

1 **IL-33-induced neutrophilic inflammation and NETosis underlie rhinovirus-triggered
2 exacerbations of asthma**

3

4 Bodie Curren^{1,2,*}, Tufael Ahmed^{1,3,*}, Daniel R Howard^{1,2}, Md. Ashik Ullah¹, Ismail Sebina¹,
5 Ridwan B Rashid^{1,2}, Md. Al Amin Sikder^{1,2}, Alec Bissell¹, Sylvia Ngo¹, David J Jackson⁴, Marie
6 Toussaint^{4,5}, Michael R. Edwards^{4,5}, Sebastian L Johnston^{4,5}, Henry J. McSorley⁶, Simon
7 Phipps^{1,2,3,7}

8

9 ¹ QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia;

10 ² School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia;

11 ³ School of Biomedical Sciences, Queensland University of Technology, Queensland 4000,
12 Australia;

13 ⁴ School of Immunology & Microbial Sciences, King's College London, London, UK

14 ⁵ National Heart and Lung Institute, Imperial College London, London, UK;

15 ⁶ Division of Cell Signalling and Immunology, School of Life Sciences, University of
16 Dundee, Dundee, UK;

17 ⁷ Australian Infectious Diseases Research Centre, The University of Queensland 4072, Queensland,
18 Australia.

19 * Joint First Author

20

21 Correspondence: Dr. Simon Phipps, QIMR Berghofer Medical Research Institute, Herston,
22 Queensland, 4006, Australia; email: simon.phipps@qimrberghofer.edu.au; phone: 61(0)733620145;
23 fax: 61(0) 733620104.

24

25

26

27 **Abstract**

28 Rhinovirus-induced neutrophil extracellular traps (NETs) contribute to acute asthma exacerbations,
29 however the molecular factors that trigger NETosis in this context remain ill-defined. Here, we
30 sought to implicate a role for IL-33, an epithelial cell-derived alarmin rapidly released in response
31 to infection. In mice with chronic experimental asthma (CEA), but not naïve controls, rhinovirus
32 inoculation induced an early (1 day post infection; dpi) inflammatory response dominated by
33 neutrophils, neutrophil-associated cytokines (IL-1 α , IL-1 β , CXCL1) and NETosis, followed by a
34 later, type-2 inflammatory phase (3-7 dpi), characterized by eosinophils, elevated IL-4 levels, and
35 goblet cell hyperplasia. Notably, both phases were ablated by HpARI (*Heligmosomoides polygyrus*
36 Alarmin Release Inhibitor), which blocks IL-33 release and signalling. Instillation of exogenous IL-
37 33 recapitulated the rhinovirus-induced early phase, including the increased presence of NETs in
38 the airway mucosa, in a PAD4-dependent manner. *Ex vivo* IL-33-stimulated neutrophils from mice
39 with CEA, but not naïve mice, underwent NETosis, and produced greater amounts of IL-1 α / β , IL-4,
40 and IL-5. In nasal samples from rhinovirus-infected people with asthma, but not healthy controls,
41 IL-33 levels correlated with neutrophil elastase and dsDNA. Our findings suggest that IL-33
42 blockade ameliorates the severity of an asthma exacerbation by attenuating neutrophil recruitment
43 and the downstream generation of NETs.

44

45 **Key words:**

46 Asthma, NETosis, IL-33, HpARI, dsDNA, neutrophil, eosinophil, ST2, rhinovirus, PAD4.

47

48 **Introduction**

49 Asthma is a chronic respiratory disease that affects 400 million people worldwide, and is typically
50 underpinned by the generation of aberrant type-2 immune responses.¹ Acute exacerbations of
51 asthma, which cause significant morbidity and associated health care costs, are commonly triggered
52 by a respiratory virus, mostly rhinovirus (RV) infection, amplifying pathogenic type-2
53 inflammation. Amongst the earliest events of a viral-triggered exacerbation is the increased
54 expression of neutrophil-active chemokines, such as CXCL8, and correspondingly, an influx of
55 neutrophils to the lungs and airways.^{2,3} We found that this neutrophilic response, through the
56 release of neutrophil extracellular traps (NETs), promotes the pathogenic type-2 inflammation that
57 induces the cardinal features of asthma.⁴ Significantly, the therapeutic targeting of NETs, extruded
58 nuclear DNA bound with neutrophil elastase and Citrullinated histone-H3 (Cit-H3),⁵ via the
59 administration of DNase ameliorated the severity of RV-induced exacerbation in a mouse model of
60 experimental asthma.⁴ Although this study identified NETosis as a critical intermediary of RV-
61 induced type-2 inflammation and ensuing loss of asthma control, the events in the airway mucosa
62 that promote NETosis in the context of asthma remain poorly defined.

63

64 In subjects with asthma, mucosal homeostasis is dysregulated. This is typified by an airway
65 epithelium that is hyperplastic, contains greater numbers of mucus-secreting goblet cells, and sits on
66 a thickened reticular basement membrane.⁶ Additionally, the epithelium initiates and shapes the
67 nature of the immune response through the production of inflammatory mediators, such as
68 eicosanoids, chemokines, and type-2-instructive cytokines such as thymic stromal lymphopoietin
69 (TSLP) and interleukin-33 (IL-33). The targeting of these epithelial-derived alarmins with
70 monoclonal antibodies in clinical trials has been shown to dampen airway inflammation, improve
71 lung function, and decrease the frequency of exacerbations,^{7,8} highlighting the value of
72 fundamental insights into type-2 immunity learnt from clinical and experimental model systems.⁹⁻¹¹
73 However, although the efficacy of these biologics is particularly potent in individuals with

74 eosinophilic or allergic phenotypes,¹² a recent Phase II trial found that targeting ST2, one of the IL-
75 33 receptor chains, significantly lowers the frequency of exacerbations in individuals
76 with uncontrolled severe type-2-low asthma (i.e. patients with low blood eosinophils).¹³
77 Additionally, preclinical models of chronic experimental asthma (CEA) show that as well as
78 inhibiting type-2 inflammation, anti-IL-33 treatment attenuates neutrophilic inflammation.^{9, 10}
79 Collectively, these data suggest that IL-33 additionally contributes to non-type-2 inflammation in
80 asthma, although whether IL-33 promotes neutrophil recruitment and NETosis in asthma remains
81 unknown.

82

83 We previously developed and characterised a unique mouse model of CEA that simulates the
84 human epidemiology linking severe lower respiratory infections in early life to the
85 later development of allergic asthma.^{9, 14, 15} Through repeated virus and allergen exposure in early
86 and later life, the mice develop CEA, as demonstrated by fixed airway remodelling and persistently
87 high levels of airway IL-33, and significantly, are predisposed to a RV-induced exacerbation
88 characterized by an early neutrophilia that peaks at 24 hours, followed by a type-2 inflammatory
89 response and mucus hypersecretion that increases over days.^{9, 15} Using this model and HpARI
90 (*Heligmosomoides polygyrus* Alarmin Release Inhibitor), a secretory worm product that we have
91 previously shown to inhibit both IL-33 release and downstream ST2 signalling,¹⁶ we sought to test
92 the hypothesis that in the setting of CEA, RV-induced IL-33 release amplifies type-2 inflammation
93 via the recruitment of neutrophils and the induction of NETosis.

94

95 **Results**

96 **HpARI suppresses RV-induced acute exacerbation of chronic experimental asthma**

97 We previously demonstrated that repeated exposures to the mouse respiratory virus, pneumonia
98 virus of mice (PVM; related to human respiratory syncytial virus), and cockroach allergen in early
99 and later life, simulating the human epidemiology,¹⁷ leads to the onset and development of chronic

100 experimental asthma (CEA) with persistent airway remodelling.¹⁴ Importantly, in mice with
101 established asthma, but not naïve controls, inoculation with RV induces an inflammatory response
102 that is characteristic of an acute exacerbation of asthma.^{9, 15} This model of CEA is characterized by
103 persistently elevated IL-33 expression in the airways that increases further in response to RV
104 infection together with an early neutrophilic response,⁹ leading us to explore whether IL-33
105 blockade through intranasal administration of HpARI would ameliorate both the RV-induced
106 neutrophilia and the ensuing type-2 inflammation (Fig. 1A). Confirming and extending our previous
107 observations, mice with CEA, but not age-matched naive controls, developed a significant goblet
108 cell hyperplasia and a mixed type-2/type-17 inflammatory response post inoculation with RV (Fig.
109 1B-E and Supplementary Fig. 1). Notably, neutrophils were the predominant granulocyte at 1 dpi,
110 outnumbering eosinophils 8 to 1 (Fig. 1C). Siglec-F+ neutrophils, reported by some investigators,¹⁸
111 were rare to absent (data not shown). Following HpARI-treatment, this pronounced, early wave of
112 infiltrating neutrophils to the lungs was markedly attenuated, as was the magnitude of the neutrophil
113 and eosinophil response across the time course (Fig. 1B-C). This was associated with a significant
114 decrease in the numbers of type-2 innate lymphoid cells (ILC2s), CD4+ Th2, and CD4+ Th17 cells,
115 a concomitant decrease in IL-4, IL-5, IL-13 and IL-17A concentrations in bronchoalveolar lavage
116 (BAL) fluid and mucus production (Fig. 1B, D-E). In contrast to ILC2s, ILC3 numbers in the lung
117 were low and unaffected by HpARI (Fig. 1D).

118

119 **HpARI decreases the expression of IL-33 and other innate instructive cytokines in the**
120 **airways**

121 We next examined the effect of HpARI treatment on the levels of IL-33 and other innate type-2/17
122 associated-instructive cytokines. Consistent with our previous findings,⁹ IL-33 was highly
123 expressed in mice with CEA prior to RV inoculation (Fig. 2A). Following treatment with HpARI,
124 IL-33 levels in the airway were ablated, an effect that persisted until 10 dpi, 5 days after the final
125 HpARI administration. HpARI also decreased the levels of other instructive cytokines and

126 chemokines, including TSLP, IL-1 α , IL-1 β , IL-6 and CXCL1 (Fig. 2B-F), consistent with the
127 attenuated production of type-2/type-17 effector cytokines and ablated granulocytic response in
128 HpARI treated mice, indicating that IL-33 is central to the early inflammatory response.

129

130 **Exogenous IL-33 recapitulates the response to RV inoculation in mice with CEA**

131 As HpARI decreased both RV-induced neutrophilic and eosinophilic inflammation, we next
132 assessed whether exogenous IL-33 was sufficient to induce a lung neutrophilia (Fig. 3A). In
133 contrast to naïve mice, where IL-33 induced a mild neutrophilic response and minimally affected
134 lung eosinophil numbers, IL-33 inoculation of mice with CEA triggered a marked neutrophilic
135 response, similar to that observed following RV exposure (Fig. 3A). This response was associated
136 with increased numbers of ILC2s, ILC3s, and CD4+ Th2 cells in the lung, increased production of
137 type-2/17 cytokines and goblet cell hyperplasia, whereas in naïve mice, exogenous IL-33 elicited a
138 limited inflammatory response (Fig. 3B-E). Of note, similar to RV inoculation, exogenous IL-33
139 increased the concentrations of TSLP, IL-1 α , IL-1 β , IL-6 and CXCL1 in the BAL fluid (Fig. 4).
140 Collectively, these findings demonstrate that exogenous IL-33 induces a similar response to that
141 elicited by RV inoculation.

142

143 **RV or IL-33 induced NETosis is attenuated by HpARI**

144 We previously linked NETosis to the amplification of type-2 inflammation.⁴ To assess the effect of
145 HpARI on RV-induced NET formation in the lungs, we performed double immunohistochemistry
146 for myeloperoxidase (MPO) and Citrullinated histone-H3 (CitH3), and quantified the co-localised
147 signal. As expected, RV inoculation of mice with CEA led to a marked increase in co-localised
148 MPO/CitH3 expression, and this response was attenuated in mice treated with HpARI (Fig. 5A).
149 Significantly, exogenous IL-33 also increased MPO/CitH3 co-localisation, indicative of NETosis,
150 but only in mice with CEA (Fig. 5B). Additionally, dsDNA levels were elevated in the airways in
151 response to RV or IL-33 inoculation in mice with CEA, but not in naïve controls, and the

152 concentration of dsDNA was significantly decreased in RV inoculated CEA mice following
153 treatment with HpARI (Fig. 5C-D), further supporting the notion that IL-33 is a key mediator of
154 NETosis in mice with CEA.

