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Abstract

Most cell types in multicellular organisms can perform multiple functions. However, not all
functions can be optimally performed simultaneously by the same cells. Functions incompatible
at the level of individual cells can be performed at the cell population level, where cells divide
labor and specialize in different functions. Division of labor can arise due to instruction by tissue
environment or through self-organization. Here, we develop a computational framework to
investigate the contribution of these mechanisms to division of labor within a cell-type population.
By optimizing collective cellular task performance under trade-offs, we find that distinguishable
expression patterns can emerge from cell-cell interactions vs. instructive signals. We propose a
method to construct ligand-receptor networks between specialist cells and use it to infer division-
of-labor mechanisms from single-cell RNA-seq and spatial transcriptomics data of stromal,
epithelial, and immune cells. Our framework can be used to characterize the complexity of cell

interactions within tissues.
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Introduction

Many cell types in multicellular organisms are multi-functional: for example, epithelial cells
perform sensory, secretory, transport and defense functions. Moreover, some functions, such as
transport and defense functions in epithelial cells, are bound by trade-offs: they cannot be
optimized at the same time in the same cells. Division of labor is a common strategy to handle
such functional trade-offs, but how it occurs within a given cell type population remains largely
unknown. Cells’ expression profiles provide an opportunity to characterize division of labor in

tissues, to infer the functional constraints driving it, and to determine its underlying mechanisms.

In particular, low-dimensional representations of patterns of cellular gene expression (Figure 1A)
(“gene expression space”), can reflect not only distinct cell types as discrete clusters and dynamical
processes, such as cell differentiation along continuous trajectories (Wagner, Regev, and Yosef
2016; Tanay and Regev 2017; Sagar and Griin 2020; Ding, Sharon, and Bar-Joseph 2022), but also
the collective optimization of task performance under trade-offs within a given cell type (Shoval
et al. 2012; Korem et al. 2015; Hart et al. 2015; Hausser et al. 2019). A theoretical framework
based on Pareto optimality predicts that the optimal performance of a multitasker cell that faces
trade-offs (e.g., due to finite resources (Sabi and Tuller 2019; Shoval et al. 2012)) is achieved when
its expression is bounded inside a polytope whose vertices are expression profiles optimal at each
task, called archetypes (Shoval et al. 2012; Korem et al. 2015; Hart et al. 2015; Hausser et al. 2019)
(Figure 1B). The Pareto optimality theory was recently extended to consider an ensemble of cells
that are working as a collective to perform the tissue’s tasks (Adler et al. 2019). In the case of
collective performance, theory predicts that cells form clusters in gene expression space where
they either all concentrate at the polytope’s archetypes (specialists), or all assume an identical

composition of task allocation (generalists) (Figure 1B).

Task performance of cells in a tissue can be affected by exogenous, instructive factors that
constrain cellular performance and cannot be altered by direct feedback from the cells such as
oxygen and nutrient levels or certain physical barriers. In the case of instructive spatial gradients,
a continuum of expression is generated inside the polytope, such that the specialist cells optimal
for each task are located in distinct positions in the tissue, where conditions are best for their

performance (Adler et al. 2019). For example, variation in expression between individual
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hepatocytes in the liver lobule (Halpern et al. 2017) and intestinal enterocytes (Moor et al. 2018)
can be explained by their spatial positioning in the tissue. However, the variability in expression
between cells of other types within the same tissues, for example between fibroblasts in the
developing mouse embryo, cannot be easily explained by their spatial position at the tissue scale

(Srivatsan et al. 2021).
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Figure 1: Pareto optimality framework. (A) Single-cell RNA-sequencing data in expression space can
reveal various low-dimensional structured patterns. (B) Mapping of the representation of individual cells
across task performance, tissue, and expression space. (C) We consider two underlying mechanisms driving
the allocation of tasks in the tissue: external signaling gradients and cell-cell interactions. (D) Mapping
patterns in tissue space with those in expression space is an ill-posed inverse problem -- there are multiple

possible tissue compositions consistent with a given expression configuration.


https://doi.org/10.1101/2022.11.16.516540
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516540; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In addition to instructive constraints, cell-cell interactions, including contact-dependent and
secreted signals, also regulate gene expression and coordinate cell performance (Armingol et al.
2021; Belardi et al. 2020) (Figure 1C), such that cells self-organize and use feedback interactions
to regulate each other’s performance. This is well-established in cell differentiation: for example,
during development, the contact-dependent Delta-Notch pathway controls early neural versus
epidermal cell-fate decisions (Beatus and Lendahl 1998). Morphogens, including the Bmp, Wnt,
Hedgehog and FGF shape cells’ expression programs and differentiation into distinct cellular fates
(Perrimon, Pitsouli, and Shilo 2012; Hogan 1999). In the tissue response to injury, secreted growth
factors such as TGF-p drive fibroblasts to transition into myofibroblasts, which in turn regulate
the wound healing process (Gabbiani 2003; Baum and Duffy 2011). Immune cells constantly sense
the landscape of cytokines and chemokines produced by other cells to determine the nature of their

response (Altan-Bonnet and Mukherjee 2019).

While cell-cell communication is a key mechanism that governs cell differentiation, how cell-cell
communication promotes division of labor within a given cell type remains unclear. Could a
continuum within a polytope in gene expression space emerge when cells co-organize to control
their task allocation? What would be the physical arrangement of cells in the tissue when their task
allocation is controlled by cell-cell interactions locally or at longer ranges? Can we leverage the
Pareto optimality framework to predict the spatial arrangements of cells in the tissue based on their

gene expression profile (Figure 1D)?

