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Abstract	16 

Microbial genomes encode functional repertoire of microbes. However, microbes rely on 17 

various proteins to be expressed to carry out specific functions, and the expression of those 18 

proteins can be affected by the environment. It remains elusive how the selective expression 19 

of a protein depends on whether it is metabolically essential to the microbe9s growth, or it can 20 

claim resources as an ecological niche. Here we show that by pairing metagenomics and 21 

metaproteomics data we can reveal whether a protein is relevant for occupying ecological 22 

niches or is essential for microbial metabolism. In particular, we developed a computational 23 

pipeline based on the quantification of the gene-level (or protein-level) functional redundancy 24 

of each protein, which measures the degree to which phylogenetically unrelated taxa can 25 

express (or have already expressed) the same protein, respectively. We validated this pipeline 26 

using both simulated data of a consumer-resource model and real data of human gut 27 

microbiome samples. Furthermore, for the real data, we showed that the metabolic and 28 

ecological roles of ABC-type transporters and ribosomal proteins predicted by our pipeline 29 

agree well with prior knowledge. Finally, we performed in vitro culture of a human gut 30 

microbiome sample and investigated how oversupplying various sugars involved in ecological 31 

niches influences the community structure and protein expression. The presented results help 32 

us identify metabolic and ecological roles of proteins, which will inform the design of nutrient 33 

interventions to modulate the human microbiome. 34 
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 35 

Introduction	36 

The advance in metagenomic sequencing technology has enabled us to measure the genomic 37 

contents and functional potentials of microbial communities at an unprecedented rate, helping 38 

us understand how the functionality of microbes influences host health133 and how microbial 39 

metabolism in natural environments enables biogeochemical cycling436. Based on metabolic 40 

models inferred from genomes, various computational approaches have been proposed to 41 

better quantify inter-species interactions and ecological concepts in microbial communities7312. 42 

For example, metabolic networks of microbes have been employed to quantify 43 

complementarity and competition indices as a proxy for potential interactions7. Also, a 44 

nonlinear dimensionality reduction technique  has been used to map bacterial metabolic niche 45 

space9. In addition, functional redundancy and functional stability for microbial communities 46 

were analyzed in the past10312. 47 

A major limitation of those approaches is that they only rely on metagenomic data, 48 

which does not reflect true functional activities but only encodes functional capacity (or 49 

potential functions). In reality, at any given time and under any environmental condition, 50 

microbes only express a subset of their potential functions as proteins to carry out particular 51 

functions13. Recently, an ultra-deep metaproteomics approach has been developed to quantify 52 

expressed proteins in complex microbial communities, e.g., the human gut microbiome14. 53 

Pairing metagenomic and metaproteomic data offers the possibility to investigate how each 54 

protein is selectively expressed under different environmental conditions.  55 

From the metabolic perspective, it is well known that some genes and their expressed 56 

proteins are indispensable for cell metabolism under any conditions, and microbes will not 57 

survive or reproduce if those genes are lost or those proteins are not expressed. Indeed, 58 

lacking proteins essential to microbial metabolism will cease microbial growth, regardless of 59 

ecological competition. For example, the growth of microbes relies on aminoacyl-tRNA15,16. 60 

Consequently, microbes have to express proteins involved in the aminoacyl-tRNA synthesis 61 

due to their metabolic essentiality to microbial growth15,16. 62 

From the ecological perspective, some proteins are expressed under ecological 63 

selection, and the presence of such proteins directly indicates which resources a microbe can 64 

utilize so as to thrive, i.e., the ecological niche of this microbe in the microbial community. 65 

Different proteins might enable a microbe to utilize different resources or adapt to varying 66 

environments. If the function of a protein can simply be performed by another protein, it may 67 
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be not necessary to express both proteins at the same time. This is evident in the case of E. 68 

coli, which prefers glucose over lactose due to the repressed expression of lactose-utilizing 69 

enzymes, even though it can use both sugars17,18. Such specialization of consuming one 70 

resource caused by the selective protein expression may reduce the niche overlap with other 71 

species. Another example is Acetyl-coenzyme synthetase (Acs) --- a protein that catalyzes the 72 

conversion of acetate into Acetyl-CoA, an essential intermediate in the metabolism19,20. The 73 

overexpression of Acs in E. coli can significantly switch glucose consumption to acetate 74 

consumption21324. The glucose specialist (CV103) and acetate specialist (CV101) are two E. 75 

coli mutants with different metabolic strategies; CV103 does not express Acs while CV101 76 

overexpresses it21324. It has been shown that CV101 can consume acetate produced by CV103, 77 

and thus they achieve a coexistence due to the niche partionning21,22. 78 

How to understand the selective expression of microbial proteins is an outstanding 79 

question in microbiology. Does the behavior of selective expression of microbial proteins differ 80 

between metabolic function (e.g., essential for microbial growth metabolism) and ecological 81 

function (e.g., claiming resources as a niche)? To address this question, in this work we 82 

developed a computational method to perform paired metagenomic and metaproteomic25328,14 83 

data analysis and revealed whether a protein is essential for microbial metabolism or relevant 84 

for occupying ecological niches. In particular, we used the metagenomic data to construct the 85 

Gene Content Network (GCN) --- a bipartite graph that connects microbial taxa to their genes 86 

(Fig. 1a), and used the metaproteomic data to construct the Protein Content Network (PCN) -87 

-- a bipartite graph that connects microbial taxa to their truly expressed protein functions (Fig. 88 

1b). For each protein, we quantified its gene-level (or protein-level) functional redundancy (FR), 89 

which is defined as the degree to which unrelated taxa can express (or have already expressed) 90 

this protein, respectively. Using synthetic data generated by a consumer-resource model of 91 

microbial communities, we found that either the comparison of network degree of a protein (i.e., 92 

the number of taxa that own/express the protein) between the GCN and PCN or the 93 

comparison between the gene-level and protein-level FR of a protein can reveal its role in 94 

metabolic essentiality and ecological niches. Then we applied the same computational pipeline 95 

to analyze the real data of human gut microbiome samples to predict metabolic and ecological 96 

functions for proteins. We found that the metabolic and ecological roles of ABC-type 97 

transporters and ribosomal proteins predicted by our method agree well with prior knowledge. 98 

Finally, we performed in vitro culture experiments using human gut microbiome samples with 99 

and without sugars added to investigate how oversupplying various sugars involved in 100 

ecological niches influences the community structure and protein expression.  101 
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Results	102 

Quantifying	gene-	and	protein-level	functional	redundancy	of	each	protein	103 

Consider a microbiome sample with taxonomic profile ! = ($!, & , $"), where $# is the relative 104 

abundance of taxon-( and 	3 $#
"
#$! = 1. For a given protein, we can define its gene-level FR 105 

(FR%) within this sample as 106 

 FR% =	3 3 .1 2 0#&
'()1$#$&

"
&*#

"
#$! , (1) 107 

where 0#&
'()

 is the distance between taxon-( and taxon-2 based on their genomic capacity to 108 

express this protein. For simplicity, we assume 0#&
'() is binary, i.e., 0#&

'() = 0 if and only if both 109 

taxa share the potential to express the protein, and 0#&
'() = 1 otherwise. For the same protein, 110 

we can also define its protein-level FR (FR+) within this sample as  111 

 FR+ =	3 3 .1 2 0#&
,()1$#$&

"
&*#

"
#$! , (2) 112 

where 0#&
,()

 is the distance between taxon-(  and taxon-2 based on their expression of the 113 

protein. Again, we assume 0#&
,() is binary, i.e., 0#&

,() = 0 if and only if both taxa have expressed 114 

the protein, and 0#&
,() = 1 otherwise. Note that here we define FR% and FR+ for each protein. 115 

This is different from our previous studies12,14, where FR was calculated by including all genes 116 

or proteins in the entire microbial community.  117 

To demonstrate the definitions of FR%  and FR+ , let9s consider a simple community 118 

consisting of two coexisting E. coli strains CV101 and CV103 with relative abundance $! and 119 

$-, respectively
21,22. For the protein Acs that is required for the acetate consumption, since 120 

both CV101 and CV103 own this functional capacity, we have 0!-
'() = 0-!