155

156 **IL-33 associates with dsDNA and neutrophil elastase following experimental RV challenge of**
157 **people with mild to moderate asthma.**

158 We previously demonstrated that the concentrations of dsDNA and neutrophil elastase, markers of
159 NETosis, were significantly greater in the nasal fluid of subjects with asthma compared to healthy
160 controls following experimental RV infection. Here we found that peak nasal IL-33 concentration
161 significantly correlated with peak nasal neutrophil elastase as well as peak nasal dsDNA, two
162 biomarkers of NETosis, following RV infection only in subjects with asthma, but not in healthy
163 control subjects (Fig. 6A-B). Moreover, at day 3 post RV infection, the concentration of nasal
164 dsDNA positively correlated with nasal IL-33 levels (Fig. 6C), as well as upper and lower
165 respiratory symptoms, and again only in subjects with asthma, but not in healthy control subjects
166 (Fig. 6D-E).

167

168 **NETosis inhibition attenuates an IL-33-induced exacerbation of chronic experimental asthma**

169 Since exogenous IL-33 induced NETosis, we hypothesized that inhibition of NETosis using a
170 Protein arginine deiminase 4 (PAD4) inhibitor (Supplementary Fig. 2A) would attenuate IL-33-
171 induced type-2/17 inflammation. As expected, PAD4 inhibition significantly decreased the presence
172 of co-localised MPO/CitH3 in the lung tissue and dsDNA levels in the airways (Fig. 7A-B).

173 Consistent with our hypothesis, PAD4 inhibition ablated IL-33-induced granulocytic inflammation,
174 ILC2 and ILC3 numbers, Th2 and Th17 cell numbers, type-2/17 effector cytokines and mucus
175 hyperproduction (Fig. 7C-E and Supplementary Fig. 2B-C). Strikingly, in addition to suppressing
176 type-2/17 inflammation, inhibition of NETosis ablated IL-33-induced IL-1 α , IL-1 β , IL-6, and
177 CXCL1 levels in the BAL fluid. In contrast, TSLP levels were unaffected (Fig. 7F).

178

179 **IL-33 induces NETosis and asthma related cytokines from neutrophils of mice with CEA but**
180 **not in naïve controls.**

181 To test whether IL-33 acts directly on neutrophils to induce NETosis, naïve mice and mice with
182 CEA were inoculated with RV, and then 4 hours later, neutrophils were FACS sorted from the
183 circulation or bone marrow (Supplementary Fig. 3A). Strikingly, in peripheral blood (PB)
184 neutrophils obtained from RV-exacerbated CEA, but not from RV-inoculated naïve mice, IL-33
185 induced dsDNA release and increased the expression of co-localised MPO/CitH3 (Fig. 8A-B). The
186 same phenotype was observed in bone marrow neutrophils (Supplementary Fig. 3B-C). Lastly, as
187 peak neutrophil infiltration coincided with high airway cytokine expression (i.e. at 1 dpi), we
188 assessed whether the *ex vivo* cultured PB neutrophils released IL-1 α , IL-1 β , IL-4, IL-5, IL-6, IL-
189 17A and KC. Of note, in the absence of stimulation, IL-1 α , IL-1 β , IL-4, IL-5, and IL-6 secretion,
190 but not IL-17A or KC (data not shown) was significantly greater from neutrophils purified from
191 mice with CEA, compared to healthy controls (Fig. 8C-D). Critically, IL-33 markedly increased the
192 production of these cytokines by PB neutrophils of mice with CEA (Fig. 8C-D). In contrast, PB
193 neutrophils from naïve mice only produced a small increase in IL-4 production in response to IL-33
194 (Fig. 8C-D). Collectively, and consistent with our *in vivo* observations, these findings demonstrate
195 that IL-33 acts directly on neutrophils to promote NETosis and cytokine release, and importantly,
196 demonstrate that the propensity for neutrophils to undergo this response is markedly affected by
197 disease status.

198 **Discussion**

199 Using an established mouse model of CEA that is characterized by a persistent IL-33-high
200 microenvironment in the airways,⁹ we sought to test the efficacy of HpARI, a worm product that
201 neutralizes IL-33 and IL-33 signalling,¹⁶ during a RV induced exacerbation. As expected, and
202 consistent with our findings with anti-IL-33,⁹ HpARI ablated the expansion of the type-2
203 inflammation and mucus hyper production that occurs in response to RV inoculation. However,
204 unexpectedly, HpARI ablated the early innate inflammatory response that is dominated by
205 neutrophilic inflammation and associated cytokines, and markedly decreased the presence of NETs
206 in the airway mucosa. Of note, exogenous IL-33 recapitulated the response observed following RV
207 inoculation, including the induction of NETosis by infiltrating neutrophils, and significantly,
208 treatment with a PAD4 inhibitor conferred protection against an IL-33-induced exacerbation.
209 Critically, *ex vivo* IL-33 stimulation induced NETosis and the release of asthma-related cytokines
210 from peripheral blood neutrophils isolated from mice with CEA, whereas neutrophils from naïve
211 mice were unresponsive, suggesting that altered transcriptional and/or chromatin changes are
212 operational prior to neutrophil migration to the lungs. Collectively, our findings identify an
213 important role for IL-33 in promoting neutrophil inflammation and NETosis.

214

215 IL-33 is constitutively expressed in the cell nucleus and described as a danger-associated molecular
216 pattern or alarmin as it is released in response to damage, stress, or infection.¹⁹ The identification of
217 IL-33 as a cytokine that activates effector cells involved in type-2 inflammation (e.g. mast cells,
218 eosinophils, ILC2s) and as an inducer of CD4+ Th2 cell differentiation,²⁰ together with efficacious
219 findings in response to IL-33 blockade in preclinical mouse models^{9, 14, 21} led to the development of
220 biologics targeting IL-33 and the IL-33 receptor, ST2. Several clinical trials using these agents are
221 on-going, however a recent Phase 2 trial found that anti-IL-33 lowers the incidence of exacerbations
222 and improves lung function in moderate-to-severe asthma,⁷ further supporting a role for IL-33 in
223 type-2 mediated inflammation. Similarly, monoclonal antibody targeting of the ST2 (IL-33)

224 receptor decreased the asthma exacerbation rate in patients with uncontrolled severe asthma. Of
225 interest, this positive outcome was also observed in those with low peripheral blood eosinophils,
226 suggesting that IL-33 blockade may be an effective treatment option for subtypes of asthma less
227 dominated by type-2/eosinophilic inflammation.¹³ Although neither of these clinical studies
228 reported the effect of IL-33 blockade on neutrophil numbers or biomarkers of neutrophil activation,
229 we previously observed that anti-IL-33 attenuates neutrophilic inflammation induced by RV
230 exposure in mice with CEA.⁹ Here, we observed that IL-33 blockade with HpARI ablated the RV-
231 induced inflammatory response which appeared to occur in two phases; the first between 1-3 dpi,
232 and the second between 7-10 dpi. The latter phase, characterized by higher numbers of CD4+ Th2
233 cells and eosinophils, goblet cell hyperplasia and greater IL-4 expression, was ablated by HpARI, in
234 keeping with the known effects of IL-33 in amplifying type-2 immunity. Significantly, however,
235 treatment with HpARI also suppressed the early neutrophilic response, characterized by a spike in
236 lung neutrophils, innate inflammatory cytokines/chemokines (e.g. IL-1 α / β , IL-6, CXCL1), type-2/3
237 cytokines (e.g. IL-5 and IL-17A), and diminished the number of NETs in the airway mucosa. These
238 findings suggested that IL-33 promotes neutrophilic inflammation, and in support of this, we
239 demonstrated that in mice with CEA, but not naive controls, exogenous IL-33 exposure is sufficient
240 to recapitulate the early phase response induced by RV, including the marked increase in lung
241 neutrophils, NET formation in the mucosa and elevated biomarkers of NETosis in the BAL, and an
242 increase in the expression of inflammatory cytokines/chemokines and type-2/17 cytokines.
243 Importantly, the IL-33-induced inflammatory response and NETosis was ablated with a PAD4
244 inhibitor, which is significant as NETosis plays a critical pathogenic role in linking RV-induced
245 innate inflammation to the expansion of type-2 immune responses and immunopathology in
246 asthma.⁴ The molecular pathway by which NETosis promotes type 2 inflammation remains unclear,
247 however it is noteworthy that a number of neutrophil-derived factors released during NETosis, such
248 as LL-37, HMGB1, and S100A8/A9, are ligands of receptor for advanced glycation end-products,²²

249 ²³ an innate receptor that we and others have implicated in the induction and amplification of type 2
250 immune responses.²⁴⁻²⁶

251

252 IL-33 acts directly on human eosinophils to promote their survival and induces the release of
253 reactive oxygen species and cytokines.²⁷ In contrast, the effects of IL-33 on human neutrophil
254 function is less clear, with some studies reporting an absence of neutrophil ST2 expression²⁷
255 whereas others have shown that IL-33 regulates CXCR1/CXCR2 expression and CXCL8-mediated
256 chemotaxis, and one report in the context of liver injury has suggested that IL-33 promotes
257 neutrophil NETosis.²⁸⁻³⁰ In support of a direct role for IL-33 in inducing neutrophil activation, we
258 found that *ex vivo* stimulation of purified blood and bone marrow neutrophils was sufficient to
259 induce NETosis but only when the neutrophils were obtained from mice with CEA. In contrast, *ex*
260 *vivo* IL-33-stimulated neutrophils from naïve mice were unresponsive. This finding was consistent
261 with the *in vivo* phenotype, where intranasal IL-33 exposure induced a marked inflammatory
262 response in mice with CEA but not naïve controls. In subjects experimentally inoculated with RV,
263 nasal dsDNA levels, a biomarker of neutrophil NETosis, correlated with nasal IL-33 levels, as well
264 as respiratory symptoms, in those with asthma, but not healthy controls, further supporting IL-33-
265 induced NETosis as a disease-specific phenomenon. Interestingly, others have similarly reported
266 differences in IL-33 responsiveness between subjects with asthma and healthy controls,³¹ and
267 although the underlying mechanism was not identified, the effect was not mediated by a difference
268 in basal ST2 expression.

269

270 In mice with CEA, the large increase in pro-inflammatory cytokine production at 1 dpi occurred
271 concomitantly with peak lung neutrophilia, suggesting that neutrophils may contribute to this
272 phenotype. Remarkably, even in the absence of stimulation, circulating neutrophils obtained from
273 mice with CEA produced significantly greater levels of IL-1 β , IL-4, IL-5, and IL-6. Given the
274 enhanced production of type-2 cytokines, and persistently elevated IL-33 levels in mice with CEA,

275 it is possible that IL-33 contributes to the altered neutrophil behaviour. Indeed, *ex vivo* IL-33
276 stimulation potentiated the phenotype in neutrophils from mice with CEA, whereas again,
277 neutrophils from naïve mice were unresponsive. Collectively, our *in vivo* and *in vitro* findings
278 demonstrate that neutrophils from mice with experimental asthma behave differently from those
279 isolated from naive controls. Whether this phenotype occurs as a consequence of cytokines that
280 ‘spill over’ from the lungs, or is mediated by factors released locally in the bone marrow, for
281 example, IL-4 produced by resident memory Th2 cells, or a combination of both, remains to be
282 elucidated.

283

284 The role for IL-33, neutrophils and NETs in type 2 immunity has recently gained interest in the
285 context of parasitic helminth infections. Early in *Nippostrongylus brasiliensis* infection, a
286 neutrophilic response is observed in the lungs as the parasite migrates through on its way to the
287 intestine. This neutrophilic response is rapidly resolved, and an eosinophil-dominant type 2
288 response is evident at later time points.³²⁻³⁴ Intriguingly, this early neutrophilic response is required
289 for effective type 2 anti-helminth immunity.³⁵ Although the role of NETosis has not been
290 investigated in the generation of type 2 immunity during helminth infection, NETosis also slows the
291 migration of parasitic hookworms, and DNase treatment (degrading NETs) increases parasite
292 burden.³⁶ Of note, in the context of the current study, many parasites (including *H. polygyrus*)
293 secrete DNaseII to degrade NETs: thus HpARI, HpBARI³⁷ and DNaseII secreted products may all
294 be directed against the same IL-33-NET-type-2 immunity axis.

