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16 Abstract

17  Microbial genomes encode functional repertoire of microbes. However, microbes rely on
18  various proteins to be expressed to carry out specific functions, and the expression of those
19  proteins can be affected by the environment. It remains elusive how the selective expression
20  of a protein depends on whether it is metabolically essential to the microbe’s growth, or it can
21  claim resources as an ecological niche. Here we show that by pairing metagenomics and
22 metaproteomics data we can reveal whether a protein is relevant for occupying ecological
23 niches or is essential for microbial metabolism. In particular, we developed a computational
24  pipeline based on the quantification of the gene-level (or protein-level) functional redundancy
25 of each protein, which measures the degree to which phylogenetically unrelated taxa can
26  express (or have already expressed) the same protein, respectively. We validated this pipeline
27 using both simulated data of a consumer-resource model and real data of human gut
28  microbiome samples. Furthermore, for the real data, we showed that the metabolic and
29  ecological roles of ABC-type transporters and ribosomal proteins predicted by our pipeline
30 agree well with prior knowledge. Finally, we performed in vitro culture of a human gut
31  microbiome sample and investigated how oversupplying various sugars involved in ecological
32 niches influences the community structure and protein expression. The presented results help
33 us identify metabolic and ecological roles of proteins, which will inform the design of nutrient

34 interventions to modulate the human microbiome.
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35

36 Introduction

37  The advance in metagenomic sequencing technology has enabled us to measure the genomic
38  contents and functional potentials of microbial communities at an unprecedented rate, helping
39  us understand how the functionality of microbes influences host health'™ and how microbial
40  metabolism in natural environments enables biogeochemical cycling*®. Based on metabolic
41  models inferred from genomes, various computational approaches have been proposed to
42  better quantify inter-species interactions and ecological concepts in microbial communities’"2.
43  For example, metabolic networks of microbes have been employed to quantify
44  complementarity and competition indices as a proxy for potential interactions’. Also, a
45  nonlinear dimensionality reduction technique has been used to map bacterial metabolic niche
46  space®. In addition, functional redundancy and functional stability for microbial communities
47  were analyzed in the past'®'2,

48 A major limitation of those approaches is that they only rely on metagenomic data,
49  which does not reflect true functional activities but only encodes functional capacity (or
50 potential functions). In reality, at any given time and under any environmental condition,
51  microbes only express a subset of their potential functions as proteins to carry out particular
52 functions'. Recently, an ultra-deep metaproteomics approach has been developed to quantify
53  expressed proteins in complex microbial communities, e.g., the human gut microbiome™.
54  Pairing metagenomic and metaproteomic data offers the possibility to investigate how each
55  protein is selectively expressed under different environmental conditions.

56 From the metabolic perspective, it is well known that some genes and their expressed
57  proteins are indispensable for cell metabolism under any conditions, and microbes will not
58  survive or reproduce if those genes are lost or those proteins are not expressed. Indeed,
59 lacking proteins essential to microbial metabolism will cease microbial growth, regardless of
60 ecological competition. For example, the growth of microbes relies on aminoacyl-tRNA'™"®,
61 Consequently, microbes have to express proteins involved in the aminoacyl-tRNA synthesis
62  due to their metabolic essentiality to microbial growth'>"®.

63 From the ecological perspective, some proteins are expressed under ecological
64  selection, and the presence of such proteins directly indicates which resources a microbe can
65 utilize so as to thrive, i.e., the ecological niche of this microbe in the microbial community.
66 Different proteins might enable a microbe to utilize different resources or adapt to varying

67 environments. If the function of a protein can simply be performed by another protein, it may
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68  be not necessary to express both proteins at the same time. This is evident in the case of E.
69  coli, which prefers glucose over lactose due to the repressed expression of lactose-utilizing
70  enzymes, even though it can use both sugars' 8. Such specialization of consuming one
71  resource caused by the selective protein expression may reduce the niche overlap with other
72 species. Another example is Acetyl-coenzyme synthetase (Acs) --- a protein that catalyzes the
73 conversion of acetate into Acetyl-CoA, an essential intermediate in the metabolism'®?°. The
74  overexpression of Acs in E. coli can significantly switch glucose consumption to acetate
75  consumption®'2*, The glucose specialist (CV103) and acetate specialist (CV101) are two E.
76  coli mutants with different metabolic strategies; CV103 does not express Acs while CV101
77  overexpresses it*'?*. It has been shown that CV101 can consume acetate produced by CV103,
78  and thus they achieve a coexistence due to the niche partionning®"%2,
79 How to understand the selective expression of microbial proteins is an outstanding
80  question in microbiology. Does the behavior of selective expression of microbial proteins differ
81  between metabolic function (e.g., essential for microbial growth metabolism) and ecological
82  function (e.g., claiming resources as a niche)? To address this question, in this work we
83  developed a computational method to perform paired metagenomic and metaproteomic?>-2814
84  data analysis and revealed whether a protein is essential for microbial metabolism or relevant
85  for occupying ecological niches. In particular, we used the metagenomic data to construct the
86  Gene Content Network (GCN) --- a bipartite graph that connects microbial taxa to their genes
87  (Fig. 1a), and used the metaproteomic data to construct the Protein Content Network (PCN) -
88  -- a bipartite graph that connects microbial taxa to their truly expressed protein functions (Fig.
89  1b). For each protein, we quantified its gene-level (or protein-level) functional redundancy (FR),
90  which is defined as the degree to which unrelated taxa can express (or have already expressed)
91 this protein, respectively. Using synthetic data generated by a consumer-resource model of
92  microbial communities, we found that either the comparison of network degree of a protein (i.e.,
93 the number of taxa that own/express the protein) between the GCN and PCN or the
94  comparison between the gene-level and protein-level FR of a protein can reveal its role in
95  metabolic essentiality and ecological niches. Then we applied the same computational pipeline
96 toanalyze the real data of human gut microbiome samples to predict metabolic and ecological
97  functions for proteins. We found that the metabolic and ecological roles of ABC-type
98 transporters and ribosomal proteins predicted by our method agree well with prior knowledge.
99  Finally, we performed in vitro culture experiments using human gut microbiome samples with
100 and without sugars added to investigate how oversupplying various sugars involved in

