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Abstract 

Most cell types in multicellular organisms can perform multiple functions. However, not all 

functions can be optimally performed simultaneously by the same cells. Functions incompatible 

at the level of individual cells can be performed at the cell population level, where cells divide 

labor and specialize in different functions. Division of labor can arise due to instruction by tissue 

environment or through self-organization. Here, we develop a computational framework to 

investigate the contribution of these mechanisms to division of labor within a cell-type population. 

By optimizing collective cellular task performance under trade-offs, we find that distinguishable 

expression patterns can emerge from cell-cell interactions vs. instructive signals. We propose a 

method to construct ligand-receptor networks between specialist cells and use it to infer division-

of-labor mechanisms from single-cell RNA-seq and spatial transcriptomics data of stromal, 

epithelial, and immune cells. Our framework can be used to characterize the complexity of cell 

interactions within tissues. 
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Introduction 

Many cell types in multicellular organisms are multi-functional: for example, epithelial cells 

perform sensory, secretory, transport and defense functions. Moreover, some functions, such as 

transport and defense functions in epithelial cells, are bound by trade-offs: they cannot be 

optimized at the same time in the same cells. Division of labor is a common strategy to handle 

such functional trade-offs, but how it occurs within a given cell type population remains largely 

unknown. Cells’ expression profiles provide an opportunity to characterize division of labor in 

tissues, to infer the functional constraints driving it, and to determine its underlying mechanisms. 

In particular, low-dimensional representations of patterns of cellular gene expression (Figure 1A) 

(“gene expression space”), can reflect not only distinct cell types as discrete clusters and dynamical 

processes, such as cell differentiation along continuous trajectories (Wagner, Regev, and Yosef 

2016; Tanay and Regev 2017; Sagar and Grün 2020; Ding, Sharon, and Bar-Joseph 2022), but also 

the collective optimization of task performance under trade-offs within a given cell type (Shoval 

et al. 2012; Korem et al. 2015; Hart et al. 2015; Hausser et al. 2019). A theoretical framework 

based on Pareto optimality predicts that the optimal performance of a multitasker cell that faces 

trade-offs (e.g., due to finite resources (Sabi and Tuller 2019; Shoval et al. 2012)) is achieved when 

its expression is bounded inside a polytope whose vertices are expression profiles optimal at each 

task, called archetypes (Shoval et al. 2012; Korem et al. 2015; Hart et al. 2015; Hausser et al. 2019) 

(Figure 1B). The Pareto optimality theory was recently extended to consider an ensemble of cells 

that are working as a collective to perform the tissue’s tasks (Adler et al. 2019). In the case of 

collective performance, theory predicts that cells form clusters in gene expression space where 

they either all concentrate at the polytope’s archetypes (specialists), or all assume an identical 

composition of task allocation (generalists) (Figure 1B).  

Task performance of cells in a tissue can be affected by exogenous, instructive factors that 

constrain cellular performance and cannot be altered by direct feedback from the cells such as 

oxygen and nutrient levels or certain physical barriers. In the case of instructive spatial gradients, 

a continuum of expression is generated inside the polytope, such that the specialist cells optimal 

for each task are located in distinct positions in the tissue, where conditions are best for their 

performance (Adler et al. 2019). For example, variation in expression between individual 
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hepatocytes in the liver lobule (Halpern et al. 2017) and intestinal enterocytes (Moor et al. 2018) 

can be explained by their spatial positioning in the tissue. However, the variability in expression 

between cells of other types within the same tissues, for example between fibroblasts in the 

developing mouse embryo, cannot be easily explained by their spatial position at the tissue scale 

(Srivatsan et al. 2021).  

Figure 1: Pareto optimality framework. (A) Single-cell RNA-sequencing data in expression space can 

reveal various low-dimensional structured patterns. (B) Mapping of the representation of individual cells 

across task performance, tissue, and expression space. (C) We consider two underlying mechanisms driving 

the allocation of tasks in the tissue: external signaling gradients and cell-cell interactions. (D) Mapping 

patterns in tissue space with those in expression space is an ill-posed inverse problem -- there are multiple 

possible tissue compositions consistent with a given expression configuration. 
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In addition to instructive constraints, cell-cell interactions, including contact-dependent and 

secreted signals, also regulate gene expression and coordinate cell performance (Armingol et al. 

2021; Belardi et al. 2020) (Figure 1C), such that cells self-organize and use feedback interactions 

to regulate each other’s performance. This is well-established in cell differentiation: for example, 

during development, the contact-dependent Delta-Notch pathway controls early neural versus 

epidermal cell-fate decisions (Beatus and Lendahl 1998). Morphogens, including the Bmp, Wnt, 

Hedgehog and FGF shape cells’ expression programs and differentiation into distinct cellular fates 

(Perrimon, Pitsouli, and Shilo 2012; Hogan 1999). In the tissue response to injury, secreted growth 

factors such as TGF-𝛽 drive fibroblasts to transition into myofibroblasts, which in turn regulate 

the wound healing process (Gabbiani 2003; Baum and Duffy 2011). Immune cells constantly sense 

the landscape of cytokines and chemokines produced by other cells to determine the nature of their 

response (Altan-Bonnet and Mukherjee 2019).  

While cell-cell communication is a key mechanism that governs cell differentiation, how cell-cell 

communication promotes division of labor within a given cell type remains unclear. Could a 

continuum within a polytope in gene expression space emerge when cells co-organize to control 

their task allocation? What would be the physical arrangement of cells in the tissue when their task 

allocation is controlled by cell-cell interactions locally or at longer ranges? Can we leverage the 

Pareto optimality framework to predict the spatial arrangements of cells in the tissue based on their 

gene expression profile (Figure 1D)?   