Here, we develop and apply a theory that considers the optimal trade-off between tasks in the tissue
when cells communicate their specializations to each other. Unlike instructive factors, where the
conditions of performing tissue-wide tasks are guided extrinsically, in this framework, the cells
use feedback interactions and self-organize to divide labor in an optimal way. The theory predicts
a diversity of patterns both in tissue (physical) and gene expression spaces that emerge from
different types of cell-cell interactions that are distinct from patterns that emerge from instructive
signals. We apply the theory to single-cell RNA-seq (scRNA-seq) and spatial transcriptomics data
by comparing the spatial organization and expression patterns of mouse colon fibroblasts and
intestinal mature enterocytes and by constructing ligand-receptor crosstalk networks across

specialist cells from single-cell gene expression data of fibroblasts and macrophages. This
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framework can provide insights into whether expression patterns originate from instructive

constraints or cell-cell interactions in diverse biological systems.
Results

Modeling cell-cell communication under the Pareto optimality framework generates a

variety of patterns in tissue and gene expression space

To model the Pareto-optimal expression profiles of cells in a tissue, we consider how cells
collectively contribute to the tissue by performing several tasks. As was previously presented
(Shoval et al. 2012; Adler et al. 2019), we model this trade-off by considering that each task is best
performed at an optimal expression profile, G, (or an optimal task allocation) and shows a decline
in performance as cells move further away from G," in gene expression space. We define the total
performance function of a tissue, F, as a product over the performance of all the tasks that need to
be collectively performed by the cells in the tissue, summing over the contribution of each cell to

the performance in each task (Adler et al. 2019) (Methods).

To model the effect of cell-cell interactions on optimal task allocation, we introduce an interaction
term, H;, which captures how a cell’s performance is influenced by the performance of its
neighboring cells. We explore the effect of varying the range of the interaction by varying the size
of the neighborhood of each cell (N,). The contribution of each cell (¢) in task t is therefore the
product of two components; a self-component, Py, which is a function of cell ¢’s gene expression
profile (G.), and an interaction component, H,, which is a function of the average P, of the

neighboring cells of cell ¢ (Figure 2A).

The interaction term, H,, can generally represent different types of interactions, including positive
and negative effects on performing the same task. Here, we focus on lateral inhibition, where a
cell’s performance in task t declines if its neighboring cells exhibit high performance in the same
task (Figure 2A, Methods). We consider a representative example of a 2D spatial grid of 100 cells
that need to perform three tasks and compute the expression profiles (or task allocations) of the
cells that maximize F (Methods). We discuss tissue dimensions, number of tasks, and other types

of interactions in the supplementary information (SI) (Figure S1-2).
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Figure 2: A variety of tissue and expression patterns emerge from the Pareto optimality framework
with a cell-cell communication mechanism of lateral inhibition. (A) Theoretical framework of Pareto
optimality with cell-cell interactions - Cell ¢’s performance is affected by the performance of its neighbor
cells in the tissue, N.. The total performance function, F, is a product over the tasks, where the performance
in each task is the sum over the contribution of all cells considering a self-component (P;) and the effect of
interaction with nearby cells (H;). (B) Simulation results of lateral inhibition in expression and tissue space.
Varying the range of cellular interactions produces diverse tissue patterns akin to patterns observed in real

tissues.

In the absence of cell-cell interactions, the tissue reaches optimal performance when all cells are
generalists, equally performing all tasks, but when interactions are present, the cells span multiple
qualitatively distinct arrangements within the Pareto front in gene expression space (a triangle in
the case of three tasks), and a diversity of spatial patterns in the tissue, depending on the range of
interactions (Figure 2B). Specifically, short-range / direct interactions with nearest neighbors lead
to the formation of a salt-and-pepper pattern in tissue space, where the cells are confined to the

circumference of the polytope in gene expression space. Increasing the range of lateral inhibition
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interactions drives the cells to fill the polytope with a continuum of profiles spanning both
specialist and generalist cells. At the other extreme, when all cells are mutually interacting
irrespective of location, the optimal solution partitions the cells to specialists and generalists (no
continuum). In tissue space, the model gives rise to a range of physical patterns often observed in
tissues in development and homeostasis (Gur et al. 2020), including stripes and islets of the

different specialist cells (Figure 2B).

Both instructive gradients and cell-cell interactions lead to continua of gene expression

profiles but distinct spatial patterns

When simulating lateral inhibition of cell-cell interactions, a continuum of gene expression profiles
can emerge (Figure 2B), similarly to the continuum generated by external gradients (Figure 3A-E,
Methods) (Adler et al. 2019), but with a key difference in the spatial configuration of the cells.
With instructive monotonic gradients, cells that are physically proximal within the tissue can
exhibit many times, on average, similar expression profiles (Nitzan et al. 2019) and thus similar
task allocation. In this case, specialist cells of distinct specializations are expected to be located
far from each other within the tissue, and similarity in gene expression and physical proximity are
congruent. Conversely, in a population of cells whose expression profiles are driven by lateral
inhibition, different specialist cells can be close to each other in tissue space (Figure 3D, E), such
that gene expression and tissue space can be incongruent. We demonstrate this quantitatively by
comparing the distribution of pairwise distances of cells in tissue space (“physical distance”) and
in task allocation space (“task distance”), where a cell’s task allocation is the normalized gene
expression distance from each of the archetypes (Figure 3C, F). We then construct a null model
for assessing the statistical significance of the physical locations of cells using random
permutations (Methods). Simulations with instructive monotonic gradients show a statistically
significant Pearson correlation between pairwise distances in gene expression and physical spaces
(Figure 3C, F, Methods). When a combination of both instructive gradients and lateral inhibition
governs the simulation, the Pearson correlation of physical and gene expression pairwise distances
generally increases as the strength of the effect of the external signaling gradients increases (Figure