101  ecological niches influences the community structure and protein expression.
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102 Results

103  Quantifying gene- and protein-level functional redundancy of each protein

104  Consider a microbiome sample with taxonomic profile p = (p4, ..., py), Where p; is the relative
105 abundance of taxon-i and YN, p; = 1. For a given protein, we can define its gene-level FR
106  (FRg) within this sample as

107 FRg = L1 Xei(1 = d§ M )pip), (1)
108  where d?jCN is the distance between taxon-i and taxon-j based on their genomic capacity to
109 express this protein. For simplicity, we assume d;;°" is binary, i.e., di*™ = 0 if and only if both
110  taxa share the potential to express the protein, and dGCN = 1 otherwise. For the same protein,
111  we can also define its protein-level FR (FRp) within this sample as

112 FRp = YL, X0(1 = di™)pip;. (2)
113 where di*Nis the distance between taxon-i and taxon-j based on their expression of the

114  protein. Again, we assume d; N

is binary, i.e., dj*N

= 0 if and only if both taxa have expressed

115  the protein, and d{ "

= 1 otherwise. Note that here we define FR, and FR,, for each protein.

116  This is different from our previous studies'>"

, where FR was calculated by including all genes
117  or proteins in the entire microbial community.

118 To demonstrate the definitions of FR, and FR,, let’s consider a simple community
119  consisting of two coexisting E. coli strains CV101 and CV103 with relative abundance p, and
120  p,, respectively?"??. For the protein Acs that is required for the acetate consumption, since
121 both CV101 and CV103 own this functional capacity, we have dffN = d§FN = 0, and FR, =

122 2p,p,. However, because CV103 does not express Acs and CV101 overexpresses it>'2*

, we
123 have disN = dji™ = 1, and FR, = 0. Furthermore, we can compare the network degree of Acs
124 in the GCN and PCN. The network degree of a protein in the GCN (denoted as kgcy) is the
125  number of taxa owning the capacity to express the protein, while the network degree of a
126  protein in the PCN (kpcy) is the number of taxa that have truly expressed the protein. Here,
127  kgen = 2 and kpey = 1. Of course, not every protein is ecologically selected. For example,
128  proteins involved in the aminoacyl-tRNA synthesis, critical for the growth of microbes, are not
129  ecologically selected because the loss of ability to synthesize aminoacyl-tRNA inevitably stops
130  the growth of microbes''®. Hence, for each of the proteins involved in aminoacyl-tRNA
131  synthesis, we expect kgecny = kpey @and FRg = FR,.

132
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133 Illustration of our computational pipeline using a hypothetical community

134  To illustrate our computational pipeline, let's consider a simple hypothetical example with two
135  species (pink oval vs yellow indented oval in Fig. 1a, b). For the pink species to grow, it can
136  either use the red resource (red pentagon in Fig. 1a) or the blue resource (blue triangle in Fig.
137  1a) and convert either of them to the green metabolite (green circle in Fig. 1a), which can then
138  be assimilated into the cell biomass. For the yellow species, its growth will only occur by
139  transforming the red resource into the green one to fuel the biomass synthesis (Fig. 1a). If the
140  two species are co-cultured in the same environment to compete for externally supplied red
141  and blue resources, an ideal scenario for them to coexist is that the pink species would choose
142 to consume the blue resource, preventing resource competition with the yellow species (Fig.
143 1b), similar to the niche partitioning observed in the community of two coexisting E. coli strains:
144 CV101 and CV103?"2%,

145 We can capture this hypothetical scenario of selective expression mathematically using
146  the GCN and PCN of this community. The bipartite graph and incidence matrix representations
147  of the GCN (or PCN) are shown in Fig. 1a (or Fig. 1b), respectively. Simply comparing the
148  structure of the GCN and the PCN already offers us some insights into ecological niches and
149  metabolic essentiality. For example, let’s consider the protein responsible for converting red
150  resource to green metabolite (this protein is represented as the red broken circle in Fig. 1a, b),
151 its degree in the GCN is kgeny = 2, while its degree in the PCN is kpcy = 1. This degree
152 reduction is due to distinct ecological niches being occupied by two species when they are
153  cocultured. By contrast, the protein responsible for the assimilation of critical green metabolites
154  (green broken circle in Fig. 1a, b) into biomass does not show a degree reduction from the
155 GCN to the PCN, because it is essential for microbial growth.

