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Abstract

High-content image-based cell phenotyping provides fundamental insights in a broad variety
of life science areas. Striving for accurate conclusions and meaningful impact demands high
reproducibility standards, even more importantly with the advent of data sharing initiatives.
However, the sources and degree of biological and technical variability, and thus the
reproducibility and usefulness of meta-analysis of results from live-cell microscopy have not
been systematically investigated. Here, using high content data describing features of cell
migration and morphology, we determine the sources of variability across different scales,
including between laboratories, persons, experiments, technical repeats, cells and time points.
Significant technical variability occurred between laboratories, providing low value to direct
meta-analysis on the data from different laboratories. However, batch effect removal markedly
improved the possibility to combine image-based datasets of perturbation experiments. Thus,
reproducible quantitative high-content cell image data and meta-analysis depend on
standardized procedures and batch correction applied to studies of perturbation effects.

Introduction

High content cell imaging enables great advances in many life sciences fields, such as cell
biology, biomedicine and drug development. Modern microscope setups can generate vast
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amounts of high resolution data, rich across multiple dimensions, including high spatial and
temporal resolution, to differentiate cell structures in a multiplex manner and to spatially
resolve and quantify gene or protein expression, as well as the effects of drug perturbation® 2.
Accompanying these technological advances, initiatives have emerged to host and make
image-based datasets publicly available to the research community, including but not limited
to the Image Data Resource, the Cell Image Library and the Human Cell Atlas®®. These
platforms have improved the standards for data reporting, with more transparent datasets made
available in a sustainable manner’. However, to further consolidate reproducible microscopy
research, retrieving and cross-correlating image data accessible from different laboratories is
required to reuse the data for secondary purposes and to perform meta-analysis studies. An
obstacle to this is that we so far lack guidelines and rules for implementation and reuse of high-
content imaging data from different sources and, arguably, variability in procedures.
Consequently, the data variability between laboratories typically lack standardization and are
not suitable for high-quality meta-analysis studies®.

Other types of complex data in the life sciences have for long been shared and extensively
reused. As examples, multiple studies have addressed the reproducibility of data produced by
different laboratories, for instance of mass spectrometry and RNA-seq based data®*2.

With the aim of building an open data ecosystem for cell biology research through
standardization, dissemination and meta-analysis efforts, the Multimot consortium was
established to develop concrete standards for high-quality cell migration research®>%6, Here,
we present a study by five laboratories of the Multimot consortium, where we quantified the
sources of variability at different scales in high content imaging data of migrating cancer cells
in 2D and 3D environments. Importantly, the highest technical variability occurred between
laboratories, preventing direct high-quality meta-analysis of the primary data. However, in
perturbation experiments, the variability could be overcome by a batch effect removal approach
to achieve reliable meta-analyses of imaging-based datasets from different sources.

Results

2D live cell imaging design and performance

To quantify the sources of variability, a live cell imaging design of cell migration on a 2D
surface was replicated in a multi-level, nested structure. Migration behavior of HT1080
fibrosarcoma cells, stably expressing LifeAct-mCherry and H2B-EGFP, on a collagen coated
glass surface was recorded using automated fluorescent light microscopes equipped with an
environmental chamber. A detailed common protocol (Supplementary material 2-4) was
designed and distributed to all participating laboratories as well as the cell line and all key
reagents, aiming at minimizing the biological and technical variance. The design involved three
independent laboratories, three persons at each laboratory, three independent experiments by
each person, two conditions (control and ROCK inhibitor) in each experiment, and three
technical replicates in each condition (Fig. 1a). In each technical replicate, around 50 cells were
imaged in 5 min intervals for 6 h (Fig. 1b). Experiments were carried out independently by the
three participating laboratories, and deviations from the original protocol were kept for the
record, including independent microscopy platforms, objective specifications, control
hardware for climatization of the cell cultures during microscopy, reagent differences, as well
as how strictly the protocol was followed (Supplementary material, the Excel tables). All
microscope-derived image collection, data processing and statistical analysis was conducted
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by the Strdmblad laboratory. The uniform data analysis secures identical post experiment data
processing and allows to uncover sources of variability in the experimental procedures.

