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Abstract

Differential expression analysis of scRNA-seq data is central for characterizing how experimental
factors affect the distribution of gene expression. However, it remains challenging to distinguish biological
and technical sources of cell-cell variability and to assess the statistical significance of quantitative
comparisons between groups of cells. We introduce memento to address these limitations and enable
accurate and efficient differential expression analysis of the mean, variability, and gene correlation from
scRNA-seq. We used memento to analyze 70,000 tracheal epithelial cells to identify interferon response
genes with distinct variability and correlation patterns, 160,000 T cells perturbed with CRISPR-Cas9
to reconstruct gene-regulatory networks that control T cell activation, and 1.2 million PMBCs to map
cell-type-specific cis expression quantitative trait loci (eQTLs). In all cases, memento identified more
significant and reproducible differences in mean expression but also identified differences in variability
and gene correlation that suggest distinct modes of transcriptional regulation imparted by cytokines,
genetic perturbations, and natural genetic variation. These results demonstrate memento as a first-in-class
method for the quantitative comparisons of scRNA-seq data scalable to millions of cells and thousands of
samples.

Introduction
Gene expression is determined by a cell’s genetic makeup and environmental exposure but can fluctuate
because of extrinsic noise due to the specific state of a cell or intrinsic noise due to mRNA transcription
and degradation [1, 2]. While genetics and environmental history account for much of expression variability
in a population of cells, transcriptional noise has been shown to have profound effects on cellular response
to perturbations and cellular development and differentiation [3, 2, 4]. Characterizing how deterministic
and stochastic factors together shape the distribution of gene expression is central for understanding how
transcriptional control is established, maintained, and may be broken. These insights, in turn, has the
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potential to identify mechanisms underlying phenomena where genotype-phenotype relationships are not
completely explained, such as destabilization [3], incomplete penetrance [5], and variable expressivity [6].

The distribution of an individual gene’s expression over a population of cells has historically been parameterized
by the mean, variance, and their derivatives such as the Fano factor and coefficient of variation [7]. The
expression of constitutively expressed genes (e.g., housekeeping genes) that are transcribed and degraded at
constant rates are expected to follow a Poisson distribution. However, foundational work in prokaryotes and
yeast has observed that the expression for most genes in their genomes is over-dispersed, exhibiting higher
than expected variability [8]. Furthermore, genes that participate in the same biological pathway have been
demonstrated to be transcriptionally correlated [5]. These observations are consistent with a model of active
regulation of multiple related genes each controlled by cis regulatory elements for the same transcription
factors with "on" and "off" states [9]. Until recently, studying the distribution of gene expression, in particular
the joint distribution of multiple genes, has been technologically challenging and has been mostly pursued in
model organisms that can be genetically modified [10, 11].

Single-cell RNA-sequencing (scRNA-seq) has emerged as a systematic and efficient approach for profiling the
transcriptomes of cells across experimental factors including extracellular stimuli [12], genetic perturbations
[13, 14], and natural genetic variation [15, 16, 17, 18]. Analysis of scRNA-seq data can in theory determine
how experimental factors and transcriptional noise together shape the distribution of gene expression across
the domains of life. However, there remains a need for differential expression analysis methods that compare
distributional parameters between groups of cells including the mean, variability, and gene correlation. To
assess differences in mean expression, it is common practice to apply differential expression analysis methods
for bulk RNA-seq to pseudobulk profiles generated by aggregating transcript counts for groups of cells defined
by clustering. While pseudobulk approaches do not fully take advantage of single cells as repeated measures,
they have been demonstrated to outperform methods that explicitly model the distribution of observed
scRNA-seq data [19]. Very few methods exist for assessing differences in the variability of gene expression that
measure transcriptional noise or correlation between pairs of genes that measure the coordinated expression
of genes that may participate in the same regulatory network.

Generalized differential expression analysis of scRNA-seq data remains challenging due to two statistical
limitations. First, decomposing the overall cell-to-cell variability from scRNA-seq data into transcriptional
versus measurement noise remains difficult [20]. This is because small numbers of molecules are involved in the
biochemical reactions of both gene transcription and the sampling process of scRNA-seq (Fig. 1A) [21]. Most
existing methods implement highly parameterized models aimed to explain the higher than expected cell-cell
variability in the observed sparse transcript counts but does not explicitly distinguish between biological
versus technical sources of variability [22, 23, 24, 25, 26, 27]. Accurate estimates of biological variability
is crucial for modeling joint distribution of multiple genes such as the correlation between pairs of genes
[22]. Second, establishing whether a particular comparison of mean, variability, or gene correlation from
scRNA-seq data is statistically significant remains a largely unsolved problem. Existing methods utilize
asymptotic theory to establish statistical significance for the comparison of means which can result in p-value
distributions that are either inflated or deflated. This is particularly problematic in settings where thousands
of comparisons are made since poorly calibrated p-values violate assumptions for multiple testing correction.
Further, most methods are not able to explicitly account for biological or technical replicates that sample
multiplexed workflows can routinely generate with a growing number of individuals or conditions [28, 15, 29,
13, 30]. Indeed, recent studies have shown that scRNA-seq methods surprisingly underperform pseudobulk
methods for testing mean differences likely due to limitations in both multiple testing correction and properly
accounting for replicates [19].

To address these issues, we introduce memento, an end-to-end method that implements a hierarchical model
for estimating the mean, residual variance, and gene correlation from scRNA-seq data and a statistical
framework for hypothesis testing of differences in these parameters between groups of cells (Fig. 1B).
memento models scRNA-seq using a novel multivariate hypergeometric sampling process while making no
assumptions about the true distributional form of gene expression within cells. Importantly, by exploiting the
sparsity of scRNA-seq data, memento implements an innovative bootstrapping strategy for efficient statistical
comparisons of the estimated parameters between groups of cells that can also incorporate biological and
technical replicates. Through simulations and analyses of real data, we demonstrate that memento produces
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accurate parameter estimates over a range of gene expression distributions and sampling efficiencies, computes
well-calibrated test statistics suitable for multiple testing correction, and achieves sublinear runtimes scalable
to the analysis of millions of cells. We demonstrate the broad applicability of memento in three applications to
study how experimental factors affect the distribution of gene expression in human cells (Fig. 1C). First, we
performed scRNA-seq on 70k tracheal epithelial cells stimulated with extracellular interferons and investigated
how stimulation shapes the variability and correlation of response genes over time. Second, we performed
Perturb-seq on 160k T cells and mapped gene regulatory networks that define broad T cell activation. Finally,
we reanalyzed 1.2M cells collected from 250 individuals to identify genetic variants associated with mean,
variability, and gene correlation in specific cell types. In all cases, memento identified more significant and
reproducible differences in mean expression compared to existing methods but also identified differences in
variability and gene correlation that revealed distinct modes of transcriptional regulation imparted by cytokines,
genetic perturbations, and natural genetic variation. memento is implemented in python, is compatible with
scanpy [31], and can be downloaded at https://github.com/yelabucsf/scrna-parameter-estimation.

Results

Novel statistical model of single-cell RNA-sequencing
It has long been observed that scRNA-seq produces sparse data displaying a high degree of cell-to-cell
variability even in genetically identical cells exposed to the same environment (Fig. 1A). Decomposing this
variability into biological versus measurement noise is critical to differential expression analysis of scRNA-seq
data. Measurement noise present in scRNA-seq can be associated with inefficiencies in at least three molecular
biology processes common to nearly all workflows: 1) only a fraction of the expressed transcripts is captured
within compartments and undergoes reverse transcription (RT) to generate cDNA, 2) only a fraction of
cDNA molecules is amplified during each round of polymerase chain reaction (PCR), and 3) only a fraction
of the amplified cDNA is ultimately sequenced. The introduction of Unique Molecular Identifiers (UMIs)
has largely obviated the need to model the noise introduced by PCR [32]. However, noise from imperfect
transcript capture for RT and imperfect cDNA sampling during sequencing remain in the observed, attenuated
distribution of counts.

We introduce a novel statistical model to describe the observed scRNA-seq counts as the result of hyper-
geometric sampling of the expressed transcripts within a cell. The intuition for the hypergeometric model
comes from the observation that the capturing of poly-adenylated mRNA for RT and sequencing of the
resulting libraries sample molecules from each cell without replacement, and these sampling steps collectively
create measurement noise in the final dataset. Key to our model is we allow for arbitrary distributions of
gene expression within a cell prior to measurement. Formally, let Xc = Zc

Nc
be a m-dimensional random

variable representing the normalized transcript counts of m genes in cell c, where Zc is a vector of the
expressed transcript counts and Nc is the total transcript counts within a cell. We assume scRNA-seq to
be a multivariate hypergeometric sampling process that produces the observed transcript counts Yc from
Xc: Yc ∼ MultiHG(NcXc, Nc, Ncq). In our formulation, q is the overall transcript sampling efficiency of
scRNA-seq and can be related to measurement noise introduced during library preparation and sequencing (see
Methods). We also empirically demonstrate that the two-step noise process of RT capture (hypergeometric)
and sequencing (binomial) can be well represented with a single step of hypergeometric sampling with the
overall q (Fig. S1).

