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Abstract

Background: Molecular subtyping of brain tissue provides insights into the heterogeneity of
common neurodegenerative conditions, such as Alzheimer’'s disease (AD). However, existing
subtyping studies have mostly focused on single data modalities and only those individuals with
severe cognitive impairment. To address these gaps, we applied Similarity Network Fusion (SNF),
a method capable of integrating multiple high-dimensional multi-‘'omic data modalities

simultaneously, to an elderly sample spanning the full spectrum of cognitive aging trajectories.

Methods: We analyzed human frontal cortex brain samples characterized by five ‘omic modalities:
bulk RNA sequencing (18,629 genes), DNA methylation (53,932 cpg sites), histone H3K9
acetylation (26,384 peaks), proteomics (7,737 proteins), and metabolomics (654 metabolites).
SNF followed by spectral clustering was used for subtype detection, and subtype numbers were
determined by eigen-gap and rotation cost statistics. Normalized Mutual Information (NMI)
determined the relative contribution of each modality to the fused network. Subtypes were

characterized by associations with 13 age-related neuropathologies and cognitive decline.

Results: Fusion of all five data modalities (n=111) yielded two subtypes (n.=53, n,=58) which
were nominally associated with diffuse amyloid plaques; however, this effect was not significant
after correction for multiple testing. Histone acetylation (NMI=0.38), DNA methylation (NMI=0.18)
and RNA abundance (NMI=0.15) contributed most strongly to this network. Secondary analysis
integrating only these three modalities in a larger subsample (n=513) indicated support for both
3- and 5-subtype solutions, which had significant overlap, but showed varying degrees of internal
stability and external validity. One subtype showed marked cognitive decline, which remained
significant even after correcting for tests across both 3- and 5-subtype solutions (ps.=5.9x103).

Comparison to single-modality subtypes demonstrated that the three-modal subtypes were able
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to uniquely capture cognitive variability. Comprehensive sensitivity analyses explored influences

of sample size and cluster number parameters.

Conclusion: We identified highly integrative molecular subtypes of aging derived from multiple
high dimensional, multi-‘omic data modalities simultaneously. Fusing RNA abundance, DNA
methylation, and H3K9 acetylation measures generated subtypes that were associated with
cognitive decline. This work highlights the potential value and challenges of multi-‘omic integration

in unsupervised subtyping of postmortem brain.

Keywords: multi-‘omic Integration, molecular subtyping, cognitive aging, Alzheimer’s disease,

postmortem brain, clustering analysis

Introduction

Aging is often accompanied by progressive cognitive decline. The severity of this decline ranges
from normal age-related changes to clinically important mild cognitive impairment (MCI) and
ultimately dementia [1,2]. Alzheimer's disease (AD) is the most common cause of late-life
dementia, which is typically characterized by impairments in memory and loss of daily functioning
[2]. This poses a major public health concern, as by 2050, the estimated number of individuals
diagnosed with dementia globally is expected to reach 152.8 million [3]. As a neuropathological
process, AD is defined by the abnormal accumulation of neurofibrillary tangles
(hyperphosphorylated tau protein), the formation of extracellular dense core plaque deposits
(beta-amyloid), and chronic neuroinflammation in the brain [4]. However, there is great inter-
individual heterogeneity in these pathological hallmarks, and the relationship between

neuropathology and cognitive impairment is not deterministic [5]. As such, there likely remain


https://doi.org/10.1101/2022.11.16.516806
http://creativecommons.org/licenses/by-nc-nd/4.0/

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516806; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

unobserved molecular signatures of age-related cognitive decline that could help explain the

heterogeneity observed within populations and shed light on mechanisms of iliness.

Molecular subtyping most often refers to classifying individuals within a population into subgroups
using molecular data types and unsupervised clustering methods [6,7]. The approach has seen
success in fields with abundant and readily assayed tissue samples from diseased populations,
such as in oncology, where biopsied tumors yield molecular information leading to precision
interventions [7]. Similarly, the heterogeneity of cognitive aging may be partly explained by using
high-dimensional molecular measures from postmortem brain tissue of elderly donors to group
similar individuals. For example, molecular subtypes of AD derived from RNA sequencing
(RNAseq) data have been associated with AD-relevant pathologies [8—11], including amyloid and
tau neuropathological burden, and APOE genotype [8,9]. Subtypes derived from common genetic
variation, specifically single nucleotide polymorphisms, identified multiple AD-related molecular
mechanisms [12]. A major limitation of most existing subtyping studies in this field is that they rely
on information from single data modalities, e.g. gene expression data, which greatly constrains

the information used to parse biological systems and pathological processes [13,14].

Importantly, it has been shown that several multi-‘omic data types, including histone acetylation
[15], metabolomics [16—20] and proteomics [21], are not only associated with AD
neuropathologies, but also contributed information to associations that is missed with RNAseq
alone [8,21]. As such, integrating data modalities into subtyping pipelines has been an active area
of research [22,23], and large-scale cohort studies of aging that include brain donation and multi-
‘omic characterization, such as those from the Accelerating Medicines Partnership for Alzheimer's
Disease (AMP-AD) consortium, now offer opportunities for developing highly integrative models
of cognitive decline [24]. Methods development in high-dimensional feature integration have also

facilitated these analyses [25,26] , though not yet in pathological aging or AD. Similarity network
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96 fusion (SNF) is a network-based method specifically developed to integrate several multi-‘omic

97  data modalities simultaneously [27].

98 Here we performed a highly integrative analysis on up to five postmortem multi-‘omic data
99  modalities simultaneously, measured in the same individuals, to identify molecular subtypes of
100 aging using the SNF method. We then characterized these subtypes by associating subtype
101  membership with 13 age-related neuropathologies, antemortem cognitive performance, and rates
102  of longitudinal cognitive decline. The most important features contributing to the fully fused
103  similarity network were identified and subsequent analyses focused on the most informative data
104  modalities. Lastly, we performed comprehensive sensitivity testing to explore the effects of

105 parameter selection in unsupervised multi-‘omic subtyping, which are often chosen arbitrarily.