S3).
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Figure 3: Distinct spatial patterns emerge from external gradients and cell-cell interactions. (A-B)
The Pareto-optimal solution of cells that are affected by an external gradient across a 1D and a 2D tissue in
gene expression (A) and tissue (B) space. (C) With external gradients, the pairwise expression distances
(y-axis) versus the pairwise physical distances (x-axis) show high Pearson correlation (for 1D: corr=0.88,
p-val<0.001, for 2D: corr=0.72, p-val<0.001). (D-E) The Pareto-optimal solution of cells that are affected
by cell-cell interactions in a 1D and a 2D tissue in gene expression (D) and tissue (E) space. (F) With cell-
cell interactions, the pairwise expression distances (y-axis) versus the pairwise physical distances (x-axis)
are anticorrelated (in terms of Pearson correlation, for 1D, corr=-0.1, p-val=0.002, for 2D, corr=-0.13, p-

val<0.001). (G) Schematics of the colon tissue including the intestinal villi and the muscularis layer. (H)
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Gene expression profile of enterocytes where the cells are colored by their task specializations
(combinations of red, green and blue colors representing the three tasks). (I) Arrangements of enterocytes
along the crypt-to-villus axis. The distance of the cells from each archetype is plotted as a function of the
distance from the crypt. (J) The pairwise distances in expression versus physical space of enterocytes show
high Pearson correlation (corr=0.67, p-val<0.001). (K) Gene expression profile of colon fibroblasts from
Slide-seq data (Avraham-Davidi et al., 2022), where the cells are colored by their task specializations. (L)
Spatial arrangements of the fibroblasts in the colon tissue. (M) The pairwise distances in expression versus

physical space of fibroblasts show negative Pearson correlation (corr=-0.1, p-val<0.001).

Both intestinal enterocyte and colon fibroblast distributions show task specialization, but

only enterocytes’ task allocation can be explained by a global instructive gradient

To test our predictions in the context of real biological systems, we turned to two datasets, to infer
whether the distribution of gene expression profiles is dominated by either instructive gradients or
cell-cell interactions. The first system consists of mature enterocytes from the villus of the mouse
small intestine, dissected into six regions using laser capture microdissection and then dissociated
and profiled by scRNA-seq (Moor et al. 2018). Multiple nutrients and resource gradients were
previously suggested to influence the expression profiles of enterocytes along the crypt-to-villus
axis (Figure 3G, I). The second system consists of fibroblasts in the mouse colon assayed in situ

using the spatial transcriptomics method Slide-seq (Avraham-Davidi et al., 2022) (Figure 3G, L).

Next, we test whether expression profiles of colon fibroblasts are governed by an instructive
gradient, similar to enterocytes in the small intestine, and what is the role of cell-cell interactions
in regulating their heterogeneity at steady state. As expected, enterocyte profiles follow a one-
dimensional continuum of expression bounded within a triangle in gene expression space, as
previously shown (Adler et al. 2019), consistent with a trade-off in enterocytes between three
tasks: lipid transport, carbohydrate and amino acid transport, and antibacterial defense (Figure
3H). Specialist enterocytes are found in distinct positions in the tip, middle and bottom of the villus
(Methods). (This pattern was observed among mature enterocytes that line the villus from the small
intestine; enterocytes from other regions may show distinct patterns.) Conversely, Slide-seq beads
capturing fibroblasts span an expression continuum within a triangle (p-val<10~*, based on the

ParTT algorithm (Hart et al. 2015)). The genes enriched near each of the fibroblast archetypes
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suggest task specialization in extracellular matrix (ECM) production, contractile functions, and

metabolism and regulation of immune response (Figure 3K, Methods).

Unlike the gradual change in enterocyte profiles along the crypt-to-villus axis (Figure 3I), the
distinct colon fibroblast archetypes are often close to each other in the tissue space (Figure 3L).
Computing the expression and physical pairwise distances for both cell type populations, we find
a significant Pearson correlation for enterocytes, in line with the assumption of a dominant
monotonic gradient along the villus axis, while the signature for fibroblasts is not consistent with
monotonic spatial gradients alone (Figure 3J, M, Methods). This distinction is observed even when
we simulate in the Slide-seq data the coarse laser cutting dissection approach that was applied for
enterocytes in the small intestine. This shows that the difference in correlation between physical
and task distances observed for mature intestinal enterocytes and colon fibroblasts is not merely
explained by the difference in experimental assays (Figure S5A-B). Although colon fibroblasts are
known to be influenced by morphogenic signals such as Wnt produced by deep-crypt secretory
cells (Shoshkes-Carmel et al. 2018; Sasaki et al. 2016; Gehart and Clevers 2019), the spatial
mixture of fibroblast archetypes within the crypt suggests that fibroblasts are also influenced by
additional mechanisms (Figure S5C). We next turn to examine whether cell-cell interactions

between fibroblasts play a central role in regulating fibroblast heterogeneity.