Estimating distributional parameters of gene expression from scRNA-seq
To the best of our knowledge, a hypergeometric sampling process has not been used to model scRNA-seq
data for differential expression analysis. This may be partly because of challenges in deriving estimates of
distribution parameters using maximum likelihood. Here, we derive method of moment (MoM) estimators
for the first (mean), the second (variance), and the mixed (covariance) moment of Xc given Yc assuming
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hypergeometric sampling (see Methods for derivation):
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While the mean can be directly used to test for differential mean expression (DM), the variance need to be
adjusted to account for the expected dependence between mean and variance in count based data in order to
test for differential expression variability (DV) independent of DM [33, 34]. We compute the residual variance
σ̃g as a measure of expression variability σg(Methods), defined as the component of variance that is not
explained by the mean (Methods) and gene correlation as covariance terms (off diagonal elements) scaled
by the variance terms (diagonal elements) from the variance-covariance matrix estimated above.

We performed extensive simulations to compare memento’s hypergeometric estimators to the naive plug-in
estimators (used by scHOT [35]), the empirical Bayes estimators using the Poisson approximation introduced
by Zhang et al. [36], and estimates derived from BASiCS [27] (see Methods for forms of the naive and
Poisson estimators). Across a range of reported qs from both low-efficiency (q < 0.2) droplet-based (e.g., 10X
V1, V2 and V3) and high-efficiency (q > 0.3) plate-based (Smart-Seq3 [37]) scRNA-seq workflows, memento’s
hypergeometric estimator produced very accurate estimates of mean (Lin’s concordance correlation coefficient
- ρc > 0.98), residual variance (ρc > 0.98), and gene correlation (ρc > 0.98) (Fig. 2A). While mean estimates
were very similar for all estimators, memento produces stable residual variance and gene correlation estimates
across qs, outperforming other estimators for both low- and high-efficiency workflows. These simulations
assume sequencing is performed to saturation but as previously described, q can be used to model imperfect
sampling for both RT and sequencing.

To further assess the accuracy of memento’s parameter estimates, we reanalyzed a dataset containing paired
droplet-based scRNA-seq and RNA FISH data [38]. This data was previously analyzed using SAVER [39], an
imputation method that borrows information from similar genes and cells that has been shown to outperform
other approaches including MAGIC and scImpute (Fig. 2B). For 16 genes profiled using both scRNA-seq
and FISH, the mean estimates from the naive estimator, BASiCS, and memento were essentially the same
as expected and observed in simulation. For residual variance and gene correlation, estimates produced by
memento were more correlated with those obtained by FISH (residual variance: ρ = 0.94, gene correlation:
ρ = 0.80) than the naive estimator (residual variance: ρ = 0.80, gene correlation: ρ = 0.67) and BASiCS
(residual variance: ρ = 0.61). Importantly, memento produces better estimates of residual variance and gene
correlation than SAVER without utilizing additional data required by imputation (Fig. S2). This advantage
results in computational efficiency of estimation (memento: 17 seconds vs SAVER: 30 minutes for 16 gene
pairs) but also produces estimates that may be better suited for certain downstream analyses (e.g., genetic
mapping) where imputation could induce confounding effects due to borrowing information from other genes
and cells. These results demonstrate the accuracy of memento’s parameter estimates through simulations and
comparisons to gold-standard FISH data.

Hypothesis testing using highly efficient bootstrapping
The goal for hypothesis testing is to determine if an observed difference in the estimated parameters between
groups of cells, for example mean, variability and gene correlation, is statistically significant compared to a
null hypothesis. When thousands of genes are tested, as is often the case for scRNA-seq experiments that
profile the entire transcriptome, we are primarily concerned about the multiple testing problem of nominating
a set of candidate genes that can be practically followed up experimentally with an expected number of
validations. It is therefore important that the distribution of test statistics under the null hypothesis to
be well calibrated amenable to multiple testing correction. While the method of moments estimates using
the hypergeometric model are simple to compute and flexible to the true distribution of gene expression
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within cells, computing confidence intervals (CIs) around the estimates and establishing statistical significance
require bootstrapping the data. Bootstrapping large number of cells using a standard scheme that samples
cells with replacement would require extensive computational resources that are both time and memory
prohibitive, especially for large datasets.

In memento, we implemented an innovative scheme that exploits the sparsity and discreteness of scRNA-seq
data to enable fast, low-memory, and highly parallelizable bootstrapping. Key to our scheme is the insight that
the number of unique observed transcript counts is much smaller than the number of cells (Fig. S3). Thus
for each bootstrap iteration, instead of resampling individual cells’ counts from a multinomial distribution
containing N elements (cells) (Multinomial(N, 1

N ...
1
N ) [40]), we only need to resample K unique transcript

counts for each gene from Multinomial(N, n1

N ...nK

N ), in proportion to the observed frequency of each count
(Fig. 3A). This amounts to fitting a very small weighted dataset (K << N) for each resampling iteration.
To accommodate multiplexed experiments, we extend our boostrapping strategy using a meta-regression
framework that treats each replicate as a separate subgroup of the data to enable hierarchical resampling. In
simulation, memento’s bootstrapping strategy produces very accurate estimates of the null distribution for
mean, residual variance, and gene correlation compared to those obtained with naive resampling (Fig. S4).
Using bootstrap to quantify the CI in the parameter estimates, memento computes well-calibrated empirical
p-values for DM, DV and DC that is appropriate for multiple testing correction (Fig. 3B).

To show that memento produces well-calibrated p-values while maintaining high statistical power, we simulated
a dataset containing two distinct cell populations. To maintain relevance to real data, we utilized parameters
extracted from a real dataset of helper T cells before and after stimulation with rIFNB. We generated a
dataset where the estimated differences in the mean, variability, and correlation were maintained for 150
genes and removed for the rest of the genes (see Methods). We show that for DM, DV, and DC, memento
produces well calibrated p-values with the expected number of false positives at a given significance cutoff,
while achieving the highest power for detecting true differences (Fig. 3C). In particular, for DV and DC
tasks, memento dramatically outperforms competing methods in power while maintaining a lower false positive
rate at each significance threshold.

When compared to existing methods for DM, DV and DC, memento is able to perform hypothesis testing
orders of magnitude faster, scaling to millions of cells (Fig. 3D). In a scenario simulating the throughput
similar to emerging scRNA-seq datasets - two groups each containing 106 cells - performing DM and DV
analysis for 1,000 genes using 10,000 bootstrapping iterations per gene between groups took 13 minutes using
a single CPU. A multicore implementation of memento allowed for parallelization of multiple genes, reducing
the runtime to 2-3 minutes with 6 CPUs. Particularly for DV and DC, memento achieves up to 1000x gain in
computational speed given the same resources compared to existing methods. These results demonstrate
that memento’s bootstrapping strategy produces accurate confidence interval estimates for the effect size at
high computational efficiency. These advances results in well-calibrated test statistics and enables hypothesis
testing of scRNA-seq data scalable groups of millions of cells (see Methods for detailed description of the
resampling strategy and hypothesis testing).

Differential variability and gene correlation in response to exogenous interferon
Interferons are potent immune modulatory cytokines that promote antiviral immunity but associate with the
pathogenesis of inflammatory and autoimmune diseases [41]. While interferons are known to act through
autocrine and paracrine signaling to induce gene expression, the heterogeneity of the transcriptomic response
in stimulated cells has not been extensively characterized. We applied memento to investigate how interferon
stimulation affects the distribution of gene expression in human tracheal epithelial cells (HTECs). We used
multiplexed single-cell RNA-sequencing to profile 69,958 HTECs from two healthy donors across five conditions
including unstimulated control and stimulation with type-1 (IFN-α, IFN-β), type-2 (IFN-γ) or type-3 (IFN-λ)
interferon. For each stimulus, cells were profiled at 3, 6, 9, 24, and 48 hours post stimulation. Following
dimensionality reduction, nearest neighbor identification, and Leiden clustering, 7 cell types were identified
and visualized using uniform manifold approximation and projection (UMAP) including neuroendocrine cells,
iononcytes, tuft cells, basal cells, basal/club cells, globlet cells, and ciliated cells (Fig. 4A). Because ciliated
cells are known to be the primary target of viral infections including SARS-CoV2 and produce a robust
interferon response [42, 43, 44], they were the focus of further analysis.
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We identified 5,018 genes exhibiting differential mean expression (DMGs, FDR < 0.01) between unstimulated
ciliated cells and those stimulated by any of four interferons at 6 hours. Comparing IFN-α to IFN-β and
IFN-λ revealed similar effect sizes for changes in mean abundance (ρ = 0.96), while comparisons to IFN-γ
identified both type-1 and type-2 interferon specific genes that changed in mean abundance (ρ = 0.70, Fig.
4B). We define genes that are upregulated in response to interferon as interferon-stimulated genes (ISGs).
Hierarchical clustering of the 6-hr ISGs revealed dynamic transcriptomic response shared across the interferons
including early induction of MHC class II genes and a cluster of genes consisting of PLAAT2, BTN3A1,
and DUOX2 (Fig. 4C). We also identified patterns specific to each interferon, exemplified by a subset of
canonical ISGs (IFI2, IFITM2, and ISG15 ) whose mean expression show a continuous increase in response to
IFN-λ but remains high for type-1 interferons throughout the time course (Fig. 4C).