295

296 Recent ‘omics studies have shown that neutrophils express distinct gene expression patterns
297 depending on their developmental stage and microenvironment,³⁸ and these transcriptional and
298 epigenetic programs may support the programming of neutrophils with different effector functions.
299 Thus, neutrophils are increasingly recognized to be more plastic and versatile than previously
300 thought.³⁸⁻⁴⁰ For example, we previously observed that CXCR4^{hi} neutrophils, recruited to the lungs

301 in response to low dose LPS, are the subpopulation that undergoes NETosis and promotes allergic
302 sensitization.⁴¹ This raises the tantalizing possibility of targeting specific molecular pathways and
303 programs that regulate the aberrant neutrophil response in asthma. A greater understanding of these
304 molecular events will likely reveal novel tractable targets for therapeutic intervention. Before then,
305 our findings expand the ‘IL-33 endotype’ in asthma to include virus-induced neutrophilic
306 inflammation, and suggest that IL-33 blockade may be of therapeutic benefit to patients with
307 asthma beyond the type 2-high and eosinophilic phenotypes, and potentially other diseases where
308 neutrophilic inflammation is detrimental.

309

310

311

312 **Materials and methods**

313 **Mouse Strains and treatments**

314 BALB/c mice were maintained under specific pathogen free (SPF) conditions at the QIMR
315 Berghofer Medical Research Institute Animal Facility. The mice were housed in individually
316 ventilated cages. Pneumonia Virus of Mouse (PVM) stock J366 was prepared as previously
317 described.²⁴ Mice were inoculated with PVM (1 plaque forming unit, PFU) or vehicle diluent (10%
318 FCS in DMEM in 10µL) via the intranasal route (i.n.) at postnatal day (PND) 7, and re-inoculated
319 with PVM (20 pfu) at PND49 (42 days post infection, dpi) as previously described.¹⁴ Mice were
320 inoculated with cockroach extract (Greer; CRE; 1µg in 50µL PBS) i.n. on 3 dpi, 45 dpi, 52 dpi,
321 59dpi and 66 dpi. After a rest period, the mice were then inoculated with RV1b (5x10⁶ TCID₅₀),
322 recombinant IL-33 (BioLegend; 40 µg/kg) or diluent (50µL PBS). In some experiments, prior to
323 RV infection, mice were administered diluent (50µL PBS) or 160 µg/kg of HpARI protein
324 (provided by Dr. Henry McSorley, University of Dundee, Scotland). HpARI was produced and
325 purified as previously described.⁴² Briefly, a pSecTAG2 plasmid (ThermoFisher) was produced,
326 encoding HpARI (Wormbase Parasite accession number HPBE_0000813301) with a C-terminal
327 TEV site, c-myc tag and 6-His tag. The plasmid was transfected into Expi293 cells following the
328 Expi293 expression system kit manufacturer's instructions (ThermoFisher). Five days after
329 transfection, supernatant was collected, and protein was purified using nickel sepharose
330 chromatography. Purified HpARI protein was dialysed into PBS, filter sterilised and tested for
331 endotoxin content using the HEK-Blue LPS detection kit 2 (InvivoGen) and found to have <0.002
332 EU endotoxin per mg of protein. To inhibit PAD-4, Cl-Amidine (Cayman Chemical; 10 mg/kg) or
333 vehicle diluent (PBS) was administered by intraperitoneal (i.p.) injection at -24, 12, 24 and 36 hours
334 post exposure, as described previously.^{41, 43} All experiments were approved by the QIMR Berghofer
335 Animal Ethics Committee.

336

337 **Flow cytometry and cell sorting**

338 The left lung lobe and the smallest postcaval lobe were mechanically dissociated using a syringe
339 plunger and 70µm cell strainer (BD Biosciences, San Jose, CA). Isolated single cell suspensions
340 were washed with PBS/2% FCS and red blood cells lysed using Gey's buffer. Zombie Aqua
341 (Biolegend, San Diego, CA) was used to exclude dead cells. The cells were then incubated with
342 anti-FcγRIII/II (Fc block) and stained with fluorescently labelled antibodies directed against CD4-
343 FITC (RM4.5), CD90.2-APCcy7 (53-2.1), CD200R1-APC (OX-110), NKp46-V450 (29A1.4),
344 CD11b-PercpCy5.5 (M1/70), (all BD Bioscience, San Jose, CA), CD8-PercpCy5.5 (53-6.7),
345 TCRγδ-APC (GL3), CD45-V421 (30-F11), TCRβ-V605 (H57-597), CD19-FITC (1D3/CD19),
346 CD11c-FITC (N418), CD45R-FITC (RA3-6B2), Ly6G-FITC (1A8), CD11c-BV785 (N418), (all
347 Biolegend, San Diego, CA), CD3e-FITC (145-2C11), F4/80-FITC (BM8), (all eBioscience, San
348 Diego, CA). For intracellular staining, cells were fixed and permeabilised using the BD
349 Cytofix/Cytoperm™ kit as per the manufacturer's instructions (BD Biosciences, San Jose, CA) and
350 stained with GATA3-PE (TWAJ; eBioscience, San Diego, CA) and RORγT-V650 (Q31-378; BD
351 Biosciences, San Jose, CA). Stained cells were washed and acquired on a BD LSRII™ (BD
352 Biosciences, San Jose, CA) or sorted using a BD FACSAria™ III (BD Biosciences, San Jose, CA).
353 Data were analysed using FACS Diva Software v8 and FlowJo v10.8. Immune cells were identified
354 as follows: eosinophils: CD45+, CD11b+, CD11c-, Siglec-F+, Ly6G-; neutrophils as CD45+,
355 CD11b+, CD11c-, Siglec-F-, Ly6G+, Th2 cells as CD45+ TCRβ+ CD4+ CD8- GATA3+ RORγT-,
356 Th17 cells as CD45+ TCRβ+ CD4+ CD8- GATA3- RORγT+, ILC2 cells as Lineage- (CD3,
357 CD19, CD45R, CD11c, CD11b), CD45+ CD90.2+, NKp46-, GATA3+ RORγT-, ILC3 as Lineage-
358 (CD3, CD19, CD45R, CD11c, CD11b), CD45+ CD90.2+, NKp46-, GATA3- RORγT+.

359

360 **Immunohistochemistry and immunofluorescence**

361 Paraffin-embedded lung sections were generated as previously described.²⁴ For immunostaining,
362 blocking was performed with 10% goat serum in PBS. Sections were probed with anti-Muc5ac
363 (45M1, ThermoFisher), anti-MPO (Polyclonal, R&D Systems) or anti-CitH3 (Polyclonal, abcam)

364 and incubated overnight at room temperature. For immunohistochemistry, the sections were washed
365 with PBS/0.05% Tween-20 and incubated in anti-rabbit IgG-AP (Sigma-Aldrich) for 1 hour.
366 Following incubation with appropriate secondary antibodies, immunoreactivity was developed with
367 Fast Red (Sigma-Aldrich) and counterstained with Mayer's hematoxylin. For immunofluorescence,
368 the sections were washed with PBS/0.05% Tween-20 and incubated with Goat-Anti Rat IgG AF647
369 (ab150159, Abcam) and Rabbit Anti-Mouse IgG AF555 (A27028, Invitrogen) for 1 hour. The
370 sections were then washed with PBS/0.5% Triton and counterstained with 4',6-diamidino-2-
371 phenylindole (DAPI, Sigma-Aldrich). Digitally scanned sections were analysed using Image Scope
372 software (Scanscope XT; Aperio). Immunofluorescent slides were imaged at 20x using Zeiss 780-
373 NLO spinning disk confocal microscope.

374

375 **Cytokine and dsDNA analysis**

376 Bronchoalveolar lavage (BAL) fluid was collected as previously described⁴⁴ centrifuged at 5000
377 rpm and the supernatant stored at -80°C prior to analysis. The concentration of IL-1 α , IL-1 β , IL-4,
378 IL-5, IL-6, IL-17A, IL-33, TSLP (Biolegend, San Diego, CA) and CXCL1 (aka KC) (R&D
379 Systems, Minneapolis, MN) were measured in BAL by ELISA according to manufacturer's
380 instructions. IL-13 concentration was measured by cytokine bead array (Biolegend, San Diego,
381 CA). dsDNA in BAL was measured by Quant-iTTM PicoGreenTM dsDNA Assay Kit (Invitrogen)
382 according to manufacturer's instructions.

383

384 **Neutrophil purification and culture**

385 Blood was obtained by cardiac puncture, and bone marrow cells were harvested from the femur by
386 flushing with a syringe. Following centrifugation (10,000 rpm for 10 mins), the cell pellet was
387 resuspended and passed through a 70 μ m cell strainer (BD Biosciences, San Jose, CA).
388 Contaminating erythrocytes were lysed using Gey's buffer. Neutrophils (Live, Siglec F
389 CD11b $^+$ Ly6G $^+$ CD11c $^-$) were purified by FACS (>95% purity), seeded into a 12-well culture plate

390 (50 x 10³/well in 1mL) in RPMI media containing 10% FCS, and cultured for 4 hours in the
391 presence or absence of recombinant IL-33 (50 ng/ml). After centrifugation, the supernatant was
392 harvested and stored at -80°C prior to analysis. The cell pellet was washed in PBS and fixed in 4%
393 paraformaldehyde. Slides for immunofluorescence were prepared using a StatSpin Cytofuge as
394 described previously.⁴⁵

395

396 **Clinical samples**

397 Study volunteers were recruited and inoculated with RV16 as described.^{4, 11} Nasal samples were
398 collected together with daily respiratory symptom scores. Measurements of IL-33, dsDNA, and
399 neutrophil elastase were performed as part of two previous studies.^{4, 11}

400

401 **Statistical analysis**

402 GraphPad Prism 8.0 software (La Jolla, California) was used for statistical analyses. Mann-Whitney
403 test, one-way ANOVA with a Tukey post-hoc test or two-way ANOVA with Sidak post-hoc test
404 were applied as appropriate. Correlations were evaluated using a Spearman rank correlation
405 analysis. *p* < 0.05 was considered statistically significant.

Figure legends

Figure 1: HpARI suppresses an RV-induced acute exacerbation of CEA.

A, Study design (dpi, day post infection). **B**, Representative images of MUC5ac immunohistochemistry (x20 magnification). MUC5ac score. **C**, Lung neutrophils and eosinophils. **D**, ILC2s, ILC3s, Th2 cells and Th17 cells in the lung. **E**, IL-4, IL-5, IL-13 and IL-17A expression in BAL fluid. Data represented as mean \pm SEM, $n = 4-12$ mice per group, $^*P < .05$, $^{***}P < .001$.

Figure 2: HpARI decreases the expression of IL-33 and other innate instructive cytokines in the airways.

A, IL-33, **B**, TSLP, **C**, IL-1 α , **D**, IL-1 β , **E**, IL-6 and **F**, CXCL1 expression in BAL fluid. Data represented as mean \pm SEM, $n = 4-8$ mice per group, $^*P < .05$, $^{**}P < .01$, $^{***}P < .001$.

Figure 3: Exogenous IL-33 recapitulates the response to RV inoculation in mice with CEA.

A, Study design. At postnatal day 7, WT BALB/C mice were inoculated with PVM (1 pfu) or diluent at day 0 then inoculated with CRE (1 μ g) or diluent at day 3. Mice were re-infected with PVM (20 pfu) at day 42, and challenged with CRE (1 μ g) at day 45, 52, 59 and 66. Naïve mice were inoculated with diluent at the aforementioned time points. At day 94, mice were inoculated with IL-33 (1.25 μ g). **B**, Lung neutrophils and eosinophils. **C**, Lung ILC2s and ILC3s. **D**, Lung Th2 cells and Th17 cells. **E**, IL-4, IL-5, and IL-17A expression in BAL fluid. **F**, MUC5ac score. Data represented as mean \pm SEM, $n = 4-8$ mice per group, $^{**}P < .01$, $^{***}P < .001$.

