

1 **A synthetic lethal screen for Snail-induced enzalutamide resistance identifies JAK/STAT
2 signaling as a therapeutic vulnerability in prostate cancer**

3 Kathryn E. Ware^{1,2}, Beatrice C. Thomas³, Pelumi Olawuni^{1,2}, Maya U. Sheth^{1,2}, Nathan
4 Hawkey^{1,2}, Yeshwanth M⁴, Brian C. Miller⁵, Katherine J. Vietor⁵, Mohit Kumar Jolly⁴, So Young
5 Kim⁶, Andrew J. Armstrong^{1,2,7*}, and Jason A. Somarelli^{1,2, *}

6 ¹Department of Medicine, Division of Medical Oncology, Duke University Medical Center,
7 Durham, NC, USA; ²Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke
8 University Medical Center, Durham, NC, USA; ³Dr. Kiran C Patel College of Allopathic Medicine,
9 Nova Southeastern University, Fort Lauderdale, FL, USA; ⁴Centre for BioSystems Science and
10 Engineering, Indian Institute of Science, Bangalore, India; ⁵Division of Oncology, Lineberger
11 Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC,
12 USA; ⁶Department of Molecular Genetics and Microbiology, Duke University Medical Center,
13 Durham, NC, USA; ⁷Department of Pharmacology and Cancer Biology, Duke University,
14 Durham NC, USA

15

16 *Address correspondence to: jason.somarelli@duke.edu; andrew.armstrong@duke.edu

17

18

19

20

21

22

23

24

25

26

27

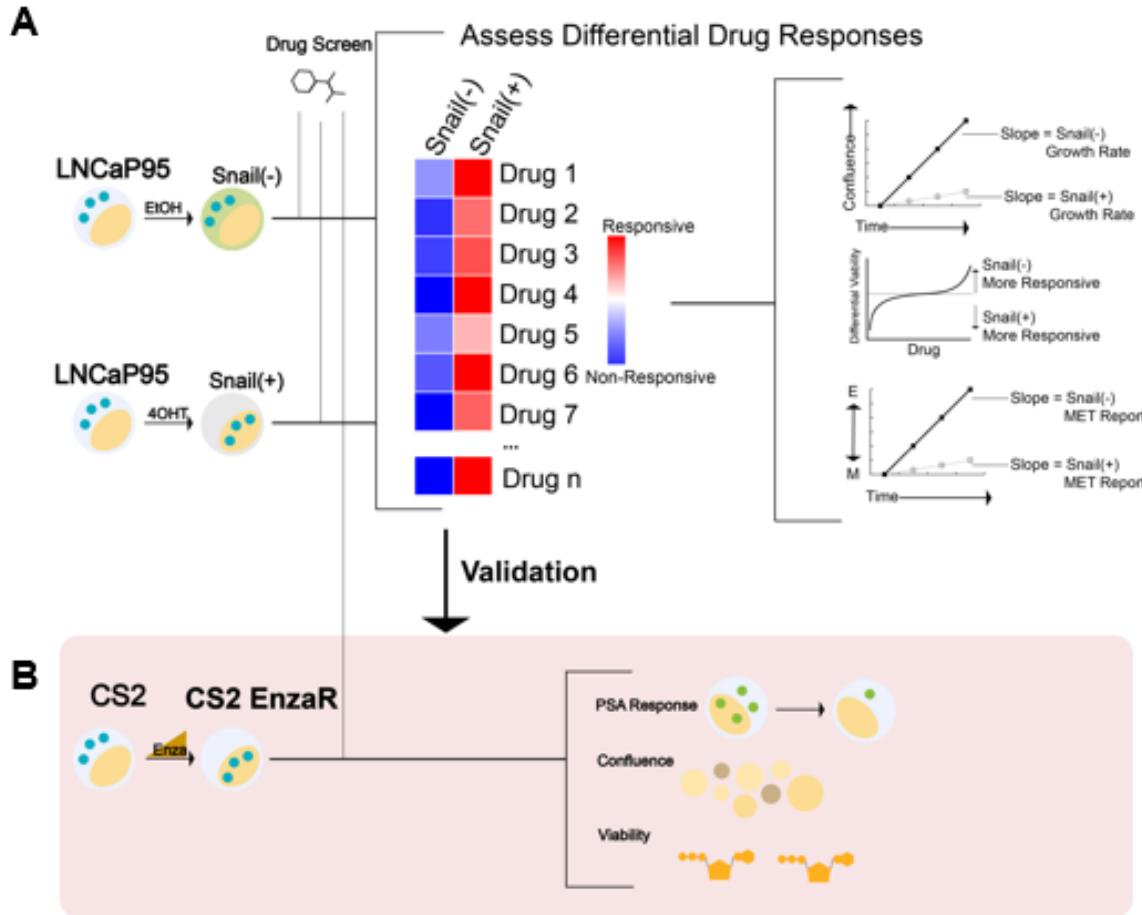
28

29 **Key words:** high-throughput screens, drug resistance, hormone therapy resistance, epithelial
30 plasticity, collateral sensitivity

31 **Abstract**

32 Despite substantial improvements in the treatment landscape of prostate cancer, the evolution
33 of hormone therapy-resistant and metastatic prostate cancer remains a major cause of cancer-
34 related death globally. The mainstay of treatment for advanced prostate cancer is targeting of
35 androgen receptor signaling, including androgen deprivation therapy plus second-generation
36 androgen receptor blockade (e.g., enzalutamide, apalutamide, darolutamide), and/or androgen
37 synthesis inhibition (abiraterone). While these agents have significantly prolonged the lives of
38 patients with advanced prostate cancer, the evolution of resistance to these treatments is nearly
39 universal. This therapy resistance is mediated by diverse mechanisms, including both androgen
40 receptor-dependent mechanisms, such as androgen receptor mutations, amplifications,
41 alternatively spliced isoforms, and structural rearrangements, as well as non-androgen receptor-
42 mediated mechanisms, such as lineage plasticity toward neuroendocrine-like or epithelial-
43 mesenchymal transition (EMT)-like lineages. Our prior work identified the EMT transcriptional
44 regulator Snail as critical to hormonal therapy resistance and commonly detected in human
45 metastatic prostate cancer. In the current study, we sought to interrogate the actionable
46 landscape of EMT-mediated hormone therapy-resistant prostate cancer to identify synthetic
47 lethality and collateral sensitivity approaches to treating this aggressive disease state. Using a
48 combination of high-throughput drug screens and multi-parameter phenotyping by confluence
49 imaging, ATP production, and phenotypic plasticity reporters of EMT, we identified candidate
50 synthetic lethaliites to Snail-mediated EMT in prostate cancer. These analyses identified
51 multiple actionable targets, such as XPO1, PI3K/mTOR, aurora kinases, c-MET, polo-like
52 kinases, and JAK/STAT as synthetic lethaliites in Snail+ prostate cancer. We validated these
53 targets in a subsequent validation screen in an LNCaP-derived model of resistance to
54 sequential androgen deprivation and enzalutamide. This follow-up screen provided validation of
55 inhibitors of JAK/STAT and PI3K/mTOR as therapeutic vulnerabilities for Snail+ and
56 enzalutamide-resistant prostate cancer.

57


58 **Introduction**

59 The treatment landscape of prostate cancer exemplifies the “two truths” of cancer treatment [1]:
60 While tremendous progress has been made to improve patient outcomes, there also remains an
61 urgent need to overcome the significant challenges imposed by the evolution of treatment
62 resistance and metastasis. From the groundbreaking studies of Huggins and Hodges [2] to the
63 development of novel, second-generation androgen receptor inhibitors [3-8], and anti-androgens
64 [9, 10], much of the existing treatment options for prostate cancer are currently focused on
65 targeting the androgen receptor (AR) signaling axis. These agents have demonstrated
66 significant clinical benefit; however, progression of men treated with these agents in the
67 metastatic, castration-resistant setting is nearly universal.

68 The evolution of resistance to AR signaling inhibitors is mediated by heterogeneous genetic and
69 non-genetic pathways that include both AR-dependent and AR-independent mechanisms
70 (reviewed in [11]). Among these heterogeneous mechanisms, phenotypic plasticity is a central
71 hallmark of AR signaling inhibitor resistance [12]. This phenotypic plasticity occurs along
72 multiple, interconnected cellular lineage axes, such as stemness [13, 14],
73 epithelial/mesenchymal [15-18], luminal/basal [19, 20], and neuroendocrine-like lineages or cell
74 states [21, 22]. Phenotypic plasticity along these axes often leads to a loss of AR
75 expression/activity and dependency [23], as well as additional aggressive features that promote
76 survival and metastasis [24, 25]. New approaches are needed to capitalize on these emerging
77 phenotypic states for therapeutic benefit.

78 Targeted therapy alters the ecological fitness landscapes of cancer in multiple ways [26]. The
79 altered fitness landscape of the drugged environment can promote aggressive biology, but can
80 also induce “collateral sensitivities” to novel agents [27]. This concept, also known as negative
81 cross resistance, has been applied to identify new strategies to treat the evolution of resistance
82 in bacterial infections [28], malaria [29], herbicides [30], and pesticides [31].

83 In the present study, we combined high-throughput screens with multiparameter endpoint
84 measurements from transcription-based reporters, confluence, and cell viability assays to
85 characterize the therapeutic landscapes of Snail-mediated EMT, enzalutamide resistance, and
86 AR activity (**Fig. 1A**). Our analyses pinpoint histone deacetylases (HDAC), protein kinase A
87 (PKA), PI3K/mTOR, and Janus Kinase (JAK) as key collateral sensitivities to Snail-mediated
88 enzalutamide resistance in prostate cancer cells. Follow-up screens in a model of progressive
89 adaptation to ADT and enzalutamide resistance verified the relevance of these pathways as
90 novel therapeutic vulnerabilities for enzalutamide-resistant prostate cancer (**Fig. 1B**). These
91 analyses provide a deeper understanding of the therapeutic vulnerabilities induced by epithelial
92 plasticity and enzalutamide resistance.

Figure 1. Workflow schematic for synthetic lethal and collateral sensitivity screens. A. A high-throughput screen was performed in LNCaP95-Snail cells to assess differential response across multiple endpoints of confluence, viability (CellTiter Glo), and EMT status via a fluorescence-based reporter. **B.** Screen schematic for a collateral sensitivity screen in enzalutamide-resistant CS2 cells. Endpoints included PSA reporter response, confluence, and viability (CellTiter Glo).

93

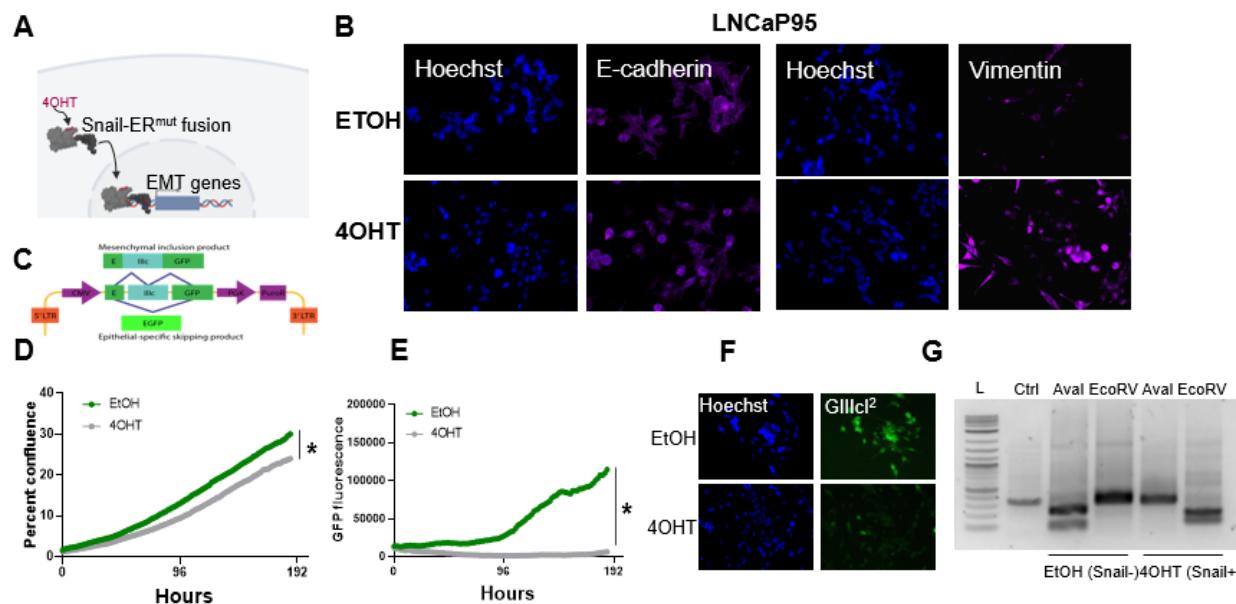
94

95 **Materials and Methods**

96 Cell culture models. LNCaP95-Snail and CS2 enzalutamide-resistant cells were cultured in
97 RPMI containing 10% charcoal stripped Fetal Bovine Serum (Sigma) and 1%
98 penicillin/streptomycin (Life Technologies). CS2 enzalutamide-resistant cell populations were
99 maintained in the presence of 50 μ M enzalutamide. Cell lines were maintained in standard
100 tissue culture-treated plasticware within a humidified incubator at 37°C and 5% CO₂. LNCaP95
101 cells stably expressing inducible Snail were generated as previously described [15]. Induction of
102 Snail nuclear translocation was mediated by the addition of 4-hydroxy-tamoxifen (4OHT) at a
103 concentration of 20 nM Ethanol (EtOH) was used as a vehicle control. All cells were
104 authenticated by the Duke DNA Analysis Facility using analysis of short tandem repeats and
105 were verified to be mycoplasma-free.