106

107 Methods

108  Study participants

109 Data were analyzed from two longitudinal cohort studies of aging and dementia: the Religious
110  Orders Study and Rush Memory and Aging Project (ROS/MAP), with more than 3,500
111  predominantly white elderly (mean = 78.44, sd = 7.79) participants of mostly European descent
112  without known dementia at the time of enroliment [28]. Participants in ROS (1994-present) are
113  older Catholic priests, nuns, and brothers across the United States, whereas MAP (1997-ongoing)
114  recruits primarily from retirement communities and via social service agencies and Church groups
115 throughout northeastern lllinois [28,29]. Combined data analysis for these two cohorts are

116 enabled by harmonized protocols for participant recruitment, clinical assessment, and
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117  neuropathological examination at autopsy (autopsy rate exceeding 86%) with a large common
118 core of identical item level data. A Rush University Medical Center Institutional Review Board
119 approved each study. All participants signed an Anatomic Gift Act as well as informed and
120 repository consents. Annual visits include tests of cognition function and a broad range of other
121  demographic, social, lifestyle, and clinical assessments with an averaged follow-up rate of 97%
122  [29]. Further details about the ROS and MAP cohorts can be found in previous publications [30]
123  and through the Rush Alzheimer's Disease Center Research Resource Sharing Hub, where
124  participant-level clinical and demographic data are available via restricted access

125 (https://www.radc.rush.edu/home.htm).

126  Multi-‘omic data used for subtyping

127  We used five multi-‘omic data modalities to identify molecular subtypes: bulk RNAseq (18,629
128  genes, Nrnaseq=1,092), DNA methylation (53,932 cpg sites, nona=740), histone H3K9 acetylation
129 (26,384 peaks, hhistone=669), metabolomics (654 metabolites, Nmetabolomics=514), and tandem mass
130 tag (TMT) proteomics (7,737 proteins, Nproteomics=368). All data types were acquired from the same
131  brain region postmortem: dorsolateral prefrontal cortex (DLPFC). All ‘omic datasets used in our
132 analyses were generated by members of the Accelerating Medicines Partnership - Alzheimer’s
133 disease (AMP-AD) consortium and are available via restricted access through the AMP-AD

134  knowledge portal, on Synapse (https://adknowledgeportal.synapse.org/). Further details can be

135 found in Acknowledgements.

136  RNA sequencing (RNAseq)

137  Full details on gene-level expression data from bulk DLPFC tissue have been published [31].
138  Approximately 100 mg of DLPFC tissue were dissected from autopsied brains. Samples were

139 processed in batches of 12—24 samples for RNA extraction using the Qiagen MiRNeasy Mini (cat
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140 no. 217004) protocol, including the optional DNAse digestion step. RNA Samples were submitted
141  to the Broad Institute’s Genomics Platform for transcriptome library construction following
142  sequencing in three batches using the lllumina HiSeq (batch #1: 50M 101bp paired end reads)
143  and NovaSeq6000 (batch #2: 30M 100bp paired end; batch#3: 40-50M 150bp paired end 121
144  reads) [32]. A cut-off point of 5 for RNA Integrity Number (RIN) score was used for constructing
145 the cDNA library [33]. The average sequencing depth was 50 million paired reads per sample. To
146  achieve higher quality of alignment results, a paralleled and automatic RNAseq pipeline was
147 implemented based on several Picard metrics (http://broadinstitute.github.io/picard/). 18,629
148 features - full-length gene transcripts - from 1,092 samples remained after data preprocessing

149  and quality control (QC).

150 DNA methylation

151 Tissues were dissected similar to gene-expression data, full details on DNA methylation data
152  have been published [33]. DNA was extracted by the Qiagen QlAamp mini protocol (Part number
153 51306). Probes with p-value >0.01 were removed at probe level QC if predicted to cross-hybridize
154  with sex chromosomes and having overlaps with known SNP with MAF =0.01 (10 bp) based on
155 the 1000 Genomes database. Subject level QC methods including principal component analysis
156  and bisulfite conversion efficiency. B-values reported by the Illumina platform were used as the
157 measurement of methylation level for each CpG probe tagged on the chip; where missing values
158 were imputed by the k-nearest neighbor algorithm (k=100). The primary data analysis was
159 adjusted by age, sex, and experiment batch [33]. Due to the large number of features present for
160 this data type, and to limit computational time, we only included the top 53,932 methylation peaks
161  showing the greatest variability (Supplementary Figure 1A). To verify that this selection process

162  did not impact our subtyping efforts, we performed sensitivity analysis for 5-modal integration
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163 using all CpG sites - resulting subtype memberships were nearly identical (Supplementary

164  Figure 1B).

165 Histone H3K9 acetylation

166  For the acetylation of the ninth lysine of histone 3 (H3K9ac), which is a marker of open chromatin,
167 the Millipore anti-H3K9ac mAb (catalog #06-942, lot: 31636) was identified as a robust
168 monoclonal antibody for the chromatin immunoprecipitation experiment. Similar to RNAseq and
169 DNA methylation, 50 milligrams of gray matter was dissected on ice from biopsies of the DLPFC
170  of each participant of ROS/MAP. Chromatin labeled with the H3K9ac mark and bound to the
171  antibody was purified with protein A Sepharose beads [15]. To quantify histone acetylation, single-
172  endreads were aligned to the GRCh37 reference genome by the BWA algorithm after sequencing.
173  Picard tools were used to flag duplicate reads. A combination of five ChlP-seq quality measures
174  were employed to detect low quality samples: samples that did not reach (i) 215x106 uniquely
175 mapped unigue reads, (ii) non-redundant fraction=0.3, (iii) cross correlation=0.03, (iv) fraction of
176  reads in peaks=0.05 and (v) 26000 peaks were removed [15]. Samples passing QC were used to
177  define a common set of peaks termed H3K9ac domains. H3K9ac domains of less than 100bp
178  width were removed resulting in a total of 26,384 H3K9ac domains with a median width of
179 2,829 bp available for 669 subjects. Full details on H3K9ac data can be found on Synapse

180 (https://www.synapse.org/#!Synapse:syn4896408).