An archetype crosstalk network for colon fibroblasts highlights specific ligand-receptor

interactions as potential mechanisms for optimal task allocation

To explore whether cell-cell interactions between fibroblasts play a role in fibroblast task
specialization, we developed a method to construct crosstalk networks between archetypes of
different specializations based on ligand-receptor interactions (Figure 4A, Methods). Specifically,
we construct a directed graph where vertices are the different archetypes, and a directed edge
connects from archetype A to archetype B if a ligand whose expression is enriched towards
archetype A in gene expression space has a corresponding receptor whose expression is enriched
towards archetype B (Figure 4A, Methods). Here we consider interactions within the same cell
type population (e.g., fibroblasts) and their effect on task performance, although task performance
of fibroblasts may be additionally affected by interaction with other cell types, which we do not

consider.

10
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Figure 4: Inferring archetype crosstalk networks of colon fibroblasts based on ligand-receptor
interactions. (A) Interactions between specialist cells are inferred from enrichments of ligands and their
corresponding receptors. We use a directed edge to represent a pair of a ligand and its corresponding
receptor that are enriched near each of the archetypes it connects. (B) A projection of gene expression
profiles of scRNA-seq colon fibroblasts (Muhl et al. 2020) on the first three PCs. Fibroblasts fill in a 5-
vertex polytope (p-val<10™%). (C) A table showing examples of ligands and their respective receptors that
are enriched near the archetypes. We plot the complete archetype crosstalk network inferred for the colon
fibroblasts where the thickness of each edge corresponds to the number of ligand-receptor pairs enriched
between its vertex archetypes. (D, E) Using TACCO (Mages et al., 2022), we compute a mapping from
fibroblast cells assayed by scRNA-seq and Slide-seq beads based on their expression agreement. Using the
mapping, we (D) infer the scRNA-seq task components for each bead (depicted in pie-charts per bead) and
(E) compute the corresponding correlation of pairwise task distances versus physical distances (corr=-0.04,
p-val < 107-4). (F) Projection of the scRNA-seq expression profiles onto the Slide-seq beads. To view the
expression of Delta and Notch, we image their log-ratio. Beads whose inferred Delta expression is

greater/less than their Notch expression lean towards a turquoise/brown shade, respectively.
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We first applied this approach to scRNA-seq data of mouse colon fibroblasts (Muhl et al. 2020)
(which more sensitively detects receptor and ligand gene expression than Slide-seq). Colon
fibroblast profiles span a 5-vertex expression polytope with five archetypes corresponding to
fibroblast contractile functions, ECM production including collagen and laminin, integrin
production, ECM degradation, and regulation of immune response (Figure 4B, Methods). These
archetypes are in line with fibroblast categories that were recently described (Buechler et al. 2021).
Interestingly, the pareto optimality analysis reveals two distinct archetypes of collagen production
and contractile functions, suggesting that there are two subpopulations performing myofibroblast

functions.

The constructed archetype crosstalk network based on a database of ligand-receptor pairs (Shao et
al. 2021) shows that all colon fibroblast archetypes potentially interact with each other (Figure 4C)
(unlike enterocytes, discussed below). These interactions include secreted signaling molecules,
such as Bmp, Wnt and Fgf, which are known to be produced by fibroblasts in the colon and play
a significant role in regulating tissue organization (Roulis and Flavell 2016) (Figure 4C).
Interestingly, the ECM production and contractile fibroblast archetypes are enriched for Delta
(DI11) and Notch (Notch2) respectively, suggesting that fibroblasts may use contact-dependent

signals and lateral inhibition to regulate their task specializations.

Next, we mapped the scRNA-seq data to Slide-seq data using TACCO (Methods, (Mages et al.,
2022)), first by annotating Slide-Seq beads with ‘fractions’ of cell type annotations, and then
projecting the scRNA-seq task annotations and expression profiles onto tissue space (Figure 4D,
Figure S6). Like the Slide-seq task annotations (Figure 3L), the scRNA-seq task annotations also
present a clear boundary between the contractile fibroblast (red) and ECM-related (blue and
yellow) archetypes and lack global smoothness of task annotations (Figure 4E, corr=-0.04, p-
val<10%), in support of mechanisms beyond spatial smooth signals controlling the behavior of
cells. Notably, immune response fibroblasts are interspersed with contractile fibroblasts in space,
but clearly separable as archetype (Figure 4E). The projected expression of strong ligand-receptor
interactions inferred from the scRNA-seq, such as the DIl1-Notch2 pair enriched in ECM
production and contractile fibroblast archetypes, respectively, along the spatial boundary of these
archetypes suggests the involvement of cellular interactions in setting the task allocations across

the tissue (Figure 4F). The spatial proximity between ECM producing cells and contractile
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specialists may be important where performance of contractile functions may depend on the ability
of the cells to attach to matrix factors produced by the ECM producing cells. This is supported by
the fact that contractile fibroblasts show enrichment of integrin (Itgb1) which serves as a receptor
for collagen (Collal, Colla2, Col4al, Col4a5, Col4al6 and laminin (Lama5, Lamb1) produced
by the ECM producing cells. Additionally, the ECM producing cells are enriched with expression
of thrombospondin (Thbs1) —an adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix

interactions that can bind to integrin.

