

1 **Title of article:**

2 Functional characterization of *Botrytis cinerea* ABC transporter gene *BcatrB* in
3 response to phytoalexins produced in plants belonging to families Solanaceae,
4 Brassicaceae and Fabaceae

5

6 **Authors:**

7 Abriel Salaria Bulasag^{1,2}, Maurizio Camagna¹, Teruhiko Kuroyanagi¹, Akira Ashida¹,
8 Kento Ito¹, Aiko Tanaka¹, Ikuo Sato¹, Sotaro Chiba¹, Makoto Ojika¹ and Daigo
9 Takemoto^{1*}

10

11 **Affiliation:**

12 ¹Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya,
13 464-8601, Japan

14 ²College of Arts and Sciences, University of the Philippines Los Baños, College,
15 Laguna 4031, Philippines

16

17 ***Corresponding Author:**

18 Daigo Takemoto

19 E-mail: dtakemo@agr.nagoya-u.ac.jp

20 Telephone: +81 90 4264 4192

21 Fax: +81 52 789 5525

22

23 **Number of figures and tables:**

24 7 Figures (2 Supplementary Figures and 4 Supplementary Tables)

25

26 **ABSTRACT**

27 *Botrytis cinerea*, a generalist fungal pathogen of economically important crop species,
28 has been shown to exhibit reduced sensitivity to fungicides and plant toxins.
29 Specifically, previous reports indicate *B. cinerea*'s efficacy in tolerating a wide array
30 of phytoalexins, toxic plant metabolites that play key role in plant immune defense
31 strategies. Previously, we have shown that a distinct set of genes was induced in *B.*
32 *cinerea* when treated with phytoalexins derived from different plant species such as
33 rishitin (tomato and potato), capsidiol (tobacco and bell pepper) or resveratrol (grape
34 and blueberry). In this study, we focused on the functional analyses of *B. cinerea* genes
35 induced by rishitin treatment. *B. cinerea* can metabolize rishitin to at least 4 oxidized
36 forms. Heterologous expression of rishitin-induced *B. cinerea* genes in the plant
37 symbiotic fungus, *Epichloë festucae*, revealed that oxidoreductase (Bcin08g04910) and
38 cytochrome P450 (Bcin16g01490) genes are involved in the oxidation of rishitin.
39 *BcatrB* is an exporter of structurally unrelated anti-microbial compounds such as
40 resveratrol, camalexin and fungicide fenpiclonil. Expression of *BcatrB* is upregulated
41 by rishitin, but not by structurally resembling capsidiol. *BcatrB* knock out
42 transformants (Δ *bcatrB*) showed enhanced sensitivity to rishitin, but not to capsidiol.
43 Likewise, Δ *bcatrB* showed reduced virulence on tomato fruits (which produce rishitin),
44 but showed full virulence on *Nicotiana benthamiana* (which mainly produces
45 capsidiol), suggesting that *B. cinerea* distinguishes phytoalexins and activates
46 expression of appropriate transporter genes during the infection. Activation of *BcatrB*
47 promoter was detected using *P_BcatrB:GFP* transformant during the *B. cinerea*
48 infection in plant tissues. Surveying of 26 plant species across 13 families revealed that
49 the *BcatrB* promoter is mainly activated during the infection of plants belonging to the
50 Solanaceae, Fabaceae and Brassicaceae families. The *BcatrB* promoter is activated by
51 the treatment with Fabaceae phytoalexins medicarpin and glyceollin, and Δ *bcatrB*
52 showed reduced virulence on red clover, which produces medicarpin. These results
53 suggest that *BcatrB* plays a critical role in the strategy employed by *B. cinerea* to
54 bypass the plant innate immune responses in a wide variety of important crops
55 belonging to the Solanaceae, Brassicaceae and Fabaceae families.

56 **INTRODUCTION**

57 *Botrytis cinerea*, commonly known as grey mold, is one of the most economically
58 important pathogens. It affects approximately 1,400 plant species across several plant
59 families (Elad, 2016) and brings severe yield losses to high impact crops such as
60 grapevine, Solanaceae (tomato, potato, bell pepper), Brassicaceae (canola), Fabaceae
61 (pea, bean), and among others. However, recent studies suggested that its potency as a
62 pathogen is much more complex than previously described (Frías et al., 2016). It is
63 generally held that *B. cinerea* craftily manipulates plant defenses, resulting in plant cell
64 death by means of plant cell death inducing proteins (PCIDs) (Petrusch et al., 2019;
65 Leisen et al., 2022), thereby creating a favorable environment for necrotrophy.
66 Likewise, it stimulates the plant host to an exchange of enzymes and toxins, promoting
67 disease progression (Bi et al., 2022). The evolutionary path taken by these polyxenous
68 pathogens to diversify their host range is particularly intriguing, but molecular
69 mechanisms driving these evolutionary changes are largely unknown. Several studies
70 suggest that the virulence across plant species is enabled by complex interactions that
71 include key fungal processes such as oxidative stress response (N'Guyen et al., 2021)
72 and cell wall integrity (Cui et al., 2021; Escobar-Niño et al., 2021).

73 As a necrotrophic pathogen, *B. cinerea* can infect a wide variety of plant hosts by
74 dexterously bypassing various aspects of a plant's immune arsenal. One such critical
75 component in plants, shaped and diversified through evolutionary lineages and plant-
76 pathogen interaction events, are a group termed as phytoalexins. Fungal pathogens
77 must be able to nullify these potent toxins to launch a successful attack. This
78 presupposes the development of complex and coordinated toolkits to metabolize an
79 equally diverse plant arsenal to launch an effective counterattack. Such plant
80 antimicrobials were also deemed crucial to the development of non-host resistance to
81 necrotrophs (Sanchez-Vallet et al., 2010), inadvertently prompting fungal pathogens to
82 broaden their host repertoire.

83 Another significant hurdle confronting pathogens is that several of these plant
84 chemicals act in unison and occur in such diversity to challenge such dexterous
85 pathogens (Pedras and Abdoli, 2017; Allan et al., 2019; Newman et al., 2020; N'Guyen

86 et al., 2021; Westrick et al., 2021). Several studies attribute this dexterity to
87 detoxification of phytochemicals to multi-functional enzymes such as cytochrome
88 P450 (oxidoreductase, monooxygenase and dehydratases) which are quintessential
89 components of robust fungal pathogenic systems (Pedras and Ahiahou, 2005;
90 Kuroyanagi et al., 2022).

91 Moreover, some generalist pathogens employ an array of molecular transporters to
92 evade each plant host's chemical weaponry. This offers another layer of host-pathogen
93 interaction that could explain host range expansion. Three fundamental selection
94 factors: alternative nutrient sources, niche range expansion and establishment in
95 unconventional environmental contexts as key drivers to the evolution of fungal
96 transporters (Milner et al., 2019). Fungal transporters, encoded by singular genes, can
97 be conveniently transferred across fungal phyla through horizontal gene transfer,
98 leading to enhanced polyxenous behavior. Using combined transcriptomic and
99 metabolomic approaches, it was found that multidrug resistance to fungicides is
100 primarily aided by efflux transporter genes enhancing virulence of key fungal
101 pathogens (Zhang et al., 2019; Samaras et al., 2020; Shi et al., 2020; Wang et al., 2021;
102 Bartholomew et al., 2022; Harper et al., 2022; Wang et al., 2022). More specifically,
103 ABC (ATP-binding cassette) and MFS (major facilitator superfamily) transporters
104 dispose key phytoalexins by exporting them out of fungal cells (Newman et al., 2020;
105 Kumari et al., 2021; Madloo et al., 2021; Westrick et al., 2021) paving the way to
106 generalist pathogen lineages.

107 In summary, the mechanism conferring generalist pathogens to drastically expand
108 their host range is likely driven by two important processes: 1) enzymatic
109 detoxification of key antimicrobial metabolites; and 2) efflux processes facilitated by
110 membrane transporters. Hence, this study aspires to provide a novel perspective in
111 understanding molecular mechanisms governing the interaction between phytoalexin
112 production in various plant model systems and its subsequent metabolism and efflux
113 in the polyxenous grey mold pathogen *B. cinerea*.

114
115

116 **MATERIALS AND METHODS**

117 **Biological Material, Growth Conditions and Incubation in Phytoalexins**

118 *B. cinerea* strain AI18 (Kuroyanagi et al., 2022), *Epichloë festucae* strain F11 and their
119 transformants used in this study are listed in Supplementary Table S1. They were
120 grown on potato dextrose agar (PDA) at 23°C. For the incubation in phytoalexins,
121 mycelia plugs (approx.1 mm³) were excised from the growing edge of the colony using
122 a dissection microscope (Stemi DV4 Stereo Microscope, Carl Zeiss, Oberkochen,
123 Germany) and submerged in 50 µl of water or indicated phytoalexin in a sealed 96 well
124 clear plate. The plate was incubated at 23°C for the indicated time.

125 Capsidiol was purified from *Nicotiana tabacum* as previously reported (Matsukawa
126 et al., 2013) and synthesized rishitin (Murai et al., 1975) was provided by former Prof.
127 Akira Murai (Hokkaido University, Japan). Resveratrol and brassinin were obtained
128 from Sigma-Aldrich (Burlington, MA, USA). Glyceollin (glyceollin I) was obtained
129 from Wako pure chemical (Osaka, Japan). Medicarpin was obtained from
130 MedChemExpress (Monmouth Junction, NJ, USA).

131

132 **Detection of Rishitin and Their Metabolites Using LC/MS**

133 For the detection of rishitin and their metabolites after the incubation with *B. cinerea*
134 or *E. festucae* transformants, the supernatant (50 µl) was collected, mixed with 50 µl
135 acetonitrile and measured by LC/MS (Accurate-Mass Q-TOF LC/MS 6520, Agilent
136 Technologies, Santa Clara, CA, USA) with ODS column Cadenza CD- C18, 75 x 2
137 mm (Imtakt, Kyoto, Japan) as previously described (Kuroyanagi et al., 2022).

138

139 **RNAseq Analysis**

140 Extraction of RNA and RNA sequencing analysis were performed as previously
141 described (Kuroyanagi et al., 2022). The nucleotides of each read with less than 13
142 quality value were masked and reads shorter than 50 bp in length were discarded, and
143 filtered reads were mapped to annotated cDNA sequences for *B. cinerea*
144 (ASM83294v1, GenBank accession GCA_000143535) using Bowtie software
145 (Langmead et al., 2009). For each gene, the relative fragments per kilobase of transcript

146 per million mapped reads (FPKM) values were calculated and significant difference
147 from the control was assessed by the two-tailed Student's *t*-test. RNA-seq data reported
148 in this work are available in GenBank under the accession numbers DRA013980.

149

150 **Extraction of Genomic DNA, PCR and Construction of Vectors**

151 Genomic DNA of *E. festucae* and *B. cinerea* was isolated from fungal mycelium grown
152 in potato dextrose broth (PDB) using DNeasy Plant Mini Kit (QIAGEN, Hilden,
153 Germany). PCR amplification from genomic and plasmid DNA templates was
154 performed using PrimeStar Max DNA polymerase (Takara Bio, Kusatsu, Japan) or
155 GoTaq Master Mix (Promega, Madison, WI, USA). Vectors for heterologous
156 expression, detection of promoter activity, gene knock out used in this study are listed
157 in Supplementary Table S2. Sequences of primers used for the construction of vectors
158 and PCR to confirm the gene knockout are listed in Supplementary Table S3.

159

160 **Fungal Transformation**

161 Preparation of *E. festucae* and *B. cinerea* protoplasts and transformation was performed
162 as previously reported (Kuroyanagi et al., 2022). Candidate colonies were exposed to
163 BLB blacklight for the induction of sporulation and single spore isolation was
164 performed to obtain purified strains. Note that *ΔbcatrB*-14 and -23 were isolated from
165 separate transformation experiments. Transformants of *E. festucae* and *B. cinerea* used
166 in this study are listed in Supplementary Table S1.

167

168 **Pathogen Inoculation**

169 Leaves or fruits (tomato, grape) of plant species were kept in moistened and sealed in
170 a plastic chamber. Leaves detached from the plant were covered with a wet Kimwipes
171 at the cut end of the stem. Mycelial plugs (approx. 5 mm x 5 mm) of *B. cinerea* were
172 excised from the growing edge of the colony grown on PDA and placed on the abaxial
173 side of the leaf or on the fruit and covered with wet lens paper. For the inoculation on
174 tomato, mycelial blocks of *B. cinerea* were placed on the cut surface of tomato, and
175 the fruits were kept at high humidity at 23°C for 5 days. *B. cinerea* conidia formed on

176 tomato were washed off in 15 ml water, and number of conidia in water was counted
177 using hemocytometer.

178

179 **Microscopy**

180 Images of *B. cinerea* expressing GFP under the control of the *BcatrB* promoter were
181 collected using a confocal laser scanning microscope FV1000-D (Olympus, Tokyo,
182 Japan). The laser for detection of GFP was used as the excitation source at 488 nm, and
183 GFP fluorescence was recorded between 515 and 545 nm. Images were acquired with
184 settings that did not saturate the fluorescence, and the total fluorescence per spore was
185 determined using ImageJ software (Schneider et al., 2012).

186

187 **Detection of Luciferase Activity in *B. cinerea* P_BcatrB:Luc Transformant**

188 *B. cinerea* P_BcatrB:Luc transformant was grown on PDA at 23°C. Three mycelia
189 plugs (approx. 2 mm x 2 mm) were excised from the growing edge of the colony and
190 submerged in 50 µl of water or indicated phytoalexin containing 50 µM D-luciferin in
191 a sealed 96-well microplate (Nunc 96F microwell white polystyrene plate, Thermo
192 Fisher Scientific, Waltham, MA, USA). Changes in luminescence intensity were
193 measured over time with Mithras LB 940 (Berthold Technologies, Bad Wildbad,
194 Germany).

195

196 **Bioinformatics**

197 Sequence data was analyzed and annotated using MacVector (version 18.2 or earlier;
198 MacVector Inc., Apec, NC, USA).

199

200 **RESULTS AND DISCUSSION**

201 **Rishitin Treatment Induced Genes Predicted to be Involved in the Metabolization** 202 **and Efflux of the Phytoalexin in *B. cinerea***

203 Previously, we have performed RNA-seq analysis of *B. cinerea* in response to
204 sesquiterpenoid (rishitin and capsidiol) and stilbenoid (resveratrol) phytoalexins.
205 *Bccpdh*, encoding a short chain dehydrogenase, was identified as a gene specifically

206 induced in *B. cinerea* treated with capsidiol, and BcCPDH was revealed to be involved
207 in the detoxification of capsidiol to less toxic capsenone (Kuroyanagi et al., 2022). In
208 this study, we focused on genes induced by rishitin treatment. Further analysis of the
209 RNAseq data identified rishitin-induced genes belonging to various groups, such as
210 cytochrome P450/oxidoreductases, ABC transporters, cell wall degrading enzymes
211 (CWDEs), and secondary metabolite synthesis (Figure 1). Some genes were identified
212 to be potentially involved in the metabolism of rishitin, to convert it into its oxidized
213 form, including an oxidoreductase (Bcin08g04910) and cytochrome P450 genes
214 (Bcin16g01490, Bcin06g00650, Bcin07g05430) (Figure 1A, Kuroyanagi et al., 2022).
215 As such these genes were investigated further in terms of their ability to metabolize
216 rishitin (see next section). Expression of several ABC transporter genes was also
217 induced, and may thus be involved in the efflux of rishitin to enhance the tolerance of
218 *B. cinerea* (Figure 1B). ABC transporter BcatrB has been reported as an exporter of
219 structurally unrelated phytoalexins such as resveratrol, camalexin and fungicides
220 (Schoonbeek et al., 2001; Vermeulen et al., 2001; Stefanato et al., 2009). Our RNAseq
221 data indicated that expression of *BcatrB* was induced in rishitin and resveratrol, but not
222 in capsidiol. Conversely, expression of *BcatrD* and *Bmr3* was significantly higher
223 during rishitin treatment as compared to other phytoalexins. These genes could be
224 responsible for efflux of rishitin to enhance the tolerance of *B. cinerea*. A number of
225 studies link the transcriptional activation of efflux ABC transporters such as *BcatrB*
226 and *BcatrD* to induction by phytoalexins and fungicides (Hayashi et al., 2001; Perlin
227 et al., 2014). On the other hand, upregulation of *Bmr1* and *Bmr3* has been reported in
228 response to several fungicides, a phytoalexin (resveratrol) and toxicants (Makizumi et
229 al., 2002). While the four ABC transporter genes described above are induced in
230 rishitin-treated *B. cinerea*, expression of a different set of transporter genes is activated
231 when treated with capsidiol (Figure 1B, Kuroyanagi et al., 2022). These results suggest
232 that the effective transporters differ depending on the phytoalexins, and *B. cinerea*
233 could be inducing expression of the appropriate transporter genes by recognizing
234 different phytoalexins. In the later part of this manuscript, we focused on the functional
235 analysis of *BcatrB*, especially its contribution to the tolerance of *B. cinerea* to rishitin.

236 Interestingly, some genes that are not directly involved in the detoxification of
237 phytoalexins, but instead related to the virulence of *B. cinerea*, are upregulated in *B.*
238 *cinerea* treated with risitin. For example, expression of genes encoding CWDEs, such
239 as genes for polygalacturonase *Bcpg1* (Bcin14g00850), xylanase *BcXyn11a*
240 (Bcin02g01960) and glycosyl hydrolase (Bcin02g01960), were induced by risitin
241 treatment (Figure 1C). Previous studies have elaborated on the role of CWDEs as
242 virulence factors in *B. cinerea*. Knockout of a polygalacturonase gene *Bcpg1* had no
243 effect on primary infection, but caused significant decrease in secondary infection
244 (development of the lesion) (ten Have et al., 1998). *BcXyn11a*, encoding an endo- β -
245 1,4-xylanase for the degradation of hemicellulose, is shown to be required for full
246 virulence of *B. cinerea* (Brito et al., 2006). Genes that are part of a subtelomeric cluster
247 for the production of phytotoxic botanic acid are also activated by risitin and
248 capsidiol treatment (Figure 1D). Given that these genes involved in the spread of
249 disease symptoms are also induced by risitin in *B. cinerea*, implies that phytoalexins
250 produced by plants as resistance factors are used by *B. cinerea* as cues to promote
251 virulence.

252

253 **Heterologous Expression of Risitin-induced *B. cinerea* Genes in Symbiotic 254 Fungus Results in the Metabolization of Risitin to its Oxidized Forms**

255 Risitin is metabolized to at least 4 oxidized forms by *B. cinerea* (Figure 2A,
256 Kuroyanagi et al., 2022). To investigate the function of *B. cinerea* cytochrome P450
257 and oxidoreductase genes that were significantly upregulated in risitin treatment
258 (Figure 1A), candidate genes were selected to be heterologously expressed in grass
259 symbiotic fungus *Epichloë festucae* to detect the enzymatic activity of the encoded
260 proteins. Kuroyanagi et al. (2022) have used the same system to identify a
261 dehydrogenase BcCPDH, which can convert capsidiol to capsenone. Two genes
262 upregulated in *B. cinerea* treated with risitin, Bc08g04910 and Bc16g01490, were
263 expressed in *E. festucae* under the control of the TEF promoter (Vanden Wymelenberg
264 et al., 1997) for constitutive expression. These *E. festucae* transformants were
265 incubated in risitin solution to examine their function in risitin oxidation. Two days

266 after incubation in 100 μ M rishitin, the *E. festucae* strain expressing Bc08g04910
267 caused reduction of rishitin and oxidized rishitin was detected (Figure 2B). Similarly,
268 oxidized rishitin was detected after the incubation of rishitin with the *E. festucae* strain
269 expressing Bc16g01490, although a significant reduction of rishitin was not observed
270 at 2 days. Reduction of rishitin and pronounced production of two oxidized rishitin
271 derivatives was observed after 10 days of incubation with *E. festucae* expressing
272 Bc16g01490 (Supplementary Figure 1). *E. festucae* control strains expressing *DsRed*
273 gene didn't induce a reduction or oxidation of rishitin (Figure 2B). While *B. cinerea*
274 produced various rishitin metabolites after the incubation with rishitin, each of the *E.*
275 *festucae* transformants showed one or two peaks which demonstrated a mass increase
276 indicative of the presence of an additional oxygen atom in the rishitin molecule. These
277 results suggests that oxidoreductases (Bc08g04910) and cytochrome P450
278 (Bc16g01490) can metabolize rishitin into oxidized forms, but there should be
279 additional genes (enzymes) involved in the rishitin oxidation. Employing these two *E.*
280 *festucae* transformants in large scale incubation with rishitin should enable further
281 insights into the chemical structure of the oxidized rishitin compounds.

282 This study has yet to identify all genes that correspond to the metabolism of
283 rishitin into several oxidized forms by the wild-type *B. cinerea* strain. Multiple genes
284 are involved in the detoxification/oxidation of rishitin (Figure 2B), KO of single gene
285 may therefore not have a significant effect on the virulence of this pathogen. In some
286 cases, metabolism for detoxification of phytoalexins may only involve the action of a
287 single enzyme, such as in the case of capsidiol (Kuroyanagi et al., 2022) and pisatin
288 (Matthews and Van Etten, 1983). On the other hand, a series of enzymatic reactions
289 catalyze the conversion of cruciferous phytoalexins such as brassinin and camalexin
290 into their less toxic forms (Pedras and Abdoli, 2017). This was shown across a range
291 of fungal pathogens including necrotrophs such as *B. cinerea* and *Sclerotinia*
292 *sclerotiorum*. However, enzymes catalyzing detoxification reactions in these pathogens
293 are still yet to be determined. Despite similar structural profiles of capsidiol and rishitin,
294 *B. cinerea* employs different mechanisms for a similar xenobiotic detoxification
295 process.

296

297 ***BcatrB* KO Mutants Showed Increased Sensitivity to Rishitin**

298 Previous studies on *BcatrB* established its role in the tolerance of *B. cinerea* to
299 structurally unrelated phytoalexins such as resveratrol, camalexin and the fungicide
300 fenpiclonil (Schoonbeek et al., 2001; Vermeulen et al., 2001; Stefanato et al., 2009).
301 Given that the expression of *BcatrB* is upregulated by rishitin (Figure 1B), *BcatrB* is
302 expected to be also involved in the tolerance of *B. cinerea* to rishitin.

303 To investigate the role of *BcatrB* in rishitin tolerance of *B. cinerea*, *BcatrB* knock
304 out strains were produced (Supplementary Figure 2). Conidial germination of wild type
305 and *BcatrB* KO strains was measured after treatment with rishitin or capsidiol (Figure
306 3A). In 100 μ M capsidiol, the length of *B. cinerea* germ tubes were shortened compared
307 to those without treatment (Figure 3A). However, KO of *BcatrB* had no significant
308 effect on the sensitivity of *B. cinerea* to capsidiol, which is consistent with the fact that
309 *BcatrB* is not induced by capsidiol treatment (Figure 1B). In contrast, *BcatrB* mutants
310 showed enhanced sensitivity to rishitin compared with wild type (Figure 3A).

311 Given that rishitin production has been detected in tomato fruits upon pathogen
312 attack (Sato et al., 1968), virulence of *BcatrB* strains was tested on tomato fruits. Higher
313 sporulation rate was observed for wild type as compared to Δ *BcatrB* strains in tomato
314 fruits (Figure 3B). However, no significant differences between wild type and KO
315 strains were observed in the lesion formation on *N. benthamiana* leaves (Figure 3C),
316 which reportedly produce capsidiol as major phytoalexin (Shibata et al., 2016). These
317 results suggest that *BcatrB* is involved in the tolerance of *B. cinerea* to rishitin, but not
318 to capsidiol.

319 Phytoalexins induce damage to cell ultrastructure as well as conidial germination of
320 *B. cinerea* (Adrian and Jeandet, 2012). While *BcatrB* has been shown to be an
321 important efflux transporter for a variety of anti-microbial chemicals, other transporters
322 have also been reported to be involved in resistance of *B. cinerea* to toxins. Deletion
323 of MFS transporters in *B. cinerea*, *Bcmfsg* and *Bcmfs1*, resulted in the increase
324 sensitivity to natural toxic compounds produced in plants (Hayashi et al., 2002; Vela-
325 Corcίa et al., 2019). These previous reports clearly demonstrate the use of multiple

326 ABC and MFS transporters in reducing damage to *B. cinerea* by removal of these
327 chemicals, natural or artificial, by an efflux transport mechanisms.

328

329 ***B. cinerea BcatrB Promoter is Activated During the Infection in Plants Belonging***
330 ***to Solanaceae, Brassicaceae and Fabaceae***

331 To search for the other phytoalexins that could be potential substrates of the *BcatrB*
332 transporter, *B. cinerea* transformant expressing GFP under the control of the *BcatrB*
333 promoter (*P_BcatrB_GFP*) were inoculated onto 25 host plants across 13 plant families
334 (Figure 4, Supplementary Table S4).

335 Among the tested plant species, expression of GFP was detected mostly during the
336 infection in Brassicaceae, Fabaceae and Solanaceae species (Figure 4). GFP expression
337 ranged from weak, such as in the case of eggplant and *N. benthamiana*, to intense
338 signals detected from red clover and *Arabidopsis*. Similarly, activity of the *BcatrB*
339 promoter was perceived to widely deviate across members of the same family. The
340 intensity of promoter activation also varied among plants at lower taxonomic levels
341 such as in the case of red clover and white clover. Moreover, tissue-specific expression
342 can also be observed for tomato and grape, with *BcatrB* expressed in fruits but weak or
343 no expression in leaves (Figure 5). Interestingly, *BcatrB* expression can also be
344 detected in infection cushions, which were only formed in fruit tissues (Figure 5).
345 Differential expression of *BcatrB* might have been prompted by a higher production of
346 rishitin and resveratrol in tomato and grape fruits, respectively. Infection cushions have
347 been revealed to be formed alternatively with appressoria during less favorable
348 conditions, to facilitate infection by penetration of the host tissue and upscaling
349 virulence factors (Choquer et al., 2021, Bi et al., 2022).

350

351 **$\Delta BcatrB$ is Involved in the Virulence on Red Clover, a Fabaceae Plant Producing**
352 **Pterocarpan Phytoalexins**

353 Conidia of *P_BcatrB_GFP* transformants were treated with several phytoalexins from
354 Brassicaceae, Fabaceae and Solanaceae species. Consistent with the RNAseq analysis
355 data, the *BcatrB* promoter was activated by rishitin, but not by capsidiol (Figure 6A).

356 The activation of the *BcatrB* promoter in *N. benthamiana* (Figure 4), which mainly
357 produces capsidiol, is probably due to its response to other antimicrobial substances
358 produced in *N. benthamiana*. Indole phytoalexins from Brassicaceae species, brassinin
359 and camalexin, significantly activated the expression of GFP under the control of the
360 *BcatrB* promoter. Pterocarpan phytoalexins produced in Fabaceae, medicarpin and
361 glyceollin, also induced the activation of the *BcatrB* promoter (Figure 6A). Therefore,
362 activation of the *BcatrB* promoter during the infection in Brassicaceae and Fabaceae
363 plants (Figure 4) is presumed to occur via recognition of indole and pterocarpan
364 phytoalexins by *B. cinerea*.

365 Red clover (*Trifolium pratense*) had shown the most substantial activation of the
366 *BcatrB* promoter (Figure 4). To further substantiate that *BcatrB* acts as a critical
367 virulence factor for the infection of red clover, we performed inoculations using the
368 Δ *BcatrB* KO strains. Compared to wild type inoculations, the Δ *BcatrB* strains resulted
369 in lower lesion scores (Figure 6B), indicating that *BcatrB* is required for full virulence
370 on red clover, which produces the pterocapan phytoalexins medicarpin and maackiain
371 (Dewick 1975).

372

373 ***B. cinerea* Rapidly Activates the *BcatrB* Promoter in Response to Solanaceae, 374 Brassicaceae and Fabaceae Phytoalexins**

375 To investigate the activation profile of the *BcatrB* promoter in response to different
376 phytoalexins, we produced a *P_BcatrB:Luc* transformant of *B. cinerea* which expresses
377 a luciferase gene under the control of the 2 kb long promoter region of *BcatrB*.
378 Activation of the *BcatrB* promoter was detected as luciferase-mediated
379 chemiluminescence within 10 minutes after 100 μ M risitin treatment. Activation of
380 the promoter reached its peak within 1 h and quickly declined (Figure 7). Kuroyanagi
381 et al. (2022) reported that risitin is completely metabolized into oxidized forms within
382 6 h after treatment initiation.

383 Activation of the *BcatrB* promoter was also tested with brassinin and glyceollin.
384 Treatment of 50 μ M brassinin or glyceollin induced transient activation of the *BcatrB*
385 promoter as in the case of risitin treatment. However, the induction peak of *BcatrB*

386 expression under glyceollin treatment occurred significantly later than those induced
387 by rishitin and brassinin (Figure 7A). Likewise, activation of the *BcatrB* promoter by
388 the brassinin treatment occurred within 15 minutes, whereas weak activation was
389 detected 30 min after glyceollin treatment (Figure 7B). These results suggest that the
390 induction of *BcatrB* expression by rishitin/brassinin and glyceollin might be activated
391 by different regulatory mechanisms.

392 Previous analysis revealed that some fungicide-resistant *B. cinerea* isolated from
393 fields express high levels of *BcatrB*. A common mutation in these isolates was found
394 in the coding sequence of Zn(II)₂Cys₆-type transcription factor mmr1 (Kretschmer et
395 al., 2009), suggesting that developing the transcriptional regulation of gene(s) for drug
396 resistance transporters, like *BcatrB*, is an important process in the evolution of gray
397 mold fungi to become a pleiotropic pathogen. *BcatrB* homologues, and proximal
398 genes/orthologues, are widely conserved in the *Botrytis* genus as well as closely related
399 taxa. This is counter-intuitive to the variability in host ranges driven by phytoalexin
400 tolerance. Thus, it will be interesting to examine whether *Botrytis* sp. with narrow host
401 range can induce the expression of *BcatrB* orthologs in response to phytoalexins from
402 various plant species. The detailed analysis of *BcatrB* promoter may provide clues as
403 to whether there are multiple cis elements involved in finetuning the expression of
404 *BcatrB* across phytoalexin treatments.

405

406 **Author contributions**

407 DT designed the research. AB, TK, AA, KI, MO and DT conducted the experiments.
408 AB, MC, AT and DT analyzed data, IS, SC, MO and DT supervised the experiments.
409 AB, MC, IS, SC, and DT contributed to the discussion and interpretation of the results.
410 AB and DT wrote the manuscript. AB, MC and DT edited the manuscript.

411

412 **Funding**

413 This work was supported by a Grant-in-Aid for Scientific Research (B) (17H03771
414 and 20H02985) and Grant-in-Aid for Challenging Exploratory Research (22K19176)
415 to DT from the Japan Society for the Promotion of Science.

416

417 **Acknowledgments**

418 We thank Emeritus Prof. Barry Scott (Massey University, New Zealand) for providing
419 *E. festucae* strain F11. We also thank Emeritus Prof. David A. Jones (The Australian
420 National University, Australia) for *N. benthamiana* seeds. We are also grateful to Dr.
421 Kenji Asano (National Agricultural Research Center for Hokkaido Region, Japan) and
422 Mr. Yasuki Tahara (Nagoya University, Japan) for providing tubers of potato cultivars.
423 Likewise, we would like to acknowledge the Japanese Ministry of Education, Culture,
424 Sports and Technology (MEXT) and the University of the Philippines Los Banos for
425 allowing Abriel Salaria Bulasag to pursue graduate studies in Japan on scholarship.

426

427 **REFERENCES**

428 Adrian M, Jeandet P. (2012). Effects of resveratrol on the ultrastructure of *Botrytis*
429 *cinerea* conidia and biological significance in plant/pathogen interactions.
430 *Fitoterapia* 83, 1345-1350. doi: 10.1016/j.fitote.2012.04.004

431 Allan, J., Regmi, R., Denton-Giles, M., Kamphuis, L. G., and Derbyshire, M. C. (2019).
432 The host generalist phytopathogenic fungus *Sclerotinia sclerotiorum*
433 differentially expresses multiple metabolic enzymes on two different plant hosts.
434 *Sci. Rep.* 9, 19966. doi: 10.1038/s41598-019-56396-w

435 Bartholomew, H. P., Bradshaw, M. J., Macarisin, O., Gaskins, V. L., Fonseca, J. M.,
436 Jurick, W.M. II. (2022). More than a virulence factor: Patulin is a non-host-
437 specific toxin that inhibits postharvest phytopathogens and requires efflux for
438 *Penicillium* tolerance. *Phytopathology* 112, 1165-1174. doi: 10.1094/PHYTO-09-
439 21-0371-R

440 Bi, K., Liang, Y., Mengiste, T., Sharon, A. (2022). Killing softly: a roadmap of *Botrytis*
441 *cinerea* pathogenicity. *Trends Plant Sci.* doi: 10.1016/j.tplants.2022.08.024

442 Brito, N., Espino, J. J., and González, C. (2006). The endo- β -1,4-xylanase Xyn11A is
443 required for virulence in *Botrytis cinerea*. *Mol. Plant Microbe Interact.* 19, 25-32.
444 doi: 10.1094/mpmi-19-0025

445 Choquer, M., Rascle, C., Gonçalves, I. R., de Vallée, A., Ribot, C., Loisel, E.,
446 Smilevski, P., Ferria, J., Savadogo, M., Souibgui, E., Gagey, M. J., Dupuy, J. W.,
447 Rollins, J. A., Marcato, R., Noûs, C., Bruel, C., and Poussereau, N. (2021). The
448 infection cushion of *Botrytis cinerea*: a fungal 'weapon' of plant-biomass
449 destruction. *Environ. Microbiol.* 23, 2293-2314. doi: 10.1111/1462-2920.15416

450 Cui, X., Ma, D., Liu, X., Zhang, Z., Li, B., Xu, Y., Chen, T., and Tian, S. (2021).
451 Magnolol inhibits gray mold on postharvest fruit by inducing autophagic activity
452 of *Botrytis cinerea*. *Postharvest Biol. Technol.* 180, 111596. doi:
453 10.1016/j.postharvbio.2021.111596

454 Dewick, P. M. (1975). Pterocarpan biosynthesis: Chalone and isoflavone precursors of
455 demethylhomopterocarpin and maackiain in *Trifolium pratense*. *Phytochemistry*
456 14, 979-982. doi: 10.1016/0031-9422(75)85171-5

457 Elad, Y. (2016). *Botrytis* – the fungus, the pathogen and its management in agricultural
458 systems. doi: 10.1007/978-3-319-23371-0.

459 Escobar-Niño A, Morano Bermejo, I. M., Carrasco Reinado, R., and Fernandez-Acero,
460 F. J. (2021). Deciphering the dynamics of signaling cascades and virulence factors
461 of *B. cinerea* during tomato cell wall degradation. *Microorganisms* 9:1837. doi:
462 10.3390/microorganisms9091837

463 Frías, M., González, M., González, C., and Brito, N. (2016). BcIEB1, a *Botrytis cinerea*
464 secreted protein, elicits a defense response in plants. *Plant Sci.* 250, 115-124. doi:
465 10.1016/j.plantsci.2016.06.009

466 Harper, L. A., Paton, S., Hall, B., McKay, S., Oliver, R. P., and Lopez-Ruiz, F. J. (2022).
467 Fungicide resistance characterized across seven modes of action in *Botrytis cinerea*
468 isolated from Australian vineyards. *Pest Manag. Sci.* 78, 1326-1340. doi:
469 10.1002/ps.6749

470 Hayashi, K., Schoonbeek, H. J., Sugiura, H., and De Waard, M. A. (2001). Multidrug
471 resistance in *Botrytis cinerea* associated with decreased accumulation of the azole
472 fungicide oxpoconazole and increased transcription of the ABC transporter gene
473 *BcatrD*. *Pestic. Biochem. Phys.* 70, 168-179. doi: 10.1006/pest.2001.2548

474 Hayashi, K., Schoonbeek, H. J., and De Waard, M. A. (2002). *Bcmfs1*, a novel major
475 facilitator superfamily transporter from *Botrytis cinerea*, provides tolerance
476 towards the natural toxic compounds camptothecin and cercosporin and towards
477 fungicides. *Appl. Environ. Microbiol.* 68, 4996-5004. doi:
478 10.1128/AEM.68.10.4996-5004.2002

479 Kayano, Y., Tanaka, A., Akano, F., Scott, B., and Takemoto, D. (2013). Differential
480 roles of NADPH oxidases and associated regulators in polarized growth,
481 conidiation and hyphal fusion in the symbiotic fungus *Epichloë festucae*. *Fungal*
482 *Genet. Biol.* 56, 87-97. doi: 10.1016/j.fgb.2013.05.001

483 Kretschmer, M., Leroch, M., Mosbach, A., Walker, A. S., Fillinger, S., Mernke, D.,
484 Schoonbeek, H. J., Pradier, J. M., Leroux, P., De Waard, M. A., and Hahn, M.
485 (2009). Fungicide-driven evolution and molecular basis of multidrug resistance in
486 field populations of the grey mould fungus *Botrytis cinerea*. *PLoS Pathog.* 5,
487 e1000696. doi: 10.1371/journal.ppat.1000696

488 Kuroyanagi, T., Bulasag, A., Fukushima, K., Suzuki, T., Tanaka, A., Camagna, M.,
489 Sato, I., Chiba, S., Ojika, M., and Takemoto, D. (2022). *Botrytis cinerea* identifies
490 host plants via the recognition of antifungal capsidiol to induce expression of a
491 specific detoxification gene. *bioRxiv* 2022.05.11.490027. doi:
492 10.1101/2022.05.11.490027

493 Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and memory-
494 efficient alignment of short DNA sequences to the human genome. *Genome Biol.*
495 10, R25. doi: 10.1186/gb-2009-10-3-r25

496 Madloo, P., Lema, M., Cartea, M. E., and Soengas, P. (2021). *Sclerotinia sclerotiorum*
497 response to long exposure to glucosinolate hydrolysis products by transcriptomic
498 approach. *Microbiol. Spectr.* 9, e0018021. doi: 10.1128/Spectrum.00180-21

499 Makizumi, Y., Takeda, S., Matsuzaki, Y., Nakaune, R., Hamamoto, H., Akutsu, K.,
500 and Hibi, T. (2002). Cloning and selective toxicant-induced expression of *BMR1*
501 and *BMR3*, novel ABC transporter genes in *Botrytis cinerea*. *J. Gen. Plant Pathol.*
502 68, 338-341. doi: 10.1007/PL00013100

503 Matthews, D. E., Van Etten, H. D. (1983). Detoxification of the phytoalexin pisatin by
504 a fungal cytochrome P-450. *Arch. Biochem. Biophys.* 224, 494-505. doi:
505 10.1016/0003-9861(83)90237-0

506 Matsukawa, M., Shibata, Y., Ohtsu, M., Mizutani, A., Mori, H., Wang, P., Ojika, M.,
507 Kawakita, K., and Takemoto, D. (2013). *Nicotiana benthamiana* calreticulin 3a is
508 required for the ethylene-mediated production of phytoalexins and disease
509 resistance against oomycete pathogen *Phytophthora infestans*. *Mol. Plant*
510 *Microbe. Interact.* 26, 880-892. doi: 10.1094/MPMI-12-12-0301-R

511 Milner, D. S., Attah, V., Cook, E., Maguire, F., Savory, F. R., Morrison, M., Müller,
512 C. A., Foster, P. G., Talbot, N. J., Leonard, G., and Richards, T. A. (2019).
513 Environment-dependent fitness gains can be driven by horizontal gene transfer of
514 transporter-encoding genes. *Proc. Natl. Acad. Sci. USA.* 116, 5613-5622. doi:
515 10.1073/pnas.1815994116

516 Murai, A., Nishizakura, K., Katsui, N., and Masamune, T. (1975). The synthesis of
517 rishitin. *Tetrahedron Lett.* 16, 4399-4402. doi: 10.1039/C39860000891

518 Newman, T. E., and Derbyshire, M. C. (2020). The evolutionary and molecular features
519 of broad host-range necrotrophy in plant pathogenic fungi. *Front. Plant Sci.* 11,
520 591733. doi: 10.3389/fpls.2020.591733

521 N'Guyen, G. Q., Raulo, R., Porquier, A., Iacomi, B., Pelletier, S., Renou, J. P., Bataillé-
522 Simoneau, N., Campion, C., Hamon, B., Kwasiborski, A., Colou, J., Benamar, A.,
523 Hudhomme, P., Macherel, D., Simoneau, P., and Guillemette, T. (2021).
524 Responses of the necrotrophic fungus *Alternaria brassicicola* to the indolic
525 phytoalexin brassinin. *Front. Plant Sci.* 11, 611643. doi:
526 10.3389/fpls.2020.611643

527 Niones, J. T., and Takemoto, D. (2015). VibA, a homologue of a transcription factor
528 for fungal heterokaryon incompatibility, is involved in antifungal compound
529 production in the plant-symbiotic fungus *Epichloë festucae*. *Eukaryot. Cell* 14,
530 13-24. doi: 10.1128/EC.00034-14

531 Pedras, M. S. C., and Abdoli, A. (2017). Pathogen inactivation of cruciferous
532 phytoalexins: detoxification reactions, enzymes and inhibitors. *RSC Adv.* 7,
533 23633-23646. doi: 10.1039/c7ra01574g

534 Pedras, M. S. C., and Ahiaonu, P. W. K. (2005). Metabolism and detoxification of
535 phytoalexins and analogs by phytopathogenic fungi. *Phytochemistry* 66, 391-411.
536 doi: 10.1016/j.phytochem.2004.12.032

537 Petrasch, S., Knapp, S. J., Van Kan, J. A., and Blanco-Ulate, B. (2019). Grey mould
538 of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal
539 pathogen *Botrytis cinerea*. *Mol. Plant Pathol.* 20, 877-892. doi:
540 10.1111/mpp.12794

541 Perlin, M. H., Andrews, J., and Toh, S. S. (2014). Essential letters in the fungal
542 alphabet: ABC and MFS transporters and their roles in survival and pathogenicity.
543 *Adv. Genet.* 85, 201-253. doi: 10.1016/B978-0-12-800271-1.00004-4

544 Samaras, A., Ntasiou, P., Myresiotis, C., and Karaoglanidis, G. (2020). Multidrug
545 resistance of *Penicillium expansum* to fungicides: whole transcriptome analysis of
546 MDR strains reveals overexpression of efflux transporter genes. *Int. J. Food
547 Microbiol.* 335, 108896. doi: 10.1016/j.ijfoodmicro.2020.108896

548 Sanchez-Vallet, A., Ramos, B., Bednarek, P., López, G., Piślewska-Bednarek, M.,
549 Schulze-Lefert, P., and Molina, A. (2010). Tryptophan-derived secondary
550 metabolites in *Arabidopsis thaliana* confer non-host resistance to necrotrophic
551 *Plectosphaerella cucumerina* fungi. *Plant J.* 63, 115-127. doi: 10.1111/j.1365-
552 313X.2010.04224.x

553 Sato, N., Tomiyama, K., Katsui, N., and Masamune, T. (1968). Isolation of risitin
554 from tomato plants. *Ann. Phytopath. Soc. Japan*, 34, 344-345. doi:
555 10.3186/jjphytopath.34.344

556 Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ:
557 25 years of image analysis. *Nat. Methods* 9, 671-675. doi: 10.1038/nmeth.2089

558 Schoonbeek, H., Del Sorbo, G., and De Waard, M. A. (2001). The ABC transporter
559 BcatrB affects the sensitivity of *Botrytis cinerea* to the phytoalexin resveratrol and
560 the fungicide fenpiclonil. *Mol. Plant Microbe Interact.* 14, 562-571. doi:
561 10.1094/MPMI.2001.14.4.562

562 Seifbarghi, S., Borhan, M. H., Wei, Y., Coutu, C., Robinson, S. J., and Hegedus, D. D.
563 (2017). Changes in the *Sclerotinia sclerotiorum* transcriptome during infection of
564 *Brassica napus*. *BMC Genomics*. 18, 266. doi: 10.1186/s12864-017-3642-5

565 Shi, L., Liu, B., Wei, Q., Ge, B., and Zhang, K. (2020). Genome-wide transcriptomic
566 analysis of the response of *Botrytis cinerea* to wuyiencin. *PLoS One* 15, e0224643.
567 doi: 10.1371/journal.pone.0224643

568 Shibata, Y., Ojika, M., Sugiyama, A., Yazaki, K., Jones, D. A., Kawakita, K., and
569 Takemoto, D. (2016). The full-size ABCG transporters Nb-ABCG1 and Nb-
570 ABCG2 function in pre- and postinvasion defense against *Phytophthora infestans*
571 in *Nicotiana benthamiana*. *Plant Cell* 28, 1163-1181. doi: 10.1105/tpc.15.00721

572 Stefanato, F. L., Abou-Mansour, E., Buchala, A., Kretschmer, M., Mosbach, A., Hahn,
573 M., Bochet, C. G., Métraux, J. P., and Schoonbeek, H. J. (2009). The ABC
574 transporter BcatrB from *Botrytis cinerea* exports camalexin and is a virulence
575 factor on *Arabidopsis thaliana*. *Plant J.* 58, 499-510. doi: 10.1111/j.1365-
576 313X.2009.03794.x

577 Takemoto, D., Tanaka, A., and Scott B. (2006). A p67^{Phox}-like regulator is recruited to
578 control hyphal branching in a fungal-grass mutualistic symbiosis. *Plant Cell* 18,
579 2807-2821. doi: 10.1105/tpc.106.046169

580 ten Have, A., Mulder, W., Visser, J., and van Kan, J. A. (1998). The
581 endopolygalacturonase gene *Bcpg1* is required for full virulence of *Botrytis*
582 *cinerea*. *Mol. Plant Microbe Interact.* 11, 1009-1016. doi:
583 10.1094/MPMI.1998.11.10.1009. PMID: 9768518.

584 Vanden Wymelenberg, A. J., Cullen, D., Spear, R. N., Schoenike, B., and Andrews, J.
585 H. (1997). Expression of green fluorescent protein in *Aureobasidium pullulans*

586 and quantification of the fungus on leaf surfaces. *Biotechniques* 23, 686-690. doi:
587 10.2144/97234st01

588 Vermeulen, T., Schoonbeek, H., and De Waard, MA. (2001). The ABC transporter
589 BeatrB from *Botrytis cinerea* is a determinant of the activity of the phenylpyrrole
590 fungicide fludioxonil. *Pest Manag. Sci.* 57, 393-402. doi: 10.1002/ps.309

591 Vela-Corcía, D., Aditya Srivastava, D., Dafa-Berger, A., Rotem, N., Barda, O., and
592 Levy, M. (2019). MFS transporter from *Botrytis cinerea* provides tolerance to
593 glucosinolate-breakdown products and is required for pathogenicity. *Nat. Commun.* 10, 2886. doi: 10.1038/s41467-019-10860-3

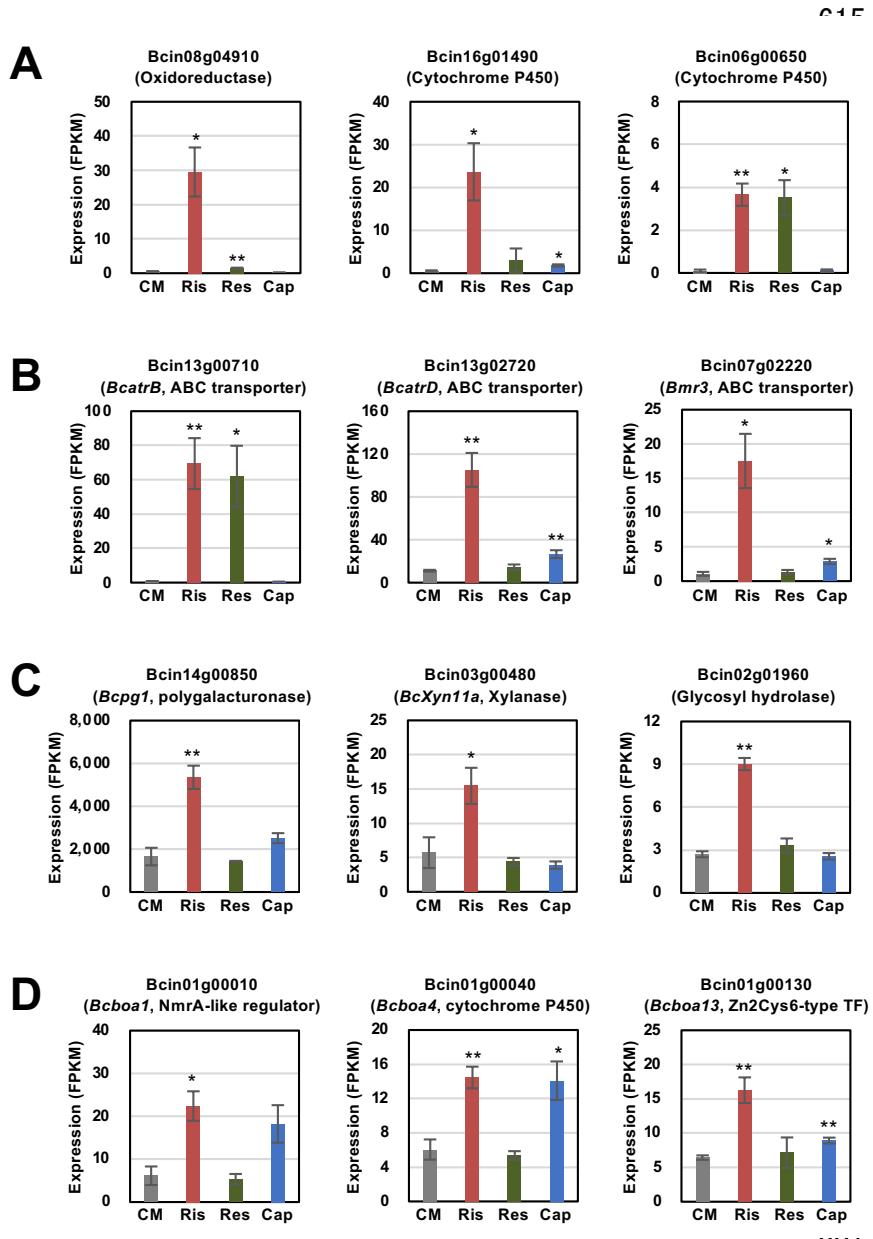
594 Wang, R., Chen, B., Yue, M., Ding, W., and Li, Y. (2022). Multi-resistance of *Botrytis*
595 *cinerea* isolates from ginseng growing regions in China to carbendazim, iprodione
596 and pyrimethanil. *Crop Prot.* 156, 105929. doi: 10.1016/j.cropro.2022.105929

597 Wang, W., Fang, Y., Imran, M., Hu, Z., Zhang, S., Huang, Z., and Liu, X. (2021).
598 Characterization of the field fludioxonil resistance and its molecular basis in
599 *Botrytis cinerea* from Shanghai province in China. *Microorganisms* 9, 266. doi:
600 10.3390/microorganisms9020266

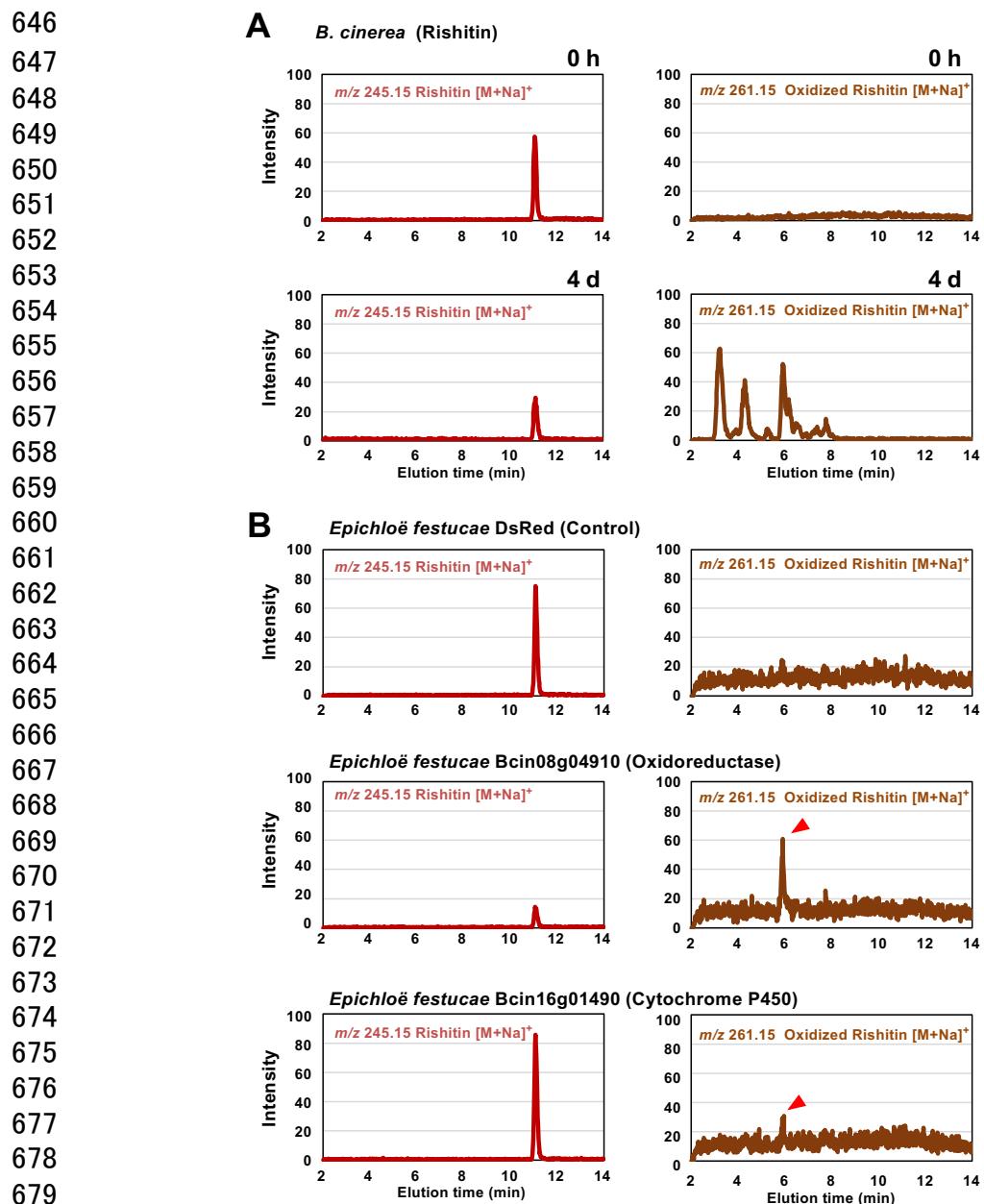
601 Westrick, N. M., Smith, D. L., and Kabbage, M. (2021). Disarming the host:
602 detoxification of plant defense compounds during fungal necrotrophy. *Front. Plant Sci.* 12, 651716. doi: 10.3389/fpls.2021.651716

603 Young, C. A., Bryant, M. K., Christensen, M. J., Tapper, B. A., Bryan, G. T., and Scott
604 B. (2005). Molecular cloning and genetic analysis of a symbiosis-expressed gene
605 cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial
606 ryegrass. *Mol. Genet. Genomics.* 274, 13-29. doi: 10.1007/s00438-005-1130-0

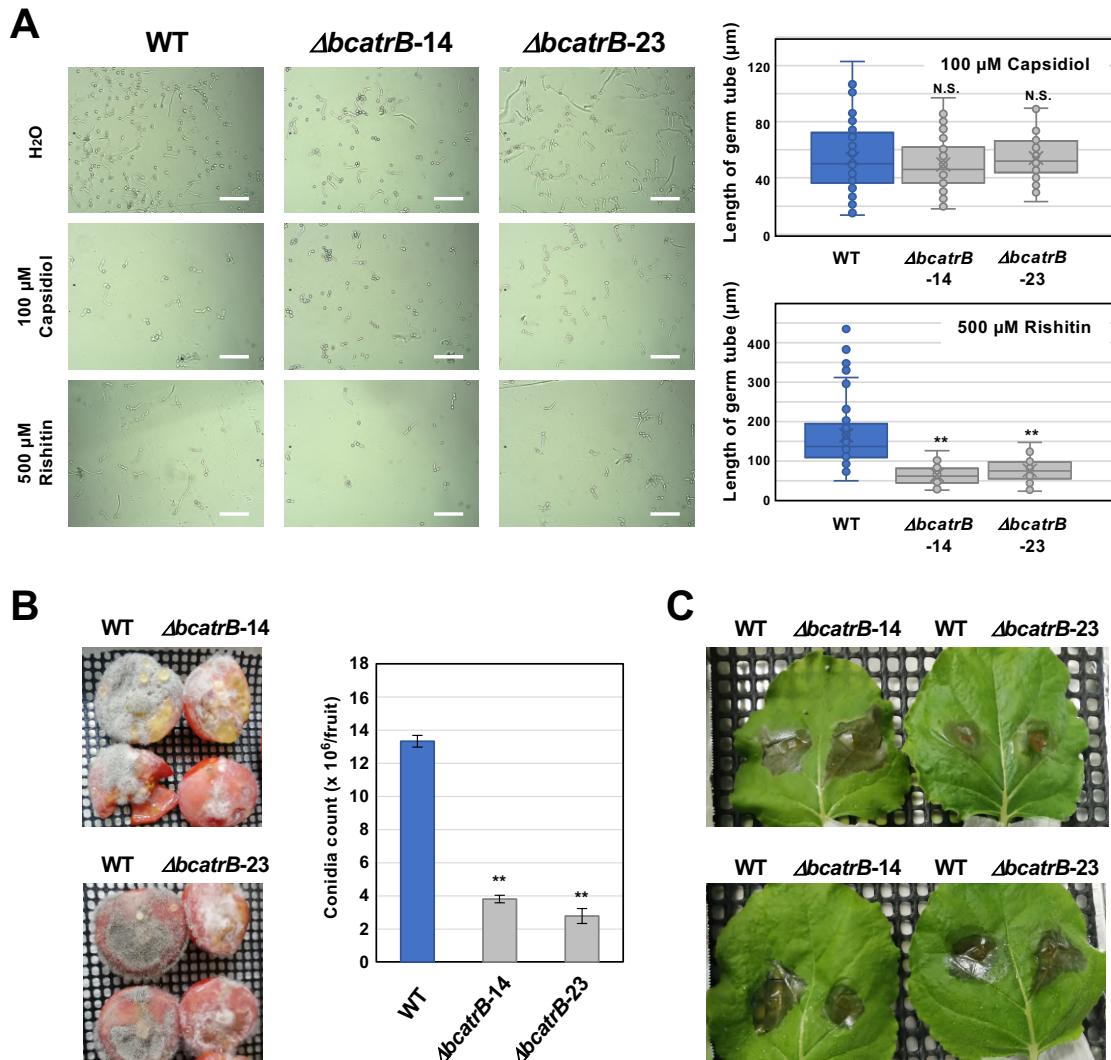
607 Zhang, W., Corwin, J. A., Copeland, D. H., Feusier, J., Eshbaugh, R., Cook, D. E.,
608 Atwell, S., and Kliebenstein, D. J. Plant-necrotroph co-transcriptome networks
609 illuminate a metabolic battlefield. *eLife* 8, e44279. doi: 10.7554/eLife.44279


610

611


612

613


614 **FIGURES**

638 **FIGURE 1** | Transcriptomic changes in *Botrytis cinerea* genes induced by rishitin.
639 **(A)** Cytochrome P450/oxidoreductases **(B)** ABC transporters **(C)** Cell wall degrading
640 enzymes (CWDEs) and **(D)** Botanic acid biosynthesis. TF, transcription factor. The
641 gene expression (FPKM value) was determined by RNA-seq analysis of *B. cinerea*
642 cultured in CM media containing 500 μ M rishitin, 500 μ M resveratrol or 100 μ M
643 capsidiol for 24 h. Data are mean \pm SE ($n = 3$). Asterisks indicate a significant
644 difference from the control (CM) as assessed by two-tailed Student's *t*-test, ** $P < 0.01$,
645 * $P < 0.05$.

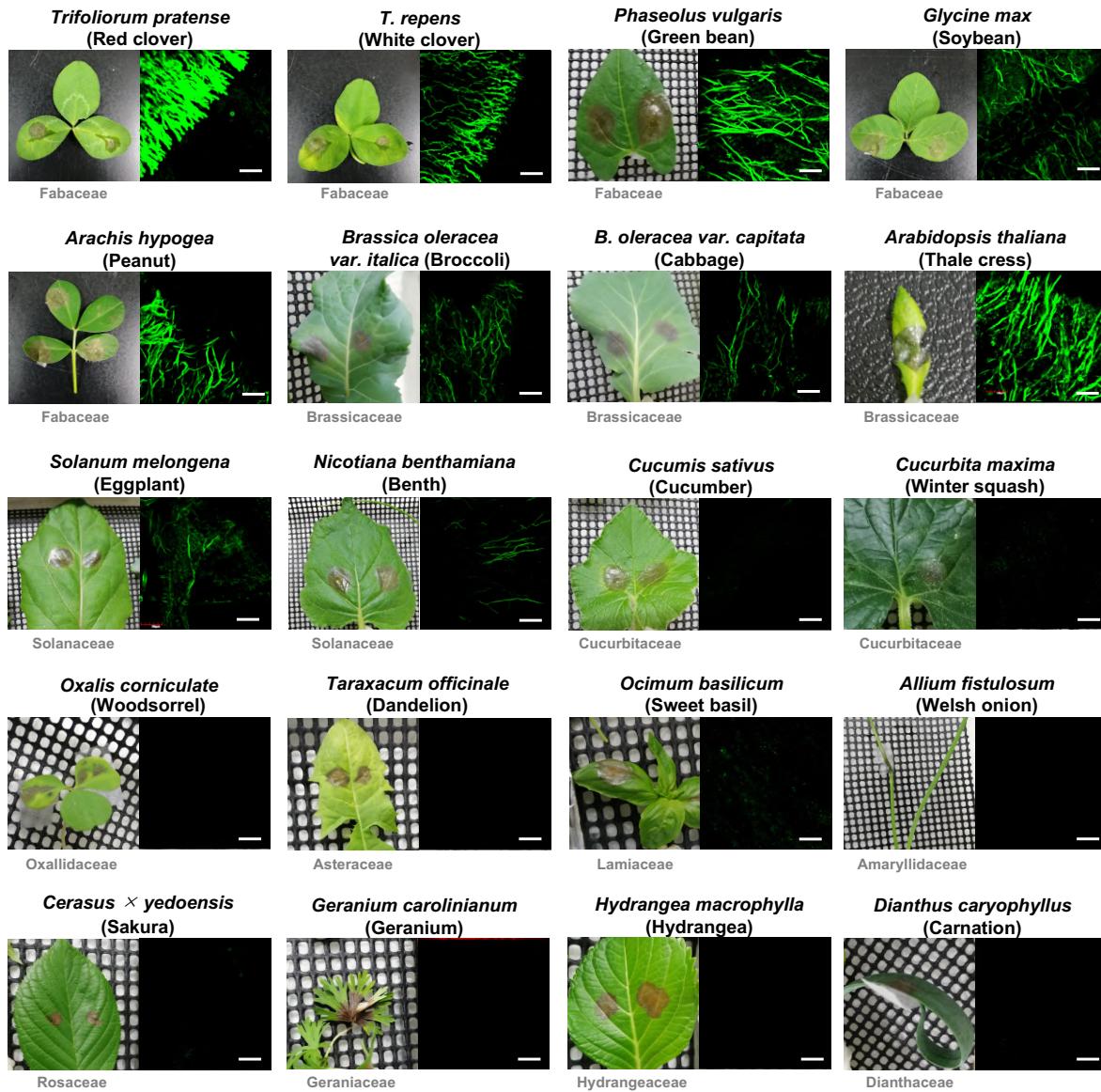


FIGURE 2 | Metabolization of rishitin by *Botrytis cinerea* and *Epichloë festucae* transformants expressing rishitin-induced *B. cinerea* genes. **(A)** Mycelial block (approx. 1 mm³) of *B. cinerea* was incubated in 50 μ l of 500 μ M rishitin for 4 days and remaining rishitin and oxidized rishitin were detected by LC/MS. **(B)** Mycelial block (approx. 1 mm³) of *E. festucae* transformants expressing *DsRed* gene (control) or rishitin-induced *B. cinerea* genes (Bcin08g04910 or Bcin16g01490) were incubated in 50 μ l of 100 μ M rishitin for 2 days and remaining rishitin and oxidized rishitin were detected by LC/MS. See Supplementary Figure S1 for 10 days incubation of *E. festucae* transformants expressing Bcin16g01490 in rishitin.

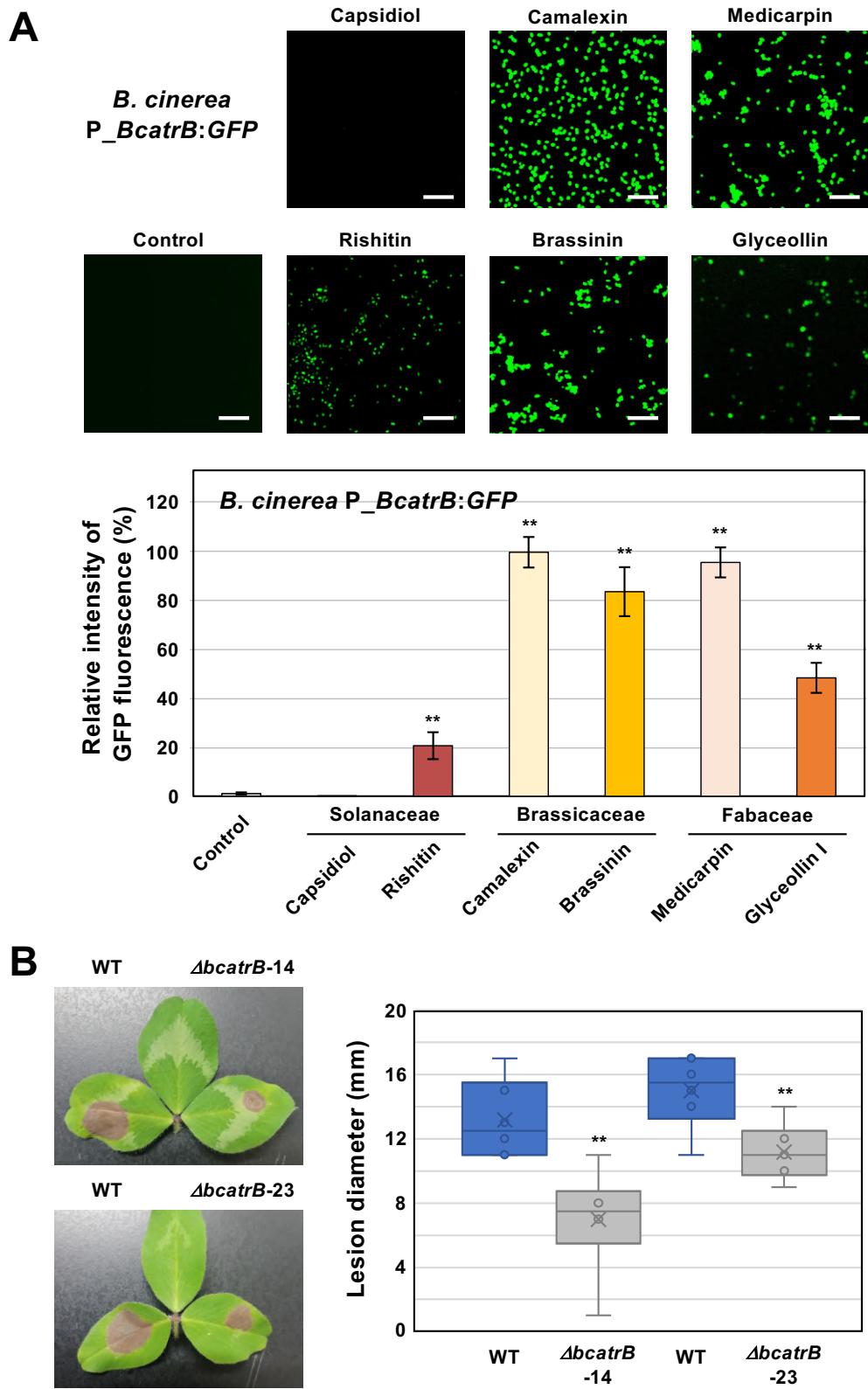
690

691 **FIGURE 3 |** Deletion of *BcatrB* gene compromises the rishitin tolerance of *Botrytis*
692 *cinerea*. **(A)** Conidial suspension of *B. cinerea* was incubated in water (H₂O), 100 μ M
693 capsidiol or 500 μ M rishitin and the length of germ tube was measured after 18 h
694 incubation. Bars = 100 μ m. Data are mean \pm SE (n = 60). Asterisks indicate a
695 significant difference from wild type (WT) as assessed by two-tailed Student's *t*-test.
696 **P < 0.01. N. S., not significant. Lines and crosses (x) in the columns indicate the
697 median and mean values, respectively. **(B)** Tomato fruits (cut in half) were inoculated
698 with mycelia plug (approx. 5 x 5 mm) of *B. cinerea* WT or Δ bcatrB strains and
699 produced conidia were counted 5 days after the inoculation. Data are mean \pm SE (n =
700 3). Asterisks indicate a significant difference from WT as assessed by two-tailed
701 Student's *t*-test. **P < 0.01. **(C)** Leaves of *Nicotiana benthamiana* were inoculated
702 with mycelia plug (approx. 5 x 5 mm) of *B. cinerea* WT or Δ bcatrB strains.
703 Photographs were taken 3 days after the inoculation.

704
705
706 **FIGURE 4 |** *Botryotinia cinerea BcatrB* promoter is activated during the infection in
707 Fabaceae, Brassicaceae and Solanaceae species. Leaves of indicated plants were
708 inoculated with the mycelia of *B. cinerea* P_BcatrB:GFP transformant and hyphae at
709 the edge of the lesion were observed by confocal laser microscopy 2 or 3 d after the
710 inoculation. Bars = 100 μ m.
711

Solanum lycopersicum (Tomato)

Vitis vinifera (Grape)

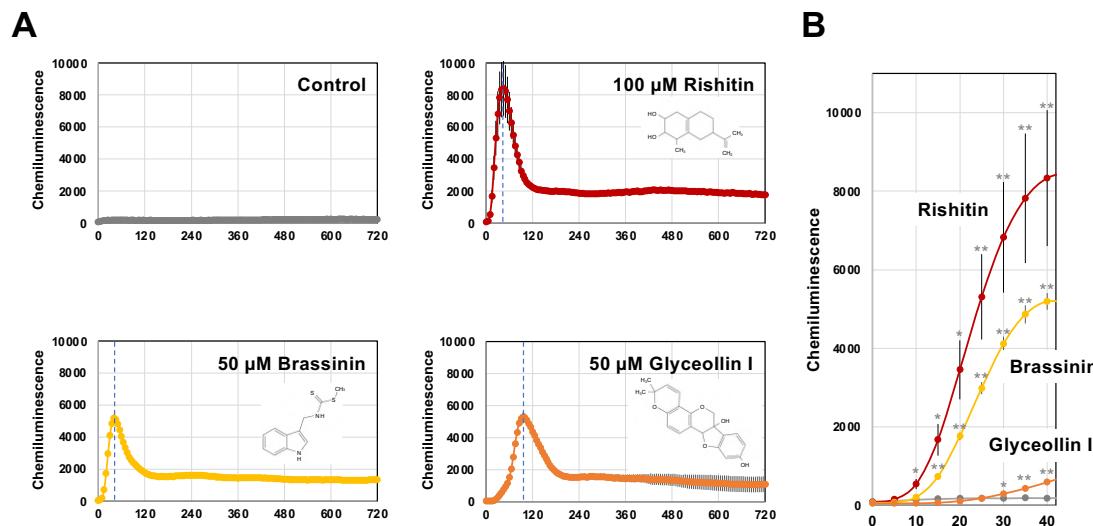


712

713

714

715 **FIGURE 5|** *Botrytis cinerea* *BcatrB* promoter is activated during the infection in fruits
716 of tomato and grape (top) or grape (bottom) were inoculated
717 with the mycelia of *B. cinerea* *P_BcatrB:GFP* transformant and hyphae at the edge of
718 the lesion was observed by confocal laser microscopy 2 or 3 d after the inoculation.
719 Arrowheads indicate infection cushions. Bars = 100 μ m.
720


722

723 **FIGURE 6 | (A)** *Botrytis cinerea* *BcatrB* promoter is activated by Solanaceae,
 724 Brassicaceae and Fabaceae phytoalexins. Conidia of *B. cinerea* P_ *BcatrB*:GFP were
 725 treated with 1% DMSO (Control) or 100 μ M of indicated phytoalexins, and GFP
 726 fluorescence was detected by confocal laser microscopy 2 d after the treatment. Bars =
 727 100 μ m. Data are mean \pm SE (n = 20). Asterisks indicate a significant difference from
 728 control as assessed by two-tailed Student's *t*-test. **P < 0.01. **(B)** Leaves of red clover
 729 (*Trifolium pratense*) were inoculated with mycelia plug (approx. 5 x 5 mm) of *B.*
 730 *cinerea* wild type (WT) or *ΔbcatrB* strains and lesion diameter was measured 3 days
 731 after the inoculation. Data are mean \pm SE (n = 6). Asterisks indicate a significant
 732 difference from WT as assessed by two-tailed Student's *t*-test. **P < 0.01.

733

734

735

736

737

738 **FIGURE 7 |** Activation of the *BcatrB* promoter detected in *Botrytis cinerea*
 739 transformant expressing Luciferase gene under the control of 2 kb *BcatrB* promoter
 740 (P_ *BcatrB*:Luc). **(A)** P_ *BcatrB*:Luc transformant was incubated in 1% DMSO
 741 (Control), 100 μ M rishitin, 50 μ M brassinin or 50 μ M glyceollin containing 50 μ M D-
 742 Luciferin (substrate of luciferase). Data are mean \pm SE (n = 3). Dotted vertical lines
 743 indicate the time point of highest value for each treatment. **(B)** Activation of *BcatrB*
 744 promoter at early time points shown in (A). Asterisks indicate a significant difference
 745 from the control as assessed by two-tailed Student's *t*-test, **P < 0.01, *P < 0.05.