Data description

For all image time sequences, cellular and nuclear variables were automatically extracted using
CellProfiler by the same cell segmentation and tracking strategy, followed by Matlab
processing to define protrusion, retraction, and short lived cell regions'’ based on the
CellProfiler derived cell masks (see Methods section for details). The raw images, CellProfiler
pipeline, and Matlab scripts have been shared in the SciLifeLab Data Depository. As a result,
a total of 18 variables describing either morphological or dynamic features of the cell or the
nucleus were obtained and further analyzed. Results accounted for the evolution of each
variable over time, for each laboratory, person, experiment, technical replicate and cell (Fig 1c,
Supplementary figure 1), were displayed to identify differences in the magnitude or trends of
the described variables at these different levels.

Z-score standardization was applied to all features, and subsequent principal component
analysis (PCA) was performed in order to maximize and visualize the variability. The first two
principal components represent >60% of the variability in the observations (Supplementary
figure 2). By combining all observations, we found that the data concentrate around the mean
value and dissipate progressively from there, without apparent differentiated clustering of
observations in the PCA space (Fig. 1d) ‘8. Observations with different cell shape or the same
cell at different time points locate at different places of the PCA space (Fig. 1e-f). Differences
in data localization, variability, and clustering were detectable by 2D principal component
analysis representing variations among technical repeats, experiments, persons or labs (Fig 1g,
Supplementary figure 3).

Variability sources

We next quantified this variability across the different levels of the hierarchical experiment
structure. For this, we modelled the data using Linear Mixed Effect (LME) model for random
effects. To identify the sources of variabilities at different levels, we applied the LME model
to the control experiments for each of the 18 obtained variables, as well as for the first and
second principal components. From the model, we obtained the variance components at each
of the levels (temporal, cell, technical replicate, experiment, person, and laboratory) for each
variable (Supplementary figure 4a, b)) and categorized the sources of variability as biological
or technical variability. Biological variability originated from the cell identity (cells in a
population display variability for a given variable) and temporal variation (the same cell
displays variability for a given variable when studied at different time points). Technical
variability originated from the technical replicate, experiment, person, and laboratory. There
was substantial biological variability within the cell population and for each cell over time
(Supplementary figure 4a-c). By aggregating the variabilities, we identified technical sources
to contribute 32% (median value) of the total variance across all variables (Supplementary
figure 4d). While proper study design in terms of the sample size (number of cells, etc.) should
take the inherent biological variability into account to facilitate the detection of statistically
discernable differences, the reproducibility of the data is defined by their technical variability.
Importantly, among the technical variability, lab to lab variability was the major source of
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variability, followed by person, experiment and replicate, but with different relative
contributions among different variables (Fig. 2a-b, Supplementary figure 4c).

We then determined the source of technical variability in more detail at each level. We
computed the cumulative variability deriving from technical sources when adding additional
levels to a hypothetical experimental design with increasing complexity (Methods and
Supplementary table 1). For this, based on all the possible sub-datasets that fulfilled the
specified criteria ensuring dataset integrity, we observed a relatively smooth increase in
variability due to technical sources that progressed with increased number of technical
replicates, experiments, and persons. However, importantly, the cumulative variability was
almost doubled when data from two laboratories were combined. Adding a third laboratory to
the dataset did not substantially increase the cumulative variability (Fig. 2c-d, Supplementary
figure 5).

Batch effect removal

Inspired by the extensive research in RNA-seq experimental designs to measure and correct
for batch effects, we applied a similar approach to our study to curate the variability. For this,
the LME model was computed using the complete dataset (both control and ROCK inhibition
conditions), keeping the same random effects as previously used and including the control or
ROCK inhibition as fixed effect.

