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Abstract 

Many bioactive peptides demonstrated therapeutic effects over-complicated diseases, 

such as antiviral, antibacterial, anticancer, etc. Similar to the generating de novo 

chemical compounds, with the accumulated bioactive peptides as a training set, it is 

possible to generate abundant potential bioactive peptides with deep learning. Such 

techniques would be significant for drug development since peptides are much easier 
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and cheaper to synthesize than compounds. However, there are very few deep 

learning-based peptide generating models. Here, we have created an LSTM model 

(named LSTM_Pep) to generate de novo peptides and finetune learning to generate de 

novo peptides with certain potential therapeutic effects. Remarkably, the 

Antimicrobial Peptide Database has fully utilized in this work to generate various 

kinds of potential active de novo peptide. We proposed a pipeline for screening those 

generated peptides for a given target, and use Main protease of SARS-COV-2 as 

concept-of-proof example. Moreover, we have developed a deep learning-based 

protein-peptide prediction model (named DeepPep) for fast screening the generated 

peptides for the given targets. Together with the generating model, we have 

demonstrated iteratively finetune training, generating and screening peptides for 

higher predicted binding affinity peptides can be achieved. Our work sheds light on to 

the development of deep learning-based methods and pipelines to effectively 

generating and getting bioactive peptides with a specific therapeutic effect, and 

showcases how artificial intelligence can help discover de novo bioactive peptides 

that can bind to a particular target. 
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Generative model; bioactive peptide discovery; antiviral peptide; Antimicrobial 
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Introduction 

Many bioactive peptides have therapeutic effects against various complex diseases, 

such as antiviral, antibacterial, and anticancer[1]. More than 80 peptide drugs are 

currently approved to treat various diseases, including diabetes, cancer, osteoporosis, 

multiple sclerosis, HIV infection, and chronic pain[2–4]. The development of peptide 

synthesis methods[5] and the advancement of peptide drug delivery system 

technology[6,7] have also extensively promoted the development of peptide drugs. 

However, there is an extremely high diversity of amino acid sequences; for example, a 

peptide composed of standard amino acids with a length of 8 has theoretically 20^8 

kinds of possible peptide sequences. If searching for potential peptides with lengths 
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longer than eight by ergodic process, it is far beyond the current computing resources. 

Most research methods are based on local mutation of existing active peptides[8–10], 

while the diversity of such mutated peptides is often insufficient. Furthermore, it is 

challenging to find peptides with stronger activity or different binding mechanisms.  

Peptide generation mainly relies on random mutation or optimizing existing 

peptides. Recently, there are some machine learning or deep learning-based models 

for peptide generation. A DeepImmuno-GAN architecture was developed to generate 

potential peptides binding to MHC[11]. Codon-Based Genetic Algorithm (CB-GA) 

method was proposed to generate de novo compounds[12]. Other deep learning-based 

methods for generating potential active peptides also have developed, including 

PepVAE[13], ProteinGAN[14], HydrAMP[15], PepGAN[16], peptide VAE[17]. 

Interestingly, Nagarajan et al. have used LSTM model to predict MIC value of peptide 

(the lowest concentration of an antibiotic at which bacterial growth is completely 

inhibited peptide). To our knowledge, there still no LSTM based model for peptide 

generation and finetuning to obtain de novo active peptide. However, there are much 

more existing small-molecule generative models for small molecules [18–20], and 

small molecules with specific potential biological activities can be targeted by 

finetuning. Similar to the generation of de novo compounds, with the increasing 

accumulation of active biological peptides as a training set, it is now possible to use 

deep learning models to generate many potentially biologically active peptides. 

