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17 Abstract

18 The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood 

19 and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental 

20 models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics 

21 observed with VoC and better quantify how VoC escape from the immune response. 

22 Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail 

23 the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the 

24 observed dynamics, and we found that the best model describing the data assumed a rapid antigen-

25 dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When 

26 compared with the historical variant, all VoC except beta were associated with an escape from this 

27 immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6
 for 

28 both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate 

29 (p=0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production 

30 rate (p<10-6).  During a natural infection, our models predict that delta variant is associated with a higher 

31 peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8 – 8 for delta; 5.6 log10 copies/mL 
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32 95% CI 4.8 – 6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 

33 2.4 – 4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9 – 3.8 for omicron). These results provide a detailed 

34 picture of the effects of VoC on total and infectious viral load and may help understand some differences 

35 observed in the patterns of viral transmission of these viruses.

36 Introduction

37 The sever acute respiratory coronavirus 2 (SARS-CoV-2) is the causative agent of the Coronavirus-

38 induced disease 2019 (COVID-19) cumulating more than 500 million cases and over 18 million death 

39 as measured by excess mortality as the end of 2022 (1,2). Repeatedly, several variants have emerged 

40 and although most of them vanished quickly, some of them, called Variants of Concern (VoC), in 

41 particular alpha, beta, gamma, delta and omicron have caused dramatic epidemic rebounds (3–5). These 

42 variants have acquired specific mutations enhancing their infectious capacities and escaping the immune 

43 response, leading to a dramatic loss of efficacy of monoclonal antibodies (6). They have also caused a 

44 large drop in vaccine efficacy against disease acquisition even though until now vaccine remain largely 

45 effective against severe disease (7–9). 

46 While several millions of individuals have been infected by these VoC, we still do not have a precise 

47 understanding on the effects of VoC on viral load. Even though some effects on larger levels of viral 

48 excretion have been reported (10–13), these studies often lack of robustness, and may be biased by many 

49 confounding factors that complicate comparisons, in particular reporting biases, heterogeneity in the 

50 incubation period and vaccination coverage. 

51 In that context where human clinical data are difficult to interpret, the non-human primate (NHP) 

52 experimental model offers a unique opportunity to describe infection with SARS-CoV-2 in detail in a 

53 fully controlled environment. Since 2020, our group has conducted many studies to evaluate the effects 

54 of antiviral drugs or vaccines in this model (14,15) , and showed its large predictive value (16). Here, 

55 we analysed retrospectively viral load data obtained in 78 animals that were included as control arms of 

56 these studies and that were infected with different strains of SARS-CoV-2 (historical, beta, gamma, 

57 delta and omicron (BA.1)). In addition, we performed longitudinal measures of viral culture to evaluate 
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58 a potential effect of VoC on viral infectivity. Using the techniques of mathematical modelling, we 

59 characterize the viral kinetics in these animals and we discuss their biological insights.

60

61 Results

62 Variant of concern viral kinetics

63 Several biomarkers were measured, both genomic RNA and subgenomic RNA were quantified at regular 

64 interval over all the study period and infectious titers at 2 times points. All macaques developed a rapid 

65 infection with genomic viral load peaking between 2- and 3-day post-infection (dpi) for the historical 

66 and beta variant, 3.5 dpi for variant delta and 4 dpi for variants gamma and omicron (BA.1). Genomic 

67 viral load was cleared at 8 dpi for the historical variant, 10 dpi for the beta variant, at 12 dpi for variants 

68 delta and omicron (BA.1) and at 14 dpi for variant gamma (Fig 1 and S1 Table). In addition to viral 

69 RNA, infectious titers were measured for 41 animals. Infectious titers were measured by Tissue Culture 

70 Infectious Dose (TCID50) from nasopharyngeal swab sampled at 2 time points per animal (day 2, 3 or 4 

71 plus at day 5 or 7 post-infection). As we included several control animals from different studies, infected 

72 with either TCID50 or Plaque Forming Units (PFU), all TCID50 were converted to PFU assuming 1 PFU 

73 = 0.7 TCID50  (17). All infectious titers quickly dropped to undetectable levels for the historical variant 

74 at 5 dpi, where for the other variants the infectious titers remained consistent over the course of the 

75 infection (Fig 1). 

76 Fig 1. Longitudinal measurements of genomic RNA, subgenomic RNA and infectious titers in 78 
77 infected cynomolgus macaques. Both limit of quantification and detection are depicted as empty dots, 
78 the latter being lower. Upper limit of detection is depicted as filled squares.

79

80  Viral dynamic model 

81 To account for the quick drop in infectious titers observed in the historical variant, (Fig 1 and S1 Fig) 

82 several models incorporating an action of an antigen-mediated immune response were tested (Fig 2). 