156 An ecologically meaningful approach to understanding the selective expression of
157  different proteins would be to systematically compare their respective kgcn and kpey (Fig. 1c),
158  which are independent of microbial compositions; or their respective FR, and FR, (Fig. 1d),
159  which naturally involve microbial compositions in the calculation. Consider three distinct protein
160  function types: (1) “niche functions” that are under strong ecological competition (e.g., red
161  broken circle in Fig. 1c, d); (2) “specialist functions” that are specialized by a few taxa (e.g.,
162  blue broken circle in Fig. 1c, d); and (3) “essential functions” that are metabolically
163  indispensable for many taxa (e.g., green broken circle in Fig. 1c, d). We anticipate that the

164  three function types will occupy different regions in the kgcn Vs. kpen plot (or the FRg vs. FR,,

165  plot). Specifically, for essential functions, both their kgcy and kpey (or FRg and FR,,) are high.
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166  For specialist functions, both their kgcy and kpen (or FRg and FRy,) are low. Niche functions
167  have high k¢cn but low kpey (or high FR, but low FRp).
168

169  Validate our computational pipeline using a consumer-resource model

170  Note that previously developed Consumer-Resource models (CRMs) only focus on

)?*=3'. Simply put, those models ignored genomic

171  physiologies of microbes (i.e. phenotypes
172  capacity or potential functions, but only considered expressed functions (e.g., how species
173 consume different resources). There was no attempt of building a consumer-resource model
174  of microbial communities that integrates both potential and expressed functions. As a first step
175  toward this direction, we constructed such a model.

176 We assumed three types of protein functions: niche functions (colored red), specialist
177  functions (colored blue), and essential functions (colored green) in a functional pool. For
178  simplicity, each of the niche (or specialist) functions is modeled as the consumption of a unique
179 and externally supplied resource (Fig. 2a1). To model the difference between niche and
180  specialist functions, we assume they are associated with different numbers of species (i.e.,
181  “consumers” in the consumer-resource modeling framework). The former should be associated
182  with much more species than the latter. The loss of a niche or specialist function would make
183  a species unable to consume the corresponding externally supplied resource (Fig. 2a2, a3).
184  The loss of an essential function is simply modeled as the reduction of a species’ growth rate
185  (Fig. 2a4). Mathematically, we multiply the intrinsic growth rate of a species by a diminishing
186  factor y = 0.95 for each missing essential function.

187 The key issue in this genome-aware consumer-resource modelling framework is to
188  decide how microbes select a subset of their potential functions to express. To tackle this issue,
189  we first assigned potential functions to each species (Fig. 2b, left). In particular, for each
190 species, each niche (specialist, or essential) function was assigned to the species’ genome
191  with probability p, (ps, or pe), respectively. In our simulations, we set p, = p. = 0.7 to ensure
192  that we cannot distinguish niche functions from essential functions only based on GCN and
193 thus would like to see if they show different patterns after the community assembly. We set
194 ps = 0.2 < p, = pe SO that specialist functions were assigned to fewer species than niche and
195  essential functions. Then for each species, we determined its truly expressed functions by
196  randomly sub-sampling a subset of its potential functions (Fig. 2b, middle). For function type-
197 «a (a = 1,2,3), this was achieved by expressing each potential function with a species-specific

198  and function-type-specific probability p; , randomly drawn from a uniform distribution U(0,1).
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199  Since different species have different sub-sampling probabilities, some species will tend to be

29-31 \we assume a fixed

200  generalists (or specialists). Similar to all consumer-resource models
201  expression pattern for each species and all resources being supplied so that we don’t have to
202  consider the complexity of adaptive expression (such as different expression patterns when
203  different resources are supplied). In the end, we assembled all species in the same community
204  and ran consumer-resource dynamics until the system reached a steady state, for which we
205  constructed the PCN of the survived species (Fig. 2b, right).

206 We assumed the species pool consists of N = 10,000 species, and the function pool
207  consists of 20 functions for each of the three function types. We introduced 10,000 species to
208  ensure the number of initial species in the assembly simulation is much larger than the number
209  of functions so that we can assemble a high-diversity community in the end. The GCN of the
210 initial species pool is shown in Fig. 2c (left). For each species, we randomly sub-sampled a
211  subset of potential functions to express (middle panel, Fig. 2c). For each species, its true
212 consumption rates are its maximal consumption rates divided by the number of resources the
213  species can use (see Methods) to prevent the selection of generalist species that consume all
214  resources without a penalty®?3*. Due to the competitive exclusion principle®*, the maximal
215 number of species survived in the final steady state is 40, because there are 40 unique
216  externally supplied resources (“nutrients”) in our model.

