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Long-range interactions between regulatory elements and promoters are key in gene 
transcriptional control; however, their study requires large amounts of starting material, which 
is not compatible with clinical scenarios nor the study of rare cell populations. Here we 
introduce low input capture Hi-C (liCHi-C) as a cost-effective, flexible method to map and 
robustly compare promoter interactomes at high resolution. As proof of its broad applicability, 
we implement liCHi-C to study normal and malignant human hematopoietic hierarchy in 
clinical samples. We demonstrate that the dynamic promoter architecture identifies 
developmental trajectories and orchestrates transcriptional transitions during cell-state 
commitment. Moreover, liCHi-C enables the identification of new disease-relevant cell types, 
genes and pathways potentially deregulated by non-coding alterations at distal regulatory 
elements. Finally, we show that liCHi-C can be harnessed to uncover genome-wide structural 
variants, resolve their breakpoints and infer their pathogenic effects. Collectively, our 
optimized liCHi-C method expands the study of 3D chromatin organization to unique, low-
abundance cell populations, and offers an opportunity to uncover novel factors and regulatory 
networks involved in disease pathogenesis. 
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Introduction 
 

Enhancers are critical modulators of gene transcription through physical interactions with 
target promoters that often locate distally in the genome. The physical proximity between 
enhancers and promoters is ultimately enabled and determined by the three-dimensional 
folding of the chromatin within the nucleus1,2. Although enhancers can be defined through 
well-characterized features, predicting their target genes at distal locations remains challenging 
due to the high complexity of studying enhancer-promoter interactions and the large variability 
according to cell-type and state. This gap of knowledge is particularly problematic for 
understanding the molecular mechanisms associated with inherited and de novo acquired 
mutations and epimutations involved in common human diseases, which are all highly enriched 
at regulatory elements3,4. 
 
To enable the study of genomic regulatory mechanisms underlying disease pathologies at a 
genome-wide scale, we previously developed the promoter capture Hi-C (PCHi-C) method5,6. 
This approach allows systematic identification of the promoter interactome (i.e., genomic 
regions, including distal regulatory regions, in physical proximity with more than 31,000 
promoters) independently of the activity status of the interacting regions. This method has 
allowed us to uncover new aspects of the diversity of transcriptional regulatory factors7 and 
mechanisms in cell differentiation8,9 and disease5, and it has broadened our capacity to identify 
hundreds of potential new disease-candidate genes and/or gene pathways potentially 
deregulated by non-coding disease-associated variants5,10,11–18,19–21. However, PCHi-C relies 
on the availability of millions of cells, typically ranging between 30–50 million cells per 
biological replicate, which prohibits the analysis of rare cell populations such as those 
commonly obtained in clinical settings. 
 
Here, to overcome this limitation, we present liCHi-C, a mini-input method that allows the 
generation of high-resolution genome-wide promoter interactome maps using very low 
amounts of starting material. We have validated our new method by benchmarking liCHi-C 
promoter interactomes against the highest resolution PCHi-C promoter interactomes available 
to date, demonstrating that the interactomes can be reproducibly interrogated using as low as 
50,000 cells of starting material. As a proof of its potential for discovering new insights about 
gene transcription regulation, we used liCHi-C to study human hematopoiesis in vivo and 
demonstrate its potential for identifying developmental trajectories and providing mechanistic 
understanding of transcriptional dynamics along in vivo cell commitment. Furthermore, we 
show liCHi-C can be applied to investigate molecular links between disease-associated non-
coding alterations at distal regulatory elements with their target genes in rare cell populations 
that cannot be characterized using PCHi-C. Finally, to support the broad applicability of liCHi-
C across disease settings, we analyze primary leukemias and identify patient-specific structural 
genomic alterations and cancer-specific topological features potentially implicated in gene 
deregulation and disease etiology. All the computational tools to analyze and integrate liCHi-
C data are freely available at https://github.com/JavierreLab/liCHiC.  
 
 
Results 
 

Development and optimization of liCHi-C for low-input samples. In order to enable the 
detection of the promoter interactome using low-input material, we modified the original PCHi-
C to minimize losses during the procedure. Specifically, liCHi-C maximizes library complexity 
by employing a single-tube, modifying reagent concentration and volume, and eliminating or 
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modifying the sequence of some steps (Fig. 1a). Additionally, it reduces by half the time spent 
on the library preparation. For more details, see Methods section and Extended Data Fig. 1a. 
 
To systematically evaluate liCHi-C, we generated libraries from decreasing numbers of human 
naïve B cells (Supplementary Information Table 1) at controlled ratios and compared these 
with the most comprehensive PCHi-C data available to date from the exact same cell type that 
used ∼40 million (40M) cells as starting material. Each sample was deep-sequenced and 
paired-end reads were mapped and filtered using HiCUP pipeline22. Visual inspection of 
normalized liCHi-C and PCHi-C contact maps showed a high degree of similarity in 
topological properties (Extended Data Fig. 1b), and for all experimental conditions (i.e., 
number of starting cells), the percentage of valid reads (Mean = 58.41%; SD = 5.76%) and the 
capture efficiency (Mean = 61.29%; SD = 9.15%) were similar between both methods, being 
23.58% (SD = 1.59%) of those contacts in trans (Extended Data Fig. 1c-e and Supplementary 
Information Table 1). Unsurprisingly, given the higher need for amplification, the PCR 
duplicates increased with lower amounts of starting cells, ranging from 86% in 50k cell 
samples, to 12% of the mapped reads in 40M cell samples. Interaction matrices were also 
highly reproducible for both methods and different amounts of starting material (stratum-
adjusted correlation coefficient (SCC) > 0.90) (Fig. 1b and Extended Data Fig. 1f). These data 
suggest that liCHi-C reliably generates high-quality promoter interactomes, including 31,253 
annotated promoters, and can routinely be performed successfully with an input as low as 50k 
cells. Remarkably, liCHi-C was able to achieve a >10-fold enrichment of read pairs involving 
promoters when compared with Hi-C using 800 times less of the starting cells (Supplementary 
Information Table 1).  

 
Comparison of liCHi-C with other C-based methods for profiling promoter interactomes. 
To formally compare the performance of liCHi-C to detect promoter interactions, we used the 
CHiCAGO pipeline23 to call for significant interactions (CHiCAGO score > 5). Distance 
distribution and nature of interacting fragments were similar across cell number conditions and 
methods (Extended Data Fig. 2a-c). Specifically, we found a median linear distance between 
promoters and their interacting regions of 265kb (SD = 30kb), and 89.04% (SD = 3.72%) of 
these were promoter-to-non-promoter interactions (Extended Data Fig. 2b-c and 
Supplementary Information Table 1). Principal component analysis (PCA) of CHiCAGO 
interaction scores across all biological replicates demonstrated that patterns of promoter 
interactions are highly consistent across biological replicates and group samples according to 
the number of input cells (Fig. 1c). To further explore the limits of liCHi-C library complexity 
we performed hierarchical clustering based on their CHiCAGO interaction scores. We 
observed that promoter interactomes generated from >100k cells reproduce the ones generated 
with PCHi-C on 40M cells (Extended Data Fig. 2d). Although promoter interactomes with less 
than 100k cells showed a different clustering profile, potentially reflecting the reduction of 
significant interactions due the limited library complexity, these retain cell-type specific and 
invariant topological features (Fig. 1d and Extended Data Fig 2e-g). Collectively, these results 
demonstrate the high reproducibility of liCHi-C to profile promoter interactomes at a similar 
resolution as PCHi-C, and underscore the suitability of the approach to investigate these 
interactions in cell populations present at relatively low abundance within a sample. 
 
In addition, we benchmarked liCHi-C against other existing C-based methods used for 
detecting the 3D genome topologies of blood lineage, including Low-C24, Hi-C (using a four-
cutter25 or a six-cutter5 restriction enzyme) and TagHi-C26 (Extended Data Fig 3 and 
Supplementary Information Table 2). We called chromatin loops in these datasets at a 
resolution of 5kb, which is similar to the resolution of our liCHi-C data (∼4096 bp), using 
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HICCUPS27, Mustache28 and HiCExplorer29 loop callers with standard parameters (for more 
details, see Methods section). Despite the fact that these methods have provided fundamental 
insights about the role and regulation of spatio-temporal genome architecture on rare cell 
populations, these methods are very limited with respect to the detection of promoter 
interactions at restriction fragment resolution (Extended Data Fig. 3a-b and Supplementary 
Information Table 2). Collectively, these results demonstrate that liCHi-C outperforms other 
existing C-based methods at genome-wide and promoter-wide detection of potential gene 
regulatory interactions at high resolution using low-cell numbers. 
 
liCHi-C efficiently captures promoter interactomes across different hematopoietic 
lineages. To assess the capacity of liCHi-C to provide fundamental insight about in vivo cell 
differentiation, we performed high-quality liCHi-C experiments in 9 distinct cellular 
populations from the human hematopoietic hierarchy (two biological replicates per cell type;  
500k cells per replicate), including hematopoietic stem and progenitor cells (HSC), common 
myeloid progenitors (CMP), common lymphoid B cell progenitors (CLP) and 6 differentiated 
cell types (Extended Data Fig. 4a-c and Supplementary Information Table 1). As a more 
comprehensive validation of the liCHi-C method, we first focused on the differentiated cell 
types for which high quality PCHi-C data is available. Benchmarking of liCHi-C data against 
PCHi-C data demonstrated high reproducibility between both methods for all profiled cell 
types (SCC > 0.93) (Fig. 2a and Extended Data Fig. 4c). Moreover, promoter interactomes 
clearly separated cell types independently of the method used (Extended Data Fig. 4f). 
 
