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Abstract

Despite substantial improvements in the treatment landscape of prostate cancer, the evolution
of hormone therapy-resistant and metastatic prostate cancer remains a major cause of cancer-
related death globally. The mainstay of treatment for advanced prostate cancer is targeting of
androgen receptor signaling, including androgen deprivation therapy plus second-generation
androgen receptor blockade (e.g., enzalutamide, apalutamide, darolutamide), and/or androgen
synthesis inhibition (abiraterone). While these agents have significantly prolonged the lives of
patients with advanced prostate cancer, the evolution of resistance to these treatments in nearly
universal. This therapy resistance is mediated by diverse mechanisms, including both androgen
receptor-dependent mechanisms, such as androgen receptor mutations, amplifications,
alternatively spliced isoforms, and structural rearrangements, as well as non-androgen receptor-
mediated mechanisms, such as lineage plasticity toward neuroendocrine-like or epithelial-
mesenchymal transition (EMT)-like lineages. Our prior work identified the EMT transcriptional
regulator Snail as critical to hormonal therapy resistance and commonly detected in human
metastatic prostate cancer. In the current study, we sought to interrogate the actionable
landscape of EMT-mediated hormone therapy-resistant prostate cancer to identify synthetic
lethality and collateral sensitivity approaches to treating this aggressive disease state. Using a
combination of high-throughput drug screens and multi-parameter phenotyping by confluence
imaging, ATP production, and phenotypic plasticity reporters of EMT, we identified candidate
synthetic lethalities to Snail-mediated EMT in prostate cancer. These analyses identified
multiple actionable targets, such as XPO1, PI3K/mTOR, aurora kinases, c-MET, polo-like
kinases, and JAK/STAT as synthetic lethalities in Snail+ prostate cancer. We validated these
targets in a subsequent validation screen in an LNCaP-derived model of resistance to
sequential androgen deprivation and enzalutamide. This follow-up screen provided validation of
inhibitors of JAK/STAT and PISK/mTOR as therapeutic vulnerabilities for Snail+ and
enzalutamide-resistant prostate cancer.
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Introduction

The treatment landscape of prostate cancer exemplifies the “two truths” of cancer treatment [1]:
While tremendous progress has been made to improve patient outcomes, there also remains an
urgent need to overcome the significant challenges imposed by the evolution of treatment
resistance and metastasis. From the groundbreaking studies of Huggins and Hodges [2] to the
development of novel, second-generation androgen receptor inhibitors [3-8], and anti-androgens
[9, 10], much of the existing treatment options for prostate cancer are currently focused on
targeting the androgen receptor (AR) signaling axis. These agents have demonstrated
significant clinical benefit; however, progression of men treated with these agents in the
metastatic, castration-resistant setting is nearly universal.

The evolution of resistance to AR signaling inhibitors is mediated by heterogeneous genetic and
non-genetic pathways that include both AR-dependent and AR-independent mechanisms
(reviewed in [11]). Among these heterogeneous mechanisms, phenotypic plasticity is a central
hallmark of AR signaling inhibitor resistance [12]. This phenotypic plasticity occurs along
multiple, interconnected cellular lineage axes, such as stemness [13, 14],
epithelial/mesenchymal [15-18], luminal/basal [19, 20], and neuroendocrine-like lineages or cell
states [21, 22]. Phenotypic plasticity along these axes often leads to a loss of AR
expression/activity and dependency [23], as well as additional aggressive features that promote
survival and metastasis [24, 25]. New approaches are needed to capitalize on these emerging
phenotypic states for therapeutic benefit.

Targeted therapy alters the ecological fithess landscapes of cancer in multiple ways [26]. The
altered fitness landscape of the drugged environment can promote aggressive biology, but can
also induce “collateral sensitivities” to novel agents [27]. This concept, also known as negative
cross resistance, has been applied to identify new strategies to treat the evolution of resistance
in bacterial infections [28], malaria [29], herbicides [30], and pesticides [31].