Here, we develop and apply a theory that considers the optimal trade-off between tasks in the tissue 

when cells communicate their specializations to each other. Unlike instructive factors, where the 

conditions of performing tissue-wide tasks are guided extrinsically, in this framework, the cells 

use feedback interactions and self-organize to divide labor in an optimal way. The theory predicts 

a diversity of patterns both in tissue (physical) and gene expression spaces that emerge from 

different types of cell-cell interactions that are distinct from patterns that emerge from instructive 

signals. We apply the theory to single-cell RNA-seq (scRNA-seq) and spatial transcriptomics data 

by comparing the spatial organization and expression patterns of mouse colon fibroblasts and 

intestinal mature enterocytes and by constructing ligand-receptor crosstalk networks across 

specialist cells from single-cell gene expression data of fibroblasts and macrophages. This 
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framework can provide insights into whether expression patterns originate from instructive 

constraints or cell-cell interactions in diverse biological systems.  

Results 

Modeling cell-cell communication under the Pareto optimality framework generates a 

variety of patterns in tissue and gene expression space 

To model the Pareto-optimal expression profiles of cells in a tissue, we consider how cells 

collectively contribute to the tissue by performing several tasks. As was previously presented 

(Shoval et al. 2012; Adler et al. 2019), we model this trade-off by considering that each task is best 

performed at an optimal expression profile, 𝐺!∗, (or an optimal task allocation) and shows a decline 

in performance as cells move further away from 𝐺!∗ in gene expression space. We define the total 

performance function of a tissue, 𝐹, as a product over the performance of all the tasks that need to 

be collectively performed by the cells in the tissue, summing over the contribution of each cell to 

the performance in each task (Adler et al. 2019) (Methods).  

To model the effect of cell-cell interactions on optimal task allocation, we introduce an interaction 

term, 𝐻!, which captures how a cell’s performance is influenced by the performance of its 

neighboring cells. We explore the effect of varying the range of the interaction by varying the size 

of the neighborhood of each cell (𝑁#). The contribution of each cell (𝑐) in task 𝑡 is therefore the 

product of two components; a self-component,	𝑃!, which is a function of cell 𝑐’s gene expression 

profile (𝐺#), and an interaction component, 𝐻!, which is a function of the average 𝑃! of the 

neighboring cells of cell 𝑐 (Figure 2A).  

The interaction term, 𝐻!, can generally represent different types of interactions, including positive 

and negative effects on performing the same task. Here, we focus on lateral inhibition, where a 

cell’s performance in task 𝑡 declines if its neighboring cells exhibit high performance in the same 

task (Figure 2A, Methods). We consider a representative example of a 2D spatial grid of 100 cells 

that need to perform three tasks and compute the expression profiles (or task allocations) of the 

cells that maximize 𝐹 (Methods). We discuss tissue dimensions, number of tasks, and other types 

of interactions in the supplementary information (SI) (Figure S1-2).  
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Figure 2: A variety of tissue and expression patterns emerge from the Pareto optimality framework 

with a cell-cell communication mechanism of lateral inhibition. (A) Theoretical framework of Pareto 

optimality with cell-cell interactions - Cell 𝑐’s performance is affected by the performance of its neighbor 

cells in the tissue, 𝑁!. The total performance function, 𝐹, is a product over the tasks, where the performance 

in each task is the sum over the contribution of all cells considering a self-component (𝑃") and the effect of 

interaction with nearby cells (𝐻"). (B) Simulation results of lateral inhibition in expression and tissue space. 

Varying the range of cellular interactions produces diverse tissue patterns akin to patterns observed in real 

tissues.  

 

In the absence of cell-cell interactions, the tissue reaches optimal performance when all cells are 

generalists, equally performing all tasks, but when interactions are present, the cells span multiple 

qualitatively distinct arrangements within the Pareto front in gene expression space (a triangle in 

the case of three tasks), and a diversity of spatial patterns in the tissue, depending on the range of 

interactions (Figure 2B). Specifically, short-range / direct interactions with nearest neighbors lead 

to the formation of a salt-and-pepper pattern in tissue space, where the cells are confined to the 

circumference of the polytope in gene expression space. Increasing the range of lateral inhibition 
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interactions drives the cells to fill the polytope with a continuum of profiles spanning both 

specialist and generalist cells. At the other extreme, when all cells are mutually interacting 

irrespective of location, the optimal solution partitions the cells to specialists and generalists (no 

continuum). In tissue space, the model gives rise to a range of physical patterns often observed in 

tissues in development and homeostasis (Gur et al. 2020), including stripes and islets of the 

different specialist cells (Figure 2B). 

Both instructive gradients and cell-cell interactions lead to continua of gene expression 

profiles but distinct spatial patterns 

When simulating lateral inhibition of cell-cell interactions, a continuum of gene expression profiles 

can emerge (Figure 2B), similarly to the continuum generated by external gradients (Figure 3A-E, 

Methods) (Adler et al. 2019), but with a key difference in the spatial configuration of the cells. 