106 Development and testing of MET and PSA reporter lines. We adapted the GIIICl² MET reporter
107 [32, 33] for lentiviral transduction by cloning the previously-described vector into the lentiviral
108 vector pLVX-puro using restriction enzymes EcoRI/SmaI. The PSA reporter was synthesized in
109 the lentiviral expression plasmid, pLV[Exp]-Puro by VectorBuilder to include 2 Kb of the
110 proximal PSA promoter upstream of the EGFP open reading frame. Cells stably expressing
111 inducible Snail (Addgene plasmid #18798) or indicated reporter plasmids were generated by
112 transduction of LNCaP95 or CS2 cells as described:
113 <https://www.addgene.org/protocols/generating-stable-cell-lines/>. Confluence and fluorescence
114 were measured with and without EMT induction using Snail activation as described above. For
115 PSA-GFP expressing cells, confluence and fluorescence was quantified with and without AR
116 activation using synthetic androgen R1881 at 1 nM.

117 High-throughput drug screening. High-throughput screens were performed in collaboration with
118 the Duke Functional Genomics Shared Resource as previously described [34-37]. Briefly,
119 compounds from the Bioactives library (SelleckChem) were stamped in triplicate into 384-well
120 plates at a final concentration of 1 μ M using an Echo Acoustic Dispenser (Labcyte, Indianapolis,
121 IN, USA). Cells and media were subsequently dispensed into plates using a WellMate (Thermo
122 Fisher, Waltham, MA, USA) at a density of 2,000 cells/well for each cell line. Confluence was
123 quantified using an IncuCyte S3 live cell imaging system. GIIICl² and PSA-GFP readouts were
124 quantified by IncuCyte imaging at 24, 48, 72, and 96 hours. CellTiter Glo was added at 96
125 hours, and luminescence was read using a Clariostar plate reader (BMG, Berlin, Germany).


126 RNA-Seq analysis of EMT scores. Quantification of EMT status for each sample was performed
127 using the following three independent methods: 76GS, KS, MLR, each of which uses a unique
128 algorithm and gene set. The 76GS scores were calculated based on the expression of 76 genes
129 [38]. Higher scores correspond to more epithelial states. A 76GS score > 0 typically indicates an
130 epithelial phenotype and < 0 indicates a mesenchymal phenotype. The score for each sample is
131 computed as the weighted sum of expression values of 76 genes, with the weight factor being
132 the correlation of expression values of that gene with that of CDH1 in the given dataset. KS
133 score was determined based on a Kolmogorov–Smirnov two-samples test [39]. Using a 218
134 gene signature, the cumulative distribution functions are estimated for mesenchymal and
135 epithelial signatures, and the maximum difference in cumulative distribution functions is retained

136 as the statistic for the two sample-KS test. KS score ranges from $[-1, 1]$, with negative and
137 positive scores representing mesenchymal and epithelial phenotypes, respectively. MLR scores
138 are provided on a scale of $[0, 2]$; higher scores are associated with more mesenchymal
139 samples. Using an ordinal multinomial logistic regression, the score encompasses an order
140 structure, with a hybrid epithelial/mesenchymal signature situated between the epithelial and
141 mesenchymal phenotypes. Scores are calculated based on the probability assigned for each
142 sample to belong to one of the three phenotypes.

143 **Data analysis.** The primary objective for the high-throughput screen of LNCaP95-Snail cells was
144 to identify synthetic lethality for Snail+ cells. Snail- cells (EtOH-treated vehicle controls) were
145 used as a reference control to calculate differential effects across all parameters. The primary
146 objective for the high-throughput screen of CS2 enzalutamide-resistant cells was to identify
147 collateral sensitivities for enzalutamide-resistant cells. The central hypothesis for this work was
148 that activation of key pathways in Snail+, enzalutamide-resistant prostate cancer can be
149 exploited for therapeutic benefit through synthetic lethal and collateral sensitivity approaches.
150 Experimental data were visualized and analyzed in GraphPad Prism 9. Analysis of cell viability
151 by CellTiter Glo was performed by normalizing to the average of all empty (non-drug) wells.
152 Imaging of confluence and GFP was compared using repeated measures ANOVA. Linear
153 regression was used to assess correlations between screen analysis parameters, and outliers
154 were considered to fall outside the 95% confidence interval bands. P-values <0.05 were
155 considered statistically reliable.

156 Results

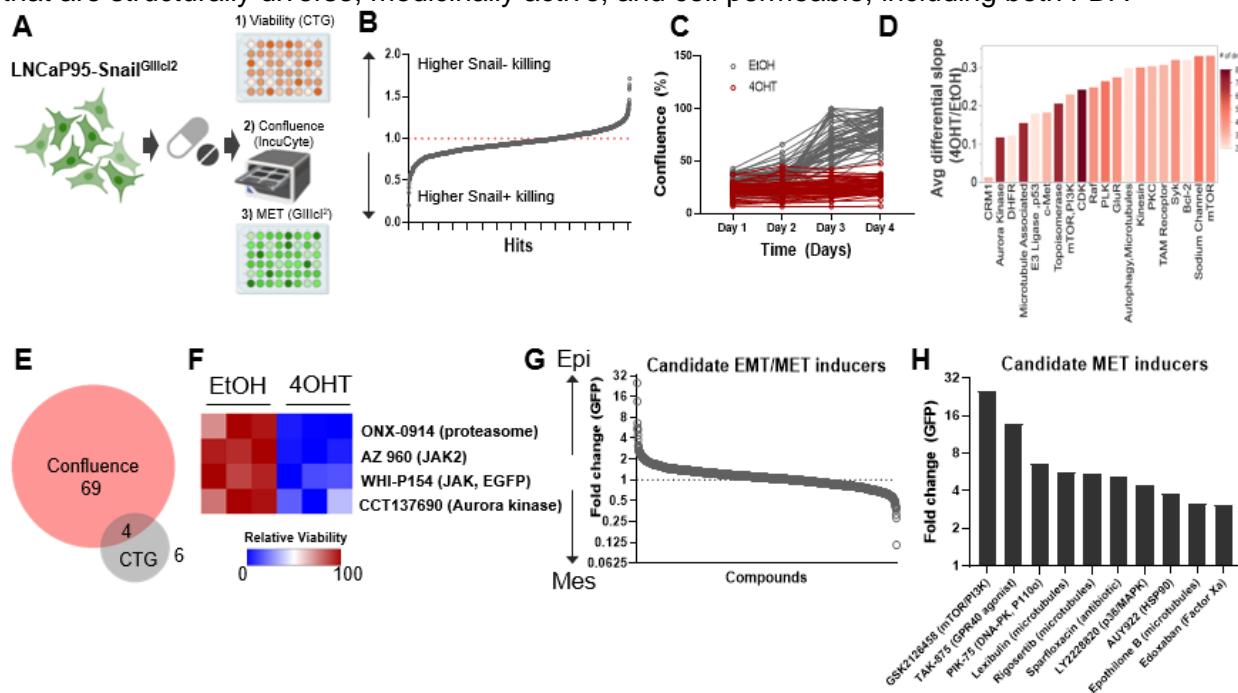
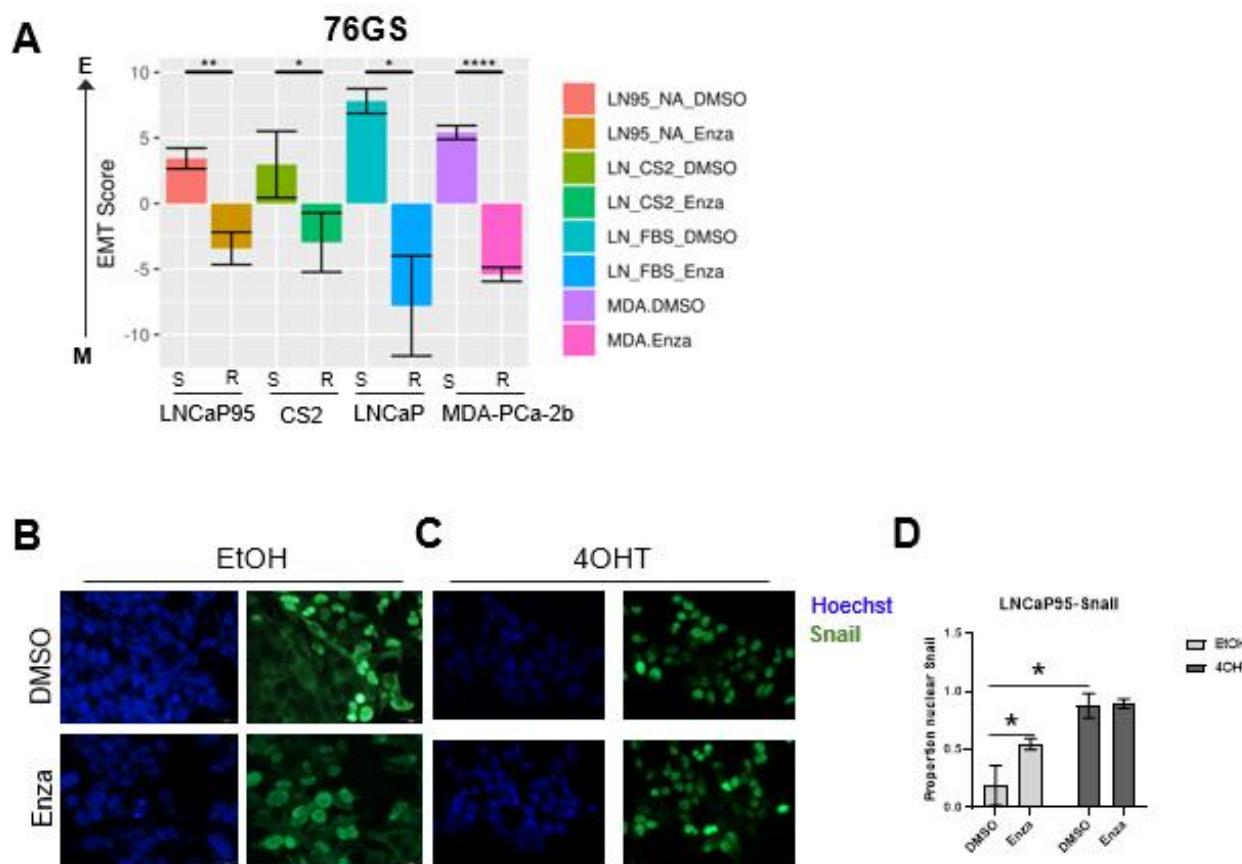

157 **Fluorescence-based reporters enable real-time monitoring of epithelial plasticity.** Prior studies
158 have pinpointed the epithelial plasticity regulator, Snail, as both upregulated during AR inhibition
159 [17] and a mediator of enzalutamide resistance through sustained androgen receptor signaling
160 [15]. In the present work we sought to develop a system to identify novel collateral sensitivities
161 to Snail-induced resistance to enzalutamide. To do this we turned to a Snail inducible LNCaP95
162 cell line system in which Snail is fused to an estrogen receptor mutant (ER^{mut}) in which 4-
163 hydroxy-tamoxifen (4OHT) acts as an agonist (Fig. 2A). Addition of 4OHT induces estrogen
164 receptor-Snail fusion nuclear localization and activation of a Snail-mediated transcriptional
165 program (Fig. 2A). Addition of 4OHT in the Snail-inducible LNCaP95 prostate cancer cell line
166 leads to cell scattering, loss of cell-cell E-cadherin, and upregulation of the mesenchymal
167 marker, vimentin (Fig. 2B). To track dynamics of Snail-mediated epithelial plasticity we adapted
168 the GIIIcl² fluorescence-based reporter [33] for lentiviral transduction. The GIIIcl² reporter
169 utilizes the lineage-specific alternative splicing within the ligand binding domain of FGFR2 to
170 control EGFP expression based on epithelial or mesenchymal phenotype [33]. The EGFP open
171 reading frame is interrupted by the FGFR2-IIIc exon and flanking introns (Fig. 2C). Splicing of
172 FGFR2-IIIc in epithelial cells leads to fusion of the EGFP reading frame and subsequent EGFP
173 expression while inclusion of the IIIc exon interrupts the EGFP reading frame and prevents

Figure 2. Fluorescence-based reporters to visualize EMT dynamics in a Snail-inducible model. A. Schematic illustration of a Snail-inducible model. **B.** Immunofluorescence staining of LNCaP95-Snail cells. EtOH serves as a vehicle for Snail induction. 4OHT induces localization of Snail and concomitant downregulation of E-cadherin and upregulation of vimentin. **C.** Schematic of the GIIIcl² EMT/MET alternative splicing reporter. **D.** IncuCyte imaging for LNCaP95-Snail confluence and **E.** EMT induction dynamics (GFP fluorescence). * = p<0.05. **F.** Fluorescence imaging of LNCaP95-Snail cells treated with EtOH or 4OHT for nuclear staining (Hoechst) and the GIIIcl² EMT/MET reporter (green). **G.** Endogenous FGFR2 splicing analysis for Snail- and Snail+ LNCaP95 cells. L = 1Kb ladder, Ctrl = undigested PCR product; AvaI = FGFR2-IIIb-specific restriction digestion; EcoRV = FGFR2-IIIc-specific restriction digestion.

