

1 **Genetic architecture of acute hyperthermia resistance in**
2 **juvenile rainbow trout (*Oncorhynchus mykiss*) and genetic**
3 **correlations with production traits**

4

5 Henri Lagarde¹, Delphine Lallias¹, Pierre Patrice², Martin Prchal³, Yoannah François², Jonathan
6 D'Ambrosio², Emilien Segret⁴, Ana Acin-Perez⁴, Frederic Cachelou⁴, Pierrick Haffray², Audrey
7 Dehaullon¹, Mathilde Dupont-Nivet¹ and Florence Phocas^{1*}

8

9 ¹ Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France

10 ² SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042 Rennes,
11 France

12 ³ University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of
13 Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses,
14 Zátiší 728/II, 389 25 Vodňany, Czech Republic

15 ⁴ Viviers de Sarrance, Pisciculture Labedan, 64490 Sarrance, France.

16

17 *Corresponding author

18

19 E-mail addresses:

20 florence.phocas@inrae.fr

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 **Abstract**

37 **Background**

38 Selective breeding is a promising solution to reduce fish farms vulnerability to heat peaks which
39 intensity and frequency are predicted to increase due to climate change. However, limited
40 information about the genetic architecture of acute hyperthermia resistance in fish is available.

41 Two batches of sibs from a rainbow trout commercial line were produced. The first batch
42 (N=1,382) was phenotyped for acute hyperthermia resistance at nine months, and the second
43 batch (N=1,506) was phenotyped for main production traits (growth, body length, muscle fat
44 content and carcass yield) at twenty months. Fish were genotyped on a 57K SNP array, and
45 their genotypes were imputed at high-density thanks to their parents being genotyped on a 665K
46 SNP array.

47 **Results**

48 The heritability estimate of resistance to acute hyperthermia in juveniles was 0.29 ± 0.05 ,
49 confirming the potential of selective breeding for this trait. Genetic correlations between acute
50 hyperthermia resistance and main production traits at near harvest age were all close to zero.
51 Hence, selecting for acute hyperthermia resistance should not impact the main production traits,
52 and reversely.

53 The genome-wide association study revealed that resistance to acute hyperthermia is highly
54 polygenic; altogether, the six detected QTL explained less than 5% of the genetic variance. Two
55 of these QTL, including the most significant one, might explain acute hyperthermia resistance
56 differences across INRAE isogenic lines of rainbow trout. The phenotypic mean differences

57 between homozygotes at peak SNP were up to 69% of the phenotypic standard deviation,
58 showing promising potential for marker-assisted selection. We identified 89 candidate genes
59 within the six QTL regions, among which the most convincing functional candidate genes were
60 *dnajc7, hsp70b, nkiras2, cdk12, phb, fkbp10, ddx5, cygb1, enpp7, pdhx* and *acly*.

61 **Conclusions**

62 This study provides valuable insight on the genetic architecture of acute hyperthermia resistance
63 in juvenile rainbow trout. The potential for the selective breeding of this trait was shown to be
64 substantial and should not interfere with selection for main production traits. Identified
65 functional candidate genes give a new insight on physiological mechanisms involved in acute
66 hyperthermia resistance, such as protein chaperoning, oxidative stress response, homeostasis
67 maintenance and cell survival.

68 **Background**

69 Aquaculture, which produced 7.5% of animal-source proteins consumed worldwide in 2018, is
70 a significant contributor to world food security [1]. The importance of aquaculture in global
71 food production is expected to strengthen in the medium term as it grows faster than the other
72 main food production sectors, with a mean annual growth of 4.6% between 2010 and 2020 [2].
73 However, this steady increase in aquaculture production over the past few decades could be
74 jeopardised in the future by the effects of climate change. These effects are expected to be
75 multiple such as the chronic water temperature increase, more frequent and severe extreme
76 weather events or changes in rainfall patterns affecting all levels of production by reduced
77 growth and survival, new and more frequent epidemics or input shortages in fish farms [3].

78 As ectotherms, fish are particularly susceptible to changes in water temperature. Hence, the
79 effects of climate change, both through chronic temperature increases and acute hyperthermia
80 conditions induced by more frequent and intense heat waves, are expected to substantially
81 impact fish production [4]. Extreme temperature events are predicted to impact ectotherms
82 populations more than climate warming [5]. Furthermore, the adaptative capacities of the
83 European perch, *Perca fluviatilis*, were found to be higher for resistance to chronic
84 hyperthermia stress compared to resistance to acute hyperthermia stress [6].

85 Hence, improving fish farms resilience to heat wave events is a primary concern. Acute
86 hyperthermia stress causes a series of physiological and behavioural changes in fish, starting
87 with catecholamines and cortisol releases, followed by an increase in plasma glucose and
88 lactate, the over-expression of genes associated with acute hyperthermia stress such as heat
89 shock proteins and the lowering or cessation of feeding [4]. The consequences of acute
90 hyperthermia on production efficiency in fish farms are significant, among which growth losses
91 and high mortalities (e.g. [7]). Adaptation strategies must therefore be established to guarantee
92 food security by limiting production losses induced by heat waves. Promising strategies include
93 engineering solutions, species diversification, better farm management, nutrition, exercise
94 training or genetic improvement [8,9]. Genetic improvement by selective breeding is an
95 interesting solution to enhance fish resistance to acute hyperthermia conditions as genetic gain
96 is cumulative and can be quickly disseminated in farms thanks to the high fecundity of fish.

97 Rainbow trout *Oncorhynchus mykiss* is the second most farmed salmonid species with 959,600
98 tons yielded in the world in 2020 [2]. Like other salmonids, rainbow trout is particularly
99 sensitive to acute hyperthermia stress as its upper thermal resistance, the temperature at which
100 it loses equilibrium, is usually between 26°C and 30°C [10,11]. Breeding rainbow trout robust
101 to acute hyperthermia stress would help fish farmers adapt to climate change.

102 The heritability, the genetic correlations with production traits and the identification of
103 quantitative traits loci (QTL) are needed to optimise and assess the profitability of genetic
104 improvement by selective breeding of a new trait.

105 Heritability is the key information for estimating the expected genetic gain at each generation
106 and thus to assess the theoretical cost-benefit of selecting the given trait [12]. Heritability of
107 acute hyperthermia resistance was estimated to be 0.41 ± 0.07 in a North-American population
108 of rainbow trout, demonstrating an interesting potential for genetic improvement of this trait
109 [13]. Nevertheless, the realised heritability was only 0.10 ± 0.05 in six generations of selection
110 for acute hyperthermia resistance in the zebrafish *Danio rerio* [14]. Low heritability could
111 question the genetic lever's relevance to improve fish resistance to acute hyperthermia stress.

112 Estimating genetic correlations is also essential to evaluate the effect of selection for one trait
113 on other traits of interest and vice-versa [12]. Three of the main traits of interest in rainbow
114 trout breeding programs are growth, carcass yield and fillet fat percentage at harvest age [15].
115 Estimating genetic correlations between these traits and acute hyperthermia resistance is all the
116 more critical as trade-offs were suggested between growth and acute hyperthermia resistance
117 in rainbow trout [11,16]. The genetic correlation between acute hyperthermia resistance and
118 growth was estimated to be -0.03 ± 0.18 in a North-American commercial population of
119 rainbow trout [13]. However, no similar study was realised on European commercial
120 populations. Moreover, in Perry et al. [13], fish were less than one year old, which is still far
121 from the harvest age required for rainbow trout filleting. Eventually, to our knowledge, genetic
122 correlations between acute hyperthermia resistance and carcass yield or fillet fat percentage
123 were never estimated in any fish species at any age.

124 Detecting QTL enables the identification of genetic markers tightly associated with the
125 phenotype of interest. These genetic markers can then be used to improve the genomic

126 prediction through weighted GBLUP [17–20] or for marker-assisted selection as it was
127 successfully performed for improving resistance to infectious pancreatic necrosis disease in
128 Atlantic salmon *Salmo salar* [21–23]. Moreover, searching for candidate genes in QTL regions
129 allows to better understand the underlying mechanisms involved in acute hyperthermia
130 resistance. Pioneering works studied the genetic architecture of acute hyperthermia resistance
131 in the same North-American population of rainbow trout as in Perry et al. [13] and found QTL
132 but with large confidence intervals due to the low density of markers [24–27]. More recent
133 studies using high-density genotyping chip showed that acute hyperthermia resistance is a
134 polygenic trait and identified genes associated with this trait in channel catfish *Ictalurus*
135 *punctatus* and in large yellow croaker *Larimichthys crocea* [28,29]. Such study has not yet been
136 conducted on rainbow trout.

137 The objective of the present study was to present a complete overview of the genetic
138 architecture of acute hyperthermia resistance in a French commercial line of rainbow trout,
139 never studied for this trait, taking advantage of the recent advances in genomics. For this
140 purpose, a group of fish issued from 76 females mated with 99 males in ten independent full-
141 factorial blocks families was phenotyped at nine months for acute hyperthermia resistance and
142 their sibs were phenotyped at twenty months, which is near harvest age (body weight around 1
143 kg), for production traits using a robust experimental design with over 1,300 phenotyped fish
144 in each group. Phenotyped fish were genotyped for 57K SNP (Single Nucleotide Polymorphism
145 markers) [30] and imputed to 665K SNP thanks to their parents being genotyped with a new
146 high-density SNP array [31]. The main issues addressed in this study were to i) assess genetic
147 parameters for acute hyperthermia resistance in juveniles, ii) estimate genetic correlations
148 between acute hyperthermia resistance and production traits at harvest age, iii) detect with a
149 powerful tool (665K SNP array) QTL associated with acute hyperthermia resistance and (iv)
150 identify functional candidate genes.

151 Methods

152 Fish production

153 The fish production process is summarised in Figure 1. Fish were derived from a commercial
154 line from 'Viviers de Sarrance' (Sarrance, France) breeding company which had been mass
155 selected for growth, morphology according to a salmon-like shape and gutted carcass yield with
156 ultrasound during nine generations [32] and, more recently, for the body colour and carcass
157 yield based on sib selection. In November 2019, 76 two-year-old females were mated with 99
158 neomales (sex-reversed XX females used as sires) in ten independent full-factorial blocks of 9-
159 10 sires crossed with 7-8 dams in the 'Labedan' hatchery (64490 Sarrance, France). Fin samples
160 were collected for later genotyping of all parents. Fertilised eggs were all mixed and incubated
161 in a 40-litres cylindrical-conical incubator at 8.5-9°C. At 29 days post-fertilisation (dpf), eyed-
162 stage eggs were transferred to 'Les fontaines d'Escot' fish farm (64490 Sarrance, France). Eggs
163 were randomly placed in baskets in flow through hatching troughs containing 13-14°C
164 circulating water for hatching. Hatching occurred between 29 dpf and 36 dpf. At 101 dpf, about
165 4,500 fries were randomly transferred in two nursery tanks supplied with the same water source.
166 At 127 dpf, fish were transferred to the 'Viviers de Rébénacq' fish farm (64260 Rébénacq,
167 France), located forty kilometres from the previous farm. Fish from the two nursery tanks were
168 grouped and reared in a 23m³ concrete raceway. At 265-dpf, fish were randomly divided into
169 two batches of approximately equal size named batch 1 (B1) and batch 2 (B2). Fish from B1
170 were tagged (Biolog-id, 1.4 × 8 mm) and fin-clipped for later DNA analysis. B1 fish were then
171 placed in a second concrete raceway for a week before being transferred to ANSES-SYSAAF
172 Fortior Genetics platform (Brittany, France) for acute hyperthermia resistance phenotyping.
173 Batch 2 (B2) was made of all remaining fish and B2 fish stayed in the 23m³ concrete raceway.

174 At 425 dpf, B2 fish (mean body weight of 300g) were transferred in a 93m³ concrete raceway
175 and stayed in until phenotyping for production traits (between 600 dpf and 604 dpf).

176 During growth, fish were fed *ad libitum* using extruded commercial feed (Le Gouessant,
177 Lamballe, France). At 'Viviers de Rébénacq' fish farm, fish were exposed to a minimum water
178 temperature of 9.8°C in February 2020 and a maximum of 14.5°C in August 2020. Minimum
179 oxygen concentration measured was 8.7mg/L in August 2020. Density was between 6kg/m³
180 and 24kg/m³ in both batches. Survival rate from hatching to transfer of B1 to ANSES-SYSAAF
181 Fortior Genetics platform was 65% and survival rate from hatching to phenotyping of B2 was
182 63%.

183 **Phenotyping**

184 **Phenotyping for acute hyperthermia resistance (batch B1)**

185 At 272 dpf, B1 fish (N=1,382) were transferred to ANSES-SYSAAF Fortior Genetics platform
186 (Plouzané, France) for acute hyperthermia resistance phenotyping. Transportation was done by
187 truck in controlled conditions (10h of transportation, density: 40kg/m³, temperature: 12 ± 1°C,
188 O₂ concentration around 12.9mg/L). Once arrived at the platform, fish were randomly
189 distributed in seven fibreglass 350L tanks with 197 ± 12 fish per tank for acclimation. Tanks
190 were supplied with filtrated and sterilised river water with a daily temperature range of 16°C-
191 18°C. Oxygen saturation level was maintained high by continuously and softly bubbling
192 compressed air. The phenotyping was done by group, the seven fibreglass tanks corresponding
193 to the seven phenotyping groups. It was performed at the rate of one group per day, spread
194 between 275 dpf and 285 dpf. Accordingly, the duration of acclimation, i.e. the time between
195 the arrival at the phenotyping platform and the phenotyping day, was between two to twelve

196 days depending on group phenotyping order. The duration of acclimation will be discussed
197 further. Each group was starved 24 hours before the phenotyping challenge.

198 Acute hyperthermia challenge was conducted in the following way: at 9 a.m., fish from a group
199 were transferred with a landing net to the challenge tank (350L, fibreglass), supplied with the
200 same river water as in the acclimation tanks. Once the transfer completed, temperature was
201 gradually increased from the initial challenge tank water temperature (17.3 ± 0.7 °C, min:
202 16.1 °C in group 7 (G7), max: 18.4 °C in G4) at a rate of 3.1 °C/hour during the first 1.5 hours
203 and then at a rate of 0.9 °C/hour during the rest of the challenge by adding heated water from a
204 buffer tank. The heating curves experienced by the seven groups are presented in Figure 2.
205 Oxygen saturation was maintained above 80% by softly bubbling pure O₂. Above 27°C, fish
206 gradually began to lose equilibrium. Each fish losing equilibrium was removed from the tank
207 and identified by reading its tag. The time was recorded and the fish was weighed and
208 euthanised by overdose of anaesthetic (Eugenol, 180 mg/L). Challenges ended when the last
209 fish lost its equilibrium. Temperature, O₂ concentration and O₂ saturation were recorded every
210 ten minutes using electronic probes (OxyGuard, Handy Polaris). NH₄⁺ concentration, pH and
211 CO₂ concentration were checked in the first three groups at the beginning and in the middle of
212 the challenge with kits for NH₄⁺ (Tetra, Test), NH₃/NH₄⁺ and pH (JBL, pH test) and a CO₂
213 analyser (Oxyguard, CO₂ Portable).

