

1 Structured surveys of Australian native possum excreta predict

2 Buruli ulcer occurrence in humans

3 *Koen Vandelannoote^{1,^#}, Andrew H. Buultjens^{1,^}, Jessica L. Porter¹, Anita Velink¹, John R. Wallace², Kim R. Blasdell³,*

4 *Michael Dunn³, Victoria Boyd³, Janet A. M. Fyfe⁴, Ee Laine Tay⁵, Paul D. R. Johnson⁶, Saras Windecker⁷, Nick*

5 *Golding^{8,9,10,*} and Timothy P. Stinear^{1,*}*

6 1. Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of
7 Melbourne, Melbourne, Victoria, Australia.

8 2. Department of Biology, Millersville University, Millersville, PA, USA

9 3. Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, Australia

10 4. Victorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity,
11 Melbourne, Victoria, Australia.

12 5. Health Protection branch, Department of Health, Victoria, Australia.

13 6. North Eastern Public Health Unit (NEPHU), Austin Health, Melbourne, Victoria, Australia

14 7. School of Ecosystem and Forest Sciences, University of Melbourne, Melbourne, Victoria, Australia

15 8. Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia.

16 9. Curtin School of Population Health, Curtin University, Bentley, Western Australia, Australia.

17 10. Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria,
18 Australia.

19 # Corresponding authors: tstinear@unimelb.edu.au

20 * Joint senior authors

21 ^ Contributed equally

22

23 ABSTRACT

24 Buruli ulcer (BU) is a neglected tropical disease caused by infection of subcutaneous tissue with *Mycobacterium*
25 *ulcerans*. BU is commonly reported across rural regions of Central and West Africa but has been increasing
26 dramatically in temperate southeast Australia around the major metropolitan city of Melbourne. Previous research
27 has shown that Australian native possums are reservoirs of *M. ulcerans* and that they shed the bacteria in their
28 fecal material (excreta). Field surveys show that locales where possums harbor *M. ulcerans* overlap with human
29 cases of BU, raising the possibility of using possum excreta surveys to predict the risk of disease occurrence in
30 humans. We thus established a highly structured 12-month possum excreta surveillance program across an area of
31 350 km² in the Mornington Peninsula area 70 km south of Melbourne, Australia. The primary objective of our study
32 was to assess if *M. ulcerans* surveillance of possum excreta provided useful information for predicting future
33 human BU case locations. Over two sampling campaigns in summer and winter, we collected 2282 possum excreta
34 specimens of which 11% were PCR positive for *M. ulcerans*-specific DNA. Using the spatial scanning statistical tool
35 *SatScan*, we observed non-random, co-correlated clustering of both *M. ulcerans* positive possum excreta and
36 human BU cases. We next trained a statistical model with the Mornington Peninsula excreta survey data to predict
37 the future likelihood of human BU cases occurring in the region. By observing where human BU cases subsequently
38 occurred, we show that the excreta model performance was superior to a null model trained using the previous
39 year's human BU case incidence data (AUC 0.66 vs 0.55). We then used data unseen by the excreta-informed
40 model from a new survey of 661 possum excreta specimens in Geelong, a geographically separate BU endemic
41 area to the southwest of Melbourne, to prospectively predict the location of human BU cases in that region. As for
42 the Mornington Peninsula, the excreta-based BU prediction model outperformed the null model (AUC 0.75 vs 0.50)
43 and pinpointed specific locations in Geelong where interventions could be deployed to interrupt disease spread.
44 This study highlights the *One Health* nature of BU by confirming a quantitative relationship between possum
45 excreta shedding of *M. ulcerans* and humans developing BU. The excreta survey-informed modeling we have
46 described will be a powerful tool for efficient targeting of public health responses to stop BU.

48 INTRODUCTION

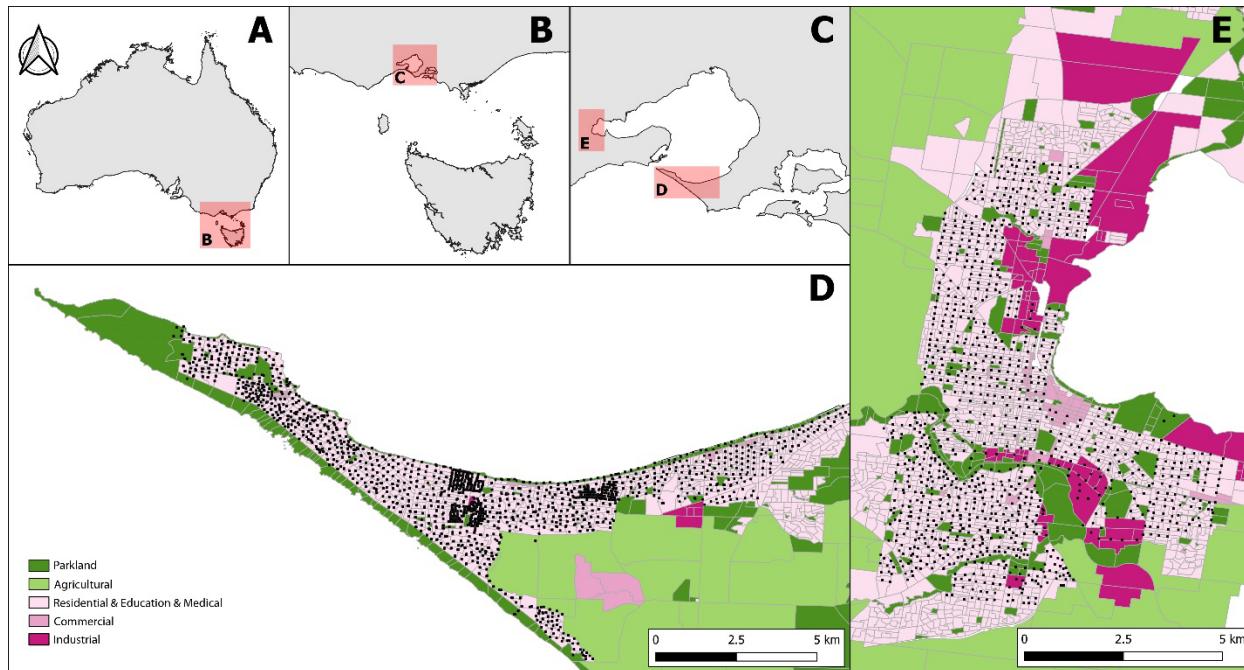
49 Buruli ulcer (BU) is an infection of subcutaneous tissues that can leave patients with disability and life-long
50 deformity. The causative agent, *Mycobacterium ulcerans* is a slow-growing environmental bacterium that can
51 infect humans after introduction through skin micro-trauma (1). While the exact environmental reservoir(s) and
52 mode(s) of transmission of BU are unresolved, they do continue to be the subject of intense research. The disease
53 has a highly focal geographical distribution and typically occurs around low-lying marshlands and riverine areas. BU
54 occurs mostly in tropical and subtropical areas of West and Central Africa however smaller foci are recognized in
55 South America, Southeast Asia and Australasia (2). In Australia, although small disease foci have been described in
56 coastal regions of Queensland and the Northern Territory, the majority of the disease burden is found in the
57 temperate state of Victoria, where several outbreaks have been recorded over the past three decades (3).

58 In Victoria, it has been established that the median incubation period is 4.8 months with peak BU transmission in
59 humans occurring in late summer (4). Several cases of BU infections have also been reported in native wildlife and
60 domestic mammal species including common ringtail (*Pseudocheirus peregrinus*), common brushtail (*Trichosurus*
61 *vulpecula*), mountain brushtail possums (*Trichosurus cunninghami*) (5,6), koalas (*Phascolarctos cinereus*) (6), long
62 footed potoroos (*Potorous longipes*), dogs (7), cats (8), horses (9) and alpacas (6). These naturally acquired BU
63 infections in animals have occurred across the same geographical regions of Victoria where BU is known to be
64 endemic for humans.

65 Several studies from Victoria suggest that BU is a zoonosis that first causes epizootic disease in the local native
66 possum populations and then spills over to humans. Focused field surveys have revealed that possums excrete *M.*
67 *ulcerans* DNA in their feces (excreta) in regions known to be endemic for humans while similar surveys outside
68 endemic areas yielded negative results (10,11). While *M. ulcerans* DNA could be detected at low levels in a variety
69 of other environmental samples in these studies, by far the highest concentrations of *M. ulcerans* were found in
70 possum excreta (10). Subsequent capture and clinical assessment of free-ranging possums validated the findings of
71 these excreta surveys by showing that subclinical *M. ulcerans* gut carriage in possums was common while a
72 number of animals had laboratory-confirmed BU skin lesions and in some cases, advanced systemic disease (5).

73 Finally, whole genome sequencing and comparative genomic analysis has shown that *M. ulcerans* strains isolated
74 from human and possum lesions are part of the same transmission cycles (10). These findings suggest that in
75 Australia, BU is a One Health issue, with arboreal marsupial mammals representing an important environmental
76 reservoir for *M. ulcerans*.

77 The present outbreak on the Mornington Peninsula in Victoria is the largest on record in Australia, with over 2,200
78 laboratory-confirmed cases diagnosed since 2010 (12). Concurrent with the Mornington Peninsula outbreak, has
79 been the emergence in 2019 of a significant cluster of BU in a suburb of the major regional city of Geelong near the
80 Bellarine Peninsula. Regions of the Bellarine Peninsula became a BU focus beginning in the late 1990s. The
81 unprecedented increase in human BU cases since 2010 and the rapid expansion of BU endemic areas in Victoria,
82 including incursions to within 5km of the Melbourne city centre (13) has highlighted how new strategies to control
83 transmission are urgently required. An effective BU prevention and control program requires up-to-date
84 information on the distribution of the disease and its incidence. However, the use of traditional epidemiological
85 surveillance methods to track the emergence and movement of BU disease foci is severely limited by the long 5-
86 month incubation period of the disease in humans (4), which complicates attributing disease acquisition to a
87 particular event or location. Surveillance programs of a number of zoonotic pathogens like *Borrelia burgdorferi*,
88 West Nile virus (14), and Rabies virus (15) are increasingly exploring the use of wildlife sentinels to monitor disease
89 emergence and spread. Thus here, we explore the use of systematic screening surveys of possum excreta as an
90 early warning surveillance system to monitor BU emergence in the Mornington Peninsula and Geelong region of
91 Victoria. We show how the detection of *M. ulcerans* DNA in possum excreta was associated with the outbreak of
92 BU disease in humans and we use statistical modeling to explore the potential of this approach as a public health
93 tool to predict future BU emergence.

