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 2 

Abstract 14 

Despite the increasing abundance of whole transcriptome data, few methods are 15 

available to analyze global gene expression across phylogenies. Here, we present a 16 

new software package (CAGEE) for inferring patterns of increases and decreases in 17 

gene expression across a phylogenetic tree, as well as the rate at which these changes 18 

occur. In contrast to previous methods that treat each gene independently, CAGEE can 19 

calculate genome-wide rates of gene expression, along with ancestral states for each 20 

gene. The statistical approach developed here makes it possible to infer lineage-specific 21 

shifts in rates of evolution across the genome, in addition to possible differences in rates 22 

among multiple tissues sampled from the same species. We demonstrate the accuracy 23 

and robustness of our method on simulated data, and apply it to a dataset of ovule gene 24 

expression collected from multiple self-compatible and self-incompatible species in the 25 

genus Solanum to test hypotheses about the evolutionary forces acting during mating 26 

system shifts. These comparisons allow us to highlight the power of CAGEE, 27 

demonstrating its utility for use in any empirical system and for the analysis of most 28 

morphological traits. Our software is available at https://github.com/hahnlab/CAGEE/. 29 
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Introduction 35 

Early studies of gene expression in single genes revealed widespread and 36 

frequent changes in the levels, timing, and breadth of expression across species 37 

(reviewed in Wray et al. 2003; Fay and Wittkopp 2008; Hill et al. 2021). Such changes in 38 

gene expression have been shown to be responsible for many differences between 39 

species, and may be a major driver of evolution (King and Wilson 1975). Advances in 40 

sequencing technologies (i.e. RNA-seq) have transformed research into gene 41 

expression, allowing researchers to cheaply and accurately measure transcript levels 42 

for every gene in a genome, in multiple tissues, and across several timepoints or 43 

conditions (Wang et al. 2009). There is now a flood of interest in applying RNA-seq to 44 

whole clades of organisms in order to identify the genetic changes and evolutionary 45 

forces driving species differences (e.g. Brawand et al. 2011; Meisel et al. 2012; Coolon 46 

et al. 2014; Harrison et al. 2015; Berthelot et al. 2018; Catalan et al. 2019; Blake et al. 47 

2020; El Taher et al. 2021). 48 

To better understand the importance of changes in gene expression, researchers 49 

must be able to characterize the mechanisms and modes by which gene expression 50 

evolves. Such work entails understanding the role of natural selection in driving species 51 

differences, the stages of development or the tissues that evolve most rapidly, as well 52 

as the environments most likely to generate changes in gene expression (Dunn et al. 53 

2013; Hill et al. 2021; Price et al. 2022). Phylogenetic comparative methods enable the 54 

rigorous study of traits like gene expression across a species tree (Revell and Harmon 55 

2022). These methods can be used for testing hypotheses about natural selection, the 56 

inference of ancestral states (allowing us to polarize the direction of changes), and the 57 

estimation of evolutionary rates. Multiple software packages are available that 58 

implement a wide variety of comparative methods (e.g. Pennell et al. 2014), including 59 

models specifically intended for studying gene expression across a tree (Bedford and 60 

Hartl 2009; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; Catalán et al. 2019; Chen et al. 61 

2019; Yang et al. 2019).  62 

However, as far as we are aware, all existing comparative methods for analyzing 63 

gene expression implement fundamentally single-gene analyses. Each gene is 64 
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considered a separate trait, such the evolutionary parameters for each gene are 65 

estimated separately. Single-gene analyses can be used to identify tissue-specific or 66 

lineage-specific shifts in evolutionary rates, but their power is quite low (Beaulieu et al. 67 

2012). As a result, identifying trends in evolution must be carried out post hoc by 68 

summing the number of genes found to be individually significant (e.g. Harrison et al. 69 

2015; El Taher et al. 2021). This approach is less than ideal, especially when carrying 70 

out comparisons between branches of different lengths or between tissues with different 71 

average expression levels (both of which can result in differential statistical power).  72 

Therefore, to better characterize the forces affecting gene expression evolution, 73 

we must be able to model effects shared along a lineage, experienced by many genes 74 

in the same tissue, or experienced by all genes found in the same environment. In this 75 

article, we present a genome-scale platform for the analysis of gene expression data 76 

that allows for such shared factors. Our software, CAGEE (Computational Analysis of 77 

Gene Expression Evolution), provides a robust set of methods for analyzing expression 78 

data across a species tree. CAGEE estimates ancestral states and rates, with rates 79 

shared by all or subsets of genes (single-gene analyses can also be carried out). We 80 

show that lineage-specific and tissue-specific (or condition-specific) rates can be 81 

accurately inferred, and provide principled statistical approaches for model selection. 82 

Our current implementation uses a bounded Brownian motion model and assumes 83 

expression data are accurate, but the architecture and codebase will easily allow for 84 

future extensions that relax these and other assumptions. 85 

 86 

New Approaches 87 

We model gene expression evolution as a bounded Brownian motion (BBM) 88 

process on a known species tree (cf. Boucher and Démery 2016). Our model has a 89 

single bound: trait values must be greater than or equal to zero; there is no upper bound 90 

(Figure 1). Previous researchers have often modeled gene expression using an 91 

Ornstein-Uhlenbeck (OU) process (e.g. Bedford and Hartl 2009; Rohlfs et al. 2014; 92 

Rohlfs and Nielsen 2015; Chen et al. 2019), a model that includes a force constraining 93 

traits about the mean. However, to our knowledge, the OU model has only been 94 
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compared against an unbounded Brownian motion model (i.e. one that allows negative 95 

expression values), making fair comparisons difficult. In addition, OU models may be 96 

frequently and incorrectly favored over simpler models due to several biases (e.g. 97 

measurement error), especially when the number of tips in a tree is small (Pennell et al. 98 

2015; Silvestro et al. 2015; Boucher and Démery 2016; Cooper et al. 2016; Catalán et 99 

al. 2019). Therefore, the initial version of our software models gene expression with the 100 

BBM process, which naturally bounds possible values without invoking an additional 101 

constraining force. 102 

Let �!" g 0 be the expression level of gene � in species �. We assume that log-103 

transformed expression �!" = ln(�!" + �#$%) evolves as a Brownian motion process with 104 

variance �& per unit time, where �#$% is a small offset (constant across genes and 105 

species) that prevents �!" from taking infinite values if measured values of �!" are zero. 106 

We log-transform before assuming Brownian motion because we expect the variance in 107 

the evolutionary process to scale with expression level. Assuming that �!" is itself 108 

Brownian would unrealistically assume that the rate of evolution is constant across 109 

expression levels, even though expression levels vary by many orders of magnitude. 110 

We impose a reflecting lower boundary at �#$% =	 ln(�#$%), meaning that the Brownian 111 

walk immediately bounces back if it reaches �#$%. Expression can therefore effectively 112 

never reach zero, our theoretical lower bound (Figure 1).  113 

The second major feature of our model (as implemented in CAGEE) is that many 114 

genes can share the evolutionary rate parameter, �&. This rate may be shared among 115 

genes expressed in the same tissue or sample, among genes located on the same 116 

chromosome, or among genes evolving along the same lineage of the phylogenetic 117 

tree. The simplest model allows �& to be shared among all genes, providing an average 118 

rate of evolution across the genome and over time; this average may include genes that 119 

vary in their individual rates of evolution. We explain this model briefly here, with more 120 

detail provided in the Materials and Methods. 121 

 CAGEE infers the most likely value(s) of �& consistent with an ultrametric tree, �, 122 

and a set �{!"} of measured expression values at the tips of the tree; i.e. it maximizes 123 
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the likelihood �(�&|�{!"}, �). Each gene is assumed to evolve independently, and so the 124 

likelihood for each gene �!(�&|�!{"}, �) is computed independently. The overall likelihood 125 

is obtained as the product �5�&6�{!"}, �7 = £!�!(�&|�!{"}, �) across genes. The likelihood 126 

for each gene �!(�&|�!{"}, �) is computed using the pruning algorithm (Felsenstein 127 