Analysis of differential mean expression revealed the induction of canonical and non-canonical ISGs (e.g.,
components of the proteosome) but did not reveal whether these genes are subjected to the same transcriptional
regulatory control. To map the interferon gene correlation network and its sub-components, we used memento
to estimate and compare correlations between pairs of ISGs across stimulation and time (Fig. 4D).
Agglomerative clustering of the resulting gene correlation matrix revealed distinct subsets of ISGs in response
to IFN-β that form clusters in unstimulated cells, stimulated cells, or both which could not be distinguished
by differential mean analysis. For example, canonical ISGs including MX1, OAS1, and IFI6, were highly
correlated even in the absence of exogenous interferons (Fig. 4D). Upon IFN-β stimulation, the correlation
network consisting of canonical ISGs was expanded to include non-canonical ISGs such as the MHC Class I
molecules and other genes associated with antigen presentation that were not correlated in unstimulated
cells (Fig. 4D). Indeed, more differentially correlated pairs of genes (DCGs, FDR < 0.1) were found among
non-canonical ISGs (860 DCGs, 34% of total pairs) than canonical ISGs (421 DCGs, 16% of total pairs).
Distinct additional clusters of correlated genes arose as well, such as a cluster at 6hrs that include STX6,
PML, and LAMP3.

We hypothesized that canonical ISGs are correlated in unstimulated cells because of the sensing of tonic
interferon and coordinated induction of ISGs by a small number of cells. Tonic interferon signaling has been
described to induce a natural gradient of ISG expression across cells [45, 46], which has been further shown to
be important for viral defense [46], immune cell homeostasis, and autoimmunity [45]. In our data, canonical
ISGs are more variable than non-canonical ISGs in unstimulated cells (Fig. 4E), comparable to previously
reported differences between cytokines and non-cytokines (Fig. S5) [47]. Among the 761 differentially
variable genes (DVGs, FDR < 0.1) identified using memento between unstimulated ciliated cells and those
stimulated by any of the four interferons at 6 hours, 394 were highly variable in unstimulated cells (FDR
< 0.005) and were enriched for ISGs (GSEA Interferon alpha/beta signaling Adjusted P = 3.35 × 10−12)
including IFIT1, IFIT3, and MX1. We next compared the tonic sensitivity of canonical and non-canonical
ISGs, estimated as the fold-change (FC) in the expression of each gene between macrophages from IFNAR
knockout and wild-type mice in the absence of exogenous interferon [48]. This analysis revealed that the
canonical ISGs are significantly more sensitive to tonic interferon than non-canonical ISGs (P < 2.73 x 10-10),
Fig. 4F). When cells are stimulated with IFN-β and to a lesser extent with IFN-γ, the variability of many
(78% and 39%, respectively) canonical ISGs decreases significantly (Fig. 4G, FDR < 0.1), suggesting that
exogenous stimulation may homogenize the cellular environment and remove the effects of heterogeneous
response to tonic interferon.

These results demonstrate the applicability of memento for the comparison of gene expression distributions to
reveal novel modes of gene regulation imparted by extracellular interferon. In HTECs, we identified: 1) a
core network of canonical ISGs that exhibit highly variable and correlated gene expression in unstimulated
cells due to tonic interferon signaling, 2) the synchronization of canonical ISGs in response to exogenous
interferon resulting in reduced variability, and 3) a network of non-canonical ISGs that are regulated only in
response to exogenous and not tonic interferon.
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Differential expression analysis of perturbed CD4+ T cells maps gene regulatory
networks in T cell activation
The integration of precise genome perturbations delivered by CRISPR-Cas9 with scRNA-seq profiling of
perturbed cells has created new opportunities for forward genetics screens across a variety of in vitro systems.
We next applied memento to analyze 173,000 CD4+ T cells perturbed by CRISPR-Cas9 to map transcriptional
regulatory networks that control the activation and polarization of human CD4+ T cells. CD4+ cells were
perturbed using pooled sgRNA lentiviral infection with Cas9 protein electroporation (SLICE) [13] followed
by multiplexed single-cell RNA-sequencing (mux-seq). A total of 280 sgRNAs were used in the transduction
targeting 140 transcriptional regulators (TRs) that were either highly expressed (top quartile from bulk
RNA-seq) or have binding sites that were differentially accessible (from bulk ATAC-seq) in activated CD4+

T cells [49] (Fig. 5A). Following Cas9 electroporation and multiple rounds of selection and proliferation,
activated CD4+ T cells from 9 donors were profiled using mux-seq.

To assess the cutting efficiency of each sgRNA, we sequenced the sgRNA pool and DNA of edited cells from
each donor by targeted amplification of 268/280 loci. Across 268 sgRNAs, the average cutting efficiency,
defined as the coverage of edited cells at the target locus divided by the coverage of the corresponding sgRNA
in the pool, was 21% (standard deviation 15%, Fig. S6). We defined 14 sgRNAs with cutting efficiencies less
than 2.0% (standard deviation 1.7%; z-score, P < 0.05) as uncut negative controls (WT). We demonstrate the
robustness and performance of our screen by the following two quality control assessments. First, we showed
using memento that target genes were significantly down regulated in cells transduced with the concomitant
sgRNA (Fig. 5B). Second, there was a higher correlation of average gene expression between WT cells (ρ =
0.50) or cells transduced with sgRNAs targeting the same gene (ρ = 0.44) than cells transduced with sgRNAs
for two random genes (ρ = 0; KS-test P < 2.2 x 10−16 for both; Fig. S7).

Using memento, we identified 7641 genes (FDR < 0.05) exhibiting differential mean expression (DMGs)
between WT cells and cells perturbed by at least one sgRNA. Hierarchical clustering revealed groups of
sgRNAs that had similar effects on the transcriptome as well as groups of genes that responded similarly
to those perturbations (Fig. 5C). Specifically, we identified 5 clusters of DMGs associated with ribosomes
(FDR < 5.35 x 10−24), cytotoxicity (FDR < 0.014), antigen presentation (FDR < 0.0011), and proliferation
(FDR < 0.001). Additionally, the pairwise correlation matrix of DMGs computed using memento revealed
additional sub-clusters within each of the 5 clusters of DMGs in both WT and perturbed cells (Fig. 5C). For
example, while the mean expression of antigen processing genes are affected by a common set of transcriptional
regulators, a subset of MHC class II genes (e.g., HLA-DPA1, HLA-DRA, HLA-DRB1, HLA-DPB1 ) are
highly correlated suggesting that their regulation may be controlled by additional trans regulators.

Next, we hypothesized that by leveraging memento’s ability to detect changes in gene correlations, we can
identify genetic interactions between transcriptional regulators without the need for inducing combinatorial
perturbations. We focused the genetic interaction analysis on pairs of DMGs and their transcriptional
activators, defined as regulators where a knockout results in the decreased expression of DMGs (TR-DMG,
Methods). These TR-DMGs tend to be positively correlated with each other in WT cells (Binomial test, P <
0.00668, Fig. 5D). In the absence of an interaction, two transcriptional regulators (R1 and R2) independently
regulate the target gene (G), and knocking out one regulator would not affect the function of the other (Fig.
5E). In the presence of an interaction, knocking out one regulator (e.g., R1) would affect R2’s ability to
regulate G, which we can detect as a change in the gene correlation between R2 and G when R1 is perturbed
(Fig. 5F). Following this approach, we identified 564 genetic interactions between 432 unique pairs of
regulators (FDR < 0.1, Fig. 5F). Validating these interactions, analyses integrating ChIP-seq data from
ENCODE[50] show that interacting TR pairs have more target genes with co-localized binding sites near
transcription start site (TSS) than non-interaction pairs (Fig. 5G). As an example, we identified that IRF1
regulates LGALS3PB (using differential mean expression testing) and the two genes are highly correlated in
WT cells (ρWT = 0.28). Knocking out of PRDM1 significantly reduced the correlation between IRF1 and
LGALS3PB (∆ρ = -0.38) suggesting that PRDM1 and IRF1 may interact to regulate the expression of
LGALS3PB. Consistent with these observations, LGALS3BP has binding sites for both IRF1 and PRDMB1
immediately surrounding its TSS (Fig. 5H).

These results demonstrate that when paired with a forward-genetic screen such as Perturb-seq, correlation
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analysis using memento can identify sets of genes that share common regulators but may be in different
pathways and reconstruct genetic interactions of trans regulators that control T cell activation.

