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Abstract

The increasing incidence of emerging infectious diseases is posing serious global
threats. Therefore, there is a clear need for developing computational methods that
can assist and speed-up experimental research to better characterize the molecular
mechanisms of microbial infections. In this context, we developed mimicINT, a freely
available computational workflow for large-scale protein-protein interaction inference
between microbe and human by detecting putative molecular mimicry elements that
can mediate the interaction with host proteins: short linear motifs (SLiMs) and host-
like globular domains. mimicINT exploits these putative elements to infer the
interaction with human proteins by using known templates of domain-domain and
SLiM-domain interaction templates. mimicINT provides (i) robust Monte-Carlo

simulations to assess the statistical significance of SLiM detection which suffers from
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false positive, and (ii) interaction specificity filter to account for differences between
motif-binding domains of the same family.
mimicINT is implemented in Python and R, and it is available at:

https://github.com/TAGC-NetworkBiology/mimicINT.

Introduction

Most pathogens interact with their hosts to reach an advantageous niche and ensure
their successful dissemination. For instance, viruses interfere with important host-cell
processes through protein-protein interactions to coordinate their life cycle
(Yamauchi and Helenius, 2013). It has been shown that host cell networks subversion
by pathogen proteins can be achieved through interface mimicry of endogenous
interactions (i.e., interaction between host proteins) (Franzosa and Xia, 2011;
Garamszegi et al., 2013). This strategy relies on the presence in pathogen protein
sequences of host-like elements, such as globular domains and short linear motifs
(SLiMs), that can mediate the interaction with host proteins (Davey et al., 2011; Hagai
etal., 2014; Via et al., 2015).

Over the last years, many computational methods have been developed to predict
pathogen-host protein interactions, some of which are based on the detection of
sequence or structural mimicry elements (Arnold et al., 2012; Nourani et al., 2015).
Such approaches allowed, for instance, to suggest potential molecular mechanisms
underlying the implication of gastrointestinal bacteria in human cancer (Zanzoni et al.,
2017; Guven-Maiorov et al., 2017) or to discriminate between viral strains with
different oncogenic potential (Lasso et al., 2019), thus showing that protein-protein

interaction predictions can be instrumental in untangling microbe-host disease
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associations. Nevertheless, the source code of many of these tools are not freely
available to the community (e.g., (Becerra et al., 2017; Guven-Maiorov et al., 2017;
Lasso et al., 2019)) providing the predictions through a database (e.g., (Lasso et al.,
2019)), or can be only used through a web interface (e.g. (Guven-Maiorov et al.,
2020)), thus limiting the prediction reproducibility and tool usability.

In this context, and inspired by our previous work (Zanzoni et al., 2017), we present
mimicINT, a computational workflow for large-scale interaction inference between
microbe and human proteins by detecting host-like elements and using
experimentally identified interaction templates (Mosca et al., 2014; Kumar et al.,

2020).

Implementation

mimicINT detects putative molecular mimicry elements in microbe sequences of
interest that can mediate the interaction with host proteins (Figure 1). mimicINT is
written in Python and R languages and exploits the Snakemake workflow manager
for automated execution (Késter and Rahmann, 2018). It consists of four main steps:
(i) the detection of host-like elements in microbe sequences; (i) the collection of
domains on the host protein (iij); the interaction inferences between microbe and host
proteins; and (iv) the functional enrichment analysis on the list of inferred host
interactors.

In the first step, mimicINT takes as input the FASTA-formatted sequences of microbe
proteins (e.g., viral or other pathogen proteins susceptible to be found at the
pathogen-host interface) to detect host-like elements: domains and SLiMs. The

domain identification is performed by the stand-alone version of InterProScan (Jones
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et al., 2014) using the domain signatures from the InterPro database (Blum et al.,
2021). By default, mimicINT retains InterProScan matches with an E-value below 10
°, a threshold value commonly used for detecting profile-based domain signatures in
protein sequences in the context of interaction inference (Schleker et al., 2012). The
host-like SLiMs detection exploits the motif definitions available in the ELM database
(Kumar et al., 2020) and is carried out by the SLiMProb tool from the SLiMSuite
software package (Edwards et al., 2020). As SLiMs are usually located in disordered
regions (Davey et al., 2012), SLiMProb uses the IUPred algorithm (Dosztanyi, 2018)
to compute the disorder propensity of each amino acid in the query sequences, and
generates an average disorder propensity score for every detected SLiM occurrence.
For SLiM detection, the default IUPred disorder propensity threshold is set to 0.2, a
value commonly used to limit false negatives (Edwards and Palopoli, 2015; Edwards
et al., 2020), and the minimum size of the predicted disorder region is set to 5, the
optimal size to detect true positive SLiIM occurrences (Paulsen, 2019). Nevertheless,
the user can choose all running parameters for the host-like element detection in the
mimicINT configuration file.