1973). The key ingredient needed to apply the pruning algorithm is the transition 128 

probability density �5�)6�)!7 = Pr	[�(�) = �)|�(�*) = �)!] for log-expression at time � 129 

conditional on having log-expression �)! at time �* along a lineage. CAGEE computes 130 

the transition density by solving the standard Brownian diffusion equation with reflecting 131 

boundary conditions (Materials and Methods). The transition density is used to 132 

propagate expression probabilities along the tree: if the probability density of log-133 

expression at time �* is �(�)!), then the probability density at time � on the same lineage 134 

is �(�)) = + �5�)6�)!7�5�)!7��)!. At each tip the probability density �(�)!) is a delta 135 

function centered at the corresponding measured value of �!".  136 

Starting with the known tip distributions, the pruning algorithm propagates back 137 

to the tips’ parent nodes. The distribution at the parent node is then the product of the 138 

two backward-propagated child node distributions. Proceeding iteratively across the 139 

tree, we ultimately obtain the gene-specific probability density for expression value at 140 

the root �!(�+). Viewed as a likelihood for �&, �!(�+) is the gene-specific likelihood 141 

conditional on the unknown ancestral root value; i.e. �!(�+) = �!(�&|�!{"}, �, �+). 142 

Therefore, we integrate over all possible �+ to obtain,   143 

�!5�&6�!{"}, �7 = + �!5�&6�!{"}, �, �+7 �(�+)��+ ,    (1) 144 

where �(�+) is the prior distribution for the root value of a randomly selected gene. 145 

The default prior �(�+) is assumed to be a gamma distribution with � = 0.375 and � =146 

1600, though this distribution can also be set by the user in CAGEE. This choice is 147 

based on estimated expression distributions across genes in individual species, which 148 

we take as our baseline for the ancestral distribution. CAGEE uses the Nelder-Mead 149 

simplex method to find the optimal value(s) of �&.   150 

 151 
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Results  152 

Using CAGEE 153 

 The required inputs for CAGEE are a Newick-formatted, rooted, ultrametric tree 154 

(with branch lengths) and a tab-delimited data file containing the expression levels of all 155 

species or taxa being studied. The data file can consist of data on one gene/transcript 156 

or thousands of different genes.	The first line of the data file should contain the species’ 157 

names (matching those used in the Newick tree). In addition, headers for gene names, 158 

gene descriptions, and sample IDs (see next section for an explanation of “samples” in 159 

CAGEE) can be used. Subsequent lines each correspond to a single gene and contain 160 

expression levels for each species. Missing data can be denoted using multiple 161 

characters (-/?/N). Examples of Newick trees and corresponding data files can be found 162 

in the online user manual 163 

(https://github.com/hahnlab/CAGEE/docs/manual/cagee_manual.md). 164 

 We expect that CAGEE will most often be used to calculate the following outputs: 165 

one or more �& values, ancestral states at each internal node (including 95% credible 166 

intervals around these states), and the final likelihood associated with a model. 167 

However, users do not have to search for �&: if a value for this parameter is specified, 168 

then the output of CAGEE will just be the ancestral states and a likelihood. In addition to 169 

the raw outputs provided in multiple formats (both tab-delimited files and NEXUS-170 

formatted files), CAGEE computes basic statistics about changes in expression levels 171 

by comparing values at parent and child nodes. Summaries of these inferred changes 172 

for every gene and for every branch of the tree are output, so that the evolutionary 173 

history of gene expression changes in every gene are accessible to users. To avoid 174 

over-interpretation of small changes in inferred expression levels—especially when 175 

there is uncertainty in ancestral states—CAGEE will also compare the credible intervals 176 

at parent and child nodes to note if a change is “credible” (i.e. the intervals do not 177 

overlap). Credible intervals are calculated by summing the probabilities across possible 178 

ancestral states at each node, so that 95% of the probability density is included. 179 

Credible changes on each branch are annotated as such in the output.  180 
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 We most often expect that an ultrametric species tree will be used as the input 181 

topology, but this is not required by CAGEE. If users wish to specify a gene tree, or 182 

some other bifurcating tree, as input, those can be used in CAGEE as well. However, 183 

the major advantage of CAGEE—incorporating information from multiple genes to 184 

accurately estimate genome-wide rates—will rapidly diminish for trees that represent 185 

the history of only a minority of the genome. Trees that include duplication events 186 

should provide suitable estimates for any genes that follow this topology, but CAGEE 187 

does not have a way to further combine disparate gene trees. 188 

 There are multiple options available for running CAGEE. Users who can take 189 

advantage of multiple threads can specify the number to use on the command line. 190 

Complex models can also take a long time to converge; by default, CAGEE runs a 191 

maximum of 300 iterations of the Nelder-Mead search, but users can increase this 192 

number in subsequent runs if the likelihood is still improving when the limit is hit. As 193 

mentioned above, the default prior distribution for the root state is a gamma distribution 194 

with � = 0.375 and � = 1600. This distribution can also be specified by the user if 195 

desired. Information on how to run more complex evolutionary models, beyond a single 196 

�&, is given in the next section. 197 

Estimating evolutionary rates in CAGEE  198 

We tested CAGEE’s ability to accurately estimate �& by varying this rate 199 

parameter and the number of genes used for inference, as well as the amount of 200 

missing data in each dataset. We simulated different single values of �& across a tree 201 

with constant branch lengths (Supplementary Figure 1) using the simulation tool 202 

available within CAGEE. (Note that the total amount of evolution in a tree is determined 203 

by the product �& ç �, such that changes in branch lengths will have an effect 204 

commensurate with changes in �&.) Figure 2 shows the average error associated with 205 

estimates of different �& values and using different numbers of genes within each 206 

dataset. As can be seen, the error across all parameter values and dataset sizes is 207 

quite small (generally less than 2.5%), and is less variable for larger dataset sizes. 208 

Fortunately, we expect that most empirical datasets will contain closer to 10,000 genes 209 
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 9 

than 1,000 genes. The results in Figure 2 are for an ancestral state vector of length 210 

N=200 (the default setting in CAGEE; Materials and Methods); we also estimated �& 211 

when allowing the ancestral state vector to have length N=500 (Supplementary Figure 212 

2A). There appears to be minimal gain from increasing the resolution in this vector, 213 

though the computational time is greatly increased (similar to results in Boucher and 214 

Démery 2016). We evaluated the accuracy of CAGEE when different amounts of data 215 

were randomly missing: from 0% to 75% for a dataset of 1,000 genes. As shown in 216 

Supplementary Figure 2B, CAGEE has high accuracy even when large amounts of data 217 

are missing (at random) from a dataset.  218 

One major advantage of using CAGEE is that it combines information from 219 

multiple genes to infer a rate of evolution: this is why it can return estimates with high 220 

accuracy even when a large fraction of the data are missing. To further demonstrate this 221 

advantage, we simulated evolution in 1,000 genes using the same parameter value 222 

(�&=1) and then estimated �& for each of the 1,000 genes individually. Supplementary 223 

Figure 2C shows that these individual estimates of �& are quite error-prone: although 224 

the mean of all genes is close to the true value, individual estimates can be 7-8X higher 225 

or lower and there is a large amount of variance. Although we have not shown it here, 226 

we do expect that the accuracy of �& will be greater for trees with larger numbers of 227 

tips, even for estimates derived from single genes (cf. O’Meara et al. 2006). On the 228 

other hand, CAGEE is combining information from multiple genes to infer an average 229 

rate of evolution, even when the underlying rate may be quite variable. To explore any 230 

effect of underlying rate variation, we carried out further simulations that combined three 231 

simulations of 1,000 genes each with �& equal to 0.5, 3, and 9, respectively (we 232 

repeated these simulations 10 times). When analyzed as single datasets with 3,000 233 

genes total, the average �& inferred was 3.76, approximately 9% lower than the 234 

arithmetic mean rate (Supplementary Figure 2D). It is well-known that single-rate 235 

phylogenetic likelihood models tend to underestimate rates of evolution when there is 236 

underlying variation (Golding 1983; Gillespie 1986; Yang 1996; Mendes et al. 2020), 237 

and we see this effect here. Fortunately, the bias is small, and can be corrected in the 238 

future by including gamma-distributed rate variation into CAGEE. Overall, inferences of 239 
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�& should be quite accurate when a single rate parameter is shared across the tree and 240 

across all genes and lineages. 241 

 Variation in the rate of expression can currently be accommodated by CAGEE in 242 

a number of ways, using multi-rate �& models. One type of model allows users to 243 

specify that their data come from different “samples”: these samples can represent 244 

tissues, conditions, timepoints, and even subsets of the genome (e.g. the X 245 

chromosome, or a specific functional class of genes). In the input data file, the 246 