With instructive monotonic gradients, cells that are physically proximal within the tissue can 

exhibit many times, on average, similar expression profiles (Nitzan et al. 2019) and thus similar 

task allocation. In this case, specialist cells of distinct specializations are expected to be located 

far from each other within the tissue, and similarity in gene expression and physical proximity are 

congruent. Conversely, in a population of cells whose expression profiles are driven by lateral 

inhibition, different specialist cells can be close to each other in tissue space (Figure 3D, E), such 

that gene expression and tissue space can be incongruent. We demonstrate this quantitatively by 

comparing the distribution of pairwise distances of cells in tissue space (“physical distance”) and 

in task allocation space (“task distance”), where a cell’s task allocation is the normalized gene 

expression distance from each of the archetypes (Figure 3C, F). We then construct a null model 

for assessing the statistical significance of the physical locations of cells using random 

permutations (Methods). Simulations with instructive monotonic gradients show a statistically 

significant Pearson correlation between pairwise distances in gene expression and physical spaces 

(Figure 3C, F, Methods). When a combination of both instructive gradients and lateral inhibition 

governs the simulation, the Pearson correlation of physical and gene expression pairwise distances 

generally increases as the strength of the effect of the external signaling gradients increases (Figure 

S3).  
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Figure 3: Distinct spatial patterns emerge from external gradients and cell-cell interactions. (A-B) 

The Pareto-optimal solution of cells that are affected by an external gradient across a 1D and a 2D tissue in 

gene expression (A) and tissue (B) space. (C) With external gradients, the pairwise expression distances 

(y-axis) versus the pairwise physical distances (x-axis) show high Pearson correlation (for 1D: corr=0.88, 

p-val<0.001, for 2D: corr=0.72, p-val<0.001). (D-E) The Pareto-optimal solution of cells that are affected 

by cell-cell interactions in a 1D and a 2D tissue in gene expression (D) and tissue (E) space. (F) With cell-

cell interactions, the pairwise expression distances (y-axis) versus the pairwise physical distances (x-axis) 

are anticorrelated (in terms of Pearson correlation, for 1D, corr=-0.1, p-val=0.002, for 2D, corr=-0.13, p-

val<0.001). (G) Schematics of the colon tissue including the intestinal villi and the muscularis layer. (H) 
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Gene expression profile of enterocytes where the cells are colored by their task specializations 

(combinations of red, green and blue colors representing the three tasks). (I) Arrangements of enterocytes 

along the crypt-to-villus axis. The distance of the cells from each archetype is plotted as a function of the 

distance from the crypt. (J) The pairwise distances in expression versus physical space of enterocytes show 

high Pearson correlation (corr=0.67, p-val<0.001). (K) Gene expression profile of colon fibroblasts from 

Slide-seq data (Avraham-Davidi et al., 2022), where the cells are colored by their task specializations. (L) 

Spatial arrangements of the fibroblasts in the colon tissue. (M) The pairwise distances in expression versus 

physical space of fibroblasts show negative Pearson correlation (corr=-0.1, p-val<0.001).   

Both intestinal enterocyte and colon fibroblast distributions show task specialization, but 

only enterocytes’ task allocation can be explained by a global instructive gradient 

To test our predictions in the context of real biological systems, we turned to two datasets, to infer 

whether the distribution of gene expression profiles is dominated by either instructive gradients or 

cell-cell interactions. The first system consists of mature enterocytes from the villus of the mouse 

small intestine, dissected into six regions using laser capture microdissection and then dissociated 

and profiled by scRNA-seq (Moor et al. 2018). Multiple nutrients and resource gradients were 

previously suggested to influence the expression profiles of enterocytes along the crypt-to-villus 

axis (Figure 3G, I). The second system consists of fibroblasts in the mouse colon assayed in situ 

using the spatial transcriptomics method Slide-seq (Avraham-Davidi et al., 2022) (Figure 3G, L).  

Next, we test whether expression profiles of colon fibroblasts are governed by an instructive 

gradient, similar to enterocytes in the small intestine, and what is the role of cell-cell interactions 

in regulating their heterogeneity at steady state. As expected, enterocyte profiles follow a one-

dimensional continuum of expression bounded within a triangle in gene expression space, as 

previously shown (Adler et al. 2019), consistent with a trade-off in enterocytes between three 

tasks: lipid transport, carbohydrate and amino acid transport, and antibacterial defense (Figure 

3H). Specialist enterocytes are found in distinct positions in the tip, middle and bottom of the villus 

(Methods). (This pattern was observed among mature enterocytes that line the villus from the small 

intestine; enterocytes from other regions may show distinct patterns.) Conversely, Slide-seq beads 

capturing fibroblasts span an expression continuum within a triangle (p-val<10#$, based on the 

ParTI algorithm (Hart et al. 2015)). The genes enriched near each of the fibroblast archetypes 
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suggest task specialization in extracellular matrix (ECM) production, contractile functions, and 

metabolism and regulation of immune response (Figure 3K, Methods).  

Unlike the gradual change in enterocyte profiles along the crypt-to-villus axis (Figure 3I), the 

distinct colon fibroblast archetypes are often close to each other in the tissue space (Figure 3L). 

Computing the expression and physical pairwise distances for both cell type populations, we find 

a significant Pearson correlation for enterocytes, in line with the assumption of a dominant 

monotonic gradient along the villus axis, while the signature for fibroblasts is not consistent with 

monotonic spatial gradients alone (Figure 3J, M, Methods). This distinction is observed even when 

we simulate in the Slide-seq data the coarse laser cutting dissection approach that was applied for 

enterocytes in the small intestine. This shows that the difference in correlation between physical 

and task distances observed for mature intestinal enterocytes and colon fibroblasts is not merely 

explained by the difference in experimental assays (Figure S5A-B). Although colon fibroblasts are 

known to be influenced by morphogenic signals such as Wnt produced by deep-crypt secretory 

cells (Shoshkes-Carmel et al. 2018; Sasaki et al. 2016; Gehart and Clevers 2019), the spatial 

mixture of fibroblast archetypes within the crypt suggests that fibroblasts are also influenced by 

additional mechanisms (Figure S5C). We next turn to examine whether cell-cell interactions 

between fibroblasts play a central role in regulating fibroblast heterogeneity.  