Figure 4: IL-33 promotes the expression of innate instructive cytokines in mice with CEA but not naïve mice.

A, TSLP, **B**, IL-1 α , **C**, IL-1 β , **D**, IL-6 and **E**, CXCL1 expression in BAL fluid. Data represented as mean \pm SEM, $n = 4-8$ mice per group, $^*P < .05$, $^{***}P < .001$.

Figure 5: RV or IL-33 inoculation induced NETosis is attenuated by HpARI.

A, Representative immunofluorescent images of myeloperoxidase (MPO; red), Citrullinated histone-H3 (CitH3; green), and DNA (DAPI; blue). Quantification of co-localised MPO and CitH3 expression in lung tissue at 1 dpi (day post infection). **B**, Representative immunofluorescent images of MPO (red), CitH3 (green), and DNA (DAPI; blue). Quantification of co-localised MPO and CitH3 expression in lung tissue at 1 day post IL-33 exposure. **C**, dsDNA levels in BAL fluid of CEA mice following RV infection \pm HpARI. **D**, dsDNA levels in BAL of CEA or naïve mice following IL-33 exposure. Data represented as mean \pm SEM, $n = 4-8$ mice per group, ** $P < .01$, *** $P < .001$ (compared to Naïve + Veh), ## $P < .01$ (compared to CEA + RV + Veh).

Figure 6: IL-33 associates with dsDNA and neutrophil elastase following experimental RV challenge of mild to moderate asthmatics.

Nasal levels of IL-33, neutrophil elastase, host dsDNA, upper respiratory symptoms and lower respiratory symptoms were measured in 24 subjects with asthma and 11 healthy controls. **A**, Correlation between peak levels of nasal IL-33 and peak levels of nasal neutrophil elastase (i.e., maximal levels of cytokines during infection for each subject). **B**, Correlation between peak nasal IL-33 and peak nasal host dsDNA. **C**, Correlation between nasal concentrations (on day 3 during RV infection) of IL-33 and host dsDNA. **D**, Correlation between lower respiratory symptoms (on day 3 during RV infection) and nasal host dsDNA. **E**, Correlation between upper respiratory symptoms (on day 3 during RV infection) and nasal host dsDNA. **A-E**, The correlation analysis used was nonparametric (Spearman's correlation) performed on subjects with asthma and healthy controls. * $P < .05$, ** $P < .01$, *** $P < .001$.

Figure 7: NETosis inhibition attenuates an IL-33-induced exacerbation of CEA.

A, Representative immunofluorescent images of MPO (red), CitH3 (green), and DNA (DAPI, blue) (x20 magnification). Quantification of co-localised MPO and CitH3 expression in lung tissue 24

hours post IL-33 exposure. **B**, dsDNA levels in BAL. **C**, Lung neutrophils and eosinophils. **D**, Lung ILC2s and ILC3s. **E**, Representative images of MUC5ac IHC (x20 magnification). Mucus score. **F**, TSLP, IL-1 α , IL-1 β , IL-6 and CXCL1 expression in BAL. Data represented as mean \pm SEM, $n = 4$ -8 mice per group, $*P < .05$, $**P < .01$, $***P < .001$.

Figure 8: IL-33 induces NETosis and asthmatic cytokines from neutrophils of mice with CEA but not healthy controls.

A, dsDNA levels in the supernatant of peripheral blood (PB) neutrophils isolated from naïve or CEA mice and stimulated \pm IL-33. **B**, Representative images of immunofluorescent MPO (red), CitH3 (green), and DNA (DAPI, blue) in neutrophils stimulated \pm IL-33 *ex vivo*. Quantification of co-localised MPO and CitH3 expression. **C**, **D**, IL-4, IL-1 α , IL-1 β and IL-6 (**C**) and IL-4, IL-5, and IL-17A (**D**) expression in the supernatant of PB neutrophils, stimulated \pm IL-33. Data represented as mean \pm SEM, $n = 4$ -8 mice per group, $*P < .05$, $**P < .01$, $***P < .001$ (comparing \pm IL-33), $^{##}P < .01$ (comparing unstimulated naïve to CEA).

Supplementary Figure 1: RV-induces an acute exacerbation in mice with CEA but not naïve controls.

A, Representative images of MUC5ac immunohistochemistry (x20 magnification). **B**, Lung neutrophils and eosinophils. **C**, Lung Th2 cells, Th17 cells, ILC2s, and ILC3s. **D**, IL-4, IL-5, and IL-17A expression in BAL fluid. Data represented as mean \pm SEM, $n = 4$ -12 mice per group, $*P < .05$, $**P < .01$, $***P < .001$. The data in Panel B (CEA + RV group) are the same as those presented in Fig.1C.

Supplementary Figure 2: NETosis inhibition attenuates an IL-33-induced exacerbation of CEA.

A, Study design. To inhibit NETosis mice were treated with the PAD4 inhibitor CI-Amidine (10 mg/kg) at -24, 12, 24 and 36 hours post IL-33 administration. **B**, Lung Th2 cells and Th17 cells. **C**, IL-4, IL-5, IL-13 and IL-17A expression in BAL fluid. Data represented as mean \pm SEM, $n = 4$ -8 mice per group, $*P < .05$, $**P < .01$, $***P < .001$.

Supplementary Figure 3: IL-33 induced NETosis of bone marrow neutrophils is greater in mice with CEA. **A**, Study design. CEA was induced through PVM and CRE exposure. At day 94, mice were inoculated with RV (5×10^6 TCID50), and 4 hour later, neutrophils were isolated from the peripheral blood or bone marrow (BM) then stimulated with IL-33 (+) or diluent (-) for 4 hours. **B**, dsDNA levels. **C**, Quantification of co-localised MPO and CitH3 expression. Data represented as mean \pm SEM, $n = 4$ mice per group, $*P < .05$, $**P < .01$, $***P < .001$.

Author Contributions

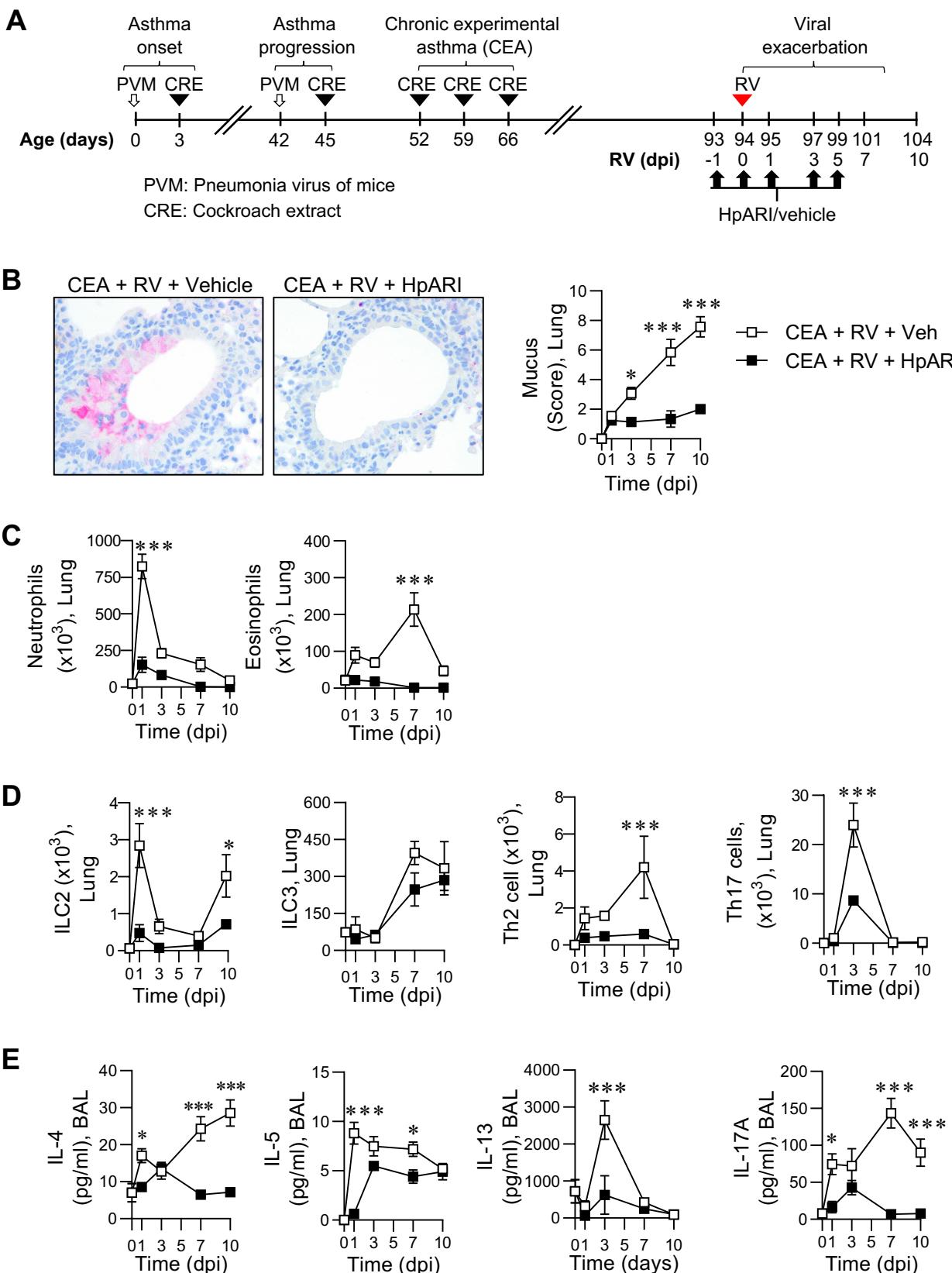
S.P. and H.M. conceived and designed experiments. B.C. and T.A. conducted the majority of the experiments, with support from D.H., M.A.U., I.S., R.R., M.A.A.S, A.B., and S.N. Clinical data, reagents and critical analysis was provided by M.E., S.L.J., and H.M. The manuscript was initially drafted by S.P. and B.C.; all authors contributed thereafter.

Acknowledgments

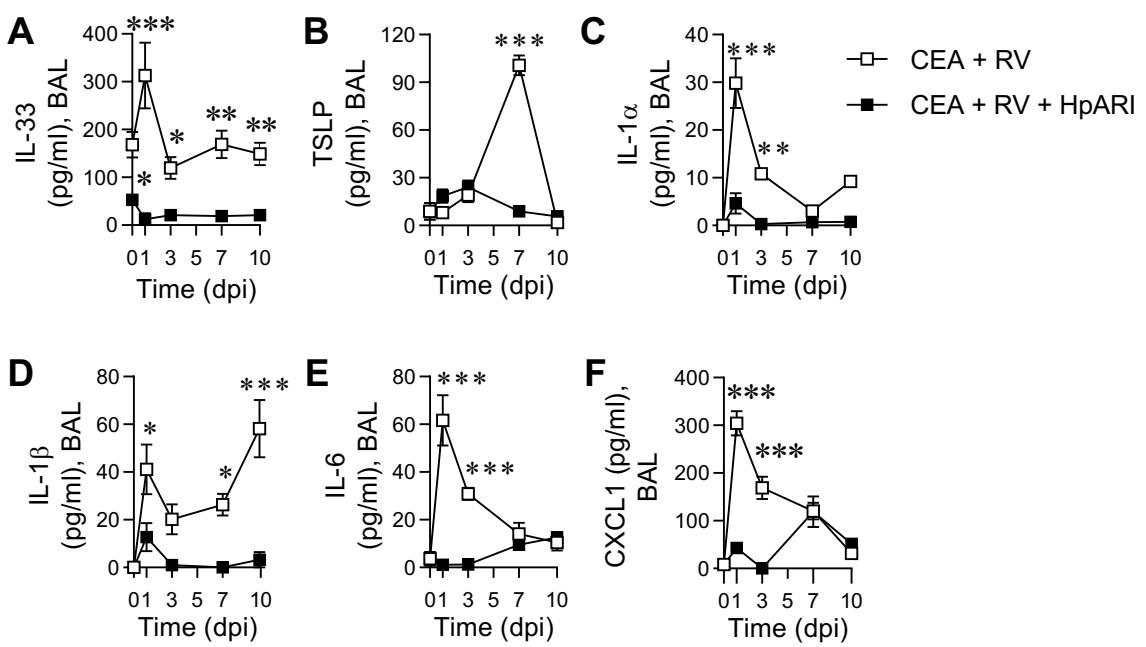
This work was supported by an NHMRC grant awarded to S.P. (1141581), and grants to H.J.M from LONGFONDS Accelerate as part of the AWWA project, and the Medical Research Council (MR/S000593/1). The authors thank QIMR Berghofer Flow Cytometry Facility and Histology Facility for technical assistance.