“SAMPLETYPE” column is used to indicate which sample each gene is a member of; a 247 

separate �& value will be calculated for each sample or set of samples (these values 248 

are assumed to be shared among all lineages in the tree). Specifying more than one 249 

sample means that an individual gene or transcript name can be used more than once 250 

(i.e. once for each sample), but there is no requirement that genes are measured in 251 

each sample. For instance, assigning all autosomal genes to sample 1 and all X-linked 252 

genes to sample 2 would not permit for any overlap in gene assignment, but is perfectly 253 

allowable in CAGEE.  254 

Each additional sample requires another �& parameter to be estimated, and often 255 

researchers would like to know if fitting this extra parameter is justified by the data. 256 

Under standard information-theoretic criteria (Burnham and Anderson 2002), twice the 257 

difference in log-likelihoods between nested models should be c2-distributed with 258 

degrees of freedom equal to the difference in the number of parameters between 259 

models. To test this expectation, we simulated 1000 datasets with a single �& value, but 260 

fit models with two �& values (assigning 1000 genes to two equal-sized samples at 261 

random; the relative size of the samples should not affect the false positive rate). As 262 

anticipated, the results fit a c2 distribution with one degree of freedom, with 4.4% of 263 

datasets having a difference in 2*log-likelihood greater than 3.84 (5% are expected by 264 

chance). This indicates that standard statistical procedures should adequately control 265 

the false positive rate when fitting multi-sample	�& models. 266 

CAGEE also allows models in which �& varies across branches of the species 267 

tree. It does so by fitting separate �& parameters for different parts of the tree. On the 268 
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command line, CAGEE enables users to specify how multiple �& parameters should be 269 

assigned to branches. For n taxa, from 1 to 2n-2 parameters can be specified, and 270 

branches can be grouped together in any way. For instance, a two-parameter model 271 

can have all branches that share a rate adjacent to one another in the tree 272 

(Supplementary Figure 3A) or spread out across the tree (Supplementary Figure 3B). 273 

Similar to the analyses carried out above for the false positive rate associated with 274 

multiple samples, we simulated data with a single �& value and then fit models with 275 

multiple �& parameters. Regardless of how we distributed the two rate classes across 276 

the tree we observed good control of the false positive rate: 4.5% and 5.4% of 1000 277 

simulated datasets were significant at the P=0.05 level (for the trees shown in 278 

Supplementary Figures 3A and 3B, respectively). More limited simulations also showed 279 

that we could accurately estimate multiple �& parameters when the data were simulated 280 

with multiple rates (Supplementary Table 1). Together, our results suggest that we can 281 

estimate multiple types of multi-rate models, and can accurately control the false 282 

positive rate when doing so.  283 

Analysis of wild tomato transcriptome data 284 

 To demonstrate the utility of CAGEE in an empirical system, we analyzed data 285 

from a clade that includes domesticated tomato, Solanum lycopersicum. This dataset 286 

contains gene expression levels in unfertilized ovules from the flowers of six species, 287 

one of which (S. pennellii) has two different populations represented (Figure 3). There 288 

are 14,556 genes with expression levels measured in all seven accessions. RNA-seq 289 

data for five of the seven accessions have been published previously (Moyle et al. 2021; 290 

Hibbins and Hahn 2021), while two others are presented here for the first time 291 

(Materials and Methods). Note, however, that all data were collected from all samples at 292 

the same time (Materials and Methods). 293 

 Most species within the tomato clade are self-incompatible (SI), the ancestral 294 

state in the family Solanaceae (Igi� et al. 2006). Self-incompatibility means that plants 295 

must outcross in order to successfully fertilize ovules. However, self-compatibility (SC) 296 

has evolved multiple times both within the Solanaceae and within the genus Solanum 297 
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(Goldberg et al. 2010; Bedinger et al. 2011). Self-compatible individuals are able to 298 

successfully fertilize ovules using their own pollen, though many also still outcross 299 

(Whitehead et al 2018; including in Solanum: Vosters et al. 2014 and references 300 

therein). Importantly, we have a priori expectations about the rate at which reproductive 301 

traits—including ovule gene expression—might evolve between groups with different 302 

mating systems. Due to conflict within and between the sexes, it is generally expected 303 

that reproductive traits in species that outcross more (i.e. SI taxa) should evolve more 304 

rapidly than in species that inbreed more (i.e. SC taxa; Clark et al. 2006). Such patterns 305 

are found in some analyses of the rate of protein evolution (e.g. Gossmann et al. 2016; 306 

Harrison et al. 2019), but are equivocal in other comparisons (e.g. Gossmann et al. 307 

2014, Moyle et al. 2021). These complex patterns might reflect additional effects that 308 

also accompany mating system shifts; for instance, such shifts often lead to reductions 309 

in effective population size in more selfing lineages (Charlesworth and Wright 2001). 310 

Mating system shifts could also alter global patterns of molecular evolution (including 311 

gene expression) by changing the strength and pattern of purifying selection, as 312 

morphological changes often accompany mating system changes. The exact effect of 313 

shifts in mating system on molecular evolution remains an open question.  314 

The Solanum species sampled here represent two independent transitions from 315 

SI to SC, with one of the transitions (in accession S. pennellii LA0716) occurring 316 

recently enough that different populations within this species have different 317 

incompatibility systems (Figure 3). We therefore fit a series of nested models within 318 

CAGEE to test two related hypotheses about ovule gene expression evolution. First, we 319 

would like to know whether the rate of evolution of ovule gene expression is different in 320 

SI species than in SC species. Second, given the recent transition to SC within 321 

accession S. pennellii LA0716, we wanted to know if it shows a pattern of evolution 322 

more similar to SI or to SC species. In total, we fit four separate evolutionary models 323 

(Table 1; Figure 3). Model A has a single rate parameter for the entire tree. Model B has 324 

two rate parameters, one for SI species and one for SC species. This model assigns the 325 

branch leading to S. pennellii LA0716 as SC. Model C also has two rate parameters, 326 

one for SI and one for SC, but assigns S. pennellii LA0716 as SI. Model D has three 327 
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rate parameters: one for SI species, one for longer-term SC species, and one for S. 328 

pennellii LA0716. 329 

Estimated results from the different models are shown in Table 1. Model A has a 330 

worse fit than any other model, with a single �& value of 0.102. For context, this value 331 

means that the bounded Brownian motion process the data are fit to has a variance of 332 

0.102 per million years (of log-transformed expression values). This is the average rate 333 

across all 14,556 genes and across all branches of the tree. In contrast to a single-rate 334 

model, both models B and C are significantly better fits to the data. Contrary to some 335 

hypotheses, both models find that SI lineages (�,&) have a lower rate of evolution than 336 

SC lineages (�&&; Table 1). There is also a difference between the models, with model C 337 

(the one in which S. pennellii LA0716 shares a rate with SI species) fitting significantly 338 

better. To further examine the evolution of S. pennellii LA0716, model D fits a three-339 

parameter model, with this lineage assigned its own rate of evolution. This model is a 340 

significantly better fit than model C (P<0.00001; c2 test with 1 degree of freedom), and 341 

demonstrates that S. pennellii LA0716 has a rate of evolution (�-& in Table 1) that is 342 

slightly lower than SI species. This highly similar rate to SI species implies that it has 343 

only recently transitioned to self-compatibility, which is consistent with previous 344 

inferences about the timing of transition to SC in this particular accession (e.g. Rick and 345 

Tanksley 1981). 346 

CAGEE also allows users to infer the number and direction of changes in gene 347 

expression levels along each branch of the tree. Figure 3 reports the number of genes 348 

that had “credible” increases and decreases in expression level under model D. 349 

