate at which these changes
occur. In contrast to previous methods that treat each gene independently, CAGEE can
calculate genome-wide rates of gene expression, along with ancestral states for each
gene. The statistical approach developed here makes it possible to infer lineage-specific
shifts in rates of evolution across the genome, in addition to possible differences in rates
among multiple tissues sampled from the same species. We demonstrate the accuracy
and robustness of our method on simulated data, and apply it to a dataset of ovule gene
expression collected from multiple self-compatible and self-incompatible species in the
genus Solanum to test hypotheses about the evolutionary forces acting during mating
system shifts. These comparisons allow us to highlight the power of CAGEE,
demonstrating its utility for use in any empirical system and for the analysis of most

morphological traits. Our software is available at https://github.com/hahnlab/CAGEE/.
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Introduction

Early studies of gene expression in single genes revealed widespread and
frequent changes in the levels, timing, and breadth of expression across species
(reviewed in Wray et al. 2003; Fay and Wittkopp 2008; Hill et al. 2021). Such changes in
gene expression have been shown to be responsible for many differences between
species, and may be a major driver of evolution (King and Wilson 1975). Advances in
sequencing technologies (i.e. RNA-seq) have transformed research into gene
expression, allowing researchers to cheaply and accurately measure transcript levels
for every gene in a genome, in multiple tissues, and across several timepoints or
conditions (Wang et al. 2009). There is now a flood of interest in applying RNA-seq to
whole clades of organisms in order to identify the genetic changes and evolutionary
forces driving species differences (e.g. Brawand et al. 2011; Meisel et al. 2012; Coolon
et al. 2014; Harrison et al. 2015; Berthelot et al. 2018; Catalan et al. 2019; Blake et al.
2020; El Taher et al. 2021).

To better understand the importance of changes in gene expression, researchers
must be able to characterize the mechanisms and modes by which gene expression
evolves. Such work entails understanding the role of natural selection in driving species
differences, the stages of development or the tissues that evolve most rapidly, as well
as the environments most likely to generate changes in gene expression (Dunn et al.
2013; Hill et al. 2021; Price et al. 2022). Phylogenetic comparative methods enable the
rigorous study of traits like gene expression across a species tree (Revell and Harmon
2022). These methods can be used for testing hypotheses about natural selection, the
inference of ancestral states (allowing us to polarize the direction of changes), and the
estimation of evolutionary rates. Multiple software packages are available that
implement a wide variety of comparative methods (e.g. Pennell et al. 2014), including
models specifically intended for studying gene expression across a tree (Bedford and
Hartl 2009; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; Catalan et al. 2019; Chen et al.
2019; Yang et al. 2019).

However, as far as we are aware, all existing comparative methods for analyzing

gene expression implement fundamentally single-gene analyses. Each gene is
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considered a separate trait, such the evolutionary parameters for each gene are
estimated separately. Single-gene analyses can be used to identify tissue-specific or
lineage-specific shifts in evolutionary rates, but their power is quite low (Beaulieu et al.
2012). As a result, identifying trends in evolution must be carried out post hoc by
summing the number of genes found to be individually significant (e.g. Harrison et al.
2015; El Taher et al. 2021). This approach is less than ideal, especially when carrying
out comparisons between branches of different lengths or between tissues with different

average expression levels (both of which can result in differential statistical power).

Therefore, to better characterize the forces affecting gene expression evolution,
we must be able to model effects shared along a lineage, experienced by many genes
in the same tissue, or experienced by all genes found in the same environment. In this
article, we present a genome-scale platform for the analysis of gene expression data
that allows for such shared factors. Our software, CAGEE (Computational Analysis of
Gene Expression Evolution), provides a robust set of methods for analyzing expression
data across a species tree. CAGEE estimates ancestral states and rates, with rates
shared by all or subsets of genes (single-gene analyses can also be carried out). We
show that lineage-specific and tissue-specific (or condition-specific) rates can be
accurately inferred, and provide principled statistical approaches for model selection.
Our current implementation uses a bounded Brownian motion model and assumes
expression data are accurate, but the architecture and codebase will easily allow for
future extensions that relax these and other assumptions.

New Approaches

We model gene expression evolution as a bounded Brownian motion (BBM)
process on a known species tree (cf. Boucher and Démery 2016). Our model has a
single bound: trait values must be greater than or equal to zero; there is no upper bound
(Figure 1). Previous researchers have often modeled gene expression using an
Ornstein-Uhlenbeck (OU) process (e.g. Bedford and Hartl 2009; Rohlfs et al. 2014;
Ronhlfs and Nielsen 2015; Chen et al. 2019), a model that includes a force constraining
traits about the mean. However, to our knowledge, the OU model has only been
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95 compared against an unbounded Brownian motion model (i.e. one that allows negative
96 expression values), making fair comparisons difficult. In addition, OU models may be
97 frequently and incorrectly favored over simpler models due to several biases (e.g.

98 measurement error), especially when the number of tips in a tree is small (Pennell et al.
99  2015; Silvestro et al. 2015; Boucher and Démery 2016; Cooper et al. 2016; Catalan et
100 al. 2019). Therefore, the initial version of our software models gene expression with the

101  BBM process, which naturally bounds possible values without invoking an additional

102  constraining force.

103 Let E;; = 0 be the expression level of gene i in species j. We assume that log-
104  transformed expression X;; = In(E;; + enin) €volves as a Brownian motion process with
105 variance o2 per unit time, where e,,;, is a small offset (constant across genes and

106  species) that prevents X;; from taking infinite values if measured values of E;; are zero.
107  We log-transform before assuming Brownian motion because we expect the variance in
108  the evolutionary process to scale with expression level. Assuming that E;; is itself

109  Brownian would unrealistically assume that the rate of evolution is constant across

110 expression levels, even though expression levels vary by many orders of magnitude.
111  We impose a reflecting lower boundary at x,;, = In(enin), meaning that the Brownian
112 walk immediately bounces back if it reaches x,,;,. Expression can therefore effectively

113  never reach zero, our theoretical lower bound (Figure 1).