174 EGFP expression (**Fig. 2C**). Treatment of LNCaP95-Snail cells with 4OHT leads to a reduction
 175 in confluence, consistent with the known relationship between Snail and cell cycle arrest [40]
 176 (**Fig. 2D**). Similarly, Snail induction also induces robust inhibition of EGFP expression (**Fig. 2E**)
 177 consistent with inclusion of the mesenchymal FGFR2-IIIc exon. A loss of EGFP signal in Snail+
 178 cells is also evident by fluorescence imaging of Snail- (EtOH) and Snail+ (4OHT) cells (**Fig. 2F**).
 179 EGFP expression from the GIIIcI² reporter is also consistent with endogenous FGFR2 splicing,
 180 in which 4OHT induces a switch from the IIIb to IIIc isoforms, as observed by isoform-specific
 181 restriction digestion of FGFR2 RT-PCR products (**Fig. 2G**).

182 **High-throughput screens identify synthetic lethality to Snail-induced epithelial plasticity.** We
 183 applied this Snail-inducible plasticity reporter system to identify compounds with synthetic
 184 lethality for Snail+ prostate cancer that could be subsequently validated for activity in models of
 185 enzalutamide resistance given the association between Snail expression and enzalutamide
 186 resistance [15]. To do this, we performed a high-throughput small molecule screen using the
 187 SelleckChem Bioactives compound library. The Bioactives library contains 2,100 small
 188 molecules annotated by target and pathway. The library was designed to include compounds
 189 that are structurally diverse, medicinally active, and cell permeable, including both FDA-

Figure 3. A synthetic lethality screen pinpoints potential therapies for Snail+ prostate cancer. A. Schematic of multi-assay screening strategy. **B.** Top hits with differential response in Snail – and Snail + cells. Below the 1.0 line indicates drug differentially inhibits Snail+ cells; above the line indicates drug differentially inhibits Snail- cells. **C.** Representative growth slope differences for top candidate agents with differential effects on Snail- and Snail+ cells. **D.** Top hits grouped by target/pathway ranked by differential slope; color indicates number of drugs per pathway. **E.** Venn diagram of overlap in compounds that altered both confluence and CellTiter Glo (CTG). **F.** Overlapping drugs with differential sensitivity in Snail+ cells for both confluence and CTG assays. **G.** Candidate EMT/MET inducers ranked by GIIIcI² induction (higher GFP = more epithelial; lower GFP = more mesenchymal). **H.** Top 10 candidate MET inducing compounds, as estimated by EGFP expression from the GIIIcI² reporter.


190 approved and non-approved compounds [34, 36, 37]. Screen results were analyzed for cell
191 viability/ATP production by CellTiter Glo at the four-day endpoint, and for cell growth rate and
192 epithelial plasticity status by daily IncuCyte imaging of confluence and GIIICl² EGFP levels,
193 respectively, for four days (**Fig. 3A; Supplemental Table 1**). Analysis of CellTiter Glo values for
194 empty wells revealed a significant reduction in growth for Snail+ cells (**Supplementary Figure**
195 **1A**), which is consistent with the known role of Snail as a mediator of cell cycle arrest. Across
196 the entire compound library 3.8% of compounds inhibited CellTiter Glo signal for Snail- cells of
197 50% or more, while 22% of the library inhibited Snail+ cells 50% or more (**Supplemental Table**
198 **1**). To identify compounds with differential sensitivity based on Snail expression, we analyzed
199 the differential sensitivity of Snail- and Snail+ cells to all compounds in the library, with a 1.0
200 representing no difference in sensitivity. Drugs with values <1.0 differentially inhibit CellTiter Glo
201 output of Snail+ cells while drugs with values >1.0 differentially inhibit CellTiter Glo output in
202 Snail- cells (**Fig. 3B**).

203 In parallel to CellTiter Glo, we also quantified differences in growth rate for all screen
204 compounds with and without Snail induction. Cell confluence was moderately, but significantly,
205 correlated with CellTiter Glo values when comparing all treatment conditions (**Supplemental**
206 **Fig. 3B**). To identify collateral sensitivities based on growth rate we first calculated differences
207 in slope of the growth rates between Snail- (EtOH) and Snail+ (4OHT) cells. This analysis is
208 shown for a subset of compounds in **Fig. 1C**, with compounds in gray having little to no effect
209 on cell growth of Snail- (EtOH) cells and these same compounds inhibiting growth in Snail+
210 (4OHT) cells. Subsequent annotation by target enabled identification of targets for which >2
211 drugs hit the same target. Top hits were ranked by their differential slope when comparing
212 Snail+ to Snail- cells. Among these hits were inhibitors targeting signaling molecules and
213 pathways known to be involved in lineage plasticity and prostate cancer therapy resistance,
214 such as aurora kinase, c-MET, and mTOR/PI3K (**Fig. 3D**). Other targets included inhibitors of
215 CRM1 (XPO1), a nuclear shuttling protein, cyclin-dependent kinases, polo-like kinases, and
216 protein kinase C (**Fig. 3D**). To identify synthetic lethality for Snail+ cells, we focused on agents
217 with <50% killing in Snail- (EtOH) cells and >50% killing in Snail+ cells by CellTiter Glo. Among
218 these compounds, comparison of drugs that inhibited both CellTiter Glo production and growth
219 rate by greater than 2-fold in Snail+ cells as compared to Snail- cells revealed four candidate
220 compounds (**Fig. 3E**), including ONX-0914 (immunoproteasome inhibitor), AZ-960 (JAK2
221 inhibitor), WHI-P154 (JAK3 and EGFR inhibitor), and CCT137690 (aurora kinase inhibitor) (**Fig.**
222 **3F**).

223 We next attempted to identify compounds and pathways that inhibit Snail-induced EMT.
224 To do this we first calculated the fold change in EGFP expression for each compound at day 4
225 as compared to day 1. The fold change in EGFP expression for 4OHT (Snail+) cells was divided
226 by EtOH (Snail-) cells for each compound to identify drugs that were capable of overcoming
227 Snail-mediated EMT. To ensure the gain in EGFP expression was not simply a function of cell
228 growth inhibition or cell death, we compared the EGFP expression to the differential confluence
229 in 4OHT-treated versus EtOH-treated cells. This analysis revealed a subset of compounds that
230 led to differential re-activation of EGFP expression from the GIIICl² EMT/MET reporter while
231 maintaining at least 50% viability or greater (**Fig. 3G**). These agents included GSK2126458
232 (mTOR/PI3K), three microtubule associated drugs, TAK-875 (GPR40 agonist), PIK-75 (DNA-

233 PK, p110 α), Sparfloxacin (antibiotic), LY2228820 (p38/MAPK), AUY922 (HSP90), and
234 Edoxaban (Factor Xa) (**Fig. 3H**).

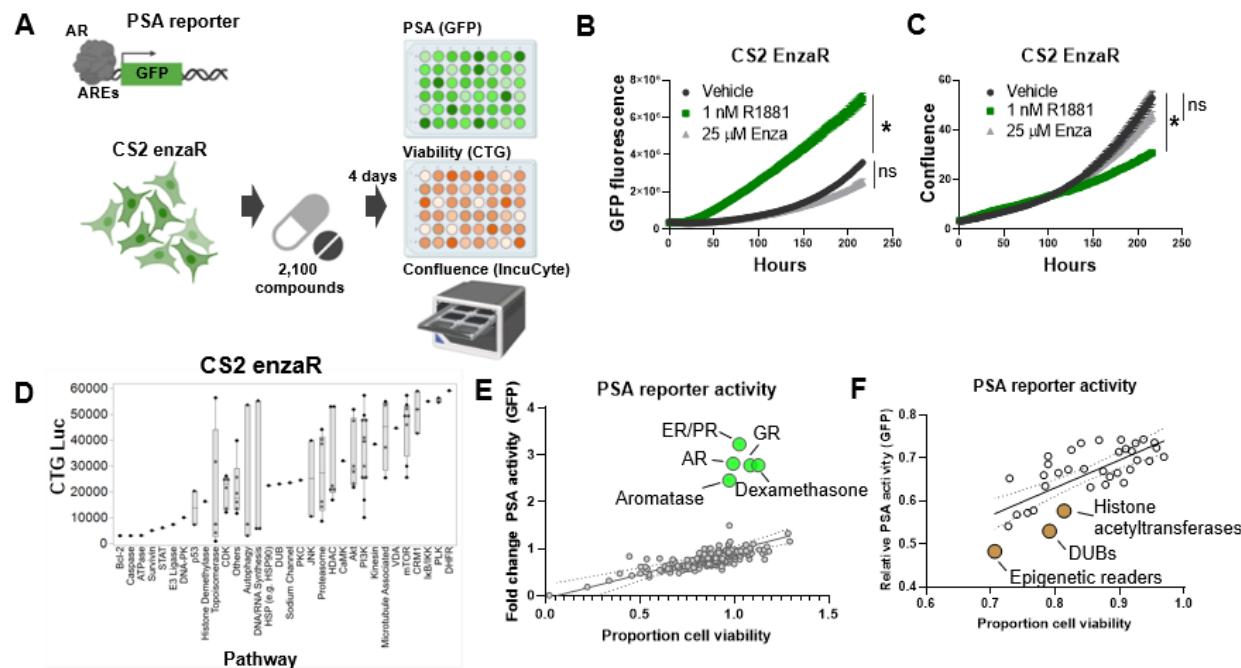

235 The chemical landscape of collateral sensitivity to enzalutamide-resistant prostate cancer.
236 Given the association between Snail-mediated EMT and enzalutamide resistance, we
237 hypothesized that the evolution of enzalutamide resistance may also enrich for this EMT-like
238 plasticity. To better understand these relationships between phenotypic plasticity and
239 enzalutamide resistance we applied a series of EMT scoring metrics [41-43] to analyze RNA-
240 Seq data from four independent pairs of enzalutamide-sensitive and enzalutamide-resistant cell
241 line models [16]. Consistent with our hypothesis, enzalutamide-resistant cells exhibited a
242 significant shift in scores toward a more mesenchymal-like gene expression signature (**Fig. 4A**).
243 These overall trends were consistent across scoring metrics, with some exceptions for specific
244 cell line pairs, depending on the scoring metric used (**Supplemental Fig. 2A, B**). Also
245 consistent with this, treatment of LNCaP95-Snail(-) cells with enzalutamide led to an increase in
246 nuclear localization of Snail (**Fig. 4B**). The enzalutamide-treated LNCaP95-Snail cells mirrored
247 induction of Snail nuclear localization with 4OHT treatment (**Fig. 4C,D**). These analyses indicate

Figure 4. Enzalutamide induces epithelial plasticity. **A.** Analysis of EMT scores across three isogenic pairs of independently-derived enzalutamide-sensitive and enzalutamide-resistant cell line models using the 76GS EMT scoring metric; s = enza-sensitive; r = enza-resistant. **B.** Immunofluorescence staining of cell nuclei by Hoechst (blue) and Snail (green) in LNCaP95-Snail cells treated with EtOH (vehicle) and **C.** 4OHT (nuclear Snail) in the presence of vehicle or enzalutamide. **D.** Quantification of immunofluorescence by ImageJ. * $=p<0.05$

248 that, compared to enzalutamide-sensitive cells, enzalutamide-resistant cells exhibit a more
 249 EMT-like phenotype.

