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Abstract

Many bioactive peptides demonstrated therapeutic effects over-complicated diseases,
such as antiviral, antibacterial, anticancer, etc. Similar to the generating de novo
chemical compounds, with the accumulated bioactive peptides as a training set, it is
possible to generate abundant potential bioactive peptides with deep learning. Such

techniques would be significant for drug development since peptides are much easier
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and cheaper to synthesize than compounds. However, there are very few deep
learning-based peptide generating models. Here, we have created an LSTM model
(named LSTM_Pep) to generate de novo peptides and finetune learning to generate de
novo peptides with certain potential therapeutic effects. Remarkably, the
Antimicrobial Peptide Database has fully utilized in this work to generate various
kinds of potential active de novo peptide. We proposed a pipeline for screening those
generated peptides for a given target, and use Main protease of SARS-COV-2 as
concept-of-proof example. Moreover, we have developed a deep learning-based
protein-peptide prediction model (named DeepPep) for fast screening the generated
peptides for the given targets. Together with the generating model, we have
demonstrated iteratively finetune training, generating and screening peptides for
higher predicted binding affinity peptides can be achieved. Our work sheds light on to
the development of deep learning-based methods and pipelines to effectively
generating and getting bioactive peptides with a specific therapeutic effect, and
showcases how artificial intelligence can help discover de novo bioactive peptides
that can bind to a particular target.

Keywords

Generative model; bioactive peptide discovery; antiviral peptide; Antimicrobial

Peptide Database; deep learning base peptide virtual screening.

Introduction

Many bioactive peptides have therapeutic effects against various complex diseases,
such as antiviral, antibacterial, and anticancer[1]. More than 80 peptide drugs are
currently approved to treat various diseases, including diabetes, cancer, osteoporosis,
multiple sclerosis, HIV infection, and chronic pain[2—4]. The development of peptide
synthesis methods[5] and the advancement of peptide drug delivery system
technology[6,7] have also extensively promoted the development of peptide drugs.
However, there is an extremely high diversity of amino acid sequences; for example, a
peptide composed of standard amino acids with a length of 8 has theoretically 20”8

kinds of possible peptide sequences. If searching for potential peptides with lengths
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longer than eight by ergodic process, it is far beyond the current computing resources.
Most research methods are based on local mutation of existing active peptides[8-10],
while the diversity of such mutated peptides is often insufficient. Furthermore, it is
challenging to find peptides with stronger activity or different binding mechanisms.
Peptide generation mainly relies on random mutation or optimizing existing
peptides. Recently, there are some machine learning or deep learning-based models
for peptide generation. A Deeplmmuno-GAN architecture was developed to generate
potential peptides binding to MHC[11]. Codon-Based Genetic Algorithm (CB-GA)
method was proposed to generate de novo compounds[12]. Other deep learning-based
methods for generating potential active peptides also have developed, including
PepVAE[13], ProteinGAN[14], HydrAMP[15], PepGANI[16], peptide VAE[17].
Interestingly, Nagarajan et al. have used LSTM model to predict MIC value of peptide
(the lowest concentration of an antibiotic at which bacterial growth is completely
inhibited peptide). To our knowledge, there still no LSTM based model for peptide
generation and finetuning to obtain de novo active peptide. However, there are much
more existing small-molecule generative models for small molecules [18-20], and
small molecules with specific potential biological activities can be targeted by
finetuning. Similar to the generation of de novo compounds, with the increasing
accumulation of active biological peptides as a training set, it is now possible to use
deep learning models to generate many potentially biologically active peptides.
Interestingly, it is expected that through iterative generative screening, we will
eventually obtain biological activities that are much higher than known activities,
such as super antimicrobial peptides[21]. Similar technologies will significantly
facilitate drug development, as peptides are easier to synthesize than compounds and
cheaper to purchase. Developing a deep learning model to generate peptides may help
ensure the diversity of generated peptides. At the same time, through finetuning
learning of peptide datasets with specific functions, a large number of peptides with
potential specified activities can be generated, and sufficient diversity is ensured to
find different sequences and structures of active peptides. Many designated active

peptides are generated, which is far less than 20°8 and enables the fast identify active
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peptides that act on specific targets through subsequent screening methods.
Peptide protein docking can use public software, such as rosetta[22] ,