We then analyzed liCHi-C data in detail. Applying CHiCAGO we identified a median of 
134,965 high-confidence promoter interactions (CHiCAGO score > 5) per cell type (Extended 
Data Fig. 4d-e and Supplementary Information Table 1). A PCA of interaction scores 
demonstrated that promoter interactomes were highly reproducible and cell-type specific (Fig. 
2b). While the first principal component separated cells according to their myeloid or lymphoid 
linage, the second principal component recapitulated the differentiation potential, allowing 
altogether to identify both myeloid and lymphoid differentiation trajectories. To decipher these 
specificities in greater depth we applied Autoclass Bayesian clustering and computed the 
specificity score of each cluster in each cell type (Fig. 2c-d). Among the 33 clusters, we 
observed a stem and progenitor-specific cluster (C3), lymphoid-specific clusters (e.g., C10, 
C13), myeloid-specific clusters (e.g., C25, C27) and cell-type specific clusters (e.g., C4, C7) 
that contained genes known to be involved in cellular functions important for the given cell 
types (Fig. 2d-g). These observations were clearly illustrated by the promoter interactomes of 
MYB30, which encodes for a transcription regulator that plays an essential role in the regulation 
of lymphoid priming and early B cell development (Fig. 2e), ITGA2B31, which encodes for the 
megakaryocyte-specific surface marker CD41 (Fig. 2f), and SARS232, a housekeeping gene that 
encodes for the mitochondrial seryl-tRNA synthetase (Fig. 2g). Collectively, this data 
demonstrates that promoter interactomes are specific to the differentiation trajectories of cell 
types, and further suggest that the highly dynamic promoter-centric genome architecture 
recapitulates the developmental history of hematopoietic cell lineages. 
 
Promoter interactomes reshape transcriptional trajectories during in vivo cell 
commitment. To validate the ability of liCHi-C to uncover mechanistic insights on 
transcription regulation, we computationally integrated promoter interactome data with RNA-
seq and ChIP-seq data from matched cell types (Extended Data Fig. 5a-c and Supplementary 
Information Table 3). We distinguish between 2 types of promoter-interacting regions (PIRs): 
non-promoter PIRs (npPIRs), in which the promoter interacting region does not contain any 
captured gene promoter, and promoter PIRs (pPIRs), in which the promoter interacting region 
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contains at least a gene promoter. We found high enrichment of histone modifications 
indicative of active enhancers (e.g., H3K27ac, H3K4me1) and non-coding transcription of 
regulatory regions (e.g., H3K4me3)33 at distal npPIRs. These enrichments were positively 
associated with the expression level of linked genes in a cell-type specific manner (Fig. 3a). 
Conversely, npPIRs of lowly expressed genes tend to be more enriched in repressive histone 
marks, such as H3K27me3 and H3K9me3, than more highly expressed ones. These enrichment 
profiles were highly consistent with the ones obtained with PCHi-C data despite the significant 
difference in the starting cell number (Extended Data Fig. 5d). Collectively, these results, 
exemplified by the transcriptional regulation of the T cell-specific gene GATA334 (Fig. 3b), the 
B cell-specific gene PAX535 (Extended Data Fig. 5e), and the HSC-specific gene CD3436 
(Extended Data Fig. 5f), demonstrate the capacity of liCHi-C to identify distal regulatory 
elements for each gene in rare cell types, and suggest that promoter-associated regions are 
enriched in distal regulatory elements that mirror the cell-type specificity of the interacting 
gene’s expression. 
 
We then applied chromatin assortativity analysis37, which recognizes the preference of a 
network's nodes to attach to others that have similar features, to test the potential of liCHi-C to 
discover proteins or chromatin marks mediating genomic contacts within the nucleus (Fig. 3c 
and Extended Data Fig. 6a). We observed that genomic regions enriched in H3K9me3 histone 
modification, which have been associated with constitutive heterochromatin and lamina-
associated domains, are highly interconnected and may form topological hubs that collaborate 
with epigenetics to promote gene silencing (Fig. 3d and Extended Data Fig. 6b-d). Collectively, 
these results illustrate the power of liCHi-C to suggest, after further functional validation, new 
aspects on the diversity of factors and mechanisms regulating genome architecture. 

 
liCHi-C enables the discovery of disease-relevant cell types and disease-associated genes 
and pathways. Genetic variation, which frequently affects the non-coding genome, occurs at 
various levels ranging from single-nucleotide variants, such as single-nucleotide 
polymorphisms (SNPs), to larger structural variants (SVs). To test liCHi-C’s ability to uncover 
novel associations between non-coding SNPs and disease etiology, we integrated summary 
statistics from thirty-nine genome-wide association studies (GWAS), including seven 
autoimmune diseases, eight myeloid cell traits, four lymphoid cell traits, nine blood 
malignancies and eleven traits non-related to the hematopoietic hierarchy (Supplementary 
Information Table 4). Using Blockshifter analysis we showed that PIRs called by liCHi-C in a 
cell type, independently of whether these are shared or not across cell types, are enriched for 
genetic variants associated with traits or diseases relevant to the cell type (Fig. 4a-b). For 
instance, variants associated with final maturation of myeloid cells tend to be more enriched at 
PIRs in mature myeloid cells. Interestingly, similar enrichment profiles were obtained by 
liCHi-C and PCHi-C despite the dramatic reduction in starting material (Extended Data Fig. 
7a). These data demonstrate that liCHi-C can trace the ontogeny of activity of the non-coding 
genome in association with pathogenic traits and enables the identification of cell types 
presumably implicated in disease etiology. 
 
We next used the Bayesian prioritization strategy COGS to rank putative disease-associated 
genes based on GWAS and liCHi-C data. Excluding SNPs at promoter or coding regions, we 
assigned 24,504 distal non-coding SNPs to potential target genes, which were located at a 
median genomic distance of 187kb (Fig. 4c). Remarkably, only 19.58% of these were linked 
to the nearest gene and 38.16% potentially controlled more than one gene. These results 
highlight the importance of being able to generate data on long-range interactions between 
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promoters and regulatory elements to avoid misleading associations based on proximity in the 
context of gene regulation and disease.  
 
Specifically, using this computational framework on liCHi-C data we prioritized 6,230 
candidate genes (with a median of 134 genes per trait/disease at gene-level score > 0.5) and 56 
candidate gene pathways according the Reactome Pathway Database38  (Fig. 4d). These genes 
were highly similar to those prioritized by PCHi-C using 40M cells (Extended Data Fig. 7b-c). 
For instance, our data suggested that deregulation of TLE3, a gene that encodes for a co-
repressor protein that negative regulates canonical WNT signaling39, could confer susceptibility 
to lymphocytic leukemia (Fig. 4e). Moreover, it also pointed out ¨activation of BH3-only 
proteins¨ pathway, which is involved in the canonical mitochondrial apoptosis40, as being 
potentially implicated in this type of cancer (Fig. 4d). These and many other examples of 
expected and unexpected genes and pathways potentially deregulated by non-coding SNPs 
uncovered in our datasets, warrant follow-up studies to characterize their functional relevance 
in disease phenotypes. Nonetheless, our results demonstrate the power of liCHi-C to identify 
potential disease-causative genes and pathways. 

