
Multi-site assessment of reproducibility  

in high-content live cell imaging data 

Jianjiang Hu1,8, Xavier Serra-Picamal1,8, Gert-Jan Bakker2, Marleen Van Troys3, Sabina Winograd-

katz4, Nil Ege5, Xiaowei Gong1, Yuliia Didan1, Inna Grosheva4, Omer Polansky4, Karima Bakkali3, 

Evelien Van Hamme6, Merijn van Erp2, Manon Vullings2, Felix Weiss2, Jarama Clucas5, Anna M. 

Dowbaj5, Erik Sahai5, Christophe Ampe3, Benjamin Geiger4, Peter Friedl2, Matteo Bottai7, Staffan 

Strömblad1,9  

1. Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden 

2. Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands  

3. Department of Biomolecular Medicine, Ghent University, Ghent, Belgium 

4. Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, 

Israel  

5. The Francis Crick Institute, London, United Kingdom  

6. Bio Imaging Core, VIB Center for Inflammation Research, Ghent, Belgium  

7. Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 

Sweden 

8. Equal contribution 

9. Corresponding author 

 

Abstract 

High-content image-based cell phenotyping provides fundamental insights in a broad variety 

of life science areas. Striving for accurate conclusions and meaningful impact demands high 

reproducibility standards, even more importantly with the advent of data sharing initiatives. 

However, the sources and degree of biological and technical variability, and thus the 

reproducibility and usefulness of meta-analysis of results from live-cell microscopy have not 

been systematically investigated. Here, using high content data describing features of cell 

migration and morphology, we determine the sources of variability across different scales, 

including between laboratories, persons, experiments, technical repeats, cells and time points. 

Significant technical variability occurred between laboratories, providing low value to direct 

meta-analysis on the data from different laboratories. However, batch effect removal markedly 

improved the possibility to combine image-based datasets of perturbation experiments. Thus, 

reproducible quantitative high-content cell image data and meta-analysis depend on 

standardized procedures and batch correction applied to studies of perturbation effects. 

 

Introduction 

High content cell imaging enables great advances in many life sciences fields, such as cell 

biology, biomedicine and drug development. Modern microscope setups can generate vast 
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amounts of high resolution data, rich across multiple dimensions, including high spatial and 

temporal resolution, to differentiate cell structures in a multiplex manner and to spatially 

resolve and quantify gene or protein expression, as well as the effects of drug perturbation1, 2.  

Accompanying these technological advances, initiatives have emerged to host and make 

image-based datasets publicly available to the research community, including but not limited 

to the Image Data Resource, the Cell Image Library and the Human Cell Atlas3-6. These 

platforms have improved the standards for data reporting, with more transparent datasets made 

available in a sustainable manner7. However, to further consolidate reproducible microscopy 

research, retrieving and cross-correlating image data accessible from different laboratories is 

required to reuse the data for secondary purposes and to perform meta-analysis studies. An 

obstacle to this is that we so far lack guidelines and rules for implementation and reuse of high-

content imaging data from different sources and, arguably, variability in procedures. 

Consequently, the data variability between laboratories typically lack standardization and are 

not suitable for high-quality meta-analysis studies8.   

Other types of complex data in the life sciences have for long been shared and extensively 

reused. As examples, multiple studies have addressed the reproducibility of data produced by 

different laboratories, for instance of mass spectrometry and RNA-seq based data9-12.  

With the aim of building an open data ecosystem for cell biology research through 

standardization, dissemination and meta-analysis efforts, the Multimot consortium was 

established to develop concrete standards for high-quality cell migration research13-16. Here, 

we present a study by five laboratories of the Multimot consortium, where we quantified the 

sources of variability at different scales in high content imaging data of migrating cancer cells 

in 2D and 3D environments. Importantly, the highest technical variability occurred between 

laboratories, preventing direct high-quality meta-analysis of the primary data. However, in 

perturbation experiments, the variability could be overcome by a batch effect removal approach 

to achieve reliable meta-analyses of imaging-based datasets from different sources.  