We conducted this approach to the Instantaneous Cell Speed (ICS, Fig 3a-b) and to the first
and second Principal Components of all variables (Fig 3c-d). For each observation, we
computed and discriminated the effects derived either from random effects (derived from the
lab, person, experiment, or technical replicate) or from the fixed effect (ROCK inhibition)*°.
The results clearly show that this approach allows for an unambiguous discrimination between
the control and treatment conditions, therefore showing that the experimental variability in cell
migration experiments can be addressed in order to better discriminate the effect of a given
perturbation (Fig. 3a-d, supplementary figure 6). The batch-effect-removed data showed a
robust increase in ICS as a result of the perturbation in the data from all three laboratories. In
comparison, only laboratory #1 produced a similar sized increase as without batch effect
removal, while the other labs displayed a small decrease (laboratory #2) or a small increase
(laboratory #3). Thus, the direct comparison of data from cell migration experiments among
our laboratories, each highly experienced in cell migration designs and experiments, could lead
to discordant conclusions on the perturbation effect. This highlights the importance of
statistical methods for batch effect removal in image-based quantitative studies.

We also applied the batch effect removal approach to a 3D cell migration dataset generated
from two independent laboratories with a similar strategy as for the 2D cell migration
experiment (supplementary figure 7). The difference of migration distance of the cells in
response to low (2.5 mg/ml) or high density (6 mg/ml) concentration of polymerized collagen
was already reliably discriminated comparing the raw data (supplementary figure 8), as
previously described 2°. However, significant lab-to-lab variance of results within each test
group was still observed (Fig. 3e left). Also in this case, the batch effect removal processing
significantly reduced the variance and provided a more robust difference (Fig. 3e right).
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Discussion

The emerging increase in high content imaging data sharing provides opportunities for data
reuse and meta-analysis, but the usefulness of these opportunities remains largely untested, and
the sources of variance within this type of data have not been characterized. In this study, we
found that variation between laboratories is the major sources of technical variance in high
content imaging data of cell morphology and migration features. This outcome suggests that,
although the experimental design was idealized including sharing of a detailed protocol, cells
and reagents, standardizing details such as cell passaging prior to the experiment, cell density
prior to seeding for migration, the type of fetal bovine serum, and cumulative passage humber
of cells, the lab-to-lab variance currently limits the value of meta-analysis of the basic high
content cell image data. This lab-to-lab variance may at least in part be explained by observed
local variations in equipment and practices, including use of different microscopes and their
differences in what imaging plates could be harbored, and lab-to-lab differences of cell density
apparent in the images, despite that the same standard method was used for cell quantification.

Importantly however, we show that application of a batch effect removal approach significantly
reduced the technical variance at all levels and provided useful meta-analysis of perturbation
effects in both 2D and 3D spheroid culture models performed in different laboratories, at least
under our highly standardized conditions. Similar batch effect removal approaches have been
important for meta-analysis in other fields and data types, such as from RNA-sequencing and
peptide-centered proteomics via mass spectrometry?-23,

Taken together, our study indicates that the usefulness of high content image data meta-analysis
is currently limited to the study of perturbation effects, and for which batch effect removal is
necessary. Our study entailed a high degree of standardization. Further studies are therefore
needed to define the usefulness of meta-analysis of more typical high content image datasets
that are more loosely standardized than ours and that often differ not only in their precise
design, but also in study purpose and aim.

Methods
Cell culture and imaging

2D cell migration

We developed highly detailed protocols for cell culture and seeding for live cell imaging that
was shared and used for all experiments (see Supplementary material 2). Briefly, the Friedl
laboratory provided HT1080 cells stably expressing LifeAct-mCherry & H2B-EGFP (before
sharing, the Sahai laboratory performed the standard cell authentication procedure on this cell
line by comparing its STR profile to the public database). Mycoplasma infection was excluded
prior to the experiments. Cells were cultured with high glucose DMEM supplemented with
FBS (10%), sodium pyruvate (ImM) and penicillin/streptomycin (100 U/ml). Cells were
passaged at ~80 - 90 % confluence, up to passage number 20. One day before imaging, 2 x 10°
cells were seeded onto one well of the 6 well plates and left overnight in the incubator. On the
experimental day, the assay wells were prepared as follows: 100 ul of 20 pg/ml collagen | was
added to each of six wells in a 96-well imaging plate or chambered coverslip and incubated at
37°C for 2 h. The supernatant was discarded by flipping the plate upside down and
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subsequently, each well was incubated at 37°C for 20 min with 100 pl of heat denatured 0.5%
BSA for blocking. 500 cells in 100 pl of serum free culture medium were seeded in each of the
six individual wells of the 96-well imaging plate or chambered coverslip, ensuring
homogeneous cell distribution by tapping the plate or chambered coverslips in perpendicular
directions. After 10 min, during which cells attached to the well bottom, the imaging plate was
incubated at 37°C and 5% COz for 2.5 h.

