

1 Pairing Metagenomics and Metaproteomics to Pinpoint 2 Ecological Niches and Metabolic Essentiality of Microbial 3 Communities

4
5 Tong Wang^{1,†}, Leyuan Li^{2,3,†}, Daniel Figeys^{3,*}, Yang-Yu Liu^{1,*}
6

7 ¹*Channing Division of Network Medicine, Department of Medicine, Brigham and Women's*
8 *Hospital, Harvard Medical School, Boston, MA 02115, USA.*

9 ²*State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for*
10 *Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China*

11 ³*School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology, Faculty of Medicine,*
12 *University of Ottawa, Ottawa, ON K1H8M5, Canada.*

13
14 [†] These authors contributed equally to this work.

15 * Correspondence: dfigeys@uottawa.ca, yyl@channing.harvard.edu

16 **Abstract**

17 Microbial genomes encode functional repertoire of microbes. However, microbes rely on
18 various proteins to be expressed to carry out specific functions, and the expression of those
19 proteins can be affected by the environment. It remains elusive how the selective expression
20 of a protein depends on whether it is metabolically essential to the microbe's growth, or it can
21 claim resources as an ecological niche. Here we show that by pairing metagenomics and
22 metaproteomics data we can reveal whether a protein is relevant for occupying ecological
23 niches or is essential for microbial metabolism. In particular, we developed a computational
24 pipeline based on the quantification of the gene-level (or protein-level) functional redundancy
25 of each protein, which measures the degree to which phylogenetically unrelated taxa can
26 express (or have already expressed) the same protein, respectively. We validated this pipeline
27 using both simulated data of a consumer-resource model and real data of human gut
28 microbiome samples. Furthermore, for the real data, we showed that the metabolic and
29 ecological roles of ABC-type transporters and ribosomal proteins predicted by our pipeline
30 agree well with prior knowledge. Finally, we performed *in vitro* culture of a human gut
31 microbiome sample and investigated how oversupplying various sugars involved in ecological
32 niches influences the community structure and protein expression. The presented results help
33 us identify metabolic and ecological roles of proteins, which will inform the design of nutrient
34 interventions to modulate the human microbiome.

35

36 **Introduction**

37 The advance in metagenomic sequencing technology has enabled us to measure the genomic
38 contents and functional potentials of microbial communities at an unprecedented rate, helping
39 us understand how the functionality of microbes influences host health^{1–3} and how microbial
40 metabolism in natural environments enables biogeochemical cycling^{4–6}. Based on metabolic
41 models inferred from genomes, various computational approaches have been proposed to
42 better quantify inter-species interactions and ecological concepts in microbial communities^{7–12}.
43 For example, metabolic networks of microbes have been employed to quantify
44 complementarity and competition indices as a proxy for potential interactions⁷. Also, a
45 nonlinear dimensionality reduction technique has been used to map bacterial metabolic niche
46 space⁹. In addition, functional redundancy and functional stability for microbial communities
47 were analyzed in the past^{10–12}.

48 A major limitation of those approaches is that they only rely on metagenomic data,
49 which does not reflect true functional activities but only encodes functional capacity (or
50 potential functions). In reality, at any given time and under any environmental condition,
51 microbes only express a subset of their potential functions as proteins to carry out particular
52 functions¹³. Recently, an ultra-deep metaproteomics approach has been developed to quantify
53 expressed proteins in complex microbial communities, e.g., the human gut microbiome¹⁴.
54 Pairing metagenomic and metaproteomic data offers the possibility to investigate how each
55 protein is selectively expressed under different environmental conditions.

56 From the metabolic perspective, it is well known that some genes and their expressed
57 proteins are indispensable for cell metabolism under any conditions, and microbes will not
58 survive or reproduce if those genes are lost or those proteins are not expressed. Indeed,
59 lacking proteins essential to microbial metabolism will cease microbial growth, regardless of
60 ecological competition. For example, the growth of microbes relies on aminoacyl-tRNA^{15,16}.
61 Consequently, microbes have to express proteins involved in the aminoacyl-tRNA synthesis
62 due to their metabolic essentiality to microbial growth^{15,16}.

63 From the ecological perspective, some proteins are expressed under ecological
64 selection, and the presence of such proteins directly indicates which resources a microbe can
65 utilize so as to thrive, i.e., the ecological niche of this microbe in the microbial community.
66 Different proteins might enable a microbe to utilize different resources or adapt to varying
67 environments. If the function of a protein can simply be performed by another protein, it may

68 be not necessary to express both proteins at the same time. This is evident in the case of *E.*
69 *coli*, which prefers glucose over lactose due to the repressed expression of lactose-utilizing
70 enzymes, even though it can use both sugars^{17,18}. Such specialization of consuming one
71 resource caused by the selective protein expression may reduce the niche overlap with other
72 species. Another example is Acetyl-coenzyme synthetase (Acs) --- a protein that catalyzes the
73 conversion of acetate into Acetyl-CoA, an essential intermediate in the metabolism^{19,20}. The
74 overexpression of Acs in *E. coli* can significantly switch glucose consumption to acetate
75 consumption²¹⁻²⁴. The glucose specialist (CV103) and acetate specialist (CV101) are two *E.*
76 *coli* mutants with different metabolic strategies; CV103 does not express Acs while CV101
77 overexpresses it²¹⁻²⁴. It has been shown that CV101 can consume acetate produced by CV103,
78 and thus they achieve a coexistence due to the niche partitioning^{21,22}.

79 How to understand the selective expression of microbial proteins is an outstanding
80 question in microbiology. Does the behavior of selective expression of microbial proteins differ
81 between metabolic function (e.g., essential for microbial growth metabolism) and ecological
82 function (e.g., claiming resources as a niche)? To address this question, in this work we
83 developed a computational method to perform paired metagenomic and metaproteomic^{25-28,14}
84 data analysis and revealed whether a protein is essential for microbial metabolism or relevant
85 for occupying ecological niches. In particular, we used the metagenomic data to construct the
86 Gene Content Network (GCN) --- a bipartite graph that connects microbial taxa to their genes
87 (Fig. 1a), and used the metaproteomic data to construct the Protein Content Network (PCN) -
88 -- a bipartite graph that connects microbial taxa to their truly expressed protein functions (Fig.
89 1b). For each protein, we quantified its gene-level (or protein-level) functional redundancy (FR),
90 which is defined as the degree to which unrelated taxa can express (or have already expressed)
91 this protein, respectively. Using synthetic data generated by a consumer-resource model of
92 microbial communities, we found that either the comparison of network degree of a protein (i.e.,
93 the number of taxa that own/express the protein) between the GCN and PCN or the
94 comparison between the gene-level and protein-level FR of a protein can reveal its role in
95 metabolic essentiality and ecological niches. Then we applied the same computational pipeline
96 to analyze the real data of human gut microbiome samples to predict metabolic and ecological
97 functions for proteins. We found that the metabolic and ecological roles of ABC-type
98 transporters and ribosomal proteins predicted by our method agree well with prior knowledge.
99 Finally, we performed *in vitro* culture experiments using human gut microbiome samples with
100 and without sugars added to investigate how oversupplying various sugars involved in
101 ecological niches influences the community structure and protein expression.

102 **Results**

103 **Quantifying gene- and protein-level functional redundancy of each protein**

104 Consider a microbiome sample with taxonomic profile $\mathbf{p} = (p_1, \dots, p_N)$, where p_i is the relative
105 abundance of taxon- i and $\sum_{i=1}^N p_i = 1$. For a given protein, we can define its gene-level FR
106 (FR_g) within this sample as

107
$$FR_g = \sum_{i=1}^N \sum_{j \neq i}^N (1 - d_{ij}^{GCN}) p_i p_j, \quad (1)$$

108 where d_{ij}^{GCN} is the distance between taxon- i and taxon- j based on their genomic capacity to
109 express this protein. For simplicity, we assume d_{ij}^{GCN} is binary, i.e., $d_{ij}^{GCN} = 0$ if and only if both
110 taxa share the potential to express the protein, and $d_{ij}^{GCN} = 1$ otherwise. For the same protein,
111 we can also define its protein-level FR (FR_p) within this sample as

112
$$FR_p = \sum_{i=1}^N \sum_{j \neq i}^N (1 - d_{ij}^{PCN}) p_i p_j, \quad (2)$$

113 where d_{ij}^{PCN} is the distance between taxon- i and taxon- j based on their expression of the
114 protein. Again, we assume d_{ij}^{PCN} is binary, i.e., $d_{ij}^{PCN} = 0$ if and only if both taxa have expressed
115 the protein, and $d_{ij}^{PCN} = 1$ otherwise. Note that here we define FR_g and FR_p for each protein.
116 This is different from our previous studies^{12,14}, where FR was calculated by including all genes
117 or proteins in the entire microbial community.

118 To demonstrate the definitions of FR_g and FR_p , let's consider a simple community
119 consisting of two coexisting *E. coli* strains CV101 and CV103 with relative abundance p_1 and
120 p_2 , respectively^{21,22}. For the protein Acs that is required for the acetate consumption, since
121 both CV101 and CV103 own this functional capacity, we have $d_{12}^{GCN} = d_{21}^{GCN} = 0$, and $FR_g =$
122 $2p_1 p_2$. However, because CV103 does not express Acs and CV101 overexpresses it²¹⁻²⁴, we
123 have $d_{12}^{PCN} = d_{21}^{PCN} = 1$, and $FR_p = 0$. Furthermore, we can compare the network degree of Acs
124 in the GCN and PCN. The network degree of a protein in the GCN (denoted as k_{GCN}) is the
125 number of taxa owning the capacity to express the protein, while the network degree of a
126 protein in the PCN (k_{PCN}) is the number of taxa that have truly expressed the protein. Here,
127 $k_{GCN} = 2$ and $k_{PCN} = 1$. Of course, not every protein is ecologically selected. For example,
128 proteins involved in the aminoacyl-tRNA synthesis, critical for the growth of microbes, are not
129 ecologically selected because the loss of ability to synthesize aminoacyl-tRNA inevitably stops
130 the growth of microbes^{15,16}. Hence, for each of the proteins involved in aminoacyl-tRNA
131 synthesis, we expect $k_{GCN} = k_{PCN}$ and $FR_g = FR_p$.

132

133 **Illustration of our computational pipeline using a hypothetical community**

134 To illustrate our computational pipeline, let's consider a simple hypothetical example with two
135 species (pink oval vs yellow indented oval in Fig. 1a, b). For the pink species to grow, it can
136 either use the red resource (red pentagon in Fig. 1a) or the blue resource (blue triangle in Fig.
137 1a) and convert either of them to the green metabolite (green circle in Fig. 1a), which can then
138 be assimilated into the cell biomass. For the yellow species, its growth will only occur by
139 transforming the red resource into the green one to fuel the biomass synthesis (Fig. 1a). If the
140 two species are co-cultured in the same environment to compete for externally supplied red
141 and blue resources, an ideal scenario for them to coexist is that the pink species would choose
142 to consume the blue resource, preventing resource competition with the yellow species (Fig.
143 1b), similar to the niche partitioning observed in the community of two coexisting *E. coli* strains:
144 CV101 and CV103^{21,22}.

145 We can capture this hypothetical scenario of selective expression mathematically using
146 the GCN and PCN of this community. The bipartite graph and incidence matrix representations
147 of the GCN (or PCN) are shown in Fig. 1a (or Fig. 1b), respectively. Simply comparing the
148 structure of the GCN and the PCN already offers us some insights into ecological niches and
149 metabolic essentiality. For example, let's consider the protein responsible for converting red
150 resource to green metabolite (this protein is represented as the red broken circle in Fig. 1a, b),
151 its degree in the GCN is $k_{GCN} = 2$, while its degree in the PCN is $k_{PCN} = 1$. This degree
152 reduction is due to distinct ecological niches being occupied by two species when they are
153 cocultured. By contrast, the protein responsible for the assimilation of critical green metabolites
154 (green broken circle in Fig. 1a, b) into biomass does not show a degree reduction from the
155 GCN to the PCN, because it is essential for microbial growth.