114 The second major feature of our model (as implemented in CAGEE) is that many
115 genes can share the evolutionary rate parameter, o2. This rate may be shared among
116  genes expressed in the same tissue or sample, among genes located on the same

117 chromosome, or among genes evolving along the same lineage of the phylogenetic

118 tree. The simplest model allows o2 to be shared among all genes, providing an average
119 rate of evolution across the genome and over time; this average may include genes that
120 vary in their individual rates of evolution. We explain this model briefly here, with more

121  detail provided in the Materials and Methods.

122 CAGEE infers the most likely value(s) of 2 consistent with an ultrametric tree, T,

123 and a set E;; of measured expression values at the tips of the tree; i.e. it maximizes
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124 the likelihood L(0?|E;3, T). Each gene is assumed to evolve independently, and so the
125  likelihood for each gene L;(0?|E;;;, T) is computed independently. The overall likelihood
126  is obtained as the product L(02|E{ij}, T) = HiLl-(az|Ei{j},T) across genes. The likelihood
127  for each gene L;(c?|E;;;, T) is computed using the pruning algorithm (Felsenstein

128 1973). The key ingredient needed to apply the pruning algorithm is the transition

129  probability density p(x;|x,,) = Pr [X(t) = x,|X(t,) = x,,] for log-expression at time ¢

130  conditional on having log-expression x,  at time t, along a lineage. CAGEE computes
131  the transition density by solving the standard Brownian diffusion equation with reflecting
132 boundary conditions (Materials and Methods). The transition density is used to

133  propagate expression probabilities along the tree: if the probability density of log-

134  expression at time t, is f(x;,), then the probability density at time ¢ on the same lineage
135 is f(x.) = J p(x¢|xe, )f (%, )dxe,. At each tip the probability density f(x,,) is a delta

136  function centered at the corresponding measured value of X;;.

137 Starting with the known tip distributions, the pruning algorithm propagates back
138  to the tips’ parent nodes. The distribution at the parent node is then the product of the
139  two backward-propagated child node distributions. Proceeding iteratively across the
140 tree, we ultimately obtain the gene-specific probability density for expression value at
141  the root f;(xz). Viewed as a likelihood for o2, f;(xy) is the gene-specific likelihood

142  conditional on the unknown ancestral root value; i.e. fi(xz) = L;(0?|E;(j;, T, Xg).

143  Therefore, we integrate over all possible x; to obtain,
144 Li(0?|Eigp, T) = [ Li(0?|Eigjy, T, xp) pCxr)dox, (1)
145  where p(xy) is the prior distribution for the root value of a randomly selected gene.

146  The default prior p(xg) is assumed to be a gamma distribution with k = 0.375 and 6 =
147 1600, though this distribution can also be set by the user in CAGEE. This choice is
148 based on estimated expression distributions across genes in individual species, which
149  we take as our baseline for the ancestral distribution. CAGEE uses the Nelder-Mead

150  simplex method to find the optimal value(s) of o2.

151
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152 Results
153  Using CAGEE

154 The required inputs for CAGEE are a Newick-formatted, rooted, ultrametric tree
155  (with branch lengths) and a tab-delimited data file containing the expression levels of all
156  species or taxa being studied. The data file can consist of data on one gene/transcript
157  or thousands of different genes. The first line of the data file should contain the species’
158 names (matching those used in the Newick tree). In addition, headers for gene names,
159 gene descriptions, and sample IDs (see next section for an explanation of “samples” in
160 CAGEE) can be used. Subsequent lines each correspond to a single gene and contain
161  expression levels for each species. Missing data can be denoted using multiple

162 characters (-/?/N). Examples of Newick trees and corresponding data files can be found
163  in the online user manual

164  (https://github.com/hahnlab/CAGEE/docs/manual/cagee_manual.md).

165 We expect that CAGEE will most often be used to calculate the following outputs:
166  one or more o2 values, ancestral states at each internal node (including 95% credible
167 intervals around these states), and the final likelihood associated with a model.

168  However, users do not have to search for ¢2: if a value for this parameter is specified,
169 then the output of CAGEE will just be the ancestral states and a likelihood. In addition to
170 the raw outputs provided in multiple formats (both tab-delimited files and NEXUS-

171  formatted files), CAGEE computes basic statistics about changes in expression levels
172 by comparing values at parent and child nodes. Summaries of these inferred changes
173  for every gene and for every branch of the tree are output, so that the evolutionary

174  history of gene expression changes in every gene are accessible to users. To avoid

175 over-interpretation of small changes in inferred expression levels—especially when

176  there is uncertainty in ancestral states—CAGEE will also compare the credible intervals
177  at parent and child nodes to note if a change is “credible” (i.e. the intervals do not

178 overlap). Credible intervals are calculated by summing the probabilities across possible
179  ancestral states at each node, so that 95% of the probability density is included.

180 Credible changes on each branch are annotated as such in the output.
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181 We most often expect that an ultrametric species tree will be used as the input
182  topology, but this is not required by CAGEE. If users wish to specify a gene tree, or
183  some other bifurcating tree, as input, those can be used in CAGEE as well. However,
184  the major advantage of CAGEE —incorporating information from multiple genes to
185 accurately estimate genome-wide rates—will rapidly diminish for trees that represent
186 the history of only a minority of the genome. Trees that include duplication events
187  should provide suitable estimates for any genes that follow this topology, but CAGEE

188 does not have a way to further combine disparate gene trees.

189 There are multiple options available for running CAGEE. Users who can take
190 advantage of multiple threads can specify the number to use on the command line.

191 Complex models can also take a long time to converge; by default, CAGEE runs a

192  maximum of 300 iterations of the Nelder-Mead search, but users can increase this

193  number in subsequent runs if the likelihood is still improving when the limit is hit. As
194 mentioned above, the default prior distribution for the root state is a gamma distribution
195 with k = 0.375 and 6 = 1600. This distribution can also be specified by the user if

196 desired. Information on how to run more complex evolutionary models, beyond a single

197 o2, is given in the next section.