214 From B1 batch, we recorded acute hyperthermia resistance and the body weight named BW1.
215 Raw acute hyperthermia resistance phenotype was measured as the raw time to loss of
216 equilibrium (rTLE). For reasons presented in the results section, rTLE was centred to 0 and
217 reduced to 1 within each phenotyping day. This standardised phenotype was named TLE.

218 **Phenotyping for production traits at commercial size (batch B2)**

219 Fish from B2 batch (N=1,506) were phenotyped for production traits at commercial size in three
220 days between 601 dpf and 603 dpf. Every day, 502 ± 49 fish were slaughtered by bleeding in
221 icy water immediately after netting. Fish were slaughtered by group of 20 fish and stored on
222 ice to avoid rigor mortis adverse effects.

223 Once killed, fish were processed and phenotyped in thirty minutes maximum. A fin sample was
224 first collected on each fish for later genotyping and kept in 90 % ethanol. The following raw
225 phenotypes were then measured: body weight (BW2), fork length (FL), head weight (HeadW),
226 headless gutted carcass weight (HGCW) as an indirect measurement of the fillet yield [33] and
227 viscera weight (ViscW). Fillet fat percentage (Fat%) was estimated by micro-waves using a
228 Distell Fish-Fatmeter®. The Fatmeter was applied at the anterior and posterior dorsal positions
229 above the lateral line of the fish's left side [34]. Fat% was the mean of these two measurements.

230 All weights were measured to the nearest 0.5 g, fork length to the nearest 0.5 mm and total fat
231 to the nearest 0.1%. When difference between BW2 and the sum of HGCW, HeadW and ViscW
232 was more than 10 grams, fish BW2 and HGCW data were removed from the dataset (N=24
233 individuals).

234 We analysed body weight (BW2), fork length (FL), fillet fat percentage (Fat%) and headless
235 gutted carcass yield (HGC%) calculated as the ratio of HGCW to BW2.

236 **Genotyping**

237 The collected fin samples from the 99 sires, the 76 dams, 1,382 offspring of B1 and 1,506
238 offspring of B2, were genotyped by INRAE genotyping platform Gentyane (Clermont-Ferrand,
239 France). The 2,888 offspring of B1 and B2 were genotyped for 57,501 SNP (medium-density
240 (MD) genotypes) with the 57K SNP AxiomTM Trout Genotyping array from Thermo Fisher

241 [30]. The 175 parents were genotyped for 664,531 SNP (high density (HD) genotypes) with the
242 665K SNP AxiomTM Trout Genotyping array from Thermo Fisher [31].

243 Among the genotyped individuals, eight offspring from B2 and one sire had less than 90% of
244 the SNP genotyped and their genotypes were therefore removed from the analysis. SNP with
245 probe polymorphism and multiple locations on the Arlee genome assembly (accession number:
246 GCA_013265735.3; [35]) were also discarded from the analysis as described by Bernard et al.
247 [31]. In addition, only SNP with a call rate higher than 0.97, a test of deviation from Hardy-
248 Weinberg equilibrium with a p-value > 0.00001 and a minor allele frequency higher than 0.05
249 were kept for the study. The number of SNP passing quality control filters was 30,325 in MD
250 genotypes and 420,079 in HD genotypes.

251 Parentage assignment was done using 1,000 SNP from the MD chip equidistantly distributed
252 across the genome with the R package APIS [36] with a positive assignment error rate set to
253 5%. A total of 55 fish were unassigned in B1 and 48 in B2, probably due partly to the non-
254 genotyped sire. In B1, the mean number of phenotyped and genotyped progenies per sire, per
255 dam and full-sibs family were respectively 13.5 ± 5.1 , 18.4 ± 6.5 and 2.4 ± 1.4 (unassigned
256 individuals excluded). In B2, the mean number of phenotyped and genotyped progenies per
257 sire, per dam and full-sibs family were respectively 14.8 ± 5.3 , 20.4 ± 8.5 and 2.5 ± 1.5
258 (unassigned individuals excluded).

259 As explained in the data analysis part, maternal effect was significant for acute hyperthermia
260 resistance phenotype. Unassigned individuals were therefore removed from the dataset, making
261 a total of 1,327 analysed fish in B1. Conversely, maternal effect was not significant for
262 phenotypes measured in B2, unassigned individuals were therefore kept. The total number of
263 analysed individuals in B2 was 1,498 (1,506 minus the eight badly genotyped individuals).

264 Utilising quality-filtered genotypes and pedigree information, FImpute3 software [37] was used
265 to impute missing genotypes in both offspring and parents and to impute offspring's MD
266 genotypes to HD ones thanks to the parental reference HD genotypes.

267 **Data analysis**

268 **Estimation of genetic parameters.**

269 Genetic (co)variance components were estimated for all traits with AIREML algorithm in
270 BLUPF90 software [38] using the following animal model:

271
$$y_{ijk} = \mu + day_i + dam_j + u_{ijk} + \varepsilon_{ijk} \quad (1)$$

272 where y_{ijk} is the performance of animal k, μ is the overall mean of the population, day_i is the
273 fixed effect of day of challenge i (day/group of phenotyping for batch 1, day of slaughtering for
274 batch 2), dam_j is the random effect of dam j, u_{ijk} is the additive genetic effect of animal k and
275 ε_{ijk} is the random residual error. Both pedigree and genomic relationship matrices were
276 computed. The pedigree was constituted of 20,372 animals over ten generations. The genomic
277 matrix was built with imputed HD genotypes [39].

278 Heritability of each trait was calculated using univariate analysis with both pedigree and
279 genomic relationship matrices as:

280
$$h^2 = \frac{\sigma_u^2}{\sigma_p^2}$$

281 where σ_u^2 is the additive genetic variance and σ_p^2 is the phenotypic variance.

282 The genetic correlation (r_g) between two traits x and y was calculated using bivariate analyses
283 with both pedigree and genomic relationship matrices:

284

$$r_g = \frac{cov(u_x u_y)}{\sqrt{(\sigma_{u_x}^2 \sigma_{u_y}^2)}}$$

285 where $cov(u_x u_y)$ is the additive genetic covariance between x and y, and $\sigma_{u_x}^2$ and $\sigma_{u_y}^2$ are the
286 additive genetic variance of x and y.

287 **Genome-Wide Association Study and QTL Detection for acute hyperthermia resistance**

288 A Bayesian variable selection model with a Bayes C π approach was used to locate QTL and
289 estimate the proportions of genetic variance explained by the identified QTL [40]. The marker
290 effects were estimated through the Markov Chain Monte Carlo (MCMC) algorithm. At each
291 cycle of the MCMC algorithm, only a given fraction (π) of the 420K markers were assumed to
292 have a non-zero effect on the phenotype and to follow a normal distribution $N(0, \sigma_a^2)$, with σ_a^2
293 the additive genetic variance. The remaining fraction (1- π) of markers have zero-effect.

294 The model was the following:

$$295 TLE_{ijk} = \mu + day_i + dam_j + \sum_{l=1}^n \delta_{lm} z_{kl} a_l + \varepsilon_{ijkm} \quad (2)$$

296 With TLE_{ijk} , the acute hyperthermia resistance phenotype of animal k, μ the overall mean of
297 the population, day_i the fixed effect of day of challenge i, dam_j the random effect of dam j and
298 n the total number of SNP (420,079). δ_{lm} is an indicator variable: within a cycle m, $\delta_{lm}=1$ if
299 the effect of SNP l is estimated in this cycle or $\delta_{lm}=0$ otherwise. In each cycle, δ_{lm} is sampled
300 from a binomial distribution with a probability π that δ_{lm} was equal to 1. The proportion π was
301 sampled from a beta distribution $B(\alpha, \beta)$ with $\alpha=400$ and $\beta=420,079$; it approximatively
302 corresponds to 400 SNP selected at each cycle with a non-zero effect. z_{kl} was the genotype on
303 locus l for individual k (coded as 0, 1, or 2), a_l the effect of the reference allele of SNP l, and

304 ε_{ijkm} the residual effect. The Markov chain Monte Carlo was run with 600,000 cycles and a
305 burn-in period of 10,000 cycles. Results were saved every 40 cycles.

306 Convergence was assessed by two approaches. First, plots of the posterior density of genetic
307 and residual variances were verified by visual inspection. Secondly, genomic breeding values
308 estimated from two differently seeded runs of the MCMC algorithm were highly correlated (r
309 > 0.99).

310 The Bayes factor (BF) was calculated to quantify the degree of association between a SNP and
311 the resistance to acute hyperthermia. For the i^{th} SNP, the BF is equal to $P_i/(1-P_i) \pi/(1-\pi)$, with
312 P_i the probability of the SNP to be included in the model as having a non-zero effect and π , the
313 given fraction of the 420K markers assumed to have a non-zero effect on the phenotype. As
314 proposed by Kass et al. [41], a logBF value (derived as twice the natural logarithm of BF)
315 greater than or equal to a threshold of 6 at a peak SNP was used as strong evidence for the
316 existence of a QTL. Following Michenet et al. [42], a credibility interval was computed around
317 the peak SNP of each QTL including all SNP for which $\log BF \geq 3$ in a sliding window of 200
318 kb on both sides of the peak SNP. Genes within QTL credibility intervals were annotated with
319 the NCBI *O. mykiss* Arlee genome assembly (GCA_013265735.3 USDA_OmykA_1.1; [35]).

320 **TLE depending on genotypes at SNP peaks**

321 We analysed individuals' acute hyperthermia resistance phenotypes depending on their
322 genotypes at the peak SNP of detected QTL. Significance of the difference in TLE between the
323 two homozygous genotypes at each peak SNP was analysed by Anova Tukey tests. The
324 difference was expressed in percentages of the phenotypic standard deviations. Dominance
325 effect was quantified at each SNP peak as the difference between TLE of the heterozygote
326 genotype and the average of the two homozygous genotypes mean TLE. Significance of

327 dominance effect was tested using one sample t-test. Statistical tests were considered significant
328 at an alpha= 0.05.

329 **Pre-validation of identified QTL in isogenic lines of rainbow trout**

330 In a previous experiment, we measured the acute hyperthermia resistance phenotypes of six
331 isogenic lines of rainbow trout at 185 dpf (6 months) and 457 dpf (15 months) using a protocol
332 similar to the one used in the present study [16]. Isogenic lines are powerful experimental
333 genetic resources. Within isogenic lines, fish share the same genotype while the different lines
334 represent a sample of the genetic variability of the INRAE synthetic population from which
335 they were derived [43].

336 At 185 and 457 dpf, the isogenic line named A32h was found to be the most resistant and the
337 isogenic line named A22h was found to be the most sensitive [16]. Consequently, A32h was
338 called the resistant isogenic line and A22h the sensitive isogenic line for the current paper. The
339 four other isogenic lines phenotyped in Lagarde et al. [16] either had an intermediate ranking
340 or changed their position in the resistance ranking between 185 and 457 dpf and were therefore
341 not considered here.

342 Isogenic lines A32h and A22h are heterozygous lines as they were produced by mating females
343 from a unique homozygous isogenic line named B57 with males from homozygous isogenic
344 lines A32 and A22. Therefore, heterozygous isogenic lines A32h and A22h shared the same
345 maternal genetic basis but had different paternal genetic basis. Homozygous isogenic lines A32
346 and A22 have previously been sequenced to establish a catalogue of variants (Bernard et al.,
347 2022). We only looked at the paternal genetic sequences A22 and A32 as maternal genetic
348 sequence B57 was identical between A22h and A32h. Using these data already produced, we
349 checked if some of the commercial population's genetic polymorphisms associated with acute

350 hyperthermia resistance were shared with isogenic lines. To do so, we searched for genetic
351 polymorphism between A22 and A32 in the SNP previously identified to be strongly associated
352 with TLE in the commercial population, i.e. which had $\log BF > 6$. For SNP meeting this
353 criterion, we checked whether the resistant isogenic line held the favourable alleles (reference
354 allele if $a_l > 0$ or the other allele if $a_l < 0$ for the SNP l) as estimated by GWAS in the commercial
355 population.

356 **RESULTS**

357 **Descriptive statistics of collected phenotypes**

358 In the present study, two batches of all-female rainbow trout issued from the same families were
359 phenotyped at 275-285 dpf for acute hyperthermia resistance (B1) or 600-604 dpf for
360 production traits (B2). Descriptive statistics of collected phenotypes are presented in Table 1.

361 Mean BW1 was 85.6 ± 12.0 g in B1. Raw acute hyperthermia resistance was measured as the
362 raw time to loss of equilibrium (rTLE). Mean rTLE was 412 ± 56 minutes, all phenotyping
363 groups together. However, there were significant between-groups differences for rTLE mean
364 (ANOVA, N=1,327, df=6; F value=402.7; P<2.2e-16) and rTLE's standard deviation (Levene's
365 statistic, N=1,327, df=6; F value=56.9; P<0.001). As shown in Table 2, fish of G1 lost
366 equilibrium very quickly and with low variability (mean of 319 ± 14 minutes), fish of G2, G3,
367 G4, G5 and G6 showed intermediate and similar mean and SD (mean between 395 and 447
368 minutes, SD between 23 and 34 minutes) and fish of G7 lost equilibrium lately and with high
369 variability (mean of 474 ± 62 minutes). The kinetics of loss of equilibrium is presented in Figure
370 3. To correct for these between-groups differences, rTLE was centred to 0 and reduced to 1
371 within each phenotyping day to obtain the corrected phenotype, TLE. Minimum and maximum
372 TLE values were -4.5 and 2.7, respectively (Table 1).

373 The number of acclimation days, defined as the days between the arrival of fish on the
374 phenotyping platform and the phenotyping day of each group, and the temperature in the
375 challenge tank at six hours were strongly correlated with these between-groups differences in
376 mean and SD of rTLE. These two factors were confounded with a coefficient of correlation of
377 -0.93: phenotyping groups with the highest acclimation days were also the ones with the lowest
378 temperature in the challenge tank at six hours.

379 The number of days of acclimation varied from two days for G1 to twelve days for G7. The
380 correlations between the number of acclimation day of each phenotyping group and the mean
381 and SD of rTLE within these groups were 0.97 and 0.89, respectively. The temperature in the
382 challenge tank six hours after the start of the challenge was also strongly correlated with TLE
383 mean and SD with correlation coefficients of -0.94 and -0.94, respectively.

384 NH4+ concentration and pH were measured at precise time points in the three first groups.
385 NH4+ concentration was under the threshold of colourimetric detection at the start of each
386 challenge with a pH of 7.4 while between 0.25 and 1.5 mg/L in the three groups with a pH of
387 7.2±0.3 three hours after the start of the challenges, and between 2 and 3 mg/L in the three
388 groups with a pH of 7.2±0.4 six hours after the start of the challenges. CO2 concentration was
389 measured in the first two groups at the start of the challenge (9mg/L) and three hours after
390 (12mg/L).

391 Descriptive statistics of phenotypes for processing traits at commercial size (B2) are given in
392 Table 1. Briefly, mean and coefficient of variation were 977.5 g and 10.9% for BW2, 446.5
393 mm and 3.4% for FL, 4.9% and 24.3% for Fat% and 78.7% and 1.3% for HGC%.