217 In Fig.2c (right), we show a simulation example with 35 species survived in the final
218 steady state. For this assembled steady-state microbial community, we found that the three
219 modeled protein functions types were correctly revealed as three clusters by the Gaussian
220  mixture model in both the comparison of network degree (Fig. 2d) and FR (Fig. 2e). In particular,
221  for niche functions (red cluster in Fig. 2d, e), their mean degree in PCN (2.1) is much lower
222 than that in GCN (24.45), and their mean FR, (0.005) is also much lower than their mean FR,
223 (0.48). For essential functions (green cluster in Fig. 2d, e), their mean degree in PCN (23.7) is
224 close to that in GCN (26.7), and their mean FR, (0.47) is also similar to their mean FR, (0.57).
225  For specialist functions (blue cluster in Fig. 2d, e), both their kgcn and kpey (or FRg and FRp)
226  are low.

227 The three functional clusters revealed by the classification of network degrees and
228  functional redundancies for all modeled protein functions exactly match the three function types
229  in our model. Moreover, the relative positioning of the three functional clusters based on our
230  simulation data agrees well with our hypothesis shown in Fig. 1. This clearly validates our
231  hypothesis that niche-occupying proteins have a larger difference in FR and network degree

232 than metabolically essential proteins.
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233 We emphasize that the three functional clusters observed in the kgen VS. kpen (Or the

234 FRgvs. FRy) plot is highly nontrivial. It is a result of the community assembly. To demonstrate

235  the importance of community assembly, we randomly picked 35 species (same as the number
236  of survived species) from the initial pool with equal abundances (i.e., the relative abundance is
237  1/35 for each species) without natural selection and found that it is impossible to distinguish
238  niche functions from essential functions (Fig. 2f, g). Interestingly, for essential functions, we
239  noticed that those species survived after the community assembly tend to have much larger
240  FR, (with mean 0.478) than randomly selected species (with mean 0.132). By contrast, for
241  niche functions, survived species tend to have a smaller FR,, (with mean 0.005) than randomly
242  selected species (with mean 0.133). Similarly, we also computed FR for the same randomly
243 picked 35 species that share the abundances as survived species in the simulation. Again, we
244  cannot differentiate niche functions from essential functions (Supplementary Fig. 1).

245 We also simulated another community with 100 niche functions, 100 specialist
246  functions, and 100 essential functions. The species pool still consists of N = 10,000 species.
247  As shown in Supplementary Fig. 2), the results are similar to that for the community with fewer
248  functions (Fig. 2).

249

250 Three protein functional clusters observed in human gut microbiomes

251  After the validation of our computational pipeline using simulated data, we further validated it
252 on real data of human mucosal-luminal interface samples collected from the ascending colon
253 of four children'?8, Here we focused on the genus level and annotated the identified proteins
254  from metagenomics and metaproteomics data via the COGs (Clusters of Orthologous genes)
255 database®?®. We constructed the GCN and PCN for all the samples following the same
256  procedure as reported in a previous study', and took the intersected COGs between the two
257  networks. In the main text, we focus on the analysis and discussion of subject HM454, and
258  similar findings from the other three subjects are shown in Supplementary Figs. 4-6. For
259  HM454, we used MetaPhlAn2* to obtain the taxonomic profile, which includes 85 genera with
260 assigned relative abundances. Raw metagenomic reads and unique peptide sequences
261  detected in metaproteomics were searched against an integrated gene catalog (IGC) database
262  of the human gut microbiome® to generate the GCN and PCN respectively. Taxonomic
263  assignment was performed using the ‘protein-peptide bridge’ method as described previously™.
264  More details about data processing can be found in Methods. And the number of intersected
265 COGs for the GCN and PCN associated with HM454 is 1,542. The genus- and COG-level GCN
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266  and PCN of this microbiome sample are shown in Fig. 3a, b. The connectance (i.e., the number
267  of edges divided by the maximal number of possible edges) of the GCN (or PCN) is 0.220 (or
268  0.049), respectively. The GCN is nested with the nestedness value of 0.667 based on the
269 classical NODF (Nestedness based on Overlap and Decreasing Fill) measure® (Fig. 3a; see
270  Methods for details). The PCN has a lower nestedness value of 0.453 for the NODF measure
271  (Fig. 3b).

272 By comparing the network degree and functional redundancy of one COG in the GCN
273  (one column in Fig. 3a) with those for the same COG in the PCN, we can look into how the
274 COG impacts and is influenced by their metabolic essentiality and connection to occupy
275  ecological niches. For example, COG0539 is the ribosomal protein S1, which has been shown
276  to be essential for some microbes***. For subject HM454, 20 genera have COG0539 in the
277  GCN, while 15 genera have this COG in the PCN, hence kgey = 20 and Kpey = 15.
278  Additionally, COG0539 has a similar level of functional redundancy in GCN and PCN: FR, =
279  0.476 and FR, = 0.461. These results suggest that COGO0539 is crucial for microbial
280  metabolism, and not ecologically selected. Another example that falls into a different category
281  (i.e., niche functions) is COG1116, which is the ABC-type nitrate/sulfonate/bicarbonate
282  transport system®. For COG1116, we have kgen = 22 » kpey = 2; and FRg = 0.388 > FR,, =

283  0.004, which is evidence for the further specification in transporting nitrate, sulfonate, or
284  bicarbonate across community members on the protein level. Different from the previous
285 examples, some functions are specialized by a few genera on the gene level and thus are still
286  specialized by those genera on the protein level. For example, COG1018 (Ferredoxin-NADP
287  reductase), which has kgen = kpeny = 1 and FRg; = FR, = 0.0, is classified as a specialist
288  function.