156 An ecologically meaningful approach to understanding the selective expression of
157 different proteins would be to systematically compare their respective k_{GCN} and k_{PCN} (Fig. 1c),
158 which are independent of microbial compositions; or their respective FR_g and FR_p (Fig. 1d),
159 which naturally involve microbial compositions in the calculation. Consider three distinct protein
160 function types: (1) “niche functions” that are under strong ecological competition (e.g., red
161 broken circle in Fig. 1c, d); (2) “specialist functions” that are specialized by a few taxa (e.g.,
162 blue broken circle in Fig. 1c, d); and (3) “essential functions” that are metabolically
163 indispensable for many taxa (e.g., green broken circle in Fig. 1c, d). We anticipate that the
164 three function types will occupy different regions in the k_{GCN} vs. k_{PCN} plot (or the FR_g vs. FR_p
165 plot). Specifically, for essential functions, both their k_{GCN} and k_{PCN} (or FR_g and FR_p) are high.

166 For specialist functions, both their k_{GCN} and k_{PCN} (or FR_g and FR_p) are low. Niche functions
167 have high k_{GCN} but low k_{PCN} (or high FR_g but low FR_p).

168

169 **Validate our computational pipeline using a consumer-resource model**

170 Note that previously developed Consumer-Resource models (CRMs) only focus on
171 physiologies of microbes (i.e. phenotypes)²⁹⁻³¹. Simply put, those models ignored genomic
172 capacity or potential functions, but only considered expressed functions (e.g., how species
173 consume different resources). There was no attempt of building a consumer-resource model
174 of microbial communities that integrates both potential and expressed functions. As a first step
175 toward this direction, we constructed such a model.

176 We assumed three types of protein functions: niche functions (colored red), specialist
177 functions (colored blue), and essential functions (colored green) in a functional pool. For
178 simplicity, each of the niche (or specialist) functions is modeled as the consumption of a unique
179 and externally supplied resource (Fig. 2a1). To model the difference between niche and
180 specialist functions, we assume they are associated with different numbers of species (i.e.,
181 “consumers” in the consumer-resource modeling framework). The former should be associated
182 with much more species than the latter. The loss of a niche or specialist function would make
183 a species unable to consume the corresponding externally supplied resource (Fig. 2a2, a3).
184 The loss of an essential function is simply modeled as the reduction of a species’ growth rate
185 (Fig. 2a4). Mathematically, we multiply the intrinsic growth rate of a species by a diminishing
186 factor $\gamma = 0.95$ for each missing essential function.

187 The key issue in this genome-aware consumer-resource modelling framework is to
188 decide how microbes select a subset of their potential functions to express. To tackle this issue,
189 we first assigned potential functions to each species (Fig. 2b, left). In particular, for each
190 species, each niche (specialist, or essential) function was assigned to the species’ genome
191 with probability p_n (p_s , or p_e), respectively. In our simulations, we set $p_n = p_e = 0.7$ to ensure
192 that we cannot distinguish niche functions from essential functions only based on GCN and
193 thus would like to see if they show different patterns after the community assembly. We set
194 $p_s = 0.2 < p_n = p_e$ so that specialist functions were assigned to fewer species than niche and
195 essential functions. Then for each species, we determined its truly expressed functions by
196 randomly sub-sampling a subset of its potential functions (Fig. 2b, middle). For function type-
197 α ($\alpha = 1,2,3$), this was achieved by expressing each potential function with a species-specific
198 and function-type-specific probability $p_{i,\alpha}$ randomly drawn from a uniform distribution $\mathcal{U}(0,1)$.

199 Since different species have different sub-sampling probabilities, some species will tend to be
200 generalists (or specialists). Similar to all consumer-resource models²⁹⁻³¹, we assume a fixed
201 expression pattern for each species and all resources being supplied so that we don't have to
202 consider the complexity of adaptive expression (such as different expression patterns when
203 different resources are supplied). In the end, we assembled all species in the same community
204 and ran consumer-resource dynamics until the system reached a steady state, for which we
205 constructed the PCN of the survived species (Fig. 2b, right).

206 We assumed the species pool consists of $N = 10,000$ species, and the function pool
207 consists of 20 functions for each of the three function types. We introduced 10,000 species to
208 ensure the number of initial species in the assembly simulation is much larger than the number
209 of functions so that we can assemble a high-diversity community in the end. The GCN of the
210 initial species pool is shown in Fig. 2c (left). For each species, we randomly sub-sampled a
211 subset of potential functions to express (middle panel, Fig. 2c). For each species, its true
212 consumption rates are its maximal consumption rates divided by the number of resources the
213 species can use (see Methods) to prevent the selection of generalist species that consume all
214 resources without a penalty^{32,33}. Due to the competitive exclusion principle³⁴, the maximal
215 number of species survived in the final steady state is 40, because there are 40 unique
216 externally supplied resources ("nutrients") in our model.

217 In Fig. 2c (right), we show a simulation example with 35 species survived in the final
218 steady state. For this assembled steady-state microbial community, we found that the three
219 modeled protein functions types were correctly revealed as three clusters by the Gaussian
220 mixture model in both the comparison of network degree (Fig. 2d) and FR (Fig. 2e). In particular,
221 for niche functions (red cluster in Fig. 2d, e), their mean degree in PCN (2.1) is much lower
222 than that in GCN (24.45), and their mean FR_p (0.005) is also much lower than their mean FR_g
223 (0.48). For essential functions (green cluster in Fig. 2d, e), their mean degree in PCN (23.7) is
224 close to that in GCN (26.7), and their mean FR_p (0.47) is also similar to their mean FR_g (0.57).
225 For specialist functions (blue cluster in Fig. 2d, e), both their k_{GCN} and k_{PCN} (or FR_g and FR_p)
226 are low.

227 The three functional clusters revealed by the classification of network degrees and
228 functional redundancies for all modeled protein functions exactly match the three function types
229 in our model. Moreover, the relative positioning of the three functional clusters based on our
230 simulation data agrees well with our hypothesis shown in Fig. 1. This clearly validates our
231 hypothesis that niche-occupying proteins have a larger difference in FR and network degree
232 than metabolically essential proteins.

233 We emphasize that the three functional clusters observed in the k_{GCN} vs. k_{PCN} (or the
234 FR_g vs. FR_p) plot is highly nontrivial. It is a result of the community assembly. To demonstrate
235 the importance of community assembly, we randomly picked 35 species (same as the number
236 of survived species) from the initial pool with equal abundances (i.e., the relative abundance is
237 1/35 for each species) without natural selection and found that it is impossible to distinguish
238 niche functions from essential functions (Fig. 2f, g). Interestingly, for essential functions, we
239 noticed that those species survived after the community assembly tend to have much larger
240 FR_p (with mean 0.478) than randomly selected species (with mean 0.132). By contrast, for
241 niche functions, survived species tend to have a smaller FR_p (with mean 0.005) than randomly
242 selected species (with mean 0.133). Similarly, we also computed FR for the same randomly
243 picked 35 species that share the abundances as survived species in the simulation. Again, we
244 cannot differentiate niche functions from essential functions (Supplementary Fig. 1).

245 We also simulated another community with 100 niche functions, 100 specialist
246 functions, and 100 essential functions. The species pool still consists of $N = 10,000$ species.
247 As shown in Supplementary Fig. 2), the results are similar to that for the community with fewer
248 functions (Fig. 2).

249

250 **Three protein functional clusters observed in human gut microbiomes**

251 After the validation of our computational pipeline using simulated data, we further validated it
252 on real data of human mucosal-luminal interface samples collected from the ascending colon
253 of four children^{14,28}. Here we focused on the genus level and annotated the identified proteins
254 from metagenomics and metaproteomics data via the COGs (Clusters of Orthologous genes)
255 database^{35,36}. We constructed the GCN and PCN for all the samples following the same
256 procedure as reported in a previous study¹⁴, and took the intersected COGs between the two
257 networks. In the main text, we focus on the analysis and discussion of subject HM454, and
258 similar findings from the other three subjects are shown in Supplementary Figs. 4-6. For
259 HM454, we used MetaPhlAn2³⁷ to obtain the taxonomic profile, which includes 85 genera with
260 assigned relative abundances. Raw metagenomic reads and unique peptide sequences
261 detected in metaproteomics were searched against an integrated gene catalog (IGC) database
262 of the human gut microbiome³⁸ to generate the GCN and PCN respectively. Taxonomic
263 assignment was performed using the 'protein-peptide bridge' method as described previously¹⁴.
264 More details about data processing can be found in Methods. And the number of intersected
265 COGs for the GCN and PCN associated with HM454 is 1,542. The genus- and COG-level GCN

266 and PCN of this microbiome sample are shown in Fig. 3a, b. The connectance (i.e., the number
267 of edges divided by the maximal number of possible edges) of the GCN (or PCN) is 0.220 (or
268 0.049), respectively. The GCN is nested with the nestedness value of 0.667 based on the
269 classical NODF (Nestedness based on Overlap and Decreasing Fill) measure³⁹ (Fig. 3a; see
270 Methods for details). The PCN has a lower nestedness value of 0.453 for the NODF measure
271 (Fig. 3b).

272 By comparing the network degree and functional redundancy of one COG in the GCN
273 (one column in Fig. 3a) with those for the same COG in the PCN, we can look into how the
274 COG impacts and is influenced by their metabolic essentiality and connection to occupy
275 ecological niches. For example, COG0539 is the ribosomal protein S1, which has been shown
276 to be essential for some microbes⁴⁰⁻⁴⁴. For subject HM454, 20 genera have COG0539 in the
277 GCN, while 15 genera have this COG in the PCN, hence $k_{GCN} = 20$ and $k_{PCN} = 15$.
278 Additionally, COG0539 has a similar level of functional redundancy in GCN and PCN: $FR_g =$
279 0.476 and $FR_p = 0.461$. These results suggest that COG0539 is crucial for microbial
280 metabolism, and not ecologically selected. Another example that falls into a different category
281 (i.e., niche functions) is COG1116, which is the ABC-type nitrate/sulfonate/bicarbonate
282 transport system⁴⁵. For COG1116, we have $k_{GCN} = 22 \gg k_{PCN} = 2$; and $FR_g = 0.388 \gg FR_p =$
283 0.004, which is evidence for the further specification in transporting nitrate, sulfonate, or
284 bicarbonate across community members on the protein level. Different from the previous
285 examples, some functions are specialized by a few genera on the gene level and thus are still
286 specialized by those genera on the protein level. For example, COG1018 (Ferredoxin-NADP
287 reductase), which has $k_{GCN} = k_{PCN} = 1$ and $FR_g = FR_p = 0.0$, is classified as a specialist
288 function.

289 To systematically explore the difference between GCN and PCN, we visualized the
290 difference in the network degree (Fig. 3c) and functional redundancy (Fig. 3d) for all COGs. As
291 can be seen in Fig. 3c for comparing network degrees, nearly all COGs are below the black
292 dashed line of $k_{GCN} = k_{PCN}$ because the map from the genomic capacity to protein function is
293 a sub-sampling process. The network degrees in PCN for almost all points are less than 10
294 (1,365 out of 1,542) and much less than their corresponding network degrees in GCN (349 out
295 of 1,542 COGs have network degrees less than 10). 804 of 1,542 COGs have a reduction in
296 network degree by more than 80%. Eventually, the major difference in network degree will lead
297 to a significant difference in functional redundancy, although the reduction in network degree
298 from GCN to PCN cannot fully explain why many COGs have $FR_p \sim 0$ (744 out of 1,542 have

299 $FR_p < 0.01$ in Fig. 3d). Indeed, the network degrees for COGs in the PCN positively correlate
300 with FR_p , but there is no simple relationship between k_{PCN} and FR_p (Fig. 3e). For example, for
301 L-arabinose isomerase (COG2160), its network degree in GCN ($k_{GCN} = 8$) is fairly close to the
302 network degree in PCN ($k_{PCN} = 7$), but its FR_p (0.04) is much lower than FR_g (0.23) since the
303 genus Blautia (which makes up 22% of the subject HM454's total microbial abundance) didn't
304 express L-arabinose isomerase, even if it has this capacity encoded in its genome.