Interestingly, it is expected that through iterative generative screening, we will 

eventually obtain biological activities that are much higher than known activities, 

such as super antimicrobial peptides[21]. Similar technologies will significantly 

facilitate drug development, as peptides are easier to synthesize than compounds and 

cheaper to purchase. Developing a deep learning model to generate peptides may help 

ensure the diversity of generated peptides. At the same time, through finetuning 

learning of peptide datasets with specific functions, a large number of peptides with 

potential specified activities can be generated, and sufficient diversity is ensured to 

find different sequences and structures of active peptides. Many designated active 

peptides are generated, which is far less than 20^8 and enables the fast identify active 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.14.516530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516530
http://creativecommons.org/licenses/by-nc-nd/4.0/


peptides that act on specific targets through subsequent screening methods.  

Peptide protein docking can use public software, such as rosetta[22]，

ZDOCK[23], etc., but few comprehensive and efficient screening pipelines exist. 

Rosetta software is widely used among the existing protein-peptide binding prediction 

and design methods. Still, this method is slow, and it isn't easy to screen out peptides 

with ultra-high affinity to the specified target protein in a short period. However, it is 

worth noting that the development of rosetta, modeling, molecular dynamics 

simulation, and other methods has extensively promoted the advanced screening of 

new peptide drugs. Recently, some deep learning based protein-peptide model also 

developed to prediction potential bioactive peptides or predict protein-peptide 

interaction[24–26]. Among them, the DeepACP use deep learning algorithm to 

identify anticancer peptides(ACPs)[24]. They tried convolutional, recurrent, and 

convolutional-recurrent networks to distinguish ACPs from non-ACPs, and found 

recurrent neural network with bidirectional long short-term memory cells is superior 

to other architectures. A deep learning method called XDeep-AcPEP was also 

developed for anticancer peptide activity prediction based on convolutional neural 

network and multitask learning[26]. Yipin Lei, et al. have proposed a deep-learning 

framework called CAMP for binary peptide-protein interaction prediction and peptide 

binding residue identification[25].  

Small compounds screening have developed fast due to the fast development of 

deep learning[27,28] and MD simulation method[29] in protein-ligand interaction 

prediction. According to our previously work[30,31], utilize multiple different 

methods to screening drug compounds would have an advantage. Since 

protein-compound interaction have share many similarities with protein-peptide 

interaction, such hybrid screening strategy can provide insight for efficient and 

accurate identifying peptides for a given target. 

In the present work, we created an Long Short-Term Memory (LSTM ) model[32] 

for generating de novo peptides and then finetuning the model by training over known 

bioactive peptides to generate novel peptides potentially with same therapeutic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.14.516530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516530
http://creativecommons.org/licenses/by-nc-nd/4.0/


activity. Furthermore, we developed a protein-peptide prediction method to screen the 

generated large number of potentially active peptides for a given protein target. We 

built screening pipeline by integrating deep learning, docking and MD simulation 

methods. The specific process is 1. generate potential peptides with specified activity, 

2. Use tr-rosetta[33] to build a 3D structural model of peptides based on peptide 

sequences, 3. Then use ZDOCK to dock the peptides to specific pockets of given 

targets，4. Then use rosetta to perform flexible docking (or use Protein-peptide deep 

learning prediction to obtain high confidential conformation from ZDOCK result)，5. 

Molecular dynamics simulations，6. Metadynamics simulations are used to evaluate 

binding free energy surfaces. Finally, a high-efficiency iteratively generate and 

screening strategy, which depend on LSTM_pep and DeepPep as core models, was 

proposed to obtain higher affinity binding peptide for a given target. Our method 

offers promise for the efficient generation and acquisition of de novo peptides with 

specific activity, and from which potential de novo active peptides against specific 

targets can be obtained through subsequent screening pipelines. 

Method 

The overall design scheme is shown in Figure 1. It mainly includes the following 

three steps: 1) firstly train the peptide generation model through the general peptide 

dataset; 2) finetune the training with known active peptides to obtain a specific active 

peptide generation model and generate a large number of specific active peptides; 3) 

with the help of peptides Segment 3D modeling, docking, deep learning 

protein-peptide prediction model (optional), molecular dynamics simulation and other 

technologies to screen, obtain new potential designated active peptides, and finally 

submit to experimental verification. It is also possible to iterative such a process to 

obtain higher affinity peptides for a given target. 
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Figure 1. Overall flow chart. It mainly includes constructing general peptide 

generation models, finetuning specific active peptide generation models, and new 

peptide screening for specified targets. 