An archetype crosstalk network for colon fibroblasts highlights specific ligand-receptor 

interactions as potential mechanisms for optimal task allocation 

To explore whether cell-cell interactions between fibroblasts play a role in fibroblast task 

specialization, we developed a method to construct crosstalk networks between archetypes of 

different specializations based on ligand-receptor interactions (Figure 4A, Methods). Specifically, 

we construct a directed graph where vertices are the different archetypes, and a directed edge 

connects from archetype A to archetype B if a ligand whose expression is enriched towards 

archetype A in gene expression space has a corresponding receptor whose expression is enriched 

towards archetype B (Figure 4A, Methods). Here we consider interactions within the same cell 

type population (e.g., fibroblasts) and their effect on task performance, although task performance 

of fibroblasts may be additionally affected by interaction with other cell types, which we do not 

consider.  
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Figure 4: Inferring archetype crosstalk networks of colon fibroblasts based on ligand-receptor 

interactions. (A) Interactions between specialist cells are inferred from enrichments of ligands and their 

corresponding receptors. We use a directed edge to represent a pair of a ligand and its corresponding 

receptor that are enriched near each of the archetypes it connects. (B) A projection of gene expression 

profiles of scRNA-seq colon fibroblasts (Muhl et al. 2020) on the first three PCs. Fibroblasts fill in a 5-

vertex polytope (p-val<10#$). (C) A table showing examples of ligands and their respective receptors that 

are enriched near the archetypes. We plot the complete archetype crosstalk network inferred for the colon 

fibroblasts where the thickness of each edge corresponds to the number of ligand-receptor pairs enriched 

between its vertex archetypes. (D, E) Using TACCO (Mages et al., 2022), we compute a mapping from 

fibroblast cells assayed by scRNA-seq and Slide-seq beads based on their expression agreement. Using the 

mapping, we (D) infer the scRNA-seq task components for each bead (depicted in pie-charts per bead) and 

(E) compute the corresponding correlation of pairwise task distances versus physical distances (corr=-0.04, 

p-val < 10^-4). (F) Projection of the scRNA-seq expression profiles onto the Slide-seq beads. To view the 

expression of Delta and Notch, we image their log-ratio. Beads whose inferred Delta expression is 

greater/less than their Notch expression lean towards a turquoise/brown shade, respectively.   
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We first applied this approach to scRNA-seq data of mouse colon fibroblasts (Muhl et al. 2020) 

(which more sensitively detects receptor and ligand gene expression than Slide-seq). Colon 

fibroblast profiles span a 5-vertex expression polytope with five archetypes corresponding to 

fibroblast contractile functions, ECM production including collagen and laminin, integrin 

production, ECM degradation, and regulation of immune response (Figure 4B, Methods). These 

archetypes are in line with fibroblast categories that were recently described (Buechler et al. 2021). 

Interestingly, the pareto optimality analysis reveals two distinct archetypes of collagen production 

and contractile functions, suggesting that there are two subpopulations performing myofibroblast 

functions.  

The constructed archetype crosstalk network based on a database of ligand-receptor pairs (Shao et 

al. 2021) shows that all colon fibroblast archetypes potentially interact with each other (Figure 4C) 

(unlike enterocytes, discussed below). These interactions include secreted signaling molecules, 

such as Bmp, Wnt and Fgf, which are known to be produced by fibroblasts in the colon and play 

a significant role in regulating tissue organization (Roulis and Flavell 2016) (Figure 4C). 

Interestingly, the ECM production and contractile fibroblast archetypes are enriched for Delta 

(Dll1) and Notch (Notch2) respectively, suggesting that fibroblasts may use contact-dependent 

signals and lateral inhibition to regulate their task specializations.  

Next, we mapped the scRNA-seq data to Slide-seq data using TACCO (Methods, (Mages et al., 

2022)), first by annotating Slide-Seq beads with ‘fractions’ of cell type annotations, and then 

projecting the scRNA-seq task annotations and expression profiles onto tissue space (Figure 4D, 

Figure S6). Like the Slide-seq task annotations (Figure 3L), the scRNA-seq task annotations also 

present a clear boundary between the contractile fibroblast (red) and ECM-related (blue and 

yellow) archetypes and lack global smoothness of task annotations (Figure 4E, corr=-0.04, p-

val<10-4), in support of mechanisms beyond spatial smooth signals controlling the behavior of 

cells. Notably, immune response fibroblasts are interspersed with contractile fibroblasts in space, 

but clearly separable as archetype (Figure 4E). The projected expression of strong ligand-receptor 

interactions inferred from the scRNA-seq, such as the Dll1-Notch2 pair enriched in ECM 

production and contractile fibroblast archetypes, respectively, along the spatial boundary of these 

archetypes suggests the involvement of cellular interactions in setting the task allocations across 

the tissue (Figure 4F). The spatial proximity between ECM producing cells and contractile 
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specialists may be important where performance of contractile functions may depend on the ability 

of the cells to attach to matrix factors produced by the ECM producing cells. This is supported by 

the fact that contractile fibroblasts show enrichment of integrin (Itgb1) which serves as a receptor 

for collagen (Col1a1, Col1a2, Col4a1, Col4a5, Col4a16 and laminin (Lama5, Lamb1) produced 

by the ECM producing cells. Additionally, the ECM producing cells are enriched with expression 

of thrombospondin (Thbs1) – an adhesive glycoprotein that mediates cell-to-cell and cell-to-matrix 

interactions that can bind to integrin.  