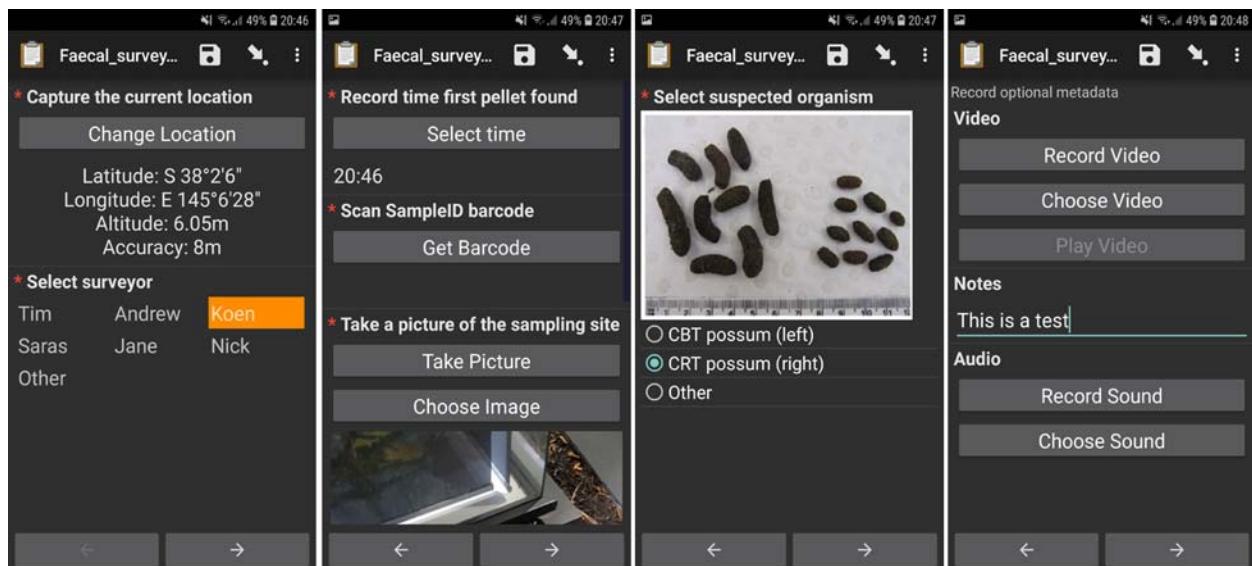

94

95 METHODS

96 STUDY SITE

97 The Mornington Peninsula is located 70km south of Melbourne's city center and occupies a 750km² area that
98 separates Port Phillip Bay from Western Port Bay. The peninsula was one of the first areas in Victoria to be
99 explored and settled by Europeans in the early 19th Century. Since then, much of the native vegetation of the
100 peninsula was cleared under pressure from urban development although fragmented pockets of remnant wild
101 habitat have been preserved in the Mornington Peninsula National Park and are located southwest of the
102 peninsula (Figure S1). The study site overlaps with the western tip of the Mornington Peninsula and is
103 characterized by calcareous sandy soils that support a dense coastal scrubland. As the western tip of the peninsula
104 is primarily a local tourist hotspot known for its affluent coastal resorts, a large proportion of the houses in the
105 region serve as temporary tourist accommodation. Many of the residential properties in the study area are
106 spacious holiday homes, set in fenced gardens planted with shrubs and trees, which represent ideal possum
107 habitats.

108 To the west of the Mornington Peninsula, and on the opposite side of the Port Phillip Bay, lies Geelong at the
109 eastern end of Corio Bay and the left bank of the Barwon River, approximately 65 km southwest of Melbourne.
110 Geelong has an estimated urban population of 201,924 (as of June 2018) and is the second largest city in Victoria
111 after Melbourne (16). Since 2019, BU has been considered endemic in the Geelong suburb of Belmont and
112 surrounding areas, with local transmission suspected.



114 **Figure S1:** Geography of the Mornington Peninsula and Geelong. Panel A, B, C: zoomed inset maps at successively
115 smaller scales are used to establish the location of the western tip of the Mornington Peninsula (Panel D) and
116 Geelong (Panel E) in Australia. Panel D, E: land use categories of 2011 census mesh blocks as detailed in the legend.
117 The GPS coordinates of all sample points visited during the study are rendered as black squares.

118 ELECTRONIC DATA COLLECTION

119 Large-scale electronic data collection was organized using the “Build”, “Collect” and “Aggregate” tools of “Open
120 Data Kit” (ODK), an open-source suite of tools that was designed to build data collection platforms (17). We used
121 ODK Build to convert paper survey forms into an ODK compatible “electronic form”. The ODK Collect Android app
122 was installed from the Google Play store onto five Android budget smartphones (hereafter referred to as survey
123 phones). ODK Collect was then configured with the custom electronic form that contained all survey questions.
124 During sampling surveyors worked their way through the prompts of the form and answered a wide range of
125 question-and-answer types (Figure S2). The survey phones automatically sent finalized submissions over mobile
126 data to an ODK Aggregate instance that was running in the cloud. Our instance of ODK Aggregate was hosted on
127 the “Google Cloud Platform” cloud provider. All data collected by the survey phones was stored and managed on
128 this platform. ODK Aggregate also automatically published all new database entries to Google Sheets. We used a

129 custom script (18) to generate dynamic maps from collected data in this Google spreadsheet using the Google
130 Maps API. This allowed a team-leader to monitor the progress of multiple teams surveying in real-time. After
131 completing the survey all collected data was exported from the *ODK Aggregate* instance in either a tabular (csv) or
132 a geographical (kml) format.

133 134 **Figure S2:** A set of screenshots demonstrating electronic data collection on the ODK Collect Android app running on
135 a survey phone.

136 STANDARDIZED ROADSIDE COLLECTION OF POSSUM EXCRETA

137 Samples of possum excreta were collected along the Mornington Peninsula Road network, which is mainly made
138 up of low-traffic, single-track paved roads and unpaved gravel tracks. Samples were collected from the ground
139 level along the fence line of residences on grassy strips and driveways along the road. To prevent re-sampling
140 excreta from the same possum between adjacent points a sampling spacing interval of 200m was chosen which
141 reflects the typical home-range (radius <100m) of these highly territorial animals (10). A 200m grid pattern was laid
142 out with the help of a custom-built battery-operated distance tracker that incorporated an Arduino micro-
143 controller, a GPS module, with an audio beep. When moving from sampling point A to sampling point B, the
144 distance tracker would be reset at point A after which the device would measure 200m as the crow flies and report
145 decreasing distance to point B by increasing the beeper's intermittent beeping rate. ODK Collect was used to

146 capture the location of the new sampling point using the survey phone's GPS (accuracy <8m) after which the
147 surveyor's name was recorded. Surveyors then used the app to log a time point when they started looking for
148 possum excreta. The search was restricted to a 50m radius around the sampling point and was terminated in case
149 no excreta could be found after a pre-allotted time of 5min. Surveyors logged another time point when they
150 discovered the first fecal pellet. Fecal material (excreta) from each sampling location was stored in separate sterile
151 re-sealable plastic zipper bags that had been pre-labeled with a barcode. If possible, up to three excreta samples
152 were sampled and, in case more were available, the freshest most intact excreta were selected. ODK Collect was
153 then used to take a picture of the sampling site and scan the barcode on the zipper bag, both using the survey
154 phone's camera. Following this, the collected excreta was used to distinguish and record the presumed species of
155 possum based on distinctive morphological characteristics of the excreta from each species (**Figure S2**).
156 Subsequently, completed forms were marked as finalized and uploaded to the cloud. In case no excreta material
157 was found on a particular sampling location after 5min, ODK Collect forked to the end of the survey where the
158 form likewise was marked as finalized and submitted. A video was produced and uploaded to YouTube to illustrate
159 the steps described above (19). Samples were transported at 4°C to the laboratory where they were stored at -
160 20°C prior to further processing.

161 Several sampling missions were organized from 19 December 2018 to 14 March 2019 and are hereafter referred to
162 as the "summer survey". Later, between 28 May and 19 September 2019, we attempted to revisit most of the
163 locations we sampled during summer, a period that is hereafter referred to as the "winter survey". To facilitate the
164 sampling effort during winter, the above-mentioned electronic distance trackers were reprogrammed with a
165 predetermined grid of sampling points from the summer survey. Consequently, the trackers now helped surveyors
166 relocate the nearest sampling point using the same auditory cue system. During the winter survey, we also tried to
167 determine the usefulness of surveying at a higher resolution by sampling along a 50m grid pattern in three small
168 regions. Apart from this, standardized ODK Collect-based roadside collection was performed identically. Another
169 survey mission centered on the Geelong area was conducted in the early half of 2020 (16th January through to the
170 28th of April 2020) using the abovementioned surveying methodology with a 200m grid.

171

172 DNA EXTRACTION, *M. ULCERANS* IS2404 qPCR

173 For excreta samples collected from the Mornington Peninsula, microbial genomic DNA (gDNA) was extracted from
174 possum excreta samples using the DNeasy PowerSoil HTP 96 Kit (Qiagen Cat# 12955-4) following the
175 manufacturer's protocols just prior to the addition of solution C4, whereupon DNA was subsequently purified from
176 200 µl of the lysate using the QIAAsymphony DSP Virus/Pathogen extraction kit (Qiagen Cat# 937036) on the
177 QIAAsymphony automated platform. Extraction included two rounds of mechanical homogenization for 45 s at
178 1800 rpm on a FastPrep-96 instrument (MP Biomedicals). The extraction method for the possum excreta survey of
179 the Geelong region followed a similar procedure but with some modifications as described elsewhere (20).

180 Real-time PCR assays targeting IS2404 multiplexed with an internal positive control (IPC) (Life Technologies Cat#
181 4308323) were carried out as described before (21). Briefly, IS2404 real-time PCR mixtures contained of 10.0 µl of
182 2x SensiFast Probe NO-ROX mix (BioLine Cat# BIO-86005), 3.2 µl of nuclease-free water, 0.8 µl each of 10 µM
183 IS2404 TF and IS2404 TR primers, 0.8 µl of 5 µM IS2404 TP probe, 2.0 µl TaqMan Exogenous IPC MIX, 0.4 µl
184 TaqMan Exogenous IPC DNA, and 2.0 µl of DNA extract in a final reaction volume of 20 µl. Positive (*M. ulcerans*
185 DNA) and negative controls (nuclease-free water) were included in each assay. Amplification and detection were
186 performed with the Light Cycler 480 II (Roche) using the following program: 1 cycle of 95°C for 5 min, and 45 cycles
187 of 95°C for 10 s and 60°C for 20 s.

188 GEOGRAPHICAL DATA ACQUISITION AND SPATIAL ANALYSIS

189 The 2011 Victorian mesh block boundaries dataset and the 2011 Victorian mesh block census population counts
190 dataset were downloaded from the Australian Bureau of Statistics (ABS) website (<https://www.abs.gov.au/how->
191 cite-abs-sources). Mesh blocks are relatively homogeneous statistical units and represent the smallest
192 geographical unit for which publicly available census data are tabulated by the ABS. The mesh block digital
193 boundaries dataset is based on Australia's national coordinate reference system, the Geocentric Datum of
194 Australia (GDA94). Spatial information was analyzed and edited in the geographic information system (GIS)
195 software QGIS v.3.16.7 (22). The 2011 census population count spreadsheet was joined to the mesh block
196 boundaries using the unique mesh block ID's. The centroid of all polygon mesh blocks was determined and their

197 latitude and longitude in GDA94 was calculated. The state-wide geometric dataset was then down sampled to a
198 more manageable size (3238 mesh blocks) for subsequent spatial statistical analysis by reducing it to the ABS level
199 2 Statistical Areas (SA2) that encompasses the Mornington Peninsula (Point Nepean and Rosebud – McCrae). A
200 second geographical dataset was prepared for the Geelong area by selecting the SA2 areas for that region
201 (Belmont, Corio - Norlane, Geelong, Geelong West - Hamlyn Heights, Grovedale, Highton, Newcomb - Moolap,
202 Newtown, and North Geelong - Bell Park).

203 All GPS positions of sampling points visited during the excreta surveys were added to this GIS and projected to
204 GDA94. QGIS v.3.16.7 (22) was used to generate the figures of the excreta survey results and the geographical
205 distribution of BU cases in the Mornington Peninsula.

206 HUMAN BU CASES

207 The Victorian Department of Health (DH) made a de-identified database extract available of all BU patients that
208 were notified in the state between 1 January 2019 and 31 December 2020. A human case of BU is defined here as
209 a patient who presented with a clinical lesion suggestive of BU in which *M. ulcerans* DNA was detected laboratories
210 using IS2404 qPCR (21,23). Note that BU has been a ‘notifiable condition’ in Victoria since 2004 and as of 1 January,
211 2011 DH has been collecting enhanced BU surveillance data in a centralized notifiable disease database using
212 custom collection forms (24). DH extracted the data used in this study from this database and then geocoded and
213 de-identified it at an aggregated mesh block level. As mesh blocks typically encompass between 30 and 60
214 dwellings the extract of the notifiable disease database was effectively anonymized. Variables used in the analysis
215 included: date of notification, date of first symptoms onset, “type” of contact with endemic area (resident, holiday
216 resident, visitor), and mesh block of address of residence/holiday house/visit at the time of notification.