Archetype crosstalk networks can be used to dissect communication-driven tissue

organization from non-spatial single-cell profiles

Even if positional information of the cells is not available, archetype crosstalk networks can
highlight potential cell-cell interactions that regulate cell specialization. We demonstrate this for
fibroblast and macrophage profiles from human lungs (data from (Adams et al. 2020)). Lung
fibroblasts span five archetypes that are overall similar to the five colon fibroblast archetypes
above, with fibroblast contractile functions, ECM production, ECM degradation and immune
response regulation as distinct archetypes in both tissues. Specifically, lung fibroblasts specialize
in (1) regulation of immune response (with enriched cytokines (CCL2), chemokines (CXCL2,
CXCL3, CXCLS8) and interleukins (IL32, IL33)); (2) ECM degradation (ADAMTS1, ADAMTS4,
MMP14); (3) protein biosynthesis and metabolism, including collagen production; (4) ECM
production and regulation; and (5) contractile fibroblast functions (Figure 5SA, Methods). Lung
macrophages fill in a tetrahedron in expression space and trade-off between ECM degradation,
phagocytosis, metabolism of lipids, proteins, glucose and fatty acids, and pro-inflammatory

response (Figure 5C, Methods).

The archetype crosstalk networks for lung fibroblasts and macrophages show that both cell types
exhibit strong connectivity between the different archetypes within each cell type population
(Figure 5B, D) (See Methods for a comparison between the connectivity in the archetype crosstalk
networks to connectivity in networks of non-specialist cells, Figure S7). In contrast, in the
intestinal enterocytes’ archetype crosstalk network, not all archetypes interact with each other, and
the interactions are restricted to spatially proximal cells (Figure SE-F, Methods). Thus, even

without spatial data, a pattern of strong connectivity between the different archetypes within a
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given cell type population suggests that cell-cell interactions play an important role in regulating
the division of labor between the cells.

lung fibroblasts lung macrophages intestine enterocytes
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Figure 5: Archetype crosstalk networks can help estimate the role of cell-cell interactions in shaping
task allocation even without spatial information. (A) Human lung fibroblasts (from (Adams et al. 2020))
fit in a 5-vertex polytope in expression space (p-val=0.004) and show 5 archetypes that correspond to
regulation of immune response, ECM degradation, protein biosynthesis and metabolism, ECM production
and myofibroblasts specializations. (B) Archetype crosstalk network of lung fibroblasts. (C) Human lung
macrophages (from (Adams et al. 2020)) fit in a tetrahedron in expression space (p-val<10*-4) and show 4
archetypes that correspond to ECM degradation, phagocytosis, pro-inflammatory response and metabolism
specializations. (D) Archetype crosstalk network of lung macrophages. (E) Expression profile of intestine

enterocytes (from (Moor et al. 2018)). (F) Archetype crosstalk network of intestine enterocytes.

Discussion

Cells work together in tissues and contribute to their collective function in homeostasis and their
dysfunction in disease. In this work, we studied how cell-cell communication shapes the
distribution of cellular gene expression. Through simulations based on our theoretical framework
and its application to real data, we conclude that self-organization mechanisms can explain a

diversity of patterns in both task and tissue space. Additionally, we construct a framework for
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distinguishing the effects of cell-cell communication and instructive gradients by mapping ligand-

receptor interactions between specialized cells.

Inferring the underlying mechanism for division of labor is a challenge since multiple potential
mechanisms may result in the same phenotype. As comprehensive spatial transcriptomics data
become more prevalent and extended to capture three-dimensional tissue structure (Wang et al.
2018) and causation (Legnini et al. 2022), our framework can be used to better infer or narrow

down the potential underlying mechanisms of collective cellular division of labor.

Our theory currently focuses on the principles underpinning the optimal division of labor of cells
within a given cell type population. Future work accounting for multiple different cell type
populations could depict a more holistic image of tissues, which would enable, for example, to
explore how crosstalk between fibroblasts, epithelial, and immune cells in the colon regulates their

heterogeneity and division of labor.

In this work, we focused on characterizing the division of labor among cells in a steady state of a
developed tissue. Expanding the theoretical framework to consider Pareto optimality in a
dynamical setting can provide insights into developmental strategies and their regulation. Another
question that can be explored using the Pareto framework applied to time-resolved data is whether
cells converge to specific specializations or can the same cell switch between different
specializations when needed, for example in the context of epithelial mesenchymal transition as
was recently suggested (Cook and Wrana 2022). Finally, our framework can be used to explore
the transition of tissues to pathological states, and particularly, to study how the role of cell

interactions in regulating fibroblast heterogeneity is reshaped in the context of fibrosis and cancer.
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Methods
Cell-cell communication model under the Pareto optimality framework

The Pareto optimality framework introduced in (Adler et al. 2019) (set to allocate cells' gene
expression towards a maximal, collective performance of the tissue) is formalized by the

constrained maximization of the total performance function, F:

(1

r= ]| D @

te{tasks} \ ce{cells}
Where, G, is a vector of cell ¢’s gene expression, that is constrained to lie in the polytope whose

vertices are the archetypes’ gene expression, that is {G{ }te(qsks)- The performance of a cell for

2
task t, P,(G.), is computed as P, (G.) = %a—d“ where d;. = ||G; — G{||,, (Euclidean distance of

0

cell ¢ from the archetype t) and a, is a constant introduced to avoid negative performance (default:
ao = 2). Summation over the cells describes the equal, linear contribution of each cell’s
performance in task t to the collective performance of task t. The product over the performance in

each task expresses the need to excel in all tasks simultaneously.