In the present study, we combined high-throughput screens with multiparameter endpoint
measurements from transcription-based reporters, confluence, and cell viability assays to
characterize the therapeutic landscapes of Snail-mediated EMT, enzalutamide resistance, and
AR activity (Fig. 1A). Our analyses pinpoint histone deacetylases (HDAC), protein kinase A
(PKA), PI3K/mTOR, and Janus Kinase (JAK) as key collateral sensitivities to Snail-mediated
enzalutamide resistance in prostate cancer cells. Follow-up screens in a model of progressive
adaptation to ADT and enzalutamide resistance verified the relevance of these pathways as
novel therapeutic vulnerabilities for enzalutamide-resistant prostate cancer (Fig. 1B). These
analyses provide a deeper understanding of the therapeutic vulnerabilities induced by epithelial
plasticity and enzalutamide resistance.
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Figure 1. Workflow schematic for synthetic lethal and collateral sensitivity screens. A. A high-throughput
screen was performed in LNCaP95-Snail cells to assess differential response across multiple endpoints of
confluence, viability (CellTiter Glo), and EMT status via a fluorescence-based reporter. B. Screen schematic
for a collateral sensitivity screen in enzalutamide-resistant CS2 cells. Endpoints included PSA reporter
response, confluence, and viability (CellTiter Glo).
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95 Materials and Methods

96  Cell culture models. LNCaP95-Snail and CS2 enzalutamide-resistant cells were cultured in

97  RPMI containing 10% charcoal stripped Fetal Bovine Serum (Sigma) and 1%

98 penicillin/streptomycin (Life Technologies). CS2 enzalutamide-resistant cell populations were

99  maintained in the presence of 50 uM enzalutamide. Cell lines were maintained in standard
100 tissue culture-treated plasticware within a humidified incubator at 37°C and 5% CO,. LNCaP95
101  cells stably expressing inducible Snail were generated as previously described [15]. Induction of
102  Snail nuclear translocation was mediated by the addition of 4-hydroxy-tamoxifen (4OHT) at a
103  concentration of 20 nM Ethanol (EtOH) was used as a vehicle control. All cells were
104  authenticated by the Duke DNA Analysis Facility using analysis of short tandem repeats and
105  were verified to be mycoplasma-free.

106  Development and testing of MET and PSA reporter lines. We adapted the Gllicl> MET reporter
107  [32, 33] for lentiviral transduction by cloning the previously-described vector into the lentiviral
108  vector pLVX-puro using restriction enzymes EcoRI/Smal. The PSA reporter was synthesized in
109 the lentiviral expression plasmid, pLV[Exp]-Puro by VectorBuilder to include 2 Kb of the

110  proximal PSA promoter upstream of the EGFP open reading frame. Cells stably expressing
111  inducible Snail (Addgene plasmid #18798) or indicated reporter plasmids were generated by
112 transduction of LNCaP95 or CS2 cells as described:

113  https://www.addgene.org/protocols/generating-stable-cell-lines/. Confluence and fluorescence
114  were measured with and without EMT induction using Snail activation as described above. For
115 PSA-GFP expressing cells, confluence and fluorescence was quantified with and without AR
116  activation using synthetic androgen R1881 at 1 nM.

117  High-throughput drug screening. High-throughput screens were performed in collaboration with
118 the Duke Functional Genomics Shared Resource as previously described [34-37]. Briefly,

119  compounds from the Bioactives library (SelleckChem) were stamped in triplicate into 384-well
120 plates at a final concentration of 1 uM using an Echo Acoustic Dispenser (Labcyte, Indianapolis,
121 IN, USA). Cells and media were subsequently dispensed into plates using a WellMate (Thermo
122 Fisher, Waltham, MA, USA) at a density of 2,000 cells/well for each cell line. Confluence was
123  quantified using an IncuCyte S3 live cell imaging system. Gllicl?> and PSA-GFP readouts were
124  quantified by IncuCyte imaging at 24, 48, 72, and 96 hours. CellTiter Glo was added at 96

125  hours, and luminescence was read using a Clariostar plate reader (BMG, Berlin, Germany).

126  RNA-Seq analysis of EMT scores. Quantification of EMT status for each sample was performed
127  using the following three independent methods: 76GS, KS, MLR, each of which uses a unique
128  algorithm and gene set. The 76GS scores were calculated based on the expression of 76 genes
129  [38]. Higher scores correspond to more epithelial states. A 76GS score > 0 typically indicates an
130 epithelial phenotype and < 0 indicates a mesenchymal phenotype. The score for each sample is
131  computed as the weighted sum of expression values of 76 genes, with the weight factor being
132  the correlation of expression values of that gene with that of CDH1 in the given dataset. KS

133  score was determined based on a Kolmogorov—Smirnov two-samples test [39]. Using a 218

134  gene signature, the cumulative distribution functions are estimated for mesenchymal and

135 epithelial signatures, and the maximum difference in cumulative distribution functions is retained
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136  as the statistic for the two sample-KS test. KS score ranges from [-1, 1], with negative and

137  positive scores representing mesenchymal and epithelial phenotypes, respectively. MLR scores
138 are provided on a scale of [0, 2]; higher scores are associated with more mesenchymal

139 samples. Using an ordinal multinomial logistic regression, the score encompasses an order

140  structure, with a hybrid epithelial/mesenchymal signature situated between the epithelial and
141  mesenchymal phenotypes. Scores are calculated based on the probability assigned for each
142  sample to belong to one of the three phenotypes.