 

Results 

2D live cell imaging design and performance 

To quantify the sources of variability, a live cell imaging design of cell migration on a 2D 

surface was replicated in a multi-level, nested structure. Migration behavior of HT1080 

fibrosarcoma cells, stably expressing LifeAct-mCherry and H2B-EGFP, on a collagen coated 

glass surface was recorded using automated fluorescent light microscopes equipped with an 

environmental chamber. A detailed common protocol (Supplementary material 2-4) was 

designed and distributed to all participating laboratories as well as the cell line and all key 

reagents, aiming at minimizing the biological and technical variance. The design involved three 

independent laboratories, three persons at each laboratory, three independent experiments by 

each person, two conditions (control and ROCK inhibitor) in each experiment, and three 

technical replicates in each condition (Fig. 1a). In each technical replicate, around 50 cells were 

imaged in 5 min intervals for 6 h (Fig. 1b). Experiments were carried out independently by the 

three participating laboratories, and deviations from the original protocol were kept for the 

record, including independent microscopy platforms, objective specifications, control 

hardware for climatization of the cell cultures during microscopy, reagent differences, as well 

as how strictly the protocol was followed (Supplementary material, the Excel tables). All 

microscope-derived image collection, data processing and statistical analysis was conducted 
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by the Strömblad laboratory. The uniform data analysis secures identical post experiment data 

processing and allows to uncover sources of variability in the experimental procedures. 

 

Data description  

For all image time sequences, cellular and nuclear variables were automatically extracted  using 

CellProfiler by the same cell segmentation and tracking strategy, followed by Matlab 

processing to define protrusion, retraction, and short lived cell regions17 based on the 

CellProfiler derived cell masks (see Methods section for details). The raw images, CellProfiler 

pipeline, and Matlab scripts have been shared in the SciLifeLab Data Depository. As a result, 

a total of 18 variables describing either morphological or dynamic features of the cell or the 

nucleus were obtained and further analyzed. Results accounted for the evolution of each 

variable over time, for each laboratory, person, experiment, technical replicate and cell (Fig 1c, 

Supplementary figure 1), were displayed to identify differences in the magnitude or trends of 

the described variables at these different levels. 

Z-score standardization was applied to all features, and subsequent principal component 

analysis (PCA) was performed in order to maximize and visualize the variability. The first two 

principal components represent >60% of the variability in the observations (Supplementary 

figure 2). By combining all observations, we found that the data concentrate around the mean 

value and dissipate progressively from there, without apparent differentiated clustering of 

observations in the PCA space (Fig. 1d) 18. Observations with different cell shape or the same 

cell at different time points locate at different places of the PCA space (Fig. 1e-f). Differences 

in data localization, variability, and clustering were detectable by 2D principal component 

analysis representing variations among technical repeats, experiments, persons or labs (Fig 1g, 

Supplementary figure 3). 

 

Variability sources  

We next quantified this variability across the different levels of the hierarchical experiment 

structure. For this, we modelled the data using Linear Mixed Effect (LME) model for random 

effects. To identify the sources of variabilities at different levels, we applied the LME model 

to the control experiments for each of the 18 obtained variables, as well as for the first and 

second principal components. From the model, we obtained the variance components at each 

of the levels (temporal, cell, technical replicate, experiment, person, and laboratory) for each 

variable (Supplementary figure 4a, b)) and categorized the sources of variability as biological 

or technical variability. Biological variability originated from the cell identity (cells in a 

population display variability for a given variable) and temporal variation (the same cell 

displays variability for a given variable when studied at different time points). Technical 

variability originated from the technical replicate, experiment, person, and laboratory. There 

was substantial biological variability within the cell population and for each cell over time 

(Supplementary figure 4a-c). By aggregating the variabilities, we identified technical sources 

to contribute 32% (median value) of the total variance across all variables (Supplementary 

figure 4d). While proper study design in terms of the sample size (number of cells, etc.) should 

take the inherent biological variability into account to facilitate the detection of statistically 

discernable differences, the reproducibility of the data is defined by their technical variability. 

Importantly, among the technical variability, lab to lab variability was the major source of 
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variability, followed by person, experiment and replicate, but with different relative 

contributions among different variables (Fig. 2a-b, Supplementary figure 4c).  

 

We then determined the source of technical variability in more detail at each level. We 

computed the cumulative variability deriving from technical sources when adding additional 

levels to a hypothetical experimental design with increasing complexity (Methods and 

Supplementary table 1). For this, based on all the possible sub-datasets that fulfilled the 

specified criteria ensuring dataset integrity, we observed a relatively smooth increase in 

variability due to technical sources that progressed with increased number of technical 

replicates, experiments, and persons. However, importantly, the cumulative variability was 

almost doubled when data from two laboratories were combined. Adding a third laboratory to 

the dataset did not substantially increase the cumulative variability (Fig. 2c-d, Supplementary 

figure 5). 