For the live cell imaging, we used multidimensional automatized microscopes with an
environmental chamber to keep temperature, humidity, and CO> constant. Pre-warmed media
with or without ROCK inhibitor (Y27632, final concentration at 15 uM) was added before the
start of imaging. A 20x 0.75 NA objective was used and tiled images (5 x 5) were generated to
capture a large area in each well. The images were acquired in 5 min interval for 6 h.

The detailed protocol is attached in the supplementary material (Supplementary Material 2-4).
Any deviations from the distributed procedure were recorded and summarized (Supplementary
Material 5).

3D spheroid invasion assay

We developed a detailed workflow for a 3D spheroid invasion assay that was shared and used
for all experiments performed at three different locations. For detailed protocols for 3D
spheroid culture and labeling, imaging, and image analysis, see Supplementary Material 6, 7,
and 8, respectively.

3D spheroid culture and labeling. Briefly, the Friedl laboratory provided HT1080 cells. Before
sharing among the three groups, the Sahai laboratory validated this cell line by comparing its
STR profile to the published ones. Mycoplasma infection was excluded prior to the
experiments. Cells were cultured in T75 flask with 10% CO- at 37°C. Multicellular spheroids
containing 1000 HT1080 cells were generated using hanging-drop culture method?*. 2. 24 The
spheroids were embedded in rat tail collagen I (Corning, Cat no. 354249), in up to 18wells of
96-well imaging plates per collagen concentration, using 1 spheroid per gel and a final collagen
concentration of 2.5 or 6 mg/ml. Former protocols for spheroid embedding®® % were adapted
to have control over the number of spheroids per well, spheroid height with respect to imaging
window and the onset of collagen polymerization, to minimize variation between technical
repeats per plate. Plates were incubated for 24 hours at 37°C to establish cancer cell invasion
in three dimensions, prior to fixation in 4 % PFA. The 3D cell cultures were fluorescently
stained with DAPI (Sigma, D9542, 2 ug/ml) and AlexaFluor633-Phalloidin (Molecular Probes,
A22284, 1:200 dilution) and stored (preferably for <48 hours) at 4°C prior to imaging.

Imaging. In brief, the lower left corner of the spheroid was positioned in the scan field, with
the border of the spheroid core touching the image border. A z-range of up to 120 um was used
to image from z = 1/2 to z = 4/5 of spheroid dimensions. Transmission, reflection and
fluorescence channels were recorded sequentially at 8-bit resolution. The laser power was set
close to the saturation limit of the dye. The detector amplification (high voltage) was set in
such a manner, that the brightest cells in migration zones made use of the full digital detection
range. In both laboratories, imaging was performed using a Zeiss LSM880 equipped with a 20x
0.8 NA objective. The following microscope parameters were used: scan field 708.5um?, pixel
size 1.2 um, pixel dwell time 1.3 ps, z-step size 2 um and line averaging 3.
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All the metadata of the images were also recorded.

Image processing
2D live cell imaging data

Images were converted from the original format to .tif format. To generate large image
composites, stitching was performed either automatically during acquisition or via a custom-
made MatLab script. Images from different laboratories were resized to the same resolution
(0.8260 um/pixel), to allow proper further comparison. A CellProfiler (v 2.2.0) pipeline was
used to automatically segment and track cells and nuclei, and to extract 15 morphological and
dynamic variables from the raw images (shown in Figure 2a). Because images from different
laboratories were acquired with different types of microscopes, threshold correction factors for
the segmentation on cells and nuclei were adapted to the data from different labs.

In order to identify protrusions, retractions, and short-lived cell regions, we compared
consecutive, segmented cell images from the CellProfiler analysis results using tailored Matlab
scripts. Protrusions were identified as regions present in a cell at a certain time point but absent
in the previous. Retractions were defined as regions present at one time point but absent in the
next time point. Short-lived regions are those regions that are present at only one time point
but not in the ones directly before or after, corresponding to a lifetime of <10 min *'.