Archetype crosstalk networks can be used to dissect communication-driven tissue 

organization from non-spatial single-cell profiles 

Even if positional information of the cells is not available, archetype crosstalk networks can 

highlight potential cell-cell interactions that regulate cell specialization. We demonstrate this for 

fibroblast and macrophage profiles from human lungs (data from (Adams et al. 2020)). Lung 

fibroblasts span five archetypes that are overall similar to the five colon fibroblast archetypes 

above, with fibroblast contractile functions, ECM production, ECM degradation and immune 

response regulation as distinct archetypes in both tissues. Specifically, lung fibroblasts specialize 

in (1) regulation of immune response (with enriched cytokines (CCL2), chemokines (CXCL2, 

CXCL3, CXCL8) and interleukins (IL32, IL33)); (2) ECM degradation (ADAMTS1, ADAMTS4, 

MMP14); (3) protein biosynthesis and metabolism, including collagen production; (4) ECM 

production and regulation; and (5) contractile fibroblast functions (Figure 5A, Methods). Lung 

macrophages fill in a tetrahedron in expression space and trade-off between ECM degradation, 

phagocytosis, metabolism of lipids, proteins, glucose and fatty acids, and pro-inflammatory 

response (Figure 5C, Methods).  

The archetype crosstalk networks for lung fibroblasts and macrophages show that both cell types 

exhibit strong connectivity between the different archetypes within each cell type population 

(Figure 5B, D) (See Methods for a comparison between the connectivity in the archetype crosstalk 

networks to connectivity in networks of non-specialist cells, Figure S7). In contrast, in the 

intestinal enterocytes’ archetype crosstalk network, not all archetypes interact with each other, and 

the interactions are restricted to spatially proximal cells (Figure 5E-F, Methods). Thus, even 

without spatial data, a pattern of strong connectivity between the different archetypes within a 
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given cell type population suggests that cell-cell interactions play an important role in regulating 

the division of labor between the cells. 

Figure 5: Archetype crosstalk networks can help estimate the role of cell-cell interactions in shaping 

task allocation even without spatial information. (A) Human lung fibroblasts (from (Adams et al. 2020)) 

fit in a 5-vertex polytope in expression space (p-val=0.004) and show 5 archetypes that correspond to 

regulation of immune response, ECM degradation, protein biosynthesis and metabolism, ECM production 

and myofibroblasts specializations. (B) Archetype crosstalk network of lung fibroblasts. (C) Human lung 

macrophages (from (Adams et al. 2020)) fit in a tetrahedron in expression space (p-val<10^-4) and show 4 

archetypes that correspond to ECM degradation, phagocytosis, pro-inflammatory response and metabolism 

specializations. (D) Archetype crosstalk network of lung macrophages. (E) Expression profile of intestine 

enterocytes (from (Moor et al. 2018)). (F) Archetype crosstalk network of intestine enterocytes. 

 

Discussion  

Cells work together in tissues and contribute to their collective function in homeostasis and their 

dysfunction in disease. In this work, we studied how cell-cell communication shapes the 

distribution of cellular gene expression. Through simulations based on our theoretical framework 

and its application to real data, we conclude that self-organization mechanisms can explain a 

diversity of patterns in both task and tissue space. Additionally, we construct a framework for 
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distinguishing the effects of cell-cell communication and instructive gradients by mapping ligand-

receptor interactions between specialized cells. 

Inferring the underlying mechanism for division of labor is a challenge since multiple potential 

mechanisms may result in the same phenotype. As comprehensive spatial transcriptomics data 

become more prevalent and extended to capture three-dimensional tissue structure (Wang et al. 

2018) and causation (Legnini et al. 2022), our framework can be used to better infer or narrow 

down the potential underlying mechanisms of collective cellular division of labor. 

Our theory currently focuses on the principles underpinning the optimal division of labor of cells 

within a given cell type population. Future work accounting for multiple different cell type 

populations could depict a more holistic image of tissues, which would enable, for example, to 

explore how crosstalk between fibroblasts, epithelial, and immune cells in the colon regulates their 

heterogeneity and division of labor.  

In this work, we focused on characterizing the division of labor among cells in a steady state of a 

developed tissue. Expanding the theoretical framework to consider Pareto optimality in a 

dynamical setting can provide insights into developmental strategies and their regulation. Another 

question that can be explored using the Pareto framework applied to time-resolved data is whether 

cells converge to specific specializations or can the same cell switch between different 

specializations when needed, for example in the context of epithelial mesenchymal transition as 

was recently suggested (Cook and Wrana 2022). Finally, our framework can be used to explore 

the transition of tissues to pathological states, and particularly, to study how the role of cell 

interactions in regulating fibroblast heterogeneity is reshaped in the context of fibrosis and cancer.  
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Methods 

Cell-cell communication model under the Pareto optimality framework 

The Pareto optimality framework introduced in (Adler et al. 2019) (set to allocate cells' gene 

expression towards a maximal, collective performance of the tissue) is formalized by the 

constrained maximization of the total performance function, F: 

(1)  

𝐹 = * + , 𝑃!(𝐺#)
#∈{#&''(}

/
!∈{!*(+(}

	 

Where, 𝐺# is a vector of cell c’s gene expression, that is constrained to lie in the polytope whose 

vertices are the archetypes’ gene expression, that is {𝐺!∗}!∈{!*(+(}. The performance of a cell for 

task t, 𝑃!(𝐺#), is computed as 𝑃!(𝐺#) =
*!,-"#

$

*!
		 where 𝑑!# = ‖𝐺# − 𝐺!∗‖. (Euclidean distance of 

cell c from the archetype t) and 𝑎/ is a constant introduced to avoid negative performance (default: 

𝑎/ = 2). Summation over the cells describes the equal, linear contribution of each cell’s 

performance in task t to the collective performance of task t. The product over the performance in 

each task expresses the need to excel in all tasks simultaneously. 

To model the effect of a cell's local environment, we consider cells arranged in an acyclic 1D or 

2D grid. 𝑁#, the set of cell c’s neighbors is set to be cells within order r (range) from c. 