83 All models, except a model targeting the viral production parameter, provided an improvement of BIC 
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84 compared to a target cell limited model (Table 1). We found that a model targeting the infectious ratio 

85 best described our data. In the following, we discuss the parameter values of the final constructed model 

86 accounting for both an effect of the immune effector and variant specific effect on the parameters (see 

87 below). For the historical variant, we estimated the infectivity rate parameter 𝛽 at 1.8610-5 copies-1.d-1 

88 (95% confidence interval (CI) 110-5 – 3.3910-5 ) and the loss rate of infected cells 𝛿 at 1.38 d-1 (95% 

89 CI 1.22 – 1.55), corresponding to a half-life of 12 hours. We estimated the viral load production 

90 parameter 𝑝 at 9.44105 copies.cells-1.day-1 (95% CI 2.1105 – 1.68106). This corresponds to a within-

91 host basic reproductive number 𝑅0 (i.e., the number of newly infected cells by one infected cell at the 

92 beginning of the infection) of 3.1 (95% CI 2 – 4.3) and a burst size (i.e the total number of infectious 

93 virus produced by one cell over its lifespan at the beginning of the infection) of 136 (95% CI 121 ― 153

94 ). 

95 Table 1: Alternative immune response models.

Models Description ΔBIC

Reference model Absence of immune response ―
Model 1 Reduction of the infectious ratio ―𝟒𝟐.𝟖
Model 2 Increase in infected cell clearance ―14.8
Model 3 Reduction of viral infection rate ―36.1
Model 4 Reduction of the viral production +9

96

97 Fig1. Schematic model of SARS-CoV-2 infection and action of the immune system. The basic 
98 model is a target cell limited model without any immune response. The parameters are :  𝜷 the 
99 infectivity rate, 𝒌 the transfer rate between non-productive and productive infected cells, 𝜹 the loss 

100 rate of productive infected cells, 𝒑 the viral production rate, 𝝁 the ratio of infectious virus, 𝒈 the 
101 transfer rate between the compartments of the immune response and 𝒄 the loss rate of both infectious 
102 and non-infectious virus

103 VoC specific effect on viral dynamic parameters

104 Once an effect of the immune response was selected, a covariate search algorithm was used to find the 

105 most likely VoC associated effects (see methods) and considered the historical variant as the reference. 

106 Several variant-specific covariates were found on viral kinetics parameters that we detail below (Fig 3 

107 and S2 Table). First, beta variant was characterized with a reduced infected cells death rate (𝛿) by a 

108 factor of 0.7 (95% CI 0.6 ― 0.9) compared with the historical variant (p-value < 0.01). This led to an 
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109 infected cell half-life of 17 hours and resulted in a longer period of viral load shedding as infected cells 

110 produced viruses for longer period of time. Gamma variant had an effect on the parameter 𝜃 (p-value < 

111 0.001), the amount of immune effector 𝐹20 required to reduce by half the infectious ratio, increasing it 

112 by a factor of 9508 (95% CI 387 ― 50 041) resulting in higher peak viral load and a longer duration of 

113 infectious virus shedding (Fig 4). Variant delta is characterized by an effect on both 𝜃 (p-value < 0.001) 

114 and the viral production parameter 𝑝 (p-value < 0.05), increasing those parameters by factors 336 (95% 

115 CI 49 ― 1191) and 1.78 (95% CI 1 ― 3) respectively. Finally, omicron variant (BA.1) affected the 

116 parameters of the immune system 𝜃 (p-value < 0.001), the viral production rate parameter 𝑝 (p-value < 

117 0.001) and the infectious ratio 𝜇 (p-value < 0.001) modifying them by factors 229 (95% CI 27 ― 884), 

118 0.07 (95% CI 0.02 ― 0.2) and 18 (95% CI 4 ― 51) respectively (Fig 4). The model well reproduced the 

119 viral load of all animals in the individuals fits (S2 Fig). Additionally, we performed a sensitivity analysis 

120 on our best model (i.e. Model 1 including an effect on the infectious ratio μ). We tested several delays 

121 of the immune effector (from 1 to 6 days post infection) and several numbers of transfer compartments 

122 (from 5 to 30) and performed the covariate search on all models. We found that a delay of 3 days yielded 

123 the best results (S3 Table) and very similar covariate were selected across all models (S3 and S4 Fig).

124 Fig 3. Estimated population parameters for each variant. We represent the mean value and 95% 
125 confidence interval of populations parameters for each variant. We represent only parameters having at 
126 least one variant-specific effect. Full table for population parameters is in S2 Table. The dashed black 
127 line represents the historical value.

128 Fig 4. Simulation of  variant of concern impact on viral load. Using simulations, we sampled 
129 parameters considering both the uncertainty in the estimation and the inter-individual variability (see 
130 methods) .We represent the mean viral load of all variants and its 95% confidence interval. Dotted lines 
131 are the limits of detections

132

133 Predicted impact of variants in a natural infection setting

134 The main limitation of translating these results to humans is the fact that infection in animals is done 

135 with a large inoculum dose (105-106 PFU), while human infections are presumably initiated with much 

136 lower virus dose (18). Human experimental infections were performed with 10 TCID50 (19) in the nose, 

137 i.e., 10,000-100,000 times less virus than in the animal model. Using simulations with lower inoculum, 
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138 considering both uncertainty in the estimation and inter-individual variability (see methods), we are able 

139 to derive metrics of interest for each variant. 