181 Metabolomics

182  Metabolomics data were generated by the Alzheimer's Disease Metabolomics Consortium

183 (ADMC; ADMC members list https://sites.duke.edu/adnimetab/team/), led by Dr. Rima Kaddurah-

184  Daouk [18-20]. Metabolomic profiling of postmortem brain was conducted at Metabolon (Durham,

185  NC) with the Discovery HD4 platform consisting of four independent ultra-high-performance liquid
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186 chromatography—tandem mass spectrometry (UPLC-MS/MS) instruments [16,17]. For the
187  purpose of QC and better understanding of the underlying biological mechanisms, missing rates
188 less than 20% on known metabolites and 40% on individuals were imposed. As SNF cannot
189 handle missing data, random forest imputation [34] was then applied, resulting in 654 metabolites
190 and 514 individuals. Full details on metabolomic assays and data processing can be found here

191 (https://www.synapse.org/#!Synapse:syn26007830). The full metabolomics dataset and

192 metadata can be accessed via the AMP-AD Knowledge Portal.

193 Proteomics

194  Prior to TMT labeling, samples were randomized by co-variates (age, sex, postmortem interval
195 (PMI), diagnosis, etc.), into 50 total batches (8 samples per batch) [35]. Peptides from each
196 individual (n=400) and the GIS pooled standard (n=100) were labeled using the TMT 10-plex kit
197 (ThermoFisher 90406). Peptide eluents were separated on a self-packed C18 (1.9 um, Dr. Maisch)
198 fused silica column (25 cm x 75 yM internal diameter) by a Dionex UltiMate 3000 RSLCnano liquid
199 chromatography system (Thermo Fisher Scientific) [35,36]. Peptides were monitored on an
200  Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific). The mass spectrometer was set
201 to acquire data in positive ion mode using data-dependent acquisition. Dynamic exclusion was
202  set to exclude previously sequenced peaks for 20 s within a 10-ppm isolation window [35,36]. In
203  this study we only include peptides and participants with a missing rate less than 20% followed
204 by random forest imputation [37], resulting in 7,737 proteins and 386 individuals. Full details on
205 proteomics data acquisiton and processing can be found on synapse

206 (https://www.synapse.org/#!Synapse:syn17015098).
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207  Uniform multi-‘omic feature post-processing

208 Due to differences in data feature preprocessing among the five selected ‘omic data modalities,
209  we performed additional post-processing QC to determine whether technical and demographic
210 covariates may be influencing global patterns of variability for each modality. To achieve this, we
211  tested associations between age of death, sex, PMI, and study cohort (ROS vs. MAP) with each
212  of the top 20 components from PCA for each ‘omic modality separately, as in previous ‘omic work
213 in this cohort [31]. The proportion of variance explained by each PC from each of the five data
214  modalities, and the corresponding associations of each PC with potential covariates, are shown
215 in Supplementary Figures 2-6. Based on this assessment, we determined that four out of five
216  data modalities showed significant associations of all four covariates within the first 10 principal
217 components (RNAseq data had been post-processed already and residualized for each of these
218 covariates in addition to modality-specific confounders). We therefore proceeded by residualizing
219 all features from each modality according to a linear model including all four covariates. This
220 conservative approach ensured that contributions of each modality to latent subgroups were not
221 unbalanced by different representations of covariate-specific effects. We also performed
222 iterations of the analysis without correction, finding very similar but not identical subgroup

223  memberships for 5-modal integration (Supplementary Figure 7).

224 Neuropathological assessment

225  All selected postmortem neuropathological variables analyzed in this study have been previously
226  published in detail [29,38]. In addition to the outcome of NIA-Reagan neuropathological diagnosis
227  of Alzheimer’s disease [5,39], we examined 13 other individual pathologies: brainwide amyloid-
228  beta, diffuse and neuritic plague counts, paired helical filament tau, neurofibrillary tangle count,
229 TDP-43 proteinopathy stage (4 levels), large vessel cerebral atherosclerosis rating (4 levels),

230 arteriolosclerosis, semiquantitative summary of cerebral amyloid angiopathy pathology (CAA; 4

10
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231 levels), pathologic stage of Lewy body disease (4 stages), gross chronic cerebral infarcts (coded
232 as binary; presence/absence of infarcts), and cerebral microinfarcts (coded as binary;

233  presence/absence of infarcts).

234 Cognitive performance and residual cognition (resilience)

235  Scores from five cognitive domains (episodic memory, semantic memory, working memory,
236  perceptual speed and perceptual orientation) were recorded at last study visit and summarized
237 by z-scoring for a composite measure of global cognition, as described [40]. In our study, we
238 defined the last available global cognitive measure as cognitive performance proximal to death.
239  Cognitive slopes were also derived from the same set of z-scores over time to measure the
240  longitudinal aspect of cognitive decline [41]. To assess the resilience component of an individual's
241  cognitive capacity, we used the residual cognition approach [42,43]. Residual cognition was
242  defined as the residuals of a linear model of global cognitive performance at last visit regressed
243  on observed neuropathologies (beta-amyloid, neurofibrillary tangles, neuritic plaques, diffuse
244  plagues, Lewy bodies, macroscopic infarcts, microscopic infarcts, atherosclerosis,

245  arteriolosclerosis, TDP-43 and CAA).