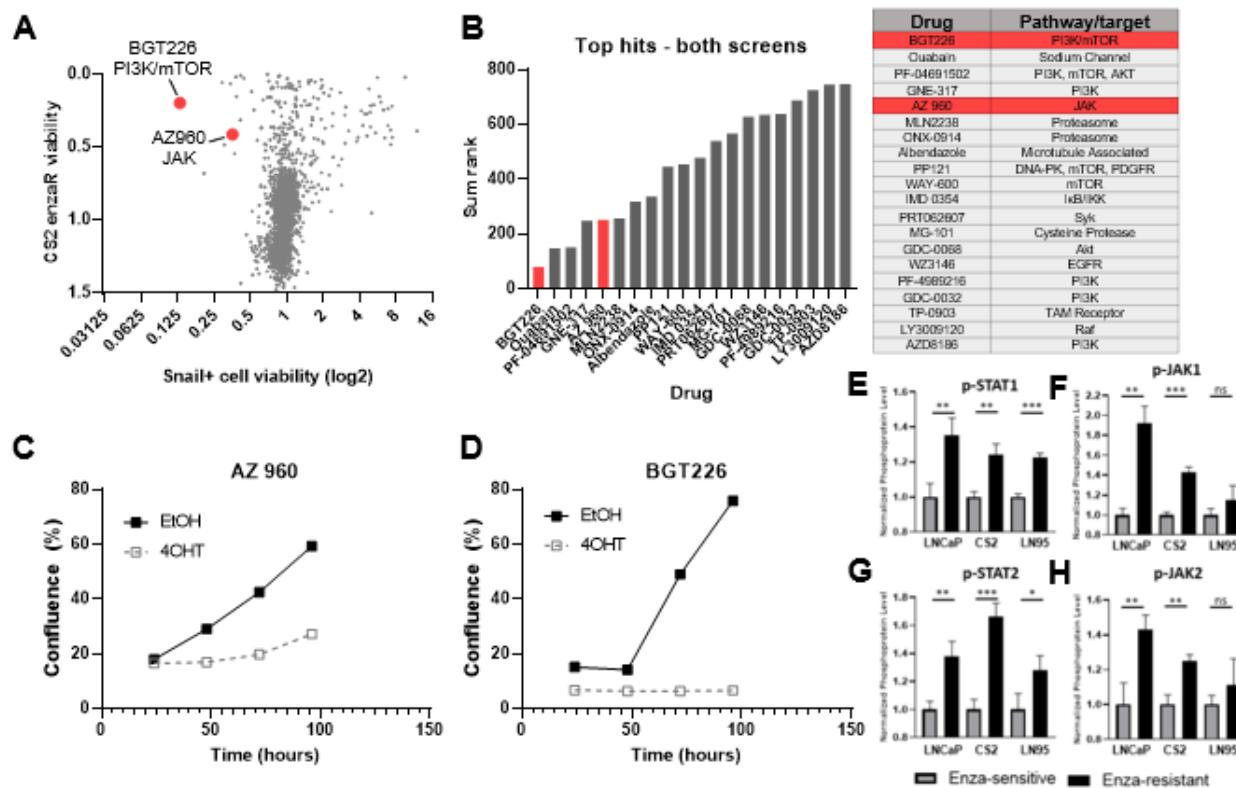

250 To further extend the analysis of Snail-specific synthetic lethality, we next attempted to identify
 251 potential collateral sensitivities to this EMT-like enzalutamide-resistant phenotype. In order to
 252 accomplish this we performed a separate high-throughput compound screen on enzalutamide-
 253 resistant CS2 cells. The CS2 model is an LNCaP-derived subclone that was generated from
 254 long-term exposure to androgen deprivation through chronic culture in media containing
 255 charcoal-stripped fetal bovine serum [16]. Subsequent exposure of enzalutamide-sensitive CS2
 256 cells to increasing doses of enzalutamide over approximately 6 months led to the development
 257 of an enzalutamide-resistant CS2 cell line model [16]. The CS2 enzalutamide-resistant model
 258 was transduced with a lentiviral PSA reporter in which the proximal promoter of PSA harboring
 259 androgen responsive elements is inserted upstream of the GFP reading frame (Fig. 5A). These
 260 CS2^{PSA-GFP} enzalutamide-resistant cells were screened using the Bioactives library to interrogate
 261 AR signaling (GFP), cell viability (CellTiter Glo), and cell growth (IncuCyte imaging) (Fig. 5A).
 262 To ensure the PSA reporter is responsive to androgen receptor signaling, cells were treated
 263 with the anabolic-androgenic steroid derivative, R1881, or enzalutamide. R1881 treatment led to
 264 a significant increase in GFP signal while enzalutamide had no effect on GFP expression in the
 265 enzalutamide-resistant CS2 model (Fig. 5B). The increase in GFP during R1881 treatment was
 266 not due to a change in confluence, as these treatments did not significantly alter cell confluence

Figure 5. Collateral sensitivity screens identify candidate actionable pathways to treat enzalutamide-resistant prostate cancer. A. PSA reporter schematic and screening strategy. B. Validation of the PSA-GFP reporter system. C. Confluence quantification in CS2 enzalutamide-resistant model following exposure to R1881 and enzalutamide. D. Pathway-level analysis of top inhibitors targeting CS2 enzalutamide-resistant cells. E. Activators of PSA reporter activity (green dots); top candidates are labeled by pathway or with drug name. F. Inhibitors of PSA reporter activity (brown dots); top candidates are labeled by pathway.

267 **(Fig. 5C).** Analysis of cell growth inhibition for the Bioactives screen at the pathway level in the
 268 CS2 enzalutamide-resistant cells pinpointed candidate collateral sensitivities of interest,
 269 including DNA-PK, cyclin-dependent kinases, histone deacetylases, PI3K, mTOR, CRM1, and
 270 PLK (**Fig. 5D**). Analysis of PSA reporter expression as a function of cell viability also revealed
 271 compounds targeting multiple receptors (androgen receptor, estrogen receptor, glucocorticoid
 272 receptor, dexamethasone) as inducers of PSA reporter activity (**Fig. 5E**) and compounds that
 273 target epigenetic modifiers as repressors of PSA reporter activity (**Fig. 5F**).

274 To provide further validation of candidates, we plotted the relative cell viability by CellTiter Glo
 275 for compounds in the CS2 enzaR screen by cell viability (CellTiter Glo) in the LNCaP95-Snail
 276 screen (**Fig. 6A**). This analysis revealed a subset of drugs active in both screens. We ranked
 277 these top hits by a sum rank statistic that includes the rank of cell death by CellTiter for both
 278 screens as well as the differential confluence for Snail- vs. Snail+ cells (**Fig. 6B**). Top targets
 279 from this analysis including PI3K, mTOR, and the proteasome (**Fig. 6B**). Among this subset, AZ
 280 960 (JAK2 inhibitor) and BGT226 (dual PI3K/mTOR inhibitor) were the most effective at
 281 inhibiting Snail+ cell confluence (**Fig. 6C, D**). Consistent with our observations of sensitivity to

Figure 6. Comparison of candidate therapies for enzalutamide-resistant and Snail+ prostate cancer. A. Comparison of CS2 enzaR and Snail drug screen hits. B. Top hits for both screens based on a sum rank statistic that includes (CS2 enzaR confluence, Snail+ differential confluence, and Snail+ differential slope of growth rate). C. Growth curves for EtOH (Snail-) and 4O

282 JAK2 inhibition, analysis of phospho-proteomics data from three previously-characterized pairs
283 of enzalutamide-resistant lines [16], including CS2 enzalutamide-sensitive and -resistant lines
284 demonstrates increased phosphorylation of STAT1, STAT2, JAK1, and JAK2 (**Fig. 6E-H**),
285 further highlighting the JAK/STAT signaling axis as a potential therapeutic vulnerability for
286 Snail+ and enzalutamide-resistant prostate cancer.

287 **Discussion**

288 In the present study we sought to characterize the therapeutic vulnerabilities for enzalutamide-
289 resistant prostate cancer. To do this we combined high-throughput small molecule screens with
290 real-time imaging and endpoint assays to reveal chemical landscapes of synthetic lethality for
291 Snail-mediated EMT and collateral sensitivities for enzalutamide-resistant cells. These screens
292 identified multiple therapeutic vulnerabilities of Snail+ prostate cancer cells, including several
293 with known functions in prostate cancer and/or EMT, such as aurora kinases [44-46], MET [47,
294 48], and polo-like kinases [49-51], and CRM1/XPO1 [52, 53]. The screen also pinpointed
295 several inhibitors that differentially inhibited EMT while maintaining confluence, including
296 inhibitors of mTOR/PI3K, DNA-PK, and p38/MAPK (**Figure 3H**). All of these pathways have
297 been previously connected to EMT biology in prostate cancer [54-57]. We also identified the
298 GPR40 agonist, TAK-875, and Factor Xa inhibitor, Edoxaban, as potential inducers of MET.
299 Consistent with these observations, another GPR40 agonist, GW9508, has been shown to
300 prevent cytokine-induced airway epithelial barriers disruption of claudin, occludin, and ZO-1
301 [58], and Factor Xa inhibition has been shown to reduce EMT in chronic kidney disease [59].
302 These agents represent promising candidates for follow-up studies to inhibit EMT and prevent
303 or delay invasive and metastatic phenotypes associated with hormone therapy resistance.

304 Similar to the screen for Snail+ prostate cancer the follow-up screen for therapeutic
305 vulnerabilities in enzalutamide-resistant CS2 cells pinpointed targets and pathways known to be
306 involved in prostate cancer and hormone therapy resistance, including histone deacetylases,
307 the PI3K/mTOR pathway, JAK-STAT signaling, DNA-PK, and Syk. For example, the
308 identification of histone deacetylases and other epigenetic modifying agents is consistent with
309 the known importance of epigenetic regulation of androgen receptor signaling [60, 61]. Other
310 targets, however, are linked to AR signaling bypass, as in the case of PTEN loss and
311 subsequent constitutive activation of PI3K signaling [62], activation of JAK/STAT and FGFR
312 signaling during the acquisition of AR independence and lineage plasticity [63, 64], and the role
313 of Syk as a potential mediator of invasive features and bone metastasis [65]. While the
314 relevance of these targets is well supported by preclinical evidence, the clinical utility of these
315 targets is more varied. For example, our identification of mTOR/PI3K signaling inhibition as a
316 key vulnerability may be the result of PTEN loss in these LNCaP-derived models [66]; however,
317 while PTEN loss is also common among patients, these agents have been unsuccessful in
318 clinical trials [67]. Likewise, currently-available HDAC inhibitors have largely failed in clinical
319 trials, mostly due to their toxicity [68] or lack of efficacy [69, 70]. Conversely, there are a number
320 of ongoing clinical trials for JAK inhibitors – particularly JAK2 inhibitors – in advanced prostate
321 cancer, but thus far these have not demonstrated sufficient monotherapy activity in men with
322 mCRPC ([71]and see NCT00638378; closed due to lack of efficacy). Our data suggest that a

323 number of critical and non-redundant pathways may be involved in enzalutamide resistance and
324 lineage plasticity, suggesting the need for combination trial approaches.

325 Comparison across both screens identified drugs with distinct effects in a single model as well
326 as drugs that were common hits in both screens. There are multiple possible reasons for the
327 observed differences in hits targeting each cell line, including, but not limited to, differences in
328 the genetic and gene expression features of each cell line [16]. For example, LNCaP95-Snail
329 cells express AR-V7 while enzalutamide-resistant CS2 cells lack AR-V7. Enzalutamide-resistant
330 CS2 cells also harbor dual loss of BRCA2 and RB1 and have a greater number of mutations
331 and copy number alterations than LNCaP95 cells. These unique features may explain, at least
332 in part, some of the differences in the list of hits from each screen.

333 A major limitation of the present study is the lack of *in vivo* modeling to validate the impact of
334 our identified *in vitro* hits. This work is ongoing and also requires an assessment of the immune
335 consequences of drug effects in the tumor microenvironment. Given the expression of mTOR
336 and JAK/STAT signaling, for example, in immune cells and the immune suppressive impact of
337 these agents in patients, assessing the net benefits of any drugs identified in our *in vitro* screen
338 requires *in vivo* validation in a range of immunocompetent models either as monotherapy in
339 selected combinations and ideally in patient correlative samples.

340 The current study provides a platform to quantify the effects of thousands of compounds across
341 multiple parameters and phenotypes simultaneously to identify and prioritize candidates for
342 follow up in a rapid and cost-effective manner. While this study is limited by the exclusive use of
343 *in vitro* cell line models, the integration of data from phenotypic reporters, confluence imaging,
344 and CellTiter Glo readouts across multiple models rapidly identified a prioritized list of top hits,
345 including the dual mTOR/PI3K inhibitor, BGT-226 and the JAK2 inhibitor, AZ-960, as promising
346 candidates for future *in vivo* studies.