140 The historical variant is characterized by a mean time to peak of 4.3 dpi (95% CI 3.7 ― 4.8) and of 3.5 

141 dpi (95% CI 3 ― 3.9) for genomic RNA and infectious titers respectively. We found a mean peak viral 

142 load of 6.3 log10 copies/mL (95% CI 5.5 ― 7) and of 2.1 PFU/mL (95% CI 1.2 ― 2.9) for genomic RNA 

143 and infectious titers, respectively.

144 The reduced infected cell clearance rate of the beta variant resulted in a longer period of viral load 

145 shedding. The duration of the acute infection stage was consequently increased from 10.9 days (95% CI 

146 9.5 – 13.1) for the historical variant to 13.4 days (95% CI 11.1 – 15.7) for the beta variant.

147 All variants except beta have shown an effect on the antigen-mediated response, greatly reducing its 

148 impact on viral kinetics. As the effect of the antigen-mediated response was reduced, the infectious ratio 

149 was increased leading to more infectious particles produced over longer periods of time. This led to the 

150 increase of the infectious titers clearance stage duration from 1.5 days for the historical variant (95% CI 

151 0.6 – 1.9) to 6 days (95% CI 4.4 – 7.5), 3.8 days (95% CI 3.1 - 4.6) and 3.7 days (95% CI 2.8 – 4.5)  for 

152 the gamma, delta and omicron variants respectively (Fig 5). This is in line with numbers of studies 

153 showing the immune escape capabilities of those variants (20–22).

154 An effect increasing the viral production parameter (𝑝), as observed for the delta variant, results in 

155 largely higher peak viral load of 7.6 log10 copies/mL (95% CI 6.8 – 8.2) and peak infectious titers of 3.7 

156 PFU/mL (95% CI 2.4 – 4.6). Conversely, an effect reducing the viral production parameter, as observed 

157 for the omicron variant, results in lower peak viral load compared to the historical variant of 5.6 log10 

158 copies/mL (4.8 – 6.3) but very similar peak infectious titers at 2.8 PFU/mL (95% CI 1.9 – 3.8). This is 

159 due to an effect of omicron on the infectious ratio, increasing the proportion of infectious virus produced.

160 Fig 5.  Impact of VoC on viral load metrics in the context of an infection with a low inoculum. We 
161 represent the mean and 95% confidence interval for each variant. The dashed black line represents the 
162 historical mean value.

163 Discussion
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164 Here, we used mechanistic models to characterize in detail the viral dynamics of the main variants of 

165 concern in an experimental model of non-human primates. We evaluated the impact of an antigen-

166 mediated immune response on the viral dynamics and found that an effect reducing the infectious ratio 

167 best described our data. Some of the variants of concern, gamma, delta and omicron (BA.1) showed a 

168 strong ability to escape this response greatly increasing the number of infectious viruses produced over 

169 the course of the infection compared to the historical variant. Interestingly, the delta variant was 

170 associated with an increased viral production rate, whereas the omicron variant was associated with a 

171 lower viral production rate but a higher infectious ratio. 

172 Using simulations in a natural infection scenario, we found that omicron infections, relative to delta 

173 infections, are associated with lower peak viral RNA and reduced duration of viral RNA clearance while 

174 having similar peak infectious titers and duration of infectious titers clearance. 

175 These results suggest that omicron’s infectiousness cannot be attributed to an increased viral RNA 

176 production but maybe due to an immune escape coupled with an increased infectious ratio, greatly 

177 increasing the number of infectious particles produced.

178 Although many other factors are at play to explain the increased transmissibility of certain variants of 

179 concern, differences in viral dynamics can provides insights into the biology of those variants. As such, 

180 delta infections featuring increased peak viral load and infectious titers can increase the risk of 

181 “superspreading” events and infections outside of close-contact settings (23). Omicron infections, on 

182 the other hand, featuring lower peak viral load concentration (24) but similar infectious titers respective 

183 to other variants, may result in transmission events that would not occur with other variants because 

184 insufficient infectious titers would be produced. These results are coherent with reports showing lower 

185 pathogenicity of omicron infection (25), as they are associated with lower viral burden. 

186  The combination of immune escape abilities, increased infectious ratio and longer duration of infectious 

187 virus shedding could be a possible mechanism to explain the enhanced transmissibility of omicron 

188 variant. As such, the quantification of infectious titers over time is crucial to inform further public health 

189 policies and adjust the isolation period accordingly. 