Conflicts of interests. The authors declare that they have no relevant conflicts of interest.

References


1. Hammad H, Lambrecht BN. The basic immunology of asthma. *Cell* 2021; **184**(6): 1469-1485.
2. Fahy JV, Kim KW, Liu J, Boushey HA. Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. *J Allergy Clin Immunol* 1995; **95**(4): 843-852.
3. Grünberg K, Smits HH, Timmers MC, de Klerk EP, Dolhain RJ, Dick EC *et al.* Experimental rhinovirus 16 infection. Effects on cell differentials and soluble markers in sputum in asthmatic subjects. *Am J Respir Crit Care Med* 1997; **156**(2 Pt 1): 609-616.
4. Toussaint M, Jackson DJ, Swieboda D, Guedán A, Tsourouktsoglou TD, Ching YM *et al.* Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. *Nat Med* 2017; **23**(6): 681-691.
5. Thiam HR, Wong SL, Wagner DD, Waterman CM. Cellular Mechanisms of NETosis. *Annu Rev Cell Dev Biol* 2020; **36**: 191-218.
6. Holgate ST, Davies DE. Rethinking the pathogenesis of asthma. *Immunity* 2009; **31**(3): 362-367.
7. Wechsler ME, Ruddy MK, Pavord ID, Israel E, Rabe KF, Ford LB *et al.* Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. *N Engl J Med* 2021; **385**(18): 1656-1668.
8. Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME *et al.* Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. *N Engl J Med* 2021; **384**(19): 1800-1809.
9. Werder RB, Zhang V, Lynch JP, Snape N, Upham JW, Spann K *et al.* Chronic IL-33 expression predisposes to virus-induced asthma exacerbations by increasing type 2 inflammation and dampening antiviral immunity. *J Allergy Clin Immunol* 2018; **141**(5): 1607-1619.e1609.
10. Allinne J, Scott G, Lim WK, Birchard D, Erjefält JS, Sandén C *et al.* IL-33 blockade affects mediators of persistence and exacerbation in a model of chronic airway inflammation. *J Allergy Clin Immunol* 2019; **144**(6): 1624-1637.e1610.
11. Jackson DJ, Makrinioti H, Rana BM, Shamji BW, Trujillo-Torralbo MB, Footitt J *et al.* IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. *Am J Respir Crit Care Med* 2014; **190**(12): 1373-1382.
12. Menzies-Gow A, Wechsler ME, Brightling CE. Unmet need in severe, uncontrolled asthma: can anti-TSLP therapy with tezepelumab provide a valuable new treatment option? *Respir Res* 2020; **21**(1): 268.
13. Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS *et al.* Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. *J Allergy Clin Immunol* 2021; **148**(3): 790-798.

14. Lynch JP, Werder RB, Simpson J, Loh Z, Zhang V, Haque A *et al.* Aeroallergen-induced IL-33 predisposes to respiratory virus-induced asthma by dampening antiviral immunity. *J Allergy Clin Immunol* 2016; **138**(5): 1326-1337.
15. Werder RB, Ullah MA, Rahman MM, Simpson J, Lynch JP, Collinson N *et al.* Targeting the P2Y(13) Receptor Suppresses IL-33 and HMGB1 Release and Ameliorates Experimental Asthma. *Am J Respir Crit Care Med* 2022; **205**(3): 300-312.
16. Osbourn M, Soares DC, Vacca F, Cohen ES, Scott IC, Gregory WF *et al.* HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-33. *Immunity* 2017; **47**(4): 739-751.e735.
17. Holt PG, Sly PD. Viral infections and atopy in asthma pathogenesis: new rationales for asthma prevention and treatment. *Nat Med* 2012; **18**(5): 726-735.
18. Borkner L, Curham LM, Wilk MM, Moran B, Mills KHG. IL-17 mediates protective immunity against nasal infection with *Bordetella pertussis* by mobilizing neutrophils, especially Siglec-F(+) neutrophils. *Mucosal Immunol* 2021; **14**(5): 1183-1202.
19. Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. *Immunol Rev* 2018; **281**(1): 154-168.
20. Kurowska-Stolarska M, Kewin P, Murphy G, Russo RC, Stolarski B, Garcia CC *et al.* IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. *J Immunol* 2008; **181**(7): 4780-4790.
21. Lee HY, Rhee CK, Kang JY, Byun JH, Choi JY, Kim SJ *et al.* Blockade of IL-33/ST2 ameliorates airway inflammation in a murine model of allergic asthma. *Exp Lung Res* 2014; **40**(2): 66-76.
22. Pouwels SD, Hesse L, Wu X, Allam V, van Oldeniel D, Bhiekharie LJ *et al.* LL-37 and HMGB1 induce alveolar damage and reduce lung tissue regeneration via RAGE. *Am J Physiol Lung Cell Mol Physiol* 2021; **321**(4): L641-L652.
23. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB. RAGE and TLRs: relatives, friends or neighbours? *Mol Immunol* 2013; **56**(4): 739-744.
24. Loh Z, Simpson J, Ullah A, Zhang V, Gan WJ, Lynch JP *et al.* HMGB1 amplifies ILC2-induced type-2 inflammation and airway smooth muscle remodelling. *PLoS Pathog* 2020; **16**(7): e1008651.
25. Ullah MA, Loh Z, Gan WJ, Zhang V, Yang H, Li JH *et al.* Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. *J Allergy Clin Immunol* 2014; **134**(2): 440-450.
26. Oczypok EA, Milutinovic PS, Alcorn JF, Khare A, Crum LT, Manni ML *et al.* Pulmonary receptor for advanced glycation end-products promotes asthma pathogenesis through IL-33 and accumulation of group 2 innate lymphoid cells. *J Allergy Clin Immunol* 2015; **136**(3): 747-756 e744.
27. Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. *J Allergy Clin Immunol* 2008; **121**(6): 1484-1490.


28. Alves-Filho JC, Sônego F, Souto FO, Freitas A, Verri WA, Jr., Auxiliadora-Martins M *et al.* Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. *Nat Med* 2010; **16**(6): 708-712.
29. Chen YL, Gutowska-Owsiak D, Hardman CS, Westmoreland M, MacKenzie T, Cifuentes L *et al.* Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. *Sci Transl Med* 2019; **11**(515).
30. Yazdani HO, Chen HW, Tohme S, Tai S, van der Windt DJ, Loughran P *et al.* IL-33 exacerbates liver sterile inflammation by amplifying neutrophil extracellular trap formation. *J Hepatol* 2017.
31. Jurak LM, Xi Y, Landgraf M, Carroll ML, Murray L, Upham JW. Interleukin 33 Selectively Augments Rhinovirus-Induced Type 2 Immune Responses in Asthmatic but not Healthy People. *Front Immunol* 2018; **9**: 1895.
32. Sutherland TE, Rückerl D, Logan N, Duncan S, Wynn TA, Allen JE. Ym1 induces RELM α and rescues IL-4R α deficiency in lung repair during nematode infection. *PLoS Pathog* 2018; **14**(11): e1007423.
33. Ajendra J, Chenery AL, Parkinson JE, Chan BHK, Pearson S, Colombo SAP *et al.* IL-17A both initiates, via IFN γ suppression, and limits the pulmonary type-2 immune response to nematode infection. *Mucosal Immunol* 2020; **13**(6): 958-968.
34. Sutherland TE, Logan N, Rückerl D, Humbles AA, Allan SM, Papayannopoulos V *et al.* Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. *Nat Immunol* 2014; **15**(12): 1116-1125.
35. Chen F, Wu W, Millman A, Craft JF, Chen E, Patel N *et al.* Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. *Nat Immunol* 2014; **15**(10): 938-946.
36. Bouchery T, Moyat M, Sotillo J, Silverstein S, Volpe B, Coakley G *et al.* Hookworms Evade Host Immunity by Secreting a Deoxyribonuclease to Degrade Neutrophil Extracellular Traps. *Cell Host Microbe* 2020; **27**(2): 277-289.e276.
37. Vacca F, Chauché C, Jamwal A, Hinchy EC, Heieis G, Webster H *et al.* A helminth-derived suppressor of ST2 blocks allergic responses. *Elife* 2020; **9**.
38. Khoyratty TE, Ai Z, Ballesteros I, Eames HL, Mathie S, Martín-Salamanca S *et al.* Distinct transcription factor networks control neutrophil-driven inflammation. *Nat Immunol* 2021; **22**(9): 1093-1106.
39. Grieshaber-Bouyer R, Radtke FA, Cunin P, Stifano G, Levescot A, Vijaykumar B *et al.* The neutrotome transcriptional signature defines a single continuum of neutrophils across biological compartments. *Nat Commun* 2021; **12**(1): 2856.
40. Sebina I, Phipps S. The Contribution of Neutrophils to the Pathogenesis of RSV Bronchiolitis. *Viruses* 2020; **12**(8).

41. Radermecker C, Sabatel C, Vanwinge C, Ruscitti C, Marechal P, Perin F *et al.* Locally instructed CXCR4(hi) neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. *Nat Immunol* 2019; **20**(11): 1444-1455.
42. Chauche C, Vacca F, Chia SL, Richards J, Gregory WF, Ogunkanbi A *et al.* A Truncated Form of HpARI Stabilizes IL-33, Amplifying Responses to the Cytokine. *Front Immunol* 2020; **11**: 1363.
43. Sebina I, Rashid RB, Sikder MAA, Rahman MM, Ahmed T, Radford-Smith DE *et al.* IFN-lambda Diminishes the Severity of Viral Bronchiolitis in Neonatal Mice by Limiting NADPH Oxidase-Induced PAD4-Independent NETosis. *J Immunol* 2022; **208**(12): 2806-2816.
44. Lynch JP, Werder RB, Loh Z, Sikder MAA, Curren B, Zhang V *et al.* Plasmacytoid dendritic cells protect from viral bronchiolitis and asthma through semaphorin 4a-mediated T reg expansion. *J Exp Med* 2018; **215**(2): 537-557.
45. Lynch JP, Werder RB, Curren BF, Sikder MAA, Ullah A, Sebina I *et al.* Long-lived regulatory T cells generated during severe bronchiolitis in infancy influence later progression to asthma. *Mucosal Immunol* 2020.