For interactions of lateral inhibition of the same task, we factor in 𝐻!({𝐺0}0∈1#), a diminishing 

factor (≤ 1) introduced by the performance in task t of cell c’s neighbors: 

(2)  

𝐹 = * + , 𝐻!({𝐺0}0∈1#)𝑃!(𝐺#)
#∈{#&''(}

/
!∈{!*(+(}

	 

For simplicity, we set 𝐻! to be:  𝐻!({𝐺0}0∈1# = 1 − 2
1#
∑ 𝑃!(𝐺0)0∈1# . 

We implemented the optimization problem both in Python and Mathematica. Examples, varying 

tissue dimensions, and number of tasks, are depicted in Figure S1. 
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Expression and physical distances are significantly correlated under instructive gradients, 

but not for interactions 

We wish to compare the expression and tissue space optimized with external gradients or with 

interactions. For external gradients, we use the setup previously proposed in (Adler et al. 2019) 

where:  

𝐹 = * + , 𝜙!(𝐿#)𝑃!(𝐺#)
#∈{#&''(}

/
!∈{!*(+(}

 

Where 𝐿# is cell c’s location within the tissue. 𝜙!(𝐿#) is a coefficient defined by the external 

gradient that weighs cell c’s performance according to gradients at its location (𝐿#) in the tissue. 

Exact gradients set for 1D, and 2D tissues are 𝜙2(𝑥) = 𝑥, 𝜙.(𝑥) = 1 − 𝑥, and 𝜙2(𝑥, 𝑦) = 1 −

𝑥, 𝜙.(𝑥, 𝑦) = 1 − 𝑦, 𝜙3(𝑥, 𝑦) = 1, respectively, and we use 𝑃!(𝐺#) =
*!,-"#
*!

 for evaluating the 

performance in correspondence to the simulation in (Adler et al. 2019) (Figure 3A-B).  

To plot binned expression-vs-physical-distances, we bin (separately) cell-pairs’ task allocation 

distances and cell-pairs’ physical locations: (1) compute cell-to-cell Euclidean distance 

(expression or physical distances), (2) remove extreme distances (> 99 percentile), (3) 

normalize(divide by max distance) to contain in 0-1 range, (4) bin into equal-range all distances 

(using 10 bins, for enterocytes, physical distances collapse into 5 bins due to low spatial 

resolution).  

Then for each (expression distance bin x physical distance bin), we plot a point of size 

corresponding to the fraction of cell pairs (number of pairs / total number of pairs) falling within 

this set of bins. Correlation values are computed between the plain Euclidean expression/physical 

distances and compared to null correlation values (1000 repeats) that are generated by permuting 

cells’ locations. 

Analysis of single-cell RNA-seq data of intestinal enterocytes 

We re-analyzed scRNA-seq data of mouse intestinal enterocytes (data from (Moor et al. 2018)) 

where we preprocessed and normalized the data and considered the triangle that encloses the data 
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as was previously described in (Adler et al. 2019). See Table S1 for a full list of enriched genes 

near the enterocyte archetypes.   

To plot the pairwise distances in expression and tissue space, we consider every pair of enterocytes 

in the data. For distance in expression space, we compute the Euclidean distance in task space 

between every pair of cells. For distance in spatial space, we consider the spatial height of the cells 

along the crypt-to-villus axis that was inferred by Moor et al. (Moor et al. 2018), and compute the 

difference between the heights of every pair of cells. 

The full list of enriched ligand-receptor pairs in the enterocytes data that were used to plot the 

archetype crosstalk network in Figure 5F can be found in Table S2.  

Analysis of Slide-seq data of colon fibroblasts 

We analyzed Slide-seq data of mouse colon fibroblasts from Avraham-Davidi et al. (Avraham-

Davidi et al., 2022), where we considered fibroblasts as beads that received a fibroblast score 

higher than 0.5 (Mages et al., 2022). In the main text we focus on a specific slide from the dataset 

(puck #20), but we analyzed other slides included in the data and found similar results (see Figure 

S4A-D for results of another puck in the data). Puck #20 includes 2559 fibroblasts that show 

expression in 13,520 genes. To preprocess the expression data, we used ‘Sanity’ – a recently 

developed method to normalize single-cell data and to infer the transcriptional activity of genes 

(Breda, Zavolan, and van Nimwegen 2021). Following the Sanity normalization, we removed 

genes with low expression (log10(average expression) < -11) and low expression variance (standard 

deviation < 0.1) across beads, which left us with 1047 genes. We note that these thresholds for 

selection of genes does not affect the distribution of expression profiles in expression space and 

analyzing all 13,520 genes yields similar results.  

We next used the ParTI package in Matlab to fit the fibroblast expression data to a polytope (Hart 

et al. 2015). We find that fibroblasts fit well within a triangle (p-val<10,4, we also tested for 4 

archetypes which yield a good fit with p-val=0.001). We used ParTI to find genes that are enriched 

near the archetypes to infer the tasks the archetypes are specializing in. The enriched genes near 

the first myofibroblast archetype are: Malat1, Actg2, Myh11, Tpm1, Pdlim3, Acta2, Mylk, Cnn1, 

Smtn, Tagln, Des, Actb, mt-Nd4, Flna, Myl9. The enriched genes near the second ECM production 
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archetype are: Col3a1, Col1a2, Gsn, Dcn, Sparc, Dpt. The enriched genes near the third 

metabolism/immune response archetype are: Lars2, Cmss1, Hexb, Camk1d, Tpm2. We find 

similar enriched genes in other pucks in the dataset (Figure S4D). 

To plot the pairwise distances in expression and tissue space, we consider every pair of fibroblasts 

in the data. For distance in expression space, we compute the Euclidean distance in task space 

between every pair of cells. For distance in spatial space, we consider the spatial (x, y) coordinates 

of the cells from the slide-seq data and compute the Euclidean spatial distance between every pair 

of cells. 