 

Batch effect removal 

Inspired by the extensive research in RNA-seq experimental designs to measure and correct 

for batch effects, we applied a similar approach to our study to curate the variability. For this, 

the LME model was computed using the complete dataset (both control and ROCK inhibition 

conditions), keeping the same random effects as previously used and including the control or 

ROCK inhibition as fixed effect.  

We conducted this approach to the Instantaneous Cell Speed (ICS, Fig 3a-b) and to the first 

and second Principal Components of all variables (Fig 3c-d). For each observation, we 

computed and discriminated the effects derived either from random effects (derived from the 

lab, person, experiment, or technical replicate) or from the fixed effect (ROCK inhibition)19. 

The results clearly show that this approach allows for an unambiguous discrimination between 

the control and treatment conditions, therefore showing that the experimental variability in cell 

migration experiments can be addressed in order to better discriminate the effect of a given 

perturbation (Fig. 3a-d, supplementary figure 6). The batch-effect-removed data showed a 

robust increase in ICS as a result of the perturbation in the data from all three laboratories. In 

comparison, only laboratory #1 produced a similar sized increase as without batch effect 

removal, while the other labs displayed a small decrease (laboratory #2) or a small increase 

(laboratory #3). Thus, the direct comparison of data from cell migration experiments among 

our laboratories, each highly experienced in cell migration designs and experiments, could lead 

to discordant conclusions on the perturbation effect. This highlights the importance of 

statistical methods for batch effect removal in image-based quantitative studies. 

We also applied the batch effect removal approach to a 3D cell migration dataset generated 

from two independent laboratories with a similar strategy as for the 2D cell migration 

experiment (supplementary figure 7). The difference of migration distance of the cells in 

response to low (2.5 mg/ml) or high density (6 mg/ml) concentration of polymerized collagen 

was already reliably discriminated comparing the raw data (supplementary figure 8), as 

previously described 20. However, significant lab-to-lab variance of results within each test 

group was still observed (Fig. 3e left). Also in this case, the batch effect removal processing 

significantly reduced the variance and provided a more robust difference (Fig. 3e right).  
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Discussion 

The emerging increase in high content imaging data sharing provides opportunities for data 

reuse and meta-analysis, but the usefulness of these opportunities remains largely untested, and 

the sources of variance within this type of data have not been characterized. In this study, we 

found that variation between laboratories is the major sources of technical variance in high 

content imaging data of cell morphology and migration features. This outcome suggests that, 

although the experimental design was idealized including sharing of a detailed protocol, cells 

and reagents, standardizing details such as cell passaging prior to the experiment, cell density 

prior to seeding for migration, the type of fetal bovine serum, and cumulative passage number 

of cells, the lab-to-lab variance currently limits the value of meta-analysis of the basic high 

content cell image data. This lab-to-lab variance may at least in part be explained by observed 

local variations in equipment and practices, including use of different microscopes and their 

differences in what imaging plates could be harbored, and lab-to-lab differences of cell density 

apparent in the images, despite that the same standard method was used for cell quantification.  

Importantly however, we show that application of a batch effect removal approach significantly 

reduced the technical variance at all levels and provided useful meta-analysis of perturbation 

effects in both 2D and 3D spheroid culture models performed in different laboratories, at least 

under our highly standardized conditions. Similar batch effect removal approaches have been 

important for meta-analysis in other fields and data types, such as from RNA-sequencing and 

peptide-centered proteomics via mass spectrometry21-23.   

Taken together, our study indicates that the usefulness of high content image data meta-analysis 

is currently limited to the study of perturbation effects, and for which batch effect removal is 

necessary. Our study entailed a high degree of standardization.   Further studies are therefore 

needed to define the usefulness of meta-analysis of more typical high content image datasets 

that are more loosely standardized than ours and that often differ not only in their precise 

design, but also in study purpose and aim.  