305 We applied the Gaussian mixture model fitted on simulated data to classify all protein
306 functions in the real data and obtained 3 clusters from both the k_{GCN} vs. k_{PCN} plot (Fig. 3c) and
307 the FR_g vs. FR_p plot (Fig. 3d). Despite that the clustering of protein functions in real data looks
308 weaker than that in simulated data, the relative positioning of the three clusters (shaded areas
309 in Fig. 3c, d) agree well with our hypothesis shown in Fig. 1, as well our simulation results
310 shown in Fig. 2. We suspect that the weakened clustering might be due to (1) the variation of
311 k_{GCN} (or FR_g) in real data (Fig. 3c, d) is much larger than that in simulated data (Fig. 2d, e); the
312 low resolution of the GCN and PCN in the real data (both were constructed at the genus level).

313 Note that some points in Fig. 3c, d are above the diagonal line, contradicting the sub-
314 sampling argument for the gene expression. For instance, we noticed that for the subject
315 HM454, 12 genera have COG0094 in the GCN, while 25 genera have this COG in the PCN.
316 Additionally, COG0094 is even less redundant in the GCN ($FR_g = 0.166$) than it is in the PCN
317 ($FR_p = 0.641$). FR_g should be always larger than FR_p if the PCN was a proper subgraph of the
318 GCN for COG0094. We believe this contradiction is largely due to the metagenomic
319 sequencing depth and the metaproteomic identification depth. We know that both
320 metagenomics and metaproteomics have depth limitations and require sufficient depth to
321 detect genes or proteins, respectively. More specifically, some proteins detected by the ultra-
322 deep metaproteomics are not found in putative protein sequences annotated from
323 metagenomes. For example, if more proteins were assigned to one COG by the
324 metaproteomics than annotated metagenomes, it indicates the number of taxa that express
325 proteins belonging to the COG is higher than the number of taxa that own the COG. As a result,
326 the network degree of the COG in the GCN is even higher than its network degree in the PCN,
327 making FR_p of the COG larger than its FR_g (evidenced by COG0094).

328

329 **Comparing FR_g with FR_p pinpoints ecological niches and metabolic essentiality**

330 In order to justify whether or not the FR comparison for many COGs is ecologically or
331 metabolically meaningful, we focus on two types of proteins: ABC-type transporters (under

332 strong ecological selection because they directly influence the ecological interactions and are
333 influenced by resource availability)^{45–47} and ribosomal proteins (under weak ecological
334 selection because of their essentiality)^{42–44}.

335 ABC-type transporters are energy-requiring transporter proteins responsible for
336 obtaining and releasing resources in the environment^{45–47}. For example, if we consider a
337 particular transporter responsible for the uptake of glucose from the environment, theoretically
338 only top consumers of glucose would have the chance to claim this niche (consumption of
339 glucose) from the ecological standpoint. Consequently, we should expect a specification in
340 glucose consumption on the level of protein functions, even though many species have the
341 capacity to utilize it. For the gut microbiota sample we investigated, we indeed found that k_{GCN}
342 for all ABC-type transporters are much larger than their k_{PCN} (Fig. 4a). Similarly, we also found
343 that FR_g for all ABC-type transporters are much larger than their FR_p (Fig. 4b). Many
344 transporter proteins were classified to the red cluster (i.e., the cluster of niche functions) in Fig.
345 4b. Some transporter proteins were classified to the blue cluster (i.e., the cluster for specialist
346 functions) due to the specialization on the gene level. As a result, such specialization would be
347 carried to the protein level. Some transporter proteins were classified to the green cluster (i.e.,
348 the cluster for essential functions) because they have been proven essential for microbes. One
349 example is the ABC-type Fe3+/spermidine/putrescine transporter (COG3842) which has
350 $FR_g = 0.339$ and $FR_p = 0.285$. It has been shown that iron is essential for bacteria as it
351 functions as a co-factor in iron-containing proteins in redox reactions, metabolic pathways, and
352 electron transport chain mechanisms^{48,49}.

353 Ribosomal proteins are necessary for the growth of all living organisms because, as
354 we know, the ribosome is the place where other proteins are synthesized^{50,51}. Since ribosomal
355 proteins are an indispensable part of microbial survival, all abilities of synthesizing such
356 proteins are expected to be expressed. In our data, many ribosomal proteins were classified
357 to the green cluster (i.e. the cluster for essential functions). Moreover, we found that their k_{GCN}
358 were very close to their k_{PCN} (Fig. 4e). In Fig. 4f, we compared FR_g with FR_p and found many
359 ribosomal proteins were classified to the green cluster (i.e. the cluster for essential functions),
360 agreeing with our expectation that proteins with high FR_g and FR_p are more likely to be
361 essential functions. Interestingly, two ribosomal proteins (L28 and L34) colored red in Fig. 4e
362 have been shown to be non-essential^{41,42,52} to microbes such as *E. coli*. Some specialized
363 ribosomal proteins in microbial genomes continue to be specialized on the protein level and
364 thus were classified to the blue cluster (i.e., the cluster for specialist functions).

365 Alternatively, we looked at the distribution of network degrees (Fig. 4c, g) and the
366 distribution of functional redundancy (FR_g or FR_p in Fig. 4d, h) for the two protein types to
367 observe their difference. For ABC-type transporters, the distribution of network degrees in PCN
368 is close to 0 (having a median of 2), while the median of network degrees in GCN is 25. For
369 ribosomal proteins, the distribution of network degrees in PCN (median is 12) is similar to that
370 in GCN (median is 14). For ABC-type transporters, the distribution of FR_p in PCN is close to 0
371 (with a median ~ 0.01), while the median of FR_g in GCN is around 0.30. For ribosomal proteins,
372 the distribution of FR_p in PCN (median ~ 0.20) is similar to the distribution of FR_g in GCN
373 (median ~ 0.21). The same patterns of ABC transporters showing a big reduction (in functional
374 redundancy and network degree) and ribosomal proteins showing little difference are also true
375 for the other 3 individuals (Supplementary Figs. 9-11).

376 We also validated the above results using a different functional annotation method,
377 KEGG Orthology (KO)⁵³⁻⁵⁶. The annotation rate of proteins involved in PCN of the four
378 individual microbiomes is 78% (much lower than 92% which we had for the COG annotation).
379 The contrasting difference between ABC-type transporters and ribosomal proteins is well
380 preserved (see Supplementary Fig. 7). Additionally, the distribution of FR_p shows a dramatic
381 difference across KO groups (Supplementary Fig. 8). Some ecologically strongly selected KO
382 groups have small FR_p , while other metabolically essential KO groups show fairly large FR_p
383 and big variations (see Supplementary Fig. 8). For example, almost all proteins in ABC
384 transporters and PTS systems have FR_p close to zero (Fig. Supplementary Fig. 8), and
385 transporters and PTS systems are well-known as the ecologically selected groups^{45-47,57}. As a
386 comparison, proteins from Aminoacyl-tRNA biosynthesis, glycolysis, and ribosomes all have
387 big FR_p and huge variations across different proteins within the group (Supplementary Fig. 8).
388 In the past, the metabolic essentiality has been demonstrated for Aminoacyl-tRNA
389 biosynthesis^{15,16}, glycolysis^{58,59}, and ribosomes⁴²⁻⁴⁴.

390

391 **The response of community and protein expression to the introduction of sugars**

392 In ecology, a niche is often defined as an abiotic and biotic factor that supports the survival of
393 species^{9,60-62}. Therefore, niche functions are associated with corresponding limiting resources
394 involved in those functions. For example, COG1879 (ABC-type sugar transport system,
395 periplasmic component, contains N-terminal xre family HTH domain) which is categorized as
396 a niche function owing to its high FR_g of 0.486 and low FR_p of 0.041 for the subject HM454, is

397 associated with widely competed sugars in microbial communities. After inferring niche
398 functions such as ABC-type transporters by our computational pipeline, we wonder if it is
399 possible to influence the community structure by externally supplying more limiting resources
400 involved in the niche functions. To demonstrate this, we resort to the *in vitro* community and
401 are interested in how the community structure and expression of proteins involved in niche
402 functions respond to supplied limiting sugars. Specifically, we would like to see how proteins
403 relevant to ecological niche functions within one taxon change their expressions to achieve a
404 better living strategy for the taxon.

405 We used rapid assay for individual microbiome (RapidAIM)⁶³, which maintains the
406 functional profiles of individual gut microbiomes *in vitro*⁶⁴, to culture three different individual
407 human gut microbiota samples, and used metaproteomics to observe how taxon-specific
408 expression of proteins in the niche functional cluster respond to the presence of glucose,
409 fructose and kestose (Fig. 5a). Samples were cultured in technical triplicates, and were taken
410 at 0, 1, 5, 12, and 24 hours of culturing for optical density and metaproteomic analyses. 11-
411 plex tandem mass tag (TMT11plex) was used for metaproteomic quantification⁶⁵ for a total of
412 189 samples. To reflect the effect of introduced sugars on protein expression levels, we used
413 log2 of the ratio between normalized protein abundances/intensities (see Methods for details)
414 in the treatment and that in the control group (i.e. log2 of fold change in Fig. 5). We
415 hypothesized that the excessive supply of sugars renders carbon resources no longer limited
416 and instead microbes start to compete for other resources in relatively short supplies compared
417 to carbon resources such as nitrogen resources or amino acids because microbes need all
418 those resources proportionally (Fig. 5a). Therefore, microbes might have to over-express
419 proteins to uptake more non-carbon limiting resources to achieve better growth.

420 To understand how each taxon interacts with the environment and how introduced
421 sugars modulate the interaction, we focused on log2 fold changes of ABC-type transporters 5
422 hours later whose expression levels reveal rates for transporting nutrients (Fig. 5b-d). When
423 glucose is supplied in an excessive amount, log2 fold changes of most COGs are close to
424 zeros except for COG1126 (ABC-type polar amino acid transport system, ATPase component),
425 COG1653 (ABC-type glycerol-3-phosphate transport system, periplasmic component),
426 COG1879 (ABC-type sugar transport system, periplasmic component, contains N-terminal xre
427 family HTH domain), and COG4166 (ABC-type oligopeptide transport system, periplasmic
428 component). Many pronounced changes happen to the genus *Holdemanella* and it is
429 interesting to note that *Holdemanella* reduces the expression of transporters for importing
430 sugars (COG1879) and an intermediate in the glycolysis glycerol-3-phosphate (COG1653)

431 when glucose is added. Instead, it increases the expression of COG1126 which transports
432 polar amino acids. This strategy benefits *Holdemanella* because the fraction of proteins from
433 *Holdemanella* over all proteins in the community increases from 13.5% in the control to 15.8%
434 with the added glucose. We also measured log2 fold changes of ABC-type transporters when
435 fructose, glucose and fructose, or ketose is added and their overall patterns (Fig. 5c-e) are
436 similar to the pattern when glucose is added (Fig. 5b). The correlation in log2 fold changes of
437 ABC-type transporters between different added sugars is significant (Supplementary Fig. 12).
438 Similar fold changes of ABC-type transporters were observed for metaproteomic
439 measurements 12 hours, and 24 hours later (Supplemental Figs. 14-15), while the fold changes
440 1 hour later are still fairly small (Supplemental Fig. 13). We also attempted to look at how
441 ribosomal proteins respond to sugar supplies (Supplementary Fig. 16). Overall, log2 fold
442 changes of ribosomal proteins are overwhelmingly positive, which probably implies a faster
443 growth for microbes when simple sugars are supplied^{32,33}. Therefore, we demonstrated that
444 the sugars associated with the niche function (i.e., the sugar transport system) can be
445 introduced to influence gene expression and modulate the community structure.
446

447 **Discussion**

448 Understanding the functions of proteins in the metabolism and how they are influenced by
449 various ecological interactions is important to fully characterize ecological niches in a given
450 microbial community. Typically, to check if a protein is metabolically essential, one has to knock
451 out the gene in one microbial species that codes for the protein to check how the growth rate
452 of the species reduces⁴²⁻⁴⁴. A usual way to determine a limiting resource often that is utilized
453 by a protein follows: modify resource supplies and see how the total biomass changes⁶⁶⁻⁶⁹.
454 Here, to complement those traditional experimental methods, we proposed a simpler
455 computational method that can identify metabolic and ecological functions of proteins via the
456 comparison of their FR_g and FR_p , as well as their k_{GCN} and k_{PCN} . We validated this
457 computational method using both model-generated synthetic data and real data for human gut
458 microbiomes. Also, when we selected two types of proteins (ABC-type transporters and
459 ribosomal proteins in the real data representing niche functions and essential functions,
460 respectively), most predicted protein functional clusters of the two types of proteins fell into the
461 niche function cluster and the essential function cluster, respectively. Besides these two protein
462 types, we were able to generate a list of FR_p and FR_g for all COGs (see Supplemental Data 1-
463 4), which is useful for understanding the metabolic and ecological functions of proteins.