 
liCHi-C can be used to simultaneously diagnose and discover translocations, copy 
number variations (CNVs) and topological alterations in tumoral samples. After 
demonstrating the capacity of liCHi-C to prioritize non-coding SNPs with potential functional 
relevance in clinical settings, we sought to investigate SVs affecting larger genomic regions, 
including translocations and CNVs. Most of the ligation events detected by proximity-ligation 
methods, such as liCHi-C, occur between sequences in proximity along the linear genome and 
the frequency of these events decreases logarithmically with the genomic distance that 
separates them. However, a translocation alters the linear genome and artificially increases the 
number of ligation events between the juxtaposed regions. Based on this, we reasoned that 
liCHi-C could detect genome-wide chromosomal translocations, identify the breakpoints and 
uncover alterations in gene promoter interactions that could shed light on the pathogenic role 
of SVs. To test this hypothesis, we generated high quality liCHi-C libraries using primary blasts 
from two pediatric B cell acute lymphoblastic leukemia (B-ALL) samples (500k cells per 
library) (Supplementary Information Table 1 and Extended Data Fig. 8b-e) previously analyzed 
by routine clinical assays (Fig. 5a and Extended Data Fig. 8a). According to FISH and 
karyotyping analysis, B-ALL sample 1 carried a balanced translocation between chromosomes 
8 and 14, which appeared as ‘butterfly’ blocks of interactions between the translocated 
chromosomes on the liCHi-C interaction matrix (Fig. 5a top). A closer examination of the 
interaction directionalities identified the restriction fragments affected by the breakpoints and 
allowed the reconstruction of the resulting chromosome where the promoter of MYC becomes 
rearranged next to the ¨constant¨ gene cluster of the IgH locus (Fig. 5b). Through this focused 
analysis of promoter interactions, our data suggested that MYC expression may be 
simultaneously controlled by the ¨MYC blood enhancer cluster¨ (BENC)41, located 2Mb 
downstream, and the IgH-specific enhancer 3′-regulatory region (3′-RR)42, rearranged 300kb 
upstream (Fig. 5c). B-ALL sample 2 carried an unbalanced translocation between the same 
chromosomes that generated single blocks of contacts on the normalized liCHi-C interaction 
matrix (Fig. 5a bottom). Consequently, the CEBPD gene43 becomes juxtaposed to the IgH 
locus, which potentially alters its regulatory landscape (Extended Data Fig. 8f-g). Collectively, 
these results demonstrate liCHi-C’s capacity to generate high-quality chromatin conformation 
maps and regulatory landscapes directly from primary patient tissue samples to detect any type 
of translocation and surmise the pathogenic effects at a genome-wide scale. 
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In addition to chromosome rearrangements, we tested whether liCHi-C can be used to detect 
CNVs. Gains or losses of genetic material imply an increase or decrease in the ligation events 
within the altered regions, respectively. Therefore, we reasoned that CNVs should appear when 
comparing liCHi-C normalized interaction matrices of cells carrying the CNV against control 
cells. To test this hypothesis, we focused on the B-ALL sample 2 that, according to the 
karyotyping analysis, carried a trisomy of chromosome 21 and a partial trisomy affecting the 
translocated region of the q arm of chromosome 8. As shown in Fig. 5a bottom, both trisomies 
were identified, demonstrating that liCHi-C can be used for genome-wide detection of CNVs 
and to scan breakpoints from primary patient tissues without the need for a reference.  
 
Finally, we tested the ability of liCHi-C to identify disease-specific regulatory 3D chromatin 
landscapes that may be implicated in disease etiology. To do so, we applied Autoclass Bayesian 
clustering of liCHi-C significant interactions (CHiCAGO score > 5) called either on B-ALL 
samples or on the postulated healthy cells of origin of these hematological malignancies (i.e., 
HSC, CLP and naïve B cells) (Fig. 5d). Specificity score analysis of each cluster in each cell 
type identified promoter interactions specifically acquired (C5-9) or lost (C10-19) in one or 
both B-ALL samples (Fig. 5e), which included key transcription factors involved in B cell 
differentiation and function (e.g., PAX544, ARID5B45), well-known tumor suppressor genes 
(e.g., BTG144, IKZF144) and protooncogenes (e.g., MYC46). For instance, several HOXA genes 
have been associated with normal hematopoiesis and blood malignancies47,48. According to 
liCHi-C data, these genes lose connectivity with their enhancers, which could link their 
transcriptional deregulation with malignant transformation (Fig. 5f).  Collectively, these results 
support the broad applicability of liCHi-C to uncover factors and mechanisms involved in 
disease etiology through simultaneously identifying disease-specific promoter-centered 
genome topologies and detecting translocations, CNVs, breakpoints and their effects on 
transcriptional deregulation. 
 
liCHi-C can be customized to improve its resolution. liCHi-C resolution is determined by 
the restriction enzyme used for the library generation and defines the range of significant 
interactions to be detected. To demonstrate the adaptability of our new method to interrogate 
promoter interactions at different resolutions we used primary blasts from a third B-ALL 
sample to generate two high-quality liCHi-C libraries using a six-cutter restriction enzyme 
(HindIII) and a four-cutter restriction enzyme (MboI) respectively (∼250k cells per library) 
(Supplementary Information Table 1 and Extended Data Fig. 8h-k). Patient 3 carried a 
monosomy of chromosome 7, which was clearly identified as a reduction of reads on the 
contact matrix generated by both restriction enzymes (Fig. 6a-b).  
 
liCHi-C libraries generated with MboI detected 1.78 times more significant interactions 
(Extended Data Fig. 8j), which were characterized by having half of the median linear distance 
between promoters and their interacting regions (Fig. 6c). Indeed, although the shortest 
significant interaction was similar for both libraries (2574bp for HindIII and 1939 for MboI), 
the highest frequency of interactions was found at a distance 2.15 times larger for HindIII 
restriction (Fig. 6c). This data, illustrated by the promoter interactome of the DDX41 (Fig. 6d), 
a DEAD box RNA helicase associated with B-ALL and other blood malignancies49, 
demonstrates that the use of a four-cutter restriction enzyme increases the power to detect short-
range interactions and compromises the detection of the long-range ones. Taken together, our 
results demonstrate liCHi-C capability to provide fundamental and clinical insights about gene-
regulatory interactions at different levels of resolution. 
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Discussion 
 

High-throughput chromatin conformation capture methodologies such as Hi-C50 have 
revolutionized our understanding of long-range gene transcriptional control. However, many 
aspects of its dynamics along in vivo differentiation and stimulation, as well as its alteration in 
disease, remain largely unexplored due to the lack of genome-wide methodologies to study the 
promoter-centric genome architecture at high resolution with low-input material. Whereas 
single-cell51,52 or low-input24,26,53,54 approaches exist, these generate sparse contact maps with 
low resolution that do not allow the study of specific chromatin interactomes. More recently, 
HiChIP55 and HiCuT56 methods have been developed to study long-range chromatin 
interactions mediated by a specific protein. Although both technologies are compatible with 
low-input cell numbers, these rely on the availability of high-quality antibodies that recognize 
the target protein. Besides, these methods cannot be used to compare chromatin interactomes 
between conditions in which the binding of the target protein is different, which is very 
common due to the inherent dynamic nature of chromatin.  
 
To overcome these limitations, we have developed liCHi-C, a new mini-input cost-effective 
method to robustly map and compare promoter interactomes at high resolution in rare cell 
populations previously unmeasurable. Up to 12 liCHi-C libraries can be generated in 6 days 
with a total cost of 1500 euros per library (including sequencing cost). Unlike methods that 
depend on enrichment based on the use of antibodies56,55,57,58, liCHi-C only relies on 
biotinylated RNAs designed to hybridize against the annotated promoters to ultimately enrich 
for promoter interactions from a Hi-C library. Thus, it is able to identify long-range contacts 
of both active and inactive promoters and robustly compare interactomes between any 
condition. In addition, this capture strategy provides high versatility since any customized 
capture system from a wide range of coverage can be designed according to the interactome to 
be studied. For instance, liCHi-C can be easily coupled with capture systems designed to study 
the interactome of a collection of non-coding alterations or the enhancer interactome. Indeed, 
it can even be adapted to the study of the interactome of just a few loci as other 3C-based 
capture methods do59,60.  
 
liCHi-C significantly broadens the capacity for studying organism developments, in vivo cell 
commitment and cellular response to a wide range of external stimuli. As a proof of concept, 
we have used liCHi-C to study, for the first time, human hematopoietic hierarchy. Our data 
demonstrates that the promoter interactome can identify the differentiation trajectory. In 
addition, this suggests a massive dynamic rewiring of the three-dimensional epigenetic 
landscape parallel to transcriptional decisions during in vivo cell commitment.  
 
liCHi-C enables the study of primary samples, thus addressing a key limitation of PCHi-C to 
apply this type of analysis to clinical samples. This new method is especially relevant as most 
inherited and acquired mutations and epimutations for common human diseases, which largely 
remain unexplored, are all highly enriched at regulatory elements and cannot be readily 
modeled in in vitro systems. Genetic and epigenetic alterations at distal regulatory elements 
have the potential to alter the regulatory properties and ultimately lead to quantitative changes 
in expression of distal target genes with pathological outcomes. As distal regulatory elements 
and their topological properties are highly dynamic, cell-type specific and state-dependent, it 
is critical to identify the relevant human cell types for each disease and profile their full 
repertoire of regulatory elements and target genes. Here, we demonstrate that liCHi-C is able 
to fulfill this need. Focused on GWAS data we have demonstrated that liCHi-C identifies 
unexpected etiological associations and exposes new disease-associated genes and pathways. 
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Although we have mostly focused on inherited risk factors, our computational framework can 
be adapted to study acquired mutations and epimutations at any type of distal regulatory 
elements (e.g., silencer or primed enhancer), since liCHi-C identifies long-range contacts 
promoters independently of their activity.  
 