 

Collect peptide data for training 

We obtained many peptides from the PeptideAtlas database[34] 

(http://www.peptideatlas.org/). By removing repetitive peptides and peptides 

containing non-standard amino acids, we finally obtained 3,274,675 peptides and used 

them as a training set to train a general peptide generation model. Then we convert the 

peptides into a matrix, and the amino acids in the matrix are represented in the form 

of one-hot. The peptide collection and preparation process are shown in Figure 2. 
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Figure 2. Shows the procedure for training and finetuning the LSTM_Pep 

model. A, shows the collection and preprocessing of training data; B, shows the 

preparation of data collection for finetuning training and generating a variety of de 

novo potentially active peptides. 

 

Peptide generation Model construction and training 

The model structure used for training is a standard LSTM structure, as shown in 

Figure S1. The model consists of two layers of the LSTM network, one fully 

connected layer, and finally output through softmax. The first and second LSTM layer 

networks contain 256 nodes, and dropout is selected as 0.5 and 0.3, respectively. A 

multi-class loss function (categorical_crossentropy) is used in training. In the generic 

peptide model generation training, the epoch is set to 22. The model structure is 

adopted from the LSTM_Chem[18]. 

 

Collecting peptide datasets of known biological activity and perform model 

retraining 
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We obtained a database of known active peptides from the Antimicrobial Peptide 

Database[1]. The database contains a variety of peptide datasets with different 

biological activities, including antifungal, anti-HIV virus, antibacterial, protease 

inhibitors, anticancer (antiviral), antiviral, insecticide, anti-diabetic, anti-parasite, etc. 

Of course, there are other active peptide datasets in the future, and finetuning training 

can also be performed according to this method. 

During the migration training process using finetune, the structure of the training 

model is consistent with the original training institution. The starting model and 

weights are derived from the model trained in the first step, and the given active 

peptide data is used as training data for short-term finetuning training. (Epoch setting 

12). 

 

Collection of generated novel peptides with specific potential activities 

After the model was retrained for each selected biological activity, we immediately 

generated 5,000 whole peptides with the new model obtained (this value can be 

adjusted according to user needs, for example, adjusting to 50,000 may generate more 

peptide fragments). After removing duplicates and non-original (duplicated with 

training set peptides) peptides, we obtained new peptide datasets with different 

potential activities ranging from 4210 to 5000 data, as shown in Table 1. These novel 

peptides have the potential to have similar biological activities to the training sample 

peptides. Therefore, finding specific active peptides from these new peptide libraries 

is expected to reduce the experimental time significantly. However, the traditional 

method of finding the specified active peptides from random peptides will take a long 

time and many resources. Even if the peptides with a length of 8 need to be traversed, 

20^8 experiments are required. In short, this kind of new potential peptide database 

will greatly contribute to the discovery of active peptides in further experiments in the 

future. 

Table 1. The number of active peptides used for finetuning generated unique 

potential active peptides and the number of dissimilar peptides after removing 

60% similar peptides. 
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Biological activity The number of 

corresponding 

active peptides 

used for 

finetuning 

training 

The number of 

completely new 

active peptides 

after 

de-redundancy 

The number of 

dissimilar after 

removing 60% 

of similar 

peptides 

Antifungal 1210 4793 1697 

Antibacterial 2742 4825 1533 

Antibiofilm 66 4917 1034 

Anticancer 253 4425 672 

Anti-diabetic 16 4997 1244 

AntiHIV 109 4852 1375 

Antimalarial 33 5000 4302 

Anti-MRSA 183 4893 1354 

Antioxidant 28 4740 1261 

Anti_parasite 137 4942 1671 

Anti_TB 14 4994 2124 

Anti-toxin 15 4201 645 

Antiviral 193 4848 2003 

Insecticidal 40 4821 808 

Ion_channel 7 5000 4456 

Protease_inhibitors 31 4998 3561 

spermicidal 14 5000 2992 

surface_immobilized 31 4980 922 

Wound_healing 23 4970 1837 

 