394

395 **Table 1. Descriptive statistics for acute hyperthermia resistance, growth, carcass yield and**
396 **fat in rainbow trout.**

Batch	Name	Trait	N	Mean	SD	Min	Max	CV(%)
B1	rTLE	Raw resistance to acute hyperthermia (min)	1,327	412.2	56.1	261.1	564.4	13.6
	TLE	Standardised resistance to acute hyperthermia (no unit)	1,327	0.0	1.0	-4.5	2.7	NA
	BW1	Body weight of batch B1 (g)	1,327	87.4	12.2	51.5	139.1	13.9
B2	BW2	Body weight of batch B2 (g)	1,470	977.5	106.2	491	1483	10.9
	FL	Fork length (mm)	1,497	446.5	15.2	375	491	3.4
	Fat%	Total fat content in muscle (%)	1,497	4.9	1.2	1.3	9.6	24.3
	HGC%	Headless gutted carcass yield (%)	1,469	78.7	1.0	74.2	81.7	1.3

397 Abbreviations: N, number of fish after filtering bad quality phenotypes and genotypes; SD, standard deviation;

398 Min, minimum value; Max, maximum value; CV, coefficient of variation (SD/mean×100); NA, not applicable.

399

400

401

402

403

404

405

406 **Table 2. Mean and standard deviation of raw TLE (rTLE) in acute hyperthermia**
407 **phenotyping groups in B1.**

Phenotyping group	rTLE mean	rTLE SD	N
G1	318.7	14.1	187 (194)
G2	394.9	23.2	196 (202)
G3	424.8	24.4	192 (204)
G4	424.9	34.2	195 (200)
G5	446.8	34.0	199 (207)
G6	407.4	30.3	196 (202)
G7	473.8	61.6	162 (173)

408 Abbreviations: rTLE mean, mean of raw resistance to acute hyperthermia (in minutes); rTLE SD, standard
409 deviation of raw resistance to acute hyperthermia; N, number of fish phenotyped, genotyped and assigned. In
410 brackets, number of fish phenotyped.

411 **Genetic parameters for TLE and production traits**

412 Heritability estimates and genetic correlations estimated with pedigree-based (Additional Table
413 1) or genomic information (Table 3) gave very similar results for all traits. GBLUP estimates
414 were more accurate with lower SE of estimates than BLUP SE estimates (Table 3, Additional
415 Table 1). Hence, when not specified, results are given for GBLUP model in the rest of the paper
416 and GBLUP results were mainly discussed.

417 BLUP and GBLUP models were tested with and without random dam effect for all traits.
418 Random dam effect improved AIC of BLUP and GBLUP models for TLE but not for the other
419 traits (data not shown) and was therefore only kept in TLE models.

420 Maternal effect was found to explain $7.0 \pm 3.0\%$ of the TLE phenotypic variance in BLUP
421 model and $6.0 \pm 3.0\%$ in GBLUP.

422 Pedigree heritability and genomic heritability of TLE were estimated at similar values of 0.24 ± 0.07 and 0.29 ± 0.05 , respectively. The two extreme groups in mean and SD, G1 and G7, had
423 limited impact on the heritability of TLE. When ignoring G1 and G7 data, heritability estimates
424 based on the remaining groups were 0.31 ± 0.05 and 0.28 ± 0.05 , respectively. For this reason,
425 G1 and G7 were kept in the dataset.

427 Heritability estimates were low for BW1 (0.19 ± 0.04), medium for BW2 (0.26 ± 0.04) and FL
428 (0.31 ± 0.04) and high for Fat% (0.45 ± 0.04) and HGC% (0.61 ± 0.04).

429 As shown in Table 3, genetic correlation estimated between TLE and BW1 was clearly negative
430 (-0.49 ± 0.13). In contrast, those estimated between TLE and BW2 and other production traits
431 (FL, Fat% and HGC%) were all close to zero (between -0.02 ± 0.12 and 0.13 ± 0.10).

432 Phenotypic correlations were only estimated between traits measured within the same batch as
433 it was impossible to estimate them between traits measured on different individuals. Phenotypic
434 correlations are shown in the lower triangle of Table 3. Phenotypic correlation between TLE
435 and BW1 was negative but close to zero: -0.07 ± 0.03 .

436

437

438

439

440 **Table 3. Genetic parameters estimated under GBLUP model for rainbow trout between**
441 **B1 (juveniles) and B2 (harvest size).**

	TLE	BW1	BW2	FL	Fat	HGC%
TLE	0.29 ± 0.05	-0.49 ± 0.13	0.00 ± 0.12	-0.02 ± 0.12	0.13 ± 0.10	0.11 ± 0.10
BW1	-0.07 ± 0.03	0.19 ± 0.04	0.45 ± 0.13	0.35 ± 0.13	-0.05 ± 0.12	-0.20 ± 0.11
BW2	NA	NA	0.26 ± 0.04	0.75 ± 0.05	-0.15 ± 0.10	0.08 ± 0.10
FL	NA	NA	0.86 ± 0.01	0.31 ± 0.04	-0.25 ± 0.09	0.02 ± 0.09
Fat	NA	NA	0.10 ± 0.03	0.01 ± 0.03	0.45 ± 0.04	0.28 ± 0.08
HGC%	NA	NA	0.13 ± 0.03	0.14 ± 0.03	0.19 ± 0.03	0.61 ± 0.04

442 Heritability estimates in bold on the diagonal, genetic correlations on the upper triangle, phenotypic correlations
443 on the lower triangle for standardised time to loss of equilibrium in acute hyperthermia challenge (TLE); BW1,
444 body weight of batch 1; BW2, body weight of batch 2; FL, fork length; Fat%, fillet fat percentage; HGC% headed
445 gutted carcass yield. All values are given ± standard error. NA: not applicable as traits were measured on different
446 individuals.

447 **Genome-wide association study for acute hyperthermia resistance in juveniles**

448 GWAS was performed for TLE using HD genotypes (~420K SNP). The Manhattan plot of the
449 QTL detection is shown in Figure 4. Seven QTL were detected with a $\log_{10}BF \geq 6$ for a peak SNP
450 and located on five chromosomes. Among these seven QTL, the one detected on chromosome
451 30 was discarded as no other SNP had a $\log_{10}BF \geq 3$ in a sliding window of 200 kb around the
452 peak SNP (Affx-1237752048). A visual inspection of the genotyping clusters for this peak SNP
453 indicated that the genotyping of this SNP was of poor quality and that the high $\log_{10}BF$ value
454 should be considered an artefact. Therefore, we only considered the six QTL named TLE2-1,
455 TLE13-1, TLE13-2, TLE13-3, TLE14-1 and TLE17-1 (Table 4).

456 The peak SNP for TLE13-1 showed strong evidence for QTL with a logBF over 10. The whole
457 QTL TLE13-1 explained more than 4% of the total genetic variance of TLE (Table 4). The five
458 other QTL explained less than 1% of the genetic variance each (between 0.11% and 0.63%).
459 This result suggests that resistance to acute hyperthermia is a highly polygenic trait.

460 Sizes of credibility intervals of QTL ranged between 0.12 and 1.07 Mb wide (Table 4). A total
461 of 89 distinct genes were identified across all the QTL regions. The number of genes annotated
462 in each QTL region is given in Table 4 and the gene names are reported in Additional table 2.
463 Literature searches were carried out on genes in all QTL regions to identify genes that were
464 previously associated with acute hyperthermia resistance. Meaningful candidate genes linked
465 to acute hyperthermia resistance were found on QTL 13-1, 13-2 and 13-3 and will be discussed
466 further.

467 **Table 4. QTL effects and locations for acute hyperthermia resistance**

QTL name	Chr.	Peak SNP identifier	Peak SNP		% variance explained by peak SNP		QTL region (Mb)	# SNP in QTL	% variance explained by QTL	# genes in QTL region
			position (Mb)	LogBF	explained by	MAF				
TLE2-1	2	Affx-1237558532	78.97	6.05	0.03	0.34	[78.62-79.45]	160	0.63	8
TLE13-1	13	Affx-1237409861	36.68	11.95	1.13	0.42	[35.86-36.93]	317	4.60	35
TLE13-2	13	Affx-1237407727	45.63	6.66	0.04	0.46	[45.61-45.76]	66	0.20	9
TLE13-3	13	Affx-1237411204	47.37	6.24	0.02	0.24	[47.38-48.02]	205	0.40	25
TLE14-1	14	Affx-1237353641	42.93	10.05	0.25	0.31	[42.94-43.08]	15	0.37	4
TLE17-1	17	Affx-1248428573	20.73	8.15	0.07	0.21	[20.61-20.73]	13	0.11	1

468 Abbreviations: Chr., chromosome; % variance explained by peak SNP, % of genetic variance explained by the
469 peak SNP; MAF, minor allele frequency; % variance explained by QTL, % of genetic variance explained by all
470 the SNP included in the QTL region; #, number.

471

472

473 **Comparison of TLE between genotypes at peak SNP**

474 We analysed the individual TLE of fish, corrected for the dam and day effects, according to
475 their genotypes at the peak SNP of each of the six identified QTL. Differences in TLE between
476 the two homozygous genotypes were between 0.39 and 0.69 depending on SNP (Table 5),
477 representing between 39% and 69% of the TLE phenotypic variation, as TLE was standardised
478 to unity. As expected, the SNP for which the difference between the two homozygous genotypes
479 was the strongest was for TLE13-1, the QTL with the highest logBF. Boxplots of TLE corrected
480 for day and dam effects depending on the genotypes at the peak SNP of the 6 QTL are presented
481 in additional figure 1.

482 Significant dominance effects were observed for genotypes at peak SNP of TLE13-2 (p-value
483 = 0.01) and TLE13-3 (p-value = 0.04) (Table 5).

484 **Table 5. Difference in standardised acute hyperthermia resistance (TLE) for genotypes**
485 **and dominance at the peak SNP.**

SNP identifier	Chr.	position (Mb)	SNP		TLE difference between homozygous genotypes		Dominance effect
			Peak SNP	MAF			
Affx-1237558532	2	78.97	TLE2-1	0.34	0.39		0.00
Affx-1237409861	13	36.68	TLE13-1	0.42	0.69		-0.05
Affx-1237407727	13	45.63	TLE13-2	0.46	0.37		0.09*
Affx-1237411204	13	47.37	TLE13-3	0.24	0.49		-0.08*
Affx-1237353641	14	42.93	TLE14-1	0.31	0.41		-0.04
Affx-1248428573	17	20.73	TLE17-1	0.21	0.45		0.02

486 Abbreviations: Chr., chromosome; MAF, minor allele frequency; Dominance effect, mean difference between
487 the heterozygote genotype TLE and the average of the two homozygous genotypes TLE, “*” means the P-value
488 is inferior to 0.05 significant threshold.

489 **Refinement of QTL using isogenic lines data**

490 Among the SNP present on the HD genotyping array, we identified 52, 68, 13, 45, 5 and 0 SNP
491 respectively in TLE2-1, TLE13-1, -2, -3, TLE14-1 and TLE17-1 regions for which alleles
492 differed between the sensitive and the resistance isogenic lines. Of all these SNP, three SNP
493 located on TLE13-1 and TLE13-2 had a $\log_{10}BF \geq 6$ in the commercial population. Details about
494 these SNP, their effects on the commercial population and the alleles of the resistant and
495 sensitive lines are given in table 6. Consistently, the alleles held by the resistant isogenic line
496 at these 3 SNP were predicted by the GWAS to have a favourable effect on the acute
497 hyperthermia resistance in the selected population and vice-versa for the sensitive line.

498

499 **Table 6. QTL shared between isogenic lines and commercial population.**

QTL name	SNP identifier	Chr.	Pos.	Allele of the		logBF in the commercial population	TLE favourable allele in the commercial population	TLE favourable allele in the commercial population (% of phenotypic standard deviation)
				sensitive paternal line	resistant paternal line			
				(A22)	(A32)			
TLE13-1	Affx-1237410984	13	36891643	A	G	7.6	G	+15
TLE13-2	Affx-1237407727	13	45638002	G	T	6.1	T	+5
TLE13-2	Affx-1237407728	13	45639717	G	A	6.3	A	+6

500 Abbreviations: Chr., chromosome; Pos., position on Arlee genome assembly (GCA_013265735.3
501 USDA_OmykA_1.1).

502

503 Discussion

504 In this study, we investigated the genetic architecture of resistance to acute hyperthermia in a
505 French commercial population of rainbow trout at nine months of age. We estimated the genetic
506 parameters of this trait and its correlations with production traits at a near 1 kg harvest weight
507 (body weight, fork length, carcass yield, and fillet fat percentage). We also identified QTL for
508 resistance to acute hyperthermia and searched for functional candidate genes.

509 Defining acute hyperthermia resistance

510 In acute stress, the exposure to the stressor is short and intense while in chronic stress, the
511 exposure is weaker and repeated over time [44]. However, this definition is context-dependent
512 [45]. For example, in rainbow trout, acute hyperthermia resistance was defined as resistance to
513 hyperthermia in a one-day challenge in Perry et al. [13], while it was in a one-week challenge
514 in Chen et al. [46]. Whether acute or chronic, response to a stressor involves different
515 physiological mechanisms [45,47,48]. Correlation between acute and chronic resistance to
516 temperature was rarely studied but consistently, in rainbow trout and Atlantic salmon, no
517 relationship was found between resistance to acute hyperthermia, measured as temperature at
518 loss of equilibrium within a day, and resistance to chronic hyperthermia, measured as growth
519 or survival at high temperature during more than a month [49,50]. To our knowledge, no
520 research was conducted on the relationships between acute resistance phenotypes to
521 hyperthermia stress at different levels of exposure and intensity, for example between a one-
522 day hyperthermia challenge and a two-day hyperthermia challenge. A better characterisation of
523 the acute hyperthermia resistance phenotype, particularly its genetic and phenotypic
524 correlations with semi-chronic and chronic hyperthermia resistances, would therefore be very
525 valuable, as these stressful conditions might also happen in fish farms but is beyond the scope

526 of this study. Because of this lack of information, in the rest of the discussion, we only
527 considered hyperthermia stress to be acute if it made fish lose equilibrium within a day as we
528 did and semi-chronic or chronic elsewhere.

529 **Phenotyping acute hyperthermia resistance**

530 During acute hyperthermia resistance phenotyping challenges, water quality parameters were
531 carefully checked to ensure they had limited impact on acute hyperthermia resistance of fish.
532 O₂ saturation was constantly maintained above 80% in acute hyperthermia challenges. At this
533 level, it has been shown that O₂ saturation does not interfere with resistance to acute
534 hyperthermia in fish [51–53]. NH₄⁺ concentration reached a maximum between 2 and 3 mg/L
535 with a pH of 7.2 ± 0.4 six hours after the start of challenges. Given the pH and the short duration
536 of the challenge, this NH₄⁺ concentration remains under the toxicity threshold of rainbow trout
537 [54]. CO₂ concentration increased from 9 mg/L to 12 mg/L in the first three hours of the
538 challenge. Chronic exposure for six months to a twice higher CO₂ concentration (24 ± 1 mg/L)
539 was reported to have no significant impact on rainbow trout growth and survival [55]. NH₄⁺
540 and CO₂ concentrations increases were therefore assumed to have minor effects on the
541 resistance of fish to acute hyperthermia.