190
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191 Our study has some important limitations. First, although we can characterise in detail the viral dynamics 

192 of SARS-CoV-2 in nonhuman primates in a controlled environment, the inoculated dose is extremely 

193 high (10 000 to 100 000 times higher (19)) compared with human infection. This leads to rapid saturation 

194 of target cells and makes it difficult to accurately estimate the early phase of infection. In the future, 

195 studies evaluating lower inoculum in NHP can greatly improve the precision in the estimation of the 

196 early phase of infection. Second, we developed an extension of the target cell limited model considering 

197 the effect of an antigen-mediated immune response decreasing the infectious ratio 𝜇. We here attribute 

198 this effect to the immune system but we have no information to which immune effectors (antibodies, 

199 cytokines, cytotoxic cells, natural killers, intracellular processes etc…) this could be linked if even 

200 attributable to one. This type of antigen-mediated response allows us to incorporate the effect of time 

201 on a parameter but the underlying biological mechanisms are unclear and may be due to inherent 

202 differences between variants not captured by any covariates. 

203 Third, we assumed a 3-days delay in the establishment of this antigen-mediated reduction of the 

204 infectious ratio and verified that it performed best in a sensitivity analysis (S4 Fig). Although there is 

205 some variability, the covariates search is overall consistent.

206 Fourth, the infectious titers are only a measure of in vitro infectivity, and to what extent they translate 

207 into infectiousness is unknown. In addition, both the upper and lower limit of quantification makes it 

208 difficult to precisely estimate the infectious ratio parameter 𝜇.  Finally,  in a context where more than 

209 half of the world population has received at least one dose of COVID-19 vaccine (26), there is very little 

210 information on the natural infection with different variants. Additional data with vaccinated animals 

211 could help differentiate certain aspects of the abilities of the new variants to escape the immune system. 

212

213 Materials and methods

214 Experimental procedure 

215 Data comes from studies performed on cynomolgus macaques to evaluate the viral dynamics of SARS-

216 CoV-2 variants. Our study includes 78 cynomolgus macaques (Macaca fascicularis) coming from 
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217 control arms of several studies and have received no pharmacological interventions besides placebo. All 

218 animals were infected with doses ranging from 7×104 to 106 PFU of different SARS-CoV-2 strains. 

219 Animals are infected via both nasopharyngeal and intratracheal route with 10% of the initial volume 

220 administered in the nose and 90% in the trachea. The study is composed of 5 groups, each infected with 

221 a different SARS-CoV-2 strains: 44 Historical (hCoV-19/France/lDF0372/2020 strain; GISAID 

222 EpiCoV platform under accession number EPI_ISL_406596), 9 Bêta (B.1.351 - hCoV-19/USA/MD-

223 HP01542/2021, BEI NR-55283), 5 Gamma (P.1 - hCoV-19/Japan/TY7-503/2021, BEI NR-54984), 11 

224 Delta (B.1.617.2 - hCoV-19/USA/MD-HP05647/2021, BEI NR-55674) and 9 Omicron (B.1.1.529 – 

225 hCoV-19/USA/MD-HP20874/2021, BEI NR-56462). For each group both genomic RNA and 

226 subgenomic RNA swab samples were quantified using real time PCR in both the nasopharynx and in 

227 the trachea. For 41 animals (13 Historical, 3 Beta, 5 Gamma, 11 Delta and 7 Omicron (BA.1)) infectious 

228 titers were measured at 2 time points, early (2, 3 or 4 days post infection) and late (5 or 7 days post 

229 infection) using Tissue Culture Infectious Dose (TCID50) from nasopharyngeal swab samples (16). As 

230 we included animals from different studies that were inoculated with different methods (PFU or 

231 TCID50), we normalized all measures of infectious titers by converting all TCID50 measurements to 

232 Plaque Forming Units (PFU) using the formula 1 PFU = 0.7 TCID50 (17). As no infectious titers were 

233 measured in the trachea samples, we focused the main analysis on the nasopharyngeal compartment. 

234 The results mainly focus on the genomic viral load as the subgenomic is a directly proportional to the 

235 latter.

236 Basic viral dynamic model 

237 We used a previously described model of SARS-COV-2 viral dynamics to reconstruct the 

238 nasopharyngeal viral load of infected animals. In this model, target cells (T) become infected cells (I1) 

239 at a rate β. Infected cells transition into productive infected cells (I2) at a rate k and produce infectious 

240 virus (VI) at a rate 𝑝𝜇 and non-infectious virus (VNI) at a rate 𝑝(1 ― 𝜇). Productive infected cells are 

241 cleared at a rate δ and both infectious and non-infectious virus are cleared at a rate c. The basic within-

242 host reproductive number, representing the number of newly infected cells by one infected cell, is 𝑅0 =
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243 𝛽𝑝𝑇0𝜇
𝑐𝛿  and the burst-size, representing the number of infectious virus produced by on infected cells over 

244 its lifespan, is 𝑁 =
𝑝𝜇
𝛿 . The model is described with the following set of ordinary differential equations:

245
𝑑𝑇
𝑑𝑡 = ―𝛽𝑉𝐼𝑇 (1)