 

 

Methods 

Cell culture and imaging 

2D cell migration  

We developed highly detailed protocols for cell culture and seeding for live cell imaging that 

was shared and used for all experiments (see Supplementary material 2). Briefly, the Friedl 

laboratory provided HT1080 cells stably expressing LifeAct-mCherry & H2B-EGFP (before 

sharing, the Sahai laboratory performed the standard cell authentication procedure on this cell 

line by comparing its STR profile to the public database). Mycoplasma infection was excluded 

prior to the experiments. Cells were cultured with high glucose DMEM supplemented with 

FBS (10%), sodium pyruvate (1mM) and penicillin/streptomycin (100 U/ml). Cells were 

passaged at ~80 - 90 % confluence, up to passage number 20. One day before imaging, 2 x 105 

cells were seeded onto one well of the 6 well plates and left overnight in the incubator. On the 

experimental day, the assay wells were prepared as follows: 100 µl of 20 µg/ml collagen I was 

added to each of six wells in a 96-well imaging plate or chambered coverslip and incubated at 

37℃ for 2 h. The supernatant was discarded by flipping the plate upside down and 
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subsequently, each well was incubated at 37℃ for 20 min with 100 µl of heat denatured 0.5% 

BSA for blocking. 500 cells in 100 µl of serum free culture medium were seeded in each of the 

six individual wells of the 96-well imaging plate or chambered coverslip, ensuring 

homogeneous cell distribution by tapping the plate or chambered coverslips in perpendicular 

directions. After 10 min, during which cells attached to the well bottom, the imaging plate was 

incubated at 37℃ and 5% CO2 for 2.5 h. 

For the live cell imaging, we used multidimensional automatized microscopes with an 

environmental chamber to keep temperature, humidity, and CO2 constant. Pre-warmed media 

with or without ROCK inhibitor (Y27632, final concentration at 15 μM) was added before the 

start of imaging. A 20x 0.75 NA objective was used and tiled images (5 x 5) were generated to 

capture a large area in each well. The images were acquired in 5 min interval for 6 h.  

The detailed protocol is attached in the supplementary material (Supplementary Material 2-4). 

Any deviations from the distributed procedure were recorded and summarized (Supplementary 

Material 5). 

 

3D spheroid invasion assay 

We developed a detailed workflow for a 3D spheroid invasion assay that was shared and used 

for all experiments performed at three different locations. For detailed protocols for 3D 

spheroid culture and labeling, imaging, and image analysis, see Supplementary Material 6, 7, 

and 8, respectively.  

3D spheroid culture and labeling. Briefly, the Friedl laboratory provided HT1080 cells. Before 

sharing among the three groups, the Sahai laboratory validated this cell line by comparing its 

STR profile to the published ones. Mycoplasma infection was excluded prior to the 

experiments. Cells were cultured in T75 flask with 10% CO2 at 37℃. Multicellular spheroids 

containing 1000 HT1080 cells were generated using hanging-drop culture method24. 24. 24.The 

spheroids were embedded in rat tail collagen I (Corning, Cat no. 354249), in up to 18wells of 

96-well imaging plates per collagen concentration, using 1 spheroid per gel and a final collagen 

concentration of 2.5 or 6 mg/ml. Former protocols for spheroid embedding20, 25 were adapted 

to have control over the number of spheroids per well, spheroid height with respect to imaging 

window and the onset of collagen polymerization, to minimize variation between technical 

repeats per plate. Plates were incubated for 24 hours at 37°C to establish cancer cell invasion 

in three dimensions, prior to fixation in 4 % PFA. The 3D cell cultures were fluorescently 

stained with DAPI (Sigma, D9542, 2 µg/ml) and AlexaFluor633-Phalloidin (Molecular Probes, 

A22284, 1:200 dilution) and stored (preferably for <48 hours) at 4°C prior to imaging.  

Imaging. In brief, the lower left corner of the spheroid was positioned in the scan field, with 

the border of the spheroid core touching the image border. A z-range of up to 120 µm was used 

to image from z = 1/2 to z = 4/5 of spheroid dimensions. Transmission, reflection and 

fluorescence channels were recorded sequentially at 8-bit resolution. The laser power was set 

close to the saturation limit of the dye. The detector amplification (high voltage) was set in 

such a manner, that the brightest cells in migration zones made use of the full digital detection 

range. In both laboratories, imaging was performed using a Zeiss LSM880 equipped with a 20x 

0.8 NA objective. The following microscope parameters were used: scan field 708.5µm2, pixel 

size 1.2 µm, pixel dwell time 1.3 µs, z-step size 2 µm and line averaging 3. 
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All the metadata of the images were also recorded. 