542 In the present paper, acute hyperthermia resistance was measured as the raw time before loss
543 of equilibrium. In contrast, some other studies used cumulative degrees to quantify resistance
544 to acute hyperthermia [13,16,56]. Cumulative degrees are calculated as a combination between
545 time and temperature: the difference between temperature at each minute of the challenge and
546 the initial temperature is cumulated from the beginning of the challenge to the time of loss of
547 equilibrium [13]. Cumulative degrees phenotype is supposed to correct for differences in
548 temperature increase rate between groups. However, in the present study, phenotypic
549 correlation between cumulative degrees and raw time before loss of equilibrium was 0.98 and

550 genetic correlation estimation did not converge as these two phenotypes were too correlated.
551 This strong correlation might not be true in studies with more considerable variations in
552 temperature arising between phenotyping groups compared to the present study. Because of
553 this similarity between the two phenotypes, we decided to use the simplest one, time before loss
554 of equilibrium.

555 There were significant disparities between phenotyping groups in terms of mean and SD of the
556 rTLE. The number of acclimation days before challenge and the temperature six hours after the
557 start of the challenge were strongly correlated with the groups rTLE means and SD and
558 therefore may explain these disparities. However, these two factors being confounded, it was
559 impossible to determine which of them had a predominant effect on acute hyperthermia means
560 and SD of groups.

561 Acclimation, particularly the acclimation temperature which precedes acute hyperthermal
562 stress, is a well-known factor influencing acute hyperthermia resistance of fish [10]. In the
563 present study, first groups to be phenotyped were less acclimated to the river temperature (16-
564 18°C) which was higher than the temperature (11-12°C) in the fish farm before acute
565 hyperthermia resistance phenotyping and during the transportation to the phenotyping platform
566 (11-13°C). First groups to be phenotyped, thus less acclimated to 16-18°C higher temperature,
567 had a lower mean in acute hyperthermia resistance. This was consistent with Chen et al. [57]
568 which showed a strong positive correlation of 0.74 between acclimation temperature and acute
569 hyperthermia resistance in rainbow trout.

570 The second identified factor was the temperature after six hours of challenge which was highly
571 correlated with acute hyperthermia resistance means and SD of groups. Logically, phenotyping
572 groups with a lower temperature after six hours of challenge resisted longer acute hyperthermia
573 stress, as in Becker et al. [58]. Lower temperature increase rates could also increase acute

574 hyperthermia resistance SD in ectotherms such as in the Cuyaba dwarf frog *Physalaemus*
575 *nattereri* although this varies between species [59]. In the present study, we consistently found
576 that phenotyping groups with a lower temperature after six hours of challenge had a higher
577 mean and SD in acute hyperthermia resistance.

578 Group disparities were corrected by centring and reducing rTLE by group of challenge (TLE).

579 **Heritability estimates for acute hyperthermia resistance in juveniles and**
580 **production traits**

581 Pedigree- and genomic-based heritability estimates for acute hyperthermia resistance at 280 dpf
582 were 0.24 ± 0.07 and 0.29 ± 0.05 , respectively. These estimates are lower but consistent with
583 an earlier study which reported a pedigree-based heritability of 0.41 ± 0.07 on a North-
584 American population of commercial rainbow trout at an age between 148 and 300 dpf [13]. Our
585 lower estimate of heritability is associated with the inclusion of the maternal effect, explaining
586 6-7% of TLE phenotypic variance. A maternal effect of similar magnitude was also detected
587 for acute hypoxia resistance at 270 dpf in rainbow trout [60]. Ignoring the random maternal
588 effect, the pedigree- and genomic-based estimates of heritability were increased to 0.39 ± 0.06
589 and 0.35 ± 0.04 , i.e. similar to the estimate of Perry et al. [13]. We have no information on
590 whether the significance of maternal effect was checked in Perry et al. [13].

591 The discovery of a significant maternal effect at age as late as 280 dpf was surprising as
592 generally the magnitude of the maternal effect tends towards zero within the first year of life in
593 fish for traits like growth or survival [61,62]. It seems that the magnitude of maternal effects on
594 acute hyperthermia resistance also shrinks with age in salmonids: maternal effects were found
595 to explain 77% of acute hyperthermia resistance phenotypic variance in chinook salmon

596 *Oncorhynchus tshawytscha* larvae weighing between 0.6 and 3.6 g [63] while it was not
597 significant for acute hyperthermia resistance in Atlantic salmon at 297 dpf [64].

598 In chinook salmon larvae, there was a strong correlation between the average egg diameter of
599 females and the average acute hyperthermia resistance of their offspring, suggesting that the
600 significant maternal effect could be due to the size of the eggs [63]. In the present study, there
601 was no sorting of eggs by size. It is therefore possible that the maternal effect comes from
602 differences in mean egg size between females. Another hypothesis of the significant maternal
603 effect could be the maternal intergenerational plasticity effects and more particularly their
604 effects on mitochondria. Hence, acclimation of dams to high temperatures was shown to
605 significantly affect the mitochondria respiration capacities of their offspring for up to at least
606 60 days in the sticklebacks *Gasterosteus aculeatus* [65]. Body weight of these offspring was
607 shown to be influenced by the dam acclimation temperature, probably induced by the different
608 mitochondria respiration capacities [65]. Still, in the sticklebacks, warmer temperatures
609 experienced by dam were shown to influence mitochondrial DNA level in oocytes [66].
610 Mitochondrial DNA level in oocytes was shown to significantly affect growth and mortality at
611 least in the first week of life [66]. It is therefore possible that maternal intergenerational
612 plasticity could impact other traits such as acute hyperthermia resistance.

613 The heritability of BW1 was found in the low range of previous estimates for BW at similar
614 ages (0.20-0.28) [67,68]. Heritability estimates for all other production traits were also found
615 consistent with those of a study on 17-month-old rainbow trout issued from another French
616 commercial population of rainbow trout [69].

617 **Genetic correlations between acute hyperthermia resistance in juveniles and**
618 **other traits**

619 Genetic correlations were estimated between acute hyperthermia resistance and production
620 traits commonly selected in fish breeding programs. The interest in estimating genetic
621 correlations is twofold. First, from a biological point of view, the genetic correlations are likely
622 to reveal the possible existence of shared biological pathways between traits [70]. Secondly,
623 from a breeder's point of view, the genetic correlations predict the influence of selecting one
624 trait on responses for other traits of interest. Therefore, estimating genetic correlations is
625 essential for describing the genetic architecture of a trait, as well as for optimisation of breeding
626 programs.

627 The phenotypic correlation between TLE and BW1, both traits measured on B1 between 275
628 and 285 dpf, was close to zero but lightly negative (-0.07 ± 0.03). This result is consistent with
629 the literature in which BW was reported to have a zero or negative effect on acute hyperthermia
630 resistance in fish (reviewed in [71]).

631 The genetic correlation between TLE and BW1 was clearly negative (-0.49 ± 0.13). A previous
632 study estimated a null genetic correlation (-0.03 ± 0.18) between acute hyperthermia resistance
633 and body weight at 210-259 dpf in a North American population of rainbow trout [13]. This
634 difference in result between the present study and the one from Perry et al. [13] might be due
635 to genetic or environmental differences between the studied populations as was observed in
636 Kause et al. for body weight [72], the different phenotyping ages or the method to produce the
637 families by separated or mixed family rearing. However, our result is consistent with Debes et
638 al. [64] which found in first-year Atlantic salmon a clearly negative genetic correlation of -0.86
639 ± 0.49 between acute hyperthermia resistance and fork length, fork length being highly
640 correlated with body weight in Atlantic salmon [73] as well as in rainbow trout as shown in
641 Table 3 and in Haffray et al. [32]. Trade-offs were suggested between body weight and acute
642 hyperthermia resistance in rainbow trout [11,16,24] and in fish in general [71,74], suggesting

643 that there are physiological mechanisms underlying this negative relationship and thus
644 potentially genetic basis. A controversial hypothesis to explain this link between body weight
645 and acute hyperthermia resistance is the oxygen- and capacity-limitation of thermal tolerance.
646 This theory states that the point of failure of acute hyperthermia resistance in fish is due to the
647 inability of the organism to supply enough oxygen to the tissues as oxygen requirements
648 increase exponentially with temperature [75]. Larger fish would be more sensitive to
649 hyperthermia as their aerobic scope could be reduced compared to smaller fish [75]. However,
650 this theory failed to predict acute hyperthermia resistance in some fish species and is therefore
651 not enough by itself [51,76,77]. We also looked at whether QTL could be overlapping between
652 TLE and BW1 and could explain some of this strong genetic correlation. Hence, TLE13-1, the
653 most evident QTL associated with acute hyperthermia resistance was found in the same position
654 as a QTL related to BW previously found in another population of rainbow trout at 410-481
655 dph [78]. In the present study, we found 1 QTL for BW1 and 12 QTL for BW2. Positions of
656 BW QTL are given in Additional table 3. However, in our population, none of these QTL was
657 at similar locations as the one identified in Ali et al. [78] or overlapped with any of the QTL
658 associated with TLE we detected.

659 We estimated the genetic correlations between TLE and the production traits at near harvest
660 age. The main selected trait in rainbow trout breeding programs is growth [15]. The genetic
661 correlation between TLE and BW2 was not significantly different from zero. Selecting for acute
662 hyperthermia resistance at nine months would therefore have no impact on growth at twenty
663 months and vice versa.

664 Two opposing hypotheses may explain why genetic correlation is non-significant between TLE
665 and BW2 while it is significant between TLE and BW1.

666 The first hypothesis would be that acute hyperthermia resistance is not a stable trait between
667 nine and twenty months in rainbow trout. According to this hypothesis, fish resistance rankings
668 to acute hyperthermia might change between ages and thus, genetic correlations estimated
669 between production traits measured at twenty months and TLE measured at nine months might
670 be poorly informative on the genetic correlations between production traits measured at twenty
671 months and TLE measured at any other age than nine months. Genetic correlation between
672 acute hyperthermia resistance at twenty months (not measured in the present study) and BW2
673 might still be strongly negative. Therefore, selecting for resistance to acute hyperthermia at nine
674 months would not improve resistance throughout the life cycle of the fish, which would lose
675 some of the interest in selecting for this trait. However, this is not the most likely hypothesis as
676 several studies have shown good repeatability of acute hyperthermia resistance in brook trout
677 *Salvelinus fontinalis* and rainbow trout over one year [16,56,79]. One study found no
678 repeatability of acute hyperthermia resistance in sea bass *Dicentrarchus labrax* over eleven
679 months [80]. However, it was in a semi-natural uncontrolled environment with strong genetic
680 x environment interactions.

681 A second hypothesis would be that acute hyperthermia resistance is a stable trait with age and
682 that the negative genetic correlation between acute hyperthermia resistance and body weight
683 shrinks with age in rainbow trout. The stability of acute hyperthermia resistance trait with age
684 is consistent with the studies cited in the previous paragraph. The shrinking genetic correlation
685 between acute hyperthermia resistance and BW with age is consistent with Lagarde et al. [16]
686 where body weight was found to have a significant effect on acute hyperthermia resistance in
687 rainbow trout at nine months, but no effect at twenty months. If this assumption is correct,
688 selecting for acute hyperthermia resistance at any age would have no impact on growth at
689 twenty months and vice versa.

690 The genetic correlations between TLE and the other production traits (FL, Fat% and HGCW)
691 were also close to zero. Therefore, selecting for TLE at nine months should have no impact on
692 these traits and BW2 at twenty months. Also, current selection for production traits should not
693 have impaired the acute hyperthermia resistance of rainbow trout.

694 **QTL associated with acute hyperthermia resistance in juveniles**

695 In this study, we identified six QTL associated with acute hyperthermia resistance in a French
696 commercial population of rainbow trout using a high-density chip with 665K SNP. QTL were
697 found on chromosomes 2, 13, 14 and 17. Previous studies identified QTL associated with acute
698 hyperthermia resistance on chromosomes 1, 9, 19 and sexual chromosome Y in a North-
699 American population of rainbow trout using a limited number of markers composed of
700 allozymes, RAPD and microsatellites [24–27,81]. The absence of common QTL between the
701 present study and the previous ones is not surprising as population origins and marker densities
702 are very different [82].

703 In total, the six QTL only explained 5% of the genetic variance of acute hyperthermia resistance
704 (Table 4), of which the main QTL TLE13-1 explained 4% by itself. This suggests that resistance
705 to acute hyperthermia is a highly polygenic trait in rainbow trout. Nevertheless, phenotypic
706 differences according to genotypes at the peak SNP were substantial, with a mean TLE
707 difference of up to 69% of phenotypic standard deviation between the favourable and
708 unfavourable homozygotes. This phenotypic difference between homozygotes is considerable.
709 In comparison, differences of 12% and 28% of phenotypic standard deviation between
710 homozygotes at peak SNP for acute hyperthermia resistance were reported in the channel
711 catfish and turbot *Scophthalmus maximus*, respectively [28,83]. Thus, despite the low
712 percentage of genetic variance explained at the population level, SNP peaks of the detected

713 QTL seem to be good candidates for marker-assisted selection for acute hyperthermia resistance
714 in the studied population.

715 In rainbow trout, previous studies have detected QTL associated with chronic hyperthermia
716 resistance, i.e. the ability of fish to survive under chronic hyperthermia stress [46], and
717 tolerance, i.e. the ability of fish to grow under chronic hyperthermia stress [84]. None of the
718 QTL found in these two studies overlapped the QTL we detected in the present study. This
719 result was expected as QTL tend to be population-specific, and also because resistance to acute
720 hyperthermia and resistance or tolerance to chronic hyperthermia were shown to be distinct
721 traits in salmonids [49,50].

722 **Functional candidate genes implicated in acute hyperthermia resistance**

723 In fish, GWAS for acute hyperthermia resistance were previously performed on the channel
724 catfish [28] and the large yellow croaker [29]. These two studies identified 15 and 98 genes in
725 the detected QTL regions respectively. Among these genes, one gene from the *dnaj* gene family
726 (also called *hsp40* gene family) was systematically reported in the two studies: *dnajc25* in [28]
727 and *dnajb4* in [29].

728 In line with these studies, we identified *dnajc7* at 150 kb from the SNP peak of the most
729 significant QTL (TLE13-1). Dnaj proteins are co-chaperones of heat shock protein 70 (Hsp70),
730 playing an important role in regulating this latter by recruiting Hsp70 partners and regulating
731 the ATPase activity of the chaperone cycle [85]. In rainbow trout, *dnaj* family was found to be
732 overexpressed in several organs (heart, brain, liver, spleen) during acute hyperthermia stress
733 [86,87] and individuals over-expressing *dnaj* genes were found more resistant to acute heat
734 stress than fish with a lower level of expression [88,89]. These results suggest that *dnaj* is a key
735 gene family for resistance to acute hyperthermia in rainbow trout and other fish species.