How chromatin organization contributes to disease pathogenesis remains largely unexplored. 
As we have shown, liCHi-C has the potential to contribute to filling this gap of knowledge. 
Taking malignant neoplasms as a model, we have shown that liCHi-C can be used to discover 
disease-specific topological alterations in clinical samples and generate hypotheses about 
genetic factors underlying disease mechanisms. Simultaneously, liCHi-C can uncover SVs at 
a genomic scale, resolve the positions of their breakpoints and predict their functional effects, 
including the formation of new regulatory landscapes, in an agnostic manner. Although we 
focused on the analysis of translocations and duplications associated with cancer, liCHi-C is 
also able to identify and characterize other types of SVs, such as inversions and deletions in 
any disease context. In addition, the liCHi-C method holds high potential for disease diagnosis 
equivalent to other chromosome conformation capture technologies61,62, since SVs are 
hallmarks of mental retardation, infertility, developmental disorders and cancer.  
 
Despite the broad applicability of our method, there are still several factors to take into 
consideration. One inherent limitation of liCHi-C is that its resolution is determined by the 
restriction enzyme used for the library generation. However, as we have demonstrated, it can 
be increased by replacing the enzyme by another one with greater resolution or exchange it for 
micrococcal nuclease. In addition, the interpretation of the biological meaning of non-coding 
alterations purely based on distal chromatin interactions can be challenging. Nevertheless, an 
integrative analysis of liCHi-C data, gene expression and chromatin states might be indicative 
of causal relationships, which should be validated with functional assays. Finally, the 
identification of exact genomic coordinates of the SVs´ breakpoints is not possible unless these 
map near restriction sites. However, long-range sequencing approaches coupled with liCHi-C 
can allow to map the SVs at the nucleotide resolution. Besides, this combinatorial approach 
increases the mapability efficiency of the chromatin contacts at repetitive sequences, which can 
be target of SVs and other mutations and epimutations. Despite these considerations, our data 
proves that it is feasible to generate high quality genome-wide promoter interaction maps from 
low amounts of primary patient material. We anticipate that the robustness and the inherent 
flexibility for customization make liCHi-C an attractive option that will allow the analysis of 
spatial genome architecture within reach of personalized clinical diagnostics and development 
biology. 
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Methods 
 

Cell isolation  
Naïve B cells (nB), naïve CD4+ cells (nCD4), naïve CD8+ cells (nCD8), megakaryocytes (MK), 
erythroblasts (Ery) and monocytes (Mon) were isolated as described in5. Hematopoietic stem 
and progenitor cells (HSC; CD34+, CD38-) common myeloid progenitors (CMP; CD34+, 
CD38+, CD33+) and common lymphoid B cell progenitors (CLP; CD34+, CD38+, CD19+) were 
purified by CD34 positive selection (Miltenyi cat. #130-046-703) and fluorescence-activated 
cell sorting (FACS) from 4 donations (2 per biological replicate) of 15-to 22-week-old human 
fetal liver and fetal bone marrow as previously described63. Briefly, after CD34+ selection, 
positive cells were stained for flow cytometry with the following fluorophore-conjugated 
monoclonal antibodies, all from BD Biosciences: CD34 PECy7 (cat. #348811), CD38 FITC 
(cat. #555459), CD19 BV421 (cat. #562440), CD33 APC (cat. #551378) and CD10 PE (cat. 
#555375). FACS was performed using a BD FACSAria Fusion. B-ALL samples were isolated 
from bone marrow of pediatric patients after CD19+ by FACS sorter. All samples were obtained 
from consent donations of volunteers after approval by the Ethics committee. 
  
Fixation and cell quantification 
Cells were quantified, resuspended in 1ml of RPMI 1640 culture medium containing 10% FBS 
and 2% of methanol-free formaldehyde (Thermo Fisher cat. #28908) and incubated in a rocker 
for 10 minutes at room temperature. Formaldehyde was quenched with glycine to a final 
concentration of 0.125M. Then, cells were washed with cold 1X PBS. Specific cell numbers 
were sorted into low-retention 1.5ml tubes (BD FACSJazz sorter, 1.0 Drop Pure sorting mode), 
pelleted, flash-frozen in dry ice and stored at -80 ºC. 
  
liCHi-C method  
During the whole protocol, low-retention tips and tubes were used to minimize cell loss. 
Pelleted cells were softly resuspended in 500µl ice cold lysis buffer (10mM Tris-HCl pH 8.0, 
10mM NaCl, 0.2% IGEPAL CA-630, 1x cOmplete EDTA-free protease inhibitor cocktail 
(Merck cat. #11873580001)) and incubated 30 minutes on ice to extract the nuclei. Soft 
inversions of the tube were performed during the incubation every 5 minutes.  Nuclei were 
centrifuged (1000g and 4ºC for 10 min) and 450µl of supernatant was discarded (50µl of 
supernatant was left in the tube to avoid cell losses). The cell pellet was resuspended in 500µl 
ice cold 1.25x NEB2 buffer (New England Biolabs cat. #B7002S). After centrifugation (1000g 
and 4ºC for 10 min), 500µl of supernatant was removed.  
 
Afterwards, 129ul of 1.25x NEBuffer 2 were added to the low-retention tube to obtain a final 
volume of 179ul. Then, 5.5µl of 10% SDS (AppliChem cat. #A0676,0250) were laid on the 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.11.04.515239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515239
http://creativecommons.org/licenses/by-nc/4.0/


 14 

wall of the tube and mixed by inversion. After incubation at 37°C and 950 rpm for 30 minutes, 
37.5µl 10% Triton X-100 (AppliChem cat. #A4975,0100) were laid on the wall of the tube, 
mixed by inversion and incubated at 37°C and 950 rpm for 30 minutes. Chromatin within the 
nuclei was overnight digested at 37ºC and 950rpm after adding 7.5µl of HindIII restriction 
enzyme at 100U/µl or 37.5µl of MboI restriction enzyme at 25U/µl (New England Biolabs cat. 
#R0104T or #R0147M). The following day, an extra digestion during one more hour was 
performed after adding 2.5µl of the HindII enzyme or 12.5 µl of the MboI enzyme.  
 
After digestion, MboI enzyme was washed with NEBuffer 2 by centrifuging the sample and 
removing the supernatant to avoid possible re-digestion of ligated fragments afterwards. 
Cohesive restriction fragment ends were filled in during 75 minutes at 37ºC. To do so, 30µl of 
master mix composed by 5μl of 5U/μl Klenow polymerase (New England Biolabs cat. 
#M0210L), 0.75µl of each 10mM dCTP, dGTP and dTTP, and 18.75µl of 0.4mM biotin-14-
dATP (Invitrogen #19524-016) were added.  
 
In-nucleus ligation of DNA fragments was carried out during 4 hours at 16°C after adding 
12.5µl of 1U/μl T4 DNA ligase (Thermo Fisher cat. #15224025), 50µl of 10x ligation buffer 
(NEB #B0202S), 5μl of 10mg/ml BSA (NEB # B9001S) and 170.5ml of water. Afterwards, 
DNA ligation products were decrosslinked by adding 30µl of Proteinase K 10mg/ml (Merck 
cat. #3115879001) and incubating overnight at 65ºC. The following day, an extra decrosslink 
during two more hours was performed after adding 15µl of the Proteinase K enzyme. 
 
To purify the decrosslinked DNA ligation products, a single phenol-chloroform-isoamyl 
alcohol (25:24:1 v/v) purification was carried out followed by ethanol precipitation for 1 hour 
at -80ºC in presence of 30µg Glycoblue (Thermo Fisher cat. #AM9515) as a coprecipitant. 
DNA ligation products were resuspended in 130µl of nuclease free water and concentration 
was assessed by fluorimetric quantification using the Qubit dsDNA HS Assay Kit (Thermo 
Fisher cat. #Q32851).   
 