198  Estimating evolutionary rates in CAGEE

199 We tested CAGEE'’s ability to accurately estimate o2 by varying this rate

200 parameter and the number of genes used for inference, as well as the amount of

201  missing data in each dataset. We simulated different single values of a2 across a tree
202  with constant branch lengths (Supplementary Figure 1) using the simulation tool

203 available within CAGEE. (Note that the total amount of evolution in a tree is determined
204 by the product o2 - t, such that changes in branch lengths will have an effect

205 commensurate with changes in 02.) Figure 2 shows the average error associated with
206  estimates of different o2 values and using different numbers of genes within each

207 dataset. As can be seen, the error across all parameter values and dataset sizes is

208 quite small (generally less than 2.5%), and is less variable for larger dataset sizes.

209 Fortunately, we expect that most empirical datasets will contain closer to 10,000 genes
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210 than 1,000 genes. The results in Figure 2 are for an ancestral state vector of length

211 N=200 (the default setting in CAGEE; Materials and Methods); we also estimated o2
212 when allowing the ancestral state vector to have length N=500 (Supplementary Figure
213 2A). There appears to be minimal gain from increasing the resolution in this vector,

214  though the computational time is greatly increased (similar to results in Boucher and
215 Démery 2016). We evaluated the accuracy of CAGEE when different amounts of data
216  were randomly missing: from 0% to 75% for a dataset of 1,000 genes. As shown in

217  Supplementary Figure 2B, CAGEE has high accuracy even when large amounts of data

218 are missing (at random) from a dataset.

219 One major advantage of using CAGEE is that it combines information from

220 multiple genes to infer a rate of evolution: this is why it can return estimates with high
221  accuracy even when a large fraction of the data are missing. To further demonstrate this
222  advantage, we simulated evolution in 1,000 genes using the same parameter value

223 (02=1) and then estimated 4?2 for each of the 1,000 genes individually. Supplementary
224  Figure 2C shows that these individual estimates of 2 are quite error-prone: although
225 the mean of all genes is close to the true value, individual estimates can be 7-8X higher
226  or lower and there is a large amount of variance. Although we have not shown it here,
227  we do expect that the accuracy of o2 will be greater for trees with larger numbers of

228  tips, even for estimates derived from single genes (cf. O’Meara et al. 2006). On the

229 other hand, CAGEE is combining information from multiple genes to infer an average
230 rate of evolution, even when the underlying rate may be quite variable. To explore any
231  effect of underlying rate variation, we carried out further simulations that combined three
232 simulations of 1,000 genes each with 2 equal to 0.5, 3, and 9, respectively (we

233 repeated these simulations 10 times). When analyzed as single datasets with 3,000

234  genes total, the average o2 inferred was 3.76, approximately 9% lower than the

235  arithmetic mean rate (Supplementary Figure 2D). It is well-known that single-rate

236  phylogenetic likelihood models tend to underestimate rates of evolution when there is
237  underlying variation (Golding 1983; Gillespie 1986; Yang 1996; Mendes et al. 2020),
238 and we see this effect here. Fortunately, the bias is small, and can be corrected in the

239  future by including gamma-distributed rate variation into CAGEE. Overall, inferences of
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240 o2 should be quite accurate when a single rate parameter is shared across the tree and

241  across all genes and lineages.

242 Variation in the rate of expression can currently be accommodated by CAGEE in
243 anumber of ways, using multi-rate 6> models. One type of model allows users to

244  specify that their data come from different “samples”: these samples can represent

245  tissues, conditions, timepoints, and even subsets of the genome (e.g. the X

246 chromosome, or a specific functional class of genes). In the input data file, the

247  “SAMPLETYPE” column is used to indicate which sample each gene is a member of; a
248 separate a2 value will be calculated for each sample or set of samples (these values
249  are assumed to be shared among all lineages in the tree). Specifying more than one
250 sample means that an individual gene or transcript name can be used more than once
251 (i.e. once for each sample), but there is no requirement that genes are measured in
252  each sample. For instance, assigning all autosomal genes to sample 1 and all X-linked
253  genes to sample 2 would not permit for any overlap in gene assignment, but is perfectly
254  allowable in CAGEE.

255 Each additional sample requires another o2 parameter to be estimated, and often
256  researchers would like to know if fitting this extra parameter is justified by the data.

257  Under standard information-theoretic criteria (Burnham and Anderson 2002), twice the
258 difference in log-likelihoods between nested models should be y2-distributed with

259 degrees of freedom equal to the difference in the number of parameters between

260 models. To test this expectation, we simulated 1000 datasets with a single o2 value, but
261 fit models with two o2 values (assigning 1000 genes to two equal-sized samples at

262 random; the relative size of the samples should not affect the false positive rate). As
263  anticipated, the results fit a y? distribution with one degree of freedom, with 4.4% of

264  datasets having a difference in 2*log-likelihood greater than 3.84 (5% are expected by
265 chance). This indicates that standard statistical procedures should adequately control

266 the false positive rate when fitting multi-sample o2 models.

267 CAGEE also allows models in which a2 varies across branches of the species

268 tree. It does so by fitting separate o2 parameters for different parts of the tree. On the

10
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269 command line, CAGEE enables users to specify how multiple a2 parameters should be
270  assigned to branches. For ntaxa, from 1 to 2n-2 parameters can be specified, and

271  branches can be grouped together in any way. For instance, a two-parameter model
272 can have all branches that share a rate adjacent to one another in the tree

273  (Supplementary Figure 3A) or spread out across the tree (Supplementary Figure 3B).
274  Similar to the analyses carried out above for the false positive rate associated with

275 multiple samples, we simulated data with a single o2 value and then fit models with

276  multiple o2 parameters. Regardless of how we distributed the two rate classes across
277  the tree we observed good control of the false positive rate: 4.5% and 5.4% of 1000
278  simulated datasets were significant at the P=0.05 level (for the trees shown in

279  Supplementary Figures 3A and 3B, respectively). More limited simulations also showed
280 that we could accurately estimate multiple 2 parameters when the data were simulated
281  with multiple rates (Supplementary Table 1). Together, our results suggest that we can
282  estimate multiple types of multi-rate models, and can accurately control the false

283  positive rate when doing so.