246  Statistical Analysis

247  Subtype identification with Similarity Network Fusion (SNF)

248  The Similarity Network Fusion (SNF) method was used to integrate multi-‘omic data modalities
249  [27]. SNF first constructs sample-by-sample similarity matrices for each data modality separately
250 and then iteratively updates and integrates these matrices via nonlinear combination until
251  convergence is reached, generating a fused similarity network [44]. SNF does not require any

252  prior feature selection, but fully imputed (non-missing) data is required. According to best

11
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253  practices [35,37], random forest imputation was applied on both metabolomics and proteomics
254  data to impute missing values. The ‘SNFtool’ R package (v2.2.0) was used for the network fusion
255  pipeline, with recommended parameters K=40, alpha=0.5, and T=50 (where K is the number of
256  neighbors used to construct the similarity matrices; alpha is a hyper-parameter used in the scaling
257  of edge weights; T is the total number of algorithmic iterations). Spectral clustering, an
258 unsupervised soft clustering method rooted in graph theory [27,45], is the default clustering
259  method for ‘SNFtool’; it was applied to the full fused affinity matrix to cluster study participants
260 into subtypes. Optimal cluster numbers were identified (2 to 8 clusters) by the rotation cost [46]
261 and eigen-gap [45] methods. Data modalities contributing the most information to fused similarity
262  matrices were computed by Normalized Mutual Information (NMI). NMI is a measure of relevance
263 and redundancy among features [47], which helps to identify the data types that contribute most

264  strongly to the fused network estimated by SNF [27].

265 Assessment of internal subtype validity

266  Due to the high dimensionality and heterogeneity of multi-‘omic data, assessments of cluster
267  validity are critical to tackling potential biases of clustering algorithms toward particular cluster
268 properties and to evaluate the probability that clusters do in fact exist [48,49]. Upon subtype
269 identification, we conducted internal cluster stability analysis using the R package ‘clValid’, which
270  measures cluster validity and stability through several metrics derived from resampling and cross-
271  validation. Metrics included in our studies are the average proportion of non-overlap (APN) and
272  the average distance between means (ADM), which work especially well if the data are highly
273  correlated, which is often the case in high-throughput genomic data [49-51]. For resampling, we
274  pulled 80% of participants for a total of 300 random draws, in accordance with previously
275  published work using the SNF pipeline [52] as well as other AD molecular subtyping efforts [8].

276 The adjusted Rand index (ARI) was used to measure the agreement between subtype

12
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277  membership solutions (ranging from 0 to 1, where ARI = 1 indicating perfect agreement) [53]. Chi-
278  square statistics were also used to compare the independence between different subtyping

279  solutions [54].

280 Identifying top individual features defining molecular subtypes

281 In order to identify molecular features that differed most between subtypes after spectral
282  clustering, we performed one-way ANOVA tests between each normalized feature from each
283  multi-‘'omic data modality and subtype groupings. P-values from F-tests were used as the
284 measure of significance to rank features from each modality. Gene annotations for DNA
285 methylation data were mapped using the UCSC genome browser [55], and histone acetylation

286  peaks were annotated by Klein et al. [15].

287 Association of subtypes with neuropathology, cognition, and residual

288  cognition

289  For each clustering solution, subtype membership was initially characterized by associations with
290 13 neuropathologies and three cognitive measures described above using linear or logistic
291 regression. Subtype membership for each participant was represented with dummy variables for
292  inclusion in each model (nsusypes-1). For models of neuropathology, co-variates included age at

293 death, biological sex, educational attainment (years), PMI, study cohort, and APOE ¢4 status.

294 (A) Neuropathologies ~ Subtype + Age of death + Sex + Education + PMI + Study + APOE

295 €4

296  When fitting regression models for cognitive outcomes, the model (B) was also adjusted for the
297 measurement latency, which is equal to the time difference (in years) between the last study visit

298 where cognitive performance was assessed and age of death.

13
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299 (B) Cognitive Measurements ~ Subtype + Latency + Age of death + Sex + Education + PMI +

300 Study + APOE ¢4

301 Omnibus F-tests of the hypothesis of equal outcome means (or probabilities for logistic models)
302 across all subtypes were used to test the significance of subtype membership effects. P-values
303  were Bonferroni adjusted for 16 tested outcomes, except where otherwise indicated. For subtypes
304  with significant effects on global cognition (either at last visit or longitudinal slope), secondary

305 analyses were performed (according to model B) for each subdomain of cognition separately.

306 Sensitivity analyses for external validity across data modalities, sample sizes,

307 and cluster numbers

308 To better understand the added value of data integration in the context of molecular subtyping,
309 we performed a set of sensitivity analyses to measure differences in neuropathological and
310 cognitive relevance (external validity) of subtypes derived from different combinations of multi-
311 ‘omic data modalities. Given that each iteration of these integrative analyses was limited to the
312 sample size in which all data types were non-missing, we also assessed the effects of performing
313  clustering in artificially limited sample subsets (i.e., where included non-missing data modalities
314  permit a larger sample size). To achieve this, we defined a full search space of analytical pipeline
315  configuration and parameter combinations for exhaustive modeling: 1) data modalities included
316  (d; 31 possible combinations), 2) sample size (n; ranging from 111 to 1,092 participants, including
317 31 possible sample sizes each corresponding to a different data modality combination), and 3)
318 cluster number (c; ranging from 2-5, the extremes of values observed in our subtyping analyses).
319 This resulted in a total of 844 unique combinations of d, n, and c. To evaluate external validity,
320 we performed omnibus tests of the association of subtype membership for each analytical
321 iteration with the set of neuropathologies and cognitive measures, as previously. To provide some

322 generalized insight into the effects of manipulating design parameters on our association
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323  strengths, second-level analyses were performed by relating each pipeline parameter to observed
324 omnibus model significance for each neuropathology and cognitive outcome (j). For these
325 analyses, the effects of ¢ (and cf, the same parameter but treated as a categorical variable), n,
326 and a new parameter, m, representing the number of data modalities being fused, were tested

327 independently, according to the following formulae:

328 (C) -log(pj) ~ m, -log(p;) ~ N, -log(p;) ~ ¢
329
330 Results

331 We analyzed data from a total of 1,314 unique participants from the Religious Orders Study and
332  Memory and Aging Project (ROS/MAP) with at least one available multi-‘omic data modality and
333  non-missing clinical and neuropathological data. Sample demographics are summarized in Table
334 1. The number of participants with different degrees of overlapping multi-‘omic characteristics
335 ranged from n=111 (all five data types) to 1,092 (RNAseq only); all overlaps are shown in Figure

336 1A.