347

348 **Figure Legends**

349 **Figure 1. Workflow schematic for synthetic lethal and collateral sensitivity screens. A.** A
350 high-throughput screen was performed in LNCaP95-Snail cells to assess differential response
351 across multiple endpoints of confluence, viability (CellTiter Glo), and EMT status via a
352 fluorescence-based reporter. **B.** Screen schematic for a collateral sensitivity screen in
353 enzalutamide-resistant CS2 cells. Endpoints included PSA reporter response, confluence, and
354 viability (CellTiter Glo)

355 **Figure 2. Fluorescence-based reporters to visualize EMT dynamics in a Snail-inducible**
356 **model. A.** Schematic illustration of a Snail-inducible model. **B.** Immunofluorescence staining of
357 LNCaP95-Snail cells. EtOH serves as a vehicle for Snail induction. 4OHT induces localization of
358 Snail and concomitant downregulation of E-cadherin and upregulation of vimentin. **C.** Schematic
359 of the GIIIcl² EMT/MET alternative splicing reporter. **D.** IncuCyte imaging for LNCaP95-Snail
360 confluence and **E.** EMT induction dynamics (GFP fluorescence). * = p<0.05. **F.** Fluorescence
361 imaging of LNCaP95-Snail cells treated with EtOH or 4OHT for nuclear staining (Hoechst) and
362 the GIIIcl² EMT/MET reporter (green). **G.** Endogenous FGFR2 splicing analysis for Snail- and
363 Snail+ LNCaP95 cells. L = 1Kb ladder, Ctrl = undigested PCR product; Aval = FGFR2-IIIb-
364 specific restriction digestion; EcoRV = FGFR2-IIIc-specific restriction digestion.

365 **Figure 3. A synthetic lethality screen pinpoints potential therapies for Snail+ prostate**
366 **cancer. A.** Schematic of multi-assay screening strategy. **B.** Top hits with differential response in
367 Snail – and Snail + cells. Below the 1.0 line indicates drug differentially inhibits Snail+ cells;
368 above the line indicates drug differentially inhibits Snail- cells. **C.** Representative growth slope
369 differences for top candidate agents with differential effects on Snail- and Snail+ cells. **D.** Top
370 hits grouped by target/pathway ranked by differential slope; color indicates number of drugs per
371 pathway. **E.** Venn diagram of overlap in compounds that altered both confluence and CellTiter
372 Glo (CTG). **F.** Overlapping drugs with differential sensitivity in Snail+ cells for both confluence
373 and CTG assays. **G.** Candidate EMT/MET inducers ranked by GIIIcl² induction (higher GFP =
374 more epithelial; lower GFP = more mesenchymal). **H.** Top 10 candidate MET inducing
375 compounds, as estimated by EGFP expression from the GIIIcl² reporter.

376 **Figure 4. Enzalutamide induces epithelial plasticity. A.** Analysis of EMT scores across three
377 isogenic pairs of independently-derived enzalutamide-sensitive and enzalutamide-resistant cell
378 line models using the 76GS EMT scoring metric; s = enza-sensitive; r = enza-resistant. **B.**
379 Immunofluorescence staining of cell nuclei by Hoechst (blue) and Snail (green) in LNCaP95-
380 Snail cells treated with EtOH (vehicle) and **C.** 4OHT (nuclear Snail) in the presence of vehicle or
381 enzalutamide. **D.** Quantification of immunofluorescence by ImageJ. * = p<0.05

382 **Figure 5. Collateral sensitivity screens identify candidate actionable pathways to treat**
383 **enzalutamide-resistant prostate cancer. A.** PSA reporter schematic and screening strategy.
384 **B.** Validation of the PSA-GFP reporter system. **C.** Confluence quantification in CS2
385 enzalutamide-resistant model following exposure to R1881 and enzalutamide. **D.** Pathway-level
386 analysis of top inhibitors targeting CS2 enzalutamide-resistant cells. **E.** Activators of PSA
387 reporter activity (green dots); top candidates are labeled by pathway. **F.** Inhibitors of PSA
388 reporter activity (brown dots); top candidates are labeled by pathway.

389 **Figure 6. Comparison of candidate therapies for enzalutamide-resistant and Snail+**
390 **prostate cancer. A.** Comparison of CS2 enzaR and Snail drug screen hits. **B.** Top hits for both
391 screens based on a sum rank statistic that includes (CS2 enzaR confluence, Snail+ differential
392 confluence, and Snail+ differential slope of growth rate). **C.** Growth curves for EtOH (Snail-) and
393 4OHT (Snail+) cells treated with AZ 960 (JAK inhibitor); and **D.** BGT226 (PI3K/mTOR inhibitor).
394 **E.** Quantification of phospho-protein array data for p-STAT1, **F.** p-JAK1, **G.** p-STAT2, and **H.** p-
395 JAK2 in three pairs of enzalutamide-sensitive and enzalutamide-resistant models (Ware et al.
396 biorxiv [16]).

397 **Supplemental Figure Legends**

398 **Supplemental Figure 1. A.** Comparison of confluence for EtOH- and 4OHT-treated cells in
399 untreated wells. **B.** Correlation between CellTiter Glo and confluence. **C.** Example of top drugs
400 with differential growth slopes.

401 **Supplemental Figure 2. A.** EMT scores for isogenic pairs of enzalutamide-sensitive and -
402 resistant cell lines using the KS scoring metric and **B.** the MLR scoring metric.

403

404 **Acknowledgments**

405 JAS and AJA acknowledge funding support from NCI 1R01CA233585-03. MKJ was supported
406 by Ramanujan Fellowship (SB/S2/RJN-049/2018) awarded by Science and Engineering
407 Research Board (SERB), Department of Science and Technology, Government of India.

408

409 **Bibliography**

410 1. Somarelli, J.A., et al., *Questions to guide cancer evolution as a framework for*
411 *furthering progress in cancer research and sustainable patient outcomes*. Med
412 Oncol, 2022. **39**(9): p. 137.

413 2. Huggins, C. and C.V. Hodges, *Studies on prostatic cancer. I. The effect of*
414 *castration, of estrogen and androgen injection on serum phosphatases in*
415 *metastatic carcinoma of the prostate*. CA Cancer J Clin, 1972. **22**(4): p. 232-40.

416 3. Smith, M.R., et al., *Apalutamide Treatment and Metastasis-free Survival in*
417 *Prostate Cancer*. N Engl J Med, 2018. **378**(15): p. 1408-1418.

418 4. Chi, K.N., et al., *Apalutamide for Metastatic, Castration-Sensitive Prostate*
419 *Cancer*. N Engl J Med, 2019. **381**(1): p. 13-24.

420 5. Fizazi, K., et al., *Darolutamide in Nonmetastatic, Castration-Resistant Prostate*
421 *Cancer*. N Engl J Med, 2019. **380**(13): p. 1235-1246.

422 6. Beer, T.M., et al., *Enzalutamide in metastatic prostate cancer before*
423 *chemotherapy*. N Engl J Med, 2014. **371**(5): p. 424-33.

424 7. Scher, H.I., et al., *Increased survival with enzalutamide in prostate cancer after*
425 *chemotherapy*. N Engl J Med, 2012. **367**(13): p. 1187-97.

426 8. Armstrong, A.J., et al., *Improved Survival With Enzalutamide in Patients With*
427 *Metastatic Hormone-Sensitive Prostate Cancer*. J Clin Oncol, 2022. **40**(15): p.
428 1616-1622.

429 9. James, N.D., et al., *Abiraterone for Prostate Cancer Not Previously Treated with*
430 *Hormone Therapy*. N Engl J Med, 2017. **377**(4): p. 338-351.

431 10. Fizazi, K., et al., *Abiraterone plus Prednisone in Metastatic, Castration-Sensitive*
432 *Prostate Cancer*. N Engl J Med, 2017. **377**(4): p. 352-360.

433 11. Blatt, E.B. and G.V. Raj, *Molecular mechanisms of enzalutamide resistance in*
434 *prostate cancer*. Cancer Drug Resist, 2019. **2**(2): p. 189-197.

435 12. Somarelli, J.A., et al., *23 - Phenotypic plasticity and lineage switching in prostate*
436 *cancer*, in *Phenotypic Switching*, H. Levine, et al., Editors. 2020, Academic
437 Press. p. 591-615.

438 13. Rodriguez, Y., et al., *A Genome-Wide CRISPR Activation Screen Identifies*
439 *PRRX2 as a Regulator of Enzalutamide Resistance in Prostate Cancer*. Cancer
440 Res, 2022. **82**(11): p. 2110-2123.

441 14. Alumkal, J.J., et al., *Transcriptional profiling identifies an androgen receptor*
442 *activity-low, stemness program associated with enzalutamide resistance*. Proc
443 Natl Acad Sci U S A, 2020. **117**(22): p. 12315-12323.

444 15. Ware, K.E., et al., *Snail promotes resistance to enzalutamide through regulation*
445 *of androgen receptor activity in prostate cancer*. Oncotarget, 2016. **7**(31): p.
446 50507-50521.

447 16. Ware, K.E., et al., *Convergent evolution of p38/MAPK activation in hormone*
448 *resistant prostate cancer mediates pro-survival, immune evasive, and metastatic*
449 *phenotypes*. 2020: p. 2020.04.22.050385.

450 17. Miao, L., et al., *Disrupting Androgen Receptor Signaling Induces Snail-Mediated*
451 *Epithelial-Mesenchymal Plasticity in Prostate Cancer*. Cancer Res, 2017. **77**(11):
452 p. 3101-3112.

453 18. Bai, Y., et al., *Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes*
454 *enzalutamide resistance in castration-resistant prostate cancer*. *J Biol Chem*,
455 2019. **294**(25): p. 9911-9923.

456 19. Stoyanova, T., et al., *Prostate cancer originating in basal cells progresses to*
457 *adenocarcinoma propagated by luminal-like cells*. *Proc Natl Acad Sci U S A*,
458 2013. **110**(50): p. 20111-6.

459 20. Li, Q., et al., *Linking prostate cancer cell AR heterogeneity to distinct castration*
460 *and enzalutamide responses*. *Nat Commun*, 2018. **9**(1): p. 3600.

461 21. Mu, P., et al., *SOX2 promotes lineage plasticity and antiandrogen resistance in*
462 *TP53- and RB1-deficient prostate cancer*. *Science*, 2017. **355**(6320): p. 84-88.

463 22. Ku, S.Y., et al., *Rb1 and Trp53 cooperate to suppress prostate cancer lineage*
464 *plasticity, metastasis, and antiandrogen resistance*. *Science*, 2017. **355**(6320): p.
465 78-83.

466 23. Formaggio, N., M.A. Rubin, and J.P. Theurillat, *Loss and revival of androgen*
467 *receptor signaling in advanced prostate cancer*. *Oncogene*, 2021. **40**(7): p. 1205-
468 1216.

469 24. Schroeder, A., et al., *Loss of androgen receptor expression promotes a stem-like*
470 *cell phenotype in prostate cancer through STAT3 signaling*. *Cancer Res*, 2014.
471 **74**(4): p. 1227-37.

472 25. Labrecque, M.P., et al., *The heterogeneity of prostate cancers lacking AR activity*
473 *will require diverse treatment approaches*. *Endocr Relat Cancer*, 2021. **28**(8): p.
474 T51-T66.

475 26. Somarelli, J.A., *The Hallmarks of Cancer as Ecologically Driven Phenotypes*.
476 *Front Ecol Evol*, 2021. **9**.

477 27. Acar, A., et al., *Exploiting evolutionary steering to induce collateral drug*
478 *sensitivity in cancer*. *Nat Commun*, 2020. **11**(1): p. 1923.

479 28. Imamovic, L. and M.O. Sommer, *Use of collateral sensitivity networks to design*
480 *drug cycling protocols that avoid resistance development*. *Sci Transl Med*, 2013.
481 **5**(204): p. 204ra132.

482 29. Kirkman, L.A., et al., *Antimalarial proteasome inhibitor reveals collateral*
483 *sensitivity from intersubunit interactions and fitness cost of resistance*. *Proc Natl*
484 *Acad Sci U S A*, 2018. **115**(29): p. E6863-E6870.

485 30. Cutti, L., et al., *Negative cross-resistance to clomazone in imazethapyr-resistant*
486 *Echinochloa crus-galli caused by increased metabolism*. *Pestic Biochem*
487 *Physiol*, 2021. **178**: p. 104918.