464 The presented results help us reconcile the conflict between the niche theory in
465 ecology^{62,70,71} and the observed functional redundancy^{11,12}. The traditional niche theory is
466 grounded in the competitive exclusion principle, stating that a resource (or niche) cannot be
467 occupied by two species (or more than two species) for the steady-state conditions^{62,70,71}. As
468 a result of competition, organisms within the same community develop different surviving
469 strategies to minimize their competition. One interesting example is the repetitive established
470 coexistence between two evolved *E. coli* strains, even though a single clone of *E. coli* is initiated
471 and maintained in a glucose-limited continuous or serial culture^{21,72,73}. Cross-feeding between
472 two evolved *E. coli* strains can be established when one bacterial strain consumes overflow
473 metabolites like acetate excreted by the other bacterial strain²¹. Hence, the two strains avoid
474 competition by specification on different resources (glucose and acetate). However, the picture
475 from the niche theory clashes with the observed functional redundancy in microbial
476 communities because the functional redundancy implies that many species own the same
477 functions in their genomes^{11,12}. We solved this dilemma by pointing out that proteins related to
478 occupying ecological niches usually have very low FR_p and large FR_g . Therefore, if we apply
479 this concept in reverse, then large FR_g and small FR_p could help us to pinpoint niche functions.

480 There is a long-standing gap between the ecological model which considers the protein
481 functions of organisms and the data analysis of genomic data to give ecological insights. Ever
482 since Robert MacArthur proposed a community model in 1970 to consider how different
483 consumers compete exclusively for renewing resources⁷⁴, many extensions of this model were
484 proposed to include more complex ecological factors such as cross-feeding interactions^{75–78}
485 and multiple essential nutrients⁷⁹. Almost all of them focus on the phenotype of microbes
486 because only functions of expressed proteins are relevant for the consumption and production
487 of nutrients in the ecosystem. Due to the lack of metaproteomic data, many computational
488 approaches attempting to generate ecological implications rely on the over-complete inferred
489 protein capacity derived from genomes^{7,9–12}. To reconcile this gap, we built an ecological
490 framework with the genomic capacity and protein functions together by introducing species
491 with sub-sampled functions. The model framework is useful for explaining the difference
492 between genomic capacity and protein functions. The selective expression can be considered
493 as the same microbe with different expressions under different environments^{80–82} or evolved
494 strains from the same species that have distinct metabolic niches observed in evolutionary
495 experiments of microbes^{83,21,22}.

496 It is worth noting that the assumption of the trade-off between generalists and
497 specialists (represented by assuming that the total proteome is relatively constant) is very

498 important. In our model, this assumption is achieved by considering true consumption rates in
499 PCN as maximal consumption rates in GCN divided by the number of resources. The
500 importance of this trade-off lies in the fact that it forces the niche partitioning among species.
501 In the absence of this assumption, there is no pattern of redundancy difference since
502 generalists can always out-compete specialists. This trade-off makes sense because typically
503 the total proteome budgets for microbes have been observed to be relatively fixed^{32,33}.

504

505

506

507 Methods

508 **In-vitro culture of single gut bacterial strains with added sugars.** Five gut commensal
509 bacterial strains, *Bacteroides vulgatus* ATCC 8482, *Bacteroides ovatus* ATCC 8483,
510 *Bacteroides uniformis* ATCC 8492, *Blautia hydrogenotrophica* DSM 10507, *Escherichia coli*
511 DSM 101114 were cultured with or without added sugars (glucose, sucrose and kestose). The
512 base culture medium without sugar added were modified based on the Yeast Casitone Fatty
513 Acids (YCFA) broth, containing 10.0 g/L casitone, 2.5 g/L yeast extract, 45 mg/L MgSO₄·7H₂O,
514 90 mg/L CaCl₂·2H₂O, 450 mg/L K₂HPO₄, 450 mg/L KH₂PO₄, 900 mg/L NaCl, 1.0 mg/L
515 resazurin, 4.0 g/L NaHCO₃, 1.0 g/L L-Cysteine-HCl, 10 mg/L Hemin, 1.90 mL/L acetic acid,
516 0.7 mL/L propionic acid, 90 μL/L iso-butyric acid, 100 μL/L n-valeric acid, 100 μL/L iso-valeric
517 acid, 0.02 mg/L biotin, 0.02 mg/L folic acid, 0.05 mg/L thiamine-HCl, 0.05 mg/L riboflavin,
518 0.001 mg/L vitamin B12, 0.05 mg/L aminobenzoic acid. The pH was adjusted to between 6.7-
519 6.8, and autoclaved media were pre-reduced in an anaerobic chamber overnight. 5 g/L of
520 different sugars (glucose, sucrose, and kestose) were added to the base medium as treatment
521 groups. Master tubes of single bacterial strains were first cultured on Tryptic Soya Agar (TSA)
522 containing 5% sheep blood using the streak plate method. A single colony was picked from
523 each agar plate and inoculated into the base culture medium to culture for 24 hours, before
524 inoculating 100 μL of each culture into 10 mL of four different media: base medium without
525 sugar added, with glucose added, with sucrose added and with kestose added. After culturing
526 for 24 hours, optical density at 600 nm was tested in technical triplicates for each sample.
527 Cultured microbial cells were purified by washing with phosphate buffered saline (PBS) buffer
528 three times, and the resulting microbial pellets were stored at -80 °C for proteomics analysis.
529

530 **In-vitro human gut microbiota culture with added sugars.** Three healthy individual
531 microbiota samples were collected and biobanked using our live microbiota biobanking
532 protocol⁸⁴. The study was approved by the Ottawa Health Science Network Research Ethics
533 Board at the Ottawa Hospital, Ottawa, Canada (# 20160585–01 H). The frozen microbiome
534 samples were thawed at 37 °C and cultured in our optimized culture medium⁶⁴ with or without
535 the presence of different sugars (10 mM glucose, 20 mM fructose, 10 mM glucose + 20 mM
536 fructose, or 10 mM ketose). Samples were cultured in technical triplicates, and were taken at
537 0 hr, 1hr, 5 hr, 12 hr and 24 hr of culturing for optical density and metaproteomic analyses.
538 After culturing, 96-well deep well plates were first centrifuged at 3,000 g for 45 min under 4 °C.
539 Then the pellets were washed in 4 °C phosphate buffered saline (PBS) buffer and centrifuged
540 at 3,000 g for 45 min again, before pelletting and removing culture debris three times using 300
541 g, 4 °C , 5 min centrifugation. Microbial suspensions were then centrifuged at 3,000 g, 4 °C
542 for another 45 min. The purified cell pellets were stored at -80 °C before protein extraction.
543

544 **Protein extraction, digestion and LC-MS/MS analysis.** For single strain samples, proteins
545 were extracted with 4% SDS 8M urea buffer in 100 mM Tris-HCl buffer and precipitated
546 overnight at -20 °C, before being purified by washing with ice-cold acetone three times.
547 Quantified proteins were then reduced and alkylated before being digested using trypsin (50:1
548 protein-to-trypsin ratio) for 24 hours at 37 °C and were desalting using reverse phase beads⁸⁵.
549 Proteomic samples were analyzed using an Orbitrap Exploris 480 mass spectrometer
550 (ThermoFisher Scientific Inc.) coupled with an UltiMate 3000 RSLCnano liquid
551 chromatography system following a 1-hour gradient of 5 to 35% (v/v) acetonitrile (v/v) at the
552 flow rate of 300 L/min. MS full scan was performed from 350 - 1400 m/z with a resolution of
553 60,000, followed by an MS/MS scan of 12 most intense ions, a dynamic exclusion repeat count
554 of one, exclusion duration of 30 s, and resolution of 15,000. Metaproteomics samples of the
555 cultured individual microbiomes were prepared using a semi-automated approach. Briefly,
556 samples were lysed in a buffer containing 8 M urea, 4% SDS in 100 mM Tris-HCl (pH = 8.0) to
557 extract microbial total proteins. The proteins were purified by a double-precipitation procedure
558 in 50%:50%:0.1% (v/v/v) acetone: ethanol: acetic acid solution. Protein digestion and desalting
559 steps were performed using an automated liquid handler (Hamilton Nimbus-96). Briefly, 100
560 µg proteins were dissolved in 100 µL 6 M urea in 100 mM Tris-HCl (pH 8) buffer, before being
561 reduced by 10 µL 0.1 M dithiothreitol (DTT) solution under 56 °C for 30 minutes and alkylated
562 by 10 µL 0.2 M iodoacetamide (IAA) solution in dark, 25 °C for 40 minutes. Samples were each
563 added 1000 µL 100 mM Tris-HCl buffer containing 2 µg/mL trypsin (trypsin:proteins = 1:50) for

564 a 24-hour digestion under 37 °C, before being desalted using an automated pipeline based on
565 reverse-phase (RP) desalting columns. 11-plex tandem mass tag (TMT11plex) was used for
566 metaproteomic quantification for a total of 189 samples. An even mixture of all samples was
567 used as the reference channel in each 11-plex. Samples were scrambled before labeling with
568 TMT11plex, so that each labeled sample contains samples from different individuals, different
569 time points and different treatments to avoid any bias that may be induced between analyses.
570 TMT-labelled samples were analyzed using an Orbitrap Exploris 480 mass spectrometer
571 (ThermoFisher Scientific Inc.) coupled with an UltiMate 3000 RSLCnano liquid
572 chromatography system following a 2-hour gradient of 5% to 35% solvent B (80% acetone
573 nitrile, 0.1% formic acid, v/v).

574

575 **Datasets.** Metagenomics data corresponding to the ultra-deep metaproteomic analysis of the
576 four individual microbiomes were obtained from the previous MetaPro-IQ study^{14,28} (accessible
577 from the NCBI sequence read archive (SRA) under the accession of SRP068619) and the
578 same samples were reanalyzed by an ultra-deep metaproteomics approach¹⁴ (accessible
579 through the ProteomeXchange Consortium (<http://www.proteomexchange.org>) via the PRIDE
580 partner repository⁸⁶). Proteomics dataset of the cultured singles strain samples has been
581 deposited to ProteomeXchange Consortium via the PRIDE partner repository. Metaproteomic
582 dataset of the RapidAIM-cultured microbiome samples has been deposited to
583 ProteomeXchange Consortium via the PRIDE partner repository.

584

585 **Database search and data processing.** Proteomics database searches were performed by
586 combining FASTA databases of the individual strains downloaded from NCBI. The databases
587 were combined for performing database search using MaxQuant⁸⁷ 1.6.17.0, with the label-free
588 quantification option turned off. Metaproteomic database searches of cultured microbiome
589 samples were performed using MetaLab V2.2⁸⁸, MaxQuant option was used to search the TMT
590 dataset against the IGC database of the human gut microbiome. The resulting data table was
591 normalized using R package MSstatsTMT⁸⁹, and missing values were imputed using R
592 package DreamAI⁹⁰. The "fraction" of each taxon-specific protein is computed by dividing the
593 protein intensity by the sum of intensities of all proteins assigned to the same taxon. The log2
594 fold change of each protein is obtained by taking log2 of the ratio between its fraction in the
595 treatment group (with added sugars) and its fraction in the control group (without added sugars).