337 Fully integrated five-modal network identifies two molecular subtypes

338 nominally associated with neuritic plague burden

339  First, we aimed to determine whether molecular subtypes derived from all five multi-‘'omic data
340 modalities were informative of postmortem neuropathology and antemortem cognitive decline.
341  SNF yielded an optimal solution of two molecular subtypes (Figure 1B) in 111 individuals with all
342  five ‘omic modalities (ns1=53, ns,=58). Both the rotation cost and eigen-gap methods elected two

343  as the optimal number of clusters. These subtypes were weakly associated with neuritic (praw=
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344  0.09) and diffuse plaque counts (paw=0.03), though these associations did not survive correction
345 for multiple testing. In addition, no significant associations were observed for cognitive

346  performance at last visit, rate of cognitive decline, or residual cognition (Figure 1C).

347  Despite the lack of significant associations of molecular subtypes with pathology and cognition,
348 the fully fused network demonstrated substantial internal stability (APN=8.7%, ADM=0.02;
349 Supplementary Figure 8). We therefore proceeded to identify the data modalities contributing
350 most to the fused network by normalized mutual information (NMI) (Supplementary Table 1).
351 We found that histone acetylation (NMI=0.38), DNA methylation (NMI=0.18) and RNAseq
352  (NMI=0.15) were the top contributors to the fused network (to a substantially greater degree than
353  proteomic (NMI=0.04) and metabolomic modalities (NMI=0.05)). The top 10 individual features
354  contributing to the fused network from the top contributors are summarized in Supplementary
355 Table 2. Based on the importance of the top three data modalities, secondary analysis was
356 conducted integrating only histone acetylation, DNA methylation, and RNAseq, which permitted

357  subtyping of a much larger sample size with non-missing overlapping data (n=513).
358 Subtypes derived from three-modal integration are associated with

359 cognitive performance proximal to death and longitudinal cognitive

360 decline

361 In secondary analyses with three data modalities, the eigen-gap method elected three molecular
362 subtypes as the optimal clustering solution, while rotation cost elected five. We therefore
363  evaluated both solutions by comparing membership overlap, differences in internal validity metrics,
364 and associations with neuropathology and cognition. A strong overlap was identified between
365 subtype memberships in the 3- and 5-subtype solutions (chi-square p=2.2x10%, ARI=0.76;

366  Figure 2A, D), whereby the large subtype 3 (n=377) from the 3-subtype solution contained 81.2%
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367  of the participants assigned to subtypes 3, 4, and 5 from the 5-subtype solution. Internal cluster
368  stability was compared between 3-subtype and 5-subtype solutions (Figure 2B, C); both APN
369 and ADM measures were better for the 3-subtype solution (APN=9.6%, ADM=0.01), though the
370 5-subtype solution also demonstrated cluster stability well above random chance (APN=23.1%,

371 ADM=0.02) (Figure 2E, F).

372 In tests of external validity, and tests of association with neuropathological and cognitive
373  measures, subtype membership was significantly associated with global cognition at last visit
374  (pson=0.022) and rate of cognitive decline (pson=4.2x10) for the 5-subtype solution after multiple
375  testing correction (Figure 2G). In contrast, the 3-subtype solution was preferred by internal cluster
376  stability metrics, and significant associations with neuropathology or cognition were not observed

377  (Figure 2G). We therefore probed further into the 5-subtype solution.

378  Cross-tabulation of three-modal and five-modal subtype memberships was carried out for only
379 the 111 individuals included in the full five-modal analysis above, finding substantial overlap (chi-
380 square p=8.1x10°, ARI=0.60; Figure 3A). This demonstrated that the SNF procedure was
381  consistent across sample size in terms of defining core cluster memberships when the most

382 influential data types were combined.

383 In assessments of the mean differences in global cognition and the ratio of cognitive decline
384  across 5 subtypes identified, subtype 5 had the worst global cognitive performance at last visit
385 and the fastest rate of cognitive decline (Figure 3B). This difference was significant in post hoc
386  pairwise tests against all other subtypes, except for subtype 2 (Figure 3C). Subtype 4 exhibited
387 the best average cognitive performance and slowest decline (Figure 3B, C). Notably, the
388 association observed with cognitive decline (psoni=5.9x103) was strong enough to survive
389  correction for multiple testing across combined 5-subtype and 3-subtype association test sets (32

390 tests) (Figure 2G). Given the significant association of subtypes with global cognition at last visit
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391 and rate of global cognitive decline, we performed follow-up analysis on five cognitive subdomains.
392  For rate of cognitive decline, subtypes were most strongly associated with perceptual orientation
393  (pson=8.0x107°), perceptual speed (peson=0.004), and semantic memory (Pson=0.007)
394  (Supplementary Figure 9A). Specifically, the best and worst cognitive performance values were
395 observed on average in subtypes 4 and 5, respectively (Supplementary Figure 9B-F). A similar

396 pattern was also identified from cognition measured at last visit (Supplementary Figure 9G-L).