488 31. Wazir, S. and S.A. Shad, *Development of fipronil resistance, fitness cost, cross-*
489 *resistance to other insecticides, stability, and risk assessment in Oxycarenus*
490 *hyalinipennis (Costa)*. *Sci Total Environ*, 2022. **803**: p. 150026.

491 32. Somarelli, J.A., et al., *Distinct routes to metastasis: plasticity-dependent and*
492 *plasticity-independent pathways*. *Oncogene*, 2016. **35**(33): p. 4302-11.

493 33. Somarelli, J.A., et al., *Fluorescence-based alternative splicing reporters for the*
494 *study of epithelial plasticity in vivo*. *RNA*, 2013. **19**(1): p. 116-27.

495 34. Altunel, E., et al., *Development of a precision medicine pipeline to identify*
496 *personalized treatments for colorectal cancer*. *BMC Cancer*, 2020. **20**(1): p. 592.

497 35. Rao, S.R., et al., *From the Clinic to the Bench and Back Again in One Dog Year: How a Cross-Species Pipeline to Identify New Treatments for Sarcoma*

499 *Illuminates the Path Forward in Precision Medicine*. *Front Oncol*, 2020. **10**: p. 500 117.

501 36. Somarelli, J.A., et al., *A Precision Medicine Drug Discovery Pipeline Identifies* 502 *Combined CDK2 and 9 Inhibition as a Novel Therapeutic Strategy in Colorectal* 503 *Cancer*. *Mol Cancer Ther*, 2020. **19**(12): p. 2516-2527.

504 37. Somarelli, J.A., et al., *A Comparative Oncology Drug Discovery Pipeline to* 505 *Identify and Validate New Treatments for Osteosarcoma*. *Cancers (Basel)*, 2020. 506 **12**(11).

507 38. Byers, L.A., et al., *An epithelial-mesenchymal transition gene signature predicts* 508 *resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target* 509 *for overcoming EGFR inhibitor resistance*. *Clin Cancer Res*, 2013. **19**(1): p. 279- 510 90.

511 39. Tan, T.Z., et al., *Epithelial-mesenchymal transition spectrum quantification and* 512 *its efficacy in deciphering survival and drug responses of cancer patients*. *EMBO* 513 *Mol Med*, 2014. **6**(10): p. 1279-93.

514 40. Vega, S., et al., *Snail blocks the cell cycle and confers resistance to cell death*. 515 *Genes Dev*, 2004. **18**(10): p. 1131-43.

516 41. Pillai, M., et al., *Mapping phenotypic heterogeneity in melanoma onto the* 517 *epithelial-hybrid-mesenchymal axis*. *Front Oncol*, 2022. **12**: p. 913803.

518 42. Subbalakshmi, A.R., et al., *KLF4 Induces Mesenchymal-Epithelial Transition* 519 *(MET) by Suppressing Multiple EMT-Inducing Transcription Factors*. *Cancers* 520 *(Basel)*, 2021. **13**(20).

521 43. Chakraborty, P., et al., *Analysis of immune subtypes across the epithelial- 522 mesenchymal plasticity spectrum*. *Comput Struct Biotechnol J*, 2021. **19**: p. 523 3842-3851.

524 44. Beltran, H., et al., *Molecular characterization of neuroendocrine prostate cancer* 525 *and identification of new drug targets*. *Cancer Discov*, 2011. **1**(6): p. 487-95.

526 45. Kivinummi, K., et al., *The expression of AURKA is androgen regulated in* 527 *castration-resistant prostate cancer*. *Sci Rep*, 2017. **7**(1): p. 17978.

528 46. Beltran, H., et al., *A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for* 529 *Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy* 530 *and Biomarkers*. *Clin Cancer Res*, 2019. **25**(1): p. 43-51.

531 47. Chu, G.C., et al., *RANK- and c-Met-mediated signal network promotes prostate* 532 *cancer metastatic colonization*. *Endocr Relat Cancer*, 2014. **21**(2): p. 311-26.

533 48. Lucas, J.M., et al., *The androgen-regulated protease TMPRSS2 activates a* 534 *proteolytic cascade involving components of the tumor microenvironment and* 535 *promotes prostate cancer metastasis*. *Cancer Discov*, 2014. **4**(11): p. 1310-25.

536 49. Weichert, W., et al., *Polo-like kinase 1 is overexpressed in prostate cancer and* 537 *linked to higher tumor grades*. *Prostate*, 2004. **60**(3): p. 240-5.

538 50. Liu, X.S., et al., *Polo-like kinase 1 facilitates loss of Pten tumor suppressor-* 539 *induced prostate cancer formation*. *J Biol Chem*, 2011. **286**(41): p. 35795-35800.

540 51. Deeraksa, A., et al., *Plk1 is upregulated in androgen-insensitive prostate cancer* 541 *cells and its inhibition leads to necroptosis*. *Oncogene*, 2013. **32**(24): p. 2973-83.

542 52. Gravina, G.L., et al., *Pharmacological treatment with inhibitors of nuclear export* 543 *enhances the antitumor activity of docetaxel in human prostate cancer*. 544 *Oncotarget*, 2017. **8**(67): p. 111225-111245.

545 53. Wei, X.X., et al., *A Phase II Trial of Selinexor, an Oral Selective Inhibitor of*
546 *Nuclear Export Compound, in Abiraterone- and/or Enzalutamide-Refractory*
547 *Metastatic Castration-Resistant Prostate Cancer.* Oncologist, 2018. **23**(6): p.
548 656-e64.

549 54. Li, S., et al., *Potent antitumour of the mTORC1/2 dual inhibitor AZD2014 in*
550 *docetaxel-sensitive and docetaxel-resistant castration-resistant prostate cancer*
551 *cells.* J Cell Mol Med, 2021. **25**(5): p. 2436-2449.

552 55. Mulholland, D.J., et al., *Pten loss and RAS/MAPK activation cooperate to*
553 *promote EMT and metastasis initiated from prostate cancer stem/progenitor*
554 *cells.* Cancer Res, 2012. **72**(7): p. 1878-89.

555 56. Zhang, J., et al., *DNA-PKcs Mediates An Epithelial-Mesenchymal Transition*
556 *Process Promoting Cutaneous Squamous Cell Carcinoma Invasion And*
557 *Metastasis By Targeting The TGF-beta1/Smad Signaling Pathway.* Onco Targets
558 Ther, 2019. **12**: p. 9395-9405.

559 57. Thakur, N., et al., *TGFbeta-induced invasion of prostate cancer cells is promoted*
560 *by c-Jun-dependent transcriptional activation of Snail1.* Cell Cycle, 2014. **13**(15):
561 p. 2400-14.

562 58. Moonwiriyakit, A., M. Koval, and C. Muanprasat, *Pharmacological stimulation of*
563 *G-protein coupled receptor 40 alleviates cytokine-induced epithelial barrier*
564 *disruption in airway epithelial Calu-3 cells.* Int Immunopharmacol, 2019. **73**: p.
565 353-361.

566 59. Fang, L., et al., *Factor Xa inhibitor, edoxaban ameliorates renal injury after*
567 *subtotal nephrectomy by reducing epithelial-mesenchymal transition and*
568 *inflammatory response.* Physiol Rep, 2022. **10**(5): p. e15218.

569 60. Rokhlin, O.W., et al., *Mechanisms of cell death induced by histone deacetylase*
570 *inhibitors in androgen receptor-positive prostate cancer cells.* Mol Cancer Res,
571 2006. **4**(2): p. 113-23.

572 61. Welsbie, D.S., et al., *Histone deacetylases are required for androgen receptor*
573 *function in hormone-sensitive and castrate-resistant prostate cancer.* Cancer

574 Res, 2009. **69**(3): p. 958-66.

575 62. Carver, B.S., et al., *Reciprocal feedback regulation of PI3K and androgen*
576 *receptor signaling in PTEN-deficient prostate cancer.* Cancer Cell, 2011. **19**(5): p.
577 575-86.

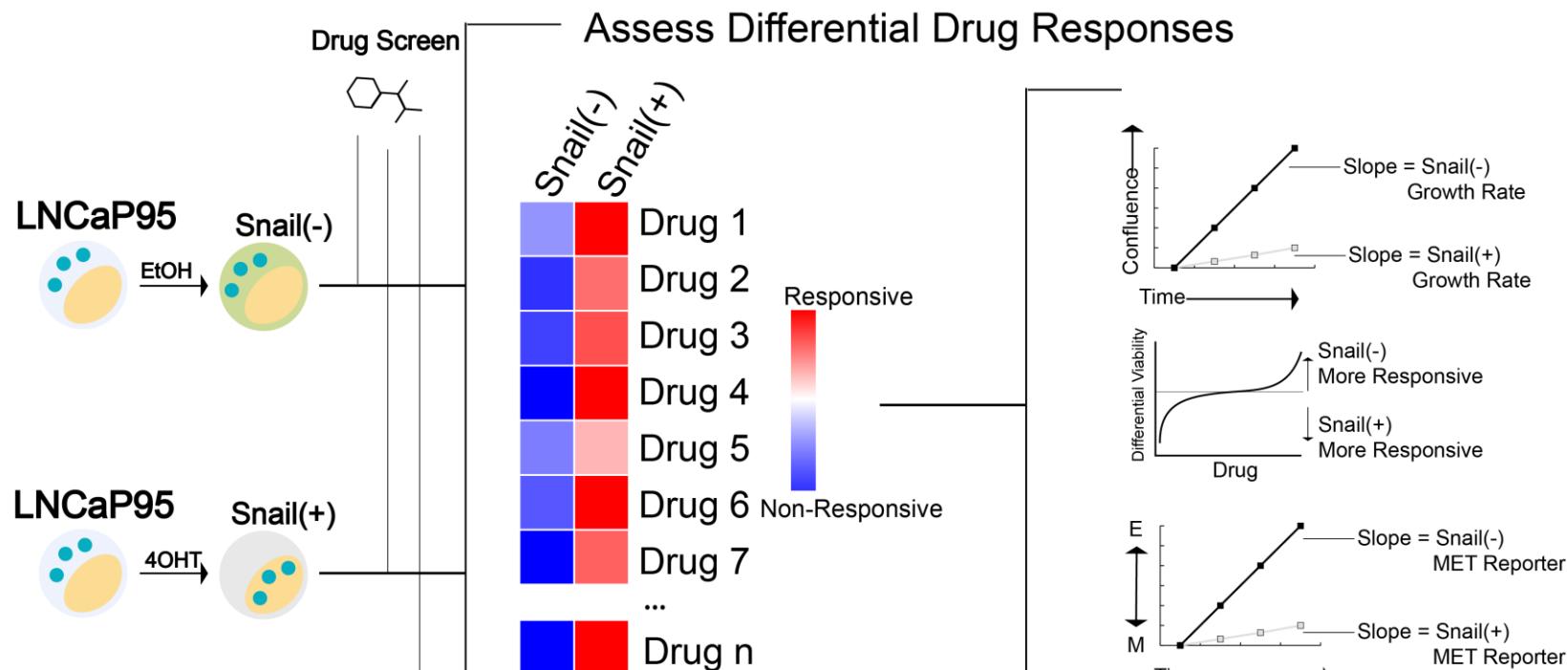
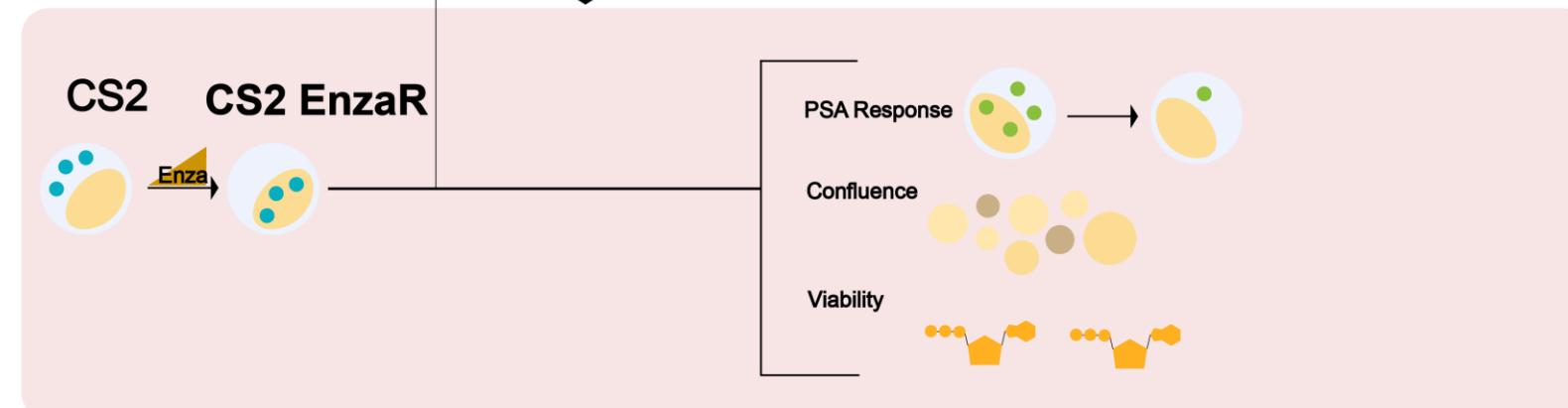
578 63. Chan, J.M., et al., *Lineage plasticity in prostate cancer depends on JAK/STAT*
579 *inflammatory signaling.* Science, 2022. **377**(6611): p. 1180-1191.