ZDOCK][23], etc., but few comprehensive and efficient screening pipelines exist.
Rosetta software is widely used among the existing protein-peptide binding prediction
and design methods. Still, this method is slow, and it isn't easy to screen out peptides
with ultra-high affinity to the specified target protein in a short period. However, it is
worth noting that the development of rosetta, modeling, molecular dynamics
simulation, and other methods has extensively promoted the advanced screening of
new peptide drugs. Recently, some deep learning based protein-peptide model also
developed to prediction potential bioactive peptides or predict protein-peptide
interaction[24-26]. Among them, the DeepACP use deep learning algorithm to
identify anticancer peptides(ACPs)[24]. They tried convolutional, recurrent, and
convolutional-recurrent networks to distinguish ACPs from non-ACPs, and found
recurrent neural network with bidirectional long short-term memory cells is superior
to other architectures. A deep learning method called XDeep-AcPEP was also
developed for anticancer peptide activity prediction based on convolutional neural
network and multitask learning[26]. Yipin Lei, et al. have proposed a deep-learning
framework called CAMP for binary peptide-protein interaction prediction and peptide
binding residue identification[25].

Small compounds screening have developed fast due to the fast development of
deep learning[27,28] and MD simulation method[29] in protein-ligand interaction
prediction. According to our previously work[30,31], utilize multiple different
methods to screening drug compounds would have an advantage. Since
protein-compound interaction have share many similarities with protein-peptide
interaction, such hybrid screening strategy can provide insight for efficient and
accurate identifying peptides for a given target.

In the present work, we created an Long Short-Term Memory (LSTM ) model[32]
for generating de novo peptides and then finetuning the model by training over known

bioactive peptides to generate novel peptides potentially with same therapeutic
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activity. Furthermore, we developed a protein-peptide prediction method to screen the
generated large number of potentially active peptides for a given protein target. We
built screening pipeline by integrating deep learning, docking and MD simulation
methods. The specific process is 1. generate potential peptides with specified activity,
2. Use tr-rosetta[33] to build a 3D structural model of peptides based on peptide
sequences, 3. Then use ZDOCK to dock the peptides to specific pockets of given

targets , 4. Then use rosetta to perform flexible docking (or use Protein-peptide deep
learning prediction to obtain high confidential conformation from ZDOCK result) , 5.

Molecular dynamics simulations , 6. Metadynamics simulations are used to evaluate

binding free energy surfaces. Finally, a high-efficiency iteratively generate and
screening strategy, which depend on LSTM_pep and DeepPep as core models, was
proposed to obtain higher affinity binding peptide for a given target. Our method
offers promise for the efficient generation and acquisition of de novo peptides with
specific activity, and from which potential de novo active peptides against specific
targets can be obtained through subsequent screening pipelines.

Method

The overall design scheme is shown in Figure 1. It mainly includes the following
three steps: 1) firstly train the peptide generation model through the general peptide
dataset; 2) finetune the training with known active peptides to obtain a specific active
peptide generation model and generate a large number of specific active peptides; 3)
with the help of peptides Segment 3D modeling, docking, deep learning
protein-peptide prediction model (optional), molecular dynamics simulation and other
technologies to screen, obtain new potential designated active peptides, and finally
submit to experimental verification. It is also possible to iterative such a process to

obtain higher affinity peptides for a given target.
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Figure 1. Overall flow chart. It mainly includes constructing general peptide
generation models, finetuning specific active peptide generation models, and new

peptide screening for specified targets.

Collect peptide data for training

We  obtained many peptides from the PeptideAtlas database[34]
(http://www.peptideatlas.org/). By removing repetitive peptides and peptides
containing non-standard amino acids, we finally obtained 3,274,675 peptides and used
them as a training set to train a general peptide generation model. Then we convert the
peptides into a matrix, and the amino acids in the matrix are represented in the form

of one-hot. The peptide collection and preparation process are shown in Figure 2.
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Figure 2. Shows the procedure for training and finetuning the LSTM_Pep
model. A, shows the collection and preprocessing of training data; B, shows the
preparation of data collection for finetuning training and generating a variety of de

novo potentially active peptides.

Peptide generation Model construction and training

The model structure used for training is a standard LSTM structure, as shown in
Figure S1. The model consists of two layers of the LSTM network, one fully
connected layer, and finally output through softmax. The first and second LSTM layer
networks contain 256 nodes, and dropout is selected as 0.5 and 0.3, respectively. A
multi-class loss function (categorical_crossentropy) is used in training. In the generic
peptide model generation training, the epoch is set to 22. The model structure is

adopted from the LSTM_Chem[18].