736 Another member of *dnaj* family was also reported in a GWAS on chronic hyperthermia stress
737 resistance in turbot with a time to loss of equilibrium higher than one week [83]. This result
738 was surprising as there is growing evidence that acute and chronic hyperthermia resistances are
739 distinct traits as previously mentioned in rainbow trout [49] and Atlantic salmon [50].
740 Nevertheless, it seems possible that some mechanisms of resistance to acute and chronic
741 hyperthermia stress could be shared.

742 Still in TLE13-1 region, we identified other promising functional candidate genes. Indeed, very
743 close to the peak SNP (less than 100 kb), we identified *hsp70b* and other *hsp70* homologues.
744 *hsp70* genes family has several functions including molecular chaperoning and assisting the
745 restoration or degradation of altered proteins [90]. *hsp70* genes are commonly associated with
746 protein folding in generic response to stress exposure and more particularly acute hyperthermia
747 exposure. In rainbow trout, larvae with a strong ability to upregulate the *hsp70b* gene were
748 found significantly more resistant to acute hyperthermia compared to others [91] and in adults,
749 *hsp70* was demonstrated to be upregulated during acute hyperthermia exposure [92,93]. *hsp70b*
750 was also shown to be the most over-expressed gene between a thermally selected strain and a
751 thermal naïve strain of rainbow trout [89] and *hsp70b* was found to be the most over-expressed
752 gene of the *hsp* family during acute hyperthermia conditions on immortalised rainbow trout
753 gonadal fibroblasts [94]. *hsp70* was also demonstrated to have a role in acute hyperthermia
754 resistance in other species. For example, in bay scallops *Argopecten irradians*, polymorphism
755 in *hsp70* promoters significantly affected acute hyperthermia resistance, with *hsp70* being
756 upregulated in more resistant individuals [95]. In the fruitfly *Drosophila buzzatii*, selection for
757 heat resistance up to 64 generations has increased expression of *hsp70* [96].

758 *dnajc7* and *hsp70* are close genes, only 15 kb apart. Moreover, they were shown to interact in
759 similar pathways and notably during acute hyperthermia stress in mammals and fish [97–

760 99]. These two properties suggest that these two genes may constitute a supergene associated
761 with acute hyperthermia resistance, as previously identified for sex-specific migratory tendency
762 in rainbow trout [100]. Supergenes are a group of segregated loci providing integrated control
763 of complex adaptive phenotypes [101]. In other words, we hypothesise that *dnajc7* and *hsp70*
764 have a role in acute hyperthermia resistance and that perhaps there are particularly favourable
765 allelic combinations of these two genes.

766 We identified four other potential candidate genes for QTL TLE13-1: *nkiras2*, *cdk12*, *phb*, and
767 *fkbp10*. These genes may be related to resistance to acute hyperthermia although less evident
768 than *dnaj* and *hsp70*. The protein coded by *nkiras2* (NF-κB-inhibitor-interacting Ras 2) was
769 shown to regulate NF-κB factors which are implied in homeostasis maintenance in mammalian
770 cells [102] and in increasing the transduction of genes involved in inflammatory response in
771 rainbow trout [103]. *nkiras2* was shown to be upregulated in gills of the chinook salmon
772 exposed to acute hyperthermia stress (12°C to 25°C in three hours) [104]. *cdk12* is a Pol II CTD
773 kinase. In the fruitfly *Drosophila melanogaster*, *cdk12* was shown to be involved in the control
774 of the transcription of a set of genes involved in response to various stress factors: heat shock
775 [105], DNA damage [106] and oxidative stress [107]. A lack of function of *cdk12* was shown
776 to increase the sensitivity of flies to oxidative stress [107]. Prohibitin (*phb*) is a highly conserved
777 protein involved in many diverse functions such as chaperoning activities in mitochondria
778 [108], the activation of transcription signalling pathways [109] or the regulation of cell survival
779 and apoptosis [110]. *phb* was shown to be upregulated under acute heat stress in salt marsh
780 mussel *Geukensia demissa* [111] and in a cell line derived from a human tongue squamous cell
781 carcinoma [112]. These two studies disagree on the presumed role of prohibitin: Fields et al.
782 (2016) hypothesised that prohibitin level increased in cells to delay or prevent heat-induced
783 apoptosis while Jiang et al. (2013) argued that the increased abundance of prohibitin in cells
784 may promote their apoptosis. Since prohibitin has many functions, some of which are poorly

785 understood, it is difficult to know what effect this protein might have on resistance to acute
786 hyperthermia in rainbow trout. *fkbp10* is part of the FK506-binding proteins genes family,
787 involved in multiple functions including protein folding and repairing [113]. *fkbp10* was shown
788 to be downregulated in salmonids subjected to chronic heat stress [114]. However, no study
789 reported a differential expression of *fkbp10* during acute hyperthermia stress in fish.

790 In the isogenic lines, we found that the resistant line to acute hyperthermia was holding an allele
791 which was also predicted to improve the resistance to acute hyperthermia in the commercial
792 population in position 36.892 Mb of chromosome 13 while the sensitive isogenic line was
793 carrying the deleterious allele. It seems that QTL TLE13-1 could be shared between the
794 commercial population and isogenic lines, two distinct populations of rainbow trout with
795 moderate genetic distance. Indeed, the fixation index (Fst) value was estimated at 0.09 [115]
796 between the studied commercial population and the INRAE synthetic line from which isogenic
797 lines were derived. Moreover, this new information, obtained from the whole-genome
798 sequencing of the isogenic lines, refines the likely position of the TLE13-1 QTL candidate
799 genes close to the position 36.892 Mb. This seems to confirm that genes near this position
800 (*hsp70* genes family 36.744-36.827 Mb, *dnajc7* 36.842-36.851 Mb and *nkiras2* 36.851-36.853
801 Mb) are highly plausible functional candidate genes.

802 On TLE13-2, we identified two interesting genes previously found to be differentially
803 expressed during acute hyperthermia exposure in fish: *ddx5* and *cygb1*. After acute
804 hyperthermia stress, *ddx5* (probable ATP-dependent RNA helicase *ddx5*) was significantly
805 downregulated in the salmonid taimen *Hucho taimen* [116] and *cygb1* (cytoglobin-1) was
806 significantly upregulated in the channel catfish [117]. The resistant isogenic line was found to
807 carry two alleles predicted to increase TLE in the commercial population. These two alleles are

808 located in positions 45.638 and 45.640 Mb, which is closer to *ddx5* location (45.622-45.626
809 Mb) than *cygb1* one (45.711-45.717 Mb).

810 On TLE13-3, the gene *enpp7* (ectonucleotide pyrophosphatase/phosphodiesterase family
811 member 7) was found close to the peak SNP. The protein from *enpp7* is an alkaline
812 sphingomyelinase which hydrolyses membrane sphingomyelin to ceramide and
813 phosphocholine [118]. We found no direct or indirect link between *enpp7* function and acute
814 hyperthermia resistance but a GWAS of acute hyperthermia tolerance in pacific abalone
815 *Haliotis discus* also found *enpp7* in a QTL region [119], indicating a possible role of this gene
816 in acute hyperthermia resistance.

817 Last but not least, seven nuclear genes among the candidate genes were found to encode
818 proteins with strong support of mitochondrial localisation in human according to the Human
819 MitoCarta3.0 database (<https://www.broadinstitute.org/mitocarta>). These genes, some of which
820 already discussed, were *pdhx* (TLE-2-1), *phb*, *fkbp10*, *acly*, *hsp70* (TLE-13-1), *elac2* and *sco1*
821 (TLE-13-3). One limitation of acute hyperthermia resistance in fish may be related to the
822 disrupted ability of mitochondria to produce ATP at high temperatures although evidence is
823 still limited [120]. Interestingly, *pdhx* and *acly* genes are involved in ATP anabolic or catabolic
824 processes. Pdhx, the pyruvate dehydrogenase protein X is part of the pyruvate dehydrogenase
825 complex which catalyses the oxidative decarboxylation of pyruvate into acetyl-CoA, a reaction
826 which notably ensures the link between glycolysis and the Krebs cycle [121,122]. Acly, the
827 ATP citrate lyase, is an enzyme involved in fatty acid biosynthesis, generating acetyl-CoA from
828 citrate by consuming ATP [123,124]. This also strengthens the hypothesis that the significant
829 maternal effect found for TLE is related to mitochondria as mentioned above.

830 **Conclusion**

831 This work provides new insights into the genetic architecture of acute hyperthermia resistance
832 in rainbow trout juveniles using a novel high-density genotyping array with 665K markers.
833 Heritability was moderate, and genetic correlations between acute hyperthermia resistance at
834 juvenile stage and main production traits measured in sibs at harvest age were close to zero.
835 Incorporating a trait for resistance to acute hyperthermia would make it possible to obtain robust
836 animals without reducing production performance. However, this should be confirmed by
837 ensuring that the genetic correlation between TLE at juvenile stage and harvest age is high. Our
838 study demonstrated that acute hyperthermia resistance is polygenic in rainbow trout which is
839 consistent with observations in other fish species. Indeed, the six identified QTL only explained
840 around 5% of the genetic variance. The most significant QTL, located on chromosome 13,
841 explained 4% of the genetic variance and genes directly associated with acute hyperthermia
842 resistance (hsp70 genes family and dnajc7) were found close to the peak SNP of this QTL. QTL
843 also contained genes associated with protein chaperoning, oxidative stress response,
844 homeostasis maintenance and cell survival making them good candidates for further functional
845 validation. As a preliminary validation of detected QTL, we investigated the genotypes of two
846 isogenic lines showing contrasting resistance to acute hyperthermia. The resistant isogenic line
847 was shown to carry favourable alleles in the region of two (including the main QTL) of the six
848 QTL which shows that these QTL may be shared between distinct populations. Despite the
849 polygenic architecture of acute hyperthermia resistance, the phenotypic mean difference
850 between homozygotes at SNP peaks of QTL was strong, showing great potential for marker-
851 assisted selection. All these results demonstrate the relevance of selective breeding to improve
852 fish acute hyperthermia resistance.

853 **Declarations**

854 **Ethics approval and consent to participate**

855 The experiment was carried out according to the European guidelines; the protocols were
856 evaluated and approved by the ethic committee ANSES/ENVA/UPC No 16 and authorised by
857 the French ministry of higher education and research (APAFIS#24441-2020022417122193).

858 **Consent for publication**

859 Not applicable

860 **Availability of data and materials**

861 The data used for this research are not publicly available.

862 **Competing interests**

863 The authors declare that they have no competing interests

864 **Funding**

865 This study was supported by the European Maritime and Fisheries Fund and FranceAgrimer
866 (Hypotemp project, n° P FEA470019FA1000016) and ANR PIA funding: ANR-20-IDEES-
867 0002.

868 **Authors' contributions**

869 HL: Investigation, Resources, Methodology, Software, Formal analysis, Data curation,
870 Validation, Visualization, Writing - original draft, Writing - review & editing. DL: Funding
871 acquisition, Project administration, Supervision, Conceptualization, Writing - review & editing.
872 PP: Project administration, Conceptualization, Investigation, Resources. MP: Software, Writing
873 - review & editing. YF: Investigation, Resources. JA: Methodology, Software. ES:
874 Investigation, Resources, Writing - review & editing. AAP: Investigation, Resources. FC:
875 Project administration, Investigation, Resources. PH: Funding acquisition, Project
876 administration, Writing - review & editing. AD: Resources, Methodology, Software. MDN
877 Funding acquisition, Project administration Supervision, Conceptualization, Writing - review

878 & editing. FP: Methodology, Software, Formal analysis, Data curation, Validation, Writing -
879 review & editing.

880 **Acknowledgements**

881 We are grateful to Yoann Cachelou from Viviers de Sarrance and Romain Morvezen from
882 SYSAAF for their invaluable help in data collection.

883 **References**

884 1. Boyd CE, McNevin AA, Davis RP. The contribution of fisheries and aquaculture to the
885 global protein supply. *Food Secur.* Springer Netherlands; 2022;805–27. Available from:

886 <https://doi.org/10.1007/s12571-021-01246-9>

887 2. FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation.

888 Rome: FAO; 2022. Available from:

889 https://www.fao.org/3/ca9229en/online/ca9229en.html#chapter-1_1

890 3. Maulu S, Hasimuna OJ, Haambya LH, Monde C, Musuka CG, Makorwa TH, et al.

891 Climate Change Effects on Aquaculture Production: Sustainability Implications, Mitigation,
892 and Adaptations. *Front Sustain Food Syst.* 2021;5.

893 4. Alfonso S, Gesto M, Sadoul B. Temperature increase and its effects on fish stress
894 physiology in the context of global warming. *J Fish Biol.* 2021;98:1496–508.

895 5. Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, et al. Increased
896 temperature variation poses a greater risk to species than climate warming. *Proc R Soc B Biol
897 Sci.* 2014;281.

898 6. Sandblom E, Clark TD, Gräns A, Ekström A, Brijs J, Sundström LF, et al. Physiological

899 constraints to climate warming in fish follow principles of plastic floors and concrete ceilings.

900 Nat Commun. 2016;7:1–8.

901 7. Wade NM, Clark TD, Maynard BT, Atherton S, Wilkinson RJ, Smullen RP, et al. Effects
902 of an unprecedeted summer heatwave on the growth performance, flesh colour and plasma
903 biochemistry of marine cage-farmed Atlantic salmon (*Salmo salar*). J Therm Biol. Elsevier
904 Ltd; 2019;80:64–74. Available from: <https://doi.org/10.1016/j.jtherbio.2018.12.021>

905 8. Reid GK, Gurney-Smith HJ, Flaherty M, Garber AF, Forster I, Brewer-Dalton K, et al.
906 Climate change and aquaculture: Considering adaptation potential. Aquac Environ Interact.
907 2019;11:603–24.

908 9. Pettinau L, Seppänen E, Sikanen A, Anttila K. Aerobic Exercise Training With Optimal
909 Intensity Increases Cardiac Thermal Tolerance in Juvenile Rainbow Trout. Front Mar Sci.
910 2022;9:1–13.

911 10. Beitinger TL, Bennett WA, Mccauley RW. Beitinger et al. 2000. Environ Biol Fishes.
912 2000;58:237–75. Available from: <https://link-springer-com.scd-proxy.univ-brest.fr/content/pdf/10.1023%2FA%3A1007676325825.pdf>

913 11. Roze T, Christen F, Amerand A, Claireaux G. Trade-off between thermal sensitivity,
914 hypoxia tolerance and growth in fish. J Therm Biol. Elsevier; 2013;38:98–106. Available
915 from: <http://dx.doi.org/10.1016/j.jtherbio.2012.12.001>

916 12. G. J-M, Falconer DS. Introduction to Quantitative Genetics. Popul. (French Ed. 1962).

917 13. Perry GML, Martyniuk CM, Ferguson MM, Danzmann RG. Genetic parameters for upper
918 thermal tolerance and growth-related traits in rainbow trout (*Oncorhynchus mykiss*).
919 Aquaculture. 2005;250:120–8.