 

 

Construction and training DeepPep Model for predicting Protein-peptide 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.14.516530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516530
http://creativecommons.org/licenses/by-nc-nd/4.0/


interaction 

The protein-peptide positive data was from the PepBDB dataset. The negative data 

was constructed by assuming that randomly selected peptide is often not binding with 

a given target. We cross-docked the protein with randomly selected three peptides, 

and for each docking, we kept three conformations. All the docked conformation is 

taken as the negative dataset. Notably, we replicated the positive data 9 times as an 

oversampling scheme. Finally, we obtained 151,603 training data (positive 8500*9, 

negative 75103), 10,694 validation data (positive 600*9, negative 5,294), and 6,400 

testing data (positive 712, negative 5,688). Since the negative data are much more 

than the positive data. To keep the balance between the positive and negative data, we 

have replicated nine times of positive data in the training and validation set. We 

extracted protein-peptide residue contact pairs with cutoff of Cαdistance 1nm. To 

capture spatial information for interacting pairs, we used K-Means 

methodology-derived spatial coordination in scikit-learn software to cluster protein 

residue into five groups; too few groups will lead to excessive loss of spatial 

information, whereas too many groups will lead to very few atoms within one 

group[35]. During the input file preparation step, residue pairs belonging to the same 

group were kept near one another to maintain some neighbor information of the 

protein residues. The one-hot representation of each residue type within residue pairs 

was concatenated on the same line. The concatenated representation of the pairs was 

written into files line by line. The maximum line number was 300 to provide coverage 

for most of the pairs. To standardize the input format, for any pair number less than 

300, lines were padding with zeroes, and for any pair number larger than 300 

(243/8500, 2.86%), the post-300 parts were omitted. In such way, we obtained 

figure-like matrix as input data. Then the model was carried out training, validation, 

and test. 

Showcase the application of obtained peptide dataset in de novo peptides 

screening by traditional docking and MD simulation 
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After obtaining new peptides, we still need to spend a lot of time verifying these 

peptides' activity using experimental methods. It is still too resource-intensive for 

many small laboratories. The final target information is still completely unknown. We 

select antiviral peptides as proof-of-concept cases for screening and gradually narrow 

the range of peptides targeting specific targets through computer-aided screening 

methods. To facilitate the display of the screening process, we selected SARS-COV-2 

main protease[36], an anti-COVID-19 therapeutic target, as an example, and screened 

new antiviral peptides against this target from the generated new peptide library, as 

shown in Figure S2. 

 

The main protease is obtained from PDB data (PDB ID 6Y2F[37]). Various 

methods such as modeling, traditional docking, deep learning, and pocket molecular 

dynamics (MD) simulation are gradually used in the screening process to achieve high 

efficiency and complementary advantages. The trRosetta modeling[33], ZDOCK 

docking and rosetta docking procedure are shown described in the section 1 of the 

Supplementary material. The detailed pocket MD simulation and metadynamics 

simulation procedure are described in the section 2 of the Supplementary material, 

which is similar to our previous work[30]. 

 

Result 

We obtained generated peptides for each bioactive. The distribution of the number of 

different potential active peptides generated is shown in Figure S3. We can see all the 

18 peptides have generated more than 4000 unique peptides. We find the Anti-diabetic, 

Antimalarial, Ion_channel inhibitor, and spermicidal obtained 5000 potential peptides.  

Among the generated potential designated active peptides, we obtained 4848 potential 

antiviral peptides, 4425 anticancer peptides, and many other types of active peptides. 

We also examined the peptide length distribution, and among all the obtained peptides, 

different lengths were shown in Figure S4. The average peptide length ranged from 15 

to 40, corresponding to different types.  