Optional 3C controls assessing the detection of cell-type invariant interactions in the HindIII 
liCHi-C libraries can be performed by amplifying 50-100ng of the DNA with 37 cycles of PCR 
amplification (see Supplementary Information Table 5 for primer information) and running the 
reactions in a 1.6% agarose gel. Correct fill-in and ligation can also be tested by reamplifying 
2.5ul of PCR products 5 more cycles, differentially digesting the product with either HindIII, 
NheI (Thermo Fisher cat. #ER0975), both enzymes or none and running the product on a 1.6% 
agarose gel.  
 
Biotin removal of the non-ligated ends was skipped. DNA ligation products were sonicated 
using Covaris M220 focused-ultrasonicator (20% duty factor, 50 peak incident power, 200 
cycles per burst, 65 seconds) in 130ul tubes (Covaris cat. #520077). After shearing, DNA ends 
were repaired by adding 6.5ul of T4 DNA polymerase 3U/µl (New England Biolabs cat. 
#M0203L), 6.5ul of T4 polynucleotide kinase 10U/µl (New England Biolabs cat. #M0201L) 
1.3ul of Klenow polymerase 5U/µl (New England Biolabs cat. #M0210L), 18µl of dNTP mix 
2.5mM each and 18µl of 10x ligation buffer (New England Biolabs cat. #B0202S) and 
incubating for 30 minutes at 20ºC.  
 
Biotinylated informative DNA ligation products were pulled down using Dynabeads MyOne 
streptavidin C1 paramagnetic beads (Thermo Fisher cat. #65001). After thorough washing of 
the ligation products-beads complex and having the sample in 35.7µl of volume, blunt DNA 
fragments on the beads were adenine-tailed by adding 7µl of Klenow 3'→5' exo- polymerase 
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5U/µl (New England Biolabs cat. #M0212L), 2.3µl of dATP 10mM and 5 µl NEB2 of 10x 
NEBuffer 2 and incubating the mixture 30 minutes at 37ºC and a further 10 minutes at 65ºC to 
inactivate the enzyme.  
 
After thorough washing of the ligation products-beads complex and having the sample in 50µl 
of 1x ligation buffer, PE Illumina adapters (Supplementary Information Table 5) were ligated 
to the adenine-tailed DNA fragments by adding 1µl of T4 DNA ligase 2000U/µl (New England 
Biolabs cat. #M0202T) and 4µl of preannealed adaptor mix 15µM and incubating the mixture 
2h at room temperature.  
 
The bead-bound ligation products were amplified 8-13 cycles by PCR (Supplementary 
Information Table 5 for cycle recommendations according to starting cell number) using 
Phusion high-fidelity PCR master mix with HF buffer (New England Biolabs cat. #M0531L)  
 
After recovering the amplified library from the supernatant, size distribution was tailored to 
300-800bp by double-sided size selection and purified using CleanNGS SPRI beads (0.4-1 
volumes; CleanNA cat. #CNGS-0050). DNA concentration was quantified on an Agilent 
Tapestation platform using high sensitivity D1000 ScreenTape system and samples were stored 
at -20ºC.   
  
Enrichment of promoter-containing ligation products was performed using SureSelectXT 
Target Enrichment System for the Illumina Platform (Agilent Technologies) as instructed by 
the manufacturer, and the library was amplified 4 cycles by PCR using Phusion high-fidelity 
PCR master mix with HF buffer (New England Biolabs cat. #M0531L). Finally, the end 
product was purified using CleanNGS SPRI beads (0.9 volumes; CleanNA cat. #CNGS-0050) 
and paired-end sequenced.  
  
The fully detailed protocol will be uploaded to Protocol Exchange platform or similar upon 
acceptance of the manuscript. 
 
Sequencing  
B-ALL liCHi-C libraries were sequenced by Macrogen Inc using HiseqX 150+150PE 
platform.  The rest of liCHi-C libraries were sequenced by BGI Genomics using DNBseq 
100+100PE platform.  
 
B-ALL cytogenetic and FISH analysis  
Cytogenetic analyses of B-ALL samples were carried out on G-banded chromosomes obtained 
from 24-hour unstimulated culture. FISH analyses were performed on fixed cell suspensions 
of the bone marrow using the LSI MYC probe (Metasystems, XL MYC BA) and the LSI IGH 
probe (Metasystems, XL IGH BA), respectively. Between 200 to 400 interphase nuclei were 
scored. 
 
liCHi-C processing  
Paired-end reads were processed using HiCUP (0.8.2)22. First, the genome was computationally 
digested using the target sequence of the restriction enzyme. Then, the different steps of the 
HiCUP pipeline were applied to map the reads to the human genome (GRCh38.p13), filter out 
all the experimental artifacts and remove the duplicated reads and retain only the valid unique 
paired reads. To assess the capture efficiency, we filtered out those paired reads for which any 
end overlaps with a captured restriction fragment, retaining only the unique captured valid 
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reads for further analysis. Library statistics for all samples are presented in Supplementary 
Information Table 1.  
  
liCHi-C interaction calling 
Interaction confidence scores were computed using the CHiCAGO R package as described 
in23,64. In summary, this pipeline implements a statistical model with two components 
(biological and technical background), together with normalization and multiple testing 
methods for capture Hi-C data. CHiCAGO analysis was performed in merged samples to 
increase the sensitivity, after assessing for reproducibility between biological replicates using: 
i) the stratum adjusted correlation coefficient according to65, averaged over chromosomes, ii) 
principal component analysis, and iii) hierarchical clustering. The reproducibility-score was 
also used to compare PCHi-C and liCHi-C libraries of the same cell types. Significant 
interactions with a CHiCAGO score ≥ 5 were considered as high confidence interactions. 
Interaction statistics for all samples are presented in Supplementary Information Table 1.  
 
Loop calling using Hi-C, Low-C and TagHi-C 
We processed Hi-C, TagHi-C and Low-C data with HiCUP22 as detailed above, using the 
human (GRCh38.p13) and mouse reference genomes (GRCm39). Loop calling was performed 
with three different methods: HICCUPS27 (1.22.01), Mustache28 (1.2.7) and HiCExplorer29 
(3.7.2). All loop callers were used with default parameters on Knight-Ruiz normalized matrices 
at 5 kb resolution and a maximum loop distance of 8 Mb. Specific parameters for HICCUPS 
were: -cpu--ignore_sparsity; for Mustache, the p value threshold was set to 0.05.  
 
Clustering of promoter interactions 
Interactions were clustered using the Autoclass algorithm and for each cluster a specificity 
score was computed as described in5 using the asinh-transformed CHiCAGO scores. Clustering 
of cell types was performed using a hierarchical method with average linkage based on 
Euclidean distances, and principal component analysis was performed using the prcomp 
function in R. For interaction data handling we used an in-house R package which allows us to 
compute distance distributions, filter interactions by the presence of histones marks, or generate 
virtual 4C of specific genes.  
 
ChIP-seq processing  
Paired-end reads were processed following ENCODE standards. Reads were trimmed using 
Trim Galore (0.6.5) to remove sequencing adapters, and then mapped using bowtie2 (2.3.2) to 
the reference genome at PRS (GRCh38.p13) with –very-sensitive parameter. We filtered out 
low quality reads, reads overlapping the ENCODE blacklist and duplicated reads. Peak calling 
was performed using macs2 (2.2.7.1) in broad and narrow mode depending on the histone mark 
using an input sample as control, with default parameters. Bigwig files were generated using 
the function bamCoverage from deepTools (3.2.1) and scaled based on the background 
normalization of the samples as described in66 before merging the biological replicates together 
for visualization purposes. All ChIP-seq data analyzed in this article is presented in 
Supplementary Information Table 3.  
  
Histones mark enrichment at PIRs 
Enrichment of the different histones mark ChIP-seq in both promoters and npPIRs was 
performed using a permutation test implemented in GenoMatriXeR67 , with 5000 
randomizations using the randomizeRegions option. Promoter interactions were classified 
based on the RPKM expression quartiles of their genes, and the promoters and npPIRs analyzed 
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separately, generating four groups of either promoters or npPIRs from lower expression to 
higher expression.  
  
Chromatin assortativity  
Chromatin assortativity was computed for the promoter-pPIR and promoter-npPIR 
subnetworks separately using ChAseR R package (https://bitbucket.org/eraineri/chaser) as 
described in37. We validated our results against a set of 1000 randomizations preserving the 
genomic distances between nodes and the chromosomes distribution of interactions. The 
abundance of each histone mark on the nodes of the networks was also computed.  
  
Gene ontology and pathways enrichment analysis  
Gene ontology (GO) enrichment analysis was performed using clusterProfiler R package for 
the 3 ontologies: molecular functions, biological processes and cellular components. The 
pathway analysis was done using ReactomePA68. We used the prioritized protein-coding genes 
by COGS (gene score >= 0.5) to compute enrichment in genes in Reactome pathways, adjusting 
p values by false discovery rate. In both analyses we used as universe all the genes in the 
capture design. 
    