'() = 0, and	FR% =121 

2$!$-. However, because CV103 does not express Acs and CV101 overexpresses it
21324, we 122 

have 0!-
,() = 0-!

,() = 1, and FR+ = 0. Furthermore, we can compare the network degree of Acs 123 

in the GCN and PCN. The network degree of a protein in the GCN (denoted as k'()) is the 124 

number of taxa owning the capacity to express the protein, while the network degree of a 125 

protein in the PCN (k,()) is the number of taxa that have truly expressed the protein. Here, 126 

k'() = 2 and k,() = 1. Of course, not every protein is ecologically selected. For example, 127 

proteins involved in the aminoacyl-tRNA synthesis, critical for the growth of microbes, are not 128 

ecologically selected because the loss of ability to synthesize aminoacyl-tRNA inevitably stops 129 

the growth of microbes15,16. Hence, for each of the proteins involved in aminoacyl-tRNA 130 

synthesis, we expect k'() = k,() and FR% = FR+.  131 

 132 
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Illustration	of	our	computational	pipeline	using	a	hypothetical	community	133 

To illustrate our computational pipeline, let9s consider a simple hypothetical example with two 134 

species (pink oval vs yellow indented oval in Fig. 1a, b). For the pink species to grow, it can 135 

either use the red resource (red pentagon in Fig. 1a) or the blue resource (blue triangle in Fig. 136 

1a) and convert either of them to the green metabolite (green circle in Fig. 1a), which can then 137 

be assimilated into the cell biomass. For the yellow species, its growth will only occur by 138 

transforming the red resource into the green one to fuel the biomass synthesis (Fig. 1a). If the 139 

two species are co-cultured in the same environment to compete for externally supplied red 140 

and blue resources, an ideal scenario for them to coexist is that the pink species would choose 141 

to consume the blue resource, preventing resource competition with the yellow species (Fig. 142 

1b), similar to the niche partitioning observed in the community of two coexisting E. coli strains: 143 

CV101 and CV10321,22.  144 

We can capture this hypothetical scenario of selective expression mathematically using 145 

the GCN and PCN of this community. The bipartite graph and incidence matrix representations 146 

of the GCN (or PCN) are shown in Fig. 1a (or Fig. 1b), respectively. Simply comparing the 147 

structure of the GCN and the PCN already offers us some insights into ecological niches and 148 

metabolic essentiality. For example, let9s consider the protein responsible for converting red 149 

resource to green metabolite	(this protein is represented as the red broken circle in Fig. 1a, b), 150 

its degree in the GCN is k'() = 2, while its degree in the PCN is k,() = 1. This degree 151 

reduction is due to distinct ecological niches being occupied by two species when they are 152 

cocultured. By contrast, the protein responsible for the assimilation of critical green metabolites 153 

(green broken circle in Fig. 1a, b) into biomass does not show a degree reduction from the 154 

GCN to the PCN, because it is essential for microbial growth.  155 

An ecologically meaningful approach to understanding the selective expression of 156 

different proteins would be to systematically compare their respective k'() and k,() (Fig. 1c), 157 

which are independent of microbial compositions; or their respective FR% and FR+ (Fig. 1d), 158 

which naturally involve microbial compositions in the calculation. Consider three distinct protein 159 

function types: (1) <niche functions= that are under strong ecological competition (e.g., red 160 

broken circle in Fig. 1c, d); (2) <specialist functions= that are specialized by a few taxa (e.g., 161 

blue broken circle in Fig. 1c, d); and (3) <essential functions= that are metabolically 162 

indispensable for many taxa (e.g., green broken circle in Fig. 1c, d). We anticipate that the 163 

three function types will occupy different regions in the k'() vs. k,() plot (or the FR% vs. FR+ 164 

plot). Specifically, for essential functions, both their k'() and k,() (or FR% and FR+) are high. 165 
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For specialist functions, both their k'() and k,() (or FR% and FR+) are low. Niche functions 166 

have high k'() but low k,() (or high FR% but low FR+).  167 

 168 

Validate	our	computational	pipeline	using	a	consumer-resource	model		169 

Note that previously developed Consumer-Resource models (CRMs) only focus on 170 

physiologies of microbes (i.e. phenotypes)29331. Simply put, those models ignored genomic 171 

capacity or potential functions, but only considered expressed functions (e.g., how species 172 

consume different resources). There was no attempt of building a consumer-resource model 173 

of microbial communities that integrates both potential and expressed functions. As a first step 174 

toward this direction, we constructed such a model.  175 

We assumed three types of protein functions: niche functions (colored red), specialist 176 

functions (colored blue), and essential functions (colored green) in a functional pool. For 177 

simplicity, each of the niche (or specialist) functions is modeled as the consumption of a unique 178 

and externally supplied resource (Fig. 2a1). To model the difference between niche and 179 

specialist functions, we assume they are associated with different numbers of species (i.e., 180 

<consumers= in the consumer-resource modeling framework). The former should be associated 181 

with much more species than the latter. The loss of a niche or specialist function would make 182 

a species unable to consume the corresponding externally supplied resource (Fig. 2a2, a3). 183 

The loss of an essential function is simply modeled as the reduction of a species9 growth rate 184 

(Fig. 2a4). Mathematically, we multiply the intrinsic growth rate of a species by a diminishing 185 

factor 6 = 0.95 for each missing essential function.  186 

The key issue in this genome-aware consumer-resource modelling framework is to 187 

decide how microbes select a subset of their potential functions to express. To tackle this issue, 188 

we first assigned potential functions to each species (Fig. 2b, left). In particular, for each 189 

species, each niche (specialist, or essential) function was assigned to the species9 genome 190 

with probability $. ($/, or $0), respectively. In our simulations, we set $. = $0 = 0.7 to ensure 191 

that we cannot distinguish niche functions from essential functions only based on GCN and 192 

thus would like to see if they show different patterns after the community assembly.  We set 193 

$/ = 0.2 < $. = $0 so that specialist functions were assigned to fewer species than niche and 194 

essential functions. Then for each species, we determined its truly expressed functions by 195 

randomly sub-sampling a subset of its potential functions (Fig. 2b, middle).  For function type-196 

; (; = 1,2,3), this was achieved by expressing each potential function with a species-specific 197 

and function-type-specific probability $#,2 randomly drawn from a uniform distribution =(0,1). 198 
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Since different species have different sub-sampling probabilities, some species will tend to be 199 

generalists (or specialists). Similar to all consumer-resource models29331, we assume a fixed 200 

expression pattern for each species and all resources being supplied so that we don9t have to 201 

consider the complexity of adaptive expression (such as different expression patterns when 202 

different resources are supplied). In the end, we assembled all species in the same community 203 

and ran consumer-resource dynamics until the system reached a steady state, for which we 204 

constructed the PCN of the survived species (Fig. 2b, right).  205 

We assumed the species pool consists of > = 10,000 species, and the function pool 206 

consists of 20 functions for each of the three function types. We introduced 10,000 species to 207 

ensure the number of initial species in the assembly simulation is much larger than the number 208 

of functions so that we can assemble a high-diversity community in the end. The GCN of the 209 

initial species pool is shown in Fig. 2c (left). For each species, we randomly sub-sampled a 210 

subset of potential functions to express (middle panel, Fig. 2c). For each species, its true 211 

consumption rates are its maximal consumption rates divided by the number of resources the 212 

species can use (see Methods) to prevent the selection of generalist species that consume all 213 

resources without a penalty32,33. Due to the competitive exclusion principle34, the maximal 214 

number of species survived in the final steady state is 40, because there are 40 unique 215 

externally supplied resources (<nutrients=) in our model.  216 

In Fig.2c (right), we show a simulation example with 35 species survived in the final 217 

steady state. For this assembled steady-state microbial community, we found that the three 218 

modeled protein functions types were correctly revealed as three clusters by the Gaussian 219 

mixture model in both the comparison of network degree (Fig. 2d) and FR (Fig. 2e). In particular, 220 

for niche functions (red cluster in Fig. 2d, e), their mean degree in PCN (2.1) is much lower 221 

than that in GCN (24.45), and their mean FR+ (0.005) is also much lower than their mean FR% 222 