To examine the diversity of generated peptides, we clustered peptides with 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.14.516530doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516530
http://creativecommons.org/licenses/by-nc-nd/4.0/


different potential activities. After removing peptides with a similarity greater than 

60%, we found that most datasets still retain many samples, as shown in Table 1. 

Taking new potential antiviral peptides as an example, we built their 3D 

structures, such as some potential antiviral peptides, as shown in Figure S5. We can 

see the diversity of these structures. 

 

The predicted peptides for the main protease 

Screening of peptides targeting specific targets from the obtained new peptide library 

can narrow the scope of subsequent experimental verification and clarify the 

particular mechanism of action. The specific calculation process includes peptide 

modeling, target protein pocket positioning, ZDOCK rigid docking, rosetta flexible 

docking, and molecular dynamics simulation.  

After ZDOCK rigid docking, and rosetta flexible docking, we obtain 22 

compounds with rosetta total_score <=-454.8 kJ/mol. The 22 protein-peptide 

complexes were carried out in a pocket MD simulation. Among them, 8 peptides 

(antiviral_430, antiviral_490, antiviral_822, antiviral_1443, antiviral_1712, 

antiviral_1996, antiviral_3445, antiviral_4465) that have average RMSD value <= 

0.75nm during last 20ns simulation was selected and shown in the Figure S6A. The 

number of hydrogen bonds was also shown in Figure S6B; most of them have several 

stable hydrogens formed during the MD simulation. 

We also calculated the free energy landscape for the 22 protein-peptide 

complexes, shown in Figure S7. We find that six peptides (antiviral_1947, 

antiviral_2280, antiviral_3258, antiviral_430, antiviral_4616, antiviral_88) are not 

favored to bind on main protease according to the free energy landscape. The peptide 

antiviral_3445 also has no clear tendency to prefer binding according to the free 

energy landscape. However, most other peptides prefer to bind to the Main protease.  

We obtained six peptide candidates (antiviral_490, antiviral_822, antiviral_1443, 

antiviral_1712, antiviral_1996, antiviral_4465) for the Main protease that fulfilled 

low RMSD during pocket MD simulation and have preferred binding according to the 

free energy landscape. We analyze the 3D pocket of the Main protease with those 
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peptides from the last frame of the 100ns MD simulation, shown in Figure S8. There 

are many close contact residues pair (residues distance within 0.3nm), established in 

Table S1. 

 

The flexible docking method, such as rosetta, is not efficient enough, especially 

when we want to iterative generating and screening. Furthermore, its score function 

has a big approximation, which may lead to not accuracy in many situations. To solve 

this problem, we developed a Deep learning-based binary model for protein-ligand 

interaction prediction, shown in Figure 3. The model performance in training, 

validation and test set is listed in the Table 2, we observed that the model has AUC 

value of 0.8673, TPR value of 0.8652, and MCC value of 0.3239 in testing sets, 

indicating the model have well performance in identifying native-like protein-peptide 

complex. Notably, the data in the testing set have very unbalance distribution, which 

the negative data set are much large than positive dataset. This is closer to the real 

application scenario that unbinding peptides usually are much easy encountered 

during screening. After we obtain the model, we can use it to do the screening; 

noticeably, our method depends on ZDOCK to generate conformations; since dock 

score may not be accurate enough, we need to predict more top score conformations 

and select one top prediction as the final protein-peptide binding possibility score, 

shown in Figure 3C. 
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Figure 3．The procedure of constructing the protein-peptide model and its usage 

in screening. A, data preparation; B, model training, validation, and testing; C, 

Example of model usage. 

 

Table 2. The performance of DeepPep on training, validation and test data set. 

Data AUC Accuracy TPR Precision MCC Pos_num Neg_num 

Training 0.9799 0.8413 0.9995 0.761 0.7188 8500*9 75103 

Validation 0.8581 0.7488 0.8633 0.7053 0.5098 600*9 5294 

Test 0.8673 0.667 0.8652 0.2324 0.3239 712 5688 

 

Discussion 

An LSTM model was used for peptide generation, and an iterative generative 
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screening method was used to efficiently obtain active peptides for a given protein. 