The CellProfiler pipelines for each laboratory and the Matlab scripts are available together with
the raw images at the SciLifeLab Data Repository
(https://doi.org/10.17044/scilifelab.21407402).

3D spheroid invasion data

This workflow is implemented in Fiji as the Nucleus Annotation 3D (NA) and the Cell
Migration Analyser 3D (CMA) plugin sets (https://github.com/Mverp/Nucleus-Annotation-3D
and https://github.com/Mverp/Cell3DMeasurements) and was distributed to 2 independent labs
(RUMC and CRICK) for standardized analysis of independent datasets from spheroid culture
performed in each lab independently (Supplementary material 8). First, the outline of the
spheroid core was defined by manually setting four points far away from each other, in the 3D
image stack to be analyzed, at the spheroid border. Based on the four points, the annotation
program defined a sphere in the dataset, which was used as a reference for migration distance
from the spheroid core. Then, the DAPI channel of the 3D image datasets was used for nuclear
segmentation, segments at the border were removed and the distance of the center of each
nucleus to the defined spheroid core was quantified and recorded for subsequent analysis.

To optimize and validate the plugin, segmentation outputs were compared to manually
annotated ‘gold standard’ images. After segmentation, the nuclei occurring in both annotation
and segmentation output, the true positives, were automatically calculated. Next, the
performance of the segmentation was quantified by calculating the precision (# true positives /
# nuclei in segmentation) and recall (# true positives / # nuclei in the annotation). The analysis
was performed on the image data of both labs using the optimized settings
(MigrationAnalysisParameters.txt, included in the SciLifeLab Data Repository
https://doi.org/10.17044/scilifelab.21407402).
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Data processing and modelling of the 2D cell migration data

Pre-processing: Based on the original tracking data, the static and rounded cells were excluded
based on visual assessment. Then the duplicated and merged cell/nuclear trajectories were
identified and removed. Excessively large (cell area > third quantile + 1.5*inter quantile range
of the areas from all cells) or small (nuclear area < 100 um?) cells were excluded based on the
measurements of cellular and nuclear area, in order to remove noise from cell debris and cell
aggregations. The remaining trajectories were smoothed with the rolling window method with
window size of 9. The Instantaneous Cell Speed (ICS) was calculated based on the smoothed
trajectories.

The linear mixed effect modelling was performed based on the R package Ime4?®.

For the cumulative variability calculation, we designed an hypothetical experimental design
with increasing levels of complexity: 2 or 3 replicates, 2 or 3 experiments with 3 replicates
each, 2 or 3 persons performing 3 experiments with 3 replicates each, or 2 or 3 labs where 3
persons perform 3 experiments with 3 replicates. For this, we generated all the possible sub-
datasets which fulfilled the specified criteria ensuring dataset consistency (this is, we avoided
the combination of data which did not have the same origin in the higher level of the
hierarchical structure), and computed the cumulative variability for each level. Supplementary
table 1 shows how the datasets were generated. As a control, we firstly randomized the original
data and then generated similar sub-datasets as the original ones and calculated the cumulative
variability in the same way.

Batch effect removal

After fitting the original data with linear mixed effect model to extract the fixed and random
effects, each single observation was modified by subtracting the intercept from all levels (lab,
person, experiment, technical replicate, and observation) and adding the fixed effect between
two conditions (control vs perturbation in 2D migration; 2.5 mg/mL vs 6 mg/mL collagen in
3D invasion).

Statistical analysis
Statistical analysis was performed using R (R Core Team).