Construction of archetype crosstalk networks based on ligand-receptor interactions 

To construct archetype crosstalk networks from single-cell expression data, we first fit the data to 

a polytope. Once the polytope and archetypes are defined, we consider the genes that are enriched 

near the archetypes and use available ligand-receptor pairs datasets (we used CellTalkDB: (Shao 

et al. 2021)) to search for enriched ligand-receptor pairs. We used the package IGraphM in 

Mathematica 12.1.1.0 and the functions Graph, IGEdgeMap, IGEdgeProp to build a weighted 

directed graph where a directed edge from archetype A to archetype B represent an enriched ligand 

near Archetype A and its corresponding receptor enriched near archetype B. The weights on the 

edges correspond to the number of ligand-receptor pairs that link the two archetypes. 

Analysis of single-cell RNA-seq data of colon fibroblasts 

We analyzed scRNA-seq data of mouse colon fibroblasts from Muhl et al., 2020. The data includes 

1646 cells that show expression in 30,920 genes. Following the Sanity normalization, we removed 

genes with low expression (log10(average expression) < -14) and low expression variance (standard 

deviation < 0.1) across single cells, which left us with 8479 genes. We next used the ParTI package 

in Matlab to fit the fibroblast expression data to a polytope. We find that fibroblasts fit well within 

a 5-vertex polytope (p-val<10,4, we also tested for 3 and 4 archetypes which yield a good fit with 

p-val<10,4). We find hundreds of enriched genes near the 5 fibroblast archetypes (see Table S3 

for the full table of enriched genes). The full list of enriched ligand-receptor pairs in the scRNA-

seq colon fibroblasts data that were used to plot the archetype crosstalk network in Figure 4E can 

be found in Table S4.   
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Mapping single-cell data onto Slide-seq positions of colon fibroblasts 

To further support the role of cell-cell interactions in guiding the spatial task allocations for 

colon fibroblasts, we map the high-quality single-cell data onto the fibroblast-dominated 

(probability fibroblast > 0.5) Slide-seq beads. To this end, we deploy TACCO, mapping the 

Slide-seq data onto single-cell data as a reference (Mages et al., 2022). We use TACCO’s 

platform normalization booster to overcome platform biases and Optimal Transport to map 

solely based on gene expression similarity to the reference expression profiles. Using the cell-to-

bead mapping, we compute the single-cell task allocation and the inferred expression per bead. 

Analysis of single-cell RNAseq of human lung fibroblasts and macrophages 

We analyzed single-cell RNA-seq data of human lung fibroblasts from Adams et al. 2020. The 

data includes 1051 cells from the control samples. Following the Sanity normalization, we 

removed genes with low expression (log10(average expression) < -11) and low expression 

variance (standard deviation < 0.05) across single cells, which left us with 6934 genes. We also 

removed a small fraction of outlier cells that skewed the data that show low average expression 

(log10(average expression) < -9.9), which left us with 945 cells.  

The human lung macrophage data from Adams et al. (Adams et al. 2020) includes 25142 cells 

(macrophages and monocytes). Due to the large number of cells, we randomly sampled 5000 

cells to carry on with the analysis. Following the Sanity normalization, we removed genes with 

low expression (log10(average expression) < -11) and low expression variance (standard 

deviation < 0.05) across single cells, which left us with 6273 genes.   

We used the ParTI package in Matlab to fit the fibroblast and macrophage datasets to a polytope. 

We find that the fibroblast data fits well in a 5-vertex polytope (p-val=0.004 with the Sisal 

algorithm to find the archetypes, p-val=0.067 with the PCHA algorithm to find the archetypes), 

and the macrophage data fits well in a tetrahedron (p-val<10^-4 with the Sisal algorithm, p-

val=0.067 with the PCHA algorithm). We repeated the enrichment analysis using both PCHA 

and SISAL algorithm and we found that the enriched genes near the archetypes were very similar 

using both algorithms suggesting that the results are robust to different methods of finding the 

archetypes’ positions.  
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Tables of full lists of enriched genes near the fibroblast and macrophage archetypes can be found 

in Tables S5, S6. The full list of enriched ligand-receptor pairs in the lung fibroblasts and 

macrophages datasets that were used to plot the archetype crosstalk network in Figure 5B, D can 

be found in Tables S7, S8.  

Supplementary information figures 

 
Figure S1: Simulation results with lateral inhibition. Columns describe the number of tasks (2, 3, and 

4). Rows describe the dimension of the spatial organizations of cells in the tissue for 1D grid with 30 cells 

(A), and 2D grid with 100 cells (B). In all cases, a neighborhood of range 2 is considered. We plot the 

expression space (vertices represent archetypes’ expression), and tissue space where cells’ colors indicate 

their task allocation among the archetypes.  
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Figure S2: Simulation results for alternative interaction models as a function of the range of 

interactions. (A) The interaction model used throughout the main text. (B) Weight of inhibiting interaction 

decays exponentially with the neighbors’ mean performance in task 𝑡 with rate factor 𝜌 = 1.5. (C) 

Stimulating interactions weighted by a mean of the neighbors’ performance to the power of 𝑤 = 2.5. 
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Figure S3: Interpolation between gradients and interactions. 𝛽 = (0,0.5, 0.6, 0.75,1) correspond to 

columns left to right, for 2D tissue with 3 tasks considering neighborhood of range=4. For each, expression 

and tissue spaces are plotted. Pairwise distance plots are titled with the Pearson correlation between 

expression and physical distances, and its p-val. 
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Figure S4: Analysis of additional puck from the Slide-seq data. (A) Analysis of puck #23 from the 