Data visualization  
To visualize the contact matrices, the bam files, containing unique captured valid reads, were 
transformed into pair files using bam2pairs. Then they were converted into matrices in cool 
format with a resolution of 1Mb, 250kb and 100kb using cooler69 (0.8.11). The visualization 
of the matrices was done using HiCExplorer70. For the visualization of significant interactions 
generated by liCHi-C we used the WashU Epigenome Browser71 and karyoploteR R package72. 
  
GWAS summary statistics and imputation  
GWAS summary data was obtained from the NHGRI-EBI GWAS Catalog73 and from the UK 
Biobank - Neale Lab (UK Biobank, n.d.; http://www.nealelab.is/uk-biobank), as reported in 
Supplementary Information Table 4. Those datasets that were not in GRCh38 coordinates were 
converted to it using liftOver. To avoid spuriously strong association statistics, we filtered out 
SNPs with p value < 5·10-8 for which there were no SNPs in LD (r2 > 0.6 using 1000 genomes 
EUR cohort as a reference genotype set74 or within 50kb with p value < 105. To increase the 
power of the GWAS we applied the Poor Man’s Imputation as described in5 to the summary 
statistics described above using as reference genotype set the 1000 Genomes EUR cohort. We 
used the GRCh38 HapMap Phase II genetic map lifted from GRCh37 coordinates75 to define 
regions with 1cM recombination frequency to be used for the imputation. The MHC region 
(GRCh38:6:25-35Mb) was excluded from the analysis. Manhattan plots were visualized using 
the qqman package (0.1.8)76. 
  
GWAS enrichment at PIRs 
Enrichment of SNPs in PIRs was performed using Blockshifter as described in5 which 
considers the correlation between GWAS and PIRs. Blockshifter computes a z-score using a 
competitive test for each trait and cell type set.  
  
liCHi-C GWAS prioritizing genes  
Prioritization of relevant genes for each GWAS trait and cell type was performed using the 
COGS algorithm as described in5. Briefly, this method considers linkage disequilibrium to 
estimate the posterior probability of each SNP being casual for each trait. Then, these SNPs 
were used to compute a gene-score for all the genes involved in liCHi-C significant interactions 
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in at least one cell type. This gene-score is composed of 3 components: coding SNPs annotated 
by VEP (104)77; SNPs located in promoter regions; and SNPs overlapping Other-Ends.  
 
SVs analysis 
Translocations of B-ALL samples were identified using PLIER61. Briefly it compares the 
genome-wide interactions of a region against a set of random permutations computing a z-
score. To detect CNVs, we applied BIC-seq278, an algorithm that uses Bayesian information 
criterion-based segmentation on normalized data using naïve B samples as control genome. 
Visual inspection of both translocations and CNVs was performed by computing the log2ratio 
between the contact matrices of B-ALL and CLP samples. 
 
Data availability 
All the liCHi-C datasets generated in the present article will be available in EGA. Accession 
number will be provided after completing the data upload.  
 
Code availability 
All the analyses done in the present article are accessible in the following GitHub repository: 
https://github.com/JavierreLab/liCHiC 
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Fig. 1 liCHi-C is a robust and reproducible method to study the promoter interactome in 
low-abundance cell populations. 
a. Schematic comparison of the PCHi-C vs liCHi-C workflow. Dash-bordered boxes denote 
removed steps from the original PCHi-C protocol.  
b. Heatmap displaying stratum adjusted correlation coefficient (SCC) between promoter 
interactomes of human naïve B cells obtained by liCHi-C and PCHi-C (*) using different cell 
numbers. Reproducibility between biological replicates and between pairs of merged biological 
replicates are surrounded by black and grey lines respectively. 1000 (k), million (M). 
c. Principal Component Analysis of CHiCAGO significant interactions (CHiCAGO scores > 
5) of biological replicates detected by liCHi-C and PCHi-C (*) using different cell numbers. 
d. Top: Interaction matrix at 50kb resolution generated with PCHi-C and 40 million cells. 
Colored contour plot over the interaction matrix represents gaussian smoothing (alpha=1.2) of 
the significant CHICAGO interactions detected by liCHi-C data using different numbers of 
input cells. Bottom: Significant interactions (arcs) detected with liCHi-C and PCHi-C (*) and 
Hi-C using different numbers of input cells
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Fig. 2 liCHi-C enables the study of in vivo human hematopoiesis.  
a. Heatmap displaying stratum adjusted correlation coefficient (SCC) between promoter 
interactomes of merged biological replicates. Hematopoietic stem cell (HSC), common 
myeloid progenitor (CMP), common B cell lymphoid progenitor (CLP), megakaryocytes 
(MK), monocytes (Mon), erythroblast (Ery), naïve B cell (nB), naïve CD4+ cells (nCD4) and 
naïve CD8+ cells (nCD8). 
b. Principal Component Analysis of liCHi-C significant interactions (CHiCAGO scores > 5) 
from merged biological replicates. Shaded in grey are the predicted differentiation trajectories 
for both lymphoid and myeloid lineages.  
c. Heatmap of asinh-transformed CHiCAGO score of significant interactions in at least one cell 
type clustered using Autoclass algorithm.  
d. Top: Dendrogram of hierarchical clustering with average linkage based on Euclidean 
distances of CHiCAGO significant interactions of merged samples. Bottom: Heatmap of 
cluster specificity score of each Autoclass cluster.  
MYB (e.) ITGA2B (f.) and SARS2 (g.) promoter-centered interactions (arcs) according to liCHi-
C data. Arrows symbolize gene placement and orientation along the genomic window. Green 
shade depicts the gene promoter. 
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Fig. 3 liCHi-C identifies enhancer-promoter pairs and proteins involved in chromatin 
organization. 
a. Heatmap representing enrichment (expressed in terms of z-scores) of promoters (top) and 
non-promoter promoter-interacting regions (npPIRs) (bottom) for histone marks. PIRs and 
promoters were classified by the quartiles level of FPKM expression of the associated gene. 
Hematopoietic stem cell (HSC), common myeloid progenitor (CMP), common B cell lymphoid 
progenitor (CLP), megakaryocytes (MK), monocytes (Mon), erythroblast (Ery), naïve B cell 
(nB), naïve CD4+ cells (nCD4) and naïve CD8+ cells (nCD8). 
b. GATA3 regulatory landscape in naïve B (top), naïve CD4+ T (middle) and naïve CD8+ T 
(bottom) cells according to histone modifications and liCHi-C data. Green shade depicts the 
gene promoter, while yellow shades depict putative enhancer regions for that gene in any of 
these cell types. Arrows symbolize gene placement and orientation along the genomic window.  
c. Scatterplot plot of chromatin assortativity (ChAs) of 6 histone marks computed for the 
promoter-pPIR sub-network (x axis) against the promoter-npPIR (y axis) for common myeloid 
progenitor cells. Dot size depends on the abundancy of each histone mark.  
d. H3K9me3-centred interaction network (arcs) for common myeloid progenitor cells. Top 
graph depicts whole chromosome 19, while bottom graph shows a zoom centered on a ZNF 
gene cluster. Arrows symbolize gene placement and orientation along the genomic window.  
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Fig. 4 liCHi-C enables the discovery of new disease-relevant cell types and disease-
associated genes and gene pathways. 
a. Enrichment of GWAS summary statistics at promoter-interacting regions (PIRs) by cell type. 
Axes reflect Blockshifter z-scores for two different tissue group comparisons: myeloid versus 
lymphoid (y axis) and undifferentiated against differentiated cells (x axis). Traits are labeled 
and colored by category: autoimmune disorder (red), lymphoid trait (yellow), myeloid trait 
(green), blood cancer (blue) and other (purple). Systolic blood pressure (SBP), diastolic blood 
pressure (DBP), femoral neck bone mineral density (FNBD), depression (DEP) autism (AUT), 
low density lipoprotein (LDL), body mass index (BMI), glucose sensitivity (GLC), total 
cholesterol (TC), triglycerides (TG), type II diabetes (T2D), primary biliary cirrhosis (PBC), 
type I diabetes (T1D), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple 
sclerosis (MS), Crohn's disease (CD), celiac disease (CD), B cell absolute count (BC), white 
blood cell count (WBCC), CD4 regulatory T cell absolute count (CD4regC), Naïve CD8+ T 
cell absolute count (nCD8C), Hodgkins lymphoma (HL), leukemia (Leu), non-Hodgkins 
lymphoma_1 (NHL_1:), non-Hodgkins lymphoma_2 (NHL_2), primary lymphoid and 
hematopoietic malignant neoplasms (PLHMN), lymphoid leukemia (LLC91), chronic 
lymphocytic leukemia (CLL), lymphoid leukaemia_1 (LL_1), lymphoid leukaemia_2 (LL_2), 
monocyte count (MC), myeloid white cell count (MWCC), mean corpuscular hemoglobin 
concentration (MCHC), mean corpuscular hemoglobin (MCH), mean corpuscular volume 
(MCV), mean platelet volume (MPV), platelet count (PC), red blood cell count (RBCC).  
b. Heatmap of Blockshifter enrichment z-scores of GWAS summary statistics at promoter-
interacting regions (PIRs) by individual cell types using endothelial cells as a control. For each 
trait, comparisons have been made between each individual cell type against the control 
endothelial precursors. Green indicates enrichment in the labeled tissue; blue indicates 
enrichment in the endothelial cell control. Hematopoietic stem cell (HSC), common myeloid 
progenitor (CMP), common B cell lymphoid progenitor (CLP), megakaryocytes (MK), 
monocytes (Mon), erythroblasts (Ery), naïve B cell (nB), naïve CD4+ cells (nCD4) and naïve 
CD8+ cells (nCD8). 
c. Density distribution of the distance between selected SNPs and the transcription start site 
(TSS) of the nearest protein-coding gene (blue) and the TSS of the gene prioritized by COGS 
(green). For each GWAS trait, we selected all the significantly associated SNPs (p value < 
5·10-8) interacting with at least one protein-coding gene prioritized by COGS. Coding SNPs or 
non-coding SNPs overlapping promoters were excluded. Vertical lines represent median 
distance.  
d. Bubble plot of traits with significant enrichment (p-adj < 0.05) in one or more pathways 
from the Reactome database. Top numbers indicate the total number of genes analyzed for each 
trait (gene-score > 0.5), bubble size indicates the ratio of test genes to those in the pathway, 
and blue to yellow corresponds to decreasing adjusted p value for enrichment. 
e. Example of prioritized gene (TLE3) for the trait lymphocytic leukemia (LL_2) in naïve CD4+ 
cells. Top: Manhattan plot; grey line indicates the significance cut-off (5·10-8). Middle: 
prioritized SNPs (black dots) at naïve CD4+ (nCD4) specific enhancer. Bottom: TLE3 
regulatory landscape nCD4 and erythroblasts (Ery). Green shade depicts the gene promoter, 
while yellow shades depict putative enhancer region for that gene enriched in prioritized non-
coding SNPs. Arrows symbolize gene placement and orientation along the genomic window. 
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Fig. 5 liCHi-C simultaneously detects translocations, copy number variations and 
topological alterations in tumor samples 
a. Detection of structural variants using liCHiC data for B cell precursor acute lymphoblastic 
leukemia (B-ALL) 1 (top) and B-ALL 2 (bottom). Grey matrices on the left represent the log2 
ratio between B-ALL and CLP contact matrices at 1Mb resolution across the genome. Black 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.11.04.515239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515239
http://creativecommons.org/licenses/by-nc/4.0/