217 We selected two populations of notified BU patients suspected of having been infected with *M. ulcerans* in the
218 Mornington Peninsula during an “exposure interval” that aligned with the organized possum excreta surveys. The
219 reported onset of disease was used to infer this exposure interval based on the mean incubation period of BU in
220 Victoria of 143 days (IQR 101–171) (4). We define the incubation period here as the time between exposure to an
221 endemic region and symptom onset. Patients were suspected of having been infected with *M. ulcerans* in the

222 Mornington Peninsula if they were either a resident of the peninsula or if they visited the area and had not
223 reported recent (<12 months) contact with any other known BU endemic areas in the state. BU patients who, at
224 the time of notification or prior to symptom onset, were residing in a house situated in the Mornington Peninsula
225 are referred to here as “residents”. “Holiday residents” on the other hand were not domiciled in the Mornington
226 Peninsula but stayed in a holiday house situated there. Finally, “visitors” are defined here as BU patients who had
227 their exposure recorded outside of their place of residence while visiting the Mornington Peninsula during a short
228 stay. A population of cases were also selected whose exposure interval overlapped with the survey of the Geelong
229 region.

230

231 ETHICS

232 Ethical approval for the use of de-identified mesh block-level BU case local information in this study was obtained
233 from the Victorian Government Department of Health Human Ethics Committee under HREC/54166/DHHS-2019-
234 179235(v3), “Spatial risk map of Buruli ulcer infection in Victoria”.

235

236 STATISTICAL ANALYSIS

237 BASIC STATISTICAL TESTING

238 Statistical analyses were performed using R v4.0.3 (<http://www.R-project.org/>). Comparison of excreta IS2404
239 positivity between sampling season or possum species was done using Fisher’s exact test. Comparison of mean Ct
240 (IS2404) values between sampling season or possum species was done with an unpaired t-test while assuming
241 equal variance (checked with an F-test).

242 SPATIAL SCAN STATISTICS

243 We used SaTScan v9.7 (25) to analyze surveillance data with discrete spatial scan statistics. SaTScan tackles this by
244 progressively “scanning” a circular window of variable size across space while noting the number of observed and

245 expected observations inside this window at each location. For each scanned circular window, a log likelihood ratio
246 (LLR) statistic is calculated based on the number of observed and expected cases within and outside the circle and
247 compared with the likelihood under the null hypothesis. We investigated Mornington Peninsula surveillance data
248 both of (i) notified human BU disease and of (ii) epizootic spread of *M. ulcerans* in possum excreta. For each
249 dataset, we accepted both primary and secondary clusters, if (i) their corresponding p-values were less than 0.005
250 and (ii) secondary clusters did not overlap geographically with previously reported clusters with a higher likelihood.
251 P-values were based on 9999 Monte Carlo simulations for each dataset, as suggested by Kulldorff *et al.* (25).

252 We performed geographical surveillance of human BU disease by detecting spatial disease clusters and assessing
253 their statistical significance. To achieve this, we applied the Poisson probability model to our mesh block level data
254 of notified BU case counts, which arose from a background population at risk that was derived from the 2011
255 population census. We limited the maximum cluster size to 10% of the total population at risk (corresponding to
256 14,481 inhabitants) so defined areas of risk would remain within a manageable size for targeted BU prevention
257 campaigns with limited resources. Under the null hypothesis, BU cases are homogeneously distributed over the
258 Peninsula. Under the alternative hypothesis, there are geographical areas with higher rates of BU than would be
259 expected if the risk of contracting BU was evenly distributed across the Peninsula.

260 We used the Bernoulli probability model to scan for spatial clusters with high rates of *IS2404* positivity in sampled
261 possum excreta. The Bernoulli model is proper here as excreta *IS2404* positivity is a variable with two categories.
262 The maximum cluster size was set to 50% of the population size. Under the null hypothesis, excreta *IS2404*
263 positivity is homogeneously distributed over the surveyed region. Under the alternative hypothesis, there are
264 clusters where the *IS2404* positivity rate is higher than in regions outside of these clusters.

265 PREDICTIVE MODELING

266 To prospectively predict the occurrence of human BU cases, a statistical model was calibrated using excreta
267 positivity and cases whose exposure period overlapped with the excreta survey periods. Specifically, cases were
268 included if the exposure interval overlapped with the date that excreta were collected. Here the model was fitted
269 separately for the summer and winter seasons with the objective to predict if a given mesh block will contain one

270 or more human BU cases. The metric used to evaluate predictive performance was the area-under-the-curve (AUC)
271 which is the degree of separability that describes how capable a model is at classifying mesh blocks where cases
272 occur and those where cases don't occur. AUC values range from 0 to 1, with AUC of 1 indicating a perfect record
273 of classification while a value of 0.5 depicts a model that has no classification capacity. All scripts used in the
274 statistical analytical pipeline have been made available in a GitHub Repository (26) and made use of the following R
275 packages: flexclust (27), raster (28), readxl (29), sf (30), and tidyverse (31).

276 We built a custom statistical model to predict the probability of observing one or more human BU cases as a
277 function of the distance-weighted prevalence of MU positivity in nearby excretas. That is, the probability of
278 observing a BU case in each location is greater if nearby excretas are MU-positive. One approach to modelling the
279 risk to humans would be to construct a geostatistical model of the prevalence of MU in excretas, i.e. a spatially
280 continuous estimate of excreta positivity for all areas using e.g., model-based geostatistics (32). However, to use
281 such a complex model for prediction of human cases to guide interventions would require re-estimation of the
282 model and its many location-specific random-effect parameters after every trapping round. This would be
283 burdensome and limit the application of the model in a public health setting. Instead, we construct a simpler
284 model with two parameters that calculates the local prevalence around a focal location (e.g., the centroid of a
285 small district) as the weighted mean of the excreta positivity in all samples, with those weights decaying with
286 increasing distance from the focal location. The statistical model we use is as follows:

$$y_i \sim \text{Bernoulli}(p_i)$$

$$p_i = 1 - e^{-N_i}$$

$$N_i = I_i P_i$$

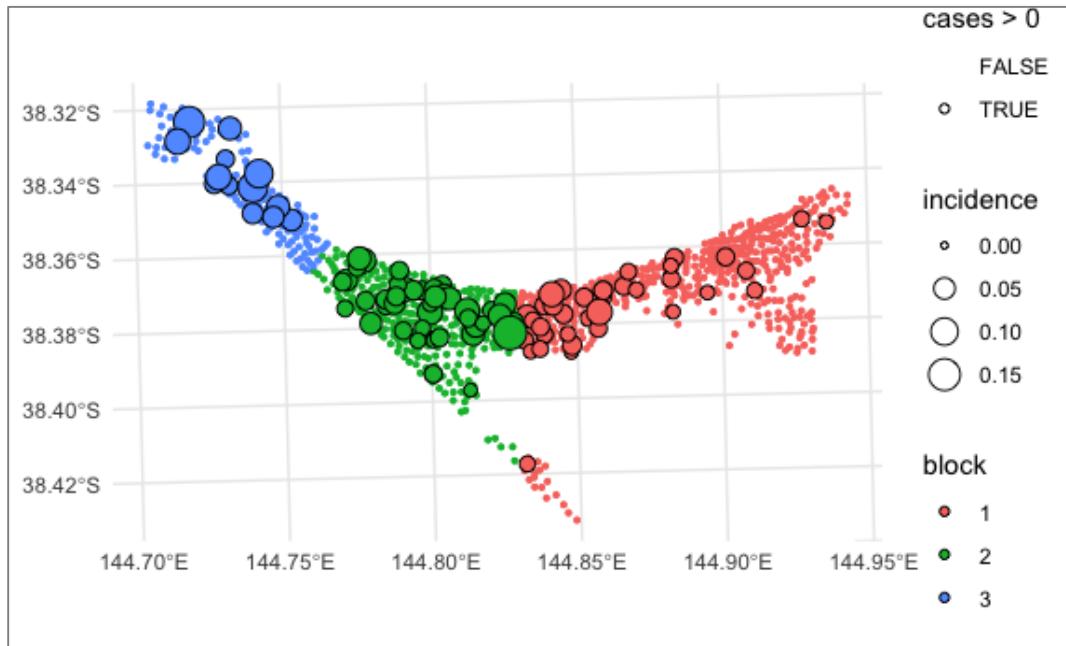
$$I_i = \beta \sum_{j=1}^J w_{ij} x_j$$

$$w_{ij}^* = \frac{w_{ij}^*}{\sum_{j=1}^J w_{ij}^*}$$

$$w_{ij}^* = e^{-\frac{1}{2}(d_{ij}/\sigma)^2} \quad (1)$$

287

288 where y_i is an indicator variable for whether a human BU case was detected at location i in the subsequent period,
289 modelled as a single binomial sample with probability p_i , calculated as the probability of observing one or more
290 cases if case numbers in that location were Poisson-distributed with an expectation of N_i cases; the product of the
291 expected incidence I_i and the population P_i at each location. The incidence is modelled as the product of a
292 positive-constrained scale parameter β , and the distance weighted average of the MU positivity x_j (coded as a 1
293 for MU-positive or a 0 for MU-negative) across all excreta sampling locations j in J . The applied weight is a
294 normalized Gaussian function of the Euclidean distance d_{ij} between human case location i and excreta collection
295 location j , with the range of the Gaussian function given by the positive-constrained parameter σ . The model is
296 therefore parameterized by only two parameters: β which controls the absolute probability of observing a BU case
297 in any given location, and σ which controls the distance at which excreta MU positivity is predictive of BU cases – if
298 σ is small, only nearby excreta MU positivity is predictive of BU cases, whereas if σ is large, MU positivity in excreta
299 collections further away are also informative. These two parameters are estimated by maximum likelihood using
300 the Nelder-Mead optimization routine in R, with 5 random starts. These two estimated parameters can then be
301 used to predict the probability of BU case occurrence p_i in new places and sampling rounds, by combining them
302 with a new excreta sampling dataset.


303 Note that this model could easily be modified to be fitted to, and therefore predict, the number N_i of BU cases at a
304 given location. However, given the comparatively low number of reported cases in each affected mesh block in our
305 study region, the probability of presence of one or more cases is likely to be a more useful metric for prioritization
306 of interventions. In addition, estimation of the conditional variance parameter of such a count model would add
307 considerable complexity to the model fitting process and limit its utility for applied public health prioritisation.

308 **CROSS VALIDATION MODEL DEVELOPMENT**

309 We first validated the predictive ability of the statistical model using a cross validation approach using the excreta
310 survey data from Mornington Peninsula region. Here the mesh block dataset was split into three spatially
311 contiguous regions so that spatial block cross validation could be performed (Figure S3). The model was fitted on

312 each possible 2/3 of the data and then used to predict the probability of observing one or more BU cases in the
313 remaining 1/3.

314

315 **Figure S3:** The three spatially contiguous blocks of the Mornington Peninsula mesh blocks that were devised for
316 cross validation model development.

317 PREDICTIONS ON UNSEEN DATA

318 The model was then fitted to the entire Mornington Peninsula dataset and used to make predictions to a
319 previously unseen dataset of the Geelong excreta survey and human BU case data. The Geelong survey was
320 conducted in early 2020 (16th January through to the 28th of April 2020), with there being just three mesh blocks
321 that had cases with exposure intervals overlapping with the Geelong survey period. Geelong is a city of 200,000
322 inhabitants, 65 km southwest of Melbourne (Figure S1)

323 ALTERNATIVE MODEL

324 Null models were established for the Mornington Peninsula and Geelong datasets that used the incidence of
325 human BU cases in mesh blocks in the year preceding to predict the likelihood of a mesh block to contain a case.
326 The null models were included as alternative models that were not based on any insights from the excreta surveys,

327 and represent the type of inference that could reasonably made to anticipate future case occurrence from
328 epidemiological data alone. From a statistical perspective, the previous year's incidence null models can be
329 considered as a different option for out-of-sample intercept-only models for model performance comparison
330 purposes.