143  Data analysis. The primary objective for the high-throughput screen of LNCaP95-Snail cells was
144  to identify synthetic lethality for Snail+ cells. Snail- cells (EtOH-treated vehicle controls) were
145 used as a reference control to calculate differential effects across all parameters. The primary
146  objective for the high-throughput screen of CS2 enzalutamide-resistant cells was to identify
147  collateral sensitivities for enzalutamide-resistant cells. The central hypothesis for this work was
148  that activation of key pathways in Snail+, enzalutamide-resistant prostate cancer can be

149  exploited for therapeutic benefit through synthetic lethal and collateral sensitivity approaches.
150 Experimental data were visualized and analyzed in GraphPad Prism 9. Analysis of cell viability
151 by CellTiter Glo was performed by normalizing to the average of all empty (non-drug) wells.
152  Imaging of confluence and GFP was compared using repeated measures ANOVA. Linear

153  regression was used to assess correlations between screen analysis parameters, and outliers
154  were considered to fall outside the 95% confidence interval bands. P-values <0.05 were

155 considered statistically reliable.
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156 Results

157  Fluorescence-based reporters enable real-time monitoring of epithelial plasticity. Prior studies
158 have pinpointed the epithelial plasticity regulator, Snail, as both upregulated during AR inhibition
159 [17] and a mediator of enzalutamide resistance through sustained androgen receptor signaling
160  [15]. In the present work we sought to develop a system to identify novel collateral sensitivities
161 to Snail-induced resistance to enzalutamide. To do this we turned to a Snail inducible LNCaP95
162  cell line system in which Snail is fused to an estrogen receptor mutant (ER™") in which 4-

163  hydroxy-tamoxifen (4OHT) acts as an agonist (Fig. 2A). Addition of 40OHT induces estrogen
164  receptor-Snail fusion nuclear localization and activation of a Snail-mediated transcriptional

165  program (Fig. 2A). Addition of 40HT in the Snail-inducible LNCaP95 prostate cancer cell line
166 leads to cell scattering, loss of cell-cell E-cadherin, and upregulation of the mesenchymal

167  marker, vimentin (Fig. 2B). To track dynamics of Snail-mediated epithelial plasticity we adapted
168 the Gllicl? fluorescence-based reporter [33] for lentiviral transduction. The Gllicl? reporter

169 utilizes the lineage-specific alternative splicing within the ligand binding domain of FGFR2 to
170  control EGFP expression based on epithelial or mesenchymal phenotype [33]. The EGFP open
171  reading frame is interrupted by the FGFR2-Ilic exon and flanking introns (Fig. 2C). Splicing of
172  FGFR2-lllc in epithelial cells leads to fusion of the EGFP reading frame and subsequent EGFP
173  expression while inclusion of the Ilic exon interrupts the EGFP reading frame and prevents
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Figure 2. Fluorescence-based reporters to visualize EMT dynamics in a Snail-inducible model. A.
Schematic illustration of a Snail-inducible model. B. Immunofluorescence staining of LNCaP95-Snail cells.
EtOH serves as a vehicle for Snail induction. 4OHT induces localization of Snail and concomitant
downregulation of E-cadherin and upregulation of vimentin. C. Schematic of the Gllicl? EMT/MET
alternative splicing reporter. D. IncuCyte imaging for LNCaP95-Snail confluence and E. EMT induction
dynamics (GFP fluorescence). * = p<0.05. F. Fluorescence imaging of LNCaP95-Snail cells treated with
EtOH or 40HT for nuclear staining (Hoechst) and the Glllcl2 EMT/MET reporter (green). G. Endogenous
FGFR2 splicing analysis for Snail- and Snail+ LNCaP95 cells. L = 1Kb ladder, Ctrl = undigested PCR
product; Aval = FGFR2-I11b-specific restriction digestion; EcoRV = FGFR2-I1Ic-specific restriction digestion.
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174  EGFP expression (Fig. 2C). Treatment of LNCaP95-Snail cells with 4OHT leads to a reduction
175 in confluence, consistent with the known relationship between Snail and cell cycle arrest [40]
176  (Fig. 2D). Similarly, Snail induction also induces robust inhibition of EGFP expression (Fig. 2E)
177  consistent with inclusion of the mesenchymal FGFR2-llic exon. A loss of EGFP signal in Snail+
178 cells is also evident by fluorescence imaging of Snail- (EtOH) and Snail+ (4OHT) cells (Fig. 2F).
179  EGFP expression from the Gllicl? reporter is also consistent with endogenous FGFR2 splicing,
180 in which 40HT induces a switch from the lllb to llic isoforms, as observed by isoform-specific
181  restriction digestion of FGFR2 RT-PCR products (Fig. 2G).