Data availability
All of the raw images, survey, image analysis pipelines, and data analysis scripts are shared in
the SciLifeLab Data Repository (https://doi.org/10.17044/scilifelab.21407402).
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Figure 1. Study design and initial results. a. Schematic of the study design. The study
involved three independent laboratories, three persons in each laboratory, three independent
experiments by each person, two conditions (control or ROCK inhibitor) in each experiment,
and three replicates in each condition. For each replicate, around 50 cells were imaged for 6 h
in 5 min time intervals. 18 variables were quantified from each image series. b. Example of
acquired time lapse images. Left: stitched large image; right: cropped images of one cell at
different time points. Scale bar: 100 um c. Quantification results of Instantaneous Cell
Speed (ICS) over time for each lab (L1-3), person (P1-3), experiment (E1-3), and technical
replicate (C1-C3). Lines in different colour represent the data from the control condition
(untreated cells) of three different experiments. Different style of the lines with the same colour
represent three different technical replicates within one experiment. The error bar indicates the
first and third quartiles of the data at each time point. d. Principal component analysis results
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of all variables extracted from the entire data. Grey dots show the position of the first and
second principal components for each observation. Inset marks the density of the observation
dots. e. Visualization of cell shapes at different locations of the PCA space. Grey dots show
the position of the first and second principal components for each observation. Representative
cell shapes at specific locations in the PCA plot are shown in magenta. f. The locations of the
same cell at different time points within the PCA plot. Grey dots show the position of the
first and second principal components for each observation. Orange and blue dots show the
locations of two different cells (dash circled in e) in the PCA space at different time points. g.
Principal component analysis results shown for each person (P) in each laboratory (L).
Black dots show the position of the first and second principal components for each observation
from the control condition (untreated cells). Colored lines show the 2D density plots of the
technical replicates, where lines with different colors in the same plot represent different
experiments. The principal component space is identical in all the plots.
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Figure 2. Lab to lab variance contributes the most to the technical variance. a-b. Variance
components of each variable from all technical levels based on the Linear Mixed Effect
(LME) model analysis. a: absolute value; b: relative value. c-d. Cumulative variability of
Instantaneous Cell Speed (ICS) (c) and first principal component (d) at the levels of
technical replicate, experiment, person, and laboratory. Boxplots show variances with 2 or
3 replicates, experiments, persons, or laboratories, calculated at each level. Red dots show the
mean value of the cumulative variance that are linked with red lines. As a control, cyan dots
and lines show the cumulative variance of the same data after randomization.
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Figure 3. Batch effect removal dramatically reduces the variance. a. Instantaneous Cell
Speed (ICS) distribution before (top) and after (bottom) batch effect removal on control
(C - black) and perturbed (ROCK inhibition) (T - red). Boxplots display ICS observations
for each replicate, sorted by increasing value of the mean. Control and perturbation conditions
are shown in black and red respectively. Laboratories in which each replicate was performed
are color coded below the boxplots. b. Mean ICS values and variance before (top) and after
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(bottom) batch effect removal. Boxplot of mean ICS of each technical replicate from control
and perturbed conditions in different laboratories. Laboratories are colour coded, while the
aggregate results from all labs are shown in black (control) and red (perturbed). The numbers
below the corresponding boxplot show mean + standard division of the aggregated
control/treated results from all labs. c. Heatmap of the distance matrix before and after
batch effect removal. The heatmaps show average values of the distance matrix between 1st
and 2nd Principal Components per lab, person, experiment, condition, and technical replicate
before (left) and after (right) batch effect removal. Each row/column corresponds to one
technical replicate. Sorting based on hierarchical clustering. d. Batch effect removal in
principal component data of 2D cell migration data. Technical replicate of 1st and 2nd
Principal Component average values before (left) and after (right) batch effect removal are
shown in the same PCA space. Each dot represents one technical replicate. Results from
different laboratories/conditions are colour coded as indicated. e. Batch effect removal in 3D
cell migration data. Boxplot shows the mean 3D cell migration distance of HT1080 cells
embedded in different concentrations of collagen before (left) and after (right) batch effect
removal. Different ECM concentrations are shown in black (2.5 mg/mL) or red (6 mg/mL) and
data from different laboratories are indicated with green (Laboratory #4) and magenta
(Laboratory #5). The sums of results from both labs are shown in black (2.5 mg/mL) and red
(6 mg/mL). The mean + standard division of the aggregated 2.5mg/mL or 6 mg/mL results
from both labs are shown with the corresponding boxplot. For the boxplots in a, b, and e, in
each box, the central mark indicates the median, and the bottom and top edges of the box
indicate the 1% quartile and 3" quartile respectively.
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