331 **Ranking mesh blocks to inform BU transmission risk assessments**

332 To provide a metric for real world application (*i.e.* pinpointing a region for potential public health interventions),
333 the fraction of cases contained within the top percentages of predicted probability ranked mesh blocks were
334 calculated. Here, the mesh blocks were ordered according to decreasing predicted class probability, with the
335 fraction of total cases present in the top 5%, 10%, 20% and 50% of ranked mesh blocks recorded.

336 Due to the existence of many mesh block probability values for the null models having equal values (mostly zero), a
337 randomization approach was employed to eliminate sorting artifacts. Here, a random seed was used 100 times to
338 add a column of random integers (range 1-100) to the data frames containing model predictions. This data column
339 was then used to initially sort the matrix prior to sorting on the predicted probability values. After 100 sorts on the
340 randomised column followed by sorting on the probability values, the order of each mesh block was recorded and
341 used to calculate an average order value. A final sorting operation was performed on the average order value to
342 determine the mesh blocks that were in the top percentages.

343

344 **RESULTS**

345

346 **POSSUM EXCRETA SAMPLE COLLECTION AND IS2404 QPCR TESTING**

347 Standardized, grid-sectorized roadside collection of possum excreta at approximately 200m intervals was performed
348 in all freely accessible residential areas of the western tip of the Mornington Peninsula (**Figure S1**). A total of 2402
349 locations were visited during the two sampling seasons (summer: November 2018 - February 2019 and winter:
350 May 2019 – August 2019). We encountered copious amounts of possum excreta during the surveys. In only 120 of

351 all visited locations (5%) no excreta were found within the allotted 5-min survey time for each site. This
352 observation indicates that the residential areas of the Mornington Peninsula support a large possum population.

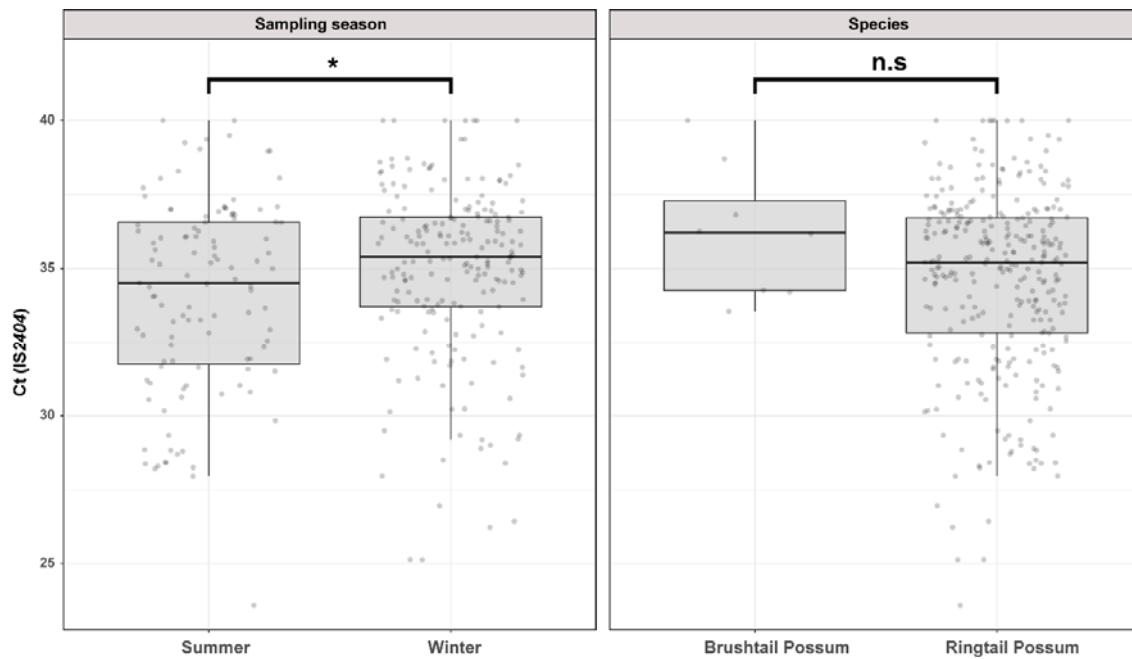
353 During the surveys, excreta from common ringtail and common brushtail possums (hereafter referred to as ringtail
354 and brushtail possums) were identified. Brushtail possum excreta were less frequent than ringtail excreta. *M.*
355 *ulcerans* DNA was detected by IS2404 qPCR in 310 of all 2282 (13.6%) excreta specimens (**Table 1**).

356 **Table 1:** Overview of the Mornington Peninsula excreta surveys across two seasons and *M. ulcerans* IS2404 PCR
357 screening results.

Season	Possum species	No. of samples positive	No. of samples tested	Positivity rate	Sites with no excreta found
Summer		111	987	11%	58
	Ringtail possum	110	947	13%	
	Brushtail possum	1	40	3%	
Winter		199	1295	15%	62
	Ringtail possum	192	1237	16%	
	Brushtail possum	7	58	12%	

358

359 *IMPACT OF SEASON ON M. ULCERANS PRESENCE IN POSSUM EXCRETA*


360 In southeast Australia, the majority of BU transmission occurs in the summer months (4). We therefore tested the
361 hypothesis that significantly more *M. ulcerans*-positive possum excreta material would be collected during
362 summer. However, we observed no significant difference between excreta IS2404 positivity and the sampling
363 season ($p = 0.2933$, Fisher's exact test). Additionally, no difference was found between the proportion of *M.*
364 *ulcerans* IS2404 positive excreta specimens and possum species ($p=0.1014$, Fisher's exact test).

365

366 **CHANGES IN *M. ULCERANS* CONCENTRATION IN POSSUM EXCRETA OVER TIME AND SPACE**

367 We used previously established IS2404 qPCR standard curves to estimate the *M. ulcerans* load in possum excreta
368 material. The Ct values for IS2404 qPCR ranged from 25.6 – 40.0, corresponding to an estimated *M. ulcerans*
369 excreta load of 24,000 – 5 mycobacterial genomes per fecal pellet (33). Interestingly, we noted that sampling
370 season had a small – but statistically significant – impact on the fecal mycobacterial load ($t(308)=-2.4$, $p=0.0171$).
371 On average, *M. ulcerans* positive excreta analyzed in summer had a Ct(IS2404) that was 0.87 lower than excreta
372 collected in winter, a difference which corresponds with a 1.8 times higher mycobacterial load in summer excreta
373 material. We observed no statistically significant difference between the fecal mycobacterial loads of the two
374 possum species (Figure 1).

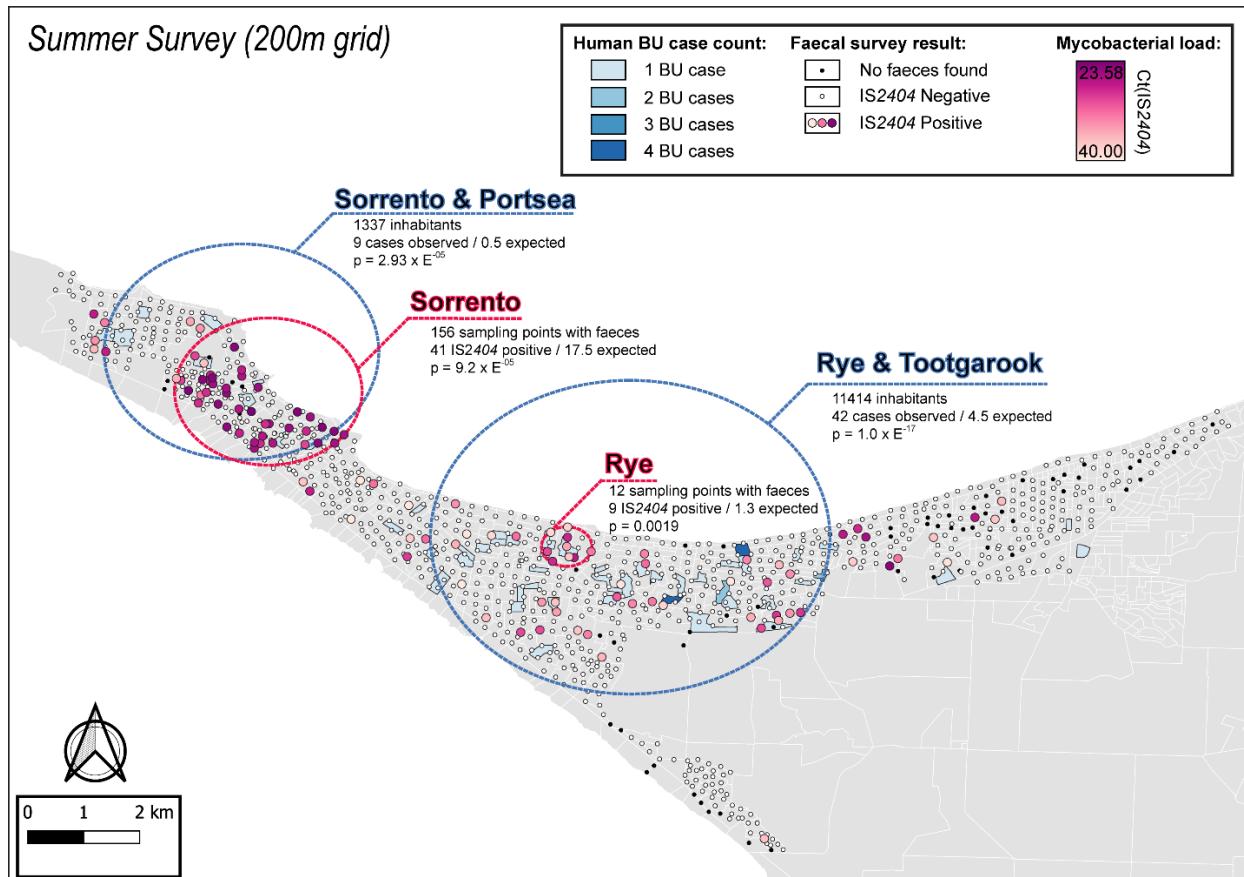
375

376

377 **Figure 1:** Overview of Mornington Peninsula *M. ulcerans* DNA concentrations in IS2404 positive excreta stratified by
378 sampling season and possum species.