Slide-seq data of colon fibroblasts where cells’ expression profile is projected on the first two PCs, and the 

cells are colored by their task specializations. (B) Spatial coordinates of the cells in tissue space. (C) The 

pairwise distances in physical versus expression space of enterocytes show no correlation (corr=0.004, p-

val=0.338). (D) A table of enriched genes in the two Slide-seq pucks. (E) A table of collagen genes and 

their enrichment in the scRNA-seq data of mouse colon fibroblasts.  
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Figure S5: Analysis of in silico dissection and morphogen spatial patterns. (A) In silico dissection into 

6 bins of fibroblasts according to their inferred distance from the deep crypt layer (mimicking how the 

enterocytes in (Moor et al. 2018) were assayed). (B) Considering for each bead its in silico bin as its physical 

location, we compute the corresponding Pearson correlation of pairwise task distances versus physical 

distances (corr=0.02, p-val=0.037). (C) Distribution of signaling genes’ expression across apical-basal 

colon layers – (light orange) apical plasma membrane, (light blue) deep crypt, (light gray) muscularis. 

Expression of each gene (in green) is log1p-transformed and truncated at the value of 0.5. 
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Figure S6: Quantitative analysis of task tradeoffs. Task specialization scores of the Silde-seq fibroblast 

beads (inferred using the scRNA-seq data analyzed in Figure 4B) are plotted for each pair of archetypes. 

*p-val<0.001 
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Figure S7: Ligand and receptor enrichments. (A) Archetype crosstalk network of the colon fibroblast 

scRNA-seq data analyzed in Figure 4B where the edge weight from archetype A to archetype B is 

normalized to the sum of the total number of enriched ligands near archetype A and the total number of 

enriched receptors near archetype B. (B-D) Total number of enriched genes (B), ligands (C) and receptors 

(D) near each of the five colon fibroblast archetypes.  
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Figure S8: Crosstalk network for archetype midpoints. Comparison of crosstalk networks between the 

M archetypes (A) and between M midpoints (B). (C-D) Percentage of enriched ligands and receptors 

relative to total number of enriched genes near the colon fibroblast archetypes (C) and midpoints (D). (E) 

Degree distribution of colon fibroblast archetype crosstalk network (black) and midpoint crosstalk network 

(gray). The same only for the lung fibroblast data (F, G, H) and the lung macrophage data (I, J, K). 
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Supplementary information 

Continuum in gene expression space with alternative models of interactions 

We discuss in the main text a specific model of inhibiting interactions, where high performance of 

a task de-prioritizes the task's allocation in the local region, however, rendered models of 

interactions can also yield diverse patterns in expression and tissue space and a continuum in 

expression space. Two examples are demonstrated in Figure S2, changing the inhibiting interaction 

weight function to decay exponentially with neighbors’ contribution (Figure S2B), or changing the 

type of interaction to stimulating, that is, neighbors’ performance in task t promote the cell’s 

performance in the same task (Figure S2C).  

Correspondence between expression and physical distances increases as instructive 

gradients dominate over interactions (and vice versa) 

So far, our model accounted for either external gradients or interactions within the Pareto 

optimality framework. In practice, however, it is most likely that both mechanisms act 

simultaneously and jointly shape the gene expression space. We combine the two models and 

introduce a parameter to interpolate between the effect of external gradients and interactions Figure 

S3. 

Differences in assays used for colon fibroblasts and intestinal enterocytes do not explain 

differences in correlation between physical and task pairwise distances 

To test whether the difference in spatial resolution between the experimental methods used to assay 

the colon fibroblasts (assayed with Slide-seq) and the enterocytes along the intestine villus (laser 

cut into six sections) are the reason for the different resulting correlation values of task and physical 

distances, we mimic the coarse dissectioning of enterocytes in the analysis of the fibroblasts. To 

this end, we identify the layers of the colon and infer the distance from the deep crypt layer using 

TACCO (Mages et al., 2022), and then perform in silico dissection of the fibroblasts according to 

these distances into six bins (Figure S5A). When using the coarse spatial sectioning of the 

fibroblasts, we observe a very low Pearson correlation between the task and (new) physical 

distances (corr=0.02, p-val=0.037, Figure S5B). 
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Enrichment of ligand-receptor interactions between archetypes 

To test the degree to which the archetypes in the single-cell expression data we analyzed interact 

with each other through ligand-receptor interactions, we compare the connectivity between the 

archetypes to the connectivity between a different choice of points in the polytope. To that end, 

we consider points that are equally distant from each pair of archetypes which we refer to as 

midpoints. Considering data that fits well within a polytope with M archetypes (Figure S8A), the 

midpoints are the collection of arithmetic means over every set of M-1 points out the M archetypes 

(Figure S8B). We used the ParTI package in Matlab to calculate the enriched genes with respect 

to the midpoints instead of the archetypes. We then constructed the crosstalk network as described 

above based on ligand-receptor pairs that are enriched near the midpoints. The resulted midpoint 

crosstalk networks for all three scRNA-seq datasets (Figure S8D, G, J) show that in comparison 

to the archetype crosstalk networks (Figure S8C, F, I) the number and intensity of links between 

the vertices declines and not all points interact with each other. The overall number of enriched 

genes near the midpoints decreases compared to the archetypes. However, the decrease in the 

crosstalk network connectivity is not due to the decrease in enriched genes. Although the 

percentage of enriched ligands and receptors out of total number of enriched genes is on the same 

order of magnitude (Figure S8C-D, F-G, I-J), the number of enriched ligand-receptor pairs is 

significantly lower near the midpoints compared to the archetypes. This is also quantitatively 

shown when we compute the degree distribution of the two crosstalk networks (Figure S8E, H, 

K). 
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