 29 

arrows indicate the location of copy number gains. On the top right: matrices at a 250kb 
resolution of the chromosomes involved in the translocations. On the middle right: zoom-ins 
of the breakpoint regions and schematic representation of the translocated chromosomes and 
the location of the FISH probes. On the bottom right: FISH images displaying the 
translocation.  
b. Top: Schematic representation of MYC and IgH genes loci. Bottom: interaction landscape 
of chromosomes 8 and 14 in common B cell lymphoid progenitors (CLP) and B-ALL 1 sample. 
Interactions within and between chromosomes are represented over and below the 
chromosomes respectively.  
c. Reconstruction of MYC promoter interaction landscape on the derivative chromosome in B-
ALL 1. Green shades depict the MYC promoter and BENC enhancer from chromosome 8, and 
the yellow shadow the 3’ RR enhancer from chromosome 14.  
d. Heatmap of asinh-transformed CHiCAGO score of significant interactions in at least one 
cell type clustered using Autoclass algorithm. Hematopoietic stem cell (HSC), naïve B cell 
(nB). 
e. Heatmap of cluster specificity score of each Autoclass cluster. Clusters containing 
interactions specific to B-ALL or interactions specifically lost in B-ALL are boxed. 
f. HOXA gene promoter-centered interaction landscape (arcs) in CLP, B-ALL 1 and B-ALL 2 
samples. Green shade depicts the HOXA gene cluster, while yellow shades depict putative 
enhancer regions for that gene in any of these cell types. Arrows symbolize gene placement 
and orientation along the genomic window. 
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Fig. 6 Comparison of liCHi-C libraries at different resolutions. 
Detection of structural variants using liCHi-C data for B cell precursor acute lymphoblastic 
leukemia (B-ALL) 3 generated using a six-cutter restriction enzyme (HindIII) (a) and a four-
cutter restriction enzyme (MboI) (b). Grey matrices represent the log2 ratio between B-ALL 
and CLP contact matrices at 1Mb resolution across the genome. Black arrows indicate the 
location of copy number losses.  
c. Absolute frequency of interaction according to the genomic distance between interacting 
regions for liCHi-C libraries generated with MboI (blue) and HindIII (green) digestion 
respectively. Median and highest absolute frequency of interactions are represented by solid 
and dashed lines respectively. 
d. DDX41 gene promoter-centered interaction landscape (arcs) generated with HindIII (top) 
and MboI (bottom) respectively. Green shade depicts the DDX41 gene promoter, while yellow 
shades depict putative enhancer regions for it. Arrows symbolize gene placement and 
orientation along the genomic window. 
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Supplementary Data Fig. 1 
a. In-depth overview of the liCHi-C workflow. “STOP” icons symbolize points in which the 
protocol may be safely stopped for up to several weeks by freezing the material. Optional 
quality controls of the first part of the protocol before sonicating may be performed at the 
expense of an extra day. 
b. Interaction matrices of liCHi-C, PCHi-C (*) and Hi-C binned at 50kb resolution of 
experiments with different numbers of input cells. 1000 (k), million (M). 
c. Proportions of reads passed through the different steps of HiCUP.  
d. Cis-trans interaction ratio of valid captured reads. Cis and trans mean interactions within and 
between chromosome respectively. 
e. Saturation plot representing unique reads respect to total number of sequenced reads. 
f. Boxplots of the stratum adjusted correlation coefficient (SCC) between promoter 
interactomes of human naïve B cells obtained by PCHi-C (*) and liCHi-C using different cell 
numbers. Medians are represented by green lines. Each boxplot corresponds to the comparison 
between biological replicates (left) or merged replicates of experiments of different numbers 
of input cells (right).  
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Supplementary Data Fig. 2 
a. Total number of CHiCAGO significant interactions (score >5) of biological replicates (1 and 
2) and merged samples (m) obtained by PCHi-C (*) and liCHi-C using different numbers of 
naïve B cells as input material. 1000 (k), million (M). 
b. Proportions of promoter-npPIR and promoter-pPIR of CHiCAGO significant interactions of 
biological replicates. 
c. Distance distribution of CHiCAGO significant interactions of merged samples. 
d. Dendrogram of hierarchical clustering with average linkage based on Euclidean distances of 
CHiCAGO significant interactions of biological replicates.  
RAG1/2 (e.) BCL6 (f.) and PAX5 (g.) promoter-centered interactions (arcs) according to liCHi-
C data. Green shade depicts gene promoters, while yellow shades depict putative enhancer 
regions for that gene. Arrows symbolize gene placement and orientation along the genomic 
window.  
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Supplementary Data Fig. 3 
a. Side-by-side comparisons of significant interactions at selected loci from Fig. 1D and 
Extended Data Fig. 2e-g detected in human naïve B cells using liCHi-C, PCHi-C. Low-C and 
Hi-C methods. Significant loops were called in each biological replicate (1 and 2) and at the 
merged level (m) using standard parameters and different loop callers. Specifically, liCHi-C 
and PCHi-C data was analyzed by CHiCAGO (CH) at the HindIII restriction fragment 
resolution. Hi-C and Low-C data was analyzed by HiCCUPS (H), Mustache (Mu) and 
HiCExplorer (HE) at the 5kb resolution. Cell numbers per biological replicate are indicated in 
each case. 1000 (k), million (M). 
b. Number of significant interactions detected by different 3C-based methods and starting 
material. Significant loops were called in each biological replicate (1 and 2) and at the merged 
level (m). Loops from liCHi-C and PCHi-C were called by CHiCAGO (CH) at the HindIII 
restriction fragment resolution (∼4096 bp). Interactions from Low-C and Hi-C were called by 
HiCCUPS (H), Mustache (Mu) and HiCExplorer (HE) at the 5kb resolution using standard 
parameters. Interactions were classified as interactions between two promoters (Promoter-
pPIR; blue), a promoter and a non-promoter region (Promoter-npPIR; green) and two non-
promoter interacting regions (npIR- npIR; yellow). Only loops that engage at least one gene 
promoter at one node (green and blue categories) have the potential to control gene 
transcription. 
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Supplementary Data Fig. 4 
a. Proportions of liCHi-C reads passed through the different steps of HiCUP. Hematopoietic 
stem cell (HSC), common myeloid progenitor (CMP), common B cell lymphoid progenitor 
(CLP), megakaryocytes (MK), monocytes (Mon), erythroblast (Ery), naïve B cell (nB), naïve 
CD4+ cells (nCD4) and naïve CD8+ cells (nCD8). 
b. Cis-trans interaction ratio of liCHi-C valid captured reads. Cis and trans mean interactions 
within and between chromosome respectively. 
c. Boxplots of the stratum adjusted correlation coefficient (SCC) between promoter 
interactomes obtained by PCHi-C and liCHi-C. Medians are represented by green lines 
d. Total number of CHiCAGO significant interactions (score > 5) called in biological replicates 
(1 and 2) and merged samples (m).  
e. Proportions of promoter-npPIR and promoter-pPIR of significant interactions of biological 
replicates (1 and 2) and merged samples (m) detected by liCHi-C and PCHi-C. 
f. Principal component analysis of CHiCAGO significant interactions called in each biological 
replicate of liCHi-C and PCHi-C.  
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Supplementary Data Fig. 5 
Principal component analysis plot of the significant ChIP-seq peaks from 6 different histone 
marks (a.) and FPKM expression values (b.). Zoom-in of some samples are shown for clear 
visualization. Hematopoietic stem cell (HSC), common myeloid progenitor (CMP), common 
B cell lymphoid progenitor (CLP), megakaryocytes (MK), monocytes (Mon), erythroblast 
(Ery), naïve B cell (nB), naïve CD4+ cells (nCD4) and naïve CD8+ cells (nCD8). 
c. Violin plot representing FPKM expression values of merged RNA-seq samples, highlighting 
the quartiles cut-offs used to classify significant interactions by the expression of its genes.  
d. Heatmap representing enrichment (expressed in terms of z-scores) of promoters (left) and 
non-promoter promoter-interacting regions (npPIRs) (right) for histone marks. Promoter-
interacting regions (PIRs) and promoters were identified by PCHi-C using 40 million cells and 
classified by the quartiles level of FPKM expression of the associated gene. 
e. PAX5 promoter-centered interaction landscape (arcs) in hematopoietic stem cells (top), 
monocytes (middle) and naïve B cells (bottom). Green shade depicts the gene promoter, while 
yellow shades depict putative enhancer regions for that gene in any of these cell types.  
f. CD34 promoter-centered interaction landscape (arcs) in hematopoietic stem cells (top), 
monocytes (middle) and erythrocytes (bottom). Green shade depicts the gene promoter, while 
yellow shades depict putative enhancer regions for that gene in any of these cell types.  
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Supplementary Data Fig. 6 
a. Boxplot displaying chromatin assortativity (ChAs) values of 1000 distance-preserved 
randomized networks. ChAs values of the liCHi-C promoter-npPIRs subnetwork (left) and 
promoter-pPIR subnetwork (right) for each histone mark in common myeloid progenitor cells 
are represented with colored dots. Color represents adjusted p-value.  
b. Gene Ontology terms enrichment for genes involved in H3K9me3-centred interaction 
networks based on liCHi-C data. Hematopoietic stem cell (HSC), common myeloid progenitor 
(CMP), common B cell lymphoid progenitor (CLP), megakaryocytes (MK), monocytes (Mon), 
erythroblast (Ery), naïve B cell (nB), naïve CD4+ cells (nCD4) and naïve CD8+ cells (nCD8). 
Color and point size represent adjusted p-value and gene ratio respectively.  
c. Boxplots of log10 FPKM expression values of the genes involved in H3K9me3-mediated 
promoter interaction networks. Interactions with peak of H3K9me3 in the npPIRs interacting 
with a promoter (P-npPIR), interactions with a H3K9me3 peak in one of the two interacting 
promoters (P-pPIR 1), interactions with H3K9me3 peaks in both interacting promoters (P-pPIR 
2). 
d. H3K9me3-mediated promoter interaction network centered on the protocadherin genes 
cluster in naïve B cells. Arrows symbolize gene placement and orientation along the genomic 
window.  
 