246
𝑑𝐼1

𝑑𝑡 = 𝛽𝑉𝐼𝑇–𝑘𝐼1 (2)

247
𝑑𝐼2

𝑑𝑡 = 𝑘𝐼1 ― 𝛿𝐼2 (3)

248
𝑑𝑉𝐼

𝑑𝑡 = 𝑝𝜇𝐼2 ― 𝑐𝑉𝐼 (4)

249
𝑑𝑉𝑁𝐼

𝑑𝑡 = 𝑝(1 ― 𝜇)𝐼2 ― 𝑐𝑉𝑁𝐼 (5)

250 Assumption on parameter values

251 Some parameters of the model were fixed to ensure identifiability. The transfer rate parameter between 

252 infected cells and productive infected cells was fixed to k  = 4 day-1 (corresponding to a mean duration 

253 of the eclipse phase, i.e. the time for infected cells to start producing viruses,  of  1𝑘 = 6 hours) (27). The 

254 viral clearance c was set to 10 day-1 based on previous work (14,16,28). As only the product 𝑝𝑇0 is 

255 identifiable, we choose to fix the initial number of target cell to 𝑇0 = 12 500 cells following the same 

256 assumptions as in (16). As the nasal cavity of the animals is small, a substantial fraction of the inoculum 

257 does not penetrate the upper respiratory tract. To account for this, we introduced a parameter ℎ 

258 representing the proportion of the inoculum that arrive on the site of infection. We fixed this parameter 

259 at 20% with a standard deviation of 20% to allow for individual variability. As both the initial infectious 

260 inoculum and the number of RNA copies were known we used that information as our initial condition 

261 for the infectious virus and non-infectious virus compartment. Therefore, our initial conditions were set 

262 to : 

263 𝑇0(𝑡 = 0) = 1.25 × 104 (6)

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.09.515748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.515748
http://creativecommons.org/licenses/by/4.0/


11

264  𝐼1(𝑡 = 0) = 0 (7)

265 𝐼2(𝑡 = 0) = 0 (8)

266  𝑉𝐼(𝑡 = 0) = 𝑉𝐼(0)𝑖 × ℎ𝑖 × 0.1 (9)

267  𝑉𝑁𝐼(𝑡 = 0) = (𝑉𝑁𝐼(0)𝑖 ― 𝑉𝐼(0)𝑖) × ℎ𝑖 × 0.1 (10)

268 Where  𝑉𝐼(0)𝑖 is the administered dose in PFU of subject i,  𝑉𝑁𝐼(0)𝑖 is the total number of RNA copies 

269 in the initial inoculum of subject i and hi is the proportion of the inoculum actively initiating the 

270 infection.

271 Models incorporating antigen-mediated immune response

272 To account for the quick drop in infectious titers observed for the historical variant (Fig 1 and S2 Fig), 

273 we tested several models incorporating an action of an antigen-mediated immune response. We assumed 

274 a delay of 3 days for the immune response to take place to account for the differentiation and 

275 proliferation of the immune response (29).  We modelled this delayed immune effector compartment 

276 using the Linear Chain Trick (LCT) assuming an Erlang distribution with 𝑗 = 20 transition compartment 

277 and a mean time spent in those compartment of 𝜏 = 3 d-1 (30). This number of compartments allowed us 

278 to shift the distribution of the time spent in the transition’s states from an exponential to a normal 

279 distribution. The equations for the transfer compartments are written as follows: 

280
𝑑𝐹1

𝑑𝑡 = 𝐼2 ― 𝑔𝐹1            (11) 

281
𝑑𝐹2

𝑑𝑡 = 𝑔𝐹1 ― 𝑔𝐹2          (12)   

282 ⋮

283
𝑑𝐹20

𝑑𝑡 = 𝑔𝐹19 ― 𝑑𝐹𝐹20   (30) 
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284 In the following only the compartment 𝐹20 will serve as the effector for the action of the immune system. 

285 The transfer rate parameter 𝑔 is then written as 𝑗
𝜏 and fixed to 6.67 d-1 and the loss rate of the final 

286 effector 𝑑𝐹 is fixed to 0.4 d-1 (28). Several modes of action of the response system were tested:

287 Model 1 : Immune effector decreases the infectious ratio 𝜇

288 In this model, the immune effector directly decreases the infectious ratio parameter 𝜇 using an Emax 

289 function type expression :

290
𝑑𝑉𝐼

𝑑𝑡 =  𝑝𝜇(1 ―
𝐹20

𝐹20 + 𝜃)𝐼2 ― 𝑐𝑉𝐼             (31)

291
𝑑𝑉𝑁𝐼

𝑑𝑡 = 𝑝(1 ― 𝜇(1 ―
𝐹20

𝐹20 + 𝜃) )𝐼2 ― 𝑐𝑉𝑁𝐼          (32)

292 With 𝜃 being the amount of immune effector 𝐹20 needed to reduce by half the infectious ratio.

293 Model 2 : Immune effector increases infected productive cells death rate 𝛿

294 The death rate of infected cells is increased in proportion to the amount of immune effector 𝐹20.

295
𝑑𝐼2

𝑑𝑡 = 𝑘𝐼1 ― 𝛿(1 + 𝜑𝐹20)𝐼2          (33)

296 Where 𝜑 is the strength of the immune system.

297 Model 3 : Immune effector reduces the infectivity rate 𝛽

298 In this model, the immune effector blocks virus entry in the cells by reducing the infectivity parameter 

299 𝛽. 