To model the effect of a cell's local environment, we consider cells arranged in an acyclic 1D or
2D grid. N,, the set of cell ¢’s neighbors is set to be cells within order r (range) from c.
For interactions of lateral inhibition of the same task, we factor in Hy({G;};ey,), a diminishing

factor (< 1) introduced by the performance in task t of cell ¢’s neighbors:

)

F= ]| D HUGHawP (G

te{tasks} \ ce{cells}
For simplicity, we set H, to be: H ({G;}ien, = 1 — NLZiENC P.(G)).

We implemented the optimization problem both in Python and Mathematica. Examples, varying

tissue dimensions, and number of tasks, are depicted in Figure S1.
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Expression and physical distances are significantly correlated under instructive gradients,

but not for interactions

We wish to compare the expression and tissue space optimized with external gradients or with
interactions. For external gradients, we use the setup previously proposed in (Adler et al. 2019)

where:

r= ][ D eorco

te{tasks} \ c€{cells}
Where L. is cell ¢’s location within the tissue. ¢,(L.) is a coefficient defined by the external

gradient that weighs cell ¢’s performance according to gradients at its location (L) in the tissue.

Exact gradients set for 1D, and 2D tissues are ¢, (x) = x,$,(x) =1 —x, and ¢,(x,y) =1 —

x,¢,(x,y) =1—1y,¢3(x,y) = 1, respectively, and we use P,(G.) = ao;—d“ for evaluating the

0

performance in correspondence to the simulation in (Adler et al. 2019) (Figure 3A-B).

To plot binned expression-vs-physical-distances, we bin (separately) cell-pairs’ task allocation
distances and cell-pairs’ physical locations: (1) compute cell-to-cell Euclidean distance
(expression or physical distances), (2) remove extreme distances (> 99 percentile), (3)
normalize(divide by max distance) to contain in 0-1 range, (4) bin into equal-range all distances
(using 10 bins, for enterocytes, physical distances collapse into 5 bins due to low spatial

resolution).

Then for each (expression distance bin x physical distance bin), we plot a point of size
corresponding to the fraction of cell pairs (number of pairs / total number of pairs) falling within
this set of bins. Correlation values are computed between the plain Euclidean expression/physical
distances and compared to null correlation values (1000 repeats) that are generated by permuting

cells’ locations.
Analysis of single-cell RNA-seq data of intestinal enterocytes

We re-analyzed scRNA-seq data of mouse intestinal enterocytes (data from (Moor et al. 2018))

where we preprocessed and normalized the data and considered the triangle that encloses the data
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as was previously described in (Adler et al. 2019). See Table S1 for a full list of enriched genes

near the enterocyte archetypes.

To plot the pairwise distances in expression and tissue space, we consider every pair of enterocytes
in the data. For distance in expression space, we compute the Euclidean distance in task space
between every pair of cells. For distance in spatial space, we consider the spatial height of the cells
along the crypt-to-villus axis that was inferred by Moor et al. (Moor et al. 2018), and compute the

difference between the heights of every pair of cells.

The full list of enriched ligand-receptor pairs in the enterocytes data that were used to plot the

archetype crosstalk network in Figure 5F can be found in Table S2.
Analysis of Slide-seq data of colon fibroblasts

We analyzed Slide-seq data of mouse colon fibroblasts from Avraham-Davidi et al. (Avraham-
Davidi et al., 2022), where we considered fibroblasts as beads that received a fibroblast score
higher than 0.5 (Mages et al., 2022). In the main text we focus on a specific slide from the dataset
(puck #20), but we analyzed other slides included in the data and found similar results (see Figure
S4A-D for results of another puck in the data). Puck #20 includes 2559 fibroblasts that show
expression in 13,520 genes. To preprocess the expression data, we used ‘Sanity’ — a recently
developed method to normalize single-cell data and to infer the transcriptional activity of genes
(Breda, Zavolan, and van Nimwegen 2021). Following the Sanity normalization, we removed
genes with low expression (logio(average expression) <-11) and low expression variance (standard
deviation < 0.1) across beads, which left us with 1047 genes. We note that these thresholds for
selection of genes does not affect the distribution of expression profiles in expression space and

analyzing all 13,520 genes yields similar results.

We next used the ParTI package in Matlab to fit the fibroblast expression data to a polytope (Hart
et al. 2015). We find that fibroblasts fit well within a triangle (p-val<10~*, we also tested for 4
archetypes which yield a good fit with p-val=0.001). We used ParTI to find genes that are enriched
near the archetypes to infer the tasks the archetypes are specializing in. The enriched genes near
the first myofibroblast archetype are: Malatl, Actg2, Myh11, Tpml, Pdlim3, Acta2, Mylk, Cnnl,
Smtn, Tagln, Des, Actb, mt-Nd4, Flna, Myl9. The enriched genes near the second ECM production
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archetype are: Col3al, Colla2, Gsn, Dcn, Sparc, Dpt. The enriched genes near the third
metabolism/immune response archetype are: Lars2, Cmssl, Hexb, Camkld, Tpm2. We find

similar enriched genes in other pucks in the dataset (Figure S4D).

To plot the pairwise distances in expression and tissue space, we consider every pair of fibroblasts
in the data. For distance in expression space, we compute the Euclidean distance in task space
between every pair of cells. For distance in spatial space, we consider the spatial (x, y) coordinates
of the cells from the slide-seq data and compute the Euclidean spatial distance between every pair

of cells.