289 To systematically explore the difference between GCN and PCN, we visualized the
290 difference in the network degree (Fig. 3c) and functional redundancy (Fig. 3d) for all COGs. As
291  can be seen in Fig. 3c for comparing network degrees, nearly all COGs are below the black
292  dashed line of kgeny = kpen because the map from the genomic capacity to protein function is
293  a sub-sampling process. The network degrees in PCN for almost all points are less than 10
294 (1,365 out of 1,542) and much less than their corresponding network degrees in GCN (349 out
295  of 1,542 COGs have network degrees less than 10). 804 of 1,542 COGs have a reduction in
296  network degree by more than 80%. Eventually, the major difference in network degree will lead
297  to a significant difference in functional redundancy, although the reduction in network degree
298  from GCN to PCN cannot fully explain why many COGs have FR,~0 (744 out of 1,542 have
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299  FRp < 0.01 in Fig. 3d). Indeed, the network degrees for COGs in the PCN positively correlate
300  with FR;, but there is no simple relationship between kecn and FR, (Fig. 3e). For example, for
301 L-arabinose isomerase (COG2160), its network degree in GCN (kecn = 8) is fairly close to the
302 network degree in PCN (kecn = 7), but its FR,, (0.04) is much lower than FR, (0.23) since the
303  genus Blautia (which makes up 22% of the subject HM454’s total microbial abundance) didn’t
304 express L-arabinose isomerase, even if it has this capacity encoded in its genome.

305 We applied the Gaussian mixture model fitted on simulated data to classify all protein
306 functions in the real data and obtained 3 clusters from both the kgcy Vs. kpen plot (Fig. 3c) and
307  the FRy vs. FR;, plot (Fig. 3d). Despite that the clustering of protein functions in real data looks
308 weaker than that in simulated data, the relative positioning of the three clusters (shaded areas
309 in Fig. 3c, d) agree well with our hypothesis shown in Fig. 1, as well our simulation results
310 shown in Fig. 2. We suspect that the weakened clustering might be due to (1) the variation of
311 kaen (or FRy) in real data (Fig. 3c, d) is much larger than that in simulated data (Fig. 2d, e); the
312 low resolution of the GCN and PCN in the real data (both were constructed at the genus level).
313 Note that some points in Fig. 3c, d are above the diagonal line, contradicting the sub-
314 sampling argument for the gene expression. For instance, we noticed that for the subject
315 HM454, 12 genera have COG0094 in the GCN, while 25 genera have this COG in the PCN.
316  Additionally, COG0094 is even less redundant in the GCN (FR, = 0.166) than it is in the PCN
317  (FRp = 0.641). FR, should be always larger than FR, if the PCN was a proper subgraph of the
318 GCN for COG0094. We believe this contradiction is largely due to the metagenomic
319 sequencing depth and the metaproteomic identification depth. We know that both
320 metagenomics and metaproteomics have depth limitations and require sufficient depth to
321  detect genes or proteins, respectively. More specifically, some proteins detected by the ultra-
322 deep metaproteomics are not found in putative protein sequences annotated from
323  metagenomes. For example, if more proteins were assigned to one COG by the
324  metaproteomics than annotated metagenomes, it indicates the number of taxa that express
325  proteins belonging to the COG is higher than the number of taxa that own the COG. As a result,
326  the network degree of the COG in the GCN is even higher than its network degree in the PCN,
327  making FR, of the COG larger than its FR, (evidenced by COG0094).

328

329  Comparing FR, with FR, pinpoints ecological niches and metabolic essentiality

330 In order to justify whether or not the FR comparison for many COGs is ecologically or
331 metabolically meaningful, we focus on two types of proteins: ABC-type transporters (under
10
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332  strong ecological selection because they directly influence the ecological interactions and are

)45-47

333 influenced by resource availability and ribosomal proteins (under weak ecological

334  selection because of their essentiality)*?=*.