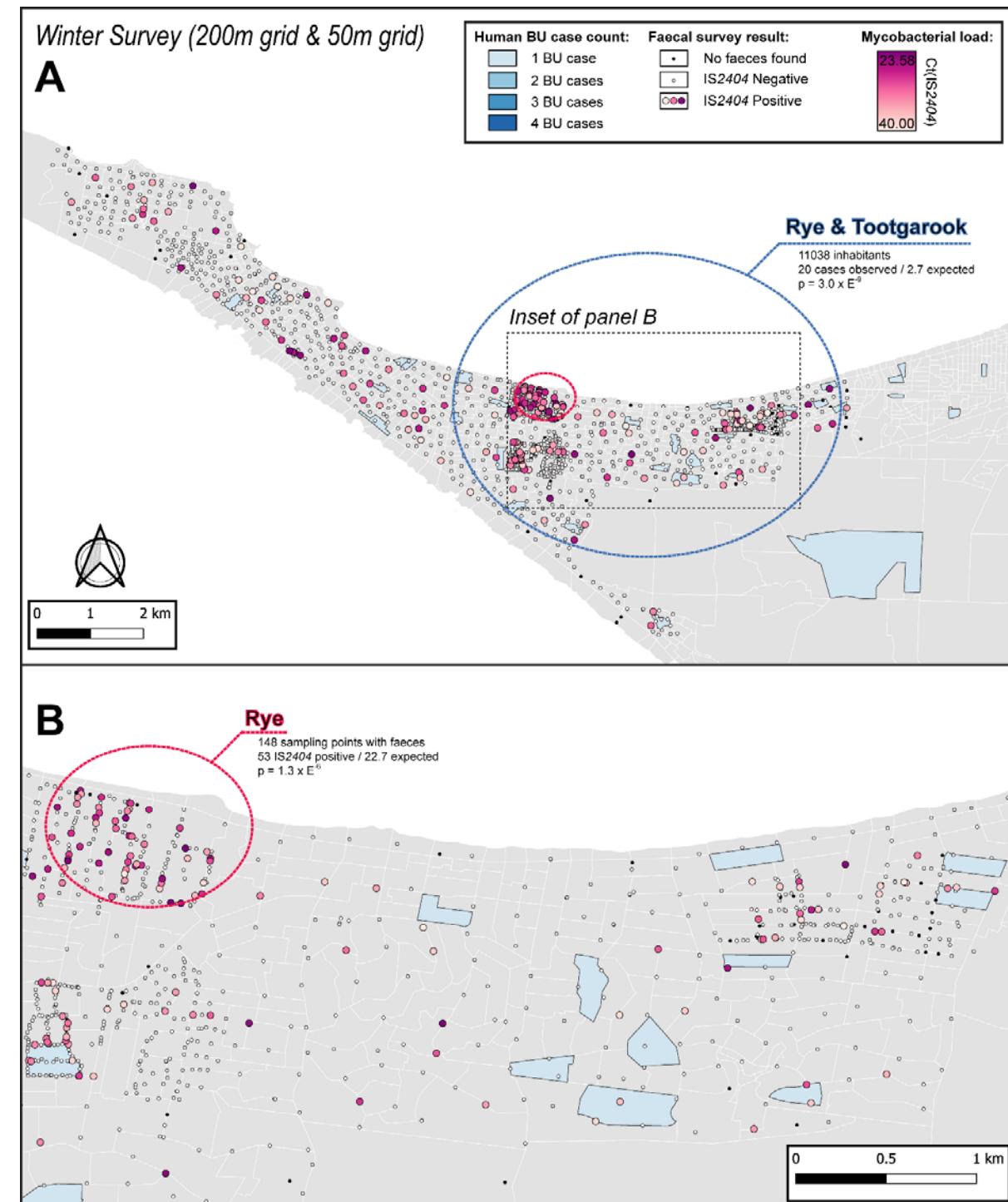
379 **SPATIAL DISTRIBUTION OF *M. ULCERANS*-POSITIVE POSSUM EXCRETA ACROSS THE MORNINGTON
380 PENINSULA**

381 The geographical distribution of *M. ulcerans* DNA in the Mornington Peninsula was investigated by mapping all GPS
382 positions of sampling locations visited during the excreta surveys (**Figure 2 and 3**). Across the two sampling
383 seasons, spatial scan statistics revealed three statistically significant geographical areas where IS2404 positive
384 excreta clustered non-randomly (**Table 2**). Of note, the Sorrento SaTScan summer cluster encompassed an area
385 where excreta with the highest *M. ulcerans* DNA concentrations of this study were also identified (**Figure 2**).


386

387 **Table 2:** Details of geographical clusters with high rates of IS2404 positive possum excreta identified in SaTScan.

388 LLR= Log Likelihood Ratio

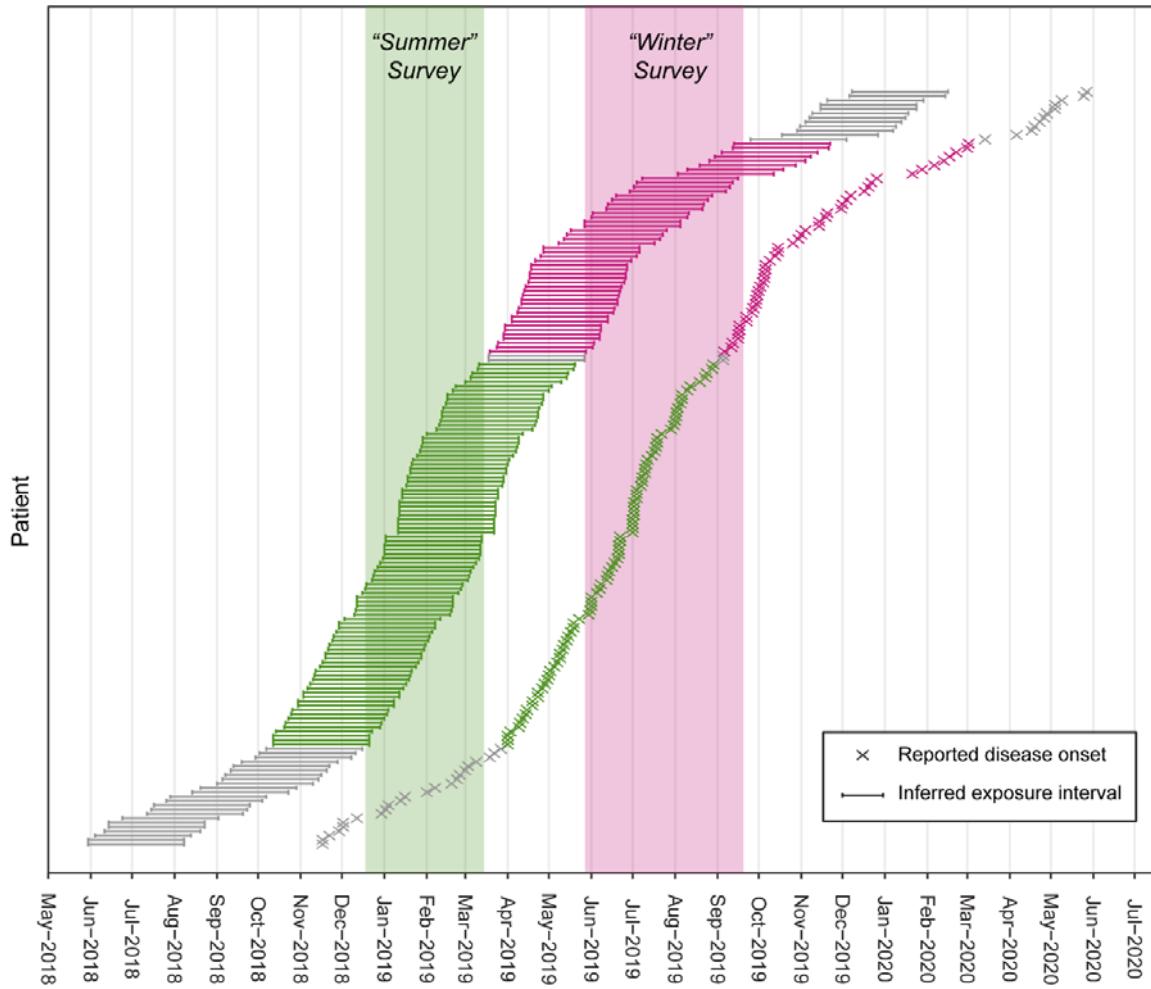

Survey	Approx. location	Cluster radius	# sampling locations	# IS2404 POS samples observed	# IS2404 POS samples expected	LLR	p-value
Summer	Sorrento	1.7 km	156	41	17.5	17.052	9.20E-05
Summer	Rye	0.4 km	13	9	1.3	13.583	1.90E-03
Winter	Rye	0.6 km	148	53	22.7	21.800	1.27E-06

389

391 **Figure 2:** Geographical surveillance of *M. ulcerans* in the Mornington Peninsula during the southern hemisphere's
392 summer. The distribution of points where possum excreta was sampled along a 200m grid pattern is presented
393 alongside with IS2404 molecular screening results. The pink to purple color gradient visualizes inferred
394 mycobacterial loads in analyzed excreta as estimated from IS2404 cycle thresholds. The dashed red circles
395 represent significant ($p < 0.005$) non-random clustering of IS2404 positive possum excreta identified with spatial
396 scan statistics. All BU patients notified to the DH with an inferred exposure time that overlapped with the excreta
397 survey organized during summer are tabulated here by mesh block. A gradient is used to illustrate BU case counts
398 per mesh block. The dashed blue circles represent geographical areas with higher rates of BU than would be
399 expected if the risk of contracting BU was evenly distributed across the Peninsula.

400

402 **Figure 3:** A&B: Geographical surveillance of *M. ulcerans* in the Mornington Peninsula during the southern
403 hemisphere's winter. The locations where standardized roadside collection of possum excreta was organized are
404 illustrated alongside with IS2404 molecular screening results. The winter survey was performed along a 200m grid


405 *pattern although three limited regions were additionally sampled at higher resolution along a 50m grid (detailed in*
406 *panel B). All BU patients notified to the DH with an inferred exposure time that overlapped with the excreta survey*
407 *organized during winter are tabulated here by mesh block. The dashed circles represent geographical areas with*
408 *higher rates of IS2404 positive possum excreta (red) or BU disease in humans (blue).*

409

410 ***M. ULCERANS-POSITIVE POSSUM EXCRETA TO PREDICT OCCURRENCE OF BU IN HUMANS***

411 A major aim of this research was to try and use the possum excreta survey data to predict the risk of BU
412 transmission to humans. Our approach was to prospectively compare the non-random clusters of *M. ulcerans*-
413 positive possum excreta samples described above with any non-random clusters of human BU cases that were
414 likely acquired during the summer and winter sampling seasons. To do this, a de-identified DH database extract
415 with enhanced surveillance data was used to select BU patients infected with *M. ulcerans* in the Mornington
416 Peninsula during an exposure interval that aligned with the summer and winter excreta possum surveys (Figure
417 **S4**). As a result, two populations of BU patients were identified that were highly likely to have been infected in the
418 Mornington Peninsula during the summer (n=62) and winter (n=35) excreta surveys. On the assumption that
419 residents/visitors/holiday residents were infected near their residences/holiday houses, the address of the
420 property (geocoded to the 2011 mesh block level) was used in all spatial analyses. Additionally, the population-at-
421 risk from which BU cases arose was represented by the Mornington Peninsula's 144,817 inhabitants as recorded in
422 the 2011 census.