596

597 **Generation of GCN and PCN.** For the ultra-deep metaproteomic dataset, the genus-COG
598 version of GCN and PCN tables were directly obtained from the previous work¹⁴. In addition,
599 here we generated a genus-KEGG version of GCN and PCN for each individual microbiome
600 using a similar method. Briefly, for the genus-KEGG GCN, by searching raw metagenomic
601 reads against an integrated gene catalog (IGC) database of the human gut microbiome³⁸, we
602 obtained a list of proteins quantified by read counts. FASTA sequences of these proteins were
603 searched against the KEGG database using GhostKOALA⁹¹. Taxonomic origination of the
604 proteins was obtained by searching against an in-house database generated with the NCBI
605 non-redundant (nr) database (downloaded 2/3/2016). To generate genus-KEGG PCN, the
606 taxonomic table of the metaproteomics dataset was directly obtained from MetaLab, and
607 KEGG annotation was also performed by querying protein FASTA sequences with
608 GhostKOALA. Protein group intensity was used as the quantification information in PCNs. For
609 the proteomic dataset of single strains, the whole proteomic FASTA database was submitted
610 to EggNOG mapper (<http://eggnog-mapper.embl.de/>, submitted Oct-30-2021, ran emapper.py
611 2.1.6) to obtain functional annotations. To generate GCN, protein coding sequence (CDS) files
612 were downloaded from NCBI, and the count of each protein id in the CDS files was considered
613 as the copy number of each gene in the GCN. For PCN generation, intensities of identified
614 proteins matched to each strain were used. Note that protein ids in the CDS file were 100%
615 matched with those in the proteomic FASTA database in each strain. For the metaproteomics
616 dataset of the cultured microbiome samples, functional information for the generation of PCN
617 was obtained from the resulting functional table automatically generated by the MetaLab
618 software. Taxonomic assignment was performed using the ‘protein-peptide bridge’ method as
619 described previously¹⁴. The PCNs for this dataset were then generated based on intensities of
620 COG-genus pairs.

621

622 **Normalized gene-level functional redundancy (nFR_g) and normalized protein-level
623 functional redundancy (nFR_p).** Across multiple samples, it is pointless to compare the FR_g
624 or FR_p directly because of the difference in microbial taxonomic diversities. In fact, it has been
625 shown in the past that the normalized functional redundancy, which is the functional
626 redundancy divided by the taxonomic diversity, can be compared across samples¹². In our
627 study, the definition for nFR_g is

$$628 \text{nFR}_g = \frac{\sum_{i=1}^N \sum_{j \neq i}^N (1 - d_{ij}^{\text{GCN}}) p_i p_j}{\sum_{i=1}^N \sum_{j \neq i}^N p_i p_j}, \quad (1)$$

629 and the definition for nFR_p is

$$630 \quad nFR_p = \frac{\sum_{i=1}^N \sum_{j \neq i}^N (1-d_{ij}^{PCN}) p_i p_j}{\sum_{i=1}^N \sum_{j \neq i}^N p_i p_j}. \quad (2)$$

631

632 **The community assembly model.**

633 *Step 1: Assignment of species' genomic capacity.* Three types of protein functions are modeled:
634 niche function, specialist function, and essential function. Both specialist function and niche
635 function are considered as the capacity to consume a unique and externally supplied resource.
636 The probability of a random consumer being assigned the ability to have a niche function is
637 0.7. To make fewer species own specialist functions in their genomes, the probability of a
638 random consumer being assigned the ability to have a specialist function is 0.2, much lower
639 than the probability of owning a niche function. The maximal consumption rate of a resource
640 by one species represents the consumption rate that the species would have if it allocates the
641 entire proteome (100%) to the consumption of the resource. If many resources are consumed,
642 the total proteome has to be divided into several parts and the consumption rates would be a
643 fraction of the corresponding maximal consumption rates. The essential function is not
644 modeled as the consumption of alternative resources due to its metabolic essentiality. Instead,
645 the essential function is modeled as multiplying the growth rate by a factor of 0.95 for each
646 missing essential function.

647 *Step 2: Assignment of species' protein functions based on their genomic capacity.* Each
648 species sub-samples its genomic potential functions with a sub-sampling probability p (which
649 is a random number uniformly distributed between 0 and 1) to obtain its protein functions (i.e.
650 which resource it can truly consume). As a result, all protein functions of species form the basis
651 for PCN. The true consumption rate of one species on a resource is its maximal consumption
652 rate on the resource divided by the number of resources that can be utilized by the species.
653 This process can be thought of as the proteome allocation to consume several resources
654 simultaneously^{32,33}. This assumption imposes a trade-off between a generalist and a specialist
655 species: a generalist species utilizes more resources but has lower consumption rates for all
656 resources, while a specialist species consumes fewer resources but has higher consumption
657 rates for consumed resources.

658 *Step 3: Community assembly.* We assumed a chemostat environment, similar to the setting
659 considered by many Consumer-Resource models^{75,77}. The dilution rate D is considered as 0.1
660 per hour. A fixed number of resources is considered and the pool concentrations (or supply
661 rates) for all resources are assumed to be the same for simplicity. For each species, the growth

662 rate is treated as the sum of consumption rates for different resources divided by the yield. For
663 simplicity, all yields are assumed to be equal ($Y = 1$). Overall, the dynamics for the
664 concentrations of resource i (denoted as C_i) and the abundance of the species α (written as
665 B_α):

$$666 \quad \frac{dC_i}{dt} = h_i - DC_i - \frac{\sum_\beta a_{\beta i} \gamma^{N_m} B_\beta C_i}{Y}, \quad (3)$$

$$667 \quad \frac{dB_\alpha}{dt} = -DB_\alpha + \sum_j a_{\alpha j} \gamma^{N_m} B_\alpha C_j, \quad (4)$$

668 where $a_{\alpha i}$ is the consumption rate of species α on resource i , h_i is the supply rate of
669 resource i , Y is the same yield assumed for all resources, $\gamma (= 0.95)$ is the diminishing rate for
670 the overall consumption rate that is multiplied for each missing essential function, and N_m is
671 the number of missing essential functions. The consumption rate of one species of a resource
672 is randomly drawn from the uniform distribution between 0 and 1. Eventually, for each species,
673 its true consumption rates are its randomly drawn consumption rates divided by the number of
674 resources the species can use to constrain the total proteome budget^{32,33}. The incidence matrix
675 of the consumption abilities establishes part of PCN for niche functions and specialist functions
676 of the species. The entire PCN is completed by including the presence/absence information of
677 all essential functions.

678 *Step 4: Generate GCN and PCN for survived species.* When we simulated the above
679 community assembly process to reach a steady-state in the chemostat environment, survived
680 species can be found as species existing with non-negative abundances at the end of the
681 simulation. For survived species, we can reconstruct the GCN and PCN for them. Within
682 equipped GCN and PCN, we would be able to compute FR_g , FR_p , and network degrees (k_{GCN}
683 and k_{PCN}).

684

685 **Calculation of nestedness.** To reveal the nested structure of an incidence matrix, we first
686 need to use the Nestedness Temperature Calculator (NTC)⁹² to organize the matrix. Then we
687 adopted the NODF (Nestedness based on Overlap and Decreasing Fill) measure previously
688 defined³⁹. The measure can only be computed for binary incidence matrices. As with any
689 perfectly nested matrix, two properties must be present: (1) decreasing fill, which means that
690 the columns below and to the right should have fewer entries than the columns above and to
691 the left; and (2) paired overlap, which implies that when an entry appears in the columns
692 below and to the right, it should also appear in the columns above and to the left. The NODF
693 measure is calculated by averaging these two properties across all pairs of an upper and
694 lower row and a left and right column. For the comparison of each pair, if decreasing fill is not

695 satisfied, the pair will contribute 0 to the total nestedness. Otherwise, the pair's contribution is
696 the percentage overlap in non-zero entries between the two rows or two columns.

697

698 **Statistics.** To calculate correlation throughout the study, we used Pearson's correlation
699 coefficient. Wherever we used P values, we explained in the Methods how we calculated them,
700 since for all such measurements in the study, we calculated the associated null distributions
701 from scratch. All statistical tests were performed using standard numerical and scientific
702 computing libraries in the Python programming language (version 3.7.1) and Jupyter Notebook
703 (version 6.1).

704

705 **Data and code availability.** All code for simulations used in this manuscript can be found at
706 XXX.

707 **Acknowledgements.** We thank Janice Mayne for the help with providing biobanking samples
708 and thank Zhibin Ning for the help with running mass spectrometry. D.F. acknowledges grants
709 from Natural Sciences and Engineering Research Council of Canada (NSERC), and the
710 Government of Canada through Genome Canada and the Ontario Genomics Institute (OGI-
711 114 & OGI-149). D.F. acknowledges a Distinguished Research Chair from the University of
712 Ottawa. Y.-Y.L. acknowledges grants from the National Institutes of Health (R01AI141529,
713 R01HD093761, RF1AG067744, UH3OD023268, U19AI095219, and U01HL089856).

714 **Author contributions.** Y.-Y.L. and D.F. supervised the study. T.W. and Y.-Y.L. conceived the
715 project. All authors designed the research. L. L. prepared and curated the empirical data as
716 well as performed all wet-lab experiments. T.W. analyzed all data and developed the ecological
717 model. T.W. wrote the initial manuscript. All authors edited and approved the manuscript.

718 **Competing Interests.** The authors declare no competing interests. D.F. co-founded
719 MedBiome Inc., a clinical microbiomics company.

720

721 **References**

- 722 1. Tyson, G. W. *et al.* Community structure and metabolism through reconstruction of
723 microbial genomes from the environment. *Nature* **428**, 37–43 (2004).
- 724 2. Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in
725 nutrition and health. *Nature Reviews Gastroenterology & Hepatology* **9**, 577–589 (2012).
- 726 3. Lloyd-Price, J. *et al.* Multi-omics of the gut microbial ecosystem in inflammatory
727 bowel diseases. *Nature* **569**, 655–662 (2019).
- 728 4. Paerl, null & Pinckney, null. A Mini-review of Microbial Consortia: Their Roles in
729 Aquatic Production and Biogeochemical Cycling. *Microb Ecol* **31**, 225–247 (1996).
- 730 5. Falkowski, P. G., Fenchel, T. & Delong, E. F. The Microbial Engines That Drive
731 Earth's Biogeochemical Cycles. *Science* **320**, 1034–1039 (2008).
- 732 6. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the
733 global ocean microbiome. *Science* **353**, 1272–1277 (2016).
- 734 7. Levy, R. & Borenstein, E. Metabolic modeling of species interaction in the human
735 microbiome elucidates community-level assembly rules. *PNAS* **110**, 12804–12809 (2013).
- 736 8. Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of
737 interspecies interactions in microbial ecosystems. *Nature Communications* **10**, 103 (2019).
- 738 9. Fahimipour, A. K. & Gross, T. Mapping the bacterial metabolic niche space. *Nature
739 Communications* **11**, 4887 (2020).
- 740 10. Louca, S. *et al.* High taxonomic variability despite stable functional structure across
741 microbial communities. *Nat Ecol Evol* **1**, 15 (2016).
- 742 11. Louca, S. *et al.* Function and functional redundancy in microbial systems. *Nature
743 Ecology & Evolution* **2**, 936 (2018).
- 744 12. Tian, L. *et al.* Deciphering functional redundancy in the human microbiome. *Nature
745 Communications* **11**, 6217 (2020).
- 746 13. Franzosa, E. A. *et al.* Relating the metatranscriptome and metagenome of the human
747 gut. *Proc Natl Acad Sci U S A* **111**, E2329–2338 (2014).
- 748 14. Li, L. *et al.* Revealing Protein-Level Functional Redundancy in the Human Gut
749 Microbiome using Ultra-deep Metaproteomics. *bioRxiv* 2021.07.15.452564 (2021)
750 doi:10.1101/2021.07.15.452564.
- 751 15. Ibba, M. & Soll, D. Aminoacyl-tRNA synthesis. *Annu Rev Biochem* **69**, 617–650
752 (2000).
- 753 16. Parker, D. J. *et al.* Growth-Optimized Aminoacyl-tRNA Synthetase Levels Prevent
754 Maximal tRNA Charging. *Cell Syst* **11**, 121–130.e6 (2020).
- 755 17. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. *J
756 Mol Biol* **3**, 318–356 (1961).
- 757 18. Okano, H., Hermsen, R., Kochanowski, K. & Hwa, T. Regulation underlying
758 hierarchical and simultaneous utilization of carbon substrates by flux sensors in *Escherichia
759 coli*. *Nat Microbiol* **5**, 206–215 (2020).
- 760 19. Kumari, S. *et al.* Regulation of Acetyl Coenzyme A Synthetase in *Escherichia coli*.
761 *Journal of Bacteriology* **182**, 4173–4179 (2000).
- 762 20. Starai, V. J. & Escalante-Semerena, J. C. Acetyl-coenzyme A synthetase (AMP
763 forming). *Cell Mol Life Sci* **61**, 2020–2030 (2004).
- 764 21. Rosenzweig, R. F., Sharp, R. R., Treves, D. S. & Adams, J. Microbial evolution in a
765 simple unstructured environment: genetic differentiation in *Escherichia coli*. *Genetics* **137**,
766 903–917 (1994).