921 14. Morgan R, Finnøen MH, Jensen H, Pélalon C, Jutfelt F. Low potential for evolutionary
922 rescue from climate change in a tropical fish. *Proc Natl Acad Sci U S A.* 2020;117:33365–72.

923 15. Chavanne H, Janssen K, Hofherr J, Contini F, Haffray P, Aquatrace Consortium, et al. A
924 comprehensive survey on selective breeding programs and seed market in the European
925 aquaculture fish industry. *Aquac Int.* 2016;24:1287–307.

926 16. Lagarde H, Phocas F, Pouil S, Goardon L, Bideau M, Guyvarc'h F, et al. Are resistances
927 to acute hyperthermia or hypoxia stress similar and consistent between early and late ages in
928 rainbow trout using isogenic lines? *Aquaculture.* 2023;562.

929 17. Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping
930 including phenotypes from relatives without genotypes. *Genet Res (Camb).* 2012;94:73–83.

931 18. Ren D, An L, Li B, Qiao L, Liu W. Efficient weighting methods for genomic best linear-
932 unbiased prediction (BLUP) adapted to the genetic architectures of quantitative traits.
933 *Heredity (Edinb).* Springer US; 2021;126:320–34. Available from:
934 <http://dx.doi.org/10.1038/s41437-020-00372-y>

935 19. Zhou Q, Chen Y dong, Lu S, Liu Y, Xu W teng, Li Y zhen, et al. Development of a 50K
936 SNP Array for Japanese Flounder and Its Application in Genomic Selection for Disease
937 Resistance. *Engineering.* Chinese Academy of Engineering; 2021;7:406–11. Available from:
938 <https://doi.org/10.1016/j.eng.2020.06.017>

939 20. Fraslin C, Koskinen H, Nousianen A, Houston RD, Kause A. Genome-wide association
940 and genomic prediction of resistance to *Flavobacterium columnare* in a farmed rainbow trout
941 population. *Aquaculture.* 2022;557.

942 21. Houston RD, Haley CS, Hamilton A, Guy DR, Tinch AE, Taggart JB, et al. Major

943 quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon

944 (*Salmo salar*). *Genetics*. 2008;178:1109–15.

945 22. Moen T, Baranski M, Sonesson AK, Kjøglum S. Confirmation and fine-mapping of a

946 major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (*Salmo salar*):

947 Population-level associations between markers and trait. *BMC Genomics*. 2009;10:1–14.

948 23. Yue GH. Recent advances of genome mapping and marker-assisted selection in

949 aquaculture. *Fish Fish*. 2014;15:376–96.

950 24. Jackson TR, Ferguson MM, Danzmann RG, Fishback AG, Ihssen PE, O'Connell M, et al.

951 Identification of two QTL influencing upper temperature tolerance in three rainbow trout

952 (*Oncorhynchus mykiss*) half-sib families. *Heredity (Edinb)*. 1998;80:143–51.

953 25. Danzmann RG, Jackson TR, M. Ferguson M. Epistasis in allelic expression at upper

954 temperature tolerance QTL in rainbow trout. *Aquaculture*. 1999;173:45–58.

955 26. Perry GML, Danzmann RG, Ferguson MM, Gibson JP. Quantitative trait loci for upper

956 thermal tolerance in outbred strains of rainbow trout (*Oncorhynchus mykiss*). *Heredity*

957 (Edinb). 2001;86:333–41.

958 27. Perry GML, Ferguson MM, Sakamoto T, Danzmann RG. Sex-linked quantitative trait loci

959 for thermotolerance and length in the rainbow trout. *J Hered*. 2005;96:97–107.

960 28. Jin Y, Zhou T, Geng X, Liu S, Chen A, Yao J, et al. A genome-wide association study of

961 heat stress-associated SNPs in catfish. *Anim Genet*. 2017;48:233–6.

962 29. Wu Y, Zhou Z, Pan Y, Zhao J, Bai H, Chen B, et al. GWAS identified candidate variants

963 and genes associated with acute heat tolerance of large yellow croaker. *Aquaculture*. Elsevier

964 B.V.; 2021;540:736696. Available from: <https://doi.org/10.1016/j.aquaculture.2021.736696>

965 30. Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, et al. The development and
966 characterization of a 57K single nucleotide polymorphism array for rainbow trout. *Mol Ecol*
967 *Resour.* 2015;15:662–72.

968 31. Bernard M, Dehaullon A, Gao G, Paul K, Lagarde H, Prchal M, et al. Development of a
969 high-density 665 K SNP array for rainbow trout genome-wide genotyping. 2022;

970 32. Haffray P, Bugeon J, Rivard Q, Quittet B, Puyo S, Allamelou JM, et al. Genetic
971 parameters of in-vivo prediction of carcass, head and fillet yields by internal ultrasound and
972 2D external imagery in large rainbow trout (*Oncorhynchus mykiss*). *Aquaculture*. Elsevier
973 B.V.; 2013;410–411:236–44. Available from:
974 <http://dx.doi.org/10.1016/j.aquaculture.2013.06.016>

975 33. Haffray P, Bugeon J, Pincent C, Chapuis H, Mazeiraud E, Rossignol MN, et al. Negative
976 genetic correlations between production traits and head or bony tissues in large all-female
977 rainbow trout (*Oncorhynchus mykiss*). *Aquaculture*. Elsevier B.V.; 2012;368–369:145–52.
978 Available from: <http://dx.doi.org/10.1016/j.aquaculture.2012.09.023>

979 34. Douirin C, Haffray P, Vallet JL, Fauconneau B. Determination of the lipid content of
980 rainbow trout (*Oncorhynchus mykiss*) filets with the torry fish fat meter R. *Sci Aliment.*
981 1998;18:527–35.

982 35. Gao G, Magadan S, Waldbieser GC, Youngblood RC, Wheeler PA, Scheffler BE, et al. A
983 long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals
984 chromosomal rearrangements in rainbow trout. *G3 Genes, Genomes, Genet.* 2021;11.

985 36. Griot R, Allal F, Brard-Fudulea S, Morvezen R, Haffray P, Phocas F, et al. APIS: An

986 auto-adaptive parentage inference software that tolerates missing parents. *Mol Ecol Resour.*
987 2020;20:579–90.

988 37. Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient genotype
989 imputation using information from relatives. *BMC Genomics.* 2014;15.

990 38. Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. Blupf90 and Related
991 Programs (Bgf90). 2002;2001–2.

992 39. VanRaden PM. Efficient methods to compute genomic predictions. *J Dairy Sci.* Elsevier;
993 2008;91:4414–23. Available from: <http://dx.doi.org/10.3168/jds.2007-0980>

994 40. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for
995 genomic selection. *BMC Bioinformatics.* 2011;12.

996 41. Kass RE, Raftery AE. Bayes Factors. *J Am Stat Assoc.* 1995;90:773–95. Available from:
997 <http://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476572>

998 42. Michenet A, Barbat M, Saintilan R, Venot E, Phocas F. Detection of quantitative trait loci
999 for maternal traits using high-density genotypes of Blonde d'Aquitaine beef cattle. *BMC*
1000 *Genet.* *BMC Genetics;* 2016;17:88. Available from: <http://dx.doi.org/10.1186/s12863-016-0397-y>

1002 43. Quillet E, Dorson M, Le Guillou S, Benmansour A, Boudinot P. Wide range of
1003 susceptibility to rhabdoviruses in homozygous clones of rainbow trout. *Fish Shellfish*
1004 *Immunol.* 2007;22:510–9.

1005 44. Wendelaar Bonga SE. The stress response in fish. *Physiol Rev.* 1997;77:591–625.

1006 45. Schreck CB, Tort L. The Concept of Stress in Fish. First Edit. *Fish Physiol.* Elsevier Inc.;

1007 2016. Available from: <http://dx.doi.org/10.1016/B978-0-12-802728-8.00001-1>

1008 46. Chen Z, Narum SR. Whole genome resequencing reveals genomic regions associated with
1009 thermal adaptation in redband trout. *Mol Ecol*. 2021;30:162–74.

1010 47. Barton BA. Stress in fishes: A diversity of responses with particular reference to changes
1011 in circulating corticosteroids. *Integr Comp Biol*. 2002;42:517–25.

1012 48. Tort L. Stress and immune modulation in fish. *Dev Comp Immunol*. Elsevier Ltd;
1013 2011;35:1366–75. Available from: <http://dx.doi.org/10.1016/j.dci.2011.07.002>

1014 49. Dupont-Nivet M, Crusot M, Rigaudeau D, Quillet E. Genetic analysis of resistance to
1015 acute or chronic temperature stress using isogenic lines of Rainbow trout (*Oncorhynchus*
1016 *mykiss*). *Proc 10th World Congr Genet Appl to Livest Prod*. 2014;2–4.

1017 50. Bartlett CB, Garber AF, Gonen S, Benfey TJ. Acute critical thermal maximum does not
1018 predict chronic incremental thermal maximum in Atlantic salmon (*Salmo salar*). *Comp*
1019 *Biochem Physiol -Part A Mol Integr Physiol*. Elsevier Inc.; 2022;266:111143. Available
1020 from: <https://doi.org/10.1016/j.cbpa.2022.111143>

1021 51. Wang T, Lefevre S, Iversen NK, Findorf I, Buchanan R, Mckenzie DJ. Anaemia only
1022 causes a small reduction in the upper critical temperature of sea bass: Is oxygen delivery the
1023 limiting factor for tolerance of acute warming in fishes? *J Exp Biol*. 2014;217:4275–8.

1024 52. Brijs J, Jutfelt F, Clark TD, Gräns A, Ekström A, Sandblom E. Experimental
1025 manipulations of tissue oxygen supply do not affect warming tolerance of European perch. *J*
1026 *Exp Biol*. 2015;218:2448–54.

1027 53. Ern R, Norin T, Gamperl AK, Esbaugh AJ. Oxygen dependence of upper thermal limits in

1028 fishes. *J Exp Biol.* 2016;219:3376–83.

1029 54. Thurston R V., Russo RC, Vinogradov GA. Ammonia Toxicity to Fishes. Effect of pH on
1030 the Toxicity of the Un-ionized Ammonia Species. *Environ Sci Technol.* 1981;15:837–40.

1031 55. Good C, Davidson J, Welsh C, Snekvik K, Summerfelt S. The effects of carbon dioxide
1032 on performance and histopathology of rainbow trout *Oncorhynchus mykiss* in water
1033 recirculation aquaculture systems. *Aquac Eng.* Elsevier B.V.; 2010;42:51–6. Available from:
1034 <http://dx.doi.org/10.1016/j.aquaeng.2009.11.001>

1035 56. O'Donnell MJ, Regish AM, McCormick SD, Letcher BH. How repeatable is CTmax
1036 within individual brook trout over short- and long-time intervals? *J Therm Biol.* Elsevier Ltd;
1037 2020;89:102559. Available from: <https://doi.org/10.1016/j.jtherbio.2020.102559>

1038 57. Chen Z, Snow M, Lawrence CS, Church AR, Narum SR, Devlin RH, et al. Selection for
1039 upper thermal tolerance in rainbow trout (*Oncorhynchus mykiss* Walbaum). *J Exp Biol.*
1040 2015;218:803–12.

1041 58. Becker CD, Genoway RG. Evaluation of the critical thermal maximum for determining
1042 thermal tolerance of freshwater fish. *Environ Biol Fishes.* 1979;4:245–56.

1043 59. Agudelo-Cantero GA, Navas CA. Interactive effects of experimental heating rates,
1044 ontogeny and body mass on the upper thermal limits of anuran larvae. *J Therm Biol.* Elsevier
1045 Ltd; 2019;82:43–51. Available from: <https://doi.org/10.1016/j.jtherbio.2019.03.010>

1046 60. Prchal M, D'Ambrosio J, Lagarde H, Lallias D, Patrice P, François Y, et al. Genome-wide
1047 association study and genomic prediction of hypoxia stress tolerance in rainbow trout.
1048 [Manuscript Submitt Publ. 2023;

1049 61. Heath DD, Fox CW, Heath JW. Maternal effects on offspring size: Variation through
1050 early development of chinook salmon. *Evolution (N Y)*. 1999;53:1605–11.

1051 62. Lindholm AK, Hunt J, Brooks R. Where do all the maternal effects go? Variation in
1052 offspring body size through ontogeny in the live-bearing fish *Poecilia parae*. *Biol Lett*.
1053 2006;2:586–9.

1054 63. Muñoz NJ, Anttila K, Chen Z, Heath JW, Farrell AP, Neff BD. Indirect genetic effects
1055 underlie oxygenlimited thermal tolerance within a coastal population of chinook salmon. *Proc
1056 R Soc B Biol Sci*. 2014;281.

1057 64. Debes P V., Solberg MF, Matre IH, Dyrhovden L, Glover KA. Genetic variation for upper
1058 thermal tolerance diminishes within and between populations with increasing acclimation
1059 temperature in Atlantic salmon. *Heredity (Edinb)*. Springer US; 2021;127:455–66.

1060 65. Shama LNS, Strobel A, Mark FC, Wegner KM. Transgenerational plasticity in marine
1061 sticklebacks: Maternal effects mediate impacts of a warming ocean. *Funct Ecol*.
1062 2014;28:1482–93.

1063 66. Kim SY, Chiara V, Álvarez-Quintero N, Velando A. Mitochondrial DNA content in eggs
1064 as a maternal effect. *Proc R Soc B Biol Sci*. 2022;289.

1065 67. Gall GAE, Huang N. Heritability and selection schemes for rainbow trout: body weight.
1066 *Aquaculture*. 1988;73:43–56.

1067 68. Leeds TD, Vallejo RL, Weber GM, Gonzalez-Pena D, Silverstein JT. Response to five
1068 generations of selection for growth performance traits in rainbow trout (*Oncorhynchus*
1069 *mykiss*). *Aquaculture*. Elsevier B.V.; 2016;465:341–51. Available from:
1070 <http://dx.doi.org/10.1016/j.aquaculture.2016.08.036>

1071 69. Blay C, Haffray P, Bugeon J, D'Ambrosio J, Dechamp N, Collewet G, et al. Genetic
1072 Parameters and Genome-Wide Association Studies of Quality Traits Characterised Using
1073 Imaging Technologies in Rainbow Trout, *Oncorhynchus mykiss*. *Front Genet.* 2021;12.

1074 70. van Rheenen W, Peyrot WJ, Schork AJ, Lee SH, Wray NR. Genetic correlations of
1075 polygenic disease traits: from theory to practice. *Nat Rev Genet.* Springer US; 2019;20:567–
1076 81. Available from: <http://dx.doi.org/10.1038/s41576-019-0137-z>

1077 71. McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, et al.
1078 Intraspecific variation in tolerance of warming in fishes. *J Fish Biol.* 2021;98:1536–55.

1079 72. Kause A, Mäntysaari E, Ritola O, Paananen T, Eskelinen U. Coupling body weight and its
1080 composition: A quantitative genetic analysis in rainbow trout. *Aquaculture.* 2002;211:65–79.