284  Analysis of wild tomato transcriptome data

285 To demonstrate the utility of CAGEE in an empirical system, we analyzed data
286 from a clade that includes domesticated tomato, Solanum lycopersicum. This dataset
287  contains gene expression levels in unfertilized ovules from the flowers of six species,
288 one of which (S. pennellii) has two different populations represented (Figure 3). There
289 are 14,556 genes with expression levels measured in all seven accessions. RNA-seq
290 data for five of the seven accessions have been published previously (Moyle et al. 2021;
291 Hibbins and Hahn 2021), while two others are presented here for the first time

292  (Materials and Methods). Note, however, that all data were collected from all samples at

293 the same time (Materials and Methods).

294 Most species within the tomato clade are self-incompatible (Sl), the ancestral
295 state in the family Solanaceae (Igi¢ et al. 2006). Self-incompatibility means that plants
296  must outcross in order to successfully fertilize ovules. However, self-compatibility (SC)

297  has evolved multiple times both within the Solanaceae and within the genus Solanum

11
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298 (Goldberg et al. 2010; Bedinger et al. 2011). Self-compatible individuals are able to

299  successfully fertilize ovules using their own pollen, though many also still outcross

300 (Whitehead et al 2018; including in Solanum: Vosters et al. 2014 and references

301 therein). Importantly, we have a priori expectations about the rate at which reproductive
302 traits—including ovule gene expression—might evolve between groups with different
303 mating systems. Due to conflict within and between the sexes, it is generally expected
304 that reproductive traits in species that outcross more (i.e. Sl taxa) should evolve more
305 rapidly than in species that inbreed more (i.e. SC taxa; Clark et al. 2006). Such patterns
306 are found in some analyses of the rate of protein evolution (e.g. Gossmann et al. 2016;
307 Harrison et al. 2019), but are equivocal in other comparisons (e.g. Gossmann et al.

308 2014, Moyle et al. 2021). These complex patterns might reflect additional effects that
309 also accompany mating system shifts; for instance, such shifts often lead to reductions
310 in effective population size in more selfing lineages (Charlesworth and Wright 2001).
311  Mating system shifts could also alter global patterns of molecular evolution (including
312 gene expression) by changing the strength and pattern of purifying selection, as

313  morphological changes often accompany mating system changes. The exact effect of

314  shifts in mating system on molecular evolution remains an open question.

315 The Solanum species sampled here represent two independent transitions from
316 Sl to SC, with one of the transitions (in accession S. pennellii LAO716) occurring

317 recently enough that different populations within this species have different

318 incompatibility systems (Figure 3). We therefore fit a series of nested models within

319 CAGEE to test two related hypotheses about ovule gene expression evolution. First, we
320 would like to know whether the rate of evolution of ovule gene expression is different in
321 Sl species than in SC species. Second, given the recent transition to SC within

322 accession S. pennellii LA0O716, we wanted to know if it shows a pattern of evolution

323  more similar to Sl or to SC species. In total, we fit four separate evolutionary models
324 (Table 1; Figure 3). Model A has a single rate parameter for the entire tree. Model B has
325 two rate parameters, one for Sl species and one for SC species. This model assigns the
326  branch leading to S. pennelliiLA0716 as SC. Model C also has two rate parameters,
327 one for Sl and one for SC, but assigns S. pennellii LA0716 as Sl. Model D has three

12
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rate parameters: one for Sl species, one for longer-term SC species, and one for S.
pennellii LAO716.

Estimated results from the different models are shown in Table 1. Model A has a
worse fit than any other model, with a single o value of 0.102. For context, this value
means that the bounded Brownian motion process the data are fit to has a variance of
0.102 per million years (of log-transformed expression values). This is the average rate
across all 14,556 genes and across all branches of the tree. In contrast to a single-rate
model, both models B and C are significantly better fits to the data. Contrary to some
hypotheses, both models find that Sl lineages (o) have a lower rate of evolution than
SC lineages (a#; Table 1). There is also a difference between the models, with model C
(the one in which S. pennellii LA0O716 shares a rate with S| species) fitting significantly
better. To further examine the evolution of S. pennellii LA0O716, model D fits a three-
parameter model, with this lineage assigned its own rate of evolution. This model is a
significantly better fit than model C (P<0.00001; %2 test with 1 degree of freedom), and
demonstrates that S. pennellii LAO716 has a rate of evolution (o7 in Table 1) that is
slightly lower than Sl species. This highly similar rate to Sl species implies that it has
only recently transitioned to self-compatibility, which is consistent with previous
inferences about the timing of transition to SC in this particular accession (e.g. Rick and
Tanksley 1981).

CAGEE also allows users to infer the number and direction of changes in gene
expression levels along each branch of the tree. Figure 3 reports the number of genes
that had “credible” increases and decreases in expression level under model D.
Credible changes require that the credible intervals around states at parent and
daughter nodes do not overlap, in order to account for uncertainty in our inferences.
However, because of this, fewer credible changes will be inferred deeper in the tree,
where credible intervals get wider. Therefore, while inferences about the identity of the
genes changing along each branch is greatly strengthened by using credible changes
(these genes are noted in the raw output from CAGEE), the absolute numbers of

credible changes cannot be compared across branches, except for sister branches of
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357 equal length. For completeness, we show the total numbers of increases and decreases
358 of gene expression in Supplementary Figure 4; as expected, these total numbers are

359  more uniformly distributed across older and younger branches.