Figure 1

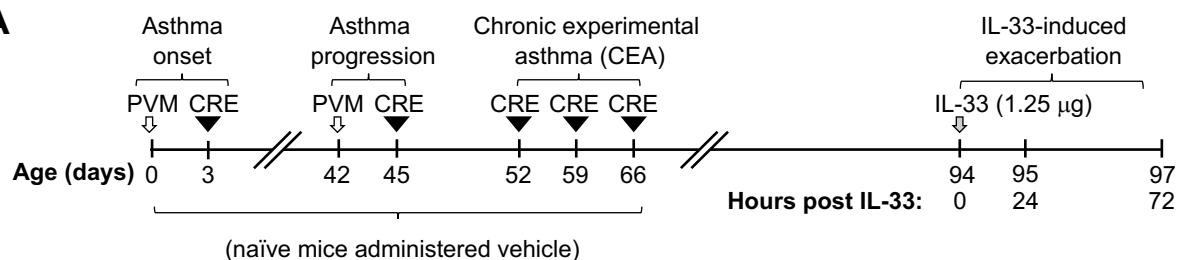


Figure 2

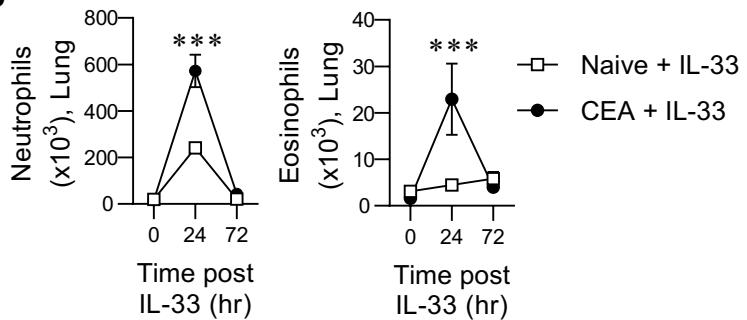
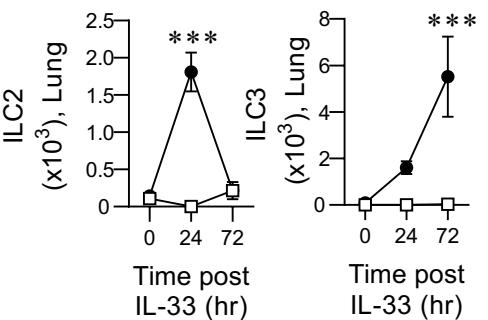
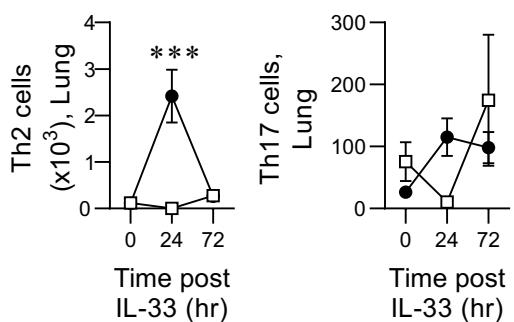
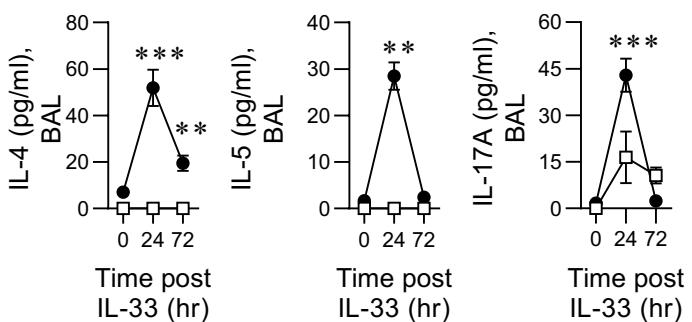
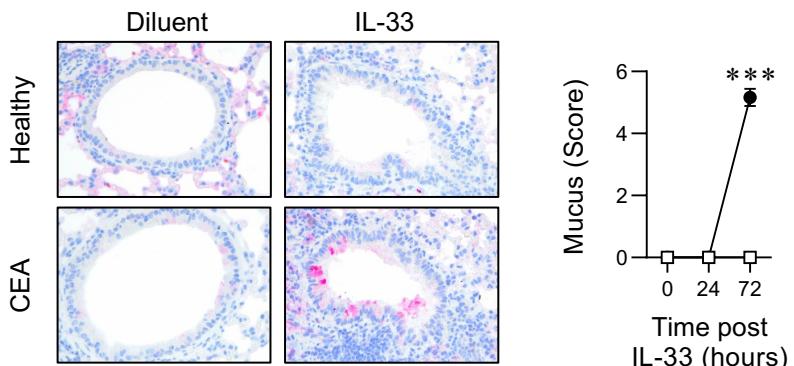