1081 73. Refstie T, Steine TA. Selection experiments with salmon III. Genetic and environmental
1082 sources of variation in length and weight of atlantic salmon in the freshwater phase.
1083 *Aquaculture.* 1978;14:221–34. Available from:
1084 <https://linkinghub.elsevier.com/retrieve/pii/0044848678900960>

1085 74. Recsetar MS, Zeigler MP, Ward DL, Bonar SA, Caldwell CA. Relationship between Fish
1086 Size and Upper Thermal Tolerance. *Trans Am Fish Soc.* 2012;141:1433–8. Available from:
1087 <http://doi.wiley.com/10.1080/00028487.2012.694830>

1088 75. Pörtner HO, Knust R. Climate change affects marine fishes through the oxygen limitation
1089 of thermal tolerance. *Science (80-).* 2007;315:95–7.

1090 76. Norin T, Malte H, Clark TD. Aerobic scope does not predict the performance of a tropical
1091 eurythermal fish at elevated temperatures. *J Exp Biol.* 2014;217:244–51.

1092 77. Jutfelt F, Norin T, Ern R, Overgaard J, Wang T, McKenzie DJ, et al. Oxygen- and
1093 capacity-limited thermal tolerance: Blurring ecology and physiology. *J Exp Biol.*
1094 2018;221:2016–9.

1095 78. Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-wide
1096 identification of loci associated with growth in rainbow trout. *BMC Genomics.* *BMC*
1097 *Genomics;* 2020;21:1–16.

1098 79. Strowbridge N, Northrup SL, Earhart ML, Blanchard TS, Schulte PM. Acute measures of
1099 upper thermal and hypoxia tolerance are not reliable predictors of mortality following
1100 environmental challenges in rainbow trout (*Oncorhynchus mykiss*). *Conserv Physiol.*
1101 2021;9:1–16. Available from:
1102 <https://academic.oup.com/conphys/article/doi/10.1093/conphys/coab095/6482185>

1103 80. Mauduit F, Domenici P, Farrell AP, Lacroix C, Le Floch S, Lemaire P, et al. Assessing
1104 chronic fish health: An application to a case of an acute exposure to chemically treated crude
1105 oil. *Aquat Toxicol.* Elsevier B.V.; 2016;178:197–208. Available from:
1106 <http://dx.doi.org/10.1016/j.aquatox.2016.07.019>

1107 81. Perry GML, Ferguson MM, Danzmann RG. Effects of genetic sex and genomic
1108 background on epistasis in rainbow trout (*Oncorhynchus mykiss*). *Genetica.* 2003;119:35–50.

1109 82. Tsai HY, Hamilton A, Guy DR, Tinch AE, Bishop SC, Houston RD. The genetic
1110 architecture of growth and fillet traits in farmed Atlantic salmon (*Salmo salar*). *BMC Genet.*
1111 2015;16.

1112 83. Ma A, Huang Z, Wang X an, Xu Y, Guo X. Identification of quantitative trait loci
1113 associated with upper temperature tolerance in turbot, *Scophthalmus maximus*. *Sci Rep.*

1114 1114 Nature Publishing Group UK; 2021;11:1–12. Available from: <https://doi.org/10.1038/s41598-021-01062-3>

1115 1115 84. Yoshida GM, Yáñez JM. Increased accuracy of genomic predictions for growth under chronic thermal stress in rainbow trout by prioritizing variants from GWAS using imputed sequence data. *Evol Appl.* 2021;537–52.

1116 1116 85. Kelley WL. The J-domain family and the recruitment of chaperone power. *Trends Biochem Sci.* 1998;23:222–7.

1117 1117 86. Li Y, Huang J, Liu Z, Zhou Y, Xia B, Wang Y, et al. Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (*Oncorhynchus mykiss*). *Gene.* Elsevier B.V.; 2017;619:1–9. Available from: <http://dx.doi.org/10.1016/j.gene.2017.03.041>

1118 1118 87. Li Z, Liu Z, Wang YN, Kang YJ, Wang JF, Shi HN, et al. Effects of heat stress on serum cortisol, alkaline phosphatase activity and heat shock protein 40 and 90 β mRNA expression in rainbow trout *Oncorhynchus mykiss*. *Biol.* 2016;71:109–15.

1119 1119 88. Ojima N, Mekuchi M, Ineno T, Tamaki K, Kera A, Kinoshita S, et al. Differential expression of heat-shock proteins in F2 offspring from F1 hybrids produced between thermally selected and normal rainbow trout strains. *Fish Sci.* 2012;78:1051–7.

1120 1120 89. Tan E, Wongwarangkana C, Kinoshita S, Suzuki Y, Oshima K, Hattori M, et al. Global gene expression analysis of gill tissues from normal and thermally selected strains of rainbow trout. *Fish Sci.* 2012;78:1041–9.

1121 1121 90. Mayer MP, Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism. *Cell Mol Life Sci.* 2005;62:670–84.

1136 91. Blair SD, Glover CN. Acute exposure of larval rainbow trout (*Oncorhynchus mykiss*) to
1137 elevated temperature limits hsp70b expression and influences future thermotolerance.

1138 Hydrobiologia. Springer International Publishing; 2019;836:155–67. Available from:
1139 <https://doi.org/10.1007/s10750-019-3948-1>

1140 92. Currie S, Moyes CD, Tufts BL. The effects of heat shock and acclimation temperature on
1141 hsp70 and hsp30 mRNA expression in rainbow trout: In vivo and in vitro comparisons. J Fish
1142 Biol. 2000;56:398–408.

1143 93. Narum SR, Campbell NR, Meyer KA, Miller MR, Hardy RW. Thermal adaptation and
1144 acclimation of ectotherms from differing aquatic climates. Mol Ecol. 2013;22:3090–7.

1145 94. Ojima N, Yamashita M, Watabe S. Quantitative mRNA expression profiling of heat-shock
1146 protein families in rainbow trout cells. Biochem Biophys Res Commun. 2005;329:51–7.

1147 95. Yang C, Wang L, Wang J, Jiang Q, Qiu L, Zhang H, et al. The polymorphism in the
1148 promoter of HSP70 gene is associated with heat tolerance of two congener endemic bay
1149 scallops (*Argopecten irradians irradians* and *A. i. concentricus*). PLoS One. 2014;9:1–13.

1150 96. Sørensen JG, Michalak P, Justesen J, Loeschke V. Expression of the heat-shock protein
1151 HSP70 in *Drosophila buzzatii* lines selected for thermal resistance. Hereditas. 1999;131:155–
1152 64. Available from: <http://doi.wiley.com/10.1111/j.1601-5223.1999.00155.x>

1153 97. Ohtsuka K, Hata M. Molecular chaperone function of mammalian Hsp70 and Hsp40 - A
1154 review. Int J Hyperth. 2000;16:231–45.

1155 98. Qiu XB, Shao YM, Miao S, Wang L. The diversity of the DnaJ/Hsp40 family, the crucial
1156 partners for Hsp70 chaperones. Cell Mol Life Sci. 2006;63:2560–70.

1157 99. Li J, Zhang Y, Liu Y, Zhang Y, Xiao S, Yu Z. Co-expression of heat shock protein (HSP)
1158 40 and HSP70 in *Pinctada martensii* response to thermal, low salinity and bacterial
1159 challenges. *Fish Shellfish Immunol.* Elsevier Ltd; 2016;48:239–43. Available from:
1160 <http://dx.doi.org/10.1016/j.fsi.2015.11.038>

1161 100. Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA, Abadía-Cardoso A, et al. Sex-
1162 dependent dominance maintains migration supergene in rainbow trout. *Nat Ecol Evol.*
1163 2019;3:1731–42.

1164 101. Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, et al. Chromosomal
1165 rearrangements maintain a polymorphic supergene controlling butterfly mimicry. *Nature.*
1166 Nature Publishing Group; 2011;477:203–6.

1167 102. Oeckinghaus A, Postler TS, Rao P, Schmitt H, Schmitt V, Grinberg-Bleyer Y, et al. κ B-
1168 Ras proteins regulate both NF- κ B-dependent inflammation and Ral-dependent proliferation.
1169 *Cell Rep.* 2014;8:1793–807.

1170 103. Sarais F, Rebl H, Verleih M, Ostermann S, Krasnov A, Köllner B, et al. Characterisation
1171 of the teleostean κ B-Ras family: The two members NKIRAS1 and NKIRAS2 from rainbow
1172 trout influence the activity of NF- κ B in opposite ways. *Fish Shellfish Immunol.*
1173 2020;106:1004–13.

1174 104. Tomalty KMH, Meek MH, Stephens MR, Rincón G, Fangue NA, May BP, et al.
1175 Transcriptional response to acute thermal exposure in juvenile Chinook salmon determined by
1176 RNAseq. *G3 Genes, Genomes, Genet.* 2015;5:1335–49.

1177 105. Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, et al. CDK12 is a
1178 transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. *Genes*

1179 Dev. 2010;24:2303–16.

1180 106. Blazek D, Kohoutek J, Bartholomeeusen K, Johansen E, Hulinkova P, Luo Z, et al. The
1181 cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA
1182 damage response genes. Genes Dev. 2011;25:2158–72.

1183 107. Li X, Chatterjee N, Spirohn K, Boutros M, Bohmann D. Cdk12 is a gene-selective RNA
1184 polymerase II kinase that regulates a subset of the transcriptome, including Nrf2 target genes.
1185 Sci Rep. Nature Publishing Group; 2016;6:1–13. Available from:
1186 <http://dx.doi.org/10.1038/srep21455>

1187 108. Nijtmans LGJ, Artal Sanz M, Grivell LA, Coates PJ. The mitochondrial PHB complex:
1188 Roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell
1189 Mol Life Sci. 2002;59:143–55.

1190 109. Mishra S, Ande SR, Nyomba BLG. The role of prohibitin in cell signaling. FEBS J.
1191 2010;277:3937–46.

1192 110. Peng YT, Chen P, Ouyang RY, Song L. Multifaceted role of prohibitin in cell survival
1193 and apoptosis. Apoptosis. Springer US; 2015;20:1135–49.

1194 111. Fields PA, Burmester EM, Cox KM, Karch KR. Rapid proteomic responses to a near-
1195 lethal heat stress in the salt marsh mussel *Geukensia demissa*. J Exp Biol. 2016;219:2673–86.

1196 112. Jiang W, Bian L, Wang N, He Y. Proteomic analysis of protein expression profiles
1197 during hyperthermia-induced apoptosis in Tca8113 cells. Oncol Lett. 2013;6:135–43.

1198 113. Tong M, Jiang Y. FK506-Binding Proteins and Their Diverse Functions. Curr Mol
1199 Pharmacol. 2015;9:48–65. Available from:

1200 1200 http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1874-

1201 1201 4672&volume=9&issue=1&spage=48

1202 1202 114. Akbarzadeh A, Günther OP, Houde AL, Li S, Ming TJ, Jeffries KM, et al. Developing

1203 1203 specific molecular biomarkers for thermal stress in salmonids. *BMC Genomics*. BMC

1204 1204 *Genomics*; 2018;19.

1205 1205 115. D'Ambrosio J, Phocas F, Haffray P, Bestin A, Brard-Fudulea S, Poncet C, et al.

1206 1206 Genome-wide estimates of genetic diversity, inbreeding and effective size of experimental

1207 1207 and commercial rainbow trout lines undergoing selective breeding. *Genet Sel Evol*. BioMed

1208 1208 Central; 2019;51:1–15. Available from: <https://doi.org/10.1186/s12711-019-0468-4>

1209 1209 116. Liu Y, Muniz MMM, Lam S, Song D, Zhang Y, Yin J, et al. Gene expression profile of

1210 1210 the taimen Hucho taimen in response to acute temperature changes. *Comp Biochem Physiol -*

1211 1211 *Part D Genomics Proteomics*. 2021;38.

1212 1212 117. Feng JB, Liu SK, Wang RJ, Zhang JR, Wang XL, Kaltenboeck L, et al. Molecular

1213 1213 characterization, phylogenetic analysis and expression profiling of myoglobin and cytoglobin

1214 1214 genes in response to heat stress in channel catfish *Ictalurus punctatus*. *J Fish Biol.*

1215 1215 2015;86:592–604.

1216 1216 118. Borza R, Salgado-Polo F, Moolenaar WH, Perrakis A. Structure and function of the ecto-

1217 1217 nucleotide pyrophosphatase/ phosphodiesterase (ENPP) family: Tidying up diversity. *J Biol*

1218 1218 *Chem*. The Authors; 2022;298:101526. Available from:

1219 1219 <https://doi.org/10.1016/j.jbc.2021.101526>

1220 1220 119. Yu F, Peng W, Tang B, Zhang Y, Wang Y, Gan Y, et al. A genome-wide association

1221 1221 study of heat tolerance in Pacific abalone based on genome resequencing. *Aquaculture*.

1222 Elsevier B.V.; 2021;536:736436. Available from:
1223 <https://doi.org/10.1016/j.aquaculture.2021.736436>

1224 120. Chung DJ, Schulte PM. Mitochondria and the thermal limits of ectotherms. *J Exp Biol.*
1225 2020;223.

1226 121. Patel MS, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase
1227 complexes 1. *FASEB J.* 1990;4:3224–33.

1228 122. Patel MS, Nemeria NS, Furey W, Jordan F. The pyruvate dehydrogenase complexes:
1229 Structure-based function and regulation. *J Biol Chem.* © 2014 ASBMB. Currently
1230 published by Elsevier Inc; originally published by American Society for Biochemistry and
1231 Molecular Biology.; 2014;289:16615–23. Available from:
1232 <http://dx.doi.org/10.1074/jbc.R114.563148>

1233 123. Chypre M, Zaidi N, Smans K. ATP-citrate lyase: A mini-review. *Biochem Biophys Res
1234 Commun.* Elsevier Inc.; 2012;422:1–4. Available from:
1235 <http://dx.doi.org/10.1016/j.bbrc.2012.04.144>

1236 124. Feng X, Zhang L, Xu S, Shen A zong. ATP-citrate lyase (ACLY) in lipid metabolism
1237 and atherosclerosis: An updated review. *Prog Lipid Res.* Elsevier; 2020;77:101006. Available
1238 from: <https://doi.org/10.1016/j.plipres.2019.101006>

1239

1240

1241

1242

1243 **Figures**

1244 **Figure 1: Batch 1 (B1, juveniles) and Batch 2 (B2, harvest size) rainbow trout**
1245 **production processes.**

1246 Abbreviations: dpf, day post-fertilisation.

1247

1248 **Figure 2: Kinetics of temperature increase in the seven rainbow trout groups of batch 1**
1249 **(B1, juveniles) batch of acute hyperthermia challenge.**

1250

1251 **Figure 3: Kinetics of cumulative loss of equilibrium in the seven rainbow trout groups of**
1252 **Batch 1 (B1, juveniles) of acute hyperthermia challenge.**

1253

1254 **Figure 4. Manhattan plot of QTL detected for acute hyperthermia resistance trait in**
1255 **rainbow trout in Batch 1 (B1, juveniles).**

1256 The red horizontal line corresponds to the QTL evidence threshold ($\log_{10}BF \geq 6$).

1257

1258

1259

1260

1261

1262

1263 **Additional files**

1264 **Additional file 1**

1265 Format: word

1266 Title: Boxplots of the centred and reduced acute hyperthermia resistance corrected from day
1267 and dam effects depending on the genotypes of the 1,328 fish at the peak SNPs of the six
1268 detected QTLs (see Table 5 for QTL characteristics).