300
𝑑𝑇
𝑑𝑡 = ―𝛽(1 ― 𝜑𝐹20)𝑉𝐼𝑇                  (34)

301
𝑑𝐼1

𝑑𝑡 = 𝛽(1 ― 𝜑𝐹20)𝑉𝐼𝑇 ― 𝑘𝐼1               (35)

302 Model 4 : Immune effector reduces the production rate 𝑝

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.09.515748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.515748
http://creativecommons.org/licenses/by/4.0/


13

303 In the same way as model 1, the viral load production parameter is reduced by the immune effector with 

304 an Emax type function:

305
𝑑𝑉𝐼

𝑑𝑡 =  𝑝(1 ―
𝐹20

𝐹20 + 𝜃)𝜇𝐼2 ― 𝑐𝑉𝐼                  (36)

306
𝑑𝑉𝑁𝐼

𝑑𝑡 = 𝑝(1 ―
𝐹20

𝐹20 + 𝜃)(1 ― 𝜇 )𝐼2 ― 𝑐𝑉𝑁𝐼            (37)

307 All models were compared based on the Bayesian Information Criterion (BIC). We selected the model 

308 that yielded the lowest BIC and the best individual fits. 

309 Statistical model 

310 Parameter estimation was performed using non-linear mixed effect modelling. The statistical models 

311 describing the genomic RNA, subgenomic RNA and the infectious titers are: 

312 𝑦1
𝑖𝑗 = log10 𝑉(𝑡𝑖𝑗,Ψ𝑖) + 𝑒1

𝑖𝑗 (38)

313 𝑦2
𝑖𝑗 = log10 𝑓 × 𝐼2(𝑡𝑖𝑗, Ψ𝑖) + 𝑒2

𝑖𝑗 (39)

314 𝑦3
𝑖𝑗 = log10 𝑉𝐼(𝑡𝑖𝑗, Ψ𝑖) + 𝑒3

𝑖𝑗 (40)

315 Where the superscript 1, 2 and 3 refers to the genomic RNA, subgenomic RNA and infectious titers, 

316 respectively. We denote yij is the jth observation of subject i at time tij, with i ∈ 1, …, N and j ∈ 1, …, ni 

317 with N the number of subject and ni the number of observations for subject i. The function describing 

318 the total viral load kinetics 𝑉(𝑡𝑖𝑗, 𝛹𝑖) predicted by the model at time tij defined as: 𝑉𝐼(𝑡𝑖𝑗, 𝛹𝑖) + 𝑉𝑁𝐼(𝑡𝑖𝑗, 

319 𝛹𝑖) predicted by the model at time tij. The The vector of individual parameters of subject i is noted Ψi 

320 and eij is the additive residual Gaussian error of constant standard deviation σ. The vector of individual 

321 parameters depends on a fixed effects vector and on an individual random effects vector, which follows 

322 a normal centered distribution with diagonal variance-covariance matrix Ω. All parameters follow a log-

323 normal distribution to ensure positivity except both parameters µ and h which follows logit-normal 

324 distribution and are bounded between 0 and 1. We assumed random effect on all parameters and removed 
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325 them using backward procedure, if they were < 0.1 or their RSE > 50%. All biomarkers (i.e. genomic 

326 RNA, subgenomic RNA and infectious titers) were fitted simultaneously.

327 Selection of variant-specific effect on the viral dynamic parameters

328 Using the best model selected at the previous step, we sought to identify VoC-specific effect on the 

329 parameters of the model (𝛽, 𝛿, 𝑝,𝜇 and 𝜃). We first performed a backward selection of the random effects 

330 removing non-significant ones (i.e. relative standard error > 50%) if the BIC wasn’t degraded by more 

331 than 2 points. We then used the Conditional Sampling use for Stepwise Approach on Correlation tests 

332 (COSSAC) to identify variant specific effect (31). Then a backward procedure was used to remove any 

333 non-significant covariate effect with a Wald test (i.e. the covariate was removed if its coefficient effect 

334 relative standard error was > 50%). This procedure was repeated until all nonsignificant covariate effects 

335 had been eliminated. Additionally, we performed a sensitivity analysis on our best structural model. We 

336 tested for several delays in the establishment of the antigen-mediated effector (from 1 to 6 days) and on 

337 the number of transitions compartments (from 5 to 30) and then performed the covariate search on all 

338 model combinations . 