182  High-throughput screens identify synthetic lethality to Snail-induced epithelial plasticity. We
183  applied this Snail-inducible plasticity reporter system to identify compounds with synthetic

184 lethality for Snail+ prostate cancer that could be subsequently validated for activity in models of
185 enzalutamide resistance given the association between Snail expression and enzalutamide
186 resistance [15]. To do this, we performed a high-throughput small molecule screen using the
187  SelleckChem Bioactives compound library. The Bioactives library contains 2,100 small

188 molecules annotated by target and pathway. The library was designed to include compounds
189 that are structurally diverse, medicinally active, and cell permeable, including both FDA-
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Figure 3. A synthetic lethality screen pinpoints potential therapies for Snail+ prostate cancer. A.
Schematic of multi-assay screening strategy. B. Top hits with differential response in Snail — and Snail + cells.
Below the 1.0 line indicates drug differentially inhibits Snail+ cells; above the line indicates drug differentially
inhibits Snail- cells. C. Representative growth slope differences for top candidate agents with differential
effects on Snail- and Snail+ cells. D. Top hits grouped by target/pathway ranked by differential slope; color
indicates number of drugs per pathway. E. Venn diagram of overlap in compounds that altered both
confluence and CellTiter Glo (CTG). F. Overlapping drugs with differential sensitivity in Snail+ cells for both
confluence and CTG assays. G. Candidate EMT/MET inducers ranked by Glllcl? induction (higher GFP =
more epithelial; lower GFP = more mesenchymal). H. Top 10 candidate MET inducing compounds, as
estimated by EGFP expression from the Glllcl? reporter.
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190 approved and non-approved compounds [34, 36, 37]. Screen results were analyzed for cell

191  viability/ATP production by CellTiter Glo at the four-day endpoint, and for cell growth rate and
192  epithelial plasticity status by daily IncuCyte imaging of confluence and Gllicl> EGFP levels,

193  respectively, for four days (Fig. 3A; Supplemental Table 1). Analysis of CellTiter Glo values for
194  empty wells revealed a significant reduction in growth for Snail+ cells (Supplementary Figure
195 1A), which is consistent with the known role of Snail as a mediator of cell cycle arrest. Across
196 the entire compound library 3.8% of compounds inhibited CellTiter Glo signal for Snail- cells of
197  50% or more, while 22% of the library inhibited Snail+ cells 50% or more (Supplemental Table
198 1). To identify compounds with differential sensitivity based on Snail expression, we analyzed
199 the differential sensitivity of Snail- and Snail+ cells to all compounds in the library, with a 1.0
200 representing no difference in sensitivity. Drugs with values <1.0 differentially inhibit CellTiter Glo
201  output of Snail+ cells while drugs with values>1.0 differentially inhibit CellTiter Glo output in

202  Snail- cells (Fig. 3B).

203 In parallel to CellTiter Glo, we also quantified differences in growth rate for all screen
204 compounds with and without Snail induction. Cell confluence was moderately, but significantly,
205  correlated with CellTiter Glo values when comparing all treatment conditions (Supplemental
206  Fig. 3B). To identify collateral sensitivities based on growth rate we first calculated differences
207  in slope of the growth rates between Snail- (EtOH) and Snail+ (4OHT) cells. This analysis is
208  shown for a subset of compounds in Fig. 1C, with compounds in gray having little to no effect
209  on cell growth of Snail- (EtOH) cells and these same compounds inhibiting growth in Snail+
210  (40HT) cells. Subsequent annotation by target enabled identification of targets for which >2
211  drugs hit the same target. Top hits were ranked by their differential slope when comparing

212  Snail+ to Snail- cells. Among these hits were inhibitors targeting signaling molecules and

213  pathways known to be involved in lineage plasticity and prostate cancer therapy resistance,
214  such as aurora kinase, c-MET, and mTOR/PI3K (Fig. 3D). Other targets included inhibitors of
215 CRM1 (XPO1), a nuclear shuttling protein, cyclin-dependent kinases, polo-like kinases, and
216  protein kinase C (Fig. 3D). To identify synthetic lethality for Snail+ cells, we focused on agents
217  with <50% killing in Snail- (EtOH) cells and >50% killing in Snail+ cells by CellTiter Glo. Among
218 these compounds, comparison of drugs that inhibited both CellTiter Glo production and growth
219 rate by greater than 2-fold in Snail+ cells as compared to Snail- cells revealed four candidate
220  compounds (Fig. 3E), including ONX-0914 (immunoproteasome inhibitor), AZ-960 (JAK2

221  inhibitor), WHI-P154 (JAK3 and EGFR inhibitor), and CCT137690 (aurora kinase inhibitor) (Fig.
222 3F).