Credible changes require that the credible intervals around states at parent and 350 

daughter nodes do not overlap, in order to account for uncertainty in our inferences. 351 

However, because of this, fewer credible changes will be inferred deeper in the tree, 352 

where credible intervals get wider. Therefore, while inferences about the identity of the 353 

genes changing along each branch is greatly strengthened by using credible changes 354 

(these genes are noted in the raw output from CAGEE), the absolute numbers of 355 

credible changes cannot be compared across branches, except for sister branches of 356 
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equal length. For completeness, we show the total numbers of increases and decreases 357 

of gene expression in Supplementary Figure 4; as expected, these total numbers are 358 

more uniformly distributed across older and younger branches. 359 

We assessed whether the genes identified as having credible increases or 360 

decreases in expression specifically on any SC branch (solid red branches in Figure 3) 361 

were significantly enriched for any biological process or molecular function gene 362 

ontology (GO) categories compared to genes with credible changes on any SI branch 363 

(black branches in Figure 3). This comparison specifically assesses gene expression 364 

evolution associated with a transition to SC, over and above “background” rates of 365 

expression evolution across the rest of the clade. Although fold enrichment was modest 366 

1.20-1.36X; Supplementary Table 2), there were 11 terms significantly enriched 367 

(FDR<0.05) specifically on SC branches; these terms primarily focused on regulation of 368 

transcription, metabolic processes, and biosynthesis (Supplementary Table 2). Among 369 

the genes in these over-represented categories, a large fraction are transcription factors 370 

associated with development (e.g. WRKY and MADS Box), hormonal responses 371 

(including ethylene- and auxin-responsive transcription factors), and regulation of cell 372 

cycle (e.g. cyclins), in addition to protein kinases (Supplementary Table 2). This 373 

enrichment is consistent with increased expression changes in genes involved in cell 374 

division, differentiation, and development, that could follow transitions to SC.  375 

 376 

  377 
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Discussion 378 

Here, we have developed a new software package that enables the estimation of 379 

rates of gene expression evolution across a tree, CAGEE. Gene expression levels are 380 

much like many other continuous traits, and multiple papers have introduced 381 

phylogenetic comparative methods for studying gene expression (Bedford and Hartl 382 

2009; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; Catalán et al. 2019; Chen et al. 383 

2019). However, as far as we are aware none of these methods allows genes to share 384 

evolutionary parameters, which precludes the analysis of genome-wide trends, either 385 

along the branches of a tree or between tissues/samples/conditions. To overcome this 386 

limitation, CAGEE calculates the likelihood of the data using the pruning algorithm 387 

(Felsenstein 1973) to facilitate the sharing of evolutionary parameters along branches of 388 

the species tree, providing more statistical power to test evolutionary hypotheses. 389 

Fortunately, we were able to take advantage of much of the codebase of our existing 390 

software, CAFE (Hahn et al. 2005; De Bie et al. 2006; Hahn et al. 2007; Han et al. 2013; 391 

Mendes et al. 2020), which implements the pruning algorithm for the analysis of gene 392 

family sizes across a tree. While gene expression levels and gene family sizes differ in 393 

the type of data they represent (continuous vs. discrete) and their underlying 394 

evolutionary models (bounded Brownian motion vs. birth-death), many of the required 395 

likelihood calculations and software components are the same. 396 

 An important thing to consider for the input to CAGEE is the normalization used 397 

to make gene expression levels comparable across species. The data from wild 398 

tomatoes used here was normalized using TPM (transcripts per million; Wagner et al. 399 

2012); other published datasets also use this normalization (Berthelot et al. 2018; Chen 400 

et al. 2019; El Taher et al. 2021). However, multiple other normalizations have also 401 

been used in comparative analyses, including RPKM (Brawand et al. 2011), FPKM 402 

(Catalán et al. 2019), and both TMM and CPM (Blake et al. 2020). Each normalization 403 

approach has its advantages and disadvantages, and we cannot yet strongly 404 

recommend one specific approach as input to CAGEE. The normalization method used 405 

will likely depend on the conditions under which samples are collected: if all species can 406 

be raised simultaneously in a greenhouse, vivarium, or growth chamber, we expect 407 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.11.18.517074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517074
http://creativecommons.org/licenses/by-nc/4.0/


 16 

many fewer batch effects than in samples collected from the field, which will therefore 408 

necessitate different normalizations. However, even animals raised in a common 409 

environment—but fed different diets—can show many differences in gene expression 410 

not due to heritable change (e.g. Somel et al. 2008). Conversely, many between-sample 411 

normalization approaches (e.g. TMM, trimmed mean of M values; Robinson and 412 

Oshlack 2010) make the assumption that differences in gene expression between 413 

samples are rare. While such normalization is sensible in the context of testing for 414 

differential expression between samples from the same species, for a set of species 415 

that have been evolving independently for millions of years this is likely not an 416 

appropriate assumption. 417 

 CAGEE currently has multiple limitations, both in the available models that can 418 

be applied and in the types of data that can be analyzed. As mentioned earlier, many 419 

researchers have modeled gene expression using an OU process (Bedford and Hartl 420 

2009; Rohlfs et al. 2014; Chen et al. 2019; Yang et al. 2019). Although OU models may 421 

be artifactually preferred over unbounded Brownian motion models due to a number of 422 

non-biological factors (see discussion in <New Approaches= above), it would still be 423 

helpful to be able to compare such a model to the bounded Brownian motion model 424 

used here. However, fitting such a model to genome-wide data is non-trivial: each gene 425 

must have its own mean expression value (µ), but possibly shared constraint 426 

parameters (a) across genes. We have the goal of implementing such a model in the 427 

near future, as well as other models commonly used in comparative methods research 428 

(e.g. Landis and Schraiber 2017; Boucher et al. 2018).  429 

Beyond the evolutionary model applied to any dataset, there are multiple 430 

additional sources of variation that could be modeled. For instance, we have previously 431 

accounted for measurement error in a likelihood framework, using an empirically 432 

parameterized error model (Han et al. 2013). We can imagine both applying a similar 433 

model here to RNA-seq data, as well as extending CAGEE to more error-prone data 434 

such as single-cell sequencing. Such an extension would treat the level of expression in 435 

each cell within a cell type as an error-prone draw from an underlying distribution; one 436 

would then be able to infer the rate of evolution within and across cell-types across 437 
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multiple species. The biggest obstacle to this approach may be in identifying 438 

homologous cell types across species (e.g. Tarashansky et al. 2021). In addition, not all 439 

genes necessarily share the same average rate of evolution; gamma-distributed rate 440 

categories can be used to model this variation among genes (cf. Ames et al. 2012; 441 

Mendes et al. 2020). As shown above, not accounting for this rate variation leads to a 442 

slight underestimate of �&, but also obscures interesting patterns of evolution among 443 

genes. Finally, the gene tree discordance found in many phylogenomic datasets implies 444 

that complex traits (such as expression levels) will also be controlled by discordant gene 445 

trees (Hahn and Nakhleh 2016; Hibbins and Hahn 2021). This underlying discordance 446 

can cause evolutionary rates to be overestimated (Mendes et al. 2018), and should be 447 

taken into account when seeking accurate parameter estimates (see discussion of wild 448 

tomato data below). Our goal is to include methods for dealing with all these sources of 449 

variation in future versions of CAGEE. 450 

In terms of the types of data that can be analyzed, at present CAGEE is limited to 451 

positive, continuously varying traits (i.e. the BBM model). However, we also envision 452 

different ways to represent and model gene expression data, including as a ratio (e.g. 453 

male/female expression). Such a ratio, after log2-transformation, would be most 454 

appropriately modeled by an unbounded Brownian motion model since both negative 455 

and positive values are possible. This and other data types will be supported in future 456 

releases. Moreover, CAGEE does not have to analyze whole-genome or even 457 

molecular data: it can be applied to any single trait for which the BBM model is 458 

appropriate, even morphological traits. One intriguing application of CAGEE could be to 459 

suites of morphological traits that are hypothesized to share a common evolutionary 460 

rate parameter. If, for instance, there is a shift in body plan along some lineages, then 461 

multiple traits may all increase or decrease their rate of evolution at once, and CAGEE 462 

can be used to estimate these shared parameters. Even in the context of single-trait 463 

analyses, the pruning algorithm has been hailed as a solution for large-scale 464 

comparative analyses (Freckleton 2012). Importantly, the number of branches in a 465 

rooted, bifurcating tree with n tips is 2n-2, so that the number of calculations scales 466 

linearly with the number of species. This makes the pruning algorithm ideal for 467 
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comparative datasets with large numbers of taxa (e.g. Hahn et al. 2005; FitzJohn 2012; 468 