 

Image processing 

2D live cell imaging data 

Images were converted from the original format to .tif format. To generate large image 

composites, stitching was performed either automatically during acquisition or via a custom-

made MatLab script. Images from different laboratories were resized to the same resolution 

(0.8260 μm/pixel), to allow proper further comparison. A CellProfiler (v 2.2.0) pipeline was 

used to automatically segment and track cells and nuclei, and to extract 15 morphological and 

dynamic variables from the raw images (shown in Figure 2a). Because images from different 

laboratories were acquired with different types of microscopes, threshold correction factors for 

the segmentation on cells and nuclei were adapted to the data from different labs.  

In order to identify protrusions, retractions, and short-lived cell regions, we compared 

consecutive, segmented cell images from the CellProfiler analysis results using tailored Matlab 

scripts. Protrusions were identified as regions present in a cell at a certain time point but absent 

in the previous. Retractions were defined as regions present at one time point but absent in the 

next time point. Short-lived regions are those regions that are present at only one time point 

but not in the ones directly before or after, corresponding to a lifetime of <10 min 17. 

The CellProfiler pipelines for each laboratory and the Matlab scripts are available together with 

the raw images at the SciLifeLab Data Repository 

(https://doi.org/10.17044/scilifelab.21407402). 

3D spheroid invasion data 

This workflow is implemented in Fiji as the Nucleus Annotation 3D (NA) and the Cell 

Migration Analyser 3D (CMA) plugin sets (https://github.com/Mverp/Nucleus-Annotation-3D 

and https://github.com/Mverp/Cell3DMeasurements) and was distributed to 2 independent labs 

(RUMC and CRICK) for standardized analysis of independent datasets from spheroid culture 

performed in each lab independently (Supplementary material 8). First, the outline of the 

spheroid core was defined by manually setting four points far away from each other, in the 3D 

image stack to be analyzed, at the spheroid border. Based on the four points, the annotation 

program defined a sphere in the dataset, which was used as a reference for migration distance 

from the spheroid core. Then, the DAPI channel of the 3D image datasets was used for nuclear 

segmentation, segments at the border were removed and the distance of the center of each 

nucleus to the defined spheroid core was quantified and recorded for subsequent analysis. 

To optimize and validate the plugin, segmentation outputs were compared to manually 

annotated ‘gold standard’ images. After segmentation, the nuclei occurring in both annotation 

and segmentation output, the true positives, were automatically calculated. Next, the 

performance of the segmentation was quantified by calculating the precision (# true positives / 

# nuclei in segmentation) and recall (# true positives / # nuclei in the annotation). The analysis 

was performed on the image data of both labs using the optimized settings 

(MigrationAnalysisParameters.txt, included in the SciLifeLab Data Repository 

https://doi.org/10.17044/scilifelab.21407402). 
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Data processing and modelling of the 2D cell migration data 

Pre-processing: Based on the original tracking data, the static and rounded cells were excluded 

based on visual assessment. Then the duplicated and merged cell/nuclear trajectories were 

identified and removed. Excessively large (cell area > third quantile + 1.5*inter quantile range 

of the areas from all cells) or small (nuclear area < 100 μm2) cells were excluded based on the 

measurements of cellular and nuclear area, in order to remove noise from cell debris and cell 

aggregations. The remaining trajectories were smoothed with the rolling window method with 

window size of 9. The Instantaneous Cell Speed (ICS) was calculated based on the smoothed 

trajectories. 

The linear mixed effect modelling was performed based on the R package lme426. 

For the cumulative variability calculation, we designed an hypothetical experimental design 

with increasing levels of complexity: 2 or 3 replicates, 2 or 3 experiments with 3 replicates 

each, 2 or 3 persons performing 3 experiments with 3 replicates each, or 2 or 3 labs where 3 

persons perform 3 experiments with 3 replicates. For this, we generated all the possible sub-

datasets which fulfilled the specified criteria ensuring dataset consistency (this is, we avoided 

the combination of data which did not have the same origin in the higher level of the 

hierarchical structure), and computed the cumulative variability for each level. Supplementary 

table 1 shows how the datasets were generated. As a control, we firstly randomized the original 

data and then generated similar sub-datasets as the original ones and calculated the cumulative 

variability in the same way. 