223 We next attempted to identify compounds and pathways that inhibit Snail-induced EMT.
224  To do this we first calculated the fold change in EGFP expression for each compound at day 4
225 as compared to day 1. The fold change in EGFP expression for 40OHT (Snail+) cells was divided
226 by EtOH (Snail-) cells for each compound to identify drugs that were capable of overcoming

227  Snail-mediated EMT. To ensure the gain in EGFP expression was not simply a function of cell
228  growth inhibition or cell death, we compared the EGFP expression to the differential confluence
229  in 40HT-treated versus EtOH-treated cells. This analysis revealed a subset of compounds that
230 led to differential re-activation of EGFP expression from the Gllicl> EMT/MET reporter while

231 maintaining at least 50% viability or greater (Fig. 3G). These agents included GSK2126458

232  (mTOR/PI3K), three microtubule associated drugs, TAK-875 (GPR40 agonist), PIK-75 (DNA-
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PK, p110a), Sparfloxacin (antibiotic), LY2228820 (p38/MAPK), AUY922 (HSP90), and
Edoxaban (Factor Xa) (Fig. 3H).

The chemical landscape of collateral sensitivity to enzalutamide-resistant prostate cancer.
Given the association between Snail-mediated EMT and enzalutamide resistance, we
hypothesized that the evolution of enzalutamide resistance may also enrich for this EMT-like
plasticity. To better understand these relationships between phenotypic plasticity and
enzalutamide resistance we applied a series of EMT scoring metrics [41-43] to analyze RNA-
Seq data from four independent pairs of enzalutamide-sensitive and enzalutamide-resistant cell
line models [16]. Consistent with our hypothesis, enzalutamide-resistant cells exhibited a
significant shift in scores toward a more mesenchymal-like gene expression signature (Fig. 4A).
These overall trends were consistent across scoring metrics, with some exceptions for specific
cell line pairs, depending on the scoring metric used (Supplemental Fig. 2A, B). Also
consistent with this, treatment of LNCaP95-Snail(-) cells with enzalutamide led to an increase in
nuclear localization of Snail (Fig. 4B). The enzalutamide-treated LNCaP95-Snail cells mirrored
induction of Snail nuclear localization with 40HT treatment (Fig. 4C,D). These analyses indicate
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Figure 4. Enzalutamide induces epithelial plasticity. A. Analysis of EMT scores across three isogenic pairs of
independently-derived enzalutamide-sensitive and enzalutamide-resistant cell line models using the 76GS EMT
scoring metric; s = enza-sensitive; r = enza-resistant. B. Immunofluorescence staining of cell nuclei by Hoechst
(blue) and Snail (green) in LNCaP95-Snail cells treated with EtOH (vehicle) and C. 40HT (nuclear Snail) in the
presence of vehicle or enzalutamide. D. Quantification of immunofluorescence by Imagel. *=p<0.05
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that, compared to enzalutamide-sensitive cells, enzalutamide-resistant cells exhibit a more
EMT-like phenotype.

To further extend the analysis of Snail-specific synthetic lethality, we next attempted to identify
potential collateral sensitivities to this EMT-like enzalutamide-resistant phenotype. In order to
accomplish this we performed a separate high-throughput compound screen on enzalutamide-
resistant CS2 cells. The CS2 model is an LNCaP-derived subclone that was generated from
long-term exposure to androgen deprivation through chronic culture in media containing
charcoal-stripped fetal bovine serum [16]. Subsequent exposure of enzalutamide-sensitive CS2
cells to increasing doses of enzalutamide over approximately 6 months led to the development
of an enzalutamide-resistant CS2 cell line model [16]. The CS2 enzalutamide-resistant model
was transduced with a lentiviral PSA reporter in which the proximal promoter of PSA harboring
androgen responsive elements is inserted upstream of the GFP reading frame (Fig. 5A). These
CS2PSAGFP enzalutamide-resistant cells were screened using the Bioactives library to interrogate
AR signaling (GFP), cell viability (CellTiter Glo), and cell growth (IncuCyte imaging) (Fig. 5A).
To ensure the PSA reporter is responsive to androgen receptor signaling, cells were treated
with the anabolic-androgenic steroid derivative, R1881, or enzalutamide. R1881 treatment led to
a significant increase in GFP signal while enzalutamide had no effect on GFP expression in the