(0.48). For essential functions (green cluster in Fig. 2d, e), their mean degree in PCN (23.7) is 223 

close to that in GCN (26.7), and their mean FR+ (0.47) is also similar to their mean FR% (0.57). 224 

For specialist functions (blue cluster in Fig. 2d, e), both their k'() and k,() (or FR% and FR+) 225 

are low.  226 

The three functional clusters revealed by the classification of network degrees and 227 

functional redundancies for all modeled protein functions exactly match the three function types 228 

in our model. Moreover, the relative positioning of the three functional clusters based on our 229 

simulation data agrees well with our hypothesis shown in Fig. 1. This clearly validates our 230 

hypothesis that niche-occupying proteins have a larger difference in FR and network degree 231 

than metabolically essential proteins. 232 
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We emphasize that the three functional clusters observed in the k'() vs. k,() (or the 233 

FR% vs. FR+) plot is highly nontrivial. It is a result of the community assembly. To demonstrate 234 

the importance of community assembly, we randomly picked 35 species (same as the number 235 

of survived species) from the initial pool with equal abundances (i.e., the relative abundance is 236 

1/35 for each species) without natural selection and found that it is impossible to distinguish 237 

niche functions from essential functions (Fig. 2f, g). Interestingly, for essential functions, we 238 

noticed that those species survived after the community assembly tend to have much larger 239 

FR+ (with mean 0.478) than randomly selected species (with mean 0.132). By contrast, for 240 

niche functions, survived species tend to have a smaller FR+ (with mean 0.005) than randomly 241 

selected species (with mean 0.133). Similarly, we also computed FR for the same randomly 242 

picked 35 species that share the abundances as survived species in the simulation. Again, we 243 

cannot differentiate niche functions from essential functions (Supplementary Fig. 1). 244 

We also simulated another community with 100 niche functions, 100 specialist 245 

functions, and 100 essential functions. The species pool still consists of > = 10,000 species. 246 

As shown in Supplementary Fig. 2), the results are similar to that for the community with fewer 247 

functions (Fig. 2). 248 

 249 

Three	protein	functional	clusters	observed	in	human	gut	microbiomes	250 

After the validation of our computational pipeline using simulated data, we further validated it 251 

on real data of human mucosal-luminal interface samples collected from the ascending colon 252 

of four children14,28. Here we focused on the genus level and annotated the identified proteins 253 

from metagenomics and metaproteomics data via the COGs (Clusters of Orthologous genes) 254 

database35,36. We constructed the GCN and PCN for all the samples following the same 255 

procedure as reported in a previous study14, and took the intersected COGs between the two 256 

networks. In the main text, we focus on the analysis and discussion of subject HM454, and 257 

similar findings from the other three subjects are shown in Supplementary Figs. 4-6. For 258 

HM454, we used MetaPhlAn237 to obtain the taxonomic profile, which includes 85 genera with 259 

assigned relative abundances. Raw metagenomic reads and unique peptide sequences 260 

detected in metaproteomics were searched against an integrated gene catalog (IGC) database 261 

of the human gut microbiome38 to generate the GCN and PCN respectively. Taxonomic 262 

assignment was performed using the 8protein-peptide bridge9 method as described previously14. 263 

More details about data processing can be found in Methods. And the number of intersected 264 

COGs for the GCN and PCN associated with HM454 is 1,542. The genus- and COG-level GCN 265 
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 9 

and PCN of this microbiome sample are shown in Fig. 3a, b. The connectance (i.e., the number 266 

of edges divided by the maximal number of possible edges) of the GCN (or PCN) is 0.220 (or 267 

0.049), respectively. The GCN is nested with the nestedness value of 0.667 based on the 268 

classical NODF (Nestedness based on Overlap and Decreasing Fill) measure39 (Fig. 3a; see 269 

Methods for details). The PCN has a lower nestedness value of 0.453 for the NODF measure 270 

(Fig. 3b). 271 

By comparing the network degree and functional redundancy of one COG in the GCN 272 

(one column in Fig. 3a) with those for the same COG in the PCN, we can look into how the 273 

COG impacts and is influenced by their metabolic essentiality and connection to occupy 274 

ecological niches. For example, COG0539 is the ribosomal protein S1, which has been shown 275 

to be essential for some microbes40344. For subject HM454, 20 genera have COG0539 in the 276 

GCN, while 15 genera have this COG in the PCN, hence k'() = 20  and k,() = 15 . 277 

Additionally, COG0539 has a similar level of functional redundancy in GCN and PCN: FR% =278 

0.476  and FR+ = 0.461 . These results suggest that COG0539 is crucial for microbial 279 

metabolism, and not ecologically selected. Another example that falls into a different category 280 

(i.e., niche functions) is COG1116, which is the ABC-type nitrate/sulfonate/bicarbonate 281 

transport system45. For COG1116, we have k'() = 22 k k,() = 2; and FR% = 0.388 k FR+ = 282 

0.004 , which is evidence for the further specification in transporting nitrate, sulfonate, or 283 

bicarbonate across community members on the protein level. Different from the previous 284 

examples, some functions are specialized by a few genera on the gene level and thus are still 285 

specialized by those genera on the protein level. For example, COG1018 (Ferredoxin-NADP 286 

reductase), which has k'() =  k,() = 1  and FR% = FR+ =  0.0 , is classified as a specialist 287 

function. 288 

To systematically explore the difference between GCN and PCN, we visualized the 289 

difference in the network degree (Fig. 3c) and functional redundancy (Fig. 3d) for all COGs. As 290 

can be seen in Fig. 3c for comparing network degrees, nearly all COGs are below the black 291 

dashed line of k'() = k,() because the map from the genomic capacity to protein function is 292 

a sub-sampling process. The network degrees in PCN for almost all points are less than 10 293 

(1,365 out of 1,542) and much less than their corresponding network degrees in GCN (349 out 294 

of 1,542 COGs have network degrees less than 10). 804 of 1,542 COGs have a reduction in 295 

network degree by more than 80%. Eventually, the major difference in network degree will lead 296 

to a significant difference in functional redundancy, although the reduction in network degree 297 

from GCN to PCN cannot fully explain why many COGs have FR+~0 (744 out of 1,542 have 298 
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FR+ < 0.01 in Fig. 3d). Indeed, the network degrees for COGs in the PCN positively correlate 299 

with FR+, but there is no simple relationship between kPCN and FR+ (Fig. 3e). For example, for 300 

L-arabinose isomerase (COG2160), its network degree in GCN (kGCN = 8) is fairly close to the 301 

network degree in PCN (kPCN = 7), but its FR+ (0.04) is much lower than FR% (0.23) since the 302 

genus Blautia (which makes up 22% of the subject HM4549s total microbial abundance) didn9t 303 

express L-arabinose isomerase, even if it has this capacity encoded in its genome.  304 

We applied the Gaussian mixture model fitted on simulated data to classify all protein 305 

functions in the real data and obtained 3 clusters from both the k'() vs. k,() plot (Fig. 3c) and 306 

the FR% vs. FR+ plot (Fig. 3d). Despite that the clustering of protein functions in real data looks 307 

weaker than that in simulated data, the relative positioning of the three clusters (shaded areas 308 

in Fig. 3c, d) agree well with our hypothesis shown in Fig. 1, as well our simulation results 309 

shown in Fig. 2. We suspect that the weakened clustering might be due to (1) the variation of 310 

kGCN (or FR%) in real data (Fig. 3c, d) is much larger than that in simulated data (Fig. 2d, e); the 311 

low resolution of the GCN and PCN in the real data (both were constructed at the genus level). 312 