The present work utilizes the peptide database to train a stable peptide generation 

model. After that, the Antimicrobial Peptide Database data were used for finetuning 

learning to obtain a special model for generating designated active peptides. In 

addition, the work points out the subsequent use of the generated new active peptide 

library for screening against specific targets. A possible iterative generation screening 

scheme is also pointed out, which provides a process and ideas for designing 

ultra-high-affinity active peptides. A rapid protein-peptide binding prediction model is 

also our new method to improve the accuracy and efficiency of screening. 

 

Iterative generating and screening  

Considering that one round of generating and screening peptides against a given target 

sometimes might make it hard to achieve the desired strong binding affinity. We try to 

iterative generating and screening, which the input data for finetuning are from 

previous round selected candidates. In such a way, it is possible to obtain higher and 

higher affinity candidates. However, such iteration would be more practical if we used 

faster screening tools; we chose the newly developed DeepPep as the final screening 

tool. Take the SARS-CoV-2 main protease as an example, we iterative generating 

peptides by integrating LSTM_Pep, tr_rosetta modeling, Zdcok docking, and 

DeepPep screening, as shown in Figure 4. Furthermore, we also selected some high 

DeepPep score main protease-peptide complexes for MD simulation and 

Metedyanmics simulation to further examine their interaction details, binding stability 

and binding free energy landscape, shown in Figures S9,10,11,12. 
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Figure 4. Iterative peptide generation and screening for a given target. For each 

iteration, the previous round high potential binding candidates are used as finetuning 

data, in such a way, more and more high potential binding candidates are kept. The 

candidates are finally selected to carry out MD simulation and metadynamics 

simulation to check the binding stability, interaction details, and free binding energy 

landscape.  

 

The generated bioactive peptides can be widely used in an application 

With this our proposed strategy, we can screen various peptides with different 

bioactive against various protein targets. Take antiviral peptides, antibacterial, and 

anticancer peptides discovering as an example, we can obtain lots of de novo peptides 

against many different targets from many different kinds of viruses, such as RNA 
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virus[38] (e.g. Coronavirus, HIV, HCV, etc.) and DNA virus[39] (e.g. herpes zoster, 

HBC, adenovirus, etc.). Take Coronavirus[40] as an example, the targets can be 

RNA-dependent RNA polymerase (RdRp)[41], Main protease, Nsp13[42], etc., as 

shown in Figure 5A. Also, take antibacterial as an example, we can obtain de novo 

peptides for different kinds of bacteria including gram-positive bacteria[43] 

(Staphylococcus aureus, Streptococcus pyogenes, and Strep. Pneumoniae, etc.) and 

gram-negative bacteria[44] (Klebsiella, Pseudomonas aeruginosa, Acinetobacter, 

Escherichiacoli), as shown in Figure 5B. Take the anticancer as an example, we can 

obtain de novo peptides for breast cancer[45], lung cancer[46], prostate cancer[47], 

etc., and the targets can be BCL-2[48], TOP1[49], CDK4/6[50], etc., as shown in 

Figure 5C.  

 

Figure 5. The huge potential of generated de novo peptides in developing various 
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kinds of bioactive peptides. A, the potential usage of our methods in antivirus; B, the 

potential usage of our methods in antibacterial; C, the potential usage of our methods 

in anticancer. 

 

Conclusion 

Inspired by small molecule generation software such as LSTM_CHEM, we developed 

a peptide generation model. At the same time, we used the known active peptide 

deduplication training model and generated a large number of brand-new potential 

active peptides through the obtained retrained model. As we know, compared with 

compounds, peptides are easier to synthesize and cost less to acquire. Therefore, this 

kind of calculation method will be of great value to the development of peptides. We 

also propose a pipeline for screening these novel potential active peptide libraries for 

specified protein targets, which can be used to narrow the scope of subsequent peptide 

research further. This directly points to a novel approach to efficiently obtain peptides 

targeting specified targets. The screening pipeline plays at least two roles. 