360 We assessed whether the genes identified as having credible increases or

361 decreases in expression specifically on any SC branch (solid red branches in Figure 3)
362  were significantly enriched for any biological process or molecular function gene

363 ontology (GO) categories compared to genes with credible changes on any Sl branch
364 (black branches in Figure 3). This comparison specifically assesses gene expression
365 evolution associated with a transition to SC, over and above “background” rates of

366  expression evolution across the rest of the clade. Although fold enrichment was modest
367 1.20-1.36X; Supplementary Table 2), there were 11 terms significantly enriched

368 (FDR<0.05) specifically on SC branches; these terms primarily focused on regulation of
369 transcription, metabolic processes, and biosynthesis (Supplementary Table 2). Among
370 the genes in these over-represented categories, a large fraction are transcription factors
371 associated with development (e.g. WRKY and MADS Box), hormonal responses

372  (including ethylene- and auxin-responsive transcription factors), and regulation of cell
373 cycle (e.g. cyclins), in addition to protein kinases (Supplementary Table 2). This

374  enrichment is consistent with increased expression changes in genes involved in cell

375 division, differentiation, and development, that could follow transitions to SC.
376

377
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378 Discussion

379 Here, we have developed a new software package that enables the estimation of
380 rates of gene expression evolution across a tree, CAGEE. Gene expression levels are
381 much like many other continuous traits, and multiple papers have introduced

382 phylogenetic comparative methods for studying gene expression (Bedford and Hartl

383  2009; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; Catalan et al. 2019; Chen et al.

384 2019). However, as far as we are aware none of these methods allows genes to share
385 evolutionary parameters, which precludes the analysis of genome-wide trends, either
386 along the branches of a tree or between tissues/samples/conditions. To overcome this
387 limitation, CAGEE calculates the likelihood of the data using the pruning algorithm

388 (Felsenstein 1973) to facilitate the sharing of evolutionary parameters along branches of
389 the species tree, providing more statistical power to test evolutionary hypotheses.

390 Fortunately, we were able to take advantage of much of the codebase of our existing
391 software, CAFE (Hahn et al. 2005; De Bie et al. 2006; Hahn et al. 2007; Han et al. 2013;
392 Mendes et al. 2020), which implements the pruning algorithm for the analysis of gene
393 family sizes across a tree. While gene expression levels and gene family sizes differ in
394 the type of data they represent (continuous vs. discrete) and their underlying

395 evolutionary models (bounded Brownian motion vs. birth-death), many of the required
396 likelihood calculations and software components are the same.

397 An important thing to consider for the input to CAGEE is the normalization used
398 to make gene expression levels comparable across species. The data from wild

399 tomatoes used here was normalized using TPM (transcripts per million; Wagner et al.
400 2012); other published datasets also use this normalization (Berthelot et al. 2018; Chen
401 etal. 2019; El Taher et al. 2021). However, multiple other normalizations have also

402  been used in comparative analyses, including RPKM (Brawand et al. 2011), FPKM

403 (Catalan et al. 2019), and both TMM and CPM (Blake et al. 2020). Each normalization
404  approach has its advantages and disadvantages, and we cannot yet strongly

405 recommend one specific approach as input to CAGEE. The normalization method used
406  will likely depend on the conditions under which samples are collected: if all species can

407  be raised simultaneously in a greenhouse, vivarium, or growth chamber, we expect
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408 many fewer batch effects than in samples collected from the field, which will therefore
409 necessitate different normalizations. However, even animals raised in a common

410 environment—but fed different diets—can show many differences in gene expression
411 not due to heritable change (e.g. Somel et al. 2008). Conversely, many between-sample
412  normalization approaches (e.g. TMM, trimmed mean of M values; Robinson and

413  Oshlack 2010) make the assumption that differences in gene expression between

414  samples are rare. While such normalization is sensible in the context of testing for

415  differential expression between samples from the same species, for a set of species

416 that have been evolving independently for millions of years this is likely not an

417  appropriate assumption.

418 CAGEE currently has multiple limitations, both in the available models that can
419 be applied and in the types of data that can be analyzed. As mentioned earlier, many
420 researchers have modeled gene expression using an OU process (Bedford and Hartl
421  2009; Rohlfs et al. 2014; Chen et al. 2019; Yang et al. 2019). Although OU models may
422  be artifactually preferred over unbounded Brownian motion models due to a number of
423  non-biological factors (see discussion in “New Approaches” above), it would still be

424 helpful to be able to compare such a model to the bounded Brownian motion model
425 used here. However, fitting such a model to genome-wide data is non-trivial: each gene
426  must have its own mean expression value (u), but possibly shared constraint

427 parameters (o) across genes. We have the goal of implementing such a model in the
428 near future, as well as other models commonly used in comparative methods research
429 (e.g. Landis and Schraiber 2017; Boucher et al. 2018).

430 Beyond the evolutionary model applied to any dataset, there are multiple

431 additional sources of variation that could be modeled. For instance, we have previously
432  accounted for measurement error in a likelihood framework, using an empirically

433  parameterized error model (Han et al. 2013). We can imagine both applying a similar
434  model here to RNA-seq data, as well as extending CAGEE to more error-prone data
435 such as single-cell sequencing. Such an extension would treat the level of expression in
436  each cell within a cell type as an error-prone draw from an underlying distribution; one
437  would then be able to infer the rate of evolution within and across cell-types across
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438 multiple species. The biggest obstacle to this approach may be in identifying

439 homologous cell types across species (e.g. Tarashansky et al. 2021). In addition, not all
440 genes necessarily share the same average rate of evolution; gamma-distributed rate
441  categories can be used to model this variation among genes (cf. Ames et al. 2012;

442  Mendes et al. 2020). As shown above, not accounting for this rate variation leads to a
443  slight underestimate of o2, but also obscures interesting patterns of evolution among
444  genes. Finally, the gene tree discordance found in many phylogenomic datasets implies
445  that complex traits (such as expression levels) will also be controlled by discordant gene
446 trees (Hahn and Nakhleh 2016; Hibbins and Hahn 2021). This underlying discordance
447  can cause evolutionary rates to be overestimated (Mendes et al. 2018), and should be
448 taken into account when seeking accurate parameter estimates (see discussion of wild
449 tomato data below). Our goal is to include methods for dealing with all these sources of
450 variation in future versions of CAGEE.