335 ABC-type transporters are energy-requiring transporter proteins responsible for
336 obtaining and releasing resources in the environment***’. For example, if we consider a
337  particular transporter responsible for the uptake of glucose from the environment, theoretically
338 only top consumers of glucose would have the chance to claim this niche (consumption of
339 glucose) from the ecological standpoint. Consequently, we should expect a specification in
340 glucose consumption on the level of protein functions, even though many species have the
341 capacity to utilize it. For the gut microbiota sample we investigated, we indeed found that kecn
342 for all ABC-type transporters are much larger than their kecn (Fig. 4a). Similarly, we also found
343  that FR, for all ABC-type transporters are much larger than their FR, (Fig. 4b). Many
344  transporter proteins were classified to the red cluster (i.e., the cluster of niche functions) in Fig.
345  4b. Some transporter proteins were classified to the blue cluster (i.e., the cluster for specialist
346  functions) due to the specialization on the gene level. As a result, such specialization would be
347  carried to the protein level. Some transporter proteins were classified to the green cluster (i.e.,
348  the cluster for essential functions) because they have been proven essential for microbes. One
349  example is the ABC-type Fe3+/spermidine/putrescine transporter (COG3842) which has
350 FRg=0.339 and FR, = 0.285. It has been shown that iron is essential for bacteria as it

351 functions as a co-factor in iron-containing proteins in redox reactions, metabolic pathways, and
352 electron transport chain mechanisms*¢.

353 Ribosomal proteins are necessary for the growth of all living organisms because, as
354  we know, the ribosome is the place where other proteins are synthesized®®?'. Since ribosomal
355 proteins are an indispensable part of microbial survival, all abilities of synthesizing such
356 proteins are expected to be expressed. In our data, many ribosomal proteins were classified
357 tothe green cluster (i.e. the cluster for essential functions). Moreover, we found that their keen
358  were very close to their kecn (Fig. 4e). In Fig. 4f, we compared FR, with FR,, and found many
359  ribosomal proteins were classified to the green cluster (i.e. the cluster for essential functions),
360 agreeing with our expectation that proteins with high FR, and FR, are more likely to be
361  essential functions. Interestingly, two ribosomal proteins (L28 and L34) colored red in Fig. 4e
362 have been shown to be non-essential*’*%5? to microbes such as E. coli. Some specialized
363 ribosomal proteins in microbial genomes continue to be specialized on the protein level and

364 thus were classified to the blue cluster (i.e., the cluster for specialist functions).
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365 Alternatively, we looked at the distribution of network degrees (Fig. 4c, g) and the
366  distribution of functional redundancy (FR, or FR, in Fig. 4d, h) for the two protein types to
367 observe their difference. For ABC-type transporters, the distribution of network degrees in PCN
368 s close to 0 (having a median of 2), while the median of network degrees in GCN is 25. For
369 ribosomal proteins, the distribution of network degrees in PCN (median is 12) is similar to that
370  in GCN (median is 14). For ABC-type transporters, the distribution of FR,, in PCN is close to 0
371  (with a median ~ 0.01), while the median of FR, in GCN is around 0.30. For ribosomal proteins,
372  the distribution of FR, in PCN (median ~ 0.20) is similar to the distribution of FR, in GCN
373  (median ~ 0.21). The same patterns of ABC transporters showing a big reduction (in functional
374  redundancy and network degree) and ribosomal proteins showing little difference are also true
375  for the other 3 individuals (Supplementary Figs. 9-11).

376 We also validated the above results using a different functional annotation method,
377 KEGG Orthology (KO)**%. The annotation rate of proteins involved in PCN of the four
378  individual microbiomes is 78% (much lower than 92% which we had for the COG annotation).
379  The contrasting difference between ABC-type transporters and ribosomal proteins is well
380 preserved (see Supplementary Fig. 7). Additionally, the distribution of FR, shows a dramatic
381 difference across KO groups (Supplementary Fig. 8). Some ecologically strongly selected KO
382  groups have small FR,,, while other metabolically essential KO groups show fairly large FR,,
383 and big variations (see Supplementary Fig. 8). For example, almost all proteins in ABC
384  transporters and PTS systems have FR, close to zero (Fig. Supplementary Fig. 8), and
385 transporters and PTS systems are well-known as the ecologically selected groups***"%". As a
386  comparison, proteins from Aminoacyl-tRNA biosynthesis, glycolysis, and ribosomes all have
387  big FR, and huge variations across different proteins within the group (Supplementary Fig. 8).

388 In the past, the metabolic essentiality has been demonstrated for Aminoacyl-tRNA

15,16 58,59 42-44

389  biosynthesis , and ribosomes

390

, glycolysis

391 The response of community and protein expression to the introduction of sugars

392 In ecology, a niche is often defined as an abiotic and biotic factor that supports the survival of
393  species®®®2 Therefore, niche functions are associated with corresponding limiting resources
394 involved in those functions. For example, COG1879 (ABC-type sugar transport system,
395  periplasmic component, contains N-terminal xre family HTH domain) which is categorized as
396  aniche function owing to its high FR, of 0.486 and low FR,, of 0.041 for the subject HM454, is
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397 associated with widely competed sugars in microbial communities. After inferring niche
398 functions such as ABC-type transporters by our computational pipeline, we wonder if it is
399  possible to influence the community structure by externally supplying more limiting resources
400 involved in the niche functions. To demonstrate this, we resort to the in vitro community and
401 are interested in how the community structure and expression of proteins involved in niche
402  functions respond to supplied limiting sugars. Specifically, we would like to see how proteins
403  relevant to ecological niche functions within one taxon change their expressions to achieve a
404  Dbetter living strategy for the taxon.