397 Molecular features defining three-modal subtypes

398 To describe the molecular signals most strongly associated with our observed subtypes, we first
399 identified the top features contributing to the fused network from each data modality by ANOVA
400 (Supplementary Table 3). The top 5 histone acetylation features exhibited the strongest within-
401  subtype homogeneity and between-subtype variability (consistent with the observation that
402 histone acetylation had the largest NMI of each modality Supplementary Table 1). The most
403  extreme values for acetylation were observed in subtypes 1 (lowest levels) and 2 (highest levels)
404  at peaks annotated to ZNF219, TMEM153, LSM14A, PSMD11, CDK5R1, MYD1D, ALDH3A2,
405 APBB2, and others (Figure 3D). Subtype 5, which was characterized by the fastest rate of
406  cognitive decline, had intermediate acetylation of these peaks (along with subtype 4, which are
407 largely represented by subtype 3 in the 3-subtype solution). For DNA methylation, CpG sites
408 showed differential methylation at sites annotated to RB1, LPARG6, and RP11-83B20.10, as well
409 as intergenic regions on chromosome 5 and 7, though no consistent pattern related to the
410 cognition-associated subtype 5 was observed (Figure 3F). In contrast, the top subtype-
411  associated RNAseq features revealed lower levels of PCYOX1L and NECTIN1, as well as higher
412  levels of SLC5A3, PPP4R2, and PPP1CC in subtype 5 specifically compared to all other subtypes

413  (Figure 3E).
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414 Comparison with single modality subtypes and sensitivity analysis

415  Finally, we compared clinical and neuropathological associations of these three-modal subtypes
416  with those for subtypes derived from each of the modalities analyzed individually. We found that
417  these integrated subtypes had unique associations with cognitive performance and decline. For
418 example, subtypes derived from RNAseq alone (n=1,092) were significantly associated with
419 amyloid-beta (pson=0.018) and neuritic plaque burden (psont =2.3x1073), but not with global
420  cognition at last visit (pson=0.28) or rate of cognitive decline (pson=1.0). In fact, none of the
421  unimodal subtypes showed more significant associations than three-modal, 5-cluster subtypes on

422  global cognitive performance (Figure 3G).

423 In sensitivity analyses, substantial variability in external validity was observed across different
424  selections of sample size, data modalities, and cluster number. Supplementary Figure 10
425 illustrates the full set of results for selected amyloid and cognitive outcomes, which were the
426  outcomes demonstrating the most significant associations with subtype membership in our
427  analyses above (full summary statistics from these analyses are available in Supplementary
428 Table 4). Supplementary Figure 11A shows the meta-regression results for the influence of
429  sample size (n), number of data modalities (m), and cluster number (c) on statistical associations
430  with all 16 tested phenotypes. Generally, less significant associations were captured as more data
431 modalities were integrated and sample size decreased (see example of beta-amyloid in
432  Supplementary Figure 11B), though exceptions were noted, such as for Lewy bodies (where
433  additional modalities on average increased external validity; meta praw=2.5x10"7; Supplementary
434  Figure 11C). Comparatively, cluster number selection had less of an impact overall on external

435  validity.
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436

437 Discussion

438  We used up to five ‘omic data modalities acquired from the human postmortem prefrontal cortex
439  simultaneously to detect molecular subtypes of aging using a high-dimensional, unsupervised
440 approach. We identified several subtypes that were significantly associated with individuals' rates
441  of cognitive decline and levels of beta-amyloid neuropathology. In particular, molecular subtypes
442  derived from a three-modal integrated network combining gene expression (RNAseq), H3K9ac,
443  and DNA methylation peaks yielded subtypes of participants with significantly faster decline in
444  global cognition, specifically in domains of perceptual orientation, perceptual speed, and semantic
445  memory. To the best of our knowledge, associations between multi-‘omic subtypes and cognitive
446  performance have not previously been identified, and most subtyping studies have focused only
447  on individuals with confirmed, late-stage AD [56]. Our findings also empirically quantify the relative

448  information provided by different ‘omic modalities to participant similarity networks.

449 In fully integrated analyses, combining all five available modalities, we identified two molecular
450 subtypes which exhibited non-significant external validity with respect to neuropathology and
451  cognition. We did not explore this result much further for three reasons: 1) both internal cluster
452  validity metrics (eigen gap and rotation cost) elected the same 2-subtype solution, 2) the sample
453  size for full five-modal integration analysis was small (n=111), and 3) NMI calculations showed
454  substantial heterogeneity in the amount of information contained within each modality when
455  considering patient similarity networks in this sample subset. The small sample size was likely a
456  key limitation; this was confirmed by sensitivity analyses showing that even for single data
457  modalities, when the sample was restricted to the n=111 group, there were virtually no observed

458  associations with any cognitive or neuropathological measures.
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459 By comparing both integrated molecular subtypes and unimodal subtypes from spectral clustering,
460 we found that subtypes from RNAseq alone were significantly associated with neurofibrillary
461 tangles and amyloid-beta. Such associations align with findings from previous subtyping work in
462  only individuals suffering from dementia [8], and demonstrate the reliability of the method we used
463  for subtyping. Our analysis also emphasizes the importance of integrating epigenetic data with
464  gene expression studies seeking to identify key molecular drivers of AD [57]. Variability in gene
465  expression alone cannot determine the current status of diseases [58,59]; even so, genetic and
466  epigenetic studies still tend to be conducted separately [57]. This study serves as evidence that
467  integrating multiple epigenetic data types with gene expression data can lead to the discovery of

468 novel molecular subtypes associated with cognition.

469 In describing the top molecular features that distinguish our subtypes from one another, we
470 identified epigenetic marks and RNA transcripts which map to genomic loci previously associated
471  with AD and cognitive aging. Of particular interest were those loci that differentiated cognition-
472  associated subtype 5 from all other subtypes. In this subtype, we found lower levels of
473  Prenylcysteine Oxidase 1 Like (PCYOX1L), a gene which has been previously associated with
474 AD [60-63], and has been identified as an AD target gene by the Agora platform
475  (https://agora.adknowledgeportal.org/) with strong evidence for RNA down-regulation across 8
476  brain regions and proteomic down-regulation across four regions. Nectin cell adhesion molecule
477 1 (NECTIN1) [64] was similarly downregulated in subtype 5, and also showed RNA and protein-
478 level dysregulation in the Agora database, confirming that the multi-modal SNF pipeline was

479  capable of extracting some known signals with neuropathological significance.