Collecting peptide datasets of known biological activity and perform model

retraining


https://doi.org/10.1101/2022.11.14.516530
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.14.516530; this version posted November 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We obtained a database of known active peptides from the Antimicrobial Peptide
Database[1]. The database contains a variety of peptide datasets with different
biological activities, including antifungal, anti-HIV virus, antibacterial, protease
inhibitors, anticancer (antiviral), antiviral, insecticide, anti-diabetic, anti-parasite, etc.
Of course, there are other active peptide datasets in the future, and finetuning training
can also be performed according to this method.

During the migration training process using finetune, the structure of the training
model is consistent with the original training institution. The starting model and
weights are derived from the model trained in the first step, and the given active
peptide data is used as training data for short-term finetuning training. (Epoch setting

12).

Collection of generated novel peptideswith specific potential activities

After the model was retrained for each selected biological activity, we immediately
generated 5,000 whole peptides with the new model obtained (this value can be
adjusted according to user needs, for example, adjusting to 50,000 may generate more
peptide fragments). After removing duplicates and non-original (duplicated with
training set peptides) peptides, we obtained new peptide datasets with different
potential activities ranging from 4210 to 5000 data, as shown in Table 1. These novel
peptides have the potential to have similar biological activities to the training sample
peptides. Therefore, finding specific active peptides from these new peptide libraries
is expected to reduce the experimental time significantly. However, the traditional
method of finding the specified active peptides from random peptides will take a long
time and many resources. Even if the peptides with a length of 8 need to be traversed,
208 experiments are required. In short, this kind of new potential peptide database
will greatly contribute to the discovery of active peptides in further experiments in the
future.

Table 1. The number of active peptides used for finetuning generated unique
potential active peptides and the number of dissmilar peptides after removing

60% similar peptides.
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Biological activity = The number of The number of The number of
corresponding completely new dissmilar after

active peptides active peptides removing 60%

used for after of smilar

finetuning de-redundancy peptides

training
Antifungal 1210 4793 1697
Antibacterial 2742 4825 1533
Antibiofilm 66 49017 1034
Anticancer 253 4425 672
Anti-diabetic 16 4997 1244
AntiHIV 109 4852 1375
Antimalarial 33 5000 4302
Anti-MRSA 183 4893 1354
Antioxidant 28 4740 1261
Anti_parasite 137 4942 1671
Anti_TB 14 4994 2124
Anti-toxin 15 4201 645
Antiviral 193 4848 2003
Insecticidal 40 4821 808
lon_channel 7 5000 4456
Protease_inhibitors 31 4998 3561
spermicidal 14 5000 2992
surface_immobilized 31 4980 922
Wound_healing 23 4970 1837

Construction and training DeepPep Model for predicting Protein-peptide
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interaction

The protein-peptide positive data was from the PepBDB dataset. The negative data
was constructed by assuming that randomly selected peptide is often not binding with
a given target. We cross-docked the protein with randomly selected three peptides,
and for each docking, we kept three conformations. All the docked conformation is
taken as the negative dataset. Notably, we replicated the positive data 9 times as an
oversampling scheme. Finally, we obtained 151,603 training data (positive 8500*9,
negative 75103), 10,694 validation data (positive 600*9, negative 5,294), and 6,400
testing data (positive 712, negative 5,688). Since the negative data are much more
than the positive data. To keep the balance between the positive and negative data, we

have replicated nine times of positive data in the training and validation set. We
extracted protein-peptide residue contact pairs with cutoff of Cadistance 1nm. To

capture spatial information for interacting pairs, we used K-Means
methodology-derived spatial coordination in scikit-learn software to cluster protein
residue into five groups; too few groups will lead to excessive loss of spatial
information, whereas too many groups will lead to very few atoms within one
group[35]. During the input file preparation step, residue pairs belonging to the same
group were kept near one another to maintain some neighbor information of the
protein residues. The one-hot representation of each residue type within residue pairs
was concatenated on the same line. The concatenated representation of the pairs was
written into files line by line. The maximum line number was 300 to provide coverage
for most of the pairs. To standardize the input format, for any pair number less than
300, lines were padding with zeroes, and for any pair number larger than 300
(243/8500, 2.86%), the post-300 parts were omitted. In such way, we obtained
figure-like matrix as input data. Then the model was carried out training, validation,
and test.