Batch effect removal 

After fitting the original data with linear mixed effect model to extract the fixed and random 

effects, each single observation was modified by subtracting the intercept from all levels (lab, 

person, experiment, technical replicate, and observation) and adding the fixed effect between 

two conditions (control vs perturbation in 2D migration; 2.5 mg/mL vs 6 mg/mL collagen in 

3D invasion). 

Statistical analysis 

Statistical analysis was performed using R (R Core Team).  

Data availability 

All of the raw images, survey, image analysis pipelines, and data analysis scripts are shared in 

the SciLifeLab Data Repository (https://doi.org/10.17044/scilifelab.21407402).  

 

Acknowledgements 
Acknowledgement to funding from the European Union’s Horizon 2020 Programme under the 

MultiMot project, Grant Agreement 634107 (PHC32–2014), and to SS from the Swedish 

Research Council, The Strategic Research Foundation (Sweden), and the Swedish Cancer 

Society. The authors thank Vito Conte for the help in scientific notation for cumulative 

variability analysis. The authors from Karolinska Institutet, Stockholm (KI) performed imaging 

at the Live Cell Imaging core facility/Nikon Center of Excellence, KI, Sweden supported by 

grants from the KI infrastructure committee. The Ghent University, Gent (UGENT) authors 

thank the VIB BioImaging Core for support and access to the instrument park. The Radboud 

University Medical Centre, Nijmegen (RUMC) authors thank Esther Smeets for her 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.516878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.516878
http://creativecommons.org/licenses/by/4.0/


contribution to the 3D image analysis pipeline and, Jeroen Slaats and Jan-Hendrik Veenhuizen 

for manual annotation of the 3D image data. Furthermore, they thank the Research Technology 

Centre for Microscopy at the RUMC for support and access to the confocal microscopes. 

 

Contributions 

Standardization development and execution was performed by the laboratories at KI, RUMC, 

the Sir Francis Crick Institute, London (CRICK), UGENT and the Weizmann Institute of 

Science, Rehovot (WI). For the 2D experiment, KI established and shared the protocol, 

materials and reagents, and coordinated data collection and analysis. For the 3D experiment, 

RUMC coordinated the development of the protocol, the experimental material sharing, and 

the data collection. RUMC, UGENT, and CRICK established and shared the protocol, 

materials and reagents, and data analysis. RUMC provided HT1080 cells stably expressing 

LifeAct-mCherry & H2B-EGFP.  

SS conceived and supervised the overall study. 

JH designed and distributed the 2D cell migration experiment protocol and materials. 

PF designed the 3D cell migration experiment. GJB coordinated the 3D cell migration 

experiments. PF, GJB, MVT, NE, MV and JC developed and optimized the 3D hanging drop 

spheroid assay further for high-content imaging.  

JH, XG, YD, SWK, IG, OP, MVT, KB, EVH, GJB, MV, NE, JC, and AMD performed the 

experiments. 

XSP designed and implemented the image processing and quantification for the 2D experiment. 

MVE and GJB designed the image analysis protocol for the 3D experiment. MVE programmed 

the scripts and FIJI plugins for the 3D image analysis. MVE, MVT, JC, and GJB applied the 

image analysis scripts onto the 3D image data. FW reviewed and corrected the established 3D 

experiment and image analysis protocols. 

XSP designed and implemented the data and statistical analysis. JH implemented data and 

statistical analysis. MB supervised the statistical analysis and modelling.  

JH, XSP and SS drafted the manuscript. 

All authors read and approved the final manuscript. 

 

Competing interests 

The authors declare that there is no conflict of interest. 

 

References 

1. Boutros, M., Heigwer, F. & Laufer, C. Microscopy-Based High-Content Screening. Cell 163, 
1314-1325 (2015). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.516878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.516878
http://creativecommons.org/licenses/by/4.0/


2. Bray, M.A. et al. Cell Painting, a high-content image-based assay for morphological profiling 
using multiplexed fluorescent dyes. Nature protocols 11, 1757-1774 (2016). 

3. Williams, E. et al. Image Data Resource: a bioimage data integration and publication 
platform. Nat Methods 14, 775-+ (2017). 

4. Rozenblatt-Rosen, O., Stubbington, M.J.T., Regev, A. & Teichmann, S.A. The Human Cell 
Atlas: from vision to reality. Nature 550, 451-453 (2017). 

5. Orloff, D.N., Iwasa, J.H., Martone, M.E., Ellisman, M.H. & Kane, C.M. The cell: an image 
library-CCDB: a curated repository of microscopy data. Nucleic Acids Res 41, D1241-D1250 
(2013). 