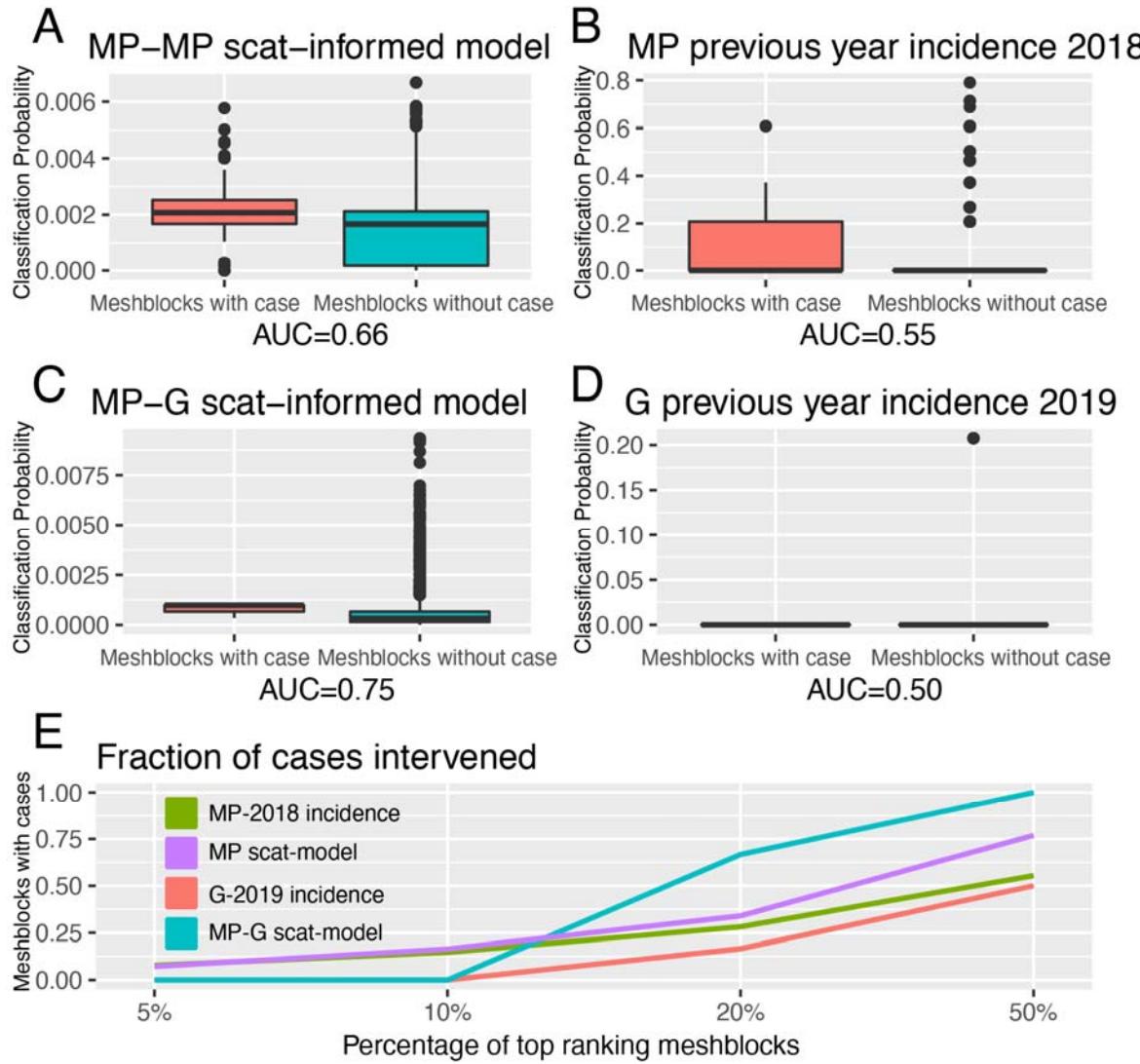
423

424

425 **Figure S4:** Selection of two populations of BU patients with exposure intervals that aligned with the excreta possum
426 surveys organized during the southern hemispheres' summer and winter. The two populations comprise BU
427 patients notified to the Victorian DH who resided in or visited the Mornington Peninsula and had not reported
428 recent (<12 months) contact with any other known BU endemic areas in the state. The reported onset of disease
429 was used to infer the exposure interval during which patients were likely infected based on the mean incubation
430 period of BU in Victoria of 143 days (IQR 101–171) (4).

431

432

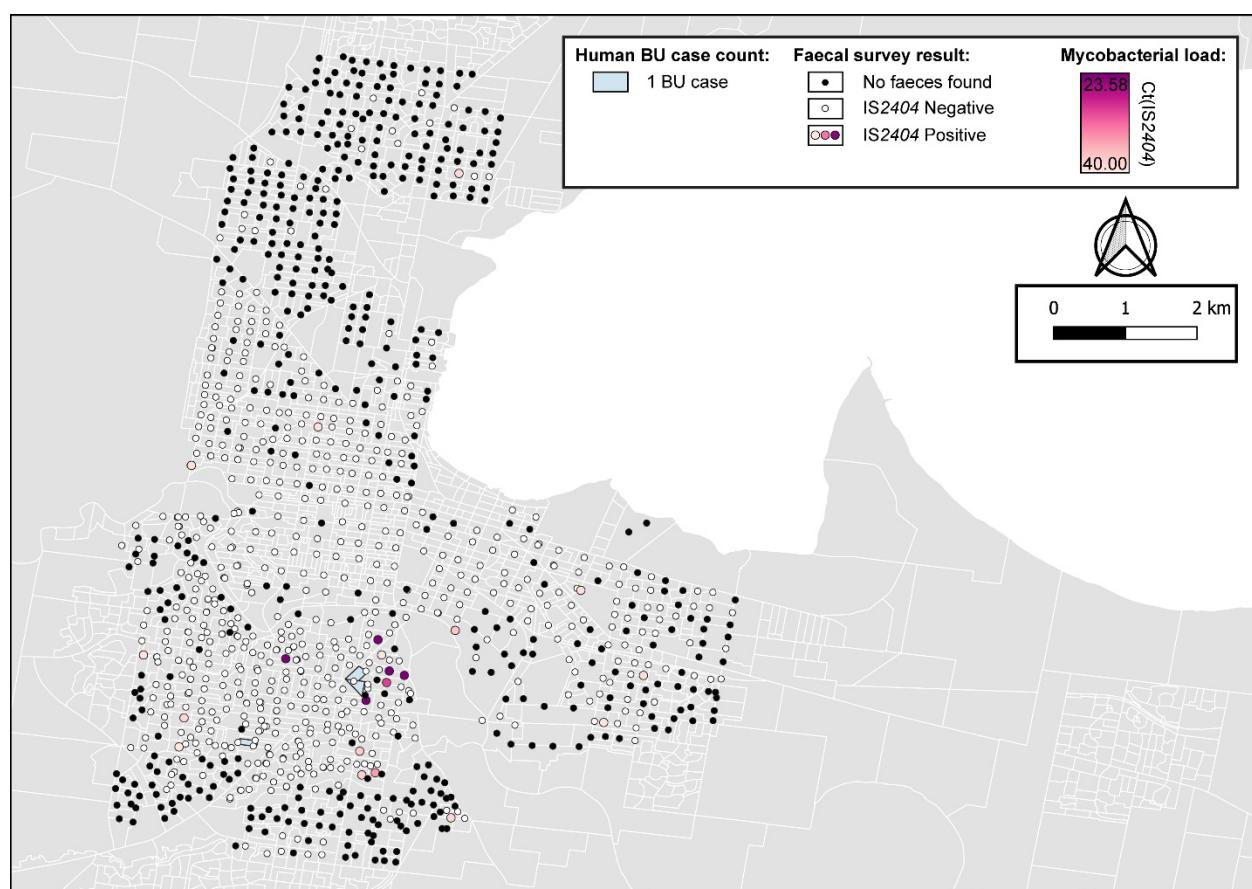

433 Spatial scan statistics applied to these mesh block data for these BU cases revealed three statistically significant
434 clusters across the two sampling seasons where human BU cases aggregated non-randomly. Across the two
435 sampling seasons, there was a significant spatial correlation between the three clusters of human BU disease and
436 the three clusters with high occurrence of *M. ulcerans* positive possum excreta (**Table 3, Figures 2 & 3**).

437 **Table 3:** Details of geographical clusters with high BU incidence identified in SaTScan. MB= mesh block, LLR= Log
438 Likelihood Ratio

Survey	Approx. location	Cluster radius	# MB centroids	Cluster census population	BU cases observed	BU cases expected	LLR	p-value
Summer	Sorrento & Portsea	2.4 km	140	1337	9	0.5	17.749	2.94E-05
Summer	Rye & Tootgarook	3.6 km	408	11414	42	4.5	75.087	1.00E-17
Winter	Rye & Tootgarook	3.6 km	383	11038	20	2.7	28.770	3.05E-09

439
440 The statistical model developed to prospectively predict the probability of a mesh block containing a case
441 demonstrated a superior ability under spatial-block cross-validation (**Figure S3**) to rank mesh blocks according to
442 whether they contained a case or not during the exposure interval – the Receiver-Operating-Characteristic (ROC)
443 area-under-the-curve (AUC) value - with a mean AUC of 0.66. This is compared to a mean AUC of 0.56 for a null
444 model based on the preceding year's human BU case incidence data for the Mornington Peninsula (**Figure 4A,B**).
445 When fitted to the full Mornington Peninsula dataset, the model parameters were estimated as: $\beta = 0.014$ (95%
446 confidence interval 0.01-0.02) and $\sigma = 1.06$ (0.92-1.21).

447


448

449 **Figure 4. Statistical modeling approaches to prospectively predict the likelihood that a mesh block will contain a**
450 **BU case.** Mornington Peninsula and Geelong have been abbreviated as (MP) and (G), respectively. All paired
451 *boxplots show the predicted probabilities for mesh blocks with a case (red) and mesh blocks without a case (blue)*
452 *and AUC value below each graph. A: Paired boxplot of the Mornington Peninsula excreta-informed model. B: Paired*
453 *boxplot of the Mornington Peninsula excreta-informed model when predicting on the Geelong data. C: Paired*
454 *boxplot of the Mornington Peninsula previous year's incidence (2018) null model. D: Paired boxplot of the Geelong*

455 previous year's incidence (2019) null model. E: Ranked performance of all predictive models. Ranking cutoff
456 intervals included the top 5, 10, 20 and 50% of mesh blocks, ordered by their declining predicted class probabilities.

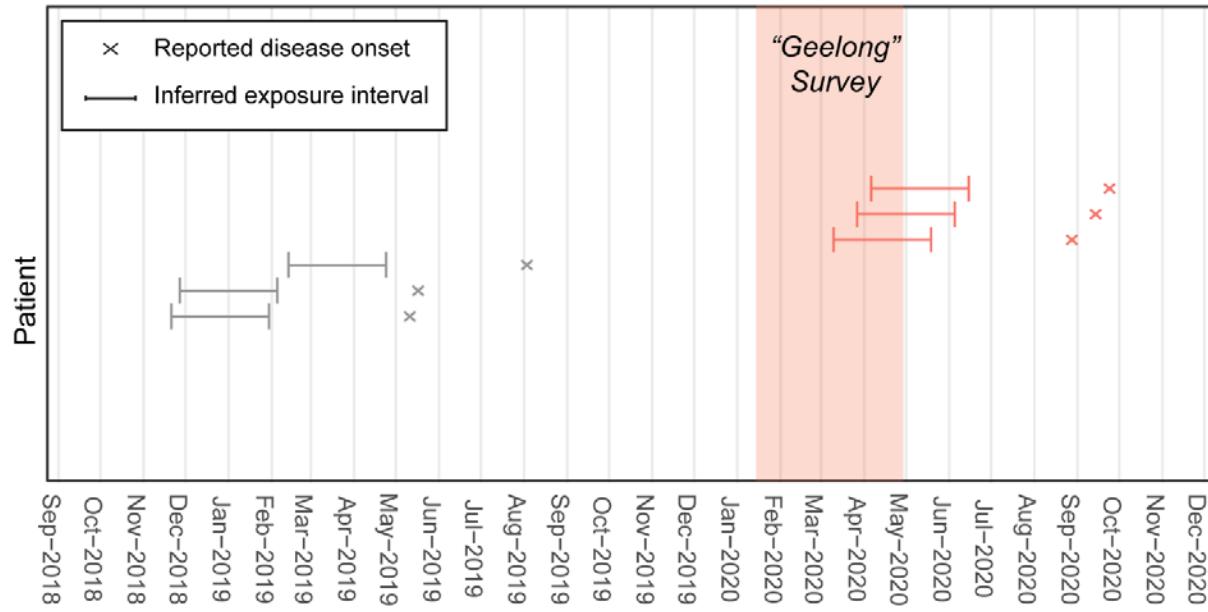
457 For the full out-of sample validation test, the model developed on the Mornington Peninsula data was validated
458 against possum excreta survey data of 1,128 sites and 661 excreta specimens collected during 2020 in the Geelong
459 region (Figure S5), and BU cases in the same region. Three confirmed human BU cases were reported from the
460 Geelong region with a transmission interval that overlapped the sampling period (Figures S5 and S6). The model
461 achieved an AUC of 0.75 (Figure 4C), compared with a null-model based on the previous year BU case incidence
462 with an AUC score of 0.50, underscoring the predictive ability of the excreta-informed model (Figure 4D).