Showcase the application of obtained peptide dataset in de novo peptides

screening by traditional docking and M D simulation
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After obtaining new peptides, we still need to spend a lot of time verifying these
peptides' activity using experimental methods. It is still too resource-intensive for
many small laboratories. The final target information is still completely unknown. We
select antiviral peptides as proof-of-concept cases for screening and gradually narrow
the range of peptides targeting specific targets through computer-aided screening
methods. To facilitate the display of the screening process, we selected SARS-COV-2
main protease[36], an anti-COVID-19 therapeutic target, as an example, and screened
new antiviral peptides against this target from the generated new peptide library, as

shown in Figure S2.

The main protease is obtained from PDB data (PDB ID 6Y2F[37]). Various
methods such as modeling, traditional docking, deep learning, and pocket molecular
dynamics (MD) simulation are gradually used in the screening process to achieve high
efficiency and complementary advantages. The trRosetta modeling[33], ZDOCK
docking and rosetta docking procedure are shown described in the section 1 of the
Supplementary material. The detailed pocket MD simulation and metadynamics
simulation procedure are described in the section 2 of the Supplementary material,

which is similar to our previous work[30].

Result

We obtained generated peptides for each bioactive. The distribution of the number of
different potential active peptides generated is shown in Figure S3. We can see all the
18 peptides have generated more than 4000 unique peptides. We find the Anti-diabetic,
Antimalarial, lon_channel inhibitor, and spermicidal obtained 5000 potential peptides.

Among the generated potential designated active peptides, we obtained 4848 potential
antiviral peptides, 4425 anticancer peptides, and many other types of active peptides.
We also examined the peptide length distribution, and among all the obtained peptides,
different lengths were shown in Figure S4. The average peptide length ranged from 15
to 40, corresponding to different types.

To examine the diversity of generated peptides, we clustered peptides with
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different potential activities. After removing peptides with a similarity greater than

60%, we found that most datasets still retain many samples, as shown in Table 1.
Taking new potential antiviral peptides as an example, we built their 3D

structures, such as some potential antiviral peptides, as shown in Figure S5. We can

see the diversity of these structures.

The predicted peptidesfor the main protease

Screening of peptides targeting specific targets from the obtained new peptide library
can narrow the scope of subsequent experimental verification and clarify the
particular mechanism of action. The specific calculation process includes peptide
modeling, target protein pocket positioning, ZDOCK rigid docking, rosetta flexible
docking, and molecular dynamics simulation.

After ZDOCK rigid docking, and rosetta flexible docking, we obtain 22
compounds with rosetta total score <=-454.8 kJ/mol. The 22 protein-peptide
complexes were carried out in a pocket MD simulation. Among them, 8 peptides
(antiviral_430, antiviral_490, antiviral_822, antiviral_1443, antiviral_1712,
antiviral_1996, antiviral_3445, antiviral_4465) that have average RMSD value <=
0.75nm during last 20ns simulation was selected and shown in the Figure S6A. The
number of hydrogen bonds was also shown in Figure S6B; most of them have several
stable hydrogens formed during the MD simulation.

We also calculated the free energy landscape for the 22 protein-peptide
complexes, shown in Figure S7. We find that six peptides (antiviral_1947,
antiviral_2280, antiviral 3258, antiviral_430, antiviral 4616, antiviral_88) are not
favored to bind on main protease according to the free energy landscape. The peptide
antiviral_3445 also has no clear tendency to prefer binding according to the free
energy landscape. However, most other peptides prefer to bind to the Main protease.

We obtained six peptide candidates (antiviral_490, antiviral 822, antiviral 1443,
antiviral_1712, antiviral_1996, antiviral_4465) for the Main protease that fulfilled
low RMSD during pocket MD simulation and have preferred binding according to the

free energy landscape. We analyze the 3D pocket of the Main protease with those
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peptides from the last frame of the 100ns MD simulation, shown in Figure S8. There
are many close contact residues pair (residues distance within 0.3nm), established in

Table S1.