In the second step, mimicINT gathered the domain annotations of the host proteins
from the InterPro database through a REST API query.

In the third step, mimicINT infers the interactions between host and microbe proteins.
This analysis takes as input the list of known interactions templates gathered from
two resources: (i) the 3did database (Mosca et al., 2014), a collection of domain-
domain interactions extracted from three-dimensional protein structures (Rose et al.,
2013), and (i) the ELM database (Kumar et al., 2020) that provides a list of

experimentally identified SLIM-domain interactions in Eukaryotes. The inference
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checks whether any of the microbe proteins contains at least one domain or SLIM for
which an interaction template is available. In this case, it infers the interaction
between the given protein and all the host proteins containing the cognate domain
(i.e., the interacting domain in the template). As motif-binding domains of the same
group, like SH3 or PDZ, show different interaction specificities (Gfeller et al., 2011) for
the SLiM-domain interaction inference, we have implemented a previously proposed
strategy (Weatheritt et al.,, 2012) to take these differences into account (see
Supplementary Methods). This approach assigns a "domain score" that can be used
to rank or filter inferred SLiM-domain interactions. Once this step is completed, the
inferred interactions are stored in both tab-delimited and JSON files to facilitate the
import in other applications, such as Cytoscape (Shannon et al., 2003).

In the final step, in order to identify the host cellular functions potentially targeted by
the pathogen proteins, mimicINT executes a functional enrichment analysis of host
inferred interactors. This analysis statistically assesses the over-representation of
functional categories, such as Gene Ontology terms and biological pathways (e.g.,
KEGG and Reactome), using the g:Profiler R client (Raudvere et al., 2019).

Given the degenerate nature of SLiMs (Davey et al., 2012), their detection is prone to
generate false positive occurrences. For this reason, we implemented an optional
sub-workflow that, using Monte-Carlo simulations, assesses the probability of a given
SLiM to occur by chance in query sequences and, thus, can be used to filter out
potential false positives (Hagai et al., 2014) (see Supplementary Methods).

To ease deployment and ensure reproducibility and scalability on high-performance

computing infrastructures, mimicINT is provided as a containerized application based
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on Docker and Singularity (Merkel, 2014; Kurtzer et al., 2017). mimicINT is available

at https://github.com/TAGC-NetworkBiology/mimicINT.

Results

We sought to evaluate the ability of mimicINT to correctly infer SLiM-domain
interactions, as this inference can generate many false positives (Weatheritt et al.,
2012), using the default parameters for SLiM detection (see Implementation). To do
so, we used as controls two datasets of established motif-mediated interactions
(MDI) from the ELM database (Kumar et al., 2020) (see Supplementary Methods): (i)
103 interactions between 87 viral and 44 human proteins (VMDI); (i) 31 interactions
between 16 bacterial and 23 human proteins (bMDI). We were able to correctly infer
the majority of these interactions (91 vMDI, true positive rate = 88.3%; 21 bMDI, true
positive rate = 67.7%). As the availability of negative SLiM-mediated interaction
datasets is very limited (Weatheritt et al., 2012; Idrees et al., 2018; Kumar et al., 2020),
we estimated the false positive rate (FPR) by applying mimicINT to two sets of
randomly generated interactions sets (degree-controlled, vMDl,; and bMDIq,
respectively). Thirty-four vMDlI,,; and 7 bMDI,.4 were inferred as motif-mediated (FPR
= 33% and FPR = 23%, respectively). We next annotated the human proteins in the
two random sets with domain similarity scores. We kept only interactions for which
the domain score was above 0.4 (Weatheritt et al., 2012), thereby reducing the
number of random interactions predicted as motif-mediated to 9 (FPR = 8.7%) for
VMDI».¢ and 2 (FPR = 6.4%) for bMDI,.. Finally, we tested mimicINT on two sets of

experimentally verified negative 37 viral-human and 4 bacterial-human protein
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interactions from the Negatome 2.0 database (Blohm et al., 2014). Only two virus-

human interactions (5.4%) were inferred as motif-mediated by mimicINT.