Construction of archetype crosstalk networks based on ligand-receptor interactions

To construct archetype crosstalk networks from single-cell expression data, we first fit the data to
a polytope. Once the polytope and archetypes are defined, we consider the genes that are enriched
near the archetypes and use available ligand-receptor pairs datasets (we used CellTalkDB: (Shao
et al. 2021)) to search for enriched ligand-receptor pairs. We used the package 1GraphM in
Mathematica 12.1.1.0 and the functions Graph, IGEdgeMap, IGEdgeProp to build a weighted
directed graph where a directed edge from archetype A to archetype B represent an enriched ligand
near Archetype A and its corresponding receptor enriched near archetype B. The weights on the

edges correspond to the number of ligand-receptor pairs that link the two archetypes.
Analysis of single-cell RNA-seq data of colon fibroblasts

We analyzed scRNA-seq data of mouse colon fibroblasts from Muhl et al., 2020. The data includes
1646 cells that show expression in 30,920 genes. Following the Sanity normalization, we removed
genes with low expression (logio(average expression) < -14) and low expression variance (standard
deviation <0.1) across single cells, which left us with 8479 genes. We next used the ParTI package
in Matlab to fit the fibroblast expression data to a polytope. We find that fibroblasts fit well within
a 5-vertex polytope (p-val<10~*, we also tested for 3 and 4 archetypes which yield a good fit with
p-val<10~%*). We find hundreds of enriched genes near the 5 fibroblast archetypes (see Table S3
for the full table of enriched genes). The full list of enriched ligand-receptor pairs in the sSCRNA-
seq colon fibroblasts data that were used to plot the archetype crosstalk network in Figure 4E can

be found in Table S4.
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Mapping single-cell data onto Slide-seq positions of colon fibroblasts

To further support the role of cell-cell interactions in guiding the spatial task allocations for
colon fibroblasts, we map the high-quality single-cell data onto the fibroblast-dominated
(probability fibroblast > 0.5) Slide-seq beads. To this end, we deploy TACCO, mapping the
Slide-seq data onto single-cell data as a reference (Mages et al., 2022). We use TACCO’s
platform normalization booster to overcome platform biases and Optimal Transport to map
solely based on gene expression similarity to the reference expression profiles. Using the cell-to-

bead mapping, we compute the single-cell task allocation and the inferred expression per bead.
Analysis of single-cell RNAseq of human lung fibroblasts and macrophages

We analyzed single-cell RNA-seq data of human lung fibroblasts from Adams et al. 2020. The
data includes 1051 cells from the control samples. Following the Sanity normalization, we
removed genes with low expression (logio(average expression) < -11) and low expression
variance (standard deviation < 0.05) across single cells, which left us with 6934 genes. We also
removed a small fraction of outlier cells that skewed the data that show low average expression

(logio(average expression) < -9.9), which left us with 945 cells.

The human lung macrophage data from Adams et al. (Adams et al. 2020) includes 25142 cells
(macrophages and monocytes). Due to the large number of cells, we randomly sampled 5000
cells to carry on with the analysis. Following the Sanity normalization, we removed genes with
low expression (logio(average expression) < -11) and low expression variance (standard

deviation < 0.05) across single cells, which left us with 6273 genes.

We used the ParTI package in Matlab to fit the fibroblast and macrophage datasets to a polytope.
We find that the fibroblast data fits well in a 5-vertex polytope (p-val=0.004 with the Sisal
algorithm to find the archetypes, p-val=0.067 with the PCHA algorithm to find the archetypes),
and the macrophage data fits well in a tetrahedron (p-val<10”-4 with the Sisal algorithm, p-
val=0.067 with the PCHA algorithm). We repeated the enrichment analysis using both PCHA
and SISAL algorithm and we found that the enriched genes near the archetypes were very similar
using both algorithms suggesting that the results are robust to different methods of finding the

archetypes’ positions.
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Tables of full lists of enriched genes near the fibroblast and macrophage archetypes can be found
in Tables S5, S6. The full list of enriched ligand-receptor pairs in the lung fibroblasts and
macrophages datasets that were used to plot the archetype crosstalk network in Figure 5B, D can

be found in Tables S7, S8.
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Figure S1: Simulation results with lateral inhibition. Columns describe the number of tasks (2, 3, and
4). Rows describe the dimension of the spatial organizations of cells in the tissue for 1D grid with 30 cells
(A), and 2D grid with 100 cells (B). In all cases, a neighborhood of range 2 is considered. We plot the
expression space (vertices represent archetypes’ expression), and tissue space where cells’ colors indicate

their task allocation among the archetypes.
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Figure S2: Simulation results for alternative interaction models as a function of the range of
interactions. (A) The interaction model used throughout the main text. (B) Weight of inhibiting interaction
decays exponentially with the neighbors’ mean performance in task t with rate factor p = 1.5. (C)

Stimulating interactions weighted by a mean of the neighbors’ performance to the power of w = 2.5.
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Figure S3: Interpolation between gradients and interactions. § = (0,0.5,0.6,0.75,1) correspond to
columns left to right, for 2D tissue with 3 tasks considering neighborhood of range=4. For each, expression
and tissue spaces are plotted. Pairwise distance plots are titled with the Pearson correlation between

expression and physical distances, and its p-val.
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Figure S4: Analysis

Physical distance

1

of additional puck from the Slide-seq data. (A) Analysis of puck #23 from the

Slide-seq data of colon fibroblasts where cells’ expression profile is projected on the first two PCs, and the

cells are colored by their task specializations. (B) Spatial coordinates of the cells in tissue space. (C) The

pairwise distances in physical versus expression space of enterocytes show no correlation (corr=0.004, p-

val=0.338). (D) A table of enriched genes in the two Slide-seq pucks. (E) A table of collagen genes and

their enrichment in the scRNA-seq data of mouse colon fibroblasts.
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Figure S5: Analysis of in silico dissection and morphogen spatial patterns. (A) /n silico dissection into
6 bins of fibroblasts according to their inferred distance from the deep crypt layer (mimicking how the
enterocytes in (Moor et al. 2018) were assayed). (B) Considering for each bead its in silico bin as its physical
location, we compute the corresponding Pearson correlation of pairwise task distances versus physical
distances (corr=0.02, p-val=0.037). (C) Distribution of signaling genes’ expression across apical-basal
colon layers — (light orange) apical plasma membrane, (light blue) deep crypt, (light gray) muscularis.

Expression of each gene (in green) is loglp-transformed and truncated at the value of 0.5.
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Figure S6: Quantitative analysis of task tradeoffs. Task specialization scores of the Silde-seq fibroblast

beads (inferred using the scRNA-seq data analyzed in Figure 4B) are plotted for each pair of archetypes.

*p-val<(0.001
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Figure S7: Ligand and receptor enrichments. (A) Archetype crosstalk network of the colon fibroblast
scRNA-seq data analyzed in Figure 4B where the edge weight from archetype A to archetype B is
normalized to the sum of the total number of enriched ligands near archetype A and the total number of

enriched receptors near archetype B. (B-D) Total number of enriched genes (B), ligands (C) and receptors

(D) near each of the five colon fibroblast archetypes.
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Figure S8: Crosstalk network for archetype midpoints. Comparison of crosstalk networks between the
M archetypes (A) and between M midpoints (B). (C-D) Percentage of enriched ligands and receptors
relative to total number of enriched genes near the colon fibroblast archetypes (C) and midpoints (D). (E)
Degree distribution of colon fibroblast archetype crosstalk network (black) and midpoint crosstalk network

(gray). The same only for the lung fibroblast data (F, G, H) and the lung macrophage data (I, J, K).
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Supplementary information
Continuum in gene expression space with alternative models of interactions

We discuss in the main text a specific model of inhibiting interactions, where high performance of
a task de-prioritizes the task's allocation in the local region, however, rendered models of
interactions can also yield diverse patterns in expression and tissue space and a continuum in
expression space. Two examples are demonstrated in Figure S2, changing the inhibiting interaction
weight function to decay exponentially with neighbors’ contribution (Figure S2B), or changing the
type of interaction to stimulating, that is, neighbors’ performance in task t promote the cell’s

performance in the same task (Figure S2C).

Correspondence between expression and physical distances increases as instructive

gradients dominate over interactions (and vice versa)

So far, our model accounted for either external gradients or interactions within the Pareto
optimality framework. In practice, however, it is most likely that both mechanisms act
simultaneously and jointly shape the gene expression space. We combine the two models and
introduce a parameter to interpolate between the effect of external gradients and interactions Figure

S3.

Differences in assays used for colon fibroblasts and intestinal enterocytes do not explain

differences in correlation between physical and task pairwise distances

To test whether the difference in spatial resolution between the experimental methods used to assay
the colon fibroblasts (assayed with Slide-seq) and the enterocytes along the intestine villus (laser
cut into six sections) are the reason for the different resulting correlation values of task and physical
distances, we mimic the coarse dissectioning of enterocytes in the analysis of the fibroblasts. To
this end, we identify the layers of the colon and infer the distance from the deep crypt layer using
TACCO (Mages et al., 2022), and then perform in silico dissection of the fibroblasts according to
these distances into six bins (Figure S5A). When using the coarse spatial sectioning of the
fibroblasts, we observe a very low Pearson correlation between the task and (new) physical

distances (corr=0.02, p-val=0.037, Figure S5B).
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Enrichment of ligand-receptor interactions between archetypes

To test the degree to which the archetypes in the single-cell expression data we analyzed interact
with each other through ligand-receptor interactions, we compare the connectivity between the
archetypes to the connectivity between a different choice of points in the polytope. To that end,
we consider points that are equally distant from each pair of archetypes which we refer to as
midpoints. Considering data that fits well within a polytope with M archetypes (Figure S8A), the
midpoints are the collection of arithmetic means over every set of M-1 points out the M archetypes
(Figure S8B). We used the ParTI package in Matlab to calculate the enriched genes with respect
to the midpoints instead of the archetypes. We then constructed the crosstalk network as described
above based on ligand-receptor pairs that are enriched near the midpoints. The resulted midpoint
crosstalk networks for all three scRNA-seq datasets (Figure S8D, G, J) show that in comparison
to the archetype crosstalk networks (Figure S8C, F, I) the number and intensity of links between
the vertices declines and not all points interact with each other. The overall number of enriched
genes near the midpoints decreases compared to the archetypes. However, the decrease in the
crosstalk network connectivity is not due to the decrease in enriched genes. Although the
percentage of enriched ligands and receptors out of total number of enriched genes is on the same
order of magnitude (Figure S8C-D, F-G, I-]J), the number of enriched ligand-receptor pairs is
significantly lower near the midpoints compared to the archetypes. This is also quantitatively
shown when we compute the degree distribution of the two crosstalk networks (Figure S8E, H,

K).
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