The flexible docking method, such as rosetta, is not efficient enough, especially
when we want to iterative generating and screening. Furthermore, its score function
has a big approximation, which may lead to not accuracy in many situations. To solve
this problem, we developed a Deep learning-based binary model for protein-ligand
interaction prediction, shown in Figure 3. The model performance in training,
validation and test set is listed in the Table 2, we observed that the model has AUC
value of 0.8673, TPR value of 0.8652, and MCC value of 0.3239 in testing sets,
indicating the model have well performance in identifying native-like protein-peptide
complex. Notably, the data in the testing set have very unbalance distribution, which
the negative data set are much large than positive dataset. This is closer to the real
application scenario that unbinding peptides usually are much easy encountered
during screening. After we obtain the model, we can use it to do the screening;
noticeably, our method depends on ZDOCK to generate conformations; since dock
score may not be accurate enough, we need to predict more top score conformations
and select one top prediction as the final protein-peptide binding possibility score,

shown in Figure 3C.
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Figure 3 . The procedure of constructing the protein-peptide model and its usage

in screening. A, data preparation; B, model training, validation, and testing; C,

Example of model usage.

Table 2. The performance of DegpPep on training, validation and test data set.

Data AUC Accuracy TPR Precision  MCC Pos num  Neg_num

Training 0.9799 0.8413 0.9995 0.761 0.7188 8500*9 75103

Validation  0.8581 0.7488 0.8633 0.7053 0.5098 600*9 5294

Test 0.8673 0.667 0.8652 0.2324 0.3239 712 5688
Discussion

An LSTM model was used for peptide generation,

and an iterative generative
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screening method was used to efficiently obtain active peptides for a given protein.
The present work utilizes the peptide database to train a stable peptide generation
model. After that, the Antimicrobial Peptide Database data were used for finetuning
learning to obtain a special model for generating designated active peptides. In
addition, the work points out the subsequent use of the generated new active peptide
library for screening against specific targets. A possible iterative generation screening
scheme is also pointed out, which provides a process and ideas for designing
ultra-high-affinity active peptides. A rapid protein-peptide binding prediction model is

also our new method to improve the accuracy and efficiency of screening.

Iter ative generating and screening

Considering that one round of generating and screening peptides against a given target
sometimes might make it hard to achieve the desired strong binding affinity. We try to
iterative generating and screening, which the input data for finetuning are from
previous round selected candidates. In such a way, it is possible to obtain higher and
higher affinity candidates. However, such iteration would be more practical if we used
faster screening tools; we chose the newly developed DeepPep as the final screening
tool. Take the SARS-CoV-2 main protease as an example, we iterative generating
peptides by integrating LSTM_Pep, tr_rosetta modeling, Zdcok docking, and
DeepPep screening, as shown in Figure 4. Furthermore, we also selected some high
DeepPep score main protease-peptide complexes for MD simulation and
Metedyanmics simulation to further examine their interaction details, binding stability

and binding free energy landscape, shown in Figures S9,10,11,12.
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Figure 4. Iterative peptide generation and screening for a given target. For each
iteration, the previous round high potential binding candidates are used as finetuning
data, in such a way, more and more high potential binding candidates are kept. The
candidates are finally selected to carry out MD simulation and metadynamics
simulation to check the binding stability, interaction details, and free binding energy

landscape.

The generated bioactive peptides can be widely used in an application

With this our proposed strategy, we can screen various peptides with different
bioactive against various protein targets. Take antiviral peptides, antibacterial, and
anticancer peptides discovering as an example, we can obtain lots of de novo peptides

against many different targets from many different kinds of viruses, such as RNA
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virus[38] (e.g. Coronavirus, HIV, HCV, etc.) and DNA virus[39] (e.g. herpes zoster,
HBC, adenovirus, etc.). Take Coronavirus[40] as an example, the targets can be
RNA-dependent RNA polymerase (RdRp)[41], Main protease, Nsp13[42], etc., as
shown in Figure 5A. Also, take antibacterial as an example, we can obtain de novo
peptides for different kinds of bacteria including gram-positive bacteria[43]
(Staphylococcus aureus, Streptococcus pyogenes, and Strep. Pneumoniae, etc.) and
gram-negative bacteria[44] (Klebsiella, Pseudomonas aeruginosa, Acinetobacter,
Escherichiacoli), as shown in Figure 5B. Take the anticancer as an example, we can
obtain de novo peptides for breast cancer[45], lung cancer[46], prostate cancer[47],
etc., and the targets can be BCL-2[48], TOP1[49], CDK4/6[50], etc., as shown in
Figure 5C.
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Figure 5. The huge potential of generated de novo peptidesin developing various
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kinds of bioactive peptides. A, the potential usage of our methods in antivirus; B, the
potential usage of our methods in antibacterial; C, the potential usage of our methods

in anticancer.