Note that some points in Fig. 3c, d are above the diagonal line, contradicting the sub-313 

sampling argument for the gene expression. For instance, we noticed that for the subject 314 

HM454, 12 genera have COG0094 in the GCN, while 25 genera have this COG in the PCN. 315 

Additionally, COG0094 is even less redundant in the GCN (FR% = 0.166) than it is in the PCN 316 

(FR+ = 0.641). FR% should be always larger than FR+ if the PCN was a proper subgraph of the 317 

GCN for COG0094. We believe this contradiction is largely due to the metagenomic 318 

sequencing depth and the metaproteomic identification depth. We know that both 319 

metagenomics and metaproteomics have depth limitations and require sufficient depth to 320 

detect genes or proteins, respectively. More specifically, some proteins detected by the ultra-321 

deep metaproteomics are not found in putative protein sequences annotated from 322 

metagenomes. For example, if more proteins were assigned to one COG by the 323 

metaproteomics than annotated metagenomes, it indicates the number of taxa that express 324 

proteins belonging to the COG is higher than the number of taxa that own the COG. As a result, 325 

the network degree of the COG in the GCN is even higher than its network degree in the PCN, 326 

making FR+ of the COG larger than its FR% (evidenced by COG0094). 327 

 328 

Comparing !"!	with	!""	pinpoints	ecological	niches	and	metabolic	essentiality	329 

In order to justify whether or not the FR comparison for many COGs is ecologically or 330 

metabolically meaningful, we focus on two types of proteins: ABC-type transporters (under 331 
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strong ecological selection because they directly influence the ecological interactions and are 332 

influenced by resource availability)45347 and ribosomal proteins (under weak ecological 333 

selection because of their essentiality)42344.  334 

ABC-type transporters are energy-requiring transporter proteins responsible for 335 

obtaining and releasing resources in the environment45347. For example, if we consider a 336 

particular transporter responsible for the uptake of glucose from the environment, theoretically 337 

only top consumers of glucose would have the chance to claim this niche (consumption of 338 

glucose) from the ecological standpoint. Consequently, we should expect a specification in 339 

glucose consumption on the level of protein functions, even though many species have the 340 

capacity to utilize it. For the gut microbiota sample we investigated, we indeed found that kGCN 341 

for all ABC-type transporters are much larger than their kPCN (Fig. 4a). Similarly, we also found 342 

that FR%  for all ABC-type transporters are much larger than their FR+  (Fig. 4b). Many 343 

transporter proteins were classified to the red cluster (i.e., the cluster of niche functions) in Fig. 344 

4b. Some transporter proteins were classified to the blue cluster (i.e., the cluster for specialist 345 

functions) due to the specialization on the gene level. As a result, such specialization would be 346 

carried to the protein level. Some transporter proteins were classified to the green cluster (i.e., 347 

the cluster for essential functions) because they have been proven essential for microbes. One 348 

example is the ABC-type Fe3+/spermidine/putrescine transporter (COG3842) which has 349 

FR% = 0.339  and FR+ = 0.285 . It has been shown that iron is essential for bacteria as it 350 

functions as a co-factor in iron-containing proteins in redox reactions, metabolic pathways, and 351 

electron transport chain mechanisms48,49. 352 

Ribosomal proteins are necessary for the growth of all living organisms because, as 353 

we know, the ribosome is the place where other proteins are synthesized50,51. Since ribosomal 354 

proteins are an indispensable part of microbial survival, all abilities of synthesizing such 355 

proteins are expected to be expressed. In our data, many ribosomal proteins were classified 356 

to the green cluster (i.e. the cluster for essential functions). Moreover, we found that their kGCN 357 

were very close to their kPCN (Fig. 4e). In Fig. 4f, we compared FR% with FR+ and found many 358 

ribosomal proteins were classified to the green cluster (i.e. the cluster for essential functions), 359 

agreeing with our expectation that proteins with high FR%  and FR+  are more likely to be 360 

essential functions. Interestingly, two ribosomal proteins (L28 and L34) colored red in Fig. 4e 361 

have been shown to be non-essential41,42,52 to microbes such as E. coli. Some specialized 362 

ribosomal proteins in microbial genomes continue to be specialized on the protein level and 363 

thus were classified to the blue cluster (i.e., the cluster for specialist functions). 364 
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Alternatively, we looked at the distribution of network degrees (Fig. 4c, g) and the 365 

distribution of functional redundancy (FR% or FR+ in Fig. 4d, h) for the two protein types to 366 

observe their difference. For ABC-type transporters, the distribution of network degrees in PCN 367 

is close to 0 (having a median of 2), while the median of network degrees in GCN is 25. For 368 

ribosomal proteins, the distribution of network degrees in PCN (median is 12) is similar to that 369 

in GCN (median is 14). For ABC-type transporters, the distribution of FR+ in PCN is close to 0 370 

(with a median ~ 0.01), while the median of FR% in GCN is around 0.30. For ribosomal proteins, 371 

the distribution of FR+  in PCN (median ~ 0.20) is similar to the distribution of FR%  in GCN 372 

(median ~ 0.21). The same patterns of ABC transporters showing a big reduction (in functional 373 

redundancy and network degree) and ribosomal proteins showing little difference are also true 374 

for the other 3 individuals (Supplementary Figs. 9-11). 375 

We also validated the above results using a different functional annotation method, 376 

KEGG Orthology (KO)53356. The annotation rate of proteins involved in PCN of the four 377 

individual microbiomes is 78% (much lower than 92% which we had for the COG annotation). 378 

The contrasting difference between ABC-type transporters and ribosomal proteins is well 379 

preserved (see Supplementary Fig. 7). Additionally, the distribution of FR+ shows a dramatic 380 

difference across KO groups (Supplementary Fig. 8). Some ecologically strongly selected KO 381 

groups have small FR+, while other metabolically essential KO groups show fairly large FR+ 382 

and big variations (see Supplementary Fig. 8). For example, almost all proteins in ABC 383 

transporters and PTS systems have FR+  close to zero (Fig. Supplementary Fig. 8), and 384 

transporters and PTS systems are well-known as the ecologically selected groups45347,57. As a 385 

comparison, proteins from Aminoacyl-tRNA biosynthesis, glycolysis, and ribosomes all have 386 

big FR+ and huge variations across different proteins within the group (Supplementary Fig. 8). 387 

In the past, the metabolic essentiality has been demonstrated for Aminoacyl-tRNA 388 

biosynthesis15,16, glycolysis58,59, and ribosomes42344. 389 

	390 

The	response	of	community	and	protein	expression	to	the	introduction	of	sugars	391 

In ecology, a niche is often defined as an abiotic and biotic factor that supports the survival of 392 

species9,60362. Therefore, niche functions are associated with corresponding limiting resources 393 

involved in those functions. For example, COG1879 (ABC-type sugar transport system, 394 

periplasmic component, contains N-terminal xre family HTH domain) which is categorized as 395 

a niche function owing to its high FR% of 0.486 and low FR+ of 0.041 for the subject HM454, is 396 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2022. ; https://doi.org/10.1101/2022.11.04.515228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515228
http://creativecommons.org/licenses/by-nd/4.0/