6. Bagheri, N., Carpenter, A.E., Lundberg, E., Plant, A.L. & Horwitz, R. The new era of 
quantitative cell imaging-challenges and opportunities. Mol Cell 82, 241-247 (2022). 

7. Swedlow, J.R. et al. A global view of standards for open image data formats and repositories. 
Nat Methods 18, 1440-1446 (2021). 

8. Zaritsky, A. Sharing and reusing cell image data. Molecular biology of the cell 29, 1274-1280 
(2018). 

9. Giraldez, M.D. et al. Comprehensive multi-center assessment of small RNA-seq methods for 
quantitative miRNA profiling. Nature Biotechnology 36, 746-+ (2018). 

10. Collins, B.C. et al. Multi-laboratory assessment of reproducibility, qualitative and 
quantitative performance of SWATH-mass spectrometry. Nature communications 8 (2017). 

11. 't Hoen, P.A.C. et al. Reproducibility of high-throughput mRNA and small RNA sequencing 
across laboratories. Nature Biotechnology 31, 1015-+ (2013). 

12. Addona, T.A. et al. Multi-site assessment of the precision and reproducibility of multiple 
reaction monitoring-based measurements of proteins in plasma. Nature Biotechnology 27, 
633-U685 (2009). 

13. Masuzzo, P., Van Troys, M., Ampe, C. & Martens, L. Taking Aim at Moving Targets in 
Computational Cell Migration. Trends Cell Biol (2015). 

14. Masuzzo, P., Martens, L. & Parti, C.M.W. An open data ecosystem for cell migration 
research. Trends Cell Biol 25, 55-58 (2015). 

15. Gonzalez-Beltran, A.N. et al. Community standards for open cell migration data. Gigascience 
9 (2020). 

16. https://h2020multimot.wordpress.com/  (2015). 
17. Kowalewski, J.M. et al. Disentangling Membrane Dynamics and Cell Migration; Differential 

Influences of F-actin and Cell-Matrix Adhesions. PloS one 10 (2015). 
18. Gordonov, S. et al. Time series modeling of live-cell shape dynamics for image-based 

phenotypic profiling. Integr Biol-Uk 8, 73-90 (2016). 
19. Shafqat-Abbasi, H. et al. An analysis toolbox to explore mesenchymal migration 

heterogeneity reveals adaptive switching between distinct modes. Elife 5 (2016). 
20. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear 

deformation and tuning by proteolysis and traction force. The Journal of cell biology 201, 
1069-1084 (2013). 

21. Leek, J.T. et al. Tackling the widespread and critical impact of batch effects in high-
throughput data. Nat Rev Genet 11, 733-739 (2010). 

22. Tran, H.T.N. et al. A benchmark of batch-effect correction methods for single-cell RNA 
sequencing data. Genome Biol 21 (2020). 

23. Gregori, J. et al. Batch effects correction improves the sensitivity of significance tests in 
spectral counting-based comparative discovery proteomics. J Proteomics 75, 3938-3951 
(2012). 

24. Del Duca, D., Werbowetski, T. & Del Maestro, R.F. Spheroid preparation from hanging drops: 
characterization of a model of brain tumor invasion. J Neurooncol 67, 295-303 (2004). 

25. Haeger, A., Krause, M., Wolf, K. & Friedl, P. Cell jamming: collective invasion of mesenchymal 
tumor cells imposed by tissue confinement. Biochim Biophys Acta 1840, 2386-2395 (2014). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.516878doi: bioRxiv preprint 

https://h2020multimot.wordpress.com/
https://doi.org/10.1101/2022.11.18.516878
http://creativecommons.org/licenses/by/4.0/


26. Bates, D., Machler, M., Bolker, B.M. & Walker, S.C. Fitting Linear Mixed-Effects Models Using 
lme4. J Stat Softw 67, 1-48 (2015). 