In the light of these results, we used mimicINT to infer the interactions between
human proteins and the Marburg virus (MARV), an emerging infectious agent for
which experimental protein interaction data is scarce (23 interactions for VP24 protein
in IMEX interaction databases (Orchard et al., 2012)).

We downloaded MARYV protein sequences (7 proteins, Proteome ID: UP000180448)
from UniprotKB in FASTA format. For domain detection, we considered only
InterProScan matches in MARV sequences and ran mimicINT with default
parameters.

In total, we inferred 11,431 interactions between 7 MARV and 2757 human proteins
(see Supplementary Data). The vast majority of the inferred interactions, namely
10,101, are motif-domain interactions (MDI, 7 MARV and 2324 human proteins), and
the remaining 1,339 are domain-domain interactions (DDI, 5 MARV and 479 human
proteins). Interestingly, we observed an significant enrichment of known targets of
other viruses among inferred interactors (1096 human proteins, 39.7% of the total,
odds ratio = 1.3, P-value = 1.8x10®, one-sided Fisher's Exact test) (Orchard et al.,
2012): 62 (13% of DDI interactors, odds ratio = 0.2, P-value = 1, one-sided Fisher's
Exact test) are involved in 133 inferred DDls, and 1059 (45% of MDI interactors, odds
ratio = 1.3, P-value = 6.7x10°, one-sided Fisher's Exact test) participated in 4591
inferred MDlIs. By setting a stringent cutoff of 0.4 on the domain similarity scores, the
number of inferred MDI decreases to 2082 (7 MARV and 597 human proteins), while

the proportion of known viral targets among human interactors slightly increases (i.e.,


https://doi.org/10.1101/2022.11.04.515250
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.515250; this version posted November 6, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

50%, 299 proteins, odds ratio = 1.4, P-value = 4.7x10°, one-sided Fisher's Exact

test).

None of the 23 experimentally identified interactions of the MARV VP24 proteins were
identified by mimicINT, probably due to the fact that they were detected by an affinity-
based purification method (Pichlmair et al., 2012), which is more suited to identify
indirect protein associations rather than direct interactions (Snider et al., 2015).
However, 17 MARYV inferred interactions (17 MDI and 4 DDI) are supported by
experimental evidence in the closely related Zaire Ebola Virus (Orchard et al., 2012;

Batra et al., 2018).

The functional enrichment analysis performed by mimicINT on the full list of inferred
host interactors returned a list of 975 enriched annotations at FDR<0.01 (see
Supplementary Data). We next filtered out the functional categories annotating less
than 5 or more 500 proteins obtaining a list of 763 enriched annotations (241 GO
biological processes, 63 GO Cellular components, 6 CORUM complexes, 130 KEGG
and 237 Reactome pathways), which points towards cellular processes and pathways
related to viral infection and immune system (see Supplementary Data), thus further

reinforcing the biological relevance of the inferred interactions.

Conclusions

We present mimicINT, a computational workflow enabling large-scale interaction
inference between microbe and host sequences. Given the increasing frequency of

(re-)emerging infectious diseases, mimicINT can be instrumental to better understand
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the molecular details underlying microbial infections and to identify proteins and
interactions as candidate points for therapeutic intervention. Although we developed
mimicINT as a tool to infer protein interactions at the microbe-human interface, the
workflow can be used to infer interaction among human proteins as well, or applied
to organisms whose proteins bear either domains or SLiMs participating in known

interaction templates.
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Figure 1: Overview of the mimicINT workflow. By providing a fasta file of protein
sequences of the query species (e.g., microbe sequences) (A), mimicINT allows identifying
both the domain (B) and SLiM (C) mediated interfaces of interactions. Using publicly available
templates of interactions, mimicINT infers the interactions between the proteins of the query
and target (i.e., host) species (D). Finally, it provides a list of functional annotations that are

significantly enriched in inferred protein targets (E).
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