480 Among the top genes with higher average levels in subtype 5 were SLC5A3 [65], PPP4R2, and
481 PPP1CC. PPP4R2 and PPP1CC code for enzymes in the serine/threonine-protein phosphatase
482  family and are well-known contributors to canonical AD pathological cascades [66]. Interestingly,

483 PPP4R2 has also been identified as a top hypomethylated gene of interest in a methylome-wide
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484  association study of Parkinson’s disease [67], an illness which is also often accompanied by
485  cognitive decline [68]. Other top contributors to the three-modal subtypes, such as PSMD11 [69],
486 APBB2 [70], and TMEM253 [71] are also known to be involved in the development of AD
487  pathology. TMEM253 is also linked with mild cognitive impairment (MCI) via predicted gene
488  expression based on genetic variation (TWAS) [71]. However, some top genes (e.g. ZNF219, a
489  Kruppel-like zinc finger gene, has been associated with a-synucleinopathy [72] and has binding
490 sites in the MAPT gene [73]). In contrast, these genes have not yet been associated with AD or
491  cognitive aging, and our method provides a full resource of ranked importance for all ‘omic

492  features studied, which provides novel targets for future study.

493  There are several limitations to consider when interpreting our results. First, a common challenge
494  in unsupervised clustering endeavors, we did not achieve consensus on optimal clustering
495  solutions in our three-modal subtyping analysis. In our case, we not only examined the optimal
496 cluster number from two established methods especially suited to the SNF pipeline, but also
497  tested cluster validity by multiple resampling measures, as there is no ground truth to compare to,
498 and important information may be missed by heuristic methods alone [74],[75]. In our analysis,
499 the disagreement between optimal cluster number as elected by internal stability measures vs.
500 external cognitive and neuropathological information also demonstrates the importance of
501 transparency in the presentation of clustering analyses; in our case, both the 3- and 5-subtype
502  solutions had significant overlaps in identity, though only the fifth cluster revealed a significant
503 cognitive deficit. We again emphasize that these effects on cognition would survive correction for

504  multiple testing in a full pool of tests combining both 3- and 5-subtype solutions.

505 Second, differences in data preprocessing methods for our five ‘omic data modalities may have
506 impacted downstream clustering, despite our efforts to control for technical and biological
507  confounders at both the individual feature level and at the overall sample level in models testing

508 external validity. Third, ROS/MAP is intrinsically limited by its inclusion of predominantly
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individuals of European-Caucasian ancestry, with an overrepresentation of biologically female
participants [28-30]. Finally, ROS/MAP is known to be a resilient cohort of elderly individuals
including some members of the religious communities of Illinois. Even though we modeled study
as a covariate in all analyses to mitigate variability due to large lifestyle differences, results derived
from such a study population might not be applicable to the entire population. Future studies will
be required using populations with increased diversity with respect to ancestry and socio-
demographics. This will be the means to achieve a better understanding of the degree to which

our findings can be applied more broadly beyond European-Caucasians.

List of Abbreviations

AD late-onset Alzheimer’s disease

ADM average distance between means

AMP-AD Accelerating Medicines Partnership for Alzheimer's Disease
APN average proportion of non-overlap

ARI adjusted Rand index

CAA cerebral amyloid angiopathy

DLPFC dorsolateral prefrontal cortex

H3K9ac acetylation at the 9th lysine residue of the histone H3 protein
MAP Rush Memory and Aging Project

MCI mild cognitive impairment

NMI Normalized Mutual Information

PCA Principal component analysis

PMI Post mortem interval

RNAseq RNA sequencing

23


https://doi.org/10.1101/2022.11.16.516806
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516806; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

533 ROS Religious Orders Study
534 SNF Similarity Network Fusion
535 TMT tandem mass tag
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Table 1. Table summarizing demographic data and the availability of multi-‘omic data modalities

stratified by NIA-Reagan diagnosis criteria in ROS/MAP

Total n = 1,314 individuals with post-mortem measurement

Non-AD (n=475) AD (n=838) Total
Age at Baseline 79.62 (7.25) 81.46 (6.62) 80.81 (6.91)
Age of Death 87.55 (7.12) 90.27 (6.11) 89.28 (6.62)
Biological Sex (0: female, 1: | 38.95% 29.24% 32.75%
male)
Post Mortem Interval 8.32 (6.31) 8.32 (5.92) 8.32 (6.06)
APOE E4 (0: without E4, 1: | 13.05% 32.36% 25.74%
with E4)
Year of Education 16.34 (3.55) 16.10 (3.55) 16.19 (3.55)
Proportion of participants with non-missing data for each data type
RNA-Seq 84.84% 84.22% 83.17%
DNA Methylation 61.26% 53.46% 56.28%
Histone Acetylation 53.68% 49.28% 50.88%
Metabolomics 36.00% 40.93% 39.15%
Proteomics 31.79% 25.89% 28.03%

All participants in the sample space have at least one ‘omic data modality and phenotype data available,

mean and standard deviation is recorded.
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791

792  Figure 1. Molecular subtypes derived from 5 multi-‘omic data modalities via SNF. A) Overlapping
793  sample sizes across all combinations between five data modalities were examined using upset plot. B)
794 Unimodal subtypes were identified from affinity matrices using spectral clustering accordingly from 111
795 overlapping samples (RNAseq: three subtypes, DNA methylation: two subtypes, histone acetylation: two
796  subtypes, proteomics: two subtypes, metabolomics: three subtypes). Fully integrated subtypes were