463

464

465 **Figure S5:** Geographical surveillance of *M. ulcerans* in the Geelong region. The distribution of points where possum
466 excreta was sampled along a 200m grid pattern is presented alongside with IS2404 molecular screening results. The

467 *pink to purple color gradient visualizes inferred mycobacterial loads in analyzed excreta as estimated from IS2404*
468 *qPCR results. All BU patients notified to the DH with an inferred exposure time that overlapped with the Geelong*
469 *excreta survey organized between 16/01/2020 and 28/04/2020 tabulated here by mesh block.*

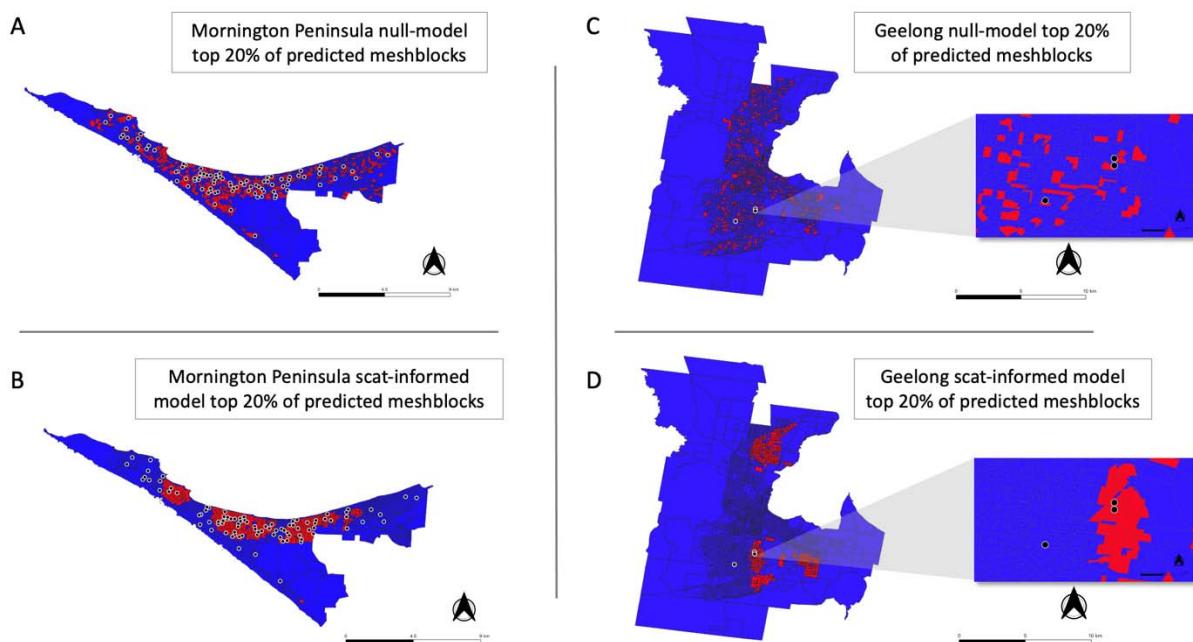

470

471 *M. ulcerans* DNA was detected by IS2404 qPCR in 21 of the 661 (3.2%) excreta specimens (**Table 4**). As was
472 observed with the Mornington Peninsula survey, Common Ringtail possum excreta were more frequently found
473 than Common Brushtail possum excreta but the proportion of IS2404 qPCR was not significantly different (**Table**
474 **4**).

Dates	Possum species	No. of samples positive	No. of samples tested	Positivity rate	Sites with no excreta found
January- April 2020		21	661	3%	467
	Ringtail possum	19	577	3%	
	Brushtail possum	2	84	2%	

475 **Table 4: Geelong excreta survey results summary**

476


477 **Figure S6:** Population of BU patients with exposure intervals that aligned with the Geelong excreta possum survey
478 organised between 16 January and 28 April 2020. The population comprises BU patients notified to the Victorian
479 DH who resided in or visited the Geelong area and had not reported recent (<12 months) contact with any other
480 known BU endemic areas in the state. The reported onset of disease was used to infer the exposure interval during
481 which patients were likely infected based on the mean incubation period of BU in Victoria of 143 days (IQR 101–
482 171) (4).

484
485 In addition to the AUC, we also calculated for all models the fraction of total mesh blocks with cases that were
486 detected when targeting the top 5, 10, 20 and 50% of mesh blocks, ranked by the predicted probability that a
487 mesh block will contain at least one BU case (Figure 4E). The excreta-informed models deployed in both the
488 Mornington Peninsula and Geelong areas demonstrated a greater ability to classify case-containing mesh blocks
489 into the 5, 10, 20 and 50% of top-ranking mesh blocks than that of the null-models (Figure 4E). Targeting of the top
490 20% of total mesh blocks for these two regions represents a substantial reduction in the overall number of mesh
491 blocks at 368/1840 and 365/1827 for the Mornington Peninsula and Geelong models, respectively. Given the
492 tradeoff between narrowing the geographic search area and maintaining sufficient sensitivity to detect mesh

493 blocks where cases might occur, we found that the selection of the top 20% of excreta-informed model
494 probability-ranked mesh blocks was a good compromise.

495

496 The geographical distribution of the top 20% of probability-ranked mesh blocks obtained with the excreta-
497 informed models also had obvious spatial clustering compared with the null-models, which had excretated mesh
498 blocks (**Figure 5A-D**). The non-random mesh block probability density of the excreta-informed models suggests
499 these data can be used to inform rational, targeted and thus more cost-effective deployment of any interventions
500 compared with reliance on human case data alone.

501

502 **Figure 5:** Geographical distribution of the top 20% of probability-ranked mesh blocks for all excreta-informed and
503 null models. Red indicates mesh blocks in the top-20% of probability-ranked results while blue indicates mesh blocks
504 in the bottom-80%. Black circles with white borders indicate location of confirmed BU cases that occurred within
505 the transmission window following the excreta sampling. A: Mornington Peninsula null-model top-20% mesh block
506 predictions. B: Mornington Peninsula excreta-informed model top-20% mesh block predictions. C: Geelong null-

507 *model top-20% mesh block predictions. D: Geelong excreta-informed model top-20% mesh block predictions.* Insets
508 show zoom-in of mesh blocks where BU cases occurred.

509

510 **DISCUSSION**

511 The rapid expansion of BU endemic areas in southeastern Australia has highlighted the need for new strategies to
512 understand and control disease spread. The long and variable incubation period of BU in humans has challenged
513 traditional epidemiological surveillance approaches in tracking the emergence and movement of BU disease foci
514 (4,34). Building on the findings of other zoonotic pathogen surveillance programs (14,15), here we explored the
515 potential role arboreal marsupial mammals as wildlife sentinels to monitor BU emergence and spread and to help
516 understand the role of these animals in the transmission of BU. Our primary goal was to determine whether *M.*
517 *ulcerans* surveillance of possum excreta could act as an early warning system capable of predicting future human
518 BU case locations. As a first task, we established a possum excreta surveillance program that monitored *M.*
519 *ulcerans* in the environment of the Mornington Peninsula. This allowed us to determine the extent of epizootic
520 activity during consecutive summer and winter seasons.

521

522 We identified a significant spatial correlation between clusters of *M. ulcerans* positive possum excreta and clusters
523 of confirmed human BU cases likely infected with *M. ulcerans* in the same region during an exposure interval that
524 aligned with the excreta possum surveys (Figure 2). While the overlap between the two cluster types was not
525 perfect, it is important to highlight that the SatScan clusters detected represent the general area of a cluster and
526 the circles are only approximate boundaries. Importantly however, the patterns and overlap we observed aligned
527 with previous assessments of the positive association between *M. ulcerans* in possums and human BU cases
528 (10,11,20) and thus very strongly implicate Australian native possums as key environmental reservoirs of *M.*
529 *ulcerans*, involved in a transmission cycle with humans. This association between possums, human and BU flags
530 this disease as a One Health issue. It also suggests that a surveillance program that monitors *M. ulcerans* DNA in

531 possum excreta could alert public health authorities to increased human BU risks, which would allow prevention,
532 and control programs to be implemented before human BU cases occur.

533

534 To further explore the potential of possum excreta surveys to predict the risk of BU cases occurring in humans in
535 particular areas, we built a custom statistical model and compared its performance to null models built from the
536 previous year's human BU case incidence. From a public health perspective, the null models can be considered as a
537 conventional approach to determine where cases might appear in the future. The development of a excreta-
538 informed model for the Mornington Peninsula data revealed that it had greater predictive capacity than the
539 Mornington Peninsula null model, in that it could more accurately predict areas (mesh blocks) with cases than the
540 null model. We extended the Mornington Peninsula excreta-informed model to make predictions upon a
541 previously unseen excreta survey dataset in the Geelong region. As for predictions made on the Mornington
542 Peninsula, the predictions made with the Geelong excreta data had a greater ability to correctly predict human BU
543 case-containing mesh blocks than was observed with a null model that used the previous year's BU incidence.

544

545 This increased performance of the excreta-informed models might be explained by several factors. Firstly, the long
546 incubation period makes it difficult to establish both when and where a person may have been infected with *M.*
547 *ulcerans*, so the spatial information used by the null models will likely contain more 'noise' than the excreta-
548 informed models. Possums, however, have a limited range, usually less than 100 m, and so their excreta is a
549 spatially trustworthy analyte, providing a more accurate picture of pathogen distribution in the environment
550 (10,35). Secondly, human BU cases are not detected in areas where possums do not harbour *M. ulcerans*
551 (10,11,20). Therefore, possums are playing a substantially more contributive role than humans to BU transmission
552 cycles, helping to explain why the excreta-informed model out-performs human BU case incidence-based models.
553 The ability of the excreta-informed model trained with data from the Mornington Peninsula to predict human case
554 occurrence in a distinct area (Geelong) strongly reinforces the link between possums harbouring *M. ulcerans* and
555 human BU cases across different geographic areas in southeast Australia.

556

557 The ranking evaluation of the predictive models is another strength of the modeling approach, as it reports the
558 number of mesh blocks where cases potentially could have been prevented (or better managed) if these top-
559 ranking mesh blocks were targeted by an effective public health intervention. We envisage a scenario in which
560 such geographical risk assessments could form the basis of public health messaging programs that target areas
561 where disease transmission is predicted as most likely to occur. In this way, for instance, frontline general practice
562 clinicians could be advised of the elevated local BU transmission risk, potentially leading to earlier patient diagnosis
563 and improved clinical outcomes for the cases that do emerge. In addition, targeted messaging based on predictive
564 modeling may also encourage preventative behaviors among local communities that could lessen the chances of
565 transmission and reduce the number of emerging cases. For example, targeted messaging promoting behaviors
566 that mitigate known BU risk factors (eg mosquito bites) or promote known protective behaviours (use of insect
567 repellent) could reduce disease incidence (20,36). Other interventions could reduce the abundance of potential
568 vectors that might be transmitting *M. ulcerans* from possums to people, or perhaps seek to control the infection in
569 possums with novel therapeutic interventions.

570

571 Possum excreta faecal surveys are practical and cost effective because excreta from Australian native possums in
572 urban and semi-urban areas is highly abundant, easily recognized and easily accessed. It is an ideal environmental
573 analyte. Roadside collection of possum excreta and subsequent molecular screening is also relatively
574 straightforward and processing epizootiological data does not require informed consent or access to medical
575 records. Furthermore, as multiple years may elapse between the occurrences of BU in a particular region,
576 continuous excreta surveillance might detect trends in the distribution and epidemiology of BU in a region and
577 allow the effectiveness of any BU control measures; measures such as identifying and treating *M. ulcerans*-infected
578 possum populations.

579

580 We explored the impact of sampling at a higher density (50m intervals instead of 200m) (**Figure 3A**). The higher
581 density sampling provided by 50m intervals increased resolution for the faecal mapping, but it didn't materially
582 change the pattern of *M. ulcerans* positive faecal samples detected at 200m sampling grids. We propose that 200m
583 sampling grids provide a pragmatic balance between survey sensitivity and survey time/costs.

584

585 The streamlined workflow, the custom-built distance trackers, and the use of Android mobile phones equipped
586 with an electronic data collection solution simplified the fieldwork to such an extent that new field workers could
587 be trained within a day. Moreover, incorporating ODK in our workflow allowed us to organize our mobile excreta
588 surveys in a cost-effective manner as open-source software suite was hosted free-of-charge by a cloud provider.
589 Furthermore, ODK Collect proved a powerful tool for ensuring high-quality data collection as it only uploaded
590 completed submissions, as the app automatically validated survey responses at the point of data collection by
591 using entry constraints, error checks and form logic. This significantly reduced data errors and data loss that would
592 be much more common in paper surveys at this scale.