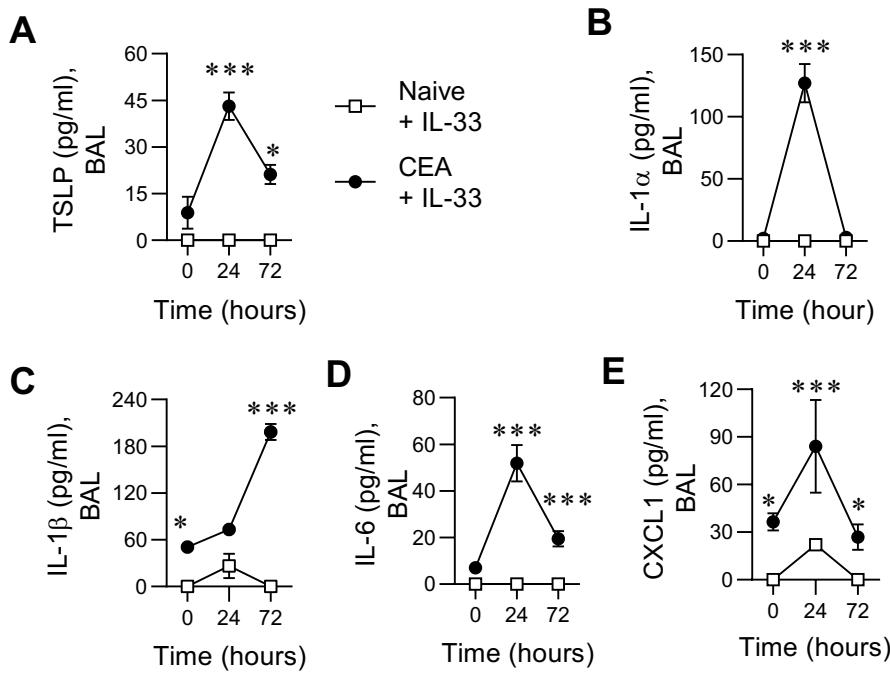
Figure 3


A


B


C


D


E

F

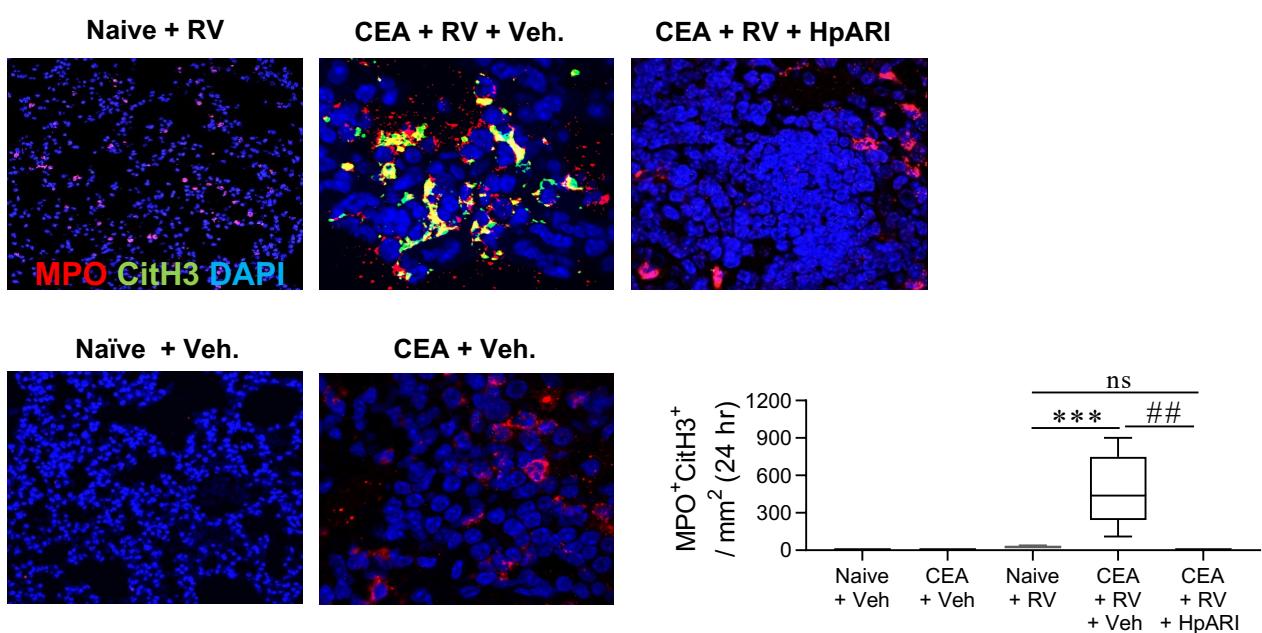


Figure 4

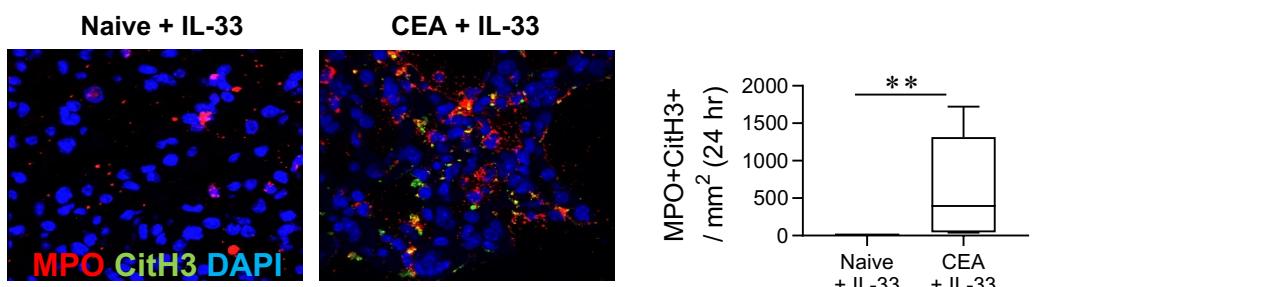
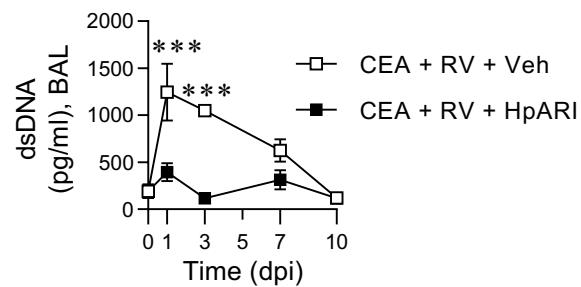
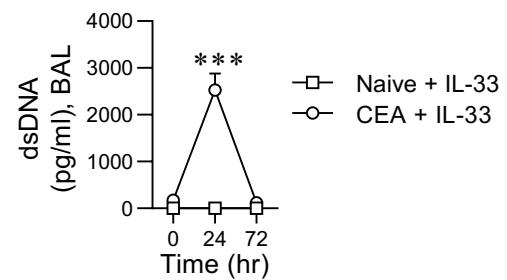
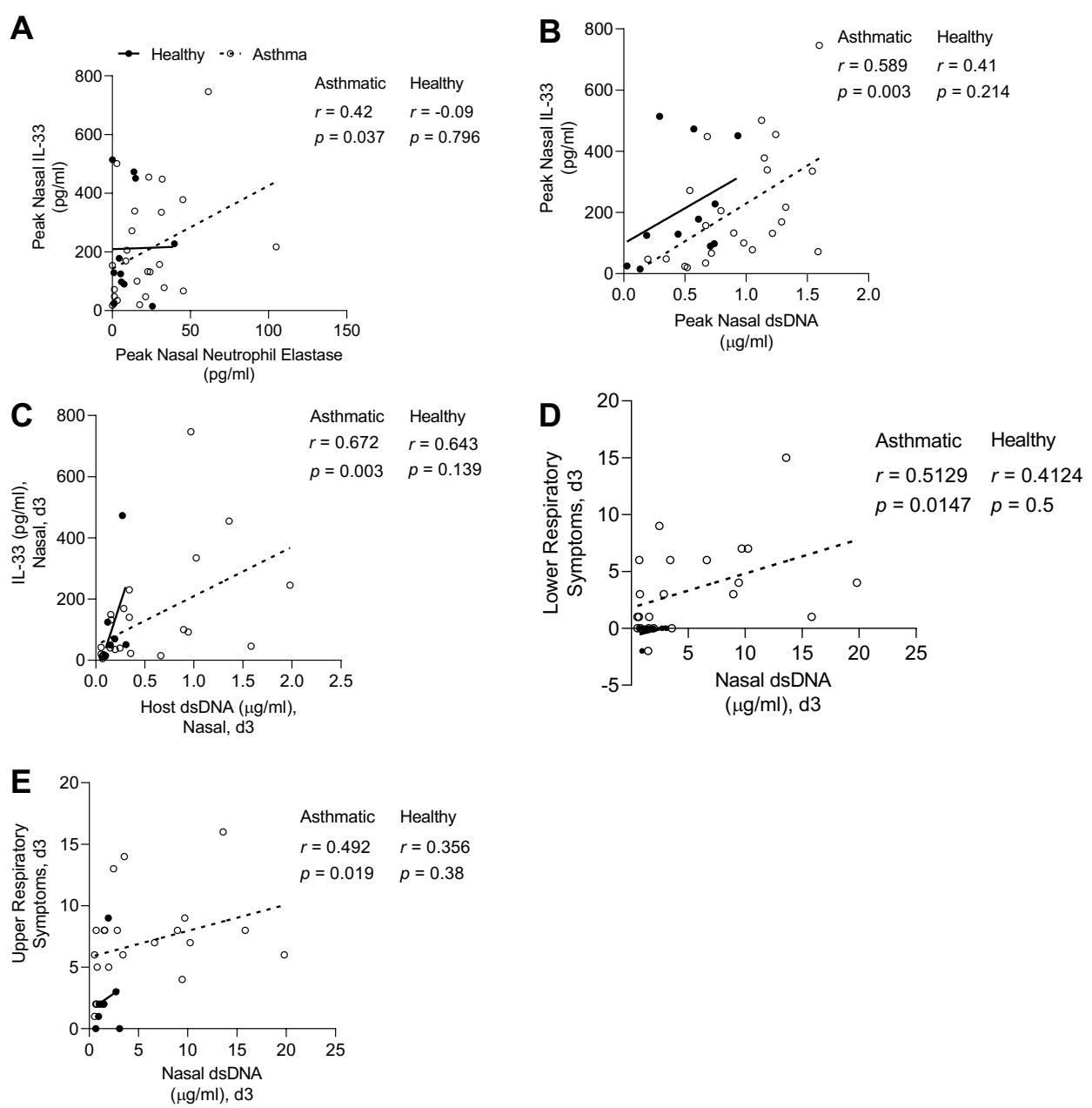
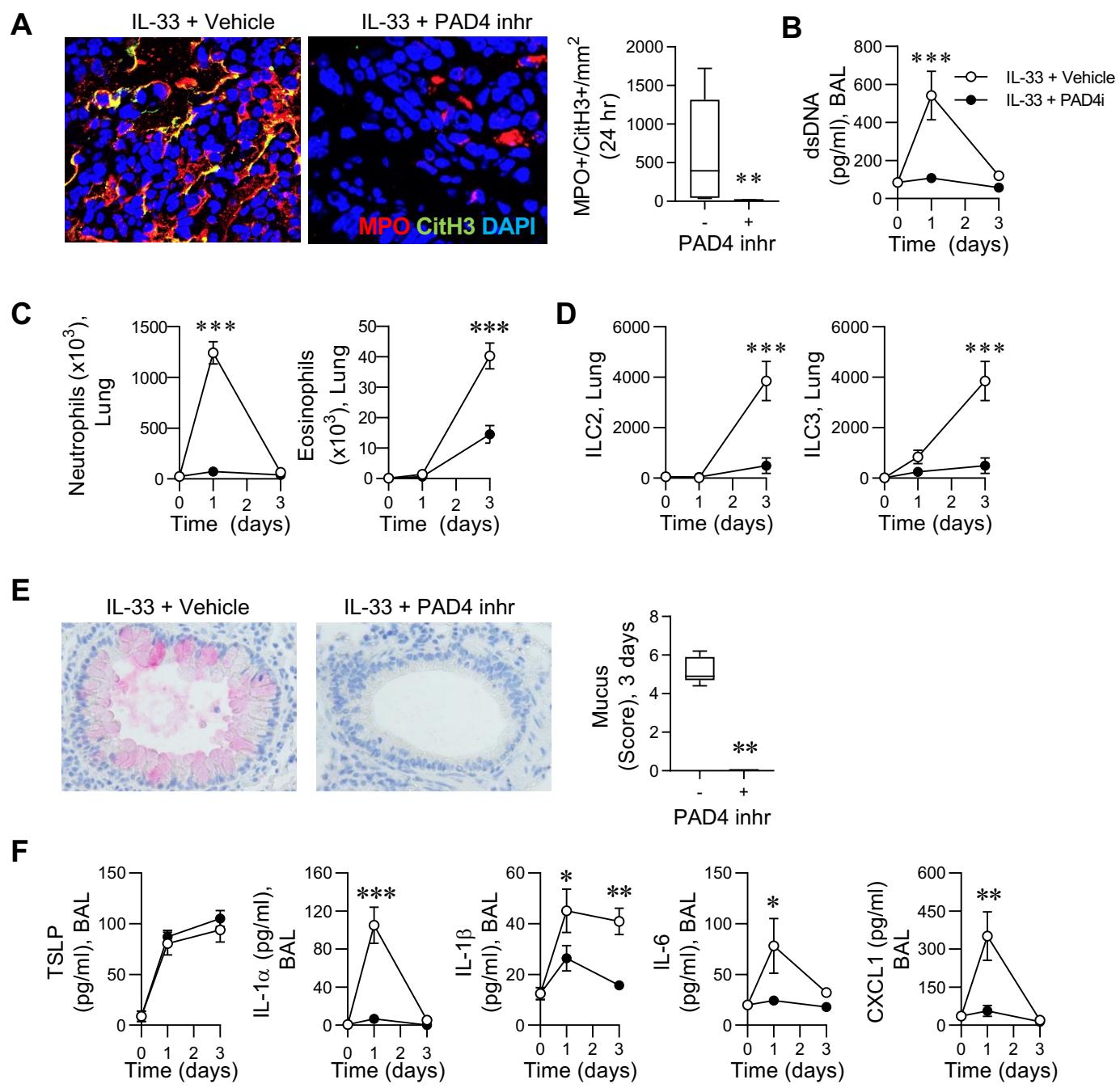


Figure 5


A


B


C


D

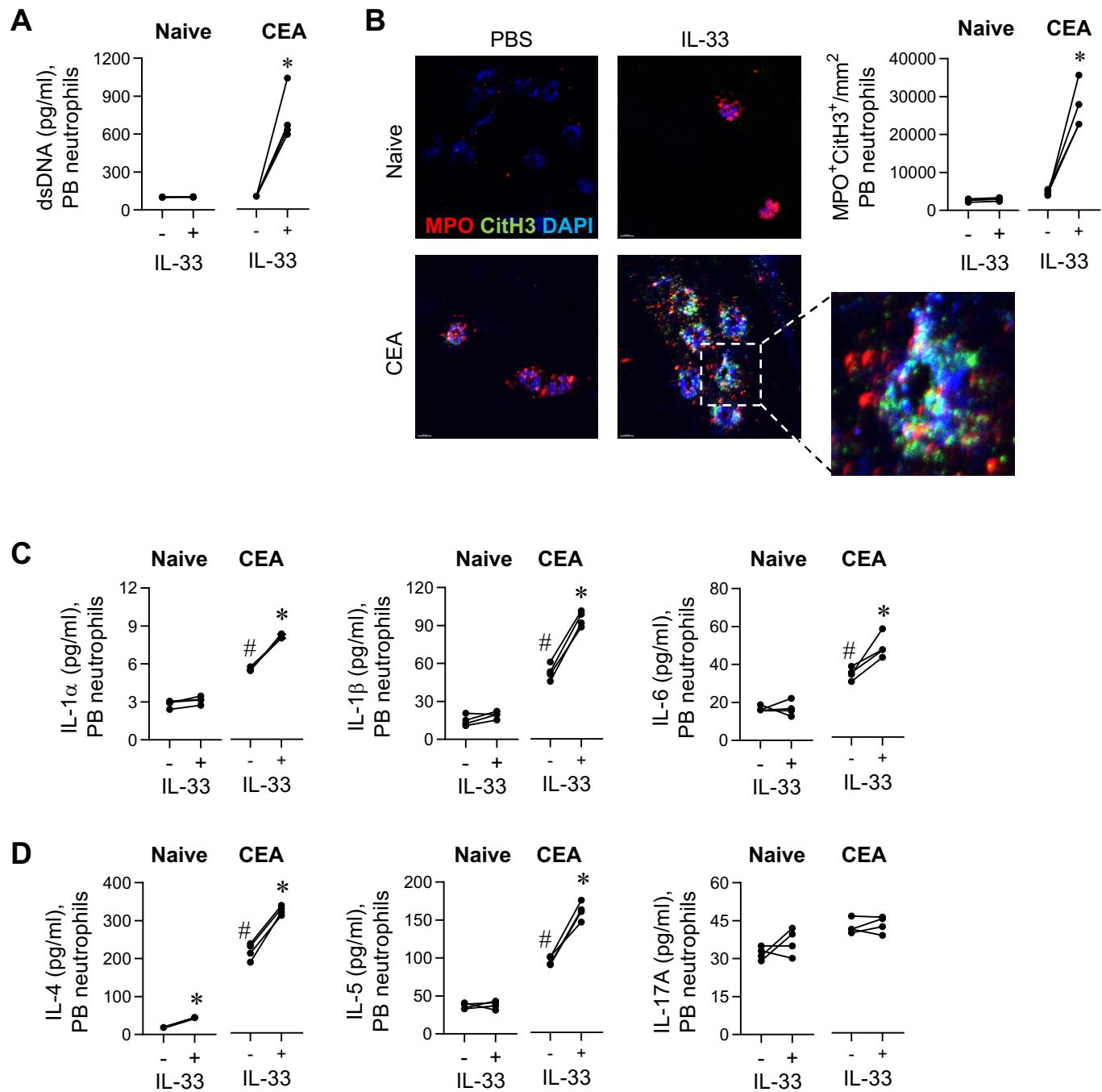
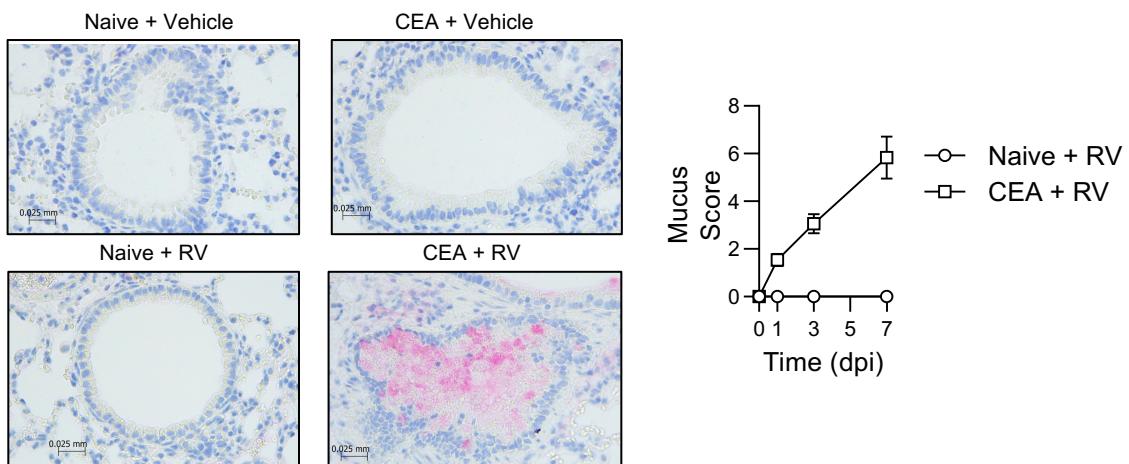
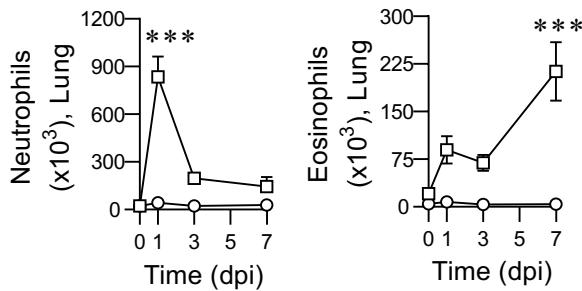
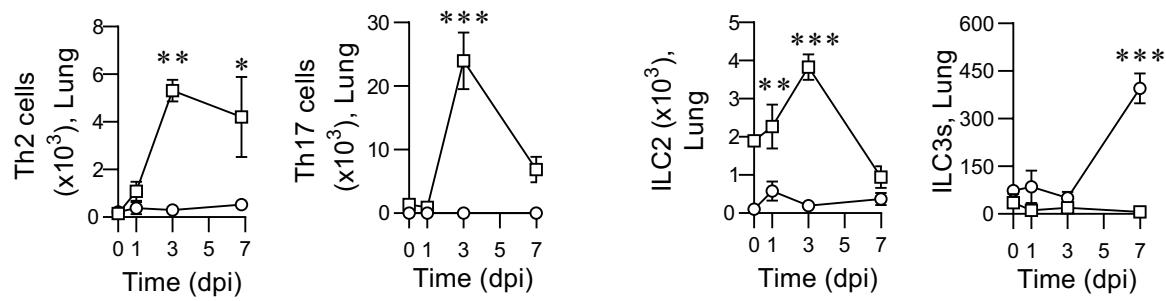