405 We used rapid assay for individual microbiome (RapidAIM)®, which maintains the
406  functional profiles of individual gut microbiomes in vitro®, to culture three different individual
407  human gut microbiota samples, and used metaproteomics to observe how taxon-specific
408  expression of proteins in the niche functional cluster respond to the presence of glucose,
409 fructose and kestose (Fig. 5a). Samples were cultured in technical triplicates, and were taken
410 atO0, 1, 5, 12, and 24 hours of culturing for optical density and metaproteomic analyses. 11-
411  plex tandem mass tag (TMT11plex) was used for metaproteomic quantification® for a total of
412 189 samples. To reflect the effect of introduced sugars on protein expression levels, we used
413  log2 of the ratio between normalized protein abundances/intensities (see Methods for details)
414  in the treatment and that in the control group (i.e. log2 of fold change in Fig. 5). We
415 hypothesized that the excessive supply of sugars renders carbon resources no longer limited
416 andinstead microbes start to compete for other resources in relatively short supplies compared
417  to carbon resources such as nitrogen resources or amino acids because microbes need all
418 those resources proportionally (Fig. 5a). Therefore, microbes might have to over-express
419  proteins to uptake more non-carbon limiting resources to achieve better growth.

420 To understand how each taxon interacts with the environment and how introduced
421  sugars modulate the interaction, we focused on log2 fold changes of ABC-type transporters 5
422  hours later whose expression levels reveal rates for transporting nutrients (Fig. 5b-d). When
423  glucose is supplied in an excessive amount, log2 fold changes of most COGs are close to
424  zeros except for COG1126 (ABC-type polar amino acid transport system, ATPase component),
425 COG1653 (ABC-type glycerol-3-phosphate transport system, periplasmic component),
426 COG1879 (ABC-type sugar transport system, periplasmic component, contains N-terminal xre
427  family HTH domain), and COG4166 (ABC-type oligopeptide transport system, periplasmic
428  component). Many pronounced changes happen to the genus Holdemanella and it is
429 interesting to note that Holdemanella reduces the expression of transporters for importing
430 sugars (COG1879) and an intermediate in the glycolysis glycerol-3-phosphate (COG1653)
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431  when glucose is added. Instead, it increases the expression of COG1126 which transports
432  polar amino acids. This strategy benefits Holdemanella because the fraction of proteins from
433 Holdemanella over all proteins in the community increases from 13.5% in the control to 15.8%
434  with the added glucose. We also measured log2 fold changes of ABC-type transporters when
435  fructose, glucose and fructose, or kestose is added and their overall patterns (Fig. 5c-e) are
436  similar to the pattern when glucose is added (Fig. 5b). The correlation in log2 fold changes of
437  ABC-type transporters between different added sugars is significant (Supplementary Fig. 12).
438  Similar fold changes of ABC-type transporters were observed for metaproteomic
439  measurements 12 hours, and 24 hours later (Supplemental Figs. 14-15), while the fold changes
440 1 hour later are still fairly small (Supplemental Fig. 13). We also attempted to look at how
441  ribosomal proteins respond to sugar supplies (Supplementary Fig. 16). Overall, log2 fold
442  changes of ribosomal proteins are overwhelmingly positive, which probably implies a faster
443 growth for microbes when simple sugars are supplied®3®. Therefore, we demonstrated that
444  the sugars associated with the niche function (i.e., the sugar transport system) can be
445  introduced to influence gene expression and modulate the community structure.

446

447 Discussion

448  Understanding the functions of proteins in the metabolism and how they are influenced by
449  various ecological interactions is important to fully characterize ecological niches in a given
450  microbial community. Typically, to check if a protein is metabolically essential, one has to knock
451  out the gene in one microbial species that codes for the protein to check how the growth rate
452  of the species reduces**™**. A usual way to determine a limiting resource often that is utilized
453 by a protein follows: modify resource supplies and see how the total biomass changes®°.
454  Here, to complement those traditional experimental methods, we proposed a simpler
455  computational method that can identify metabolic and ecological functions of proteins via the
456  comparison of their FR, and FR,, as well as their kgcn and kpey . We validated this
457  computational method using both model-generated synthetic data and real data for human gut
458  microbiomes. Also, when we selected two types of proteins (ABC-type transporters and
459 ribosomal proteins in the real data representing niche functions and essential functions,
460 respectively), most predicted protein functional clusters of the two types of proteins fell into the
461 niche function cluster and the essential function cluster, respectively. Besides these two protein

462  types, we were able to generate a list of FR,, and FR,, for all COGs (see Supplemental Data 1-

463  4), which is useful for understanding the metabolic and ecological functions of proteins.
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464 The presented results help us reconcile the conflict between the niche theory in

62,70,71

465  ecology and the observed functional redundancy'"'2. The traditional niche theory is

466  grounded in the competitive exclusion principle, stating that a resource (or niche) cannot be
467  occupied by two species (or more than two species) for the steady-state conditions®?"%"". As
468  a result of competition, organisms within the same community develop different surviving
469 strategies to minimize their competition. One interesting example is the repetitive established
470  coexistence between two evolved E. coli strains, even though a single clone of E. coliis initiated
471  and maintained in a glucose-limited continuous or serial culture?">"3, Cross-feeding between
472  two evolved E. coli strains can be established when one bacterial strain consumes overflow
473  metabolites like acetate excreted by the other bacterial strain®'. Hence, the two strains avoid
474  competition by specification on different resources (glucose and acetate). However, the picture
475 from the niche theory clashes with the observed functional redundancy in microbial
476  communities because the functional redundancy implies that many species own the same
477  functions in their genomes'"'?. We solved this dilemma by pointing out that proteins related to

478  occupying ecological niches usually have very low FR,, and large FR,. Therefore, if we apply
479  this concept in reverse, then large FR, and small FR,, could help us to pinpoint niche functions.