339 Simulation of natural human infection

340 Finally, we used our final model to assess the impact of variants of concern on viral load and viral 

341 infectivity in a natural infection setting. We used a starting inoculum of 10 infectious virus, as described 

342 in an experimental challenge conducted in England (19) to simulate a human infection. The initial 

343 conditions are then written as:

344 𝑉𝐼(𝑡 = 0) = 10

345 𝑉𝑁𝐼(𝑡 = 0) = 0

346  We provided confidence interval on the mean predicted viral load, considering both the uncertainty in 

347 the estimation and the inter-individual variability. We first sampled M = 100 population parameters in 

348 their estimation distribution and then, for each variant, sampled N = 30 individual parameters from each 

349 sets of population parameters (leading to 3000 individual parameters per variant). We calculated the 
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350 predicted viral load of all individuals and derived the mean viral load over the simulated individuals at 

351 all times with its 95% inter quantile range. Additionally, we provided the distribution of several viral 

352 dynamic metrics, namely:

353 - the area under viral load curve, 

354 - the peak and time to peak viral load

355 - the duration of the clearance stage, calculated as the time interval between the peak 

356 viral load and the time to undetectable viral load 

357 - the duration of the acute phase, calculated as the time between the first and the last 

358 detectable viral load (32). 

359 Parameter estimation

360  All parameters were estimated by computing the maximum-likelihood estimator using the stochastic 

361 approximation expectation-maximization (SAEM) algorithm implemented in Monolix Software 

362 2020R1 (33,34). Standard errors and the likelihood were computed by importance sampling.

363
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373 Figures 

374  Fig 1. Longitudinal measurements of genomic RNA, subgenomic RNA and infectious titers in 78 
375 infected cynomolgus macaques. Both limit of quantification and detection are depicted as empty dots, 
376 the latter being lower. Upper limit of detection is depicted as filled squares (present only un infectious 
377 titers).

378

379 Fig2. Schematic model of SARS-CoV-2 infection and action of the immune system. The basic model is a target 
380 cell limited model without any immune response. The parameters are :  𝜷 the infectivity rate, 𝒌 the transfer rate 
381 between non-productive and productive infected cells, 𝜹 the loss rate of productive infected cells, 𝒑 the viral 
382 production rate, 𝝁 the ratio of infectious virus, 𝒈 the transfer rate between the compartments of the immune 
383 response and 𝒄 the loss rate of both infectious and non-infectious virus.
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385

386 Fig 3. Estimated population parameters for each variant. We represent the mean value and 95% 
387 confidence interval of populations parameters for each variant. We represent only parameters having at 
388 least one variant-specific effect. Full table for population parameters is in S2 Table. The dashed black 
389 line represents the historical value.

390

391

392

393 Fig 4. Simulation of  variant of concern impact on viral load. Using simulations, we sampled 
394 parameters considering both the uncertainty in the estimation and the inter-individual variability (see 
395 methods) .We represent the mean viral load of all variants and its 95% confidence interval. Dotted lines 
396 are the limits of detections.

397

398

Historical Beta Gamma Delta Omicron

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 200
1
2
3
4
5
6
7
8

G
en

om
ic

 R
N

A
(L

og
10

co
pi

es
 / 

m
L

)

Historical Beta Gamma Delta Omicron

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 200
1
2
3
4
5
6
7
8

Time post infection (days)

In
fe

ct
io

us
 ti

te
rs

(L
og

10
PF

U
 / 

m
L

)

Historical
Beta
Gamma
Delta
Omicron

Historical

Beta

Gamma

Delta

Omicron

0.8 1.0 1.2 1.4

δ
( d−1)

Historical

Beta

Gamma

Delta

Omicron

104 104.5 105 105.5 106 106.5

p
(copies.cell−1 .d−1)

Historical

Beta

Gamma

Delta

Omicron

10-4.510-410-3.510-310-2.510-2

μ

Historical

Beta

Gamma

Delta

Omicron

10-1 100 101 102 103 104

θ

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.09.515748doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.09.515748
http://creativecommons.org/licenses/by/4.0/


18

399 Fig 5.  Impact of VoC on viral load metrics in the context of an infection with a low inoculum. We 
400 represent the mean and 95% confidence interval for each variant. The dashed black line represents the 
401 historical mean value.
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410 Supplementary material

411 S1 Fig. Relationship between genomic RNA and infectious titers. Undetectable infectious titers are 
412 depicted as empty circles. The timings early and late correspond to swab sampled at 2, 3 or 4 days post 
413 infection and 5 or 7 days post infection respectively.

414

415

416

417

418

419

420

421

422

423

424 S2 Fig. Individual fit of genomic RNA, subgenomic RNA and infectious titers in all animals. 
425 Undetectable values are represented as empty dots. Values above the upper limit of quantification are 
426 represented as squares. 
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427 S3 Fig. Sensitivity analysis on the covariate selection algorithm. We performed a sensitivity analysis 
428 on our best model. The model IDs are represented on top, as described in S3 Table. The scale represents 
429 the magnitude of the covariate effect rescaled for each row with 0 being the minimum value and 1 the 
430 maximum. Empty tiles indicate that no covariates were selected for this variant-parameter relationship.