Hiscott et al. 2016; Caetano and Harmon 2018; Mitov et al. 2020). 469 

The analysis of data from a clade of wild tomatoes revealed a possibly 470 

unexpected result: the rate of ovule gene expression evolution among self-compatible 471 

(SC) species is twice as high as the rate among self-incompatible (SI) species (Table 472 

1). This finding is contrary to some prior expectations4informed by research focused 473 

on male-female interactions, especially between interacting proteins in the reproductive 474 

tract (e.g. Swanson and Vacquier 2002; Clark et al. 2006)4 that suggest that lineages 475 

might experience slower evolution after transitioning to self-compatibility. However, it is 476 

possible that global gene expression levels do not evolve in the same sort of tit-for-tat 477 

manner as interacting protein sequences, such that increases/decreases in male-478 

expressed genes are not matched by increases/decreases in interacting female-479 

expressed genes (or vice versa). Alternatively, only a very small subset of genes may 480 

evolve in this manner. Indeed, even prior studies comparing protein evolution have 481 

failed to find clear evidence of slower global evolutionary rates in more inbreeding 482 

species (e.g. Wong 2011). One caveat to the observed rate differences in our data is 483 

that underlying gene tree discordance, whether due to incomplete lineage sorting or 484 

introgression, can lead to artifactually higher rate estimates (Mendes et al. 2018; 485 

Hibbins and Hahn 2021). However, there is in fact less discordance among the SC 486 

lineages sampled here (Pease et al. 2016), which is the reverse of the pattern that 487 

would be required to explain our results. 488 

If not due to underlying bias in our estimates, these findings still raise the 489 

question: why is ovule gene expression evolving more rapidly in SC than SI species? 490 

One possibility is that this increased rate is due to a relaxation of selection in SC 491 

species, possibly because genes involved in male-female interactions are no longer 492 

needed. If this were the case, we might expect to see a general decrease in expression 493 

levels in SC species; however, there appears to be no consistent directionality to the 494 

changes along SC branches (Figure 3, Supplementary Figure 4). Instead, an alternative 495 

hypothesis is that transitions to SC involve adaptation to new optima of ovule gene 496 

expression, compared to SI species that tend to maintain ancestral optima. For 497 

example, transitions to SC might favor greater investment in fewer ovules, because self-498 
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compatibility decreases the probability that each ovule within a flower will go 499 

unfertilized4an otherwise wasted investment under conditions (like SI) where receiving 500 

sufficient compatible pollen to fertilize each ovule is less predictable (Burd et al. 2009).  501 

The nature of these new optima might be even more complex, as traits like ovule size 502 

and number can vary with multiple reproductive and ecological conditions, and often 503 

trade-off with each other (Greenway and Harder 2007). Of the species examine here, 504 

for example, two SC lineages (S. pimpinellifolium, and S. lycopersicon4domesticated 505 

tomato) have significantly larger seeds than most of the SI lineages and SC S. pennellii 506 

(unpubl. data). Indeed, individual genes identified in our GO analysis are known to 507 

directly influence ovule and/or seed size in Solanum (e.g. NOR-like1 508 

[SOLYC07G063420.3.1; Han et al, 2014], GRAS2 [SOLYC07G063940.2.1; Li et al. 509 

2018], and CRY2 [SOLYC09G090100.3.1; Fantini et al. 2019]). Some of our 510 

hypotheses could be evaluated with matching gene expression data from other (non-511 

ovule) reproductive tissues. Analyses including pollen in the same SI and SC lineages, 512 

and/or data addressing alternative constraints and conditions shaping ovule evolution 513 

including ovule size and number (e.g. Mione and Anderson 1992), would be useful in 514 

teasing apart these hypotheses. 515 

 516 

  517 
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Material and Methods 518 

Bounded Brownian motion model of expression evolution 519 

The probability density of expression, �(�, �), at time � for evolutionary 520 

trajectories following a Brownian motion process starting at value �)! at time �* is 521 

governed by the diffusion equation 522 

!"($,&)

!&
=

(!

)

!!"($,&)

!$!
 ,   (2) 523 

with initial condition �(�, �*) = �(� 2 �)!) where � is the Dirac delta function. The 524 

reflective boundary condition at � = �#$% implies that the probability fluxes into and out 525 

of the boundary are balanced, imposing the boundary condition  526 

!"($*$"#$,&)

!$
= 0.     (3) 527 

Note that �(�, �) is identical to the transition density �(�)|�)!).   528 

Without the reflecting boundary, �(�, �) ? �./0.0"!1
#
/&3#().)!) is a normal 529 

distribution with variance �&(� 2 �*). The variance therefore scales linearly with elapsed 530 

time, � 2 �*. With the reflecting boundary, �(�, �) is the sum of this spreading normal and 531 

its mirror image centered at 2�#$% 2 �)!. The analytical solution to this bounded process 532 

is helpful for understanding the behavior of �(�, �), but is not used in CAGEE. In 533 

anticipation of implementing additional (and possibly more complicated) processes into 534 

CAGEE, we instead solve Eq. (2) numerically using the approach described in Boucher 535 

and Démery (2016). Briefly, the continuous diffusion equation is converted into a matrix 536 

equation by discretizing expression values into � equal bins of width � = 0$%&.0$'(

6.,
		. 537 

Following Boucher and Démery (2016), we have used a default N=200, but this number 538 

can be set by the user (see Results). This approach gives 539 

!+(&)

!&
=

(!

),!
� ç �(�),    (4) 540 

where �(�) is the vector obtained by discretizing �(�, �) and �#78 is the largest 541 

expression value accounted for. The matrix � is tridiagonal with 22 on the diagonal 542 
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except at the first and last diagonal entries which are 21. The sub- and supra-diagonal 543 

entries are 1. This equation has the matrix exponential solution 544 

�(�) = exp V3
#().)!)

&9#
�W,    (5) 545 

which is evaluated by diagonalizing �.  546 

Implementation of CAGEE 547 

CAGEE is written in C++ and is compatible with the C++11 standard. A 548 

comprehensive manual and extensive unit tests facilitate further code development and 549 

maintenance. CAGEE is organized into modular components. A clade class, with 550 

references to a parent clade and any number of descendant clades, represents a tree 551 

structure, and a gene_transcript class represents the expression levels observed in the 552 

various species. These two classes comprise the fundamental data structures upon 553 

which CAGEE performs its analysis (Supplementary Figure 5).  554 

Calculations are carried out by additional classes. The optimizer class has the 555 

responsibility of determining the �& value with the highest likelihood, by comparing the 556 

likelihood of candidate values and searching the likelihood surface using the Nelder-557 

Mead optimization algorithm. The work of computing the likelihood of a given �& value is 558 

performed by a subclass of the model class, which for now is limited to a single Base 559 

model (allowing for further development in the future). After appropriate estimated 560 

values are found, the transcript_reconstructor class builds a possible set of transcript 561 

values for the entire tree (Supplementary Figure 5).  562 

Performing the likelihood calculations requires extensive matrix operations; it is 563 

recommended (though not required) that these be passed off to a specialized library 564 

such as Intel9s MKL or Nvidia9s CUBLAS. If no external library is available, CAGEE will 565 

carry out these calculations (slowly) by itself. Creating the diffusion matrix (�) requires 566 

calculation of eigenvalues and eigenvectors, and is computationally expensive. This 567 

work is performed by the Eigen linear algebra library (https://eigen.tuxfamily.org); 568 

various internal data structures also take advantage of Eigen classes. To enable faster 569 

searching, the matrix for an ancestral state vector of length 200 (the default in CAGEE) 570 
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has been pre-computed and is included with CAGEE. Users who wish to use vectors of 571 

different lengths can specify this as an option. 572 

Unit-testing is performed using the Doctest testing framework 573 

(https://github.com/doctest/doctest ). At the time of writing more than 200 unit tests had 574 

been created, comprising more than 1200 individual assertions. For complex logging 575 

and debugging cases, CAGEE uses the EasyLogging framework 576 

(https://github.com/amrayn/easyloggingpp). C++ development is always made easier by 577 

using the Boost C++ libraries (https://www.boost.org/), so we include them as well in 578 