767 22. Treves, D. S., Manning, S. & Adams, J. Repeated evolution of an acetate-crossfeeding
768 polymorphism in long-term populations of *Escherichia coli*. *Mol Biol Evol* **15**, 789–797
769 (1998).

770 23. Lin, H., Castro, N. M., Bennett, G. N. & San, K.-Y. Acetyl-CoA synthetase
771 overexpression in *Escherichia coli* demonstrates more
772 efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic
773 engineering. *Appl Microbiol Biotechnol* **71**, 870–874 (2006).

774 24. Kinnersley, M. A., Holben, W. E. & Rosenzweig, F. E Unibus Plurum: genomic
775 analysis of an experimentally evolved polymorphism in *Escherichia coli*. *PLoS Genet* **5**,
776 e1000713 (2009).

777 25. Penzlin, A. *et al.* Pipasic: similarity and expression correction for strain-level
778 identification and quantification in metaproteomics. *Bioinformatics* **30**, i149-156 (2014).

779 26. Ram, R. J. *et al.* Community proteomics of a natural microbial biofilm. *Science* **308**,
780 1915–1920 (2005).

781 27. VerBerkmoes, N. C., Denef, V. J., Hettich, R. L. & Banfield, J. F. Systems biology:
782 Functional analysis of natural microbial consortia using community proteomics. *Nat Rev
783 Microbiol* **7**, 196–205 (2009).

784 28. Zhang, X. *et al.* MetaPro-IQ: a universal metaproteomic approach to studying human
785 and mouse gut microbiota. *Microbiome* **4**, 31 (2016).

786 29. Abrams, P. A. Character displacement and niche shift analyzed using consumer-
787 resource models of competition. *Theor Popul Biol* **29**, 107–160 (1986).

788 30. Ispolatov, I. & Doebeli, M. A note on the complexity of evolutionary dynamics in a
789 classic consumer-resource model. *Theor Ecol* **13**, 79–84 (2020).

790 31. Arthur, R. M. Species Packing, and What Competition Minimizes. *PNAS* **64**, 1369–
791 1371 (1969).

792 32. You, C. *et al.* Coordination of bacterial proteome with metabolism by cyclic AMP
793 signalling. *Nature* **500**, 301–306 (2013).

794 33. Basan, M. *et al.* Overflow metabolism in *Escherichia coli* results from efficient
795 proteome allocation. *Nature* **528**, 99–104 (2015).

796 34. Hardin, G. The competitive exclusion principle. *Science* **131**, 1292–1297 (1960).

797 35. Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a
798 tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Res* **28**, 33–
799 36 (2000).

800 36. Tatusov, R. L. *et al.* The COG database: an updated version includes eukaryotes. *BMC
801 Bioinformatics* **4**, 41 (2003).

802 37. Segata, N. *et al.* Metagenomic microbial community profiling using unique clade-
803 specific marker genes. *Nat Methods* **9**, 811–814 (2012).

804 38. Li, J. *et al.* An integrated catalog of reference genes in the human gut microbiome. *Nat
805 Biotechnol* **32**, 834–841 (2014).

806 39. Almeida-Neto, M., Guimarães, P., Guimarães Jr, P. R., Loyola, R. D. & Ulrich, W. A
807 consistent metric for nestedness analysis in ecological systems: reconciling concept and
808 measurement. *Oikos* **117**, 1227–1239 (2008).

809 40. Sørensen, M. A., Fricke, J. & Pedersen, S. Ribosomal protein S1 is required for
810 translation of most, if not all, natural mRNAs in *Escherichia coli* in vivo¹¹Edited by D.
811 Draper. *Journal of Molecular Biology* **280**, 561–569 (1998).

812 41. Galperin, M. Y., Wolf, Y. I., Garushyants, S. K., Vera Alvarez, R. & Koonin, E. V.
813 Nonessential Ribosomal Proteins in Bacteria and Archaea Identified Using Clusters of
814 Orthologous Genes. *Journal of Bacteriology* **203**, e00058-21 (2021).

815 42. Shoji, S., Dambacher, C. M., Shajani, Z., Williamson, J. R. & Schultz, P. G.
816 Systematic chromosomal deletion of bacterial ribosomal protein genes. *J Mol Biol* **413**, 751–
817 761 (2011).

818 43. Dabbs, E. R. Mutants lacking individual ribosomal proteins as a tool to investigate
819 ribosomal properties. *Biochimie* **73**, 639–645 (1991).

820 44. Baba, T. *et al.* Construction of Escherichia coli K-12 in-frame, single-gene knockout
821 mutants: the Keio collection. *Mol Syst Biol* **2**, 2006.0008 (2006).

822 45. Steinsiek, S. & Bettenbrock, K. Glucose transport in Escherichia coli mutant strains
823 with defects in sugar transport systems. *J Bacteriol* **194**, 5897–5908 (2012).

824 46. Fath, M. J. & Kolter, R. ABC transporters: bacterial exporters. *Microbiol Rev* **57**, 995–
825 1017 (1993).

826 47. Nikaido, H. Maltose transport system of Escherichia coli: an ABC-type transporter.
827 *FEBS Lett* **346**, 55–58 (1994).

828 48. Yilmaz, B. & Li, H. Gut Microbiota and Iron: The Crucial Actors in Health and
829 Disease. *Pharmaceuticals* **11**, 98 (2018).

830 49. Seyoum, Y., Baye, K. & Humblot, C. Iron homeostasis in host and gut bacteria – a
831 complex interrelationship. *Gut Microbes* **13**, 1874855 (2021).

832 50. Cech, T. R. The Ribosome Is a Ribozyme. *Science* **289**, 878–879 (2000).

833 51. Xue, S. & Barna, M. Specialized ribosomes: a new frontier in gene regulation and
834 organismal biology. *Nat Rev Mol Cell Biol* **13**, 355–369 (2012).

835 52. Bubunenko, M., Baker, T. & Court, D. L. Essentiality of Ribosomal and Transcription
836 Antitermination Proteins Analyzed by Systematic Gene Replacement in Escherichia coli.
837 *Journal of Bacteriology* **189**, 2844–2853 (2007).

838 53. Kanehisa, M. A database for post-genome analysis. *Trends Genet* **13**, 375–376 (1997).

839 54. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic
840 Acids Res* **28**, 27–30 (2000).

841 55. Mao, X., Cai, T., Olyarchuk, J. G. & Wei, L. Automated genome annotation and
842 pathway identification using the KEGG Orthology (KO) as a controlled vocabulary.
843 *Bioinformatics* **21**, 3787–3793 (2005).

844 56. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a
845 reference resource for gene and protein annotation. *Nucleic Acids Res* **44**, D457-462 (2016).

846 57. Kotrba, P., Inui, M. & Yukawa, H. Bacterial phosphotransferase system (PTS) in
847 carbohydrate uptake and control of carbon metabolism. *Journal of Bioscience and
848 Bioengineering* **92**, 502–517 (2001).

849 58. Romano, A. H. & Conway, T. Evolution of carbohydrate metabolic pathways.
850 *Research in Microbiology* **147**, 448–455 (1996).

851 59. Yan, Y. *Engineering Microbial Metabolism For Chemical Synthesis: Reviews And
852 Perspectives*. (World Scientific, 2017).

853 60. E, H. G. The multivariate niche. *Cold Spring Harbor Symposia on Quantitative
854 Biology* **22**, 415–421 (1957).

855 61. Leibold, M. A. The Niche Concept Revisited: Mechanistic Models and Community
856 Context. *Ecology* **76**, 1371–1382 (1995).

857 62. Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and
858 evolutionary perspectives. *PNAS* **106**, 19659–19665 (2009).

859 63. Li, L. *et al.* RapidAIM: a culture- and metaproteomics-based Rapid Assay of
860 Individual Microbiome responses to drugs. *Microbiome* **8**, 33 (2020).

861 64. Li, L. *et al.* An in vitro model maintaining taxon-specific functional activities of the
862 gut microbiome. *Nat Commun* **10**, 4146 (2019).

863 65. Creskey, M. *et al.* An economic and robust TMT labeling approach for high
864 throughput proteomic and metaproteomic analysis. 2022.07.30.502163 Preprint at
865 <https://doi.org/10.1101/2022.07.30.502163> (2022).

866 66. Tilman, D. Resource Competition between Plankton Algae: An Experimental and
867 Theoretical Approach. *Ecology* **58**, 338–348 (1977).

868 67. Wandersman, C. & Delepeira, P. Bacterial iron sources: from siderophores to
869 hemophores. *Annu Rev Microbiol* **58**, 611–647 (2004).

870 68. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition:
871 surviving and thriving in the microbial jungle. *Nature Reviews Microbiology* **8**, 15–25 (2010).

872 69. Smith, R. L. & Smith, T. M. *Elements of ecology*. (Benjamin Cummings, 2003).

873 70. Hutchinson, G. E. The Paradox of the Plankton. *The American Naturalist* **95**, 137–145
874 (1961).

875 71. Marsland, R., Cui, W. & Mehta, P. The Minimum Environmental Perturbation
876 Principle: A New Perspective on Niche Theory. *The American Naturalist* **196**, 291–305
877 (2020).

878 72. Rozen, D. E. & Lenski, R. E. Long-Term Experimental Evolution in *Escherichia coli*.
879 VIII. Dynamics of a Balanced Polymorphism. *Am. Nat.* **155**, 24–35 (2000).

880 73. Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The
881 dynamics of molecular evolution over 60,000 generations. *Nature* **551**, 45–50 (2017).

882 74. MacArthur, R. Species packing and competitive equilibrium for many species.
883 *Theoretical Population Biology* **1**, 1–11 (1970).

884 75. Goyal, A. & Maslov, S. Diversity, Stability, and Reproducibility in Stochastically
885 Assembled Microbial Ecosystems. *Phys. Rev. Lett.* **120**, 158102 (2018).

886 76. Goldford, J. E. *et al.* Emergent simplicity in microbial community assembly. *Science*
887 **361**, 469–474 (2018).

888 77. Marsland, R. *et al.* Available energy fluxes drive a transition in the diversity, stability,
889 and functional structure of microbial communities. *PLoS Comput Biol* **15**, e1006793 (2019).

890 78. Li, Z. *et al.* Modeling microbial metabolic trade-offs in a chemostat. *PLoS Comput
891 Biol* **16**, e1008156 (2020).

892 79. Dubinkina, V., Fridman, Y., Pandey, P. P. & Maslov, S. Multistability and regime
893 shifts in microbial communities explained by competition for essential nutrients. *Elife* **8**,
894 e49720 (2019).

895 80. Cappelletti, V. *et al.* Dynamic 3D proteomes reveal protein functional alterations at
896 high resolution *in situ*. *Cell* **184**, 545–559.e22 (2021).

897 81. Schreiber, F. *et al.* Phenotypic heterogeneity driven by nutrient limitation promotes
898 growth in fluctuating environments. *Nat Microbiol* **1**, 1–7 (2016).

899 82. Gutierrez-Ríos, R. M. *et al.* Identification of regulatory network topological units
900 coordinating the genome-wide transcriptional response to glucose in *Escherichia coli*. *BMC
901 Microbiology* **7**, 53 (2007).

902 83. Goyal, A., Bittleston, L. S., Leventhal, G. E., Lu, L. & Cordero, O. X. Interactions
903 between strains govern the eco-evolutionary dynamics of microbial communities. *Elife* **11**,
904 e74987 (2022).

905 84. Zhang, X. *et al.* Evaluating live microbiota biobanking using an ex vivo microbiome
906 assay and metaproteomics. *Gut Microbes* **14**, 2035658 (2022).

907 85. Zhang, X. *et al.* Assessing the impact of protein extraction methods for human gut
908 metaproteomics. *Journal of Proteomics* **180**, 120–127 (2018).

909 86. Perez-Riverol, Y. *et al.* The PRIDE database resources in 2022: a hub for mass
910 spectrometry-based proteomics evidences. *Nucleic Acids Research* **50**, D543–D552 (2022).

911 87. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass
912 spectrometry-based shotgun proteomics. *Nat Protoc* **11**, 2301–2319 (2016).