431

432 S4 Fig. Consistency of the covariate selection algorithm. We represent the number of times a 
433 covariate was found on a variant-parameter relationship across all 24 models. Empty tiles indicate that 
434 no covariates were found for this variant-parameter relationship.
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447

448 S1 Table. Characteristics of the 78 animals analysed. Descriptive statistics of the animals calculated 
449 on the raw data.

450

451

452

453

454 S2 Table. Estimates of the population parameter and covariate effects for the best model. **The 
455 standard error for the 𝑅0 parameters were calculated using the delta method. 

Population parameters (unit) Fixed effect (RSE%) SD of random effect (RSE%)
𝛽 (copie.d-1) 1.85 × 10―5 (33) -
𝑝 (copies.cell-1.d-1) 9.44 × 105 (40) 0.61 (17)
𝛿 (d-1) 1.38 (6) 0.2 (20)
𝑓 (unitless) 1.36 × 10―3 (19) -
𝜇 (unitless) 1.98 × 10―4 (47) -
𝜃 (unitless) 0.19 (45) 0.32 (103)

Covariate model Covariate effect (RSE%) p-value
Beta on 𝛿 -0.357 (32) 0.00201
Gamma on 𝜃 8.39 (15) < 10―6

Delta on 𝑝 0.554 (50) 0.047
Delta on 𝜃 5.49 (15) < 10―6

Omicron on 𝑝 -2.82 (19) < 10―6

Omicron on 𝜇 2.7 (23) 1.98 × 10―5

Omicron on 𝜃 5.04 (18) < 10―6

Basic reproductive number Value (RSE%)**
𝑅0 3.1 (19)
𝑅0𝑏𝑒𝑡𝑎 4.5 (20)
𝑅0𝑔𝑎𝑚𝑚𝑎 3.1 (19)
𝑅0𝑑𝑒𝑙𝑡𝑎 5.4 (34)
𝑅0𝑜𝑚𝑖𝑐𝑟𝑜𝑛 2.8 (28)

Residual errors Value (RSE%)
𝜎𝐺𝑒𝑛𝑜𝑚𝑖𝑐 𝑅𝑁𝐴 (log10 copies/mL) 0.98 (4)
𝜎𝑆𝑢𝑏𝑔𝑒𝑛𝑜𝑚𝑖𝑐 𝑅𝑁𝐴 (log10 copies/mL) 0.89 (6)
𝜎𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠 𝑡𝑖𝑡𝑒𝑟𝑠 (log10 PFU/mL) 1.79 (14)

456

457

458

459

460

Strains
Number 

of 
animals

Mean 
weight

(kg)

Mean peak viral 
load

(log10 copies/mL)

Mean peak PFU
(log10 PFU/mL)

Mean time to first 
undetectable viral 

load

Mean time to first 
undetectable PFU

Historical 44 3.7 7.6 2.3 8 4
Beta 9 4.9 7.1 3.2 10 6

Gamma 5 4.2 7.8 3 14 5
Delta 11 3.6 8.1 2.9 12 5

Omicron 9 4.6 6.4 2.4 12 7
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461

462 S3 Table. Sensitivity analysis on the delayed immune response. Using the best structural model (i.e. 
463 Model 1 including an effect on the infectious ratio) we tested several delays for the immune response to 
464 take place and performed the covariate search algorithm on all models. 

Model ID Number of transfer 
compartments 𝐹

Delay 
(days)

Transfer rate 
parameter 𝑔

(d-1)

BIC before 
COSSAC

BIC after 
COSSAC (ΔBIC 

)
1 5 1 5 2451 2429 (-22)
2 5 2 2.5 2409 2384 (-25)
3 5 3 1.666666667 2405 2374 (-31)
4 5 4 1.25 2408 2373 (-35)
5 5 5 1 2408 2375 (-33)
6 5 6 0.833333333 2409 2379 (-30)
7 10 1 10 2432 2409 (-23)
8 10 2 5 2409 2373 (-36)
9 10 3 3.333333333 2410 2361 (-49)
10 10 4 2.5 2411 2381 (-30)
11 10 5 2 2413 2366 (-47)
12 10 6 1.666666667 2414 2367 (-47)
13 20 1 20 2426 2402 (-24)
14 20 2 10 2409 2363 (-46)
15 20 3 6.666666667 2411 2360 (-51)
16 20 4 5 2414 2377 (-37)
17 20 5 4 2416 2379 (-37)
18 20 6 3.333333333 2417 2381 (-36)
19 30 1 30 2424 2397 (-27)
20 30 2 15 2408 2377 (-31)
21 30 3 10 2413 2385 (-28)
22 30 4 7.5 2417 2363 (-54)
23 30 5 6 2419 2380 (-39)
24 30 6 5 2420 2393 (-27)

465

466

467

468

469

470

471

472
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