 13 

associated with widely competed sugars in microbial communities. After inferring niche 397 

functions such as ABC-type transporters by our computational pipeline, we wonder if it is 398 

possible to influence the community structure by externally supplying more limiting resources 399 

involved in the niche functions. To demonstrate this, we resort to the in vitro community and 400 

are interested in how the community structure and expression of proteins involved in niche 401 

functions respond to supplied limiting sugars. Specifically, we would like to see how proteins 402 

relevant to ecological niche functions within one taxon change their expressions to achieve a 403 

better living strategy for the taxon.  404 

We used rapid assay for individual microbiome (RapidAIM)63, which maintains the 405 

functional profiles of individual gut microbiomes in vitro64, to culture three different individual 406 

human gut microbiota samples, and used metaproteomics to observe how taxon-specific 407 

expression of proteins in the niche functional cluster respond to the presence of glucose, 408 

fructose and kestose (Fig. 5a). Samples were cultured in technical triplicates, and were taken 409 

at 0, 1, 5, 12, and 24 hours of culturing for optical density and metaproteomic analyses. 11-410 

plex tandem mass tag (TMT11plex) was used for metaproteomic quantification65 for a total of 411 

189 samples. To reflect the effect of introduced sugars on protein expression levels, we used 412 

log2 of the ratio between normalized protein abundances/intensities (see Methods for details) 413 

in the treatment and that in the control group (i.e. log2 of fold change in Fig. 5). We 414 

hypothesized that the excessive supply of sugars renders carbon resources no longer limited 415 

and instead microbes start to compete for other resources in relatively short supplies compared 416 

to carbon resources such as nitrogen resources or amino acids because microbes need all 417 

those resources proportionally (Fig. 5a). Therefore, microbes might have to over-express 418 

proteins to uptake more non-carbon limiting resources to achieve better growth.  419 

To understand how each taxon interacts with the environment and how introduced 420 

sugars modulate the interaction, we focused on log2 fold changes of ABC-type transporters 5 421 

hours later whose expression levels reveal rates for transporting nutrients (Fig. 5b-d). When 422 

glucose is supplied in an excessive amount, log2 fold changes of most COGs are close to 423 

zeros except for COG1126 (ABC-type polar amino acid transport system, ATPase component), 424 

COG1653 (ABC-type glycerol-3-phosphate transport system, periplasmic component), 425 

COG1879 (ABC-type sugar transport system, periplasmic component, contains N-terminal xre 426 

family HTH domain), and COG4166 (ABC-type oligopeptide transport system, periplasmic 427 

component). Many pronounced changes happen to the genus Holdemanella and it is 428 

interesting to note that Holdemanella reduces the expression of transporters for importing 429 

sugars (COG1879) and an intermediate in the glycolysis glycerol-3-phosphate (COG1653) 430 
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when glucose is added. Instead, it increases the expression of COG1126 which transports 431 

polar amino acids. This strategy benefits Holdemanella because the fraction of proteins from 432 

Holdemanella over all proteins in the community increases from 13.5% in the control to 15.8% 433 

with the added glucose. We also measured log2 fold changes of ABC-type transporters when 434 

fructose, glucose and fructose, or kestose is added and their overall patterns (Fig. 5c-e) are 435 

similar to the pattern when glucose is added (Fig. 5b). The correlation in log2 fold changes of 436 

ABC-type transporters between different added sugars is significant (Supplementary Fig. 12). 437 

Similar fold changes of ABC-type transporters were observed for metaproteomic 438 

measurements 12 hours, and 24 hours later (Supplemental Figs. 14-15), while the fold changes 439 

1 hour later are still fairly small (Supplemental Fig. 13). We also attempted to look at how 440 

ribosomal proteins respond to sugar supplies (Supplementary Fig. 16). Overall, log2 fold 441 

changes of ribosomal proteins are overwhelmingly positive, which probably implies a faster 442 

growth for microbes when simple sugars are supplied32,33. Therefore, we demonstrated that 443 

the sugars associated with the niche function (i.e., the sugar transport system) can be 444 

introduced to influence gene expression and modulate the community structure. 445 

 446 

Discussion	447 

Understanding the functions of proteins in the metabolism and how they are influenced by 448 

various ecological interactions is important to fully characterize ecological niches in a given 449 

microbial community. Typically, to check if a protein is metabolically essential, one has to knock 450 

out the gene in one microbial species that codes for the protein to check how the growth rate 451 

of the species reduces42344. A usual way to determine a limiting resource often that is utilized 452 

by a protein follows: modify resource supplies and see how the total biomass changes66369. 453 

Here, to complement those traditional experimental methods, we proposed a simpler 454 

computational method that can identify metabolic and ecological functions of proteins via the 455 

comparison of their FR%  and FR+ , as well as their k'()  and k,() . We validated this 456 

computational method using both model-generated synthetic data and real data for human gut 457 

microbiomes. Also, when we selected two types of proteins (ABC-type transporters and 458 

ribosomal proteins in the real data representing niche functions and essential functions, 459 

respectively), most predicted protein functional clusters of the two types of proteins fell into the 460 

niche function cluster and the essential function cluster, respectively. Besides these two protein 461 

types, we were able to generate a list of FR+ and FR% for all COGs (see Supplemental Data 1-462 

4), which is useful for understanding the metabolic and ecological functions of proteins. 463 
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The presented results help us reconcile the conflict between the niche theory in 464 

ecology62,70,71 and the observed functional redundancy11,12. The traditional niche theory is 465 

grounded in the competitive exclusion principle, stating that a resource (or niche) cannot be 466 

occupied by two species (or more than two species) for the steady-state conditions62,70,71. As 467 

a result of competition, organisms within the same community develop different surviving 468 

strategies to minimize their competition. One interesting example is the repetitive established 469 

coexistence between two evolved E. coli strains, even though a single clone of E. coli is initiated 470 

and maintained in a glucose-limited continuous or serial culture21,72,73. Cross-feeding between 471 

two evolved E. coli strains can be established when one bacterial strain consumes overflow 472 

metabolites like acetate excreted by the other bacterial strain21. Hence, the two strains avoid 473 

competition by specification on different resources (glucose and acetate). However, the picture 474 

from the niche theory clashes with the observed functional redundancy in microbial 475 

communities because the functional redundancy implies that many species own the same 476 

functions in their genomes11,12. We solved this dilemma by pointing out that proteins related to 477 

occupying ecological niches usually have very low FR+ and large FR%. Therefore, if we apply 478 

this concept in reverse, then large FR% and small FR+ could help us to pinpoint niche functions.  479 

There is a long-standing gap between the ecological model which considers the protein 480 

functions of organisms and the data analysis of genomic data to give ecological insights. Ever 481 

since Robert MacArthur proposed a community model in 1970 to consider how different 482 

consumers compete exclusively for renewing resources74, many extensions of this model were 483 

proposed to include more complex ecological factors such as cross-feeding interactions75378 484 

and multiple essential nutrients79. Almost all of them focus on the phenotype of microbes 485 

because only functions of expressed proteins are relevant for the consumption and production 486 

of nutrients in the ecosystem. Due to the lack of metaproteomic data, many computational 487 

approaches attempting to generate ecological implications rely on the over-complete inferred 488 

protein capacity derived from genomes7,9312. To reconcile this gap, we built an ecological 489 

framework with the genomic capacity and protein functions together by introducing species 490 

with sub-sampled functions. The model framework is useful for explaining the difference 491 

between genomic capacity and protein functions. The selective expression can be considered 492 

as the same microbe with different expressions under different environments80382 or evolved 493 

strains from the same species that have distinct metabolic niches observed in evolutionary 494 

experiments of microbes83,21,22.  495 

It is worth noting that the assumption of the trade-off between generalists and 496 

specialists (represented by assuming that the total proteome is relatively constant) is very 497 
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important. In our model, this assumption is achieved by considering true consumption rates in 498 

PCN as maximal consumption rates in GCN divided by the number of resources. The 499 

importance of this trade-off lies in the fact that it forces the niche partitioning among species. 500 

In the absence of this assumption, there is no pattern of redundancy difference since 501 

generalists can always out-compete specialists. This trade-off makes sense because typically 502 

the total proteome budgets for microbes have been observed to be relatively fixed32,33.  503 

 504 

 505 

 506 

Methods	507 

In-vitro	culture	of	single	gut	bacterial	strains	with	added	sugars.	Five gut commensal 508 

bacterial strains, Bacteroides vulgatus ATCC 8482, Bacteroides ovatus ATCC 8483, 509 