enzalutamide-resistant CS2 model (Fig. 5B). The increase in GFP during R1881 treatment was
not due to a change in confluence, as these treatments did not significantly alter cell confluence
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Figure 5. Collateral sensitivity screens identify candidate actionable pathways to treat enzalutamide-
resistant prostate cancer. A. PSA reporter schematic and screening strategy. B. Validation of the PSA-GFP
reporter system. C. Confluence quantification in CS2 enzalutamide-resistant model following exposure to R1881
and enzalutamide. D. Pathway-level analysis of top inhibitors targeting CS2 enzalutamide-resistant cells. E.
Activators of PSA reporter activity (green dots); top candidates are labeled by pathway or with drug name. F.
Inhibitors of PSA reporter activity (brown dots); top candidates are labeled by pathway.
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267  (Fig. 5C). Analysis of cell growth inhibition for the Bioactives screen at the pathway level in the
268 CS2 enzalutamide-resistant cells pinpointed candidate collateral sensitivities of interest,

269 including DNA-PK, cyclin-dependent kinases, histone deacetylases, PI3K, mTOR, CRM1, and
270  PLK (Fig. 5D). Analysis of PSA reporter expression as a function of cell viability also revealed
271  compounds targeting multiple receptors (androgen receptor, estrogen receptor, glucocorticoid
272  receptor, dexamethasone) as inducers of PSA reporter activity (Fig. 5E) and compounds that
273  target epigenetic modifiers as repressors of PSA reporter activity (Fig. 5F).

274  To provide further validation of candidates, we plotted the relative cell viability by CellTiter Glo
275  for compounds in the CS2 enzaR screen by cell viability (CellTiter Glo) in the LNCaP95-Snail
276  screen (Fig. 6A). This analysis revealed a subset of drugs active in both screens. We ranked
277  these top hits by a sum rank statistic that includes the rank of cell death by CellTiter for both
278 screens as well as the differential confluence for Snail- vs. Snail+ cells (Fig. 6B). Top targets
279  from this analysis including PI3K, mTOR, and the proteasome (Fig. 6B). Among this subset, AZ
280 960 (JAK2 inhibitor) and BGT226 (dual PI3K/mTOR inhibitor) were the most effective at

281  inhibiting Snail+ cell confluence (Fig. 6C, D). Consistent with our observations of sensitivity to
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Figure 6. Comparison of candidate therapies for enzalutamide-resistant and Snail+ prostate cancer. A.
Comparison of CS2 enzaR and Snail drug screen hits. B. Top hits for both screens based on a sum rank statistic
that includes (CS2 enzaR confluence, Snail+ differential confluence, and Snail+ differential slope of growth
rate). C. Growth curves for EtOH (Snail-) and 40HT (Snail+) cells treated with AZ 960 (JAK inhibitor); and
D. BGT226 (PI3K/mTOR inhibitor). E. Quantification of phospho-protein array data for p-STAT1, F. p-JAK1,
G. p-STAT2, and H. p-JAK2 in three pairs of enzalutamide-sensitive and enzalutamide-resistant models (Ware
et al. Biorxiv).
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282  JAK2 inhibition, analysis of phospho-proteomics data from three previously-characterized pairs
283  of enzalutamide-resistant lines [16], including CS2 enzalutamide-sensitive and -resistant lines
284  demonstrates increased phosphorylation of STAT1, STAT2, JAK1, and JAK2 (Fig. 6E-H),

285  further highlighting the JAK/STAT signaling axis as a potential therapeutic vulnerability for

286  Snail+ and enzalutamide-resistant prostate cancer.

287 Discussion

288 In the present study we sought to characterize the therapeutic vulnerabilities for enzalutamide-
289  resistant prostate cancer. To do this we combined high-throughput small molecule screens with
290 real-time imaging and endpoint assays to reveal chemical landscapes of synthetic lethality for
291  Snail-mediated EMT and collateral sensitivities for enzalutamide-resistant cells. These screens
292 identified multiple therapeutic vulnerabilities of Snail+ prostate cancer cells, including several
293  with known functions in prostate cancer and/or EMT, such as aurora kinases [44-46], MET [47,
294 48], and polo-like kinases [49-51], and CRM1/XPO1 [52, 53]. The screen also pinpointed

295  several inhibitors that differentially inhibited EMT while maintaining confluence, including

296  inhibitors of MTOR/PI3K, DNA-PK, and p38/MAPK (Figure 3H). All of these pathways have
297  been previously connected to EMT biology in prostate cancer [54-57]. We also identified the
298  GPR40 agonist, TAK-875, and Factor Xa inhibitor, Edoxoban, as potential inducers of MET.
299  Consistent with these observations, another GPR40 agonist, GW9508, has been shown to
300 prevent cytokine-induced airway epithelial barriers disruption of claudin, occludin, and ZO-1
301 [58], and Factor Xa inhibition has been shown to reduce EMT in chronic kidney disease [59].
302  These agents represent promising candidates for follow-up studies to inhibit EMT and prevent
303 or delay invasive and metastatic phenotypes associated with hormone therapy resistance.