Genetic analysis of population-scale single-cell RNA-sequencing
The growing availability of population-scale scRNA-seq datasets has enabled mapping of genetic variants
associated with changes in the expression distribution of proximal genes (cis) in specific cell types. Most
studies currently deploy pseudobulk methods such as Matrix eQTL to identify cis expression quantitative
trait loci (cis-eQTLs that affect mean expression. While linear mixed models have recently been applied to
map cis-eQTLs from scRNA-seq data, they are computationally inefficient, limited to the comparisons of
means, and sensitive to the underlying parametric model [51]. We hypothesize that compared to pseudobulk
methods, memento’s more accurate parameter estimates and ability to account for inter-individual variation
should increase the power to detect cis-eQTLs and discover novel variability and correlation QTLs (vQTL
and cQTL, respectively). Furthermore, the highly efficient hierarchical bootstrapping strategy should enable
applications to the largest population-scale scRNA-seq datasets that may be computationally prohibitive for
complex parametric linear mixed models. To demonstrate, we applied memento to reanalyze a previously
published scRNA-seq dataset containing 1.2M PBMCs from 160 SLE patients and 90 healthy donors.

The data was analyzed separately for each of the following reported cell types: CD4 T cells (T4), CD8 T cells
(T8), natural killer cells (NK), classical monocytes (cM), and non-classical monocytes (ncM) [17]. Individuals
of East Asian and European ancestries were separately analyzed to enable replication analysis of memento by
comparing the results between populations. For each cell type and ancestry, memento mapped cis genetic
variants (e.g., within 100kB from the TSS) associated with expression mean, expression variability, and gene
correlation with well-calibrated p-values (Fig. 6A). We compared the power and false positive rate (FPR)
of memento and Matrix eQTL for detecting cis-eQTLs reported by the OneK1K study consisting of 1000
non-overlapping individuals [18]. In both East Asians and Europeans, memento (AUC=0.85) had more power
to detect cis-eQTLs compared to Matrix eQTL (AUC=0.81) given the same FPR (Fig. 6A,B). Overall,
memento outperformed Matrix eQTL in both populations, replicating 1,606 vs 855 cis-eQTLs across cell types
in East Asians and 1,778 vs 958 in Europeans. Further, across a range of individuals representative of existing
cohort sizes for multiplexed scRNA-seq experiments, memento achieved an average gain in power of 15% for
80 individuals that increased to 32% for 50 individuals with an average of 440 cells per individual (Fig. 6B).

We next investigated whether the increased number of cis-eQTLs detected by memento also improves the
enrichment for regions of open chromatin and disease associations. In the East Asian population, cis-eQTLs
identified by memento in specific cell types were more enriched for cell type specific regions of open chromatin
annotated by an independent study that performed ATAC-seq on bulk sorted immune cells (p-values for
matched cell-types, B 9.0x10−9 vs 0.04; T4 9.3x10−4 vs 0.11; T8 0.03 vs 0.58; NK 6.67x10−8 vs 0.03; cM
2.1x10−11 vs 0.67; ncM 1.0x10−6 vs 0.46, Fig. 6D,E). Similar gains in enrichment was observed in the
European population (Fig. S8). Analysis using LD score regression found that cis-eQTL identified by
memento were also more enriched for GWAS associations to immune mediated diseases suggesting improved
performance for fine mapping (Fig. S9).

Beyond mapping cis-eQTLs, memento enables mapping of genetic variants associated with expression variability
and gene correlation that can suggest additional mechanisms by which genetic variants affect gene expression.
Using memento, we identified 10607 expression variability QTLs (vQTLs) for 733 genes across all cell types.
For example, the expression variability of HLA-C differs between different genotypes of 6:31326612 (Fig.
6F). The A allele increases the expression variability of HLA-C without a significant effect on the mean
(Fig. 6G). For mapping correlation QTLs (cQTLs), we focused on testing for the correlation between genes
with at least one significant cis-eQTL and known transcription factors. This choice specifically tests the
hypothesis that the genetic variants may further modify the effect of transcription factors on gene expression.
We mapped 3726 cQTLs for 238 pairs of genes across all cell types. For example, the SNP at 12:69688073 not
only affected the mean expression of LYZ, but also the the correlation between JUNB and LYZ. Interestingly,
there exists a JUNB binding site within 1kbp of the SNP suggesting that JUNB may act as a trans regulator
for LYZ, and that its strength of regulation is affected by the genotype at this site.

These results demonstrate memento as a scalable method for the genetic analyses of population scale scRNA-
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seq data delivering higher statistical power for the identification of cis-eQTLs and new capability for mapping
variability QTLs and correlation QTLs. These advances improve the fine mapping of disease associations and
reveal novel modes by which genetic variants can affect gene expression.

Discussion
Fueled by the development of scalable workflows, there is an emergence of scRNA-seq datasets where the
quantitative comparison of gene expression distributions between groups of cells is a critical task. These
include efforts to characterize the differences in single-cell expression profiles between experimental conditions
[12], between cells harboring different genetic perturbations induced by genome editing [14, 52], and between
individuals inheriting different alleles [16, 17, 18]. Initial observations from these studies that experimental
and genetic perturbations often induce subtle shifts in gene expression rather than distinct cell states
have necessitated the need for methods that compare gene expression distributions. However, scalable
computational methods that facilitate hypothesis testing over many covariates (e.g. hundreds of in vitro
perturbations or millions of genetic polymorphisms) are still scarce. Furthermore, even fewer methods
currently test for differences in the variability of gene expression and correlation between pairs of genes,
parameters that are uniquely captured from single cell RNA-sequencing. Here, we introduced memento, an
end-to-end method for the quantitative analysis of scRNA-seq data theoretically scalable to millions of cells.

memento is developed with two key innovations: method of moments estimators that model scRNA-seq as a
hypergeometric sampling process and an efficient bootstrapping strategy to construct accurate confidence
intervals around parameter estimates leveraging the sparsity of scRNA-seq data. Method of moments
estimators provide two advantages over other approaches. First, our approach explicitly disentangles the
biological and technical sources of noise to accurately characterize biological variation. This feature of
memento addresses recent calls for hierarchical parametric modeling of the measurement noise of scRNA-seq
while only considering biological variation for estimation and inference [22]. Second, given a hierarchical model
of scRNA-seq, computing the overall likelihood with a discrete component is computationally prohibitive due
to the need to marginalize over each possible level of biological gene expression. Method of moment estimators
obviate the need to repeatedly compute the overall likelihood and directly computes the parameters of interest
instantly. The multinomial approximation of hypergeometric sampling has been used to theoretically derive
the baseline noise in scRNA-seq [33] and to design dimensionality reduction techniques for count data [53].
The Poisson approximation of the binomial (which in turn approximates the hypergeometric), has been used
to derive empirical Bayes estimators to inform the optimal design of scRNA-seq experiments [36]. While
we derive our estimators focusing on scRNA-seq workflows where the cell-to-cell differences in transcript
sampling frequencies q is small, hypergeometric formulation is flexible to modeling workflows where q may
differ significantly between compartments (e.g. sci-rna-seq[30]), provided that Nc and q can be estimated
separately. Because of the modular and flexible nature of memento, we further anticipate that our modeling
framework could be extended to alternative scRNA-seq workflows that use hybridization instead of reverse
transcription [54] and spatial transcriptomics data [55, 56]. Analyses of emerging multimodal workflows
(e.g., ATAC-seq and CITE-seq) should also be possible by modifying the method-of-moments estimators to
correctly capture sources of technical variation unique to each assay.