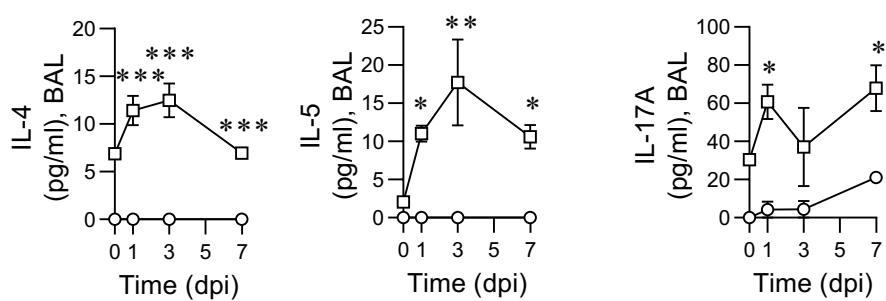
Figure 6

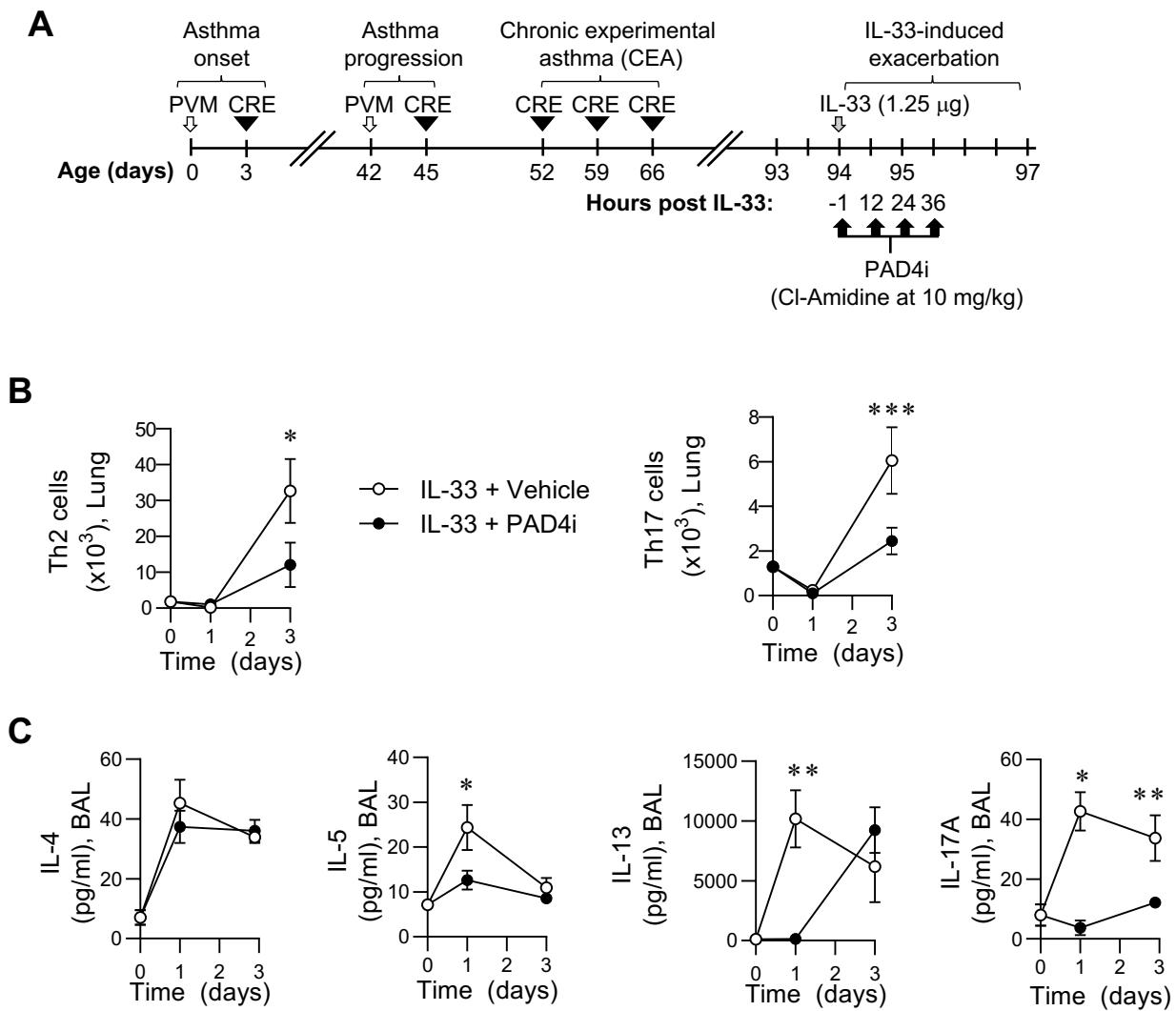

Figure 7

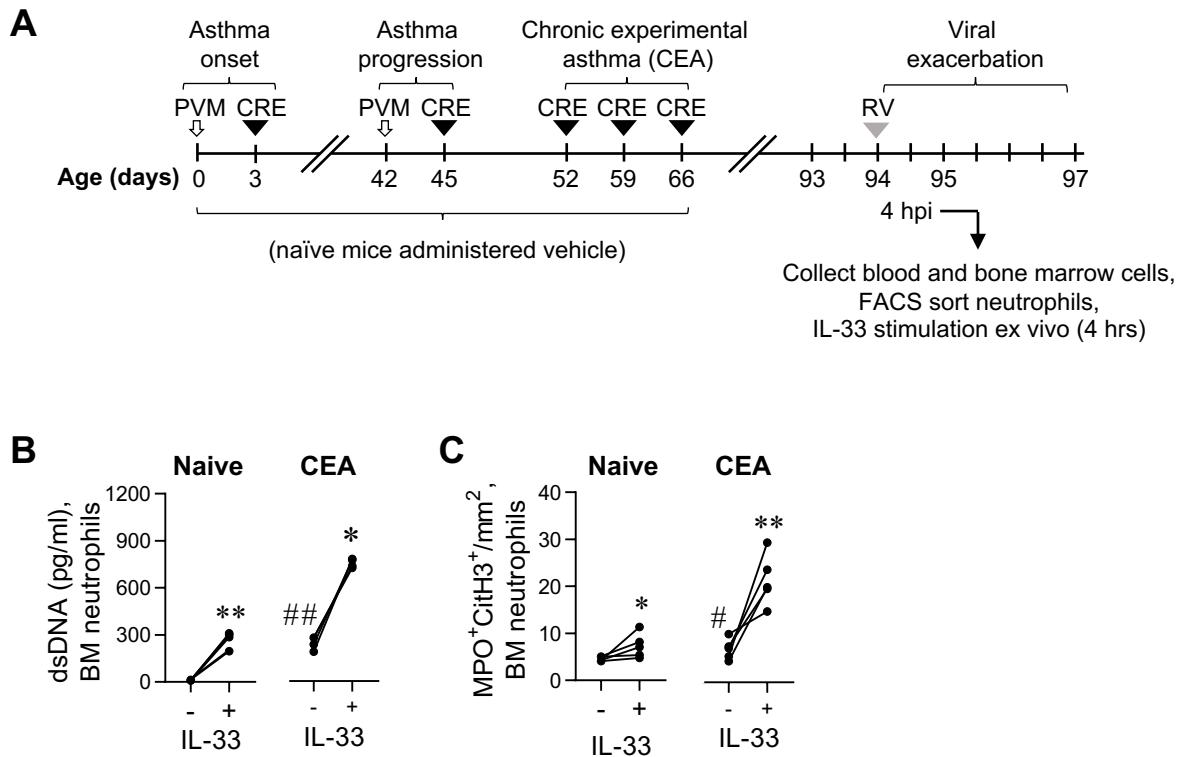

Figure 8

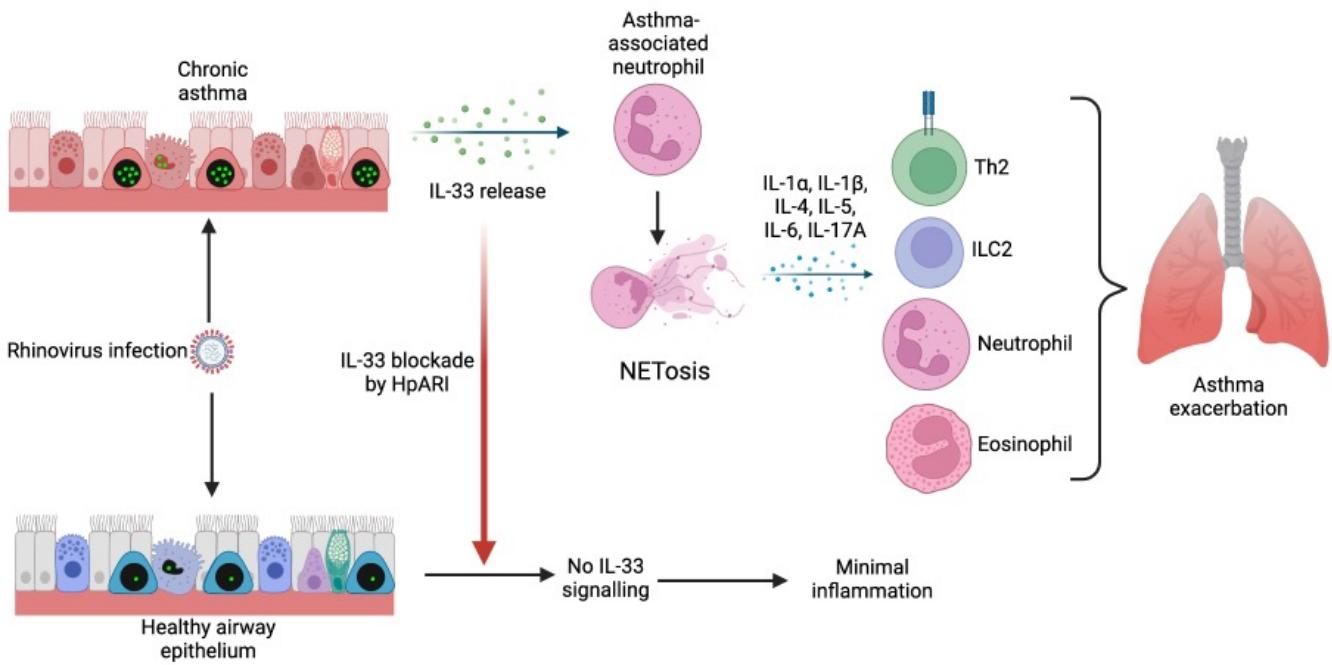
Supplementary Figure 1


A


B


C


D



Supplementary Figure 2

Supplementary Figure 3

Rhinovirus (RV) infection during chronic asthma results in IL-33 release. IL-33 directly induces NETosis of neutrophils from a chronic asthma environment (but not neutrophils from a healthy subject), leading to pro-inflammatory cytokine release, neutrophilic and eosinophilic inflammation, and asthma exacerbation. By blocking IL-33, neutrophil NETosis is inhibited, and excessive inflammation is prevented.