304  Similar to the screen for Snail+ prostate cancer the follow-up screen for therapeutic

305  vulnerabilities in enzalutamide-resistant CS2 cells pinpointed targets and pathways known to be
306 involved in prostate cancer and hormone therapy resistance, including histone deacetylases,
307  the PIBK/mTOR pathway, JAK-STAT signaling, DNA-PK, and Syk. For example, the

308 identification of histone deacetylases and other epigenetic modifying agents is consistent with
309 the known importance of epigenetic regulation of androgen receptor signaling [60, 61]. Other
310 targets, however, are linked to AR signaling bypass, as in the case of PTEN loss and

311  subsequent constitutive activation of PI3K signaling [62], activation of JAK/STAT and FGFR
312  signaling during the acquisition of AR independence and lineage plasticity [63, 64], and the role
313  of Syk as a potential mediator of invasive features and bone metastasis [65]. While the

314  relevance of these targets is well supported by preclinical evidence, the clinical utility of these
315 targets is more varied. For example, our identification of mTOR/PI3K signaling inhibition as a
316  key vulnerability may be the result of PTEN loss in these LNCaP-derived models [66]; however,
317  while PTEN loss is also common among patients, these agents have been unsuccessful in

318 clinical trials [67]. Likewise, currently-available HDAC inhibitors have largely failed in clinical
319 trials, mostly due to their toxicity [68] or lack of efficacy [69, 70]. Conversely, there are a number
320  of ongoing clinical trials for JAK inhibitors — particularly JAK2 inhibitors — in advanced prostate
321  cancer, but thus far these have not demonstrated sufficient monotherapy activity in men with
322 mCRPC ([71]and see NCT00638378; closed due to lack of efficacy). Our data suggest that a
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number of critical and non-redundant pathways may be involved in enzalutamide resistance and
lineage plasticity, suggesting the need for combination trial approaches.

Comparison across both screens identified drugs with distinct effects in a single model as well
as drugs that were common hits in both screens. There are multiple possible reasons for the
observed differences in hits targeting each cell line, including, but not limited to, differences in
the genetic and gene expression features of each cell line [16]. For example, LNCaP95-Snail
cells express AR-V7 while enzalutamide-resistant CS2 cells lack AR-V7. Enzalutamide-resistant
CS2 cells also harbor dual loss of BRCA2 and RB1 and have a greater number of mutations
and copy number alterations than LNCaP95 cells. These unique features may explain, at least
in part, some of the differences in the list of hits from each screen.

A major limitation of the present study is the lack of in vivo modeling to validate the impact of
our identified in vitro hits. This work is ongoing and also requires an assessment of the immune
consequences of drug effects in the tumor microenvironment. Given the expression of mMTOR
and JAK/STAT signaling, for example, in immune cells and the immune suppressive impact of
these agents in patients, assessing the net benefits of any drugs identified in our in vitro screen
requires in vivo validation in a range of immunocompetent models either as monotherapy in
selected combinations and ideally in patient correlative samples.

The current study provides a platform to quantify the effects of thousands of compounds across
multiple parameters and phenotypes simultaneously to identify and prioritize candidates for
follow up in a rapid and cost-effective manner. While this study is limited by the exclusive use of
in vitro cell line models, the integration of data from phenotypic reporters, confluence imaging,
and CellTiter Glo readouts across multiple models rapidly identified a prioritized list of top hits,
including the dual mMTOR/PI3K inhibitor, BGT-226 and the JAK2 inhibitor, AZ-960, as promising
candidates for future in vivo studies.