CAGEE. 579 

RNA-seq data from wild tomatoes 580 

We briefly describe here the data collected from seven accessions of wild 581 

tomatoes (S. lycopersicum LA3475, S. chmielewskii LA1316, S. pimpinellifolium 582 

LA1589, S. habrochaites LA1777, S. chilense LA4117A, S. pennellii LA3778, and S. 583 

pennellii LA0716; all accession ID numbers from tgrc.ucdavis.edu). Further details are 584 

given in Moyle et al. (2021). Ovule RNA-seq was performed on between one to four 585 

(usually three) biological replicates (individual plants) from each accession. Plants were 586 

germinated from seed, and cultivated until flowering. For each replicate individual, 587 

ovules were dissected from mature, unpollinated flowers, flash frozen, and maintained 588 

at -80C until extraction. For each individual, all ovule collections were pooled into a 589 

single sample prior to library construction and sequencing on an Illumina HiSeq 2000. 590 

Reads were mapped against the tomato reference genome (ITAG 2.4) and the number 591 

of reads mapped onto genic regions were estimated with featureCounts (Liao et al., 592 

2014). We normalized the read counts from each library by calculating TPM (transcripts 593 

per million; Wagner et al. 2012) and then calculated the mean normalized read counts 594 

across all samples (individuals) within each accession. These means per accession 595 

were used as input to CAGEE. 596 

To construct a species tree for use with CAGEE, we started with the topology 597 

given in Pease et al. (2016). Specifically, we used the tree found in the supplementary 598 

file Pease_etal_TomatoPhylo_RAxMLConcatTree_no1360_Fig2A.nwk, and pruned it to 599 

include only the accessions in our study using the software ETE (Huerta-Cepas et al. 600 
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2016). Using the <extend= method found in ETE, we converted this tree to ultrametric 601 

(same root-to-tip distance for all taxa). Setting the root age to 2.48 million years ago 602 

(following Pease et al. 2016), we were able to express all branches in millions of years. 603 

Analyses of GO enrichment were carried out using ShinyGO (Ge et al. 2020) with a 604 

false discovery rate of 0.05. 605 

 606 

  607 
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Supplementary Material 608 

Supplementary data are available at  .  609 

 610 

Acknowledgements 611 

We thank Mark Hibbins for assistance with the tomato phylogeny, Matthew Gibson for 612 

putting together the tomato gene expression data, and especially Dan Vanderpool for 613 

invaluable help in the initial development of CAGEE. Two reviewers provided helpful 614 

comments, and Scott Edwards pointed out relevant work that we had previously missed. 615 

This work was supported by National Science Foundation grants DEB-1856469 to 616 

L.C.M. and DBI-2146866 to M.W.H. 617 

 618 

Data Availability 619 

Raw reads for each sample library are available at NCBI BioProject PRJNA714065. The 620 

CAGEE software is available at https://github.com/hahnlab/CAGEE.  621 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.11.18.517074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517074
http://creativecommons.org/licenses/by-nc/4.0/


 25 

References 622 

Ames RM, Money D, Ghatge VP, Whelan S, Lovell SC. 2012. Determining the 623 

evolutionary history of gene families. Bioinformatics 28:48-55. 624 

Beaulieu JM, Jhwueng DC, Boettiger C, O’Meara BC. 2012. Modeling stabilizing 625 

selection: expanding the Ornstein–Uhlenbeck model of adaptive evolution. Evolution 626 

66:2369-2383. 627 

Bedford T, Hartl DL. 2009. Optimization of gene expression by natural selection. 628 

Proceedings of the National Academy of Sciences 106:1133-1138. 629 

Bedinger PA, Chetelat RT, McClure B, Moyle LC, Rose JK, Stack SM, van der Knaap E, 630 

Baek YS, Lopez-Casado G, Covey PA. 2011. Interspecific reproductive barriers in 631 

the tomato clade: opportunities to decipher mechanisms of reproductive isolation. 632 

Sexual Plant Reproduction 24:171-187. 633 

Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P. 2018. Complexity and 634 

conservation of regulatory landscapes underlie evolutionary resilience of mammalian 635 

gene expression. Nature Ecology & Evolution 2:152-163. 636 

Blake LE, Roux J, Hernando-Herraez I, Banovich NE, Perez RG, Hsiao CJ, Eres I, 637 

Cuevas C, Marques-Bonet T, Gilad Y. 2020. A comparison of gene expression and 638 

DNA methylation patterns across tissues and species. Genome Research 30:250-639 

262. 640 

Boucher FC, Démery V. 2016. Inferring bounded evolution in phenotypic characters 641 

from phylogenetic comparative data. Systematic Biology 65:651-661. 642 

Boucher FC, Démery V, Conti E, Harmon LJ, Uyeda J. 2018. A general model for 643 

estimating macroevolutionary landscapes. Systematic Biology 67:304-319. 644 

Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, Weier M, Liechti 645 

A, Aximu-Petri A, Kircher M, et al. 2011. The evolution of gene expression levels in 646 

mammalian organs. Nature 478:343-348. 647 

Burd M, Ashman T-L, Campbell DR, Dudash MR, Johnston MO, Knight TM, Mazer SJ, 648 

Mitchell RJ, Steets JA, Vamosi JC. 2009. Ovule number per flower in a world of 649 

unpredictable pollination. American Journal of Botany 96:1159-1167. 650 

Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: A 651 

practical information-theoretic approach. New York: Springer. 652 

Caetano DS, Harmon LJ. 2018. Estimating correlated rates of trait evolution with uncertainty. 653 

Systematic Biology 68:412-429. 654 

Catalán A, Briscoe AD, Höhna S. 2019. Drift and directional selection are the 655 

evolutionary forces driving gene expression divergence in eye and brain tissue of 656 

Heliconius butterflies. Genetics 213:581-594. 657 

Charlesworth D, Wright SI. 2001. Breeding systems and genome evolution. Current 658 

Opinion in Genetics & Development 11:685-690. 659 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.11.18.517074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517074
http://creativecommons.org/licenses/by-nc/4.0/


 26 

Chen J, Swofford R, Johnson J, Cummings BB, Rogel N, Lindblad-Toh K, Haerty W, Di 660 

Palma F, Regev A. 2019. A quantitative framework for characterizing the 661 

evolutionary history of mammalian gene expression. Genome Research 29:53-63. 662 

Clark NL, Aagaard JE, Swanson WJ. 2006. Evolution of reproductive proteins from 663 

animals and plants. Reproduction 131:11-22. 664 

Coolon JD, McManus CJ, Stevenson KR, Graveley BR, Wittkopp PJ. 2014. Tempo and 665 

mode of regulatory evolution in Drosophila. Genome Research 24:797-808. 666 

Cooper N, Thomas GH, Venditti C, Meade A, Freckleton RP. 2016. A cautionary note 667 

on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biological 668 

Journal of the Linnean Society 118:64-77. 669 

De Bie T, Demuth JP, Cristianini N, Hahn MW. 2006. CAFE: a computational tool for the 670 

study of gene family evolution. Bioinformatics 22:1269-1271. 671 

Dunn CW, Luo X, Wu Z. 2013. Phylogenetic analysis of gene expression. Integrative 672 

and Comparative Biology 53:847-856. 673 

El Taher A, Böhne A, Boileau N, Ronco F, Indermaur A, Widmer L, Salzburger W. 2021. 674 

Gene expression dynamics during rapid organismal diversification in African cichlid 675 

fishes. Nature Ecology & Evolution 5:243-250. 676 

Fantini E, Sulli M, Zhang L, Aprea G, Jiménez-Gómez JM, Bendahmane A, Perrotta G, 677 