797 illustrated in the affinity matrix as well. C) Associations of fully integrated subtype memberships and 16 age-
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798 related neuropathologies and cognitive measurements were examined by omnibus F-tests for linear
799  regression models. Y-axis shows significance of association (-logio transformed raw p-values). The black
800 horizontal line illustrates an unadjusted p-value threshold at 0.05, whereas the purple horizontal line

801 demonstrates Bonferroni-adjusted p-value thresholds for 16 tests (Praw=3.1x103).
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Figure 2. Two subtyping solutions derived from histone acetylation, DNA methylation and RNAseq

were tested against each other both internally and externally. A) 3-subtype solution and 5-subtype

solution derived from 3-modal integrated networks were associated with each other. B-D) Subtypes were

identified from affinity matrices using spectral clustering, and overlapped with each other E) Histograms for

the distribution of ADM generated from 300 random sub-samples for both 3-subtype and 5-subtype

solutions. F) Histograms for the distribution of APN generated from 300 random sub-samples for both 3-

subtype and 5-subtype solutions. G) Associations of 3-modal integrated memberships and 16 age-related

neurobiological traits were examined by omnibus F-tests for linear regression models. Y-axis shows
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811 significance of association (-logio transformed raw p-values). The black horizontal line illustrates an
812  unadjusted p-value threshold at 0.05, whereas the red and blue horizontal lines demonstrate Bonferroni-
813  adjusted p-value thresholds for 16 and 32 tests (Praw=3.1x10° and praw=1.6x103), respectively. Two

814 subtyping solutions for molecular subtyping were differentiated by color.

36


https://doi.org/10.1101/2022.11.16.516806
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516806; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Three-Modality Integrated Subtypes Associate with Fully Integrated D Histone Acetylation Top 5 Features: Between-Subtype Differences

Subtypes ANOVA p-value ANOVA p-value ANOVA p-value ANOVA p-valug ANOVA p-value
500 55x10-188 7Bx10-188 29x10-185 1.0x10-184 4.8x10-184
[
B .
“ "\ . . . :
00 .
, e
-
[E1] H . =
300 flly_mlegrated = -
= o -
& . . . EI =
: . .
- 0 H
200 4] + . . +
100
- [ﬂ ZNF219, LEM14A PSMD11, ALDH3A2, APBB2
(5] - TMEM253 COKSR1. CTD-2104P17.2
MYO1D,
[2] RP11-4B6A19.1
o feature
Thres-Modality Subtypes Fully Integrated Subtypes
Global Cognition Slopes Associations with Three-Modality Subtypes E RNAseq Top 5 Features: Between-Subtype Differences
0 ANOVA p-value ANOVA p-value ANOVA p-value ANOVA p-value ANOVA p-valu
» 1.5x10-17 241016 26x10-16 29x10-16 9.9x10-18
o1
2 25 T H .
8 : - -
i .
0.0- _— .
£ - sty
1 n _ -
Q 3 CE
g u: H B
2 N oo --
@
201 n- [=H
2 5 .
g i .
o« .
25 . i . i P
0z = . . ..
.
PCYOX 1L NECTINT SLC5A3 PPP4R2 PPPICC
Global feature
Cognition
c Slope F
Global Cognition Slope DNA methylation Top 5 Features: Between—Subtype Differences
o ] T ANOVA p-value ANOVA p-value ANOVA p-value ANOVA p-value ANOVA p-value
~ i 22x10-11 1.1x10-10 20x10-10 16x10-9 34%10-9
74 I A S 4 .
1 S : . . )
T— : .- - .. . o
i 2 B : . . Pl
¥ — “mm H -
| 3  H -
%4 —_— H . i =
= i -
. | ) * I g c
& —tt
o !
T I — .
7 4 —_— 2
I
1 T t T .
010 005 000 0.05 .
1 T:
Diffrences in mean levels of subtype chr5:10.308.785 RB1, LPARG RP11 8262010 €hr5:172.407.563 ehr7:100.214 622
G Neuropathology and Cognition Associations with Three-Modality Subtypes
L]
+ .
= L]
o
£
"
g
1
a2
=
3
P .
z P value adjusted for 16 tests
2
5 .
8 ‘ .
8 2
<4 . L] L
5 . - @ 3-Modd Inlegratan
g
8
.
5 . : . . P valudtnadjusted .
E: (] ']
1
& .
* . . . ] . . ¢
. .
L]
L] . ] . 8 . .
. . ® b ® .
[ s ] L] ©

" & & & & @, & o o & 2 £ #
& é{\ & S B o Y o $ g EE & o # & &
i quf;f . & d“g;:% eﬁé‘ " i}f;& uﬂ;ﬁ‘; L ‘{:i‘d Gl ‘,g:&f"’ L I Gﬁﬁo@ o
-

& o Y
815 fon & oA

816 Figure 3. Molecular subtypes derived from histone acetylation, DNA methylation and RNAseq were

817  tested against age-related neuropathologies and cognitive measurements. A) Subtypes derived from
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818  three-modal integrated networks were associated with the fully integrated subtypes. B) Consensus
819 associations of three-modal integrated subtypes and rate of cognitive decline. Y-axis shows standardized
820 beta coefficients estimated from linear regression, where subtype 1 was used as the baseline category
821 (error bars show standard deviation from standardized linear regression models). C) Difference in mean
822  value of rate of cognitive decline between subtypes by Tukey’'s HSD. D-F) Boxplots showing the z-
823 normalized values of the top 5 features contributing to the three-modal fused network from each input data
824  modality. G) Associations of 3-modal integrated and unimodal subtype memberships with
825 neuropathological and cognitive traits were examined by omnibus F-tests for linear regression models. Y-
826 axis shows significance of association (-logio transformed raw p-values). The black horizontal line illustrates
827 an unadjusted p-value threshold at 0.05, whereas the red and blue horizontal lines demonstrate Bonferroni-
828  adjusted p-value thresholds for 16 and 32 tests (Praw=3.1x10° and praw=1.6x103), respectively. Data

829  modalities used for molecular subtyping were differentiated by color.
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