913 88. Cheng, K. *et al.* MetaLab 2.0 Enables Accurate Post-Translational Modifications
914 Profiling in Metaproteomics. *J. Am. Soc. Mass Spectrom.* **31**, 1473–1482 (2020).

915 89. Huang, T. *et al.* MSstatsTMT: Statistical Detection of Differentially Abundant
916 Proteins in Experiments with Isobaric Labeling and Multiple Mixtures. *Mol Cell Proteomics*
917 **19**, 1706–1723 (2020).

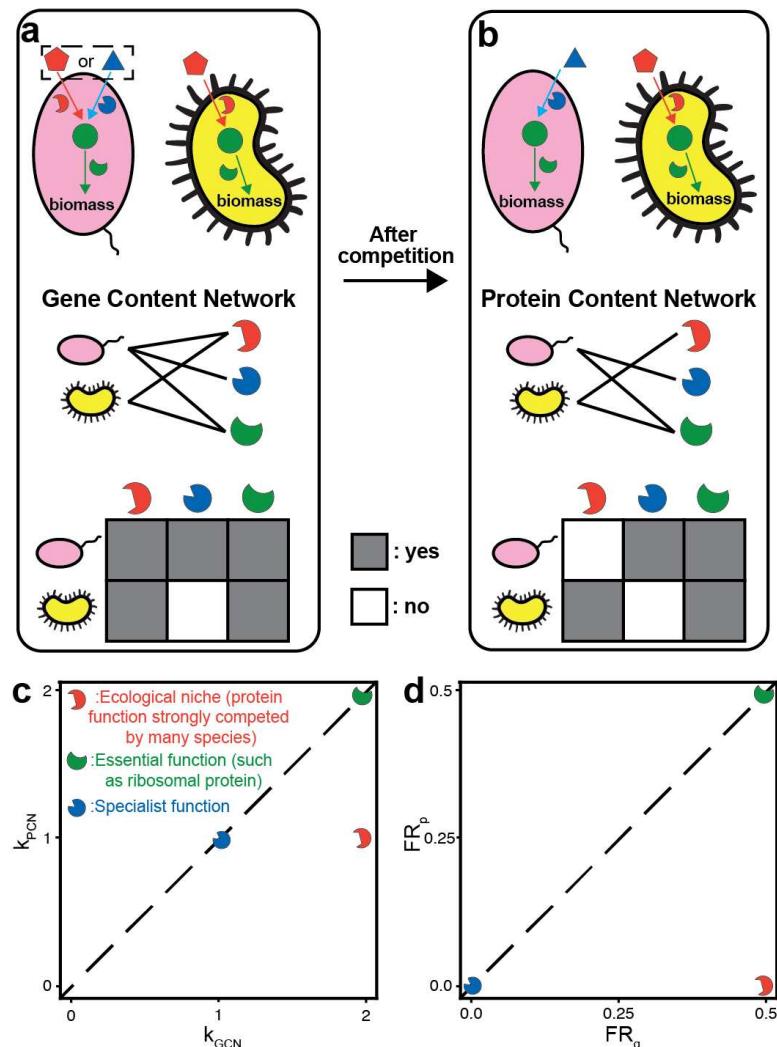
918 90. Ma, W. *et al.* DreamAI: algorithm for the imputation of proteomics data.
919 2020.07.21.214205 Preprint at <https://doi.org/10.1101/2020.07.21.214205> (2021).

920 91. Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG
921 Tools for Functional Characterization of Genome and Metagenome Sequences. *J Mol Biol*
922 **428**, 726–731 (2016).

923 92. Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of
924 species in fragmented habitat. *Oecologia* **96**, 373–382 (1993).

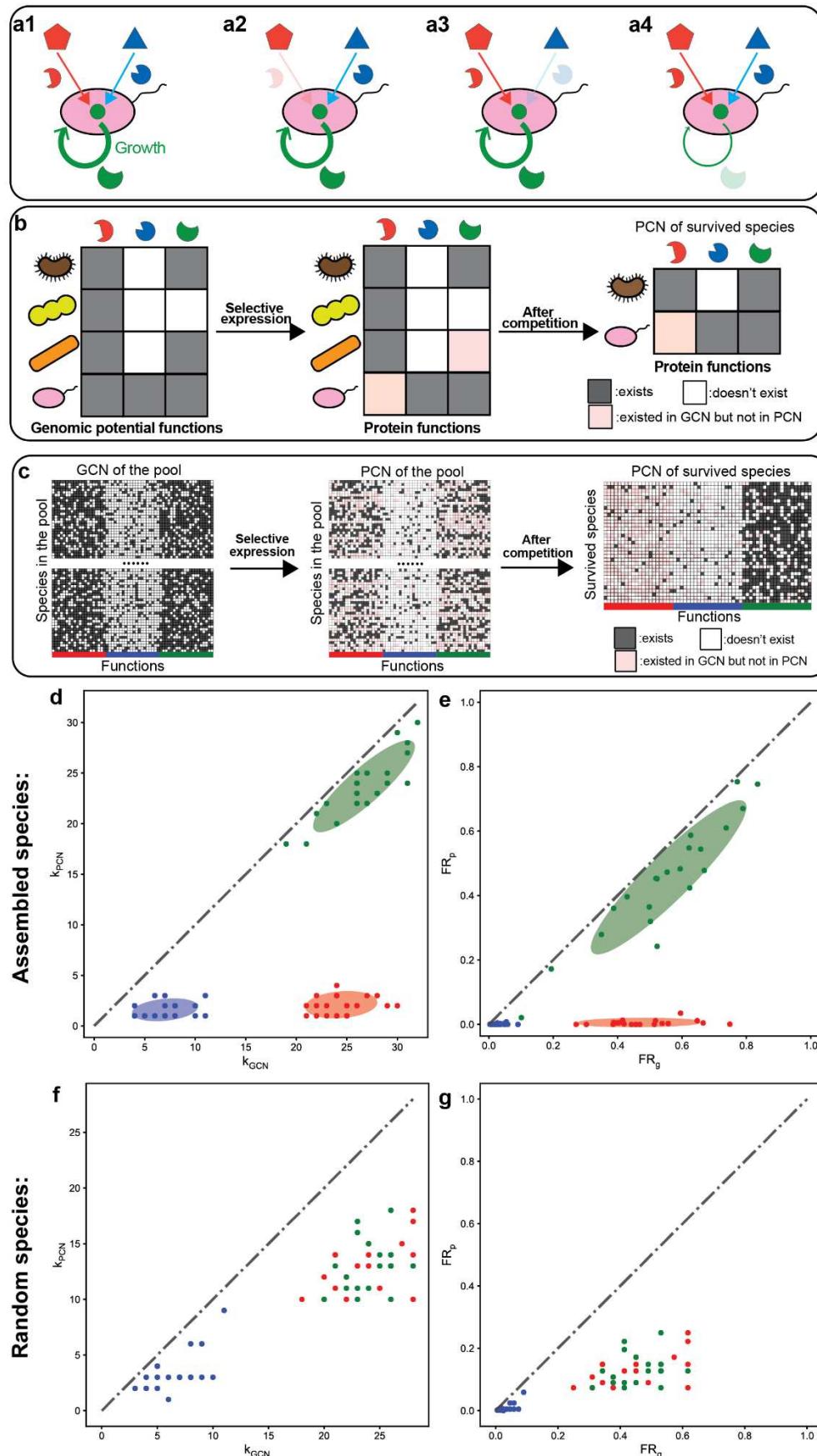
925

926

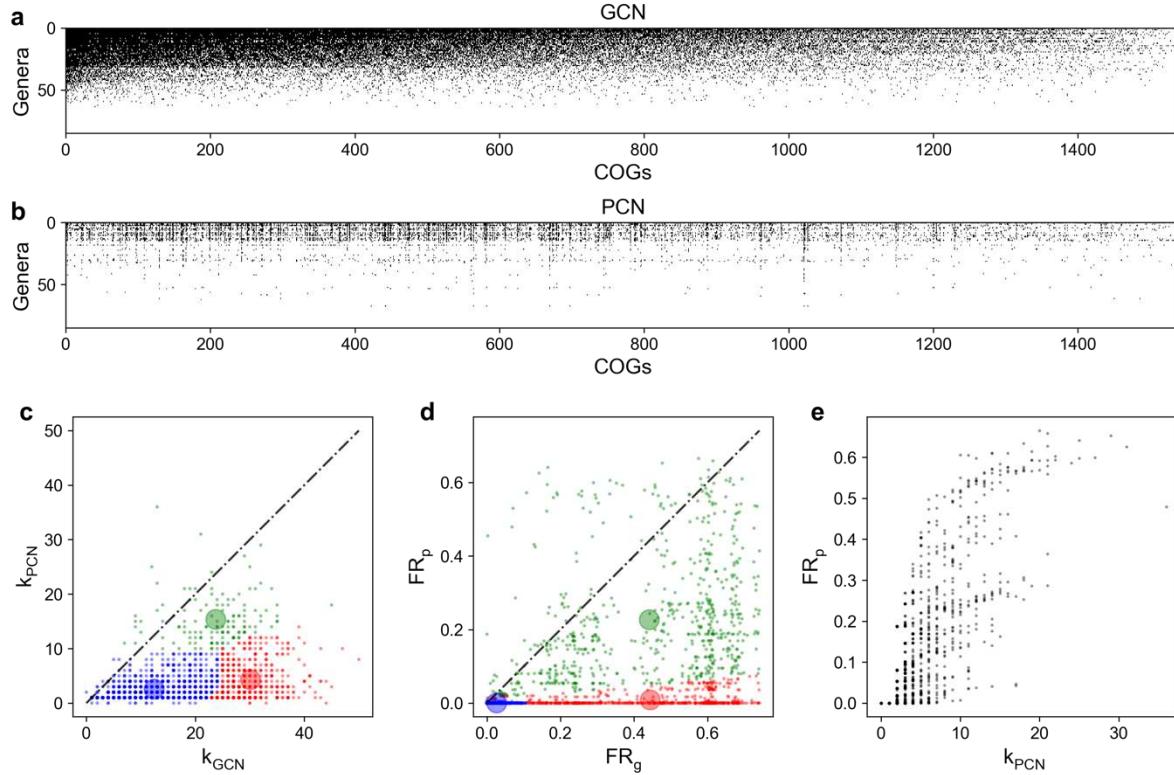


927

928 **Figure 1: Protein functions involved in determining ecological niches are postulated to**
 929 **have larger discrepancies between the gene-level functional redundancy FR_g and**
 930 **protein-level functional redundancy FR_p . Here we use a hypothetical example with three**
 931 **representative proteins (3 broken circles with complementary shapes to their substrates) to**
 932 **demonstrate this point. **a**, Schematic of genomic capacity of two microbial taxa (pink oval vs**
 933 **yellow indented oval). Two resources (red pentagon and blue triangle) are externally supplied**
 934 **to the community. The green metabolite can be transformed from the red or blue resource and**
 935 **further utilized in biomass synthesis. The pink taxon has the capacity of converting either**
 936 **supplied resource into the green metabolite (red and blue arrows), while the yellow taxon can**
 937 **only convert the red resource (red arrow). **b**, Schematic of expressed proteins for two microbial**
 938 **taxa after their competition in the same community. After the competition, the reduced resource**
 939 **conflict (represented by the pink taxon choosing the blue resource as the sole one to consume)**
 940 **can promote their coexistence. Gene content network (GCN) and protein content network**
 941 **(PCN) can be used to capture genomic capacity and expressed protein functions for all taxa.**
 942 **Alternatively, this network can be represented as incidence matrices on the bottom (grey areas**
 943 **imply the existence of edges connecting taxa to proteins). **c-d**, The comparison between k_{GCN}**
 944 **and k_{PCN} or between FR_g and FR_p helps to classify proteins into three protein functional clusters:**
 945 **specialist function, essential function, and niche function. In the calculation of FR_g and FR_p , we**
 946 **we assume equal abundances of the two species, i.e., $p_1 = p_2 = 0.5$.**