The general challenge in implementing method of moments estimators for hierarchical models is the need
to establish confidence intervals using resampling because incorporating the sampling process into deriving
analytical confidence intervals and p-values are likely to have highly complex forms without further assumptions.
While resampling can be computationally prohibitive especially when the number of cells is large, our use of
the approximate bootstrap that resamples the number of unique counts rather than number of single cells
enables us to adopt a method of moments approach. When subsampled at various cell counts, the number
of unique counts increased sub-linearly with the number of cells (Fig. S3), and this was true even when
considering unique counts for pairs of genes (Fig. S10). Through extensive simulations, we demonstrated
that memento is able to produce accurate confidence intervals for the moment estimates and well-calibrated
p-values testing for their differences across groups of cells. Because our hypothesis testing framework utilizes
approximate bootstrapping, it should in theory be compatible with existing parametric models to enable
better estimates of empirical p-values for a variety of single-cell sequencing analysis methods.
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Through three proof of principle applications of memento, we demonstrate how differential variability and
correlation analysis can identify novel gene regulatory relationships that are not detected using differential
mean analysis. In human tracheal epithelial cells, we showed that memento identified unexpected correlation of
canonical ISGs at baseline suggestive of an extracellular gradient of tonic interferon, and the expansion of the
interferon response transcription regulatory network after extracellular stimulation to include non-canonical
ISGs. In a dataset of CD4+ T cells genetically perturbed by CRISPR-Cas9, memento analyses of gene
correlations while using genetic perturbations as causal anchors revealed genetic interactions of regulators in
controlling the expression of target genes. Finally, when applied to a population-scale scRNA-seq experiment,
memento improved the statistical power and resolution for mapping cis-eQTLs and mapped additional loci that
affected gene expression variability and gene correlation. These applications to diverse datasets demonstrate
that memento is a highly adaptable and scalable method for the quantitative analyses of large scRNA-seq
datasets containing many replicates and experimental conditions.
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Figures

Figure 1: memento workflow for differential mean, variability, and gene correlation testing. (A) Experimental
workflow for single cell RNA-sequencing samples RNA transcripts inside each cell during library preparation and sequencing.
After scRNA-seq sampling, patterns of mean, variability, and correlation of gene expression in the observed transcript counts
no longer resemble the actual distribution. (B) memento models scRNA-seq as a hypergeometric sampling process, estimates
expression distribution parameters (mean, residual variance, and correlation) using method of moments estimators, implements
efficient bootstrapping for estimating confidence intervals, and tests for differences in expression parameters between two
groups of cells. (C) Three applications of memento to characterize the response of 70k human tracheal epithelial cells to
extracellular cytokines, reconstruct the gene regulatory network from 170k human CD4+ T cells perturbed by CRISPR-Cas9,
and map the genetic control of gene expression in 1.2M peripheral blood mononuclear cells from 162 SLE patients and 99
healthy controls.
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Figure 2: Performance of method of moments estimators. (A) Concordance of estimates of mean (left), variability
(middle) and gene correlation (right) from scHOT (naive), Poisson, BASiCS and memento with simulated ground truth values
(y-axis) for a range of overall transcript capture efficiencies (q) (x-axis). Concordance is measured with Lin’s concordance
correlation coefficient. (B) Scatterplot of estimates of mean (left), variability (middle) and gene correlation (right) of DropSeq
data using scHOT (naive), BASiCs, and memento (x-axis) against smFISH-derived estimates measured in the same population
of melanoma cells (y-axis). Correlation is measured by Pearson correlation coefficient.
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Figure 3: Inference via efficient bootstrapping leveraging data sparsity. (A) Schematic for efficient approximate
bootstrapping utilizing sparse scRNA-seq data. Rows represent bootstraped samples. The number of unique transcript counts
is far smaller than the number of cells. (B) P-value histograms from simulated data for differential (DM), variability (DV),
and correlation (DC) (left to right). Black line indicates the null distribution where true parameters are held constant across
groups. (C) Statistical power and FPR (y-axis) against p-value thresholds in simulation for DM, DV, and DC analyses.
memento, t-test, and Mann-Whitney U test was used for DM analysis, memento and BASiCS for DV analysis, and memento
and scHOT (Spearman r) for DC analysis. (D) Simulated runtimes for DV/DC analysis using BASiCS, scHOT and memento
(y-axis) for a single bootstrap resampling against the number of cells for binary comparisons (x-axis).
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Figure 4: Mapping transcriptional response of human bronchial epithelial cells to extracellular interferon using memento (A)
UMAP of the HBEC dataset with identified cell types (left). UMAP of the ciliated cells (our focus) with stimulation and time
labels (right). (B) Log fold-change (LFC) of mean expression in response to IFN-α (x-axis) against LFC in response to IFN-β
(left), IFN-γ (middle), and IFN-α (right) after 6 hours. (C) Hierarchically clustered heatmaps of LFC in response to the four
types of interferons (columns within each heatmap) across 5 timepoints compared to control. Light blue and green boxes
highlight IFN type specific responses. (D) Gene-cell heatmap (left of each timepoint) and gene-gene correlation heatmap
(right) for selected DMGs in response to IFNb. All genes shown are DMGs detected in response to IFN-β at at least one
timepoint. (E) Baseline expression variability (y-axis) versus mean (x-axis) in ciliated cells. (F) Tonic sensitivity (y-axis) for
canonical and non-canonical ISGs (x-axis). *** indicates P < 0.001. (G) Change in variability (y-axis) against the change in
the mean (x-axis) for IFN-β (left) and IFN-γ (right).Blue dots represent canonical ISGs.
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Figure 5: Reconstructing gene regulatory networks of T cell activation using Perturb-seq and memento (A)
Selection criteria for perturbed regulators in this study, based on expression (top) and binding site enrichment (bottom). (B)
Heatmap of gene (row) expression for target genes of sgRNA (columns). (C) Left: Heatmap of genes with differential mean
expression (row) for sgRNA (columns). Right: Gene-gene correlation matrix for the same DMGs estimated from WT cells.
(D) Correlation between each regulator and its downstream genes in WT cells. (E) Bipartite gene regulatory network that
do not account for interaction between regulators constructed from DM analysis of Perturb-Seq data. (F) Gene regulatory
network including genetic interactions between regulators constructed utilizing both DM and DC analysis. (G) Number of
genes with binding sites for both pair of interacting or non-interacting regulators across varying windows of the TSS. (H)
Chromosomal location of LGALS3BP and binding sites for IRF1 and PRDM1, predicted to interact using DM and DC
analysis.
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Figure 6: Mapping of mean QTL (eQTL), variability QTL (vQTL), and correlation QTL (cQTL) using memento
(A) Quantile-quantile (QQ) plots for expected p-values (y-axis) computed by memento versus theoretical p-values (x-axis) for
mean, variability, and correlation QTLs. For mean QTLs, QQ-plot of p-values from pseudobulk approach (Matrix eQTL) is
overlayed. (B) Receiver operating characteristic (ROC) curve for recovery of mean QTLs identified from a much larger cohort
(OneK1K) for memento and pseudobulk method. (C) Power of eQTL recovery (y-axis) of memento and pseudobulk method
across different numbers of individuals. Analyses was performed on CD4 (T4), B cells (B), classical monocytes (cMs) and
natural killer cells (NKs). (D) Enrichment of cell-type specific eQTLs in cell-type specific ATAC-peaks. Each entry represents
the enrichment for eQTLs detected in one cell type (column) in ATAC-peaks detected in another cell type (row). Intensity is
log10(p-value). (E) Enrichment of eQTLs detected in each cell type for cell-type-specific ATAC-peaks detected in the same
cell type. (F) An example of a variability QTL. Expression variability (y-axis) for each individual of varying genotypes at
6:31326612. (G) Histogram showing distribution of HLA-C expression for a representative individual of each genotype. (H)
An example of a correlation QTL. JUNB -LYZ gene correlation (y-axis) for individuals of varying genotypes at 12:69688073.
(I) Scatterplot of expression of LYZ (y-axis) against the expression of JUNB (x-axis) across single cells from all donors (grey)
and a representative individual (black).
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Methods

Modeling scRNA-seq as a hypergeometric sampling process
We model the count data obtained from scRNA-seq with a flexible hierarchical model that explicitly considers the generative
process of the expressed transcript counts and sampling of mRNA molecules with massively-parallel scRNA-seq methods. As
presented in the main text, our full model of the scRNA-seq sampling process can be summarized as follows:

Zc ∼ PZ , expressed transcript counts

Nc = 1TZc, total transcript counts of each cell

Xc =
PZ

Nc
,normalized transcript counts

Yc ∼ MultiHG(Zc, Nc, qNc) = MultiHG(XcNc, Nc, qNc), observed transcript counts

q is the random variable representing the proportion of expressed transcript counts that is eventually counted as UMIs in
the observed scRNA-seq experiment. In our discussion of sources of noise above as applied to most scRNA-seq workflows, it
accounts for both the RT sampling efficiency as well as the sampling of transcripts from sequencing. In the extreme, if a
library is sequenced to saturation, then q reduces to the RT sampling efficiency; however, in most experiments, libraries are not
sequenced to saturation but up to a known percentage of unique molecules. Through extensive simulations, we demonstrate
that this compound noise process can be well approximated with a single multivariate hypergeometric process by using a value
for E[q] that is a product of the RT sampling efficiency (available for specific experimental technologies) and the sequencing
sampling efficiency (available from the preprocessing pipelines such as CellRanger) (Fig. S1) [57].

We then model the mRNA capture process with a multivariate hypergeometric distribution. The probability mass function
(PMF) of the multivariate hypergeometric distribution given (K1,K2,K3, ...Kc) components (i.e. genes), total count N =∑c

i=1Ki, and number of samples n ∈ 0, 1, ..., N is given by:

pMultiHG(~k;K1,K2, ...,Kc, N, n) =

c∏
i=1

(
Ki

ki

)
(
N
n

) (1)

In previous works [36], the full hypergeometric treatment was simplified by a series of approximations, starting from the
hypergeometric model to the Poisson model:

Yc ∼ MultiHG(Zc, Nc, qNc), observed transcript counts

Yc ∼ Multinomial

(
Zc

Nc
, qNc

)
, observed transcript counts

Ycg ∼ Bn

(
Zcg

Nc
, qNc

)
, observed transcript counts

Ycg ∼ Poi

(
Zcg

Nc
qNc

)
, observed transcript counts

Ycg ∼ Poi (qZcg) , observed transcript counts

Ycg is a single element in the vector Yc, as the Poisson model considers the sampling of each gene to be independent. As
we discuss in the following sections, the full hypergeometric treatment and the Poisson simplification result in very similar
estimators when q is very small (close to 0), but become more different as the value of q increases, as scRNA-seq experimental
workflow improves.