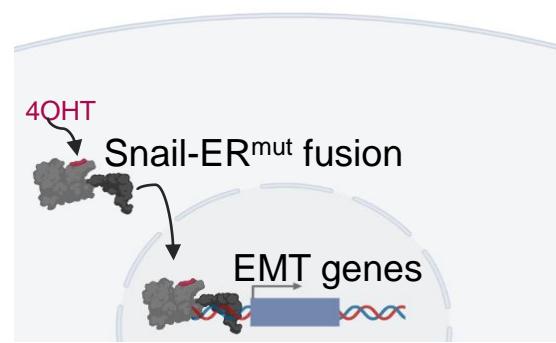
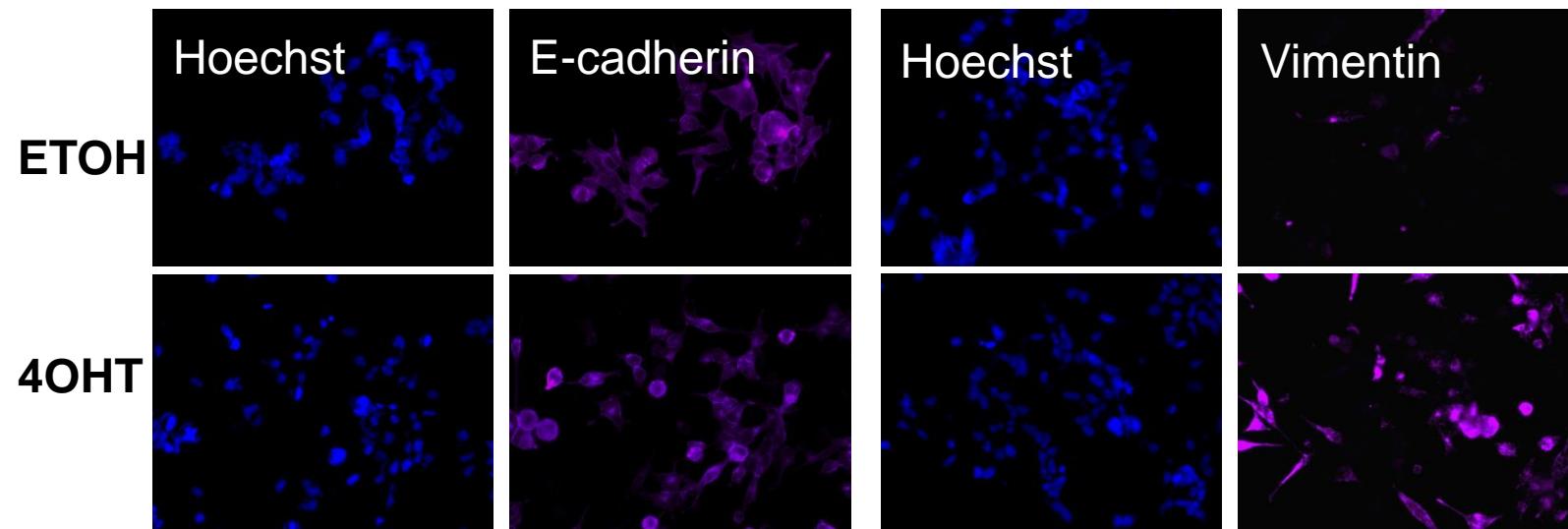
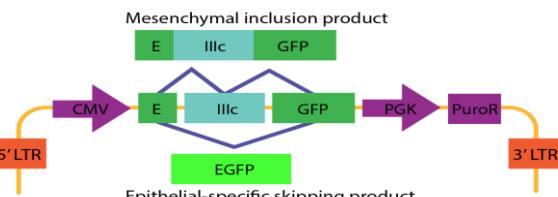
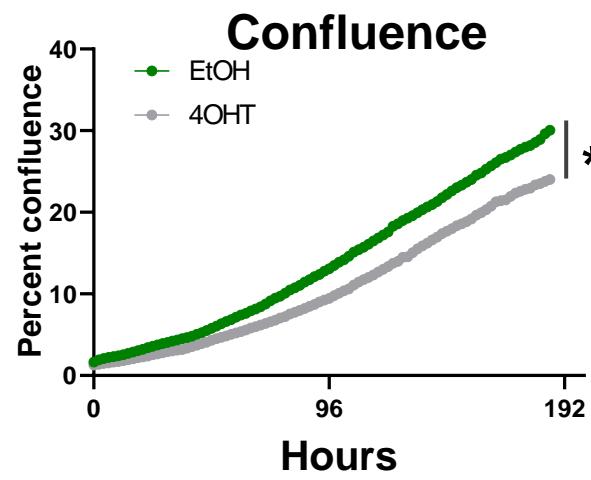
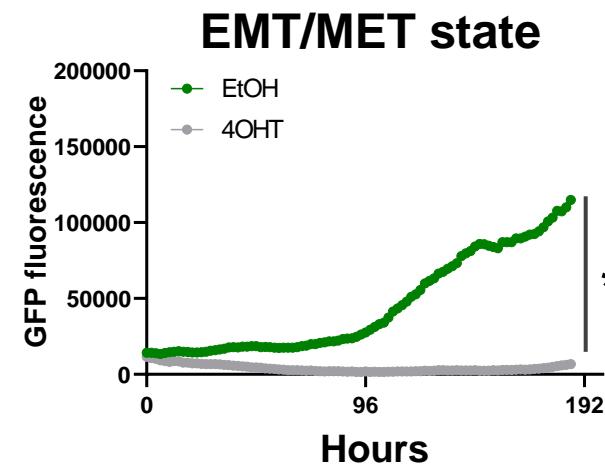
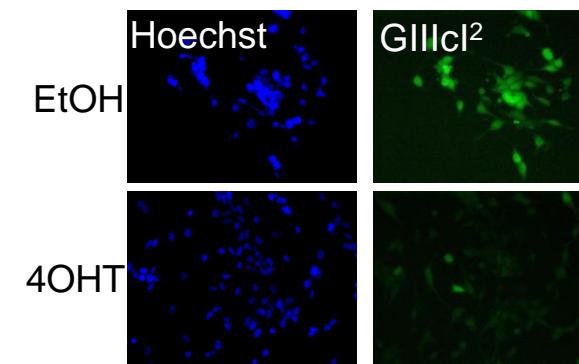
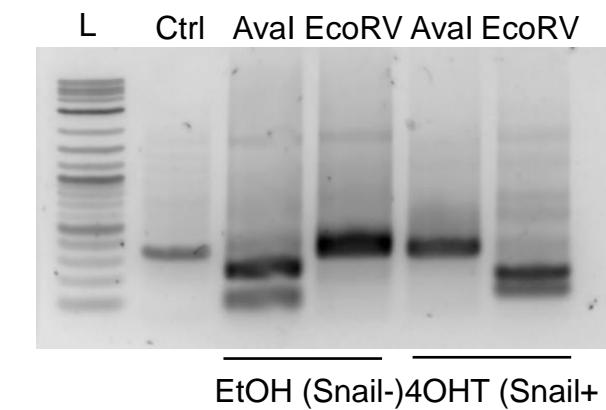
580 64. Deng, S., et al., *Ectopic JAK-STAT activation enables the transition to a stem-like*
581 *and multilineage state conferring AR-targeted therapy resistance.* Nat Cancer,
582 2022. **3**(9): p. 1071-1087.

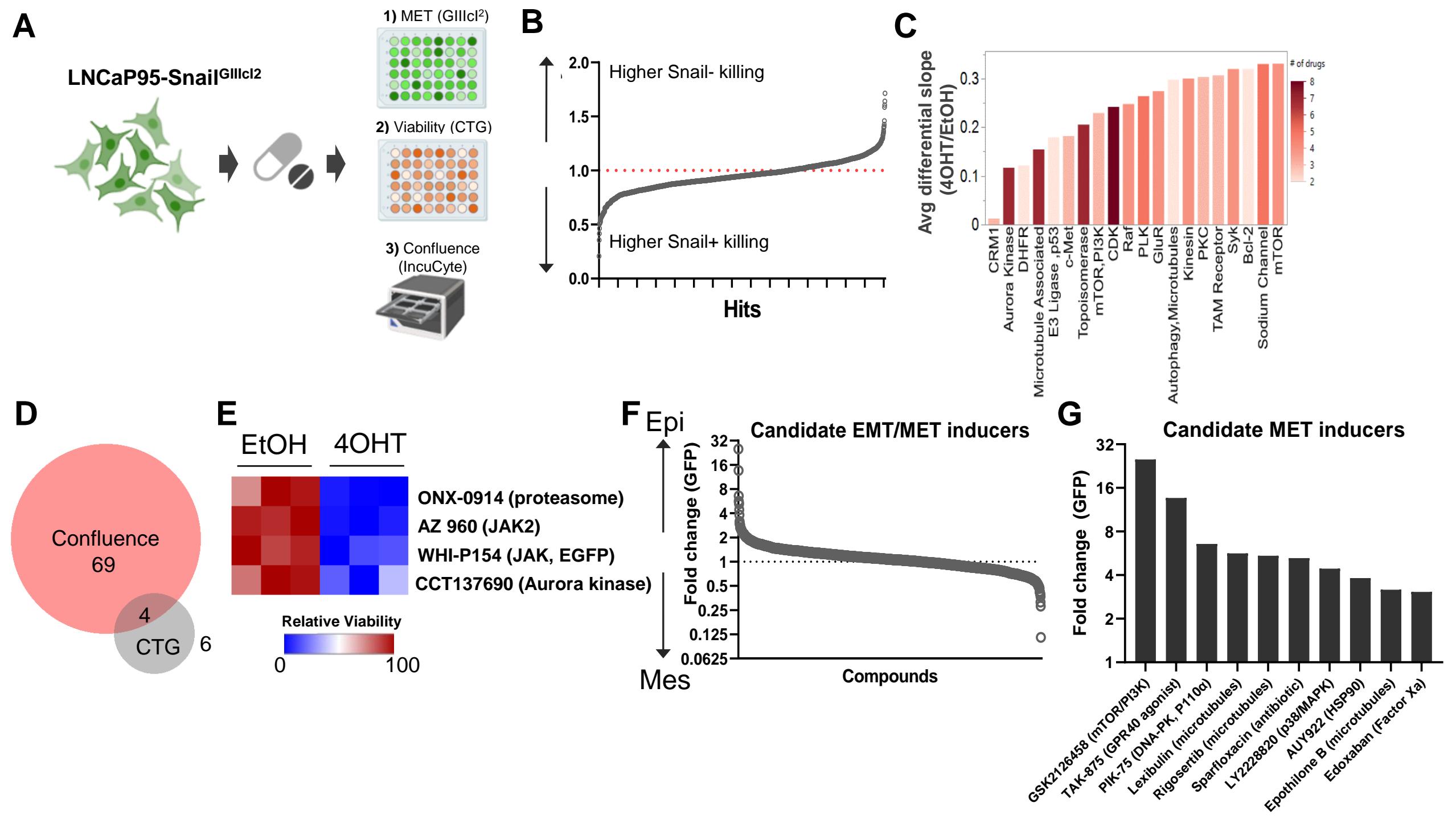
583 65. Ghotra, V.P., et al., *SYK is a candidate kinase target for the treatment of*
584 *advanced prostate cancer.* Cancer Res, 2015. **75**(1): p. 230-40.