 

 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.18.516878doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.18.516878
http://creativecommons.org/licenses/by/4.0/


Figure 1

 

Figure 1. Study design and initial results. a. Schematic of the study design.  The study 

involved three independent laboratories, three persons in each laboratory, three independent 

experiments by each person, two conditions (control or ROCK inhibitor) in each experiment, 

and three replicates in each condition. For each replicate, around 50 cells were imaged for 6 h 

in 5 min time intervals. 18 variables were quantified from each image series. b. Example of 

acquired time lapse images. Left: stitched large image; right: cropped images of one cell at 

different time points. Scale bar: 100 μm c. Quantification results of Instantaneous Cell 

Speed (ICS) over time for each lab (L1-3), person (P1-3), experiment (E1-3), and technical 

replicate (C1-C3). Lines in different colour represent the data from the control condition 

(untreated cells) of three different experiments. Different style of the lines with the same colour 

represent three different technical replicates within one experiment. The error bar indicates the 

first and third quartiles of the data at each time point. d. Principal component analysis results 
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of all variables extracted from the entire data. Grey dots show the position of the first and 

second principal components for each observation. Inset marks the density of the observation 

dots. e. Visualization of cell shapes at different locations of the PCA space. Grey dots show 

the position of the first and second principal components for each observation. Representative 

cell shapes at specific locations in the PCA plot are shown in magenta. f. The locations of the 

same cell at different time points within the PCA plot. Grey dots show the position of the 

first and second principal components for each observation. Orange and blue dots show the 

locations of two different cells (dash circled in e) in the PCA space at different time points. g. 

Principal component analysis results shown for each person (P) in each laboratory (L). 

Black dots show the position of the first and second principal components for each observation 

from the control condition (untreated cells).  Colored lines show the 2D density plots of the 

technical replicates, where lines with different colors in the same plot represent different 

experiments. The principal component space is identical in all the plots.  
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Figure 2 

 

Figure 2. Lab to lab variance contributes the most to the technical variance. a-b. Variance 

components of each variable from all technical levels based on the Linear Mixed Effect 

(LME) model analysis.  a: absolute value; b: relative value. c-d. Cumulative variability of 

Instantaneous Cell Speed (ICS) (c) and first principal component (d) at the levels of 

technical replicate, experiment, person, and laboratory. Boxplots show variances with 2 or 

3 replicates, experiments, persons, or laboratories, calculated at each level. Red dots show the 

mean value of the cumulative variance that are linked with red lines. As a control, cyan dots 

and lines show the cumulative variance of the same data after randomization.  
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Figure 3 

 

Figure 3. Batch effect removal dramatically reduces the variance. a. Instantaneous Cell 

Speed (ICS) distribution before (top) and after (bottom) batch effect removal on control 

(C - black) and perturbed (ROCK inhibition) (T - red). Boxplots display ICS observations 

for each replicate, sorted by increasing value of the mean. Control and perturbation conditions 

are shown in black and red respectively. Laboratories in which each replicate was performed 

are color coded below the boxplots. b. Mean ICS values and variance before (top) and after 
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(bottom) batch effect removal. Boxplot of mean ICS of each technical replicate from control 

and perturbed conditions in different laboratories. Laboratories are colour coded, while the 

aggregate results from all labs are shown in black (control) and red (perturbed). The numbers 

below the corresponding boxplot show mean ± standard division of the aggregated 

control/treated results from all labs. c. Heatmap of the distance matrix before and after 

batch effect removal. The heatmaps show average values of the distance matrix between 1st 

and 2nd Principal Components per lab, person, experiment, condition, and technical replicate 

before (left) and after (right) batch effect removal.  Each row/column corresponds to one 

technical replicate. Sorting based on hierarchical clustering. d. Batch effect removal in 

principal component data of 2D cell migration data. Technical replicate of 1st and 2nd 

Principal Component average values before (left) and after (right) batch effect removal are 

shown in the same PCA space. Each dot represents one technical replicate. Results from 

different laboratories/conditions are colour coded as indicated. e. Batch effect removal in 3D 

cell migration data. Boxplot shows the mean 3D cell migration distance of HT1080 cells 

embedded in different concentrations of collagen before (left) and after (right) batch effect 

removal. Different ECM concentrations are shown in black (2.5 mg/mL) or red (6 mg/mL) and 

data from different laboratories are indicated with green (Laboratory #4) and magenta 

(Laboratory #5). The sums of results from both labs are shown in black (2.5 mg/mL) and red 

(6 mg/mL). The mean ± standard division of the aggregated 2.5mg/mL or 6 mg/mL results 

from both labs are shown with the corresponding boxplot. For the boxplots in a, b, and e, in 

each box, the central mark indicates the median, and the bottom and top edges of the box 

indicate the 1st quartile and 3rd quartile respectively.  
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