Method of moments estimation of expressed transcript counts
We will start this section by reviewing the derivation of the Poisson estimators first presented in [36] in the context of
determining optimal sequencing depth for scRNA-seq experiments. First, recall the previously presented Poisson sampling
model for scRNA-seq where Nc represents the total expressed transcripts for each cell, q is the overall sampling efficiency, and
Xcg is the true relative mRNA expression Ycg ∼ Poi (qNcXcg).
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For a Poisson variable A ∼ Poi(λ), the moments of A are E[A] = λ and E[A2] = λ2 + λ. Similarly, for our model, we can write
down the equations for the moments of Ycg given the other variables, q, Nc, and Xc.

E[Ycg|Xcg, N, q] = XcgNcq

E[Y 2
cg|Xcg, N, q] = X2

cgN
2
c q

2
c +XcgqcNc

E[YcgiYcgj |Xcgi , Xcgj , N, q] = XcgiXcgjN
2
c q

2

Substituting the first moment equation into the second, we get:

E[Y 2
cg − Ycg|Xcg, N, q] = X2

cgN
2
c q

2

These equations lead to an estimator for µ̂g,Poi, σ̂2
g,Poi, and σ̂gigj ,Poi, the mean, variance, and covariance of Xcg by averaging

the moments over all cells:

µ̂g,Poi = Ê[Xcg] =
1

ncells

∑
c

Ycg
Ncq

σ̂2
g,Poi = Ê[X2

cg]− Ê[Xcg]2 =
1

ncells

∑
c

Y 2
cg − Ycg
N2

c q
2
−

(
1

ncells

∑
c

Ycg
Ncq

)2

σ̂gigj ,Poi = Ê[XcgiXcgj ]− Ê[Xcgi ]Ê[Xcgj ] =
1

ncells

∑
c

YcgiYcgj
N2

c q
2
−

(
1

ncells

∑
c

Ycgi
Ncq

)(
1

ncells

∑
c

Ycgj
Ncq

)

Now, let us consider the full multivariate hypergeometric model, Yc ∼= MultiHG(XcNc, Nc, qNc). For a random vector
A ∼MultiHG(K, N, n), the moments of A are:

E[Ai] = n
Ki

N

E[A2
i ] = n

N − n
N − 1

Ki

N

(
1− Ki

N

)
+ n2

K2
i

N2

E[AiAj ] = −nN − n
N − 1

KiKj

N2
+ n2

KiKj

N2

We can again write down the moment equations, this time for the multivariate hypergeometric model.

E[Ycg|Xcg, Nc, q] = qNc
XcgNc

Nc

= XcgNcq

E[Y 2
cg|Xcg, Nc, q] = qNc

Nc − qNc

Nc − 1

XcgNc

Nc

(
1− XcgNc

Nc

)
+ q2N2

c

X2
cgN

2
c

N2
c

≈ qNc(1− q)Xcg(1−Xcg) + q2N2
cX

2
cg

= X2
cgN

2
c q

2 +XcgqNc(1− q)−X2
cgqNc(1− q)

= X2
cg

(
N2

c q
2 −Ncq(1− q)

)
+XcgNcq(1− q)

E[YcgiYcgj |Xcgi , Xcgj , N, q] = −qNc
Nc − qNc

Nc − 1

XcgiXcgjN
2
c

N2
c

+ q2N2
c

XcgiXcgjN
2
c

N2
c

≈ q2N2
cXcgiXcgj − q(1− q)NcXcgiXcgj

= XcgiXcgj

(
N2

c q
2 −Ncq(1− q)

)
Substituting the first moment equation into the second, we get:

E[Y 2
cg − (1− q)Ycg|Xcg, N, qc] = X2

cg

(
N2

c q
2 −Ncq(1− q)

)
The approximation used in the derivation for the second and first pairwise moment assumes that Nc >> 1. For most mammalian
cells with expressed transcript counts on the order of 105, these approximation should hold. Similar to estimators based on the
Poisson model, we can derive estimators based on these moment equations from the full multivariate hypergeometric model:
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cg]− Ê[Xcg]2
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Last, we write the naive estimators for mean, variance and covariance for completeness.

µ̂g,naive = Ê[Xcg] =
1

ncells

∑
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Ycg
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σ̂2
g,naive = Ê[X2
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The estimators for the mean and covariance is very similar between the naive, Poisson and HG estimators. However, the
estimator for the variance, which contributes to the measurement of residual variance and correlation, is the key difference
between the three sets of estimators. Importantly, it is straightforward to see that the HG estimator for the variance includes
the naive and Poisson estimators:

lim
q→0

σ̂2
g,HG = σ̂2

g,Poi

lim
q→1

σ̂2
g,HG = σ̂2

g,naive

These results imply that when q, the overall sampling efficiency, is small, the HG estimators behave very similar to the
Poisson estimators. When q approaches 1, a hypothetical scenario where the scRNA-seq workflow is perfect and we capture
all expressed transcripts, the HG estimators converge to the naive estimator, as there is no noise process. As scRNA-seq
workflows improve and q becomes larger, HG estimators serve as a generalization of the estimators presented by Zhang et al.
to account for different types of experimental workflows with different values of q.

We also discuss here the case where q is not constant across cells. One of the assumptions used in deriving our estimators
above is that q is a known constant, and we do not need to estimate it for each and every cell. However, it is plausible that
for certain scRNA-seq technologies and when sequencing is not saturated, q is actually a distribution around its mean, E[q].
Experimentally, we can mitigate this issue by using spike-in RNA control to actually measure the value of q for each and
every cell. Because q does not appear in the Poisson estimators, it is not possible to explicitly account for the variability in q
even if its value can be measured for each cell. With the hypergeometric estimators derived here, we can simply substitute the
measured values of qc for each cell in place of q above.

Estimating cell sizes by trimming variable genes
The Ncqc values that appear in the HG estimator equations above refer to the cell size, which serves as a normalization
factor for each cell. These constants serve to ensure that even if the proportions of transcripts captured vary across cells, the
estimates would not be affected by this technical source of noise. We can decompose Ncqc into two components: a constant
numi and γc so that Ncqc = numiγc. The simplest way of estimating γc is to first compute numi = 1

ncells

∑
c 1

TYc, and setting
γc = 1

numi
1TYc , performing a total count normalization.
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This is how the Poisson estimators presented in Zhang et al.’s work estimated the cell sizes. In memento, we provide an
alternate method by first computing residual variances across all cells in a dataset with total count normalization, and trimming
off genes that exhibit high variability. This approach assumes that most genes in the dataset should not be differentially
expressed, and the least variable genes are appropriate to be used in normalization. This idea of using non-DE genes have
been used in other methods, such as [58, 59]. By default, memento uses 10% of the least variable genes. After gene set G∗ is
formed by trimming variable genes, we compute γc with:

γc =
δ +

∑
g∈G∗ Ycg

δ + 1
ncells

∑
c

∑
g∈G∗ Ycg

The δ value here serves as a regularization factor in estimating cell sizes; when this value is high, it would indicate the dataset
does not need a size factor normalization (sampling is truly constant across cells, such as when sequencing to saturation). By
default, memento uses median(

∑
g∈G∗ Ycg) over cells c as the δ value.

It is important to note that there are more sophisticated normalization methods that exist in literature [60]. memento can
readily incorporate these alternative methods of computing cell sizes into its pipeline.

Computing the residual variance
Mean and variance in scRNA-seq data is generally highly correlated and measuring variability of expression must account for
this correlation. BASiCs accounts for this dependence by performing nonlinear regression with many components between the
fitted mean and ovedispersion parameters [27]. Instead of fitting a negative binomial distribution then regressing out the
mean from the overdispersion parameter, we simply take the estimated true mean and variances and fit a simple polynomial
regression. We use a single fitted polynomial (default degree 2) for all genes of a given group of cells, defined by cell type,
experimental condition, or batch. We find that even this simple regression is able to largely remove the mean-variance
dependence present in scRNA-seq data.

Efficient bootstrapping by exploiting data sparsity
Typically, generating confidence intervals and computing p-values for hypothesis testing make certain assumptions on both
the distribution of the data as well as the estimator itself. For example, to compute p-values for the coefficients of a linear
regression model, we typically assume that the data is normally distributed and the sampling distribution of the coefficients
are also normal. In the setting of scRNA-seq, our estimators allow for measurement of the average, variability, and gene
correlation without making any assumptions about the distribution of expressed transcript counts. However, it is difficult to
compute analytical confidence intervals for our estimators without assuming anything about the data itself and the sampling
distributions of our estimates.