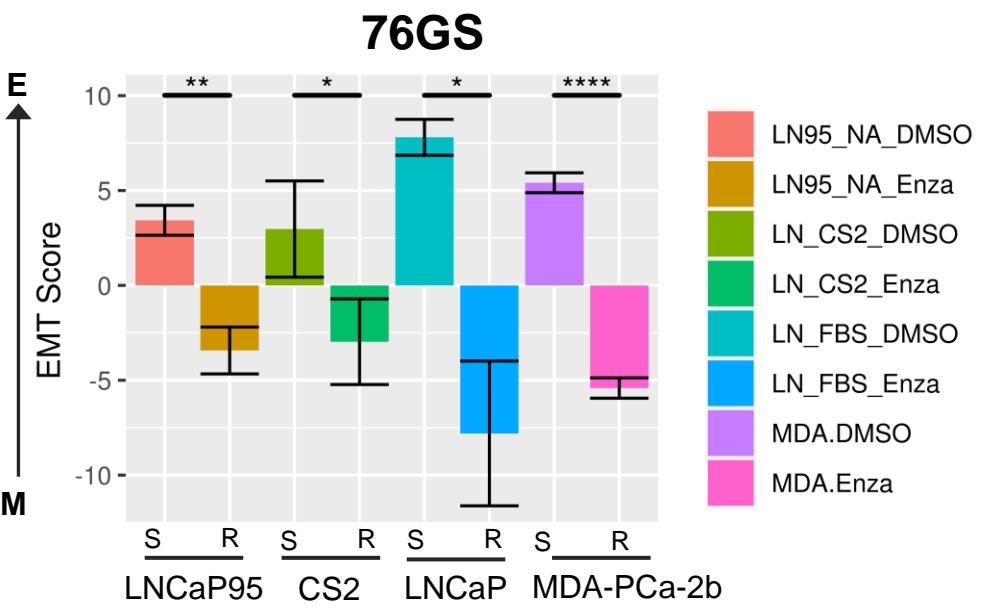
585 66. Lotan, T.L., et al., *PTEN protein loss by immunostaining: analytic validation and*
586 *prognostic indicator for a high risk surgical cohort of prostate cancer patients.*
587 Clin Cancer Res, 2011. **17**(20): p. 6563-73.

588 67. Cham, J., A.R. Venkateswaran, and M. Bhangoo, *Targeting the PI3K-AKT-*
589 *mTOR Pathway in Castration Resistant Prostate Cancer: A Review Article.* Clin
590 Genitourin Cancer, 2021. **19**(6): p. 563 e1-563 e7.

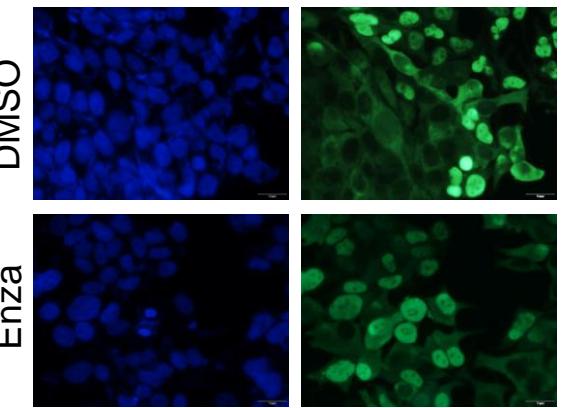


591 68. Bradley, D., et al., *Vorinostat in advanced prostate cancer patients progressing*
592 *on prior chemotherapy (National Cancer Institute Trial 6862): trial results and*
593 *interleukin-6 analysis: a study by the Department of Defense Prostate Cancer*
594 *Clinical Trial Consortium and University of Chicago Phase 2 Consortium.* Cancer,
595 2009. **115**(23): p. 5541-9.








596 69. Eigl, B.J., et al., *A phase II study of the HDAC inhibitor SB939 in patients with*
597 *castration resistant prostate cancer: NCIC clinical trials group study IND195.*
598 *Invest New Drugs*, 2015. **33**(4): p. 969-76.

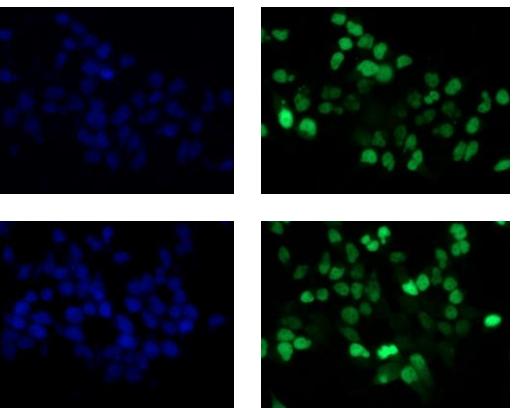
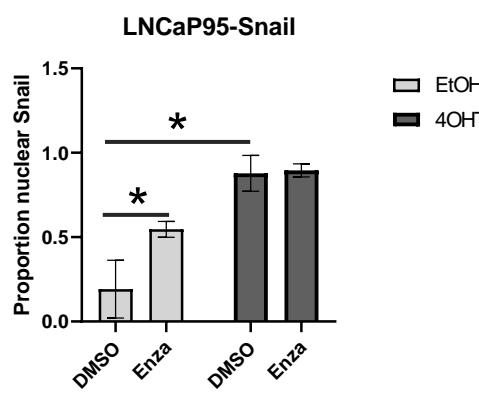

599 70. Molife, L.R., et al., *Phase II, two-stage, single-arm trial of the histone deacetylase*
600 *inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer*
601 *(CRPC).* Ann Oncol, 2010. **21**(1): p. 109-13.

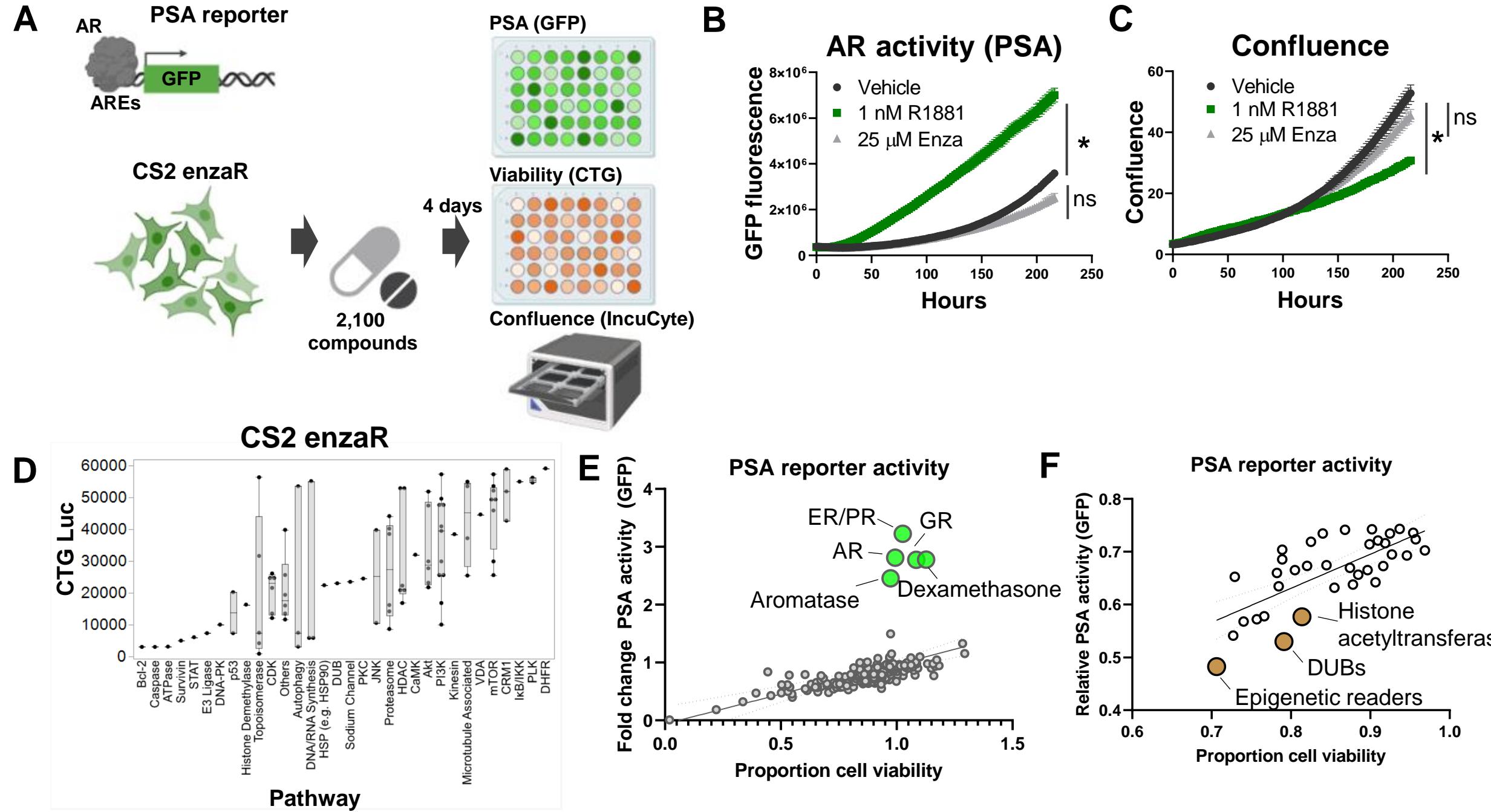

602 71. Beinhoff, P., et al., *Second-Generation Jak2 Inhibitors for Advanced Prostate*
603 *Cancer: Are We Ready for Clinical Development?* Cancers (Basel), 2021. **13**(20).

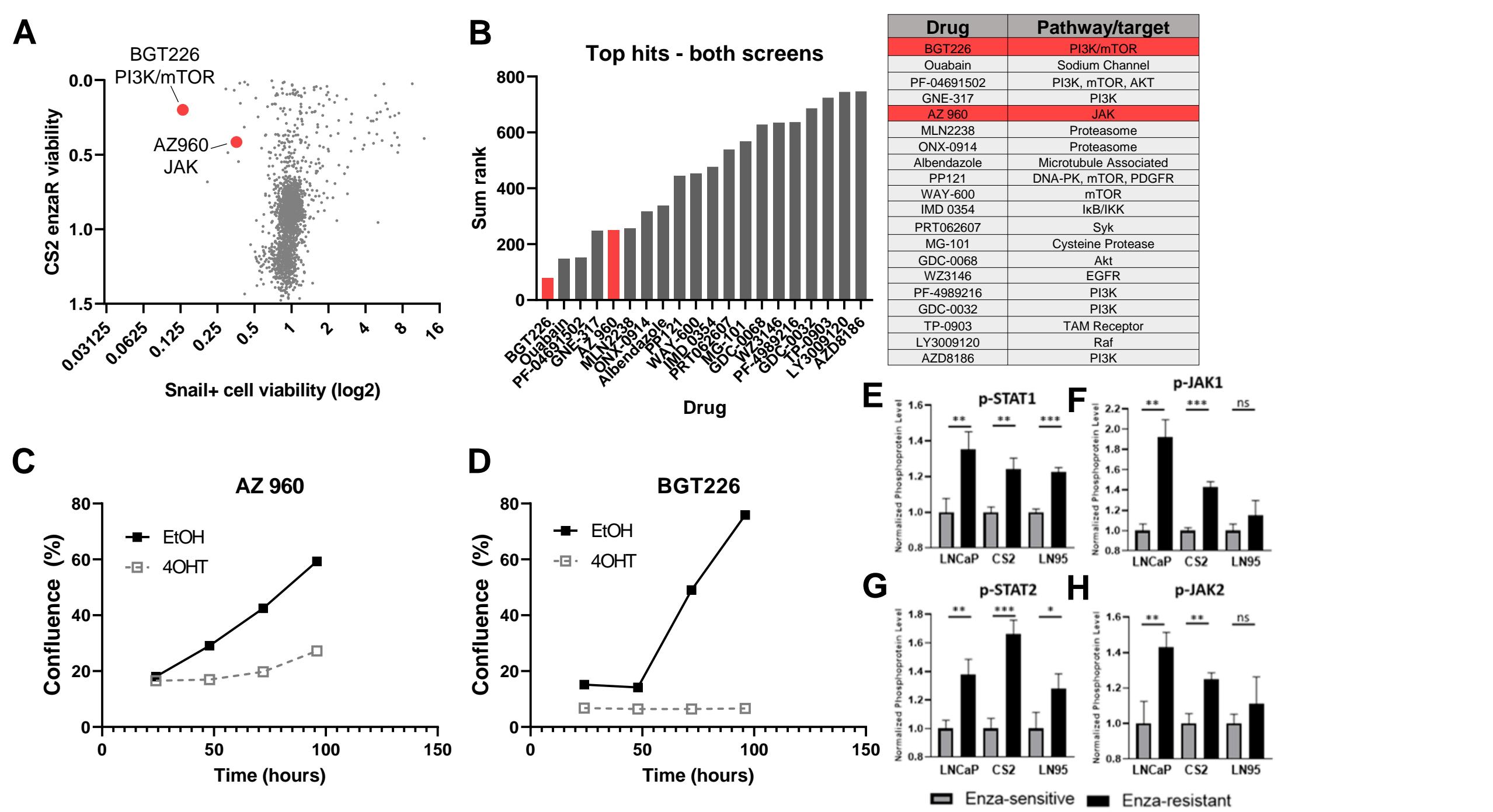
604


A**Validation****B**

A**B****LNCaP95****C****D****E****F****G**


A**B**


EtOH

C

4OHT

D