Bacteroides uniformis ATCC 8492, Blautia hydrogenotrophica DSM 10507, Escherichia coli 510 

DSM 101114 were cultured with or without added sugars (glucose, sucrose and kestose). The 511 

base culture medium without sugar added were modified based on the Yeast Casitone Fatty 512 

Acids (YCFA) broth, containing 10.0 g/L casitone, 2.5 g/L yeast extract, 45 mg/L MgSO4·7H2O, 513 

90 mg/L CaCl2·2H2O, 450 mg/L K2HPO4, 450 mg/L KH2PO4, 900 mg/L NaCl, 1.0 mg/L 514 

resazurin, 4.0 g/L NaHCO3, 1.0 g/L L-Cysteine-HCl, 10 mg/L Hemin, 1.90 mL/L acetic acid, 515 

0.7 mL/L propionic acid, 90 µL/L iso-butyric acid, 100 µL/L n-valeric acid, 100 µL/L iso-valeric 516 

acid, 0.02 mg/L biotin,0.02 mg/L folic acid, 0.05 mg/L thiamine-HCl, 0.05 mg/L riboflavin, 517 

0.001 mg/L vitamin B12, 0.05 mg/L aminobenzoic acid. The pH was adjusted to between 6.7-518 

6.8, and autoclaved media were pre-reduced in an anaerobic chamber overnight. 5 g/L of 519 

different sugars (glucose, sucrose, and kestose) were added to the base medium as treatment 520 

groups. Master tubes of single bacterial strains were first cultured on Tryptic Soya Agar (TSA) 521 

containing 5% sheep blood using the streak plate method. A single colony was picked from 522 

each agar plate and inoculated into the base culture medium to culture for 24 hours, before 523 

inoculating 100 µL of each culture into 10 mL of four different media: base medium without 524 

sugar added, with glucose added, with sucrose added and with kestose added. After culturing 525 

for 24 hours, optical density at 600 nm was tested in technical triplicates for each sample. 526 

Cultured microbial cells were purified by washing with phosphate buffered saline (PBS) buffer 527 

three times, and the resulting microbial pellets were stored at -80 ºC for proteomics analysis. 528 

 529 
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In-vitro	 human	 gut	microbiota	 culture	with	 added	 sugars. Three healthy individual 530 

microbiota samples were collected and biobanked using our live microbiota biobanking 531 

protocol84. The study was approved by the Ottawa Health Science Network Research Ethics 532 

Board at the Ottawa Hospital, Ottawa, Canada (# 20160585301 H). The frozen microbiome 533 

samples were thawed at 37 ºC and cultured in our optimized culture medium64 with or without 534 

the presence of different sugars (10 mM glucose, 20 mM fructose, 10 mM glucose + 20 mM 535 

fructose, or 10 mM kestose). Samples were cultured in technical triplicates, and were taken at 536 

0 hr, 1hr, 5 hr, 12 hr and 24 hr of culturing for optical density and metaproteomic analyses. 537 

After culturing, 96-well deep well plates were first centrifuged at 3,000 g for 45 min under 4 °C. 538 

Then the pellets were washed in 4 °C phosphate buffered salin (PBS) buffer and centrifuged 539 

at 3,000 g for 45 min again, before pelleting and removing culture debris three times using 300 540 

g, 4 °C , 5 min centrifugation.  Microbial suspensions were then centrifuged at 3,000 g, 4 °C 541 

for another 45 min. The purified cell pellets were stored at -80 °C before protein extraction. 542 

 543 

Protein	extraction,	digestion	and	LC-MS/MS	analysis. For single strain samples, proteins 544 

were extracted with 4% SDS 8M urea buffer in 100 mM Tris-HCl buffer and precipitated 545 

overnight at -20 ºC, before being purified by washing with ice-cold acetone three times. 546 

Quantified proteins were then reduced and alkylated before being digested using trypsin (50:1 547 

protein-to-trypsin ratio) for 24 hours at 37 ºC and were desalted using reverse phase beads85. 548 

Proteomic samples were analyzed using an Orbitrap Exploris 480 mass spectrometer 549 

(ThermoFisher Scientific Inc.) coupled with an UltiMate 3000 RSLCnano liquid 550 

chromatography system following a 1-hour gradient of 5 to 35% (v/v) acetonitrile (v/v) at the 551 

flow rate of 300 L/min. MS full scan was performed from 350 - 1400 m/z with a resolution of 552 

60,000, followed by an MS/MS scan of 12 most intense ions, a dynamic exclusion repeat count 553 

of one, exclusion duration of 30 s, and resolution of 15,000. Metaproteomics samples of the 554 

cultured individual microbiomes were prepared using a semi-automated approach. Briefly, 555 

samples were lysed in a buffer containing 8 M urea, 4% SDS in 100 mM Tris-HCl (pH = 8.0) to 556 

extract microbial total proteins. The proteins were purified by a double-precipitation procedure 557 

in 50%:50%:0.1% (v/v/v) acetone: ethanol: acetic acid solution. Protein digestion and desalting 558 

steps were performed using an automated liquid handler (Hamilton Nimbus-96). Briefly, 100 559 

µg proteins were dissolved in 100 µL 6 M urea in 100 mM Tris-HCl (pH 8) buffer, before being 560 

reduced by 10 µL 0.1 M dithiothreitol (DTT) solution under 56 °C for 30 minutes and alkylated 561 

by 10 µL 0.2 M iodoacetamide (IAA) solution in dark, 25 °C for 40 minutes. Samples were each 562 

added 1000 µL 100 mM Tris·HCl buffer containing 2 µg/mL trypsin (trypsin:proteins = 1:50) for 563 
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a 24-hour digestion under 37 °C, before being desalted using an automated pipeline based on 564 

reverse-phase (RP) desalting columns. 11-plex tandem mass tag (TMT11plex) was used for 565 

metaproteomic quantification for a total of 189 samples. An even mixture of all samples was 566 

used as the reference channel in each 11-plex. Samples were scrambled before labeling with 567 

TMT11plex, so that each labeled sample contains samples from different individuals, different 568 

time points and different treatments to avoid any bias that may be induced between analyses. 569 

TMT-labelled samples were analyzed using an Orbitrap Exploris 480 mass spectrometer 570 

(ThermoFisher Scientific Inc.) coupled with an UltiMate 3000 RSLCnano liquid 571 

chromatography system following a 2-hour gradient of 5% to 35% solvent B (80% acetone 572 

nitrile, 0.1% formic acid, v/v).  573 

 574 

Datasets. Metagenomics data corresponding to the ultra-deep metaproteomic analysis of the 575 

four individual microbiomes were obtained from the previous MetaPro-IQ study14,28 (accessible 576 

from the NCBI sequence read archive (SRA) under the accession of SRP068619) and the 577 

same samples were reanalyzed by an ultra-deep metaproteomics approach14 (accessible 578 

through the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE 579 

partner repository86). Proteomics dataset of the cultured singles strain samples has been 580 

deposited to ProteomeXchange Consortium via the PRIDE partner repository. Metaproteomic 581 

dataset of the RapidAIM-cultured microbiome samples has been deposited to 582 

ProteomeXchange Consortium via the PRIDE partner repository. 583 

 584 

Database	search	and	data	processing. Proteomics database searches were performed by 585 

combining FASTA databases of the individual strains downloaded from NCBI. The databases 586 

were combined for performing database search using MaxQuant87 1.6.17.0, with the label-free 587 

quantification option turned off. Metaproteomic database searches of cultured microbiome 588 

samples were performed using MetaLab V2.288, MaxQuant option was used to search the TMT 589 

dataset against the IGC database of the human gut microbiome. The resulting data table was 590 

normalized using R package MSstatsTMT89, and missing values were imputed using R 591 

package DreamAI90. The "fraction" of each taxon-specific protein is computed by dividing the 592 

protein intensity by the sum of intensities of all proteins assigned to the same taxon. The log2 593 

fold change of each protein is obtained by taking log2 of the ratio between its fraction in the 594 

treatment group (with added sugars) and its fraction in the control group (without added sugars). 595 