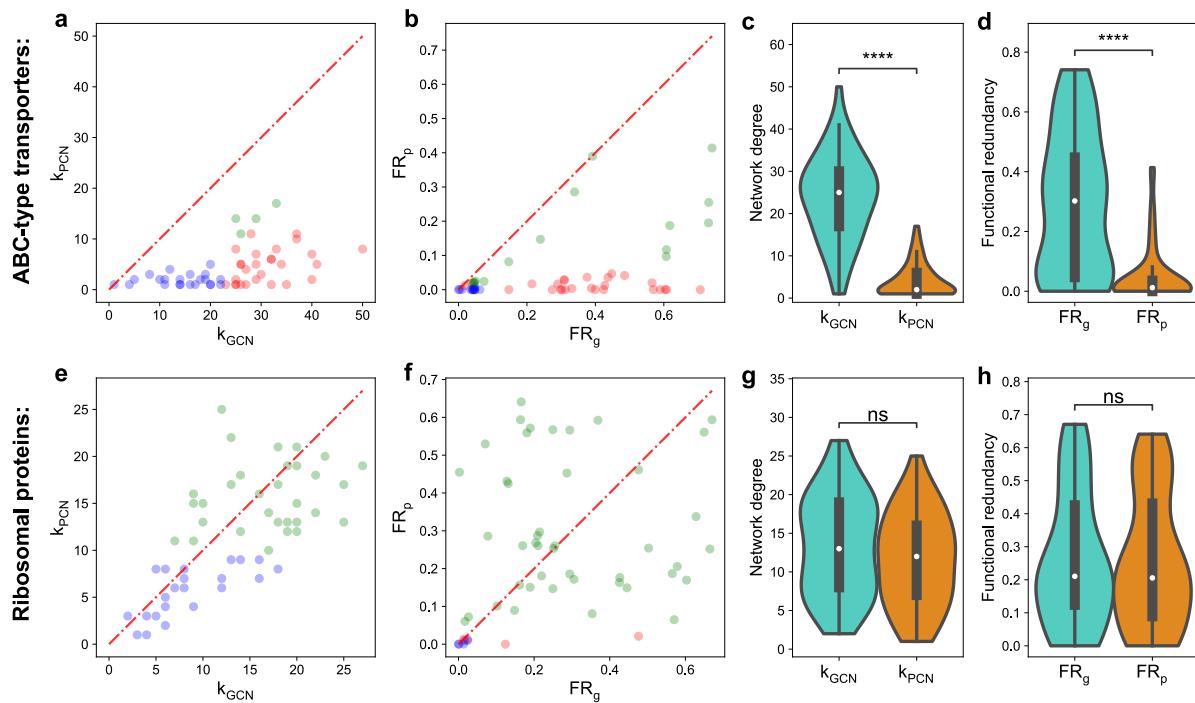
948 **Figure 2: Three protein functional clusters (specialist function, essential function, and**
949 **niche function) considered in the community assembly model form three distinct**
950 **clusters when the network degree and functional redundancy are compared between**
951 **the GCN and PCN in model-generated synthetic data. a1-a4**, Three types of functions
952 modeled have different ecological and metabolic roles. The niche function (red proteins) and
953 specialist function (blue proteins) are modeled as abilities to consume externally supplied
954 resources. The role of essential functions (green proteins) is considered as a reduction in the
955 overall growth rate for each missing essential function. **b**, A schematic diagram of the
956 community assembly. Species (ovals and indented ovals) with expressed protein functions
957 selected via the sub-sampling of their genomic capacity. Then all species are co-cultured
958 together to simulate their ecological competition. **c**, A simulation example of the community
959 assembly, and the construction of GCN and PCN for the survived species. **d-e**, The
960 comparison of network degree and functional redundancy respectively based on the GCN and
961 PCN of survived species in the simulation example in panel-c. A Gaussian mixture model with
962 3 clusters is used to identify 3 protein functional clusters. Ellipses around clusters cover areas
963 one standard deviation away from their means. **f-g**, The comparison of network degree and
964 functional redundancy respectively based on the GCN and PCN of 35 species randomly
965 selected from the 10,000 species in the initial pool. All points/functions are colored red (niche
966 functions), green (essential functions), and blue (specialist functions) according to their types
967 of functions in the model. k_{GCN} (or k_{PCN}) is the network degree of each function in the GCN (or
968 PCN). FR_g (or FR_p) is the functional redundancy of each function on the gene level (or protein
969 level), respectively.



970

971 **Figure 3: Real data of the human gut microbiome showing three clusters on the plot that**
972 **compares FR_g with FR_p .** Metagenome and metaproteome of subject HM454 mucosal-luminal
973 interface samples²⁸ were used to construct GCN and PCN, respectively. **a**, The GCN shows if
974 a genus owns (or doesn't own) a COG as its genomic capacity, which is colored in black (or
975 white). The GCN matrix is ordered to have decreasing network degrees for both genera and
976 COGs. **b**, The PCN shows if a genus expresses (or doesn't express) a COG as its protein
977 function, which is colored in black (or white). The PCN matrix follows the same order as the
978 GCN. **c**, Differences in network degree for most COGs are large. k_{GCN} is the network degree
979 of each COG in the GCN (i.e. the number of genera owning each COG in the GCN). k_{PCN} is
980 the network degree of each COG in the PCN (i.e. the number of genera owning each COG in
981 the PCN). **d**, FR_g is larger than FR_p for most COGs. Three clusters with three distinct colors
982 (blue, red, and green) are predicted by the Gaussian mixture model with 3 clusters fitted on
983 synthetic data. The transparent large circles represent centroids of three clusters. **e**, The
984 relationship between FR_p and network degree of PCN for COGs is not monotonic.

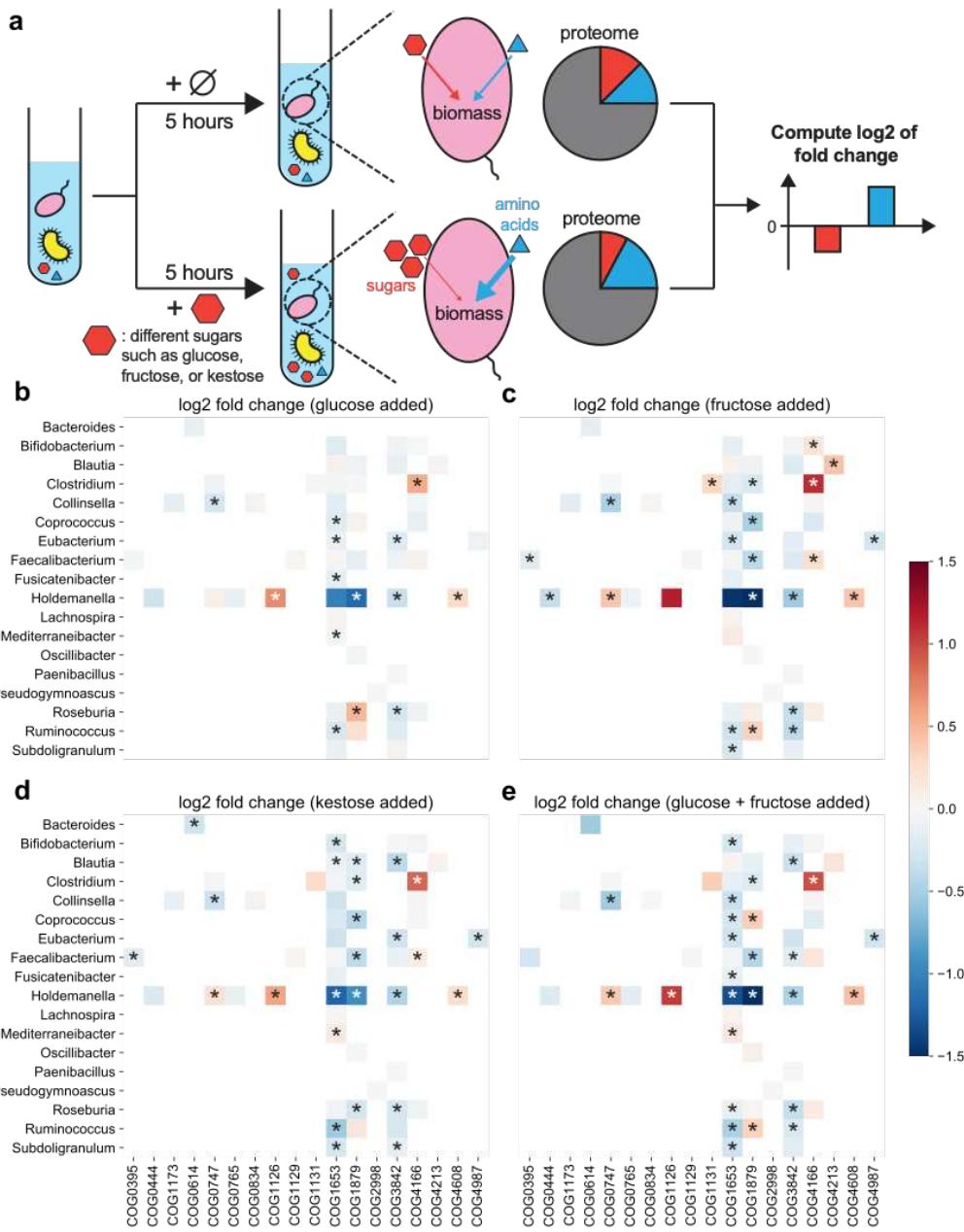
985



986

987 **Figure 4: Comparison of network degree and functional redundancy between the gene**
 988 **and protein level for ABC-type transporters and ribosomal proteins.** **a**, Network degrees
 989 in GCN are larger than network degrees in PCN for most ABC-type transporter COGs. k_{GCN} (or
 990 k_{PCN}) is the network degree of each COG in the GCN (or PCN). **b**, FR_g is larger than FR_p for
 991 most ABC-type transporter COGs. **c-d**, The distribution of network degrees and functional
 992 redundancies (violin plots and boxplots) for ABC-type transporter COGs show a significantly
 993 huge reduction from k_{GCN} to k_{PCN} or from FR_g to FR_p . **e**, Network degrees in GCN are
 994 comparable with that in PCN for most ribosomal protein COGs. **f**, FR_g is comparable with FR_p
 995 for most ribosomal protein COGs. Points in scatter plots are colored by the same colors used
 996 in Fig. 3d. **g-h**, The distribution of network degrees and functional redundancies (violin plots
 997 and boxplots) for ribosomal protein COGs show no significant reduction from k_{GCN} to k_{PCN} or
 998 from FR_g to FR_p . In all boxplots, the middle white dot is the median, the lower and upper hinges
 999 correspond to the first and third quartiles, and the black line ranges from the $1.5 \times IQR$ (where
 1000 IQR is the interquartile range) below the lower hinge to $1.5 \times IQR$ above the upper hinge. All
 1001 violin plots are smoothed by a kernel density estimator and 0 is set as the lower bound. All
 1002 statistical analyses were performed using the two-sided Mann-Whitney-Wilcoxon U Test with
 1003 Bonferroni correction between genomic capacity (GCN) and protein functions (PCN). P values
 1004 obtained from the test is divided into 5 groups: (1) $p > 0.05$ (ns), (2) $0.01 < p \leq 0.05$ (*), (3)
 1005 $10^{-3} < p \leq 0.01$ (**), (4) $10^{-4} < p \leq 10^{-3}$ (***), and (5) $p \leq 10^{-4}$ (****). Network degree
 1006 comparison of ABC transporters: $p = 7.11 \times 10^{-16}$. Network degree comparison of ribosomal
 1007 proteins: $p = 0.10$. Redundancy comparison of ABC transporters: $p = 2.19 \times 10^{-11}$.
 1008 Redundancy comparison of ribosomal proteins: $p = 1.00$.

1009



1010

1011 **Figure 5: Microbes modify their expression for ABC-type transporters to adapt to added**
 1012 **sugars.** All heatmaps share the same color bar on the right. **a**, Schematic of in-vitro cultures
 1013 of a collected human gut microbiome. In the treatment group, one sugar is added to the
 1014 community. Metaproteomic measurements 5 hours later enable us to compare the intensity of
 1015 each taxon-specific protein using the log₂ fold change of each protein's fraction (i.e. normalized
 1016 intensity over each genus) from the treatment group divided by that from the control group.
 1017 Log₂ fold changes of ABC-type transporters 5 hours after **(b)** glucose, **(c)** fructose, **(d)** kestose,
 1018 or **(e)** glucose and fructose is added.