Giuliano G, Facella P. 2018. Pivotal roles of cryptochromes 1a and 2 in tomato 678 

development and physiology. Plant Physiology 179:732-748. 679 

Fay JC, Wittkopp PJ. 2008. Evaluating the role of natural selection in the evolution of 680 

gene regulation. Heredity 100:191-199. 681 

Felsenstein J. 1973. Maximum likelihood and minimum-steps methods for estimating 682 

evolutionary trees from data on discrete characters. Systematic Biology 22:240-249. 683 

FitzJohn RG. 2012. Diversitree: comparative phylogenetic analyses of diversification in 684 

R. Methods in Ecology and Evolution 3:1084-1092. 685 

Freckleton RP. 2012. Fast likelihood calculations for comparative analyses. Methods in 686 

Ecology and Evolution 3:940-947. 687 

Ge SX, Jung D, Yao R. 2020. ShinyGO: a graphical gene-set enrichment tool for 688 

animals and plants. Bioinformatics 36:2628-2629. 689 

Gillespie JH. 1986. Variability of evolutionary rates of DNA. Genetics 113:1077-1091. 690 

Goldberg EE, Kohn JR, Lande R, Robertson KA, Smith SA, Igi� B. 2010. Species 691 

selection maintains self-incompatibility. Science 330:493-495. 692 

Golding G. 1983. Estimates of DNA and protein sequence divergence: an examination 693 

of some assumptions. Molecular Biology and Evolution 1:125-142. 694 

Gossmann TI, Saleh D, Schmid MW, Spence MA, Schmid KJ. 2016. Transcriptomes of 695 

plant gametophytes have a higher proportion of rapidly evolving and young genes 696 

than sporophytes. Molecular Biology and Evolution 33:1669-1678. 697 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.11.18.517074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517074
http://creativecommons.org/licenses/by-nc/4.0/


 27 

Gossmann TI, Schmid MW, Grossniklaus U, Schmid KJ. 2014. Selection-driven 698 

evolution of sex-biased genes is consistent with sexual selection in Arabidopsis 699 

thaliana. Molecular Biology and Evolution 31:574-583. 700 

Greenway CA, Harder LD. 2007. Variation in ovule and seed size and associated size–701 

number trade-offs in angiosperms. American Journal of Botany 94:840-846. 702 

Hahn MW, De Bie T, Stajich JE, Nguyen C, Cristianini N. 2005. Estimating the tempo 703 

and mode of gene family evolution from comparative genomic data. Genome 704 

Research 15:1153-1160. 705 

Hahn MW, Demuth JP, Han S-G. 2007. Accelerated rate of gene gain and loss in 706 

primates. Genetics 177:1941-1949. 707 

Hahn MW, Nakhleh L. 2016. Irrational exuberance for resolved species trees. Evolution 708 

70:7-17. 709 

Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW. 2013. Estimating gene gain and 710 

loss rates in the presence of error in genome assembly and annotation using CAFE 711 

3. Molecular Biology and Evolution 30:1987-1997. 712 

Han QQ, Song YZ, Zhang JY, Liu LF. 2014. Studies on the role of the SlNAC3 gene in 713 

regulating seed development in tomato (Solanum lycopersicum). The Journal of 714 

Horticultural Science and Biotechnology 89:423-429. 715 

Harrison MC, Mallon EB, Twell D, Hammond RL. 2019. Deleterious mutation 716 

accumulation in Arabidopsis thaliana pollen genes: a role for a recent relaxation of 717 

selection. Genome Biology and Evolution 11:1939-1951. 718 

Harrison PW, Wright AE, Zimmer F, Dean R, Montgomery SH, Pointer MA, Mank JE. 719 

2015. Sexual selection drives evolution and rapid turnover of male gene expression. 720 

Proceedings of the National Academy of Sciences 112:4393-4398. 721 

Hibbins MS, Hahn MW. 2021. The effects of introgression across thousands of 722 

quantitative traits revealed by gene expression in wild tomatoes. PLoS Genetics 723 

17:e1009892. 724 

Hill MS, Zande PV, Wittkopp PJ. 2021. Molecular and evolutionary processes 725 

generating variation in gene expression. Nature Reviews Genetics 22:203-215. 726 

Hiscott G, Fox C, Parry M, Bryant D. 2016. Efficient recycled algorithms for quantitative 727 

trait models on phylogenies. Genome Biology and Evolution 8:1338-1350. 728 

Huerta-Cepas J, Serra F, Bork P. 2016. ETE 3: reconstruction, analysis, and 729 

visualization of phylogenomic data. Molecular Biology and Evolution 33:1635-1638. 730 

Igi� B, Bohs L, Kohn JR. 2006. Ancient polymorphism reveals unidirectional breeding 731 

system shifts. Proceedings of the National Academy of Sciences 103:1359-1363. 732 

King M-C, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. 733 

Science 188:107-116. 734 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.11.18.517074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517074
http://creativecommons.org/licenses/by-nc/4.0/


 28 

Landis MJ, Schraiber JG. 2017. Pulsed evolution shaped modern vertebrate body sizes. 735 

Proceedings of the National Academy of Sciences 114:13224-13229. 736 

Li M, Wang X, Li C, Li H, Zhang J, Ye Z. 2018. Silencing GRAS2 reduces fruit weight in 737 

tomato. Journal of Integrative Plant Biology 60:498-513.  738 

Liao Y, Smyth GK, Shi W. 2013. featureCounts: an efficient general purpose program 739 

for assigning sequence reads to genomic features. Bioinformatics 30:923-930. 740 

Meisel RP, Malone JH, Clark AG. 2012. Disentangling the relationship between sex-741 

biased gene expression and X-linkage. Genome Research 22:1255-1265. 742 

Mendes FK, Fuentes-González JA, Schraiber JG, Hahn MW. 2018. A multispecies 743 

coalescent model for quantitative traits. eLife 7:e36482. 744 

Mendes FK, Vanderpool D, Fulton B, Hahn MW. 2020. CAFE 5 models variation in 745 

evolutionary rates among gene families. Bioinformatics 36:5516-5518. 746 

Mione T, Anderson GJ. 1992. Pollen-ovule ratios and breeding system evolution in 747 

Solanum section Basarthrum (Solanaceae). American Journal of Botany 79:279-748 

287. 749 

Mitov V, Bartoszek K, Asimomitis G, Stadler T. 2020. Fast likelihood calculation for 750 

multivariate Gaussian phylogenetic models with shifts. Theoretical Population 751 

Biology 131:66-78. 752 

Moyle LC, Wu M, Gibson MJ. 2021. Reproductive proteins evolve faster than non-753 

reproductive proteins among Solanum species. Frontiers in Plant Science 754 

12:635990. 755 

O'Meara BC, Ané C, Sanderson MJ, Wainwright PC. 2006. Testing for different rates of 756 

continuous trait evolution using likelihood. Evolution 60:922-933. 757 

Pease JB, Haak DC, Hahn MW, Moyle LC. 2016. Phylogenomics reveals three sources 758 

of adaptive variation during a rapid radiation. PLoS Biology 14:e1002379. 759 

Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, Alfaro ME, 760 

Harmon LJ. 2014. geiger v2. 0: an expanded suite of methods for fitting 761 

macroevolutionary models to phylogenetic trees. Bioinformatics 30:2216-2218. 762 

Pennell MW, FitzJohn RG, Cornwell WK, Harmon LJ. 2015. Model adequacy and the 763 

macroevolution of angiosperm functional traits. The American Naturalist 186:E33-764 

E50. 765 

Price PD, Palmer Droguett DH, Taylor JA, Kim DW, Place ES, Rogers TF, Mank JE, 766 

Cooney CR, Wright AE. 2022. Detecting signatures of selection on gene expression. 767 

Nature Ecology & Evolution 6:1035-1045. 768 

Revell LJ, Harmon LJ. 2022. Phylogenetic Comparative Methods in R: Princeton 769 

University Press. 770 

Rick CM, Tanksley SD. 1981. Genetic variation in Solanum pennellii: Comparisons with 771 

two other sympatric tomato species. Plant Systematics and Evolution 139:11-45. 772 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.11.18.517074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517074
http://creativecommons.org/licenses/by-nc/4.0/