451 In terms of the types of data that can be analyzed, at present CAGEE is limited to
452  positive, continuously varying traits (i.e. the BBM model). However, we also envision
453  different ways to represent and model gene expression data, including as a ratio (e.g.
454  male/female expression). Such a ratio, after log2-transformation, would be most

455  appropriately modeled by an unbounded Brownian motion model since both negative
456  and positive values are possible. This and other data types will be supported in future
457  releases. Moreover, CAGEE does not have to analyze whole-genome or even

458 molecular data: it can be applied to any single trait for which the BBM model is

459  appropriate, even morphological traits. One intriguing application of CAGEE could be to
460 suites of morphological traits that are hypothesized to share a common evolutionary
461 rate parameter. If, for instance, there is a shift in body plan along some lineages, then
462  multiple traits may all increase or decrease their rate of evolution at once, and CAGEE
463  can be used to estimate these shared parameters. Even in the context of single-trait
464  analyses, the pruning algorithm has been hailed as a solution for large-scale

465 comparative analyses (Freckleton 2012). Importantly, the number of branches in a

466  rooted, bifurcating tree with n tips is 2n-2, so that the number of calculations scales

467 linearly with the number of species. This makes the pruning algorithm ideal for
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468 comparative datasets with large numbers of taxa (e.g. Hahn et al. 2005; FitzJohn 2012;
469  Hiscott et al. 2016; Caetano and Harmon 2018; Mitov et al. 2020).

470 The analysis of data from a clade of wild tomatoes revealed a possibly

471 unexpected result: the rate of ovule gene expression evolution among self-compatible
472  (SC) species is twice as high as the rate among self-incompatible (Sl) species (Table
473  1). This finding is contrary to some prior expectations—informed by research focused
474  on male-female interactions, especially between interacting proteins in the reproductive
475 tract (e.g. Swanson and Vacquier 2002; Clark et al. 2006)— that suggest that lineages
476  might experience slower evolution after transitioning to self-compatibility. However, it is
477  possible that global gene expression levels do not evolve in the same sort of tit-for-tat
478  manner as interacting protein sequences, such that increases/decreases in male-

479  expressed genes are not matched by increases/decreases in interacting female-

480 expressed genes (or vice versa). Alternatively, only a very small subset of genes may
481 evolve in this manner. Indeed, even prior studies comparing protein evolution have
482  failed to find clear evidence of slower global evolutionary rates in more inbreeding

483  species (e.g. Wong 2011). One caveat to the observed rate differences in our data is
484  that underlying gene tree discordance, whether due to incomplete lineage sorting or
485 introgression, can lead to artifactually higher rate estimates (Mendes et al. 2018;

486  Hibbins and Hahn 2021). However, there is in fact less discordance among the SC

487 lineages sampled here (Pease et al. 2016), which is the reverse of the pattern that

488  would be required to explain our results.

489 If not due to underlying bias in our estimates, these findings still raise the

490 question: why is ovule gene expression evolving more rapidly in SC than Sl species?
491  One possibility is that this increased rate is due to a relaxation of selection in SC

492  species, possibly because genes involved in male-female interactions are no longer

493 needed. If this were the case, we might expect to see a general decrease in expression
494  levels in SC species; however, there appears to be no consistent directionality to the
495 changes along SC branches (Figure 3, Supplementary Figure 4). Instead, an alternative
496 hypothesis is that transitions to SC involve adaptation to new optima of ovule gene

497  expression, compared to Sl species that tend to maintain ancestral optima. For

498 example, transitions to SC might favor greater investment in fewer ovules, because self-
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499  compatibility decreases the probability that each ovule within a flower will go

500 unfertilized—an otherwise wasted investment under conditions (like SI) where receiving
501 sufficient compatible pollen to fertilize each ovule is less predictable (Burd et al. 2009).
502 The nature of these new optima might be even more complex, as traits like ovule size
503 and number can vary with multiple reproductive and ecological conditions, and often
504 trade-off with each other (Greenway and Harder 2007). Of the species examine here,
505 for example, two SC lineages (S. pimpinellifolium, and S. lycopersicon—domesticated
506 tomato) have significantly larger seeds than most of the Sl lineages and SC S. pennellii
507 (unpubl. data). Indeed, individual genes identified in our GO analysis are known to

508 directly influence ovule and/or seed size in Solanum (e.g. NOR-like1

509 [SOLYCO07G063420.3.1; Han et al, 2014], GRAS2 [SOLYC07G063940.2.1; Li et al.

510 2018], and CRY2[SOLYC09G090100.3.1; Fantini et al. 2019]). Some of our

511 hypotheses could be evaluated with matching gene expression data from other (non-
512  ovule) reproductive tissues. Analyses including pollen in the same Sl and SC lineages,
513 and/or data addressing alternative constraints and conditions shaping ovule evolution
514  including ovule size and number (e.g. Mione and Anderson 1992), would be useful in
515 teasing apart these hypotheses.

516

517
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518 Material and Methods
519  Bounded Brownian motion model of expression evolution

520 The probability density of expression, p(x, t), at time t for evolutionary
521 trajectories following a Brownian motion process starting at value x, at time ¢, is

522  governed by the diffusion equation

ap(x.t) _ a? ’p(x.t)
>23 at 2 o9xz ’ (2)

524  with initial condition p(x,t,) = 6(x — x,,) where § is the Dirac delta function. The

525 reflective boundary condition at x = x,;, implies that the probability fluxes into and out

526  of the boundary are balanced, imposing the boundary condition

Op(X=Xmin,t) _
527 = mind) = 3)

528 Note that p(x, t) is identical to the transition density p(x|x;,).

529 Without the reflecting boundary, p(x, t) o e~ (x¢)"/26%(t=10) 5 3 pormal

530 distribution with variance o2(t — t,). The variance therefore scales linearly with elapsed
531 time, t — t,. With the reflecting boundary, p(x, t) is the sum of this spreading normal and
532  its mirror image centered at 2x,;, — x.,. The analytical solution to this bounded process
533 is helpful for understanding the behavior of p(x, t), but is not used in CAGEE. In