480 There is a long-standing gap between the ecological model which considers the protein
481  functions of organisms and the data analysis of genomic data to give ecological insights. Ever
482  since Robert MacArthur proposed a community model in 1970 to consider how different
483  consumers compete exclusively for renewing resources’®, many extensions of this model were
484  proposed to include more complex ecological factors such as cross-feeding interactions’>"®
485  and multiple essential nutrients”. Almost all of them focus on the phenotype of microbes
486  because only functions of expressed proteins are relevant for the consumption and production
487  of nutrients in the ecosystem. Due to the lack of metaproteomic data, many computational
488  approaches attempting to generate ecological implications rely on the over-complete inferred

79712 To reconcile this gap, we built an ecological

489  protein capacity derived from genomes
490 framework with the genomic capacity and protein functions together by introducing species
491  with sub-sampled functions. The model framework is useful for explaining the difference
492 between genomic capacity and protein functions. The selective expression can be considered

80-82

493  as the same microbe with different expressions under different environments or evolved

494  strains from the same species that have distinct metabolic niches observed in evolutionary
495  experiments of microbes®2"22,
496 It is worth noting that the assumption of the trade-off between generalists and

497  specialists (represented by assuming that the total proteome is relatively constant) is very
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498  important. In our model, this assumption is achieved by considering true consumption rates in
499  PCN as maximal consumption rates in GCN divided by the number of resources. The
500 importance of this trade-off lies in the fact that it forces the niche partitioning among species.
501 In the absence of this assumption, there is no pattern of redundancy difference since
502  generalists can always out-compete specialists. This trade-off makes sense because typically
503 the total proteome budgets for microbes have been observed to be relatively fixed®?32.
504

505

506
507 Methods

508 In-vitro culture of single gut bacterial strains with added sugars. Five gut commensal
509  bacterial strains, Bacteroides vulgatus ATCC 8482, Bacteroides ovatus ATCC 8483,
510  Bacteroides uniformis ATCC 8492, Blautia hydrogenotrophica DSM 10507, Escherichia coli
511 DSM 101114 were cultured with or without added sugars (glucose, sucrose and kestose). The
512 base culture medium without sugar added were modified based on the Yeast Casitone Fatty
513  Acids (YCFA) broth, containing 10.0 g/L casitone, 2.5 g/L yeast extract, 45 mg/L MgSOs4-7H20,
514 90 mg/L CaCly-2H.0, 450 mg/L K:HPO4, 450 mg/L KH.PO4, 900 mg/L NaCl, 1.0 mg/L
515  resazurin, 4.0 g/L NaHCOs3, 1.0 g/L L-Cysteine-HCI, 10 mg/L Hemin, 1.90 mL/L acetic acid,
516 0.7 mL/L propionic acid, 90 uL/L iso-butyric acid, 100 uL/L n-valeric acid, 100 uL/L iso-valeric
517 acid, 0.02 mg/L biotin,0.02 mg/L folic acid, 0.05 mg/L thiamine-HCI, 0.05 mg/L riboflavin,
518  0.001 mg/L vitamin B12, 0.05 mg/L aminobenzoic acid. The pH was adjusted to between 6.7-
519 6.8, and autoclaved media were pre-reduced in an anaerobic chamber overnight. 5 g/L of
520  different sugars (glucose, sucrose, and kestose) were added to the base medium as treatment
521  groups. Master tubes of single bacterial strains were first cultured on Tryptic Soya Agar (TSA)
522  containing 5% sheep blood using the streak plate method. A single colony was picked from
523  each agar plate and inoculated into the base culture medium to culture for 24 hours, before
524  inoculating 100 pL of each culture into 10 mL of four different media: base medium without
525  sugar added, with glucose added, with sucrose added and with kestose added. After culturing
526  for 24 hours, optical density at 600 nm was tested in technical triplicates for each sample.
527  Cultured microbial cells were purified by washing with phosphate buffered saline (PBS) buffer
528  three times, and the resulting microbial pellets were stored at -80 °C for proteomics analysis.
529
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530 In-vitro human gut microbiota culture with added sugars. Three healthy individual
531  microbiota samples were collected and biobanked using our live microbiota biobanking
532  protocol®*. The study was approved by the Ottawa Health Science Network Research Ethics
533  Board at the Ottawa Hospital, Ottawa, Canada (# 20160585-01 H). The frozen microbiome