 596 
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Generation	of	GCN	and	PCN. For the ultra-deep metaproteomic dataset, the genus-COG 597 

version of GCN and PCN tables were directly obtained from the previous work14. In addition, 598 

here we generated a genus-KEGG version of GCN and PCN for each individual microbiome 599 

using a similar method. Briefly, for the genus-KEGG GCN, by searching raw metagenomic 600 

reads against an integrated gene catalog (IGC) database of the human gut microbiome38, we 601 

obtained a list of proteins quantified by read counts. FASTA sequences of these proteins were 602 

searched against the KEGG database using GhostKOALA91. Taxonomic origination of the 603 

proteins was obtained by searching against an in-house database generated with the NCBI 604 

non-redundant (nr) database (downloaded 2/3/2016). To generate genus-KEGG PCN, the 605 

taxonomic table of the metaproteomics dataset was directly obtained from MetaLab, and 606 

KEGG annotation was also performed by querying protein FASTA sequences with 607 

GhostKOALA. Protein group intensity was used as the quantification information in PCNs. For 608 

the proteomic dataset of single strains, the whole proteomic FASTA database was submitted 609 

to EggNOG mapper (http://eggnog-mapper.embl.de/, submitted Oct-30-2021, ran emapper.py 610 

2.1.6) to obtain functional annotations. To generate GCN, protein coding sequence (CDS) files 611 

were downloaded from NCBI, and the count of each protein id in the CDS files was considered 612 

as the copy number of each gene in the GCN. For PCN generation, intensities of identified 613 

proteins matched to each strain were used. Note that protein ids in the CDS file were 100% 614 

matched with those in the proteomic FASTA database in each strain. For the metaproteomics 615 

dataset of the cultured microbiome samples, functional information for the generation of PCN 616 

was obtained from the resulting functional table automatically generated by the MetaLab 617 

software. Taxonomic assignment was performed using the 8protein-peptide bridge9 method as 618 

described previously14. The PCNs for this dataset were then generated based on intensities of 619 

COG-genus pairs. 620 

 621 

Normalized	gene-level	functional	redundancy	(#!"!)	and	normalized	protein-level	622 

functional	redundancy	(#!""). Across multiple samples, it is pointless to compare the FR% 623 

or FR+ directly because of the difference in microbial taxonomic diversities. In fact, it has been 624 

shown in the past that the normalized functional redundancy, which is the functional 625 

redundancy divided by the taxonomic diversity, can be compared across samples12. In our 626 

study, the definition for nFR% is 627 

 nFR% =	
3 3 4!56!"#$%78!8"&

"'!
&
!()

3 3 8!8"&
"'!

&
!()

, (1) 628 
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and the definition for nFR+ is 629 

 nFR+ =	
3 3 4!56!"*$%78!8"&

"'!
&
!()

3 3 8!8"&
"'!

&
!()

. (2) 630 

 631 

The	community	assembly	model.	632 

Step 1: Assignment of species9 genomic capacity. Three types of protein functions are modeled: 633 

niche function, specialist function, and essential function. Both specialist function and niche 634 

function are considered as the capacity to consume a unique and externally supplied resource. 635 

The probability of a random consumer being assigned the ability to have a niche function is 636 

0.7. To make fewer species own specialist functions in their genomes, the probability of a 637 

random consumer being assigned the ability to have a specialist function is 0.2, much lower 638 

than the probability of owning a niche function. The maximal consumption rate of a resource 639 

by one species represents the consumption rate that the species would have if it allocates the 640 

entire proteome (100%) to the consumption of the resource. If many resources are consumed, 641 

the total proteome has to be divided into several parts and the consumption rates would be a 642 

fraction of the corresponding maximal consumption rates. The essential function is not 643 

modeled as the consumption of alternative resources due to its metabolic essentiality. Instead, 644 

the essential function is modeled as multiplying the growth rate by a factor of 0.95 for each 645 

missing essential function. 646 

Step 2: Assignment of species9 protein functions based on their genomic capacity. Each 647 

species sub-samples its genomic potential functions with a sub-sampling probability p (which 648 

is a random number uniformly distributed between 0 and 1) to obtain its protein functions (i.e. 649 

which resource it can truly consume). As a result, all protein functions of species form the basis 650 

for PCN. The true consumption rate of one species on a resource is its maximal consumption 651 

rate on the resource divided by the number of resources that can be utilized by the species. 652 

This process can be thought of as the proteome allocation to consume several resources 653 

simultaneously32,33. This assumption imposes a trade-off between a generalist and a specialist 654 

species: a generalist species utilizes more resources but has lower consumption rates for all 655 

resources, while a specialist species consumes fewer resources but has higher consumption 656 

rates for consumed resources. 657 

Step 3: Community assembly. We assumed a chemostat environment, similar to the setting 658 

considered by many Consumer-Resource models75,77. The dilution rate D is considered as 0.1 659 

per hour. A fixed number of resources is considered and the pool concentrations (or supply 660 

rates) for all resources are assumed to be the same for simplicity. For each species, the growth 661 
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rate is treated as the sum of consumption rates for different resources divided by the yield. For 662 

simplicity, all yields are assumed to be equal (Y = 1). Overall, the dynamics for the 663 

concentrations of resource ( (denoted as F#) and the abundance of the species ; (written as 664 

G2): 665 

 
69!
6: = /# 2 IF# 2

3 ;+!+ <&,=+9!
> , (3) 666 

 
6=-
6: = 2IG2 + 3 K2&& 6",G2F&, (4) 667 

where K2#  is the consumption rate of species ;  on resource ( , /#   is the supply rate of 668 

resource	(,	L is the same yield assumed for all resources, 6(= 0.95) is the diminishing rate for 669 

the overall consumption rate that is multiplied for each missing essential function, and >? is 670 

the number of missing essential functions. The consumption rate of one species of a resource 671 

is randomly drawn from the uniform distribution between 0 and 1. Eventually, for each species, 672 

its true consumption rates are its randomly drawn consumption rates divided by the number of 673 

resources the species can use to constrain the total proteome budget32,33. The incidence matrix 674 

of the consumption abilities establishes part of PCN for niche functions and specialist functions 675 

of the species. The entire PCN is completed by including the presence/absence information of 676 

all essential functions. 677 

Step 4: Generate GCN and PCN for survived species. When we simulated the above 678 

community assembly process to reach a steady-state in the chemostat environment, survived 679 

species can be found as species existing with non-negative abundances at the end of the 680 

simulation. For survived species, we can reconstruct the GCN and PCN for them. Within 681 

equipped GCN and PCN, we would be able to compute FR%, FR+, and network degrees (kGCN 682 

and kPCN). 683 

 684 

Calculation	of	nestedness.	To reveal the nested structure of an incidence matrix, we first 685 

need to use the Nestedness Temperature Calculator (NTC)92 to organize the matrix. Then we 686 

adopted the NODF (Nestedness based on Overlap and Decreasing Fill) measure previously 687 

defined39. The measure can only be computed for binary incidence matrices. As with any 688 

perfectly nested matrix, two properties must be present: (1) decreasing fill, which means that 689 

the columns below and to the right should have fewer entries than the columns above and to 690 

the left; and (2) paired overlap, which implies that when an entry appears in the columns 691 

below and to the right, it should also appear in the columns above and to the left. The NODF 692 

measure is calculated by averaging these two properties across all pairs of an upper and 693 

lower row and a left and right column. For the comparison of each pair, if decreasing fill is not 694 
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satisfied, the pair will contribute 0 to the total nestedness. Otherwise, the pair9s contribution is 695 

the percentage overlap in non-zero entries between the two rows or two columns. 696 