On the one hand, it dramatically reduces the scope of the candidate list for 

experiments and improves accuracy. The other makes us understand the underlying 

mechanism of how the peptide shows bioactive, which would be important for later 

structure-based peptide modification. Finally, the iterative generation screening 

scheme can be used to optimize peptides further; that is, using the peptides screened 

in this iteration as the input for the next finetuning training, it is expected to obtain 

high-affinity active peptides targeting the specified target. 

 

Key Points 

� We have developed a deep learning-based model that can generate native-like 

peptides. Through mode finetuning, we can generate various kinds of potential de 

novo bioactive peptides, including Antifungal, Antibacterial, Anticancer, 

Anti-diabetic, AntiHIV, Antimalarial, Antioxidant, Anti_parasite, Anti-toxin, 

Antiviral, Protease_inhibitors, etc. This can greatly promote de novo bioactive 
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peptide discovery. Furthermore, we have proposed a hybrid pipeline to further 

obtain potential bioactive peptides against a given target, which contains deep 

learning, docking, MD simulation and Metadynamics simulation. The known 

protein-peptide structure interaction details also help late-stage peptide design 

and refinement. 

� We have developed a deep learning protein-peptide prediction model that can be 

used to efficiently and accurately screen generated peptides for a given target. 

Moreover, the present work demonstrates that deep learning-based iterative 

generation and screening produce higher predicted affinity de novo peptides 

candidates for a given protein target. The iterative peptide generation and 

screening strategy proposed here would be highly desirable for pharmacological 

companies to efficiently obtain potential de novo peptide drugs that can apply 

both structure and functional patents. 

� Using the Main protease as a proof-of-concept example, we have obtained several 

peptide candidates. The predicted candidates were further examined by predicted 

binding stability and predicted binding free energy landscape from molecular 

dynamics simulation and metadynamics simulation. Moreover, we find combined 

LSTM_Pep and DeepPep can generate and screen de novo active peptide very 

efficiently, and applied these two methods in target Xanthine oxidase led to 

successfully discover an active de novo peptide (ARG-ALA-PRO-GLU). 

 

Availability of data and materials 

The proposed models and the scripts are available in GitHub public repositories 

(https://github.com/haiping1010/New_peptide_iteration). All other data, data 

preparing code, model source code, model application code that requires to reproduce 

the result are available from the corresponding author upon request. 
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Figure legends： 

Figure 1. Overall flow chart. It mainly includes constructing general peptide 

generation models, finetuning specific active peptide generation models, and new 

peptide screening for specified targets. 
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Figure 2. Shows the procedure for training and finetuning the LSTM_Pep 

model. A, shows the collection and preprocessing of training data; B, shows the 

preparation of data collection for finetuning training and generating a variety of 

de novo potentially active peptides. 

 

Figure 3．The procedure of constructing the protein-peptide model and its usage 

in screening. A, data preparation; B, model training, validation, and testing; C, 

Example of model usage. 

 

 

 

Figure 4. Iterative peptide generation and screening for a given target. For each 

iteration, the previous round high potential binding candidates are used as finetuning 

data, in such a way, more and more high potential binding candidates are kept. The 

candidates are finally selected to carry out MD simulation and metadynamics 

simulation to check the binding stability, interaction details, and free binding energy 

landscape.  

 

Figure 5. The huge potential of generated de novo peptides in developing various 

kinds of bioactive peptides. A, the potential usage of our methods in antivirus; B, the 

potential usage of our methods in antibacterial; C, the potential usage of our methods 

in anticancer. 

 

Table legends： 

Table 1. The number of active peptides used for finetuning generated unique 

potential active peptides and the number of dissimilar peptides after removing 

60% similar peptides. 

Table 2. The performance of DeepPep on training, validation and test data set. 
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