  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.11.04.515239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515239
http://creativecommons.org/licenses/by-nc/4.0/


 44 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.11.04.515239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515239
http://creativecommons.org/licenses/by-nc/4.0/


 45 

Supplementary Data Fig. 7 
a. Heatmap of Blockshifter z-scores reflecting the enrichment of SNPs at promoter-interacting 
regions (PIRs) called by liCHi-C. For each trait, comparisons have been made between each 
naïve B cell titration against the control endothelial precursors. Green indicates enrichment in 
naïve B cells; blue indicates enrichment in the endothelial cell control. Traits are labeled and 
colored by category: autoimmune disorder (red), lymphoid trait (yellow), myeloid trait (green), 
blood cancer (blue) and other (purple). Systolic blood pressure (SBP), diastolic blood pressure 
(DBP), femoral neck bone mineral density (FNBD), depression (DEP) autism (AUT), low 
density lipoprotein (LDL), body mass index (BMI), glucose sensitivity (GLC), total cholesterol 
(TC), triglycerides (TG), type II diabetes (T2D), primary biliary cirrhosis (PBC), type I 
diabetes (T1D), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple 
sclerosis (MS), Crohn's disease (CD), celiac disease (CD), B cell absolute count (BC), white 
blood cell count (WBCC), CD4 regulatory T cell absolute count (CD4regC), Naïve CD8+ T 
cell absolute count (nCD8C), Hodgkins lymphoma (HL), leukemia (Leu), non-Hodgkins 
lymphoma_1 (NHL_1:), non-Hodgkins lymphoma_2 (NHL_2), primary lymphoid and 
hematopoietic malignant neoplasms (PLHMN), lymphoid leukemia (LLC91), chronic 
lymphocytic leukemia (CLL), lymphoid leukaemia_1 (LL_1), lymphoid leukaemia_2 (LL_2), 
monocyte count (MC), myeloid white cell count (MWCC), mean corpuscular hemoglobin 
concentration (MCHC), mean corpuscular hemoglobin (MCH), mean corpuscular volume 
(MCV), mean platelet volume (MPV), platelet count (PC), red blood cell count (RBCC). 1000 
(k), million (M). 
b. Percentage of overlap between the set of genes prioritized by COGS between naïve B cells 
liCHi-C against the set of genes prioritized with PCHi-C using 40M sample for lymphoid 
traits.  
c. Percentage of overlap between the set of genes prioritized by COGS with liCHi-C against 
the set of genes prioritized with PCHi-C. Unlike in b, the 6 cell types and all GWAS datasets 
were included in the analysis. 
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Supplementary Data Fig. 8 
a. G-band karyotype of pediatric B cell precursor acute lymphoblastic leukemia (B-ALL) 1 and 
B-ALL 2 samples.  
b. Proportions of liCHi-C reads passed through the different steps of HiCUP.  
c. Cis-trans interaction ratio of liCHi-C valid captured reads. Cis and trans mean interactions 
within and between chromosome respectively. 
d. Total number of liCHi-C significant interactions.  
e. Proportions of promoter-npPIR and promoter-pPIR of liCHi-C significant interactions.  
f. Top: Schematic representation of CEBPD and IgH gene loci. Bottom: interaction landscape 
of chromosomes 8 and 14 in common B cell lymphoid progenitors (CLP) and B-ALL 2 sample. 
Interactions within and between chromosomes are represented over and below the 
chromosomes respectively.  
g. Reconstruction of CEBPD promoter interaction landscape on the derivative chromosome in 
B-ALL 2. Green shade depicts the CEBPD promoter and the yellow shadow the enhancer μ 
(Eμ) of the IgH loci. 
h. Proportions of liCHi-C reads from B-ALL patient 3 passed through the different steps of 
HiCUP.  
i. Cis-trans interaction ratio of liCHi-C valid captured reads from B-ALL patient 3 generated 
with HindIII and MboI restriction enzyme. Cis and trans mean interactions within and between 
chromosome respectively. 
j. Total number of liCHi-C significant interactions from B-ALL patient 3.   
k. Proportions of promoter-npPIR and promoter-pPIR of liCHi-C significant interactions 
detected using HindIII and MboI digestion respectively.  
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