534  anticipation of implementing additional (and possibly more complicated) processes into

535 CAGEE, we instead solve Eq. (2) numerically using the approach described in Boucher

536 and Démery (2016). Briefly, the continuous diffusion equation is converted into a matrix

Xmax—Xmin

537 equation by discretizing expression values into N equal bins of width § = 1

538 Following Boucher and Démery (2016), we have used a default N=200, but this number

539 can be set by the user (see Results). This approach gives

oP(t) _ o* .
540 e =3 M - P(D), (4)

541 where P(t) is the vector obtained by discretizing p(x, t) and x,,. is the largest

542  expression value accounted for. The matrix M is tridiagonal with —2 on the diagonal
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543  except at the first and last diagonal entries which are —1. The sub- and supra-diagonal

544  entries are 1. This equation has the matrix exponential solution

545 P(t) = exp (% M), (5)

546  which is evaluated by diagonalizing M.

547  Implementation of CAGEE

548 CAGEE is written in C++ and is compatible with the C++11 standard. A

549  comprehensive manual and extensive unit tests facilitate further code development and
550 maintenance. CAGEE is organized into modular components. A clade class, with

551 references to a parent clade and any number of descendant clades, represents a tree
552  structure, and a gene_transcript class represents the expression levels observed in the
553  various species. These two classes comprise the fundamental data structures upon

554  which CAGEE performs its analysis (Supplementary Figure 5).

555 Calculations are carried out by additional classes. The optimizer class has the
556  responsibility of determining the o2 value with the highest likelihood, by comparing the
557 likelihood of candidate values and searching the likelihood surface using the Nelder-
558 Mead optimization algorithm. The work of computing the likelihood of a given o2 value is
559 performed by a subclass of the model class, which for now is limited to a single Base
560 model (allowing for further development in the future). After appropriate estimated

561 values are found, the franscript_reconstructor class builds a possible set of transcript
562  values for the entire tree (Supplementary Figure 5).

563 Performing the likelihood calculations requires extensive matrix operations; it is
564 recommended (though not required) that these be passed off to a specialized library
565 such as Intel's MKL or Nvidia’s CUBLAS. If no external library is available, CAGEE will
566 carry out these calculations (slowly) by itself. Creating the diffusion matrix (M) requires
567 calculation of eigenvalues and eigenvectors, and is computationally expensive. This
568 work is performed by the Eigen linear algebra library (https://eigen.tuxfamily.org);

569 various internal data structures also take advantage of Eigen classes. To enable faster

570 searching, the matrix for an ancestral state vector of length 200 (the default in CAGEE)
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571 has been pre-computed and is included with CAGEE. Users who wish to use vectors of
572  different lengths can specify this as an option.

573 Unit-testing is performed using the Doctest testing framework

574  (https://github.com/doctest/doctest ). At the time of writing more than 200 unit tests had

575 been created, comprising more than 1200 individual assertions. For complex logging
576 and debugging cases, CAGEE uses the EasylLogging framework
577  (https://github.com/amrayn/easyloggingpp). C++ development is always made easier by

578 using the Boost C++ libraries (https://www.boost.org/), so we include them as well in
579 CAGEE.

580 RNA-seq data from wild tomatoes

581 We briefly describe here the data collected from seven accessions of wild

582 tomatoes (S. lycopersicum LA3475, S. chmielewskii LA1316, S. pimpinellifolium

583 LA1589, S. habrochaites LA1777, S. chilense LA4117A, S. pennellii LA3778, and S.
584  pennellii LAO716; all accession ID numbers from tgrc.ucdavis.edu). Further details are
585 given in Moyle et al. (2021). Ovule RNA-seq was performed on between one to four
586 (usually three) biological replicates (individual plants) from each accession. Plants were
587 germinated from seed, and cultivated until flowering. For each replicate individual,

588 ovules were dissected from mature, unpollinated flowers, flash frozen, and maintained
589 at-80C until extraction. For each individual, all ovule collections were pooled into a

590 single sample prior to library construction and sequencing on an lllumina HiSeq 2000.
591 Reads were mapped against the tomato reference genome (ITAG 2.4) and the number
592  of reads mapped onto genic regions were estimated with featureCounts (Liao et al.,

593 2014). We normalized the read counts from each library by calculating TPM (transcripts
594  per million; Wagner et al. 2012) and then calculated the mean normalized read counts
595 across all samples (individuals) within each accession. These means per accession
596 were used as input to CAGEE.

597 To construct a species tree for use with CAGEE, we started with the topology
598 given in Pease et al. (2016). Specifically, we used the tree found in the supplementary
599 file Pease_etal_TomatoPhylo_RAxMLConcatTree_no1360_Fig2A.nwk, and pruned it to
600 include only the accessions in our study using the software ETE (Huerta-Cepas et al.
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601 2016). Using the “extend” method found in ETE, we converted this tree to ultrametric
602 (same root-to-tip distance for all taxa). Setting the root age to 2.48 million years ago
603 (following Pease et al. 2016), we were able to express all branches in millions of years.
604  Analyses of GO enrichment were carried out using ShinyGO (Ge et al. 2020) with a
605 false discovery rate of 0.05.

606

607
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608 Supplementary Material

609 Supplementary data are available at .
610
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817 Figures and Tables

818 Figure 1. Bounded Brownian motion model. An example trait is shown in the bottom
819 graph, evolving along the tree shown above. Although the data input to CAGEE are
820 linear expression levels, internally it logs expression to ensure higher variance among
821 more highly expressed genes. There is also a minimum value, xmin, added to all tips.
822

823  Figure 2. Accuracy of CAGEE. For five different values of o2 we simulated 1000

824  datasets, with each dataset comprised of either 1000 genes or 10000 genes. All genes
825 in a dataset shared the same o2, but their values at the root were drawn independently
826  from the prior. We then provided each simulated dataset to CAGEE in order to infer 2.
827 Each box-and-whisker plot shows the mean (horizontal line), 50% interquartile range
828 (box), 1.5X the interquartile range (vertical lines), and outliers (dots).