1269 Description: The Y-axis represents the TLE of fish (no unit) and the three colored boxes
1270 represent the three genotypes for a given SNP (two homozygous and one heterozygous). The
1271 dots represent the fish individual phenotype.

1272 **Additional Table 1**

1273 Format: Word

1274 Title: Heritability and genetic correlations estimated under pedigree BLUP models.

1275 Description: Heritability estimates in bold on the diagonal, genetic correlations on the upper
1276 triangle for resistance to acute hyperthermia measured as time to loss of equilibrium centred
1277 and reduced by group of challenge (TLE); body weight of batch 1 (BW1); body weight of batch
1278 2 (BW2); fork length (FL); fillet fat percentage (Fat%); headed gutted carcass yield (HGC%).
1279 All values are given with their standard error.

1280 **Additional Table 2**

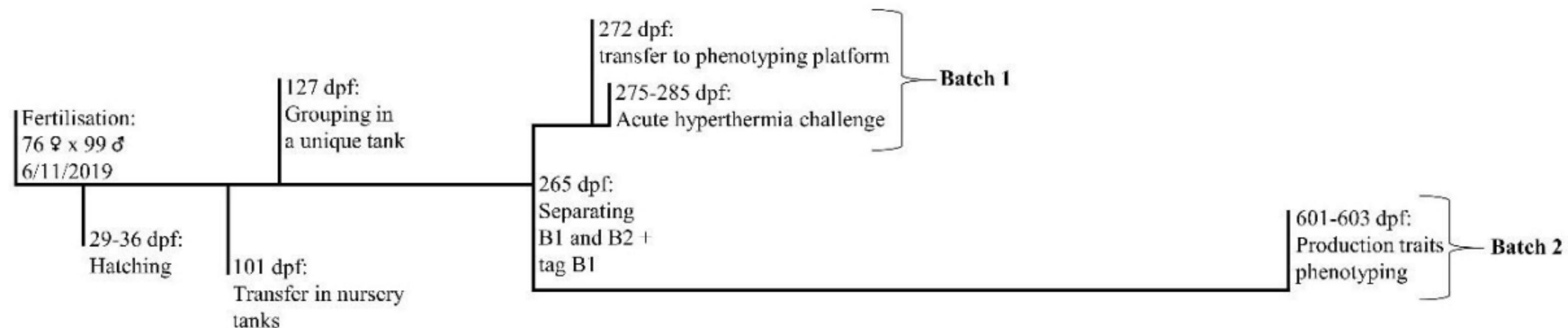
1281 Format: Word

1282 Title: Candidate genes from the NCBI *Oncorhynchus mykiss* Annotation Release 100
1283 (GCF_002163495.1) that were located within the QTL regions.

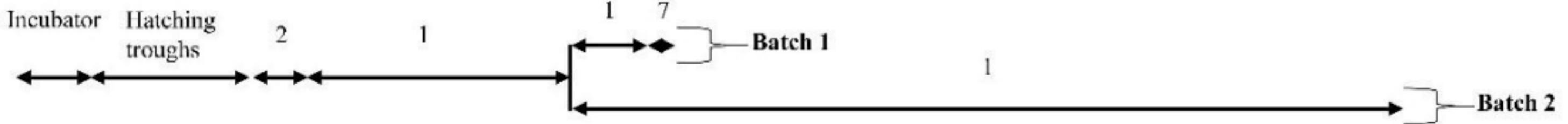
1284 Description: none.

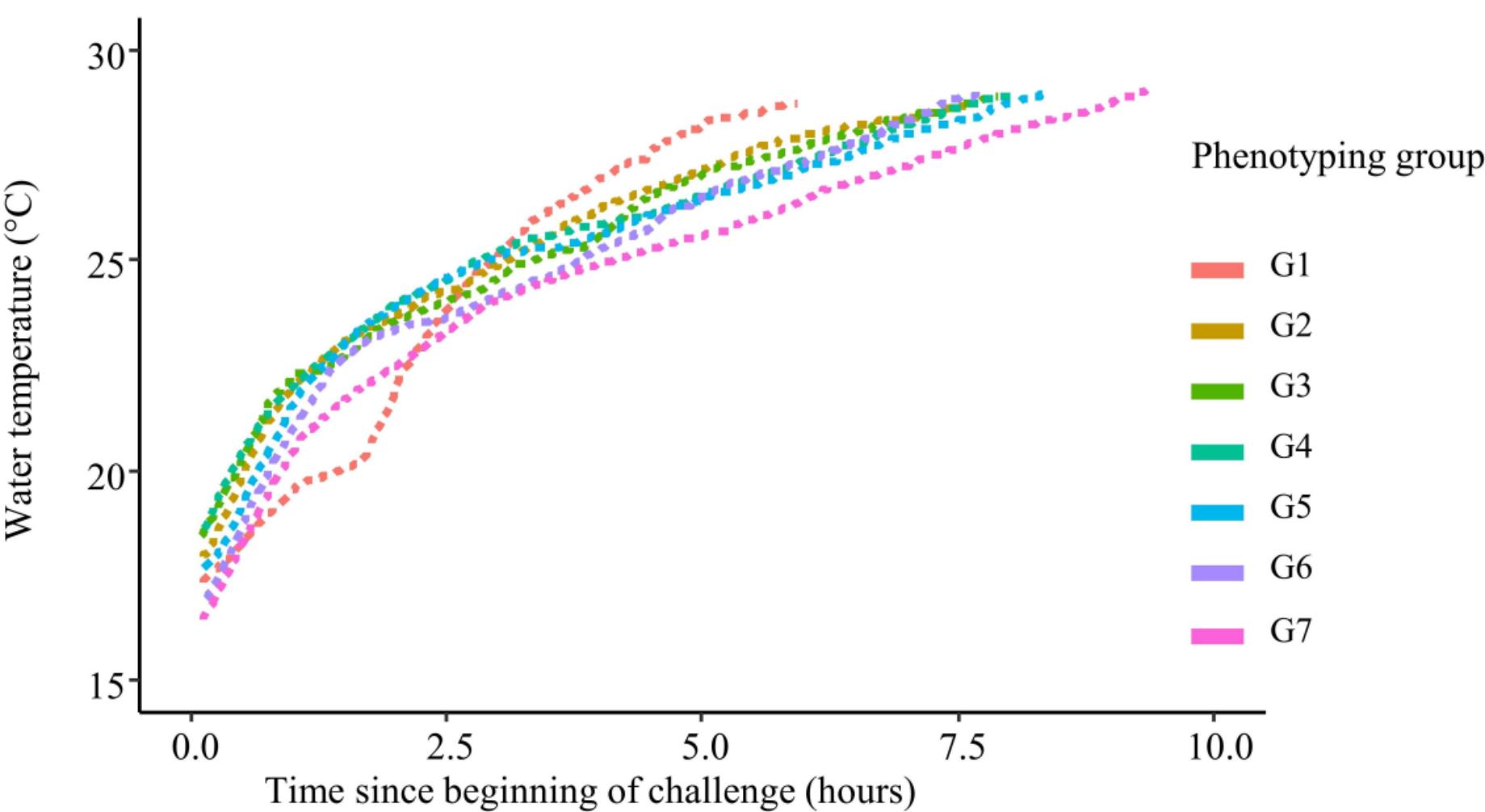
1285 **Additional Table 3**

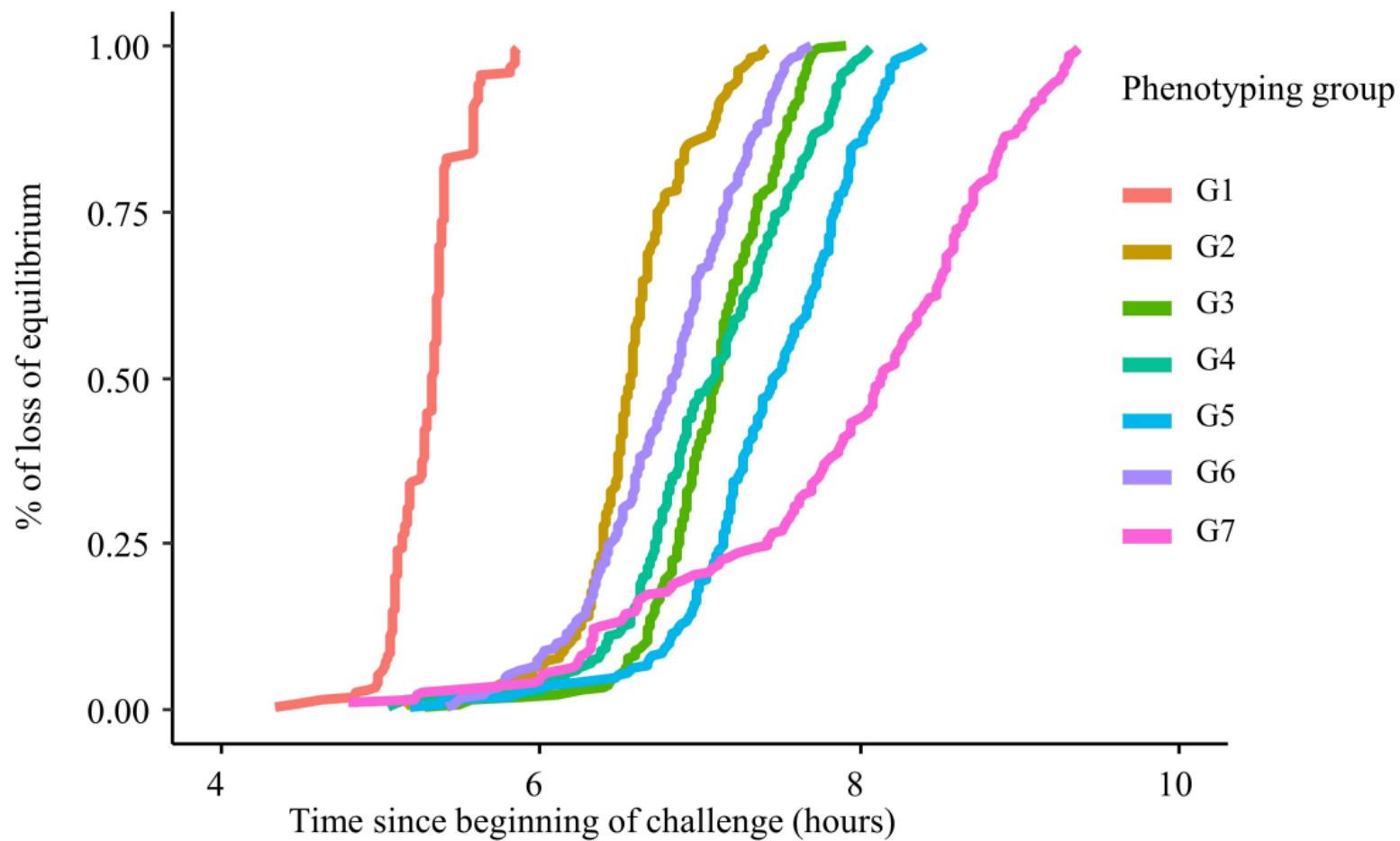
1286 Format: Word

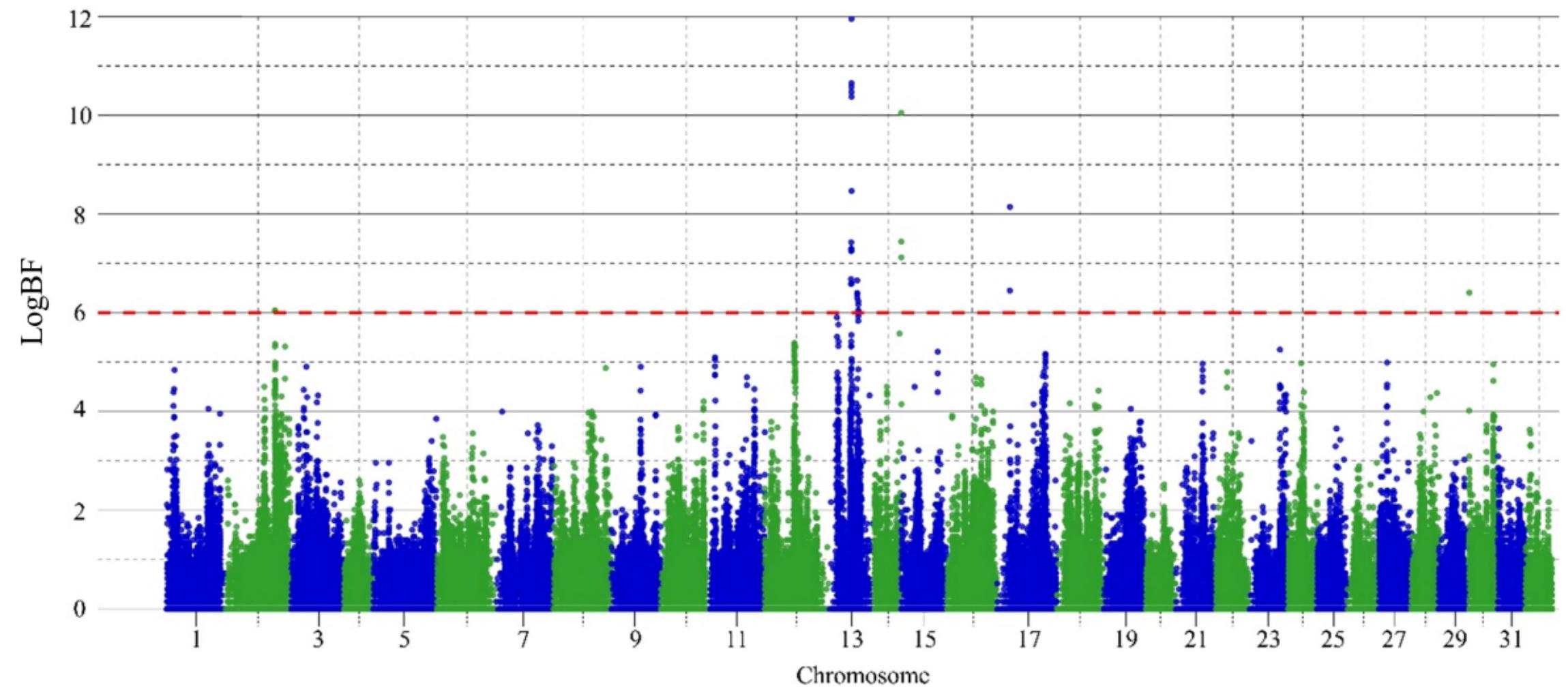

1287 Title: QTL of body weight in B1 (BW1) and B2 (BW2).

1288 Description: Abbreviations: Chr: chromosome; #, number; % variance explained by QTL, % of genetic


1289 variance explained by all the SNPs included in the QTL region.


1290 .


1291



Number or type of tanks:

