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Abstract 

The increasing incidence of emerging infectious diseases is posing serious global 

threats. Therefore, there is a clear need for developing computational methods that 

can assist and speed-up experimental research to better characterize the molecular 

mechanisms of microbial infections. In this context, we developed mimicINT, a freely 

available computational workflow for large-scale protein-protein interaction inference 

between microbe and human by detecting putative molecular mimicry elements that 

can mediate the interaction with host proteins: short linear motifs (SLiMs) and host-

like globular domains. mimicINT exploits these putative elements to infer the 

interaction with human proteins by using known templates of domain-domain and 

SLiM-domain interaction templates. mimicINT provides (i) robust Monte-Carlo 

simulations to assess the statistical significance of SLiM detection which suffers from 
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false positive, and (ii) interaction specificity filter to account for differences between 

motif-binding domains of the same family.  

mimicINT is implemented in Python and R, and it is available at: 

https://github.com/TAGC-NetworkBiology/mimicINT. 

 

Introduction 

Most pathogens interact with their hosts to reach an advantageous niche and ensure 

their successful dissemination. For instance, viruses interfere with important host-cell 

processes through protein-protein interactions to coordinate their life cycle 

(Yamauchi and Helenius, 2013). It has been shown that host cell networks subversion 

by pathogen proteins can be achieved through interface mimicry of endogenous 

interactions (i.e., interaction between host proteins) (Franzosa and Xia, 2011; 

Garamszegi et al., 2013). This strategy relies on the presence in pathogen protein 

sequences of host-like elements, such as globular domains and short linear motifs 

(SLiMs), that can mediate the interaction with host proteins (Davey et al., 2011; Hagai 

et al., 2014; Via et al., 2015).  

Over the last years, many computational methods have been developed to predict 

pathogen-host protein interactions, some of which are based on the detection of 

sequence or structural mimicry elements (Arnold et al., 2012; Nourani et al., 2015). 

Such approaches allowed, for instance, to suggest potential molecular mechanisms 

underlying the implication of gastrointestinal bacteria in human cancer (Zanzoni et al., 

2017; Guven-Maiorov et al., 2017) or to discriminate between viral strains with 

different oncogenic potential (Lasso et al., 2019), thus showing that protein-protein 

interaction predictions can be instrumental in untangling microbe-host disease 
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associations. Nevertheless, the source code of many of these tools are not freely 

available to the community (e.g., (Becerra et al., 2017; Guven-Maiorov et al., 2017; 

Lasso et al., 2019)) providing the predictions through a database (e.g., (Lasso et al., 

2019)), or can be only used through a web interface (e.g. (Guven-Maiorov et al., 

2020)), thus limiting the prediction reproducibility and tool usability. 

In this context, and inspired by our previous work (Zanzoni et al., 2017), we present 

mimicINT, a computational workflow for large-scale interaction inference between 

microbe and human proteins by detecting host-like elements and using 

experimentally identified interaction templates (Mosca et al., 2014; Kumar et al., 

2020).  

 

Implementation  

mimicINT detects putative molecular mimicry elements in microbe sequences of 

interest that can mediate the interaction with host proteins (Figure 1). mimicINT is 

written in Python and R languages and exploits the Snakemake workflow manager 

for automated execution (Köster and Rahmann, 2018). It consists of four main steps: 

(i) the detection of host-like elements in microbe sequences; (ii) the collection of 

domains on the host protein (iii); the interaction inferences between microbe and host 

proteins; and (iv) the functional enrichment analysis on the list of inferred host 

interactors.  

In the first step, mimicINT takes as input the FASTA-formatted sequences of microbe 

proteins (e.g., viral or other pathogen proteins susceptible to be found at the 

pathogen-host interface) to detect host-like elements: domains and SLiMs. The 

domain identification is performed by the stand-alone version of InterProScan (Jones 
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et al., 2014) using the domain signatures from the InterPro database (Blum et al., 

2021). By default, mimicINT retains InterProScan matches with an E-value below 10-

5, a threshold value commonly used for detecting profile-based domain signatures in 

protein sequences in the context of interaction inference (Schleker et al., 2012). The 

host-like SLiMs detection exploits the motif definitions available in the ELM database 

(Kumar et al., 2020) and is carried out by the SLiMProb tool from the SLiMSuite 

software package (Edwards et al., 2020). As SLiMs are usually located in disordered 

regions (Davey et al., 2012), SLiMProb uses the IUPred algorithm (Dosztányi, 2018) 

to compute the disorder propensity of each amino acid in the query sequences, and 

generates an average disorder propensity score for every detected SLiM occurrence. 

For SLiM detection, the default IUPred disorder propensity threshold is set to 0.2, a 

value commonly used to limit false negatives (Edwards and Palopoli, 2015; Edwards 

et al., 2020), and the minimum size of the predicted disorder region is set to 5, the 

optimal size to detect true positive SLiM occurrences (Paulsen, 2019). Nevertheless, 

the user can choose all running parameters for the host-like element detection in the 

mimicINT configuration file.  

In the second step, mimicINT gathered the domain annotations of the host proteins 

from the InterPro database through a REST API query.  

In the third step, mimicINT infers the interactions between host and microbe proteins. 

This analysis takes as input the list of known interactions templates gathered from 

two resources: (i) the 3did database (Mosca et al., 2014), a collection of domain-

domain interactions extracted from three-dimensional protein structures (Rose et al., 

2013), and (ii) the ELM database (Kumar et al., 2020) that provides a list of 

experimentally identified SLIM-domain interactions in Eukaryotes. The inference 
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checks whether any of the microbe proteins contains at least one domain or SLIM for 

which an interaction template is available. In this case, it infers the interaction 

between the given protein and all the host proteins containing the cognate domain 

(i.e., the interacting domain in the template). As motif-binding domains of the same 

group, like SH3 or PDZ, show different interaction specificities (Gfeller et al., 2011) for 

the SLiM-domain interaction inference, we have implemented a previously proposed 

strategy (Weatheritt et al., 2012) to take these differences into account (see 

Supplementary Methods). This approach assigns a "domain score" that can be used 

to rank or filter inferred SLiM-domain interactions. Once this step is completed, the 

inferred interactions are stored in both tab-delimited and JSON files to facilitate the 

import in other applications, such as Cytoscape (Shannon et al., 2003). 

In the final step, in order to identify the host cellular functions potentially targeted by 

the pathogen proteins, mimicINT executes a functional enrichment analysis of host 

inferred interactors. This analysis statistically assesses the over-representation of 

functional categories, such as Gene Ontology terms and biological pathways (e.g., 

KEGG and Reactome), using the g:Profiler R client (Raudvere et al., 2019). 

Given the degenerate nature of SLiMs (Davey et al., 2012), their detection is prone to 

generate false positive occurrences. For this reason, we implemented an optional 

sub-workflow that, using Monte-Carlo simulations, assesses the probability of a given 

SLiM to occur by chance in query sequences and, thus, can be used to filter out 

potential false positives (Hagai et al., 2014) (see Supplementary Methods). 

To ease deployment and ensure reproducibility and scalability on high-performance 

computing infrastructures, mimicINT is provided as a containerized application based 
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on Docker and Singularity (Merkel, 2014; Kurtzer et al., 2017). mimicINT is available 

at https://github.com/TAGC-NetworkBiology/mimicINT. 

 

Results 

We sought to evaluate the ability of mimicINT to correctly infer SLiM-domain 

interactions, as this inference can generate many false positives (Weatheritt et al., 

2012), using the default parameters for SLiM detection (see Implementation). To do 

so, we used as controls two datasets of established motif-mediated interactions 

(MDI) from the ELM database (Kumar et al., 2020) (see Supplementary Methods): (i) 

103 interactions between 87 viral and 44 human proteins (vMDI); (ii) 31 interactions 

between 16 bacterial and 23 human proteins (bMDI). We were able to correctly infer 

the majority of these interactions (91 vMDI, true positive rate = 88.3%; 21 bMDI, true 

positive rate = 67.7%). As the availability of negative SLiM-mediated interaction 

datasets is very limited (Weatheritt et al., 2012; Idrees et al., 2018; Kumar et al., 2020), 

we estimated the false positive rate (FPR) by applying mimicINT to two sets of 

randomly generated interactions sets (degree-controlled, vMDIrnd and bMDIrnd, 

respectively). Thirty-four vMDIrnd and 7 bMDIrnd were inferred as motif-mediated (FPR 

= 33% and FPR = 23%, respectively). We next annotated the human proteins in the 

two random sets with domain similarity scores. We kept only interactions for which 

the domain score was above 0.4 (Weatheritt et al., 2012), thereby reducing the 

number of random interactions predicted as motif-mediated to 9 (FPR = 8.7%) for 

vMDIrnd and 2 (FPR = 6.4%) for bMDIrnd. Finally, we tested mimicINT on two sets of 

experimentally verified negative 37 viral-human and 4 bacterial-human protein 
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interactions from the Negatome 2.0 database (Blohm et al., 2014). Only two virus-

human interactions (5.4%) were inferred as motif-mediated by mimicINT. 

In the light of these results, we used mimicINT to infer the interactions between 

human proteins and the Marburg virus (MARV), an emerging infectious agent for 

which experimental protein interaction data is scarce (23 interactions for VP24 protein 

in IMEx interaction databases (Orchard et al., 2012)).  

We downloaded MARV protein sequences (7 proteins, Proteome ID: UP000180448) 

from UniprotKB in FASTA format. For domain detection, we considered only 

InterProScan matches in MARV sequences and ran mimicINT with default 

parameters.  

In total, we inferred 11,431 interactions between 7 MARV and 2757 human proteins 

(see Supplementary Data). The vast majority of the inferred interactions, namely 

10,101, are motif-domain interactions (MDI, 7 MARV and 2324 human proteins), and 

the remaining 1,339 are domain-domain interactions (DDI, 5 MARV and 479 human 

proteins). Interestingly, we observed an significant enrichment of known targets of 

other viruses among inferred interactors (1096 human proteins, 39.7% of the total, 

odds ratio = 1.3, P-value = 1.8x10-8, one-sided Fisher's Exact test) (Orchard et al., 

2012): 62 (13% of DDI interactors, odds ratio = 0.2, P-value = 1, one-sided Fisher's 

Exact test) are involved in 133 inferred DDIs, and 1059 (45% of MDI interactors, odds 

ratio = 1.3, P-value = 6.7x10-6, one-sided Fisher's Exact test) participated in 4591 

inferred MDIs. By setting a stringent cutoff of 0.4 on the domain similarity scores, the 

number of inferred MDI decreases to 2082 (7 MARV and 597 human proteins), while 

the proportion of known viral targets among human interactors slightly increases (i.e., 
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50%, 299 proteins, odds ratio = 1.4, P-value = 4.7x10-5, one-sided Fisher's Exact 

test). 

None of the 23 experimentally identified interactions of the MARV VP24 proteins were 

identified by mimicINT, probably due to the fact that they were detected by an affinity-

based purification method (Pichlmair et al., 2012), which is more suited to identify 

indirect protein associations rather than direct interactions (Snider et al., 2015). 

However, 17 MARV inferred interactions (17 MDI and 4 DDI) are supported by 

experimental evidence in the closely related Zaire Ebola Virus (Orchard et al., 2012; 

Batra et al., 2018).  

The functional enrichment analysis performed by mimicINT on the full list of inferred 

host interactors returned a list of 975 enriched annotations at FDR<0.01 (see 

Supplementary Data). We next filtered out the functional categories annotating less 

than 5 or more 500 proteins obtaining a list of 763 enriched annotations (241 GO 

biological processes, 63 GO Cellular components, 6 CORUM complexes, 130 KEGG 

and 237 Reactome pathways), which points towards cellular processes and pathways 

related to viral infection and immune system (see Supplementary Data), thus further 

reinforcing the biological relevance of the inferred interactions. 

 

Conclusions 

We present mimicINT, a computational workflow enabling large-scale interaction 

inference between microbe and host sequences. Given the increasing frequency of 

(re-)emerging infectious diseases, mimicINT can be instrumental to better understand 
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the molecular details underlying microbial infections and to identify proteins and 

interactions as candidate points for therapeutic intervention. Although we developed 

mimicINT as a tool to infer protein interactions at the microbe-human interface, the 

workflow can be used to infer interaction among human proteins as well, or applied 

to organisms whose proteins bear either domains or SLiMs participating in known 

interaction templates. 
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Figures 

 

Figure 1: Overview of the mimicINT workflow. By providing a fasta file of protein 

sequences of the query species (e.g., microbe sequences) (A), mimicINT allows identifying 

both the domain (B) and SLiM (C) mediated interfaces of interactions. Using publicly available 

templates of interactions, mimicINT infers the interactions between the proteins of the query 

and target (i.e., host) species (D). Finally, it provides a list of functional annotations that are 

significantly enriched in inferred protein targets (E). 
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