829

830 Figure 3. Changes in gene expression along the tomato phylogeny. Given the set of
831 relationships among the seven Solanum accessions used here, we tested multiple

832 models that had branches assigned as different 62 parameters (Table 1). In model A, all
833  branches share ¢. In model B, all black branches share o7, while all red branches

834 share ¢Z. In model C, all black branches and the dashed red branch share a7, while all
835 solid red branches share ¢Z. In model D, all black branches share 2, all solid red

836 branches share ¢Z, and the dashed red branch is assigned ¢2. Using the results from
837 model D, we inferred the number of genes that had credible increases or decreases in
838 expression level along each branch (results for all changes are shown in Supplementary

839  Figure 4). Numbers are reported as +increases/-decreases for each branch.
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840 Table 1. Model parameters estimated from the tomato data.

841
Model  Number of -InL 021 02 023
rates

A 1 67252.4 0.102

B 2 65883.9 0.074 0.134

C 2 65124.5 0.075 0.152

D 3 65108.6 0.077 0.152 0.067
842
843
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844  Supplementary Figures

845 Supplementary Figure 1. The tree used for simulations. The Newick-formatted tree
846  string with branch lengths is:
847  ((((sp1:1,sp2:1):1,5p3:2):1,5p4:3):1,((sp5:2,5p6:2):2)):1,sp7:5):1,5p8:6)

848

849  Supplementary Figure 2. Accuracy of CAGEE. A) This figure is the same as Figure 2
850 in the main text, but the ancestral state vector has length N=500 (Figure 2 uses N=200).
851  B) For each of three different simulated values of 2, we randomly removed different
852 amounts of data from an input dataset with 1,000 genes (the tree is the same as in all
853  other simulations). C) For 1,000 genes simulated with 62=1 (dashed vertical line), we
854 ran CAGEE independently on each one to estimate 2. D) We combined three datasets
855  of 1,000 genes each simulated with three different values of o2 (we repeated these

856  simulations 10 times). The 10 estimates of a2 on the combined datasets were slightly
857 downwardly biased compared to the expected value (dashed horizontal line). Each dot
858 represents each of the 10 estimates, with jitter added for clarity,

859

860 Supplementary Figure 3. Trees used for simulations with lineage-specific values of ¢2.

861 A) All black branches share a rate parameter (o), and all red branches share a rate
862 parameter (7). This “sigma_tree” is specified in CAGEE with the Newick string:
863 ((((sp1:2,8p2:2):2,5p3:2):2,5p4:2):2,((sp5:1,sp6:1):1)):1,5p7:1):1,5p8:1)

864  B) All black branches share a rate parameter (¢7), and all red branches share a rate
865 parameter (7). This “sigma_tree” is specified in CAGEE with the Newick string:
866 ((((sp1:2,5p2:1):1,5p3:2):1,sp4:1):1,((sp5:1,sp6:2):1)):1,5p7:1):1,5p8:1)

867

868 Supplementary Figure 4. Changes in gene expression along the tomato phylogeny.
869  This figure is the same as Figure 3 in the main text, but all increases and decreases are

870 reported, regardless of whether they are “credible”.

871
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872  Supplementary Figure 5. Component diagram for the CAGEE software.
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Supplementary Figure 4
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Supplementary Table 1 Replcate nfered o

Set of 02 values Simulated o2 % error
0.2,1.0 1 0.2 0.1926803 -3.66%
1.0 1.0024905 0.249%
2 0.2 0.1943218 -2.84%
1.0 1.0054018 0.54%
3 0.2 0.2031335 1.57%
1.0 0.9577028 -4.23%
4 0.2 0.1967767 -1.61%
1.0 0.9996745 -0.0325%
5 0.2 01924732 -3.76%
1.0 1.0075440 0.754%
6 0.2 0.2004951 0.248%
1.0 1.0242412 2.42%
7 0.2 0.1944284 -2.79%
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1.0 0.9884935 -1.15%
9 0.2 0.2018622 0.931%
1.0 1.0382544 3.83%
10 0.2 0.1956765 -2.16%
1.0 1.0065474 0.655%
1.0, 3.0 1 1.0 0.9451556 -5.48%
3.0 3.0287977 0.96%
2 1.0 0.9769290 -2.31%
3.0 3.1000229 3.33%
3 1.0 0.9861053 -1.39%
3.0 2.9452423 -1.83%
4 1.0 0.9724728 -2.75%
3.0 2.9203197 -2.66%
5 1.0 0.9226307 -7.74%
3.0 2.9930805 -0.231%
6 1.0 0.9939074 -0.609%
3.0 2.8856497 -3.81%
7 1.0 0.9871113 -1.29%
3.0 29705234 -0.983%
8 1.0 0.9684494 -3.16%
3.0 2.9187219 -2.71%
9 1.0 0.9667607 -3.32%
3.0 3.1521085 5.07%
10 1.0 1.0059515 0.595%
3.0 3.0232185 0.774%
5.0,10.0 1 5.0 47464719 -5.07%
10.0 9.9814701 -0.185%
2 5.0 48651485 -2.7%
10.0 10.0907926 0.908%
3 5.0 4.7598429 -4.8%
10.0 9.8058231 -1.94%
4 5.0 49265027 -1.47%
10.0 10.0593675 0.594%
5 5.0 4.9239001 -1.52%
10.0 9.9818898 -0.181%
6 5.0 4.8684289 -2.63%
10.0 9.8020147 -1.98%
7 5.0 48752468 -2.5%
10.0 10.0378953 0.379%
8 5.0 49042695 -1.91%
10.0 9.8541603 -1.46%
9 5.0 46019327 -7.96%
10.0 9.9286600 -0.713%
10 5.0 4.8589572 -2.82%

10.0 9.8313460 -1.69%
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