593

594 In this study, we have confirmed that Buruli ulcer in southeast Australia is a zoonotic infection involving Australian
595 native possums in a transmission cycle. The means by which the pathogen is spread between possums and humans
596 is under active investigation, but mosquitoes are likely vectors (37,38). We are also investigating the natural
597 history of *M. ulcerans* infection in possums, to better understand the apparent susceptibility of these animals to
598 mycobacteria. The detection of *M. ulcerans* DNA in possum excreta is associated with the occurrence of BU disease
599 in humans and we have explored how these surveillance data can be used to predict future BU case emergence. A
600 future surveillance program should collect, analyze, and interpret epidemiological, clinical, and epizootiological
601 data on BU. Questions/issues to address about such a program include breadth of areas to survey, frequency of
602 specimen collection, and availability of the resources/trained personnel required to establish and maintain a
603 program. Environmental surveillance should identify epizootics as quickly as possible so that steps can be taken to
604 control disease spread. We have found possum excreta surveillance of *M. ulcerans* DNA can identify the spread of

605 BU epizootics and providing public health authorities with sufficient warning to implement control measures
606 before human cases occur.

607

608 **ACKNOWLEDGMENTS**

609 We are grateful to Gabrielle Stinear, Andrew Walker, Brianna Behrsin, Zoe Winkle, Zoe James, Simone Clayton,
610 Kerri Howell and Jake A Linke for valued assistance during fieldwork.

611

612 **COMPETING INTERESTS**

613 The authors have no competing interests to declare.

614 REFERENCES

615 1. Portaels F, Silva MT, Meyers WM. Buruli ulcer. *Clinics in Dermatology*. 2009 May 1;27(3):291–305.

616 2. Röltgen K, Pluschke G. Buruli Ulcer: History and Disease Burden. In: Pluschke G, Röltgen K, editors. *Buruli Ulcer: Mycobacterium Ulcerans Disease* [Internet]. Cham: Springer International Publishing; 2019 [cited 2021 Jul 1]. p. 1–41. Available from: https://doi.org/10.1007/978-3-030-11114-4_1

619 3. Johnson PDR. Buruli Ulcer in Australia. In: Pluschke G, Röltgen K, editors. *Buruli Ulcer: Mycobacterium Ulcerans Disease* [Internet]. Cham: Springer International Publishing; 2019 [cited 2021 Jun 29]. p. 61–76. Available from: https://doi.org/10.1007/978-3-030-11114-4_3

622 4. Loftus MJ, Trubiano JA, Tay EL, Lavender CJ, Globan M, Fyfe JAM, et al. The incubation period of Buruli ulcer (Mycobacterium ulcerans infection) in Victoria, Australia – Remains similar despite changing geographic distribution of disease. *PLOS Neglected Tropical Diseases*. 2018 Mar 19;12(3):e0006323.

625 5. O'Brien CR, Handasyde KA, Hibble J, Lavender CJ, Legione AR, McCowan C, et al. Clinical, Microbiological and Pathological Findings of Mycobacterium ulcerans Infection in Three Australian Possum Species. *PLOS Neglected Tropical Diseases*. 2014 Jan 30;8(1):e2666.

628 6. Portaels F, Chemla K, Elsen P, Johnson P, Hayman J, Hibble J, et al. Mycobacterium ulcerans in wild animals. *Revue scientifique et technique*. 2001;

630 7. O'Brien CR, McMillan E, Harris O, O'Brien DP, Lavender CJ, Globan M, et al. Localised Mycobacterium ulcerans infection in four dogs. *Australian Veterinary Journal*. 2011;89(12):506–10.

632 8. Elsner L, Wayne J, O'Brien CR, McCowan C, Malik R, Hayman JA, et al. Localised Mycobacterium ulcerans infection in a cat in Australia. *Journal of feline medicine and surgery*. 2008;10(4):407–12.

634 9. Zyl AV, Daniel J, Wayne J, McCowan C, Malik R, Jelfs P, et al. Mycobacterium ulcerans infections in two horses in south-eastern Australia. *Australian Veterinary Journal*. 2010;88(3):101–6.

636 10. Fyfe JAM, Lavender CJ, Handasyde KA, Legione AR, O'Brien CR, Stinear TP, et al. A Major Role for Mammals in the Ecology of Mycobacterium ulcerans. *PLOS Neglected Tropical Diseases*. 2010 Aug 10;4(8):e791.

638 11. Carson C, Lavender CJ, Handasyde KA, O'Brien CR, Hewitt N, Johnson PDR, et al. Potential wildlife sentinels for monitoring the endemic spread of human buruli ulcer in South-East Australia. *PLoS Negl Trop Dis*. 2014;8(1):e2668.

641 12. Department of Health. Victoria A. Victoria, local public health areas and local government areas surveillance summary report [Internet]. State Government of Victoria, Australia; [cited 2022 Sep 5]. Available from: <http://www.health.vic.gov.au/infectious-diseases/local-government-areas-surveillance-report>

644 13. Department of Health. Victoria A. Buruli ulcer bacteria identified in inner north Melbourne [Internet]. State Government of Victoria, Australia; [cited 2022 Sep 5]. Available from: <http://www.health.vic.gov.au/health-advisories/buruli-ulcer-bacteria-identified-in-inner-north-melbourne>

647 14. Hamer SA, Lehrer E, Magle SB. Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago, Illinois. *Zoonoses Public Health*. 2012 Aug;59(5):355–64.

649 15. Childs JE, Krebs JW, Real LA, Gordon ER. Animal-based national surveillance for zoonotic disease: quality,
650 limitations, and implications of a model system for monitoring rabies. *Prev Vet Med*. 2007 Mar 17;78(3–
651 4):246–61.

652 16. Australian Bureau of Statistics (ABS). Regional Population Growth, Australia, 2017-18: Population Estimates by
653 Significant Urban Area, 2008 to 2018 [Internet]. 2019 [cited 2022 Jun 13]. Available from:
654 <https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3218.02017-18?OpenDocument>

655 17. Hartung C, Lerer A, Anokwa Y, Tseng C, Brunette W, Borriello G. Open data kit: tools to build information
656 services for developing regions. In: Proceedings of the 4th ACM/IEEE International Conference on Information
657 and Communication Technologies and Development [Internet]. New York, NY, USA: Association for Computing
658 Machinery; 2010 [cited 2021 Jun 7]. p. 1–12. (ICTD '10). Available from:
659 <https://doi.org/10.1145/2369220.2369236>

660 18. Nenadic A. maps-from-google-spreadsheets [Internet]. 2021 [cited 2021 Jun 7]. Available from:
661 <https://github.com/softwaresaved/maps-from-google-spreadsheets>

662 19. Standardized Roadside Collection Of Possum Excreta using Open Data Kit (ODK) tools. [Internet]. 2022 [cited
663 2022 Jun 10]. Available from: <https://www.youtube.com/watch?v=Et1WqD6Fkv8>

664 20. Blasdell KR, McNamara B, O'Brien DP, Tachedjian M, Boyd V, Dunn M, et al. Environmental risk factors
665 associated with the presence of *Mycobacterium ulcerans* in Victoria, Australia. *PLoS One*.
666 2022;17(9):e0274627.

667 21. Fyfe JAM, Lavender CJ, Johnson PDR, Globan M, Sievers A, Azuolas J, et al. Development and application of
668 two multiplex real-time PCR assays for the detection of *Mycobacterium ulcerans* in clinical and environmental
669 samples. *Appl Environ Microbiol*. 2007 Aug;73(15):4733–40.

670 22. QGIS Development Team. QGIS Geographic Information System [Internet]. 2021. Available from:
671 <https://www.qgis.org>

672 23. Ross BC, Johnson PD, Oppedisano F, Marino L, Sievers A, Stinear T, et al. Detection of *Mycobacterium ulcerans*
673 in environmental samples during an outbreak of ulcerative disease. *Appl Environ Microbiol*. 1997
674 Oct;63(10):4135–8.

675 24. Notification of *Mycobacterium ulcerans* (Buruli ulcer) [Internet]. Department of Health & Human Services;
676 [cited 2021 Jun 7]. Available from:
677 <https://www2.health.vic.gov.au:443/about/publications/formsandtemplates/notification-of-mycobacterium-ulcerans>

679 25. Kulldorff M. A spatial scan statistic. *Communications in Statistics - Theory and Methods*. 1997 Jan
680 1;26(6):1481–96.

681 26. Buultjens A. Possum_excreta_survey_predict_human_BU [Internet]. 2022 [cited 2022 Jun 13]. Available from:
682 https://github.com/abuultjens/Possum_excreta_survey_predict_human_BU

683 27. Leisch F. A toolbox for K-centroids cluster analysis. *Computational Statistics & Data Analysis*. 2006 Nov
684 15;51(2):526–44.

685 28. Hijmans RJ, Etten J van, Sumner M, Cheng J, Baston D, Bevan A, et al. raster: Geographic Data Analysis and
686 Modeling [Internet]. 2022 [cited 2022 Nov 4]. Available from: <https://CRAN.R-project.org/package=raster>

687 29. Wickham H, Bryan J, attribution) Rs (Copyright holder of all R code and all C code without explicit copyright,
688 code) MK (Author of included R, code) KV (Author of included libxls, code) CL (Author of included libxls, et al.
689 readxl: Read Excel Files [Internet]. 2022 [cited 2022 Nov 4]. Available from: <https://CRAN.R-project.org/package=readxl>

691 30. Pebesma E. Simple Features for R: Standardized Support for Spatial Vector Data. *The R Journal*.
692 2018;10(1):439–46.

693 31. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the Tidyverse. *Journal*
694 *of Open Source Software*. 2019 Nov 21;4(43):1686.

695 32. Diggle PJ, Ribeiro PJ. Model-based Geostatistics [Internet]. New York, NY: Springer; 2007 [cited 2022 Nov 4].
696 (Springer Series in Statistics). Available from: <http://link.springer.com/10.1007/978-0-387-48536-2>

697 33. Wallace JR, Mangas KM, Porter JL, Marcsisin R, Pidot SJ, Howden B, et al. *Mycobacterium ulcerans* low
698 infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of
699 *Buruli ulcer*. *PLOS Neglected Tropical Diseases*. 2017 Apr 14;11(4):e0005553.

700 34. Trubiano JA, Lavender CJ, Fyfe JAM, Bittmann S, Johnson PDR. The Incubation Period of Buruli Ulcer
701 (*Mycobacterium ulcerans* Infection). *PLOS Neglected Tropical Diseases*. 2013 Oct 3;7(10):e2463.

702 35. Buultjens AH, Chua KYL, Baines SL, Kwong J, Gao W, Cutcher Z, et al. A Supervised Statistical Learning
703 Approach for Accurate *Legionella pneumophila* Source Attribution during Outbreaks. *Appl Environ Microbiol*.
704 2017 Nov 1;83(21):e01482-17.

705 36. Quek TYJ, Athan E, Henry MJ, Pasco JA, Redden-Hoare J, Hughes A, et al. Risk Factors for *Mycobacterium*
706 *ulcerans* Infection, Southeastern Australia. *Emerg Infect Dis*. 2007 Nov;13(11):1661–6.

707 37. Johnson PDR, Azuolas J, Lavender CJ, Wishart E, Stinear TP, Hayman JA, et al. *Mycobacterium ulcerans* in
708 Mosquitoes Captured during Outbreak of Buruli Ulcer, Southeastern Australia. *Emerg Infect Dis*. 2007
709 Nov;13(11):1653–60.

710 38. Lavender CJ, Fyfe JAM, Azuolas J, Brown K, Evans RN, Ray LR, et al. Risk of Buruli Ulcer and Detection of
711 *Mycobacterium ulcerans* in Mosquitoes in Southeastern Australia. *PLOS Neglected Tropical Diseases*. 2011 Sep
712 20;5(9):e1305.

713