Bootstrapping is a procedure for estimating the sampling distribution of any arbitrary statistic without making large
assumptions on the data generating processs [40]. In memento, we propose a strategy to perform bootstrapping in scRNA-seq
data in an extremely efficient manner. Specifically, in a dataset for a single gene with N cells x1, x2, x3, ...xN , we can model
the number of appearance of each observation as a multinomial distribution with Multinomial(N, 1

N ...
1
N ). If there are K

unique counts with nk cells each, we can re-write the resampling distribution as Multinomial(N, n1

N ...nK

N ).

When considering normalized transcript abundances, we must account for the total number of transcripts in each cell (Nc).
While this would technically create a different Nc for each cell and make our scheme less useful, a strategy binning Ncs
across cells into a small number of discrete bins well-approximates the true bootstrap distribution of parameters. Through
simulations, we show that as the number of bins increase, we show that the true bootstrap distribution and the approximate
bootstrap distributions are nearly identical (Fig. S4).

Hypothesis testing and extension to account for replicates in multiplexed scRNA-seq exper-
iments
Consider a scenario with two groups of cells A and B, and we computed the parameter of interest t for each group and
computed ∆t as their difference. t would depend on the type of test we would like to perform; we would compute the mean,
residual variance, and correlation to test for differences in the averages, variability, and coexpression respectively. We then
perform bootstrapping with B iterations to generate a sampling distribution for the test statistic ∆t, from ∆t1 to ∆tB . If we
wished to test for the alternative hypothesis of H1: ∆t 6= 0 against the null H0: ∆t = 0, we first generate the null distribution
by subtracting ∆t from ∆t1, ...,∆tB to form ∆t∗1, ...,∆t

∗
B , similar to the strategy laid out in [40]. We can then compute the

achieved significance level (ASL) for that test as
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ASL =

{
2
B

∑B
i=1 1(∆t > ∆t∗i ) if ∆t ≥ 0

2
B

∑B
i=1 1(∆t < ∆t∗i ) if ∆t < 0

There has been an increasing trend to generate scRNA-seq data with replicates (e.g. different individuals), especially with
multiplexed workflows. Consider an experiment with two conditions and n replicates. Then, we propose a meta-analysis
framework where we first group the cells into 2n groups and perform a meta-regression with 2n observations:


lnµ1

lnµ2

...
lnµ2n−1
lnµ2n

 ,


ln σ̃1
ln σ̃2
...

ln σ̃2n−1
ln σ̃2n

 ,


ρ1
ρ2
...

ρ2n−1
ρ2n

 ∼ β


W1

W2

...
W2n−1
W2n

+ α


1
1
...
1
1


where µi, σ̃i, and ρi refer to the estimated mean, residual variance, and correlation computed in the ith replicate and Wi refers
to the condition. Then, we can bootstrap the regression coefficients B times to yield the original statistic β̂ and bootstrap
statistics β̂1, ..., β̂B . Then, similar to the non-replicated case, we can generate the null distribution β̂∗1 , ..., β̂∗B by subtracting β̂
from β̂1, ..., β̂B . We can further compute the ASL with:

ASL =

{
2
B

∑B
i=1 1(β̂ > β̂∗i ) if β̂ ≥ 0

2
B

∑B
i=1 1(β̂ < β̂∗i ) if β̂ < 0

This framework can easily extended to incorporating many covariates, including batch variables and interactions between
variables of interest.

As a technical aside, we note that this procedure for computing the ASL assumes that the sampling distribution of the test
statistic of interest is translation invariant [40]. Through extensive simulations, we confirm that for the test statistics we
consider in memento, this procedure yields well-calibrated results under the null hypothesis (Fig. 3B). If custom test statistics
are used, it is important to check for the calibration of hypothesis test results. memento also has the option to compute
p-values assuming that the sampling distribution of the effect size is normal with unknown variance that is estimated using
the bootstrap, useful for speeding up hypothesis tests. For this work, this approximation was only used for analyzing the
effect of natural variation (Fig. 6).

Pre-processing the rIFNB1 PBMC dataset
We used the original clustering and tSNE visualization of the rIFNB1 dataset [15] from the data deposited in the Gene
Expression Omnibus under the accession number GSE96583. Further details on the pre-processing of this dataset can be
found in the original paper [15].

For all analysis, we selected genes where the mean observed expression E[Ycg] = 0.07, which was the reliability limit for this
experiment. More details on the reliability limit can be found in [36]. This value was computed from the reported UMI
capture efficiency of 10X Chromium V1 and well as the sequencing saturation of this experiment, which was around 90% [15].

Simulating genes with differential mean, variability, and correlation
For simulations presented in Figure 2 and 3, we first extracted moments of Xcg and Nc for every gene with E[Ycg] > 0.07
from CD4+ T cells in the rIFNB1 stimulation data using the HG estimator presented above. We then used these estimated
moments to simulate expressed mRNA transcripts by sampling from the negative binomial distributions specified by these
moments.

We also induced random correlations between the negative binomial distributions by using the Gaussian copula method. We
first sampled a random positive semidefinite matrix using the scikit-learn Python package and converted the matrix into a
correlation matrix. This correlation matrix was used to generate the Gaussian random variables used in the copula method.

To produce datasets to be compared in 3, we used the procedure above on the control and stimulated cells separately. We
then removed the differences for some genes and pairs of genes by replacing the parameters between the groups with their
average. These genes produced a ground truth null comparisons by forcing the underlying parameters to be identical, while
the other genes served as simulated DEG/DVG/DCGs with a natural distribution of effect sizes.

The simulated ground truth datasets were than subject to hypergeometric sampling at various overall capture efficiencies q for
2. For 3, we used q = 0.07, corresponding to 10X Chromium V1 chemistry with 50% sequencing saturation.
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HTEC interferon stimulation experiment
Human tracheal epithelial cells were harvested from deceased organ donors according to established protocols (PMID:
1616056). Frozen cell aliquots were reactivated and cultured in epithelial growth media (EGM) [3:1 (v/v) F-12 Nutrient
Mixture (Gibco)–Dulbecco’s modified Eagle’s medium (Invitrogen), 5% fetal bovine serum (Gibco), 0.4 ug/mL hydrocortisone
(Sigma-Aldrich), 5 ug/mL insulin (Sigma-Aldrich), 8.4 ng/mL cholera toxin (Sigma-Aldrich), 10 ng/mL epidermal growth
factor (Invitrogen), 24 ug/mL adenine (Sigma-Aldrich), and 10 uM Y-27632 (Enzo Life Sciences)] on 10 mm dishes coated
with rat tail collagen (Sigma-Aldrich). EGM was changed three times a week until dishes were confluent, at which point the
cells were passaged with 0.25% trypsin for 30 minutes. For air liquid interface culture, expanded basal cells were plated at
50,000 cells per 6.5 mm transwell insert (Corning 3470) coated with human placental collagen (Sigma-Aldrich) and cultured
with Pneumacult ALI (StemCell) for 21-28 days according to the manufacturer’s instructions. Starting on day 27, interferon
stimulation (IFN-β: 10 ng/ml, IFN-α2: 10 ng/ml, IFN-γ: 10 ng/ml, IFN-λ2: 10 ng/ml) was added at hours 0, 24, 39, 42,
and 45 prior to harvesting (For final timepoints 3, 6, 9, 24, and 48 hours). On the day of harvest, basal media was aspirated
and both basal and apical chambers were rinsed twice with PBS. Following two washes, trypsin-EDTA (0.25% Fisher cat.
25200072) was added to both the basal and apical chambers (300 ul basal, 100 ul apical) and incubated for 30 minutes at
37°C while pipette mixing every 10 minutes. Trypsinization was quenched with 300 ul of maintenance media and transferred
to a 1.5ml eppendorf tube (eppendorf cat. 022431021) and centrifuged at 350xg for 5 minutes at 4°C. Cells were resuspended
in 94 ul of cell staining buffer (Biolegend cat. 420201) and blocked with 5 ul of TruStain FcX (Biolegend cat. 422302) for 10
minutes on ice. Blocked cells were stained with 1 ul of Biolegend Totalseq-B hashtags (Biolegend Totalseq-B hashtags 1-11)
for 30 minutes on ice. Staining was quenched with 1 ml of cell staining buffer and spun at 300xg for 5 minutes at 4°C prior to
two more washes with 1 ml of cell staining buffer. Cells were resuspended in 100 ul of 0.05% BSA in PBS and counted via
Countess II (Fisher cat. A27977). Counted cells were pooled equally into two pools and spun at 300xg for 5 minutes at 4°C.
Cells were strained through a 100 µM filter (Corning cat. 431752) prior to a final count and each pool was loaded onto two
10x 3’v3 lanes. Libraries were prepared as described in the 10x 3’v3 user guide. Samples were sequenced on three lanes of
NovaSeq S4.