14


https://doi.org/10.1101/2022.11.15.516649
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.15.516649; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

348  Figure Legends

349  Figure 1. Workflow schematic for synthetic lethal and collateral sensitivity screens. A. A
350 high-throughput screen was performed in LNCaP95-Snail cells to assess differential response
351 across multiple endpoints of confluence, viability (CellTiter Glo), and EMT status via a

352 fluorescence-based reporter. B. Screen schematic for a collateral sensitivity screen in

353  enzalutamide-resistant CS2 cells. Endpoints included PSA reporter response, confluence, and
354  viability (CellTiter Glo)

355  Figure 2. Fluorescence-based reporters to visualize EMT dynamics in a Snail-inducible
356 model. A. Schematic illustration of a Snail-inducible model. B. Immunofluorescence staining of
357  LNCaP95-Snail cells. EtOH serves as a vehicle for Snail induction. 40HT induces localization of
358  Snail and concomitant downregulation of E-cadherin and upregulation of vimentin. C. Schematic
359 of the Gllicl> EMT/MET alternative splicing reporter. D. IncuCyte imaging for LNCaP95-Snail
360 confluence and E. EMT induction dynamics (GFP fluorescence). * = p<0.05. F. Fluorescence
361 imaging of LNCaP95-Snail cells treated with EtOH or 40HT for nuclear staining (Hoechst) and
362  the Gllicl> EMT/MET reporter (green). G. Endogenous FGFR2 splicing analysis for Snail- and
363  Snail+ LNCaP95 cells. L = 1Kb ladder, Ctrl = undigested PCR product; Aval = FGFR2-llIb-

364  specific restriction digestion; EcoRV = FGFR2-llIc-specific restriction digestion.

365  Figure 3. A synthetic lethality screen pinpoints potential therapies for Snail+ prostate
366 cancer. A. Schematic of multi-assay screening strategy. B. Top hits with differential response in
367  Snail — and Snail + cells. Below the 1.0 line indicates drug differentially inhibits Snail+ cells;

368 above the line indicates drug differentially inhibits Snail- cells. C. Representative growth slope
369 differences for top candidate agents with differential effects on Snail- and Snail+ cells. D. Top
370  hits grouped by target/pathway ranked by differential slope; color indicates number of drugs per
371  pathway. E. Venn diagram of overlap in compounds that altered both confluence and CellTiter
372  Glo (CTG). F. Overlapping drugs with differential sensitivity in Snail+ cells for both confluence
373 and CTG assays. G. Candidate EMT/MET inducers ranked by Gllicl? induction (higher GFP =
374 more epithelial; lower GFP = more mesenchymal). H. Top 10 candidate MET inducing

375 compounds, as estimated by EGFP expression from the Gllicl? reporter.

376  Figure 4. Enzalutamide induces epithelial plasticity. A. Analysis of EMT scores across three
377  isogenic pairs of independently-derived enzalutamide-sensitive and enzalutamide-resistant cell
378  line models using the 76GS EMT scoring metric; s = enza-sensitive; r = enza-resistant. B.

379  Immunofluorescence staining of cell nuclei by Hoechst (blue) and Snail (green) in LNCaP95-
380  Snail cells treated with EtOH (vehicle) and C. 40HT (nuclear Snail) in the presence of vehicle or
381 enzalutamide. D. Quantification of immunofluorescence by ImageJ. *=p<0.05

382  Figure 5. Collateral sensitivity screens identify candidate actionable pathways to treat
383 enzalutamide-resistant prostate cancer. A. PSA reporter schematic and screening strategy.
384  B. Validation of the PSA-GFP reporter system. C. Confluence quantification in CS2

385  enzalutamide-resistant model following exposure to R1881 and enzalutamide. D. Pathway-level
386  analysis of top inhibitors targeting CS2 enzalutamide-resistant cells. E. Activators of PSA

387  reporter activity (green dots); top candidates are labeled by pathway. E. Inhibitors of PSA

388  reporter activity (brown dots); top candidates are labeled by pathway.
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389  Figure 6. Comparison of candidate therapies for enzalutamide-resistant and Snail+

390 prostate cancer. A. Comparison of CS2 enzaR and Snail drug screen hits. B. Top hits for both
391 screens based on a sum rank statistic that includes (CS2 enzaR confluence, Snail+ differential
392  confluence, and Snail+ differential slope of growth rate). C. Growth curves for EtOH (Snail-) and
393  4O0HT (Snail+) cells treated with AZ 960 (JAK inhibitor); and D. BGT226 (PI3BK/mTOR inhibitor).
394  E. Quantification of phospho-protein array data for p-STAT1, F. p-JAK1, G. p-STATZ2, and H. p-
395  JAK2 in three pairs of enzalutamide-sensitive and enzalutamide-resistant models (Ware et al.
396  biorxiv [16]).

397  Supplemental Figure Legends

398  Supplemental Figure 1. A. Comparison of confluence for EtOH- and 40HT-treated cells in
399 untreated wells. B. Correlation between CellTiter Glo and confluence. C. Example of top drugs
400  with differential growth slopes.

401 Supplemental Figure 2. A. EMT scores for isogenic pairs of enzalutamide-sensitive and -
402 resistant cell lines using the KS scoring metric and B. the MLR scoring metric.
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