Conclusion

Inspired by small molecule generation software such as LSTM_CHEM, we developed
a peptide generation model. At the same time, we used the known active peptide
deduplication training model and generated a large number of brand-new potential
active peptides through the obtained retrained model. As we know, compared with
compounds, peptides are easier to synthesize and cost less to acquire. Therefore, this
kind of calculation method will be of great value to the development of peptides. We
also propose a pipeline for screening these novel potential active peptide libraries for
specified protein targets, which can be used to narrow the scope of subsequent peptide
research further. This directly points to a novel approach to efficiently obtain peptides
targeting specified targets. The screening pipeline plays at least two roles.

On the one hand, it dramatically reduces the scope of the candidate list for
experiments and improves accuracy. The other makes us understand the underlying
mechanism of how the peptide shows bioactive, which would be important for later
structure-based peptide modification. Finally, the iterative generation screening
scheme can be used to optimize peptides further; that is, using the peptides screened
in this iteration as the input for the next finetuning training, it is expected to obtain

high-affinity active peptides targeting the specified target.

Key Points

® \We have developed a deep learning-based model that can generate native-like
peptides. Through mode finetuning, we can generate various kinds of potential de
novo bioactive peptides, including Antifungal, Antibacterial, Anticancer,
Anti-diabetic, AntiHIV, Antimalarial, Antioxidant, Anti_parasite, Anti-toxin,

Antiviral, Protease_inhibitors, etc. This can greatly promote de novo bioactive
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peptide discovery. Furthermore, we have proposed a hybrid pipeline to further
obtain potential bioactive peptides against a given target, which contains deep
learning, docking, MD simulation and Metadynamics simulation. The known
protein-peptide structure interaction details also help late-stage peptide design
and refinement.

® \We have developed a deep learning protein-peptide prediction model that can be
used to efficiently and accurately screen generated peptides for a given target.
Moreover, the present work demonstrates that deep learning-based iterative
generation and screening produce higher predicted affinity de novo peptides
candidates for a given protein target. The iterative peptide generation and
screening strategy proposed here would be highly desirable for pharmacological
companies to efficiently obtain potential de novo peptide drugs that can apply
both structure and functional patents.

® Using the Main protease as a proof-of-concept example, we have obtained several
peptide candidates. The predicted candidates were further examined by predicted
binding stability and predicted binding free energy landscape from molecular
dynamics simulation and metadynamics simulation. Moreover, we find combined
LSTM_Pep and DeepPep can generate and screen de novo active peptide very
efficiently, and applied these two methods in target Xanthine oxidase led to

successfully discover an active de novo peptide (ARG-ALA-PRO-GLU).

Availability of data and materials
The proposed models and the scripts are available in GitHub public repositories

(https://qgithub.com/haiping1010/New peptide iteration). All other data, data

preparing code, model source code, model application code that requires to reproduce
the result are available from the corresponding author upon request.
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Figurelegends :

Figure 1. Overall flow chart. It mainly includes constructing general peptide
generation models, finetuning specific active peptide generation models, and new

peptide screening for specified targets.
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Figure 2. Shows the procedure for training and finetuning the LSTM_Pep
model. A, shows the collection and preprocessing of training data; B, shows the
preparation of data collection for finetuning training and generating a variety of

de novo potentially active peptides.

Figure 3 . The procedure of constructing the protein-peptide model and its usage

in screening. A, data preparation; B, model training, validation, and testing; C,

Example of model usage.

Figure 4. Iterative peptide generation and screening for a given target. For each
iteration, the previous round high potential binding candidates are used as finetuning
data, in such a way, more and more high potential binding candidates are kept. The
candidates are finally selected to carry out MD simulation and metadynamics
simulation to check the binding stability, interaction details, and free binding energy

landscape.

Figure 5. The huge potential of generated de novo peptidesin developing various
kinds of bioactive peptides. A, the potential usage of our methods in antivirus; B, the
potential usage of our methods in antibacterial; C, the potential usage of our methods

in anticancer.

Table legends :

Table 1. The number of active peptides used for finetuning generated unique
potential active peptides and the number of dissmilar peptides after removing
60% similar peptides.

Table 2. The performance of DeepPep on training, validation and test data set.
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