 697 

Statistics.	 To calculate correlation throughout the study, we used Pearson9s correlation 698 

coefficient. Wherever we used P values, we explained in the Methods how we calculated them, 699 

since for all such measurements in the study, we calculated the associated null distributions 700 

from scratch. All statistical tests were performed using standard numerical and scientific 701 

computing libraries in the Python programming language (version 3.7.1) and Jupyter Notebook 702 

(version 6.1). 703 

 704 

Data and code availability. All code for simulations used in this manuscript can be found at 705 

XXX. 706 
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 927 

Figure 1: Protein functions involved in determining ecological niches are postulated to 928 
have larger discrepancies between the gene-level functional redundancy FRg and 929 
protein-level functional redundancy FRp. Here we use a hypothetical example with three 930 
representative proteins (3 broken circles with complementary shapes to their substrates) to 931 
demonstrate this point. a, Schematic of genomic capacity of two microbial taxa (pink oval vs 932 
yellow indented oval). Two resources (red pentagon and blue triangle) are externally supplied 933 
to the community. The green metabolite can be transformed from the red or blue resource and 934 
further utilized in biomass synthesis. The pink taxon has the capacity of converting either 935 
supplied resource into the green metabolite (red and blue arrows), while the yellow taxon can 936 
only convert the red resource (red arrow). b, Schematic of expressed proteins for two microbial 937 
taxa after their competition in the same community. After the competition, the reduced resource 938 
conflict (represented by the pink taxon choosing the blue resource as the sole one to consume) 939 
can promote their coexistence. Gene content network (GCN) and protein content network 940 
(PCN) can be used to capture genomic capacity and expressed protein functions for all taxa. 941 
Alternatively, this network can be represented as incidence matrices on the bottom (grey areas 942 
imply the existence of edges connecting taxa to proteins). c-d, The comparison between kGCN 943 
and kPCN or between FRg and FRp helps to classify proteins into three protein functional clusters: 944 
specialist function, essential function, and niche function. In the calculation of FRg and FRp, we 945 
we assume equal abundances of the two species, i.e.,  $! = $- = 0.5. 946 
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Figure 2: Three protein functional clusters (specialist function, essential function, and 948 
niche function) considered in the community assembly model form three distinct 949 
clusters when the network degree and functional redundancy are compared between 950 
the GCN and PCN in model-generated synthetic data. a1-a4, Three types of functions 951 
modeled have different ecological and metabolic roles. The niche function (red proteins) and 952 
specialist function (blue proteins) are modeled as abilities to consume externally supplied 953 
resources. The role of essential functions (green proteins) is considered as a reduction in the 954 
overall growth rate for each missing essential function. b, A schematic diagram of the 955 
community assembly. Species (ovals and indented ovals) with expressed protein functions 956 
selected via the sub-sampling of their genomic capacity. Then all species are co-cultured 957 
together to simulate their ecological competition. c, A simulation example of the community 958 
assembly, and the construction of GCN and PCN for the survived species. d-e, The 959 
comparison of network degree and functional redundancy respectively based on the GCN and 960 
PCN of survived species in the simulation example in panel-c. A Gaussian mixture model with 961 
3 clusters is used to identify 3 protein functional clusters. Ellipses around clusters cover areas 962 
one standard deviation away from their means. f-g, The comparison of network degree and 963 
functional redundancy respectively based on the GCN and PCN of 35 species randomly 964 
selected from the 10,000 species in the initial pool. All points/functions are colored red (niche 965 
functions), green (essential functions), and blue (specialist functions) according to their types 966 
of functions in the model. kGCN (or kPCN) is the network degree of each function in the GCN (or 967 
PCN). FRg (or FRp) is the functional redundancy of each function on the gene level (or protein 968 
level), respectively.  969 
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 970 

Figure 3: Real data of the human gut microbiome showing three clusters on the plot that 971 

compares FRg with FRp. Metagenome and metaproteome of subject HM454 mucosal-luminal 972 

interface samples28 were used to construct GCN and PCN, respectively. a, The GCN shows if 973 

a genus owns (or doesn't own) a COG as its genomic capacity, which is colored in black (or 974 

white). The GCN matrix is ordered to have decreasing network degrees for both genera and 975 

COGs. b, The PCN shows if a genus expresses (or doesn't express) a COG as its protein 976 

function, which is colored in black (or white). The PCN matrix follows the same order as the 977 

GCN. c, Differences in network degree for most COGs are large. kGCN is the network degree 978 

of each COG in the GCN (i.e. the number of genera owning each COG in the GCN). kPCN is 979 

the network degree of each COG in the PCN (i.e. the number of genera owning each COG in 980 

the PCN). d, FRg is larger than FRp for most COGs. Three clusters with three distinct colors 981 

(blue, red, and green) are predicted by the Gaussian mixture model with 3 clusters fitted on 982 

synthetic data. The transparent large circles represent centroids of three clusters. e, The 983 

relationship between FRp and network degree of PCN for COGs is not monotonic. 984 

 985 
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 986 

Figure 4: Comparison of network degree and functional redundancy between the gene 987 

and protein level for ABC-type transporters and ribosomal proteins. a, Network degrees 988 

in GCN are larger than network degrees in PCN for most ABC-type transporter COGs. kGCN (or 989 

kPCN) is the network degree of each COG in the GCN (or PCN). b, FRg is larger than FRp for 990 

most ABC-type transporter COGs. c-d, The distribution of network degrees and functional 991 

redundancies (violin plots and boxplots) for ABC-type transporter COGs show a significantly 992 

huge reduction from kGCN to kPCN or from FRg to FRp. e, Network degrees in GCN are 993 

comparable with that in PCN for most ribosomal protein COGs. f, FRg is comparable with FRp 994 

for most ribosomal protein COGs. Points in scatter plots are colored by the same colors used 995 

in Fig. 3d. g-h, The distribution of network degrees and functional redundancies (violin plots 996 

and boxplots) for ribosomal protein COGs show no significant reduction from kGCN to kPCN or 997 

from FRg to FRp.  In all boxplots, the middle white dot is the median, the lower and upper hinges 998 

correspond to the first and third quartiles, and the black line ranges from the 1.5 × IQR (where 999 

IQR is the interquartile range) below the lower hinge to 1.5 × IQR above the upper hinge. All 1000 

violin plots are smoothed by a kernel density estimator and 0 is set as the lower bound. All 1001 

statistical analyses were performed using the two-sided Mann-Whitney-Wilcoxon U Test with 1002 

Bonferroni correction between genomic capacity (GCN) and protein functions (PCN). P values 1003 

obtained from the test is divided into 5 groups: (1) $	 > 	0.05 (ns), (2) 0.01 < $	 f 	0.05  (*), (3) 1004 

105@ < $	 f 	0.01 (**), (4) 105A < $	 f 	105@  (***), and (5) $	 f 	105A  (****). Network degree 1005 

comparison of ABC transporters: $ = 	7.11 × 105!B. Network degree comparison of ribosomal 1006 

proteins: proteins: $ = 	0.10. Redundancy comparison of ABC transporters: $ = 	2.19 × 105!!. 1007 

Redundancy comparison of ribosomal proteins: $ = 	1.00.  1008 

 1009 
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 1010 

Figure 5: Microbes modify their expression for ABC-type transporters to adapt to added 1011 

sugars. All heatmaps share the same color bar on the right. a, Schematic of in-vitro cultures 1012 

of a collected human gut microbiome. In the treatment group, one sugar is added to the 1013 

community. Metaproteomic measurements 5 hours later enable us to compare the intensity of 1014 

each taxon-specific protein using the log2 fold change of each protein9s fraction (i.e. normalized 1015 

intensity over each genus) from the treatment group divided by that from the control group. 1016 

Log2 fold changes of ABC-type transporters 5 hours after (b) glucose, (c) fructose, (d) kestose, 1017 

or (e) glucose and fructose is added.  1018 
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