 29 

Robinson MD, Oshlack A. 2010. A scaling normalization method for differential 773 

expression analysis of RNA-seq data. Genome Biology 11:R25. 774 

Rohlfs RV, Harrigan P, Nielsen R. 2014. Modeling gene expression evolution with an 775 

extended Ornstein–Uhlenbeck process accounting for within-species variation. 776 

Molecular Biology and Evolution 31:201-211. 777 

Rohlfs RV, Nielsen R. 2015. Phylogenetic ANOVA: the expression variance and 778 

evolution model for quantitative trait evolution. Systematic Biology 64:695-708. 779 

Silvestro D, Kostikova A, Litsios G, Pearman PB, Salamin N. 2015. Measurement errors 780 

should always be incorporated in phylogenetic comparative analysis. Methods in 781 

Ecology and Evolution 6:340-346. 782 

Somel M, Creely H, Franz H, Mueller U, Lachmann M, Khaitovich P, Pääbo S. 2008. 783 

Human and chimpanzee gene expression differences replicated in mice fed different 784 

diets. PLoS ONE 3:e1504. 785 

Swanson WJ, Vacquier VD. 2002. The rapid evolution of reproductive proteins. Nature 786 

Reviews Genetics 3:137-144. 787 

Szövényi P, Ricca M, Hock Z, Shaw JA, Shimizu KK, Wagner A. 2013. Selection is no 788 

more efficient in haploid than in diploid life stages of an angiosperm and a moss. 789 

Molecular Biology and Evolution 30:1929-1939. 790 

Tarashansky AJ, Musser JM, Khariton M, Li P, Arendt D, Quake SR, Wang B. 2021. 791 

Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 792 

10:e66747. 793 

Vosters SL, Jewell CP, Sherman NA, Einterz F, Blackman BK, Moyle LC. 2014. The 794 

timing of molecular and morphological changes underlying reproductive transitions in 795 

wild tomatoes (Solanum sect. Lycopersicon). Molecular Ecology 23:1965-1978. 796 

Wagner GP, Kin K, Lynch VJ. 2012. Measurement of mRNA abundance using RNA-seq 797 

data: RPKM measure is inconsistent among samples. Theory in Biosciences 798 

131:281-285. 799 

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for 800 

transcriptomics. Nature Reviews Genetics 10:57-63. 801 

Whitehead MR, Lanfear R, Mitchell RJ, Karron JD. 2018. Plant mating systems often 802 

vary widely among populations. Frontiers in Ecology and Evolution 6:38. 803 

Wong A. 2011. The molecular evolution of animal reproductive tract proteins: What 804 

have we learned from mating-system comparisons? International Journal of 805 

Evolutionary Biology 2011:908735. 806 

Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA. 807 

2003. The evolution of transcriptional regulation in eukaryotes. Molecular Biology 808 

and Evolution 20:1377-1419. 809 

Yang J, Ruan H, Xu W, Gu X. 2019. TreeExp2: an integrated framework for 810 

phylogenetic transcriptome analysis. Genome Biology and Evolution 11:3276-3282. 811 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.11.18.517074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517074
http://creativecommons.org/licenses/by-nc/4.0/


 30 

Yang Z. 1996. Among-site rate variation and its impact on phylogenetic analyses. 812 

Trends in Ecology & Evolution 11:367-372. 813 

 814 

 815 

  816 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.11.18.517074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.517074
http://creativecommons.org/licenses/by-nc/4.0/


 31 

Figures and Tables 817 

Figure 1. Bounded Brownian motion model. An example trait is shown in the bottom 818 

graph, evolving along the tree shown above. Although the data input to CAGEE are 819 

linear expression levels, internally it logs expression to ensure higher variance among 820 

more highly expressed genes. There is also a minimum value, xmin, added to all tips. 821 

  822 

Figure 2. Accuracy of CAGEE. For five different values of �& we simulated 1000 823 

datasets, with each dataset comprised of either 1000 genes or 10000 genes. All genes 824 

in a dataset shared the same �&, but their values at the root were drawn independently 825 

from the prior. We then provided each simulated dataset to CAGEE in order to infer �&. 826 

Each box-and-whisker plot shows the mean (horizontal line), 50% interquartile range 827 

(box), 1.5X the interquartile range (vertical lines), and outliers (dots). 828 

 829 

Figure 3. Changes in gene expression along the tomato phylogeny. Given the set of 830 

relationships among the seven Solanum accessions used here, we tested multiple 831 

models that had branches assigned as different �& parameters (Table 1). In model A, all 832 

branches share �,&. In model B, all black branches share �,&, while all red branches 833 

share �&&. In model C, all black branches and the dashed red branch share �,&, while all 834 

solid red branches share �&&. In model D, all black branches share �,&, all solid red 835 

branches share �&&, and the dashed red branch is assigned �-&. Using the results from 836 

model D, we inferred the number of genes that had credible increases or decreases in 837 

expression level along each branch (results for all changes are shown in Supplementary 838 

Figure 4). Numbers are reported as +increases/-decreases for each branch.  839 
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Table 1. Model parameters estimated from the tomato data. 840 

 841 

Model Number of 

rates 
-lnL Ã

2
1 Ã

2
2 Ã

2
3 

A 1 67252.4 0.102   

B 2 65883.9 0.074 0.134  

C 2 65124.5 0.075 0.152  

D 3 65108.6 0.077 0.152 0.067 

 842 

  843 
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Supplementary Figures  844 

Supplementary Figure 1. The tree used for simulations. The Newick-formatted tree 845 

string with branch lengths is: 846 

((((sp1:1,sp2:1):1,sp3:2):1,sp4:3):1,((sp5:2,sp6:2):2)):1,sp7:5):1,sp8:6) 847 

 848 

Supplementary Figure 2. Accuracy of CAGEE. A) This figure is the same as Figure 2 849 

in the main text, but the ancestral state vector has length N=500 (Figure 2 uses N=200). 850 

B) For each of three different simulated values of �&, we randomly removed different 851 

amounts of data from an input dataset with 1,000 genes (the tree is the same as in all 852 

other simulations). C) For 1,000 genes simulated with �&=1 (dashed vertical line), we 853 

ran CAGEE independently on each one to estimate �&. D) We combined three datasets 854 

of 1,000 genes each simulated with three different values of �& (we repeated these 855 

simulations 10 times). The 10 estimates of �& on the combined datasets were slightly 856 

downwardly biased compared to the expected value (dashed horizontal line). Each dot 857 

represents each of the 10 estimates, with jitter added for clarity, 858 

 859 

Supplementary Figure 3. Trees used for simulations with lineage-specific values of �&.  860 

A) All black branches share a rate parameter (�,&), and all red branches share a rate 861 

parameter (�&&). This “sigma_tree” is specified in CAGEE with the Newick string: 862 

((((sp1:2,sp2:2):2,sp3:2):2,sp4:2):2,((sp5:1,sp6:1):1)):1,sp7:1):1,sp8:1) 863 

B) All black branches share a rate parameter (�,&), and all red branches share a rate 864 

parameter (�&&). This “sigma_tree” is specified in CAGEE with the Newick string: 865 

((((sp1:2,sp2:1):1,sp3:2):1,sp4:1):1,((sp5:1,sp6:2):1)):1,sp7:1):1,sp8:1) 866 

 867 

Supplementary Figure 4. Changes in gene expression along the tomato phylogeny. 868 

This figure is the same as Figure 3 in the main text, but all increases and decreases are 869 

reported, regardless of whether they are “credible”.  870 

 871 
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Supplementary Figure 5. Component diagram for the CAGEE software. 872 
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Table 1


Model
Number of 

rates
-lnL Ã2

1 Ã2
2 Ã2

3

A 1 67252.4 0.102

B 2 65883.9 0.074 0.134

C 2 65124.5 0.075 0.152

D 3 65108.6 0.077 0.152 0.067
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Supplementary Figure 2C
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Supplementary Figure 2D
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Supplementary Figure 3
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Supplementary Figure 5
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Supplementary Table 1
Set of Ã2 values
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