Clustering the HTEC transcriptomes
We performed filtering, normalization, and clustering with the scanpy [31] suite of tools using the default values. Cell types
were manually identified based on previously known marker genes for HTECs [44].

Similar to the rIFNB1 dataset, we selected genes where the mean observed expression E[Ycg] = 0.07, which was the reliability
limit for this experiment.

Clustering the correlation matrices for genes with differential mean expression
DMGs in ciliated cells were identified by using memento by comparing each stimulation and timepoint to the unstimulated
control. The correlation between the DMGs were computed using memento for each timepoint in IFN-β stimulation condition.
This correlation matrix at timepoint 6hr was then clustered using the AgglomerativeClustering function in sklearn python
package. Top 4 clusters in terms of gene number were chosen for plotting.

Identifying highly variable genes at baseline
We used memento in the one-sample mode to compute the donor-averaged expression mean and variability for each gene in the
transcriptome that had greater than 0.07 mean UMI count. We then performed gene set enrichment analysis using EnrichR to
get the significantly enriched gene sets.

Study subjects and genotyping for Perturb-seq
Our samples were enrolled in PhenoGenetic study (age 18 to 56, average 29.9), as part of the Immvar cohort(20), which were
recruited in the Greater Boston Area. Each donor gave written consent to participate and were healthy, without any history
of inflammatory disease, autoimmune disease, chronic metabolic disorders or chronic infectious disorders. We genotyped 56
caucasian samples on the OmniExpressExome54 chip, and excluded 2080 SNPs with a call rate < 90% (0.22% of total), 1521
SNPs with Hardy Weinberg P < 0.0001 (0.16%) and 259,860 SNPs with MAF < 0.01 (27.04%) out of the total 960,919 SNPs
profiled. The Michigan Imputation Server was used to impute these genotypes with the Haplotype Reference Consortium
Panel Version r1.1. After genotype imputation had 5,324,560 SNPs, which were then subsetted for our nine donors.

Regulator target identification and CROP-seq library generation
Our library contained targeted 140 regulators (transcription factors and RNA-binding proteins) with 2 sgRNAs each. Each
regulator was unbiasedly chosen using gene expression and accessibility data from activated CD4+ T cells in 95 and 105
healthy donors(18). To get the highly expressed regulators using RNA-seq data, we performed a TMM normalization and
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took the upper quartile of highly expressed genes and subsetted those that were regulators. To get the regulators with highly
accessible binding sites using ATAC-seq data, we enriched for all binding sites on the HOMER database(71) in activated
accessible chromatin regions. We took the union of the highly expressed regulators and accessible binding sites, for a total of
140 regulators (Fig. 1B).

The backbone plasmid used to clone the CROP-Seq library was CROPseq-Guide-Puro(28), purchased from Addgene (Addgene.
Plasmid #86708). We used two sgRNAs oligo sequences from the Brunello library(88) for each of our chosen 140 regulators.
Oligos for the sgRNA library were purchased from Integrated DNA Technologies (IDT) and cloned into the CROPseq plasmid
backbone using the methods described by Datlinger et al. [13]. Lentivirus was produced using the UCSF ViraCore.

SLICE experiment and sequencing
Primary human CD4+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) by magnetic negative selection
using the EasySep Human CD4+ T Cell Isolation Kit (STEMCELL, Cat #17952). Cells were cultured in X-Vivo media,
consisting of X-Vivo15 medium (Lonza, Cat #04- 418Q) with 5% Fetal Calf Serum, 50mM 2-mercaptoethanol, and 10mM
N-Acetyl L-Cysteine. On the day of isolation (Day 1), cells were rested in media without stimulation for 24 hours. The
day after isolation (Day 2), cells were stimulated with ImmunoCult Human CD3/CD28 T Cell Activator (STEMCELL, Cat
#10971) and IL-2 at 50U/mL. 24 hours post stimulation (Day 3), 1 uL of lentivirus was added directly to cultured T cells
and gently mixed. Following 24 hours (Day 4), cells were collected, pelleted, and washed in PBS twice. Then, cells were
resuspended in Lonza electroporation buffer P3 (Lonza, Cat #V4XP-3032). Cas9 protein (MacroLab, Berkeley, 40mM stock)
was added to the cell suspension at a 1:10 v/v ratio. Cells were transferred to a 96 well electroporation cuvette plate (Lonza,
cat #VVPA-1002) for nucleofection using the Lonza Nucleofector 96-well Shuttle System and pulse code EH115 (Lonza, cat
#VVPA-1002). Immediately after electroporation, pre-warmed media was added to each electroporation well, and 96-well
plate was placed at 37 degrees for 20 minutes. Cells were then transferred to culture vessels in X-Vivo media containing
50U/mL IL-2 at 1e6 cells /mL in appropriate tissue culture vessels. Two days later, 1.5ug/mL Puromycin was added in culture
media for selection. Cells were expanded every two days, adding fresh media with IL-2 at 50U/mL. Cells were maintained at a
cell density of 1e6 cells /mL. On the final day (Day 13) of the experiment, cells from each of the nine donors were counted
using Vi-CELL XR and pooled at equal numbers to obtain a final 180,000 cells in 60 uL of PBS. The pooled cells were then
processed by UCSF Institute for Human Genetics (IHG) Genomics Core using 16 wells of 10X Chromium Single Cell v2
(PN-120237), as per manufacturer’s protocol, with each well being separately index. The final library was sequenced on two
lanes on the Nova-seq for a total of 6.7B reads. To maximize the probability of detecting sgRNAs in cells, we further amplified
and sequenced the sgRNA transcripts %from the 10X cDNA library to near saturation as previously described [61] (98%).

Visualizing gene regulatory networks
To generate the GRNs in 5E, we first used a list of pairs of regulator to their differential-mean expressed genes to define a
bipartite graph, which was then visualized in Cytoscape. We then added the connections between the interacting pairs of
regulators discovered by differentially correlated genes (DCGs) in the same previously visualized network (5F).

Identifying candidate interactions for differential correlation analysis
For a transcriptional regulator TR, we first identified all of the DMGs where the TR acts as a transcriptional activator, with
the DM coefficient less than 0 across the KO. We then computed the correlation between each TR-DMG pair in WT cells,
and constructed the final set of TR-DMG pairs by selected those that had a significant correlation in WT (ρ > 0.1). For each
of these TR-DMG pairs, we tested for differential correlation across various sgRNAs targeting transcriptional regulators other
than TR. The final set of interactions were called by filtering for FDR < 0.1.

Counting genes with shared TFBS for pairs of transcription factors
For a pair of transcriptional factors TF1 and TF2, we first identified their transcription binding sites (TFBSs) during the
ChIP-seq data in the ENCODE datasets. We then took the locations of known gene transcriptional start sites (TSSs) and
measured the distance of the nearest TFBS for each TF for each TSS. We then counted the number of genes that have
TFBSs of both TF1 and TF2 within a series of window sizes near the TSS, ranging from 10 base pairs to 100K basepairs. We
performed this procedure for pairs of TFs chosen at random and also pairs of TFs identified as interacting using differential
correlation analysis.

Assessing the tonic sensitivity of ISGs
We used tonic sensitivty measurements from Gough et al. where the authors compared the expression of ISGs in IFNAR1-KO
and WT macrophages [45]. The fold-change between those two groups were defined as the tonic sensitivity, which is the
number we use in Fig. 4D.
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eQTL discovery using pseudobulk approach and memento

We used the single cell dataset generated by Perez et al. that profiled peripheral blood mononuclear cells in individuals with
systemic lupus erythematosis (SLE) and healthy controls. We maintained the same cell type classifications used in that study.

To identify eQTLs using the psedubulk approach, we first created pseuobulks at the cell-type and individual level by normalizing
each cell expression with total UMI count per cell, taking the average for each gene across all individuals, and computing
log(x+ 1) for each mean. We filtered genes that had a lower than 0.01 mean UMI counts in the single cell dataset.

We ran Matrix eQTL for each of the Asian and European populations separately, using the same set of genotypes and
covariates used by Perez et al. [17]. For memento, we also performed the test separately for the two populations, using the
same genotypes and covariates. We used the hierarchial resampling mode for memento.

Enrichment of eQTLs in ATAC peaks
We used the same set of ATAC peaks used by Perez et al. [17]. For each SNP, we labeled whether that a cell type specific
ATAC peak covered the location of the SNP. We then compared the p-values of the eQTL candidates in a cell-type peak to
those of the candidates outside of ATAC peaks using the Wilcoxon Rank Sum test.

Comparison of eQTLs with OneK1K cohort
To compute the ROC curve and perform power analysis in 6, we compared the eQTLs we discovered using the two approaches
to the eQTLs reported by Yazar et al. [18]. We used this much larger dataset as the gold standard to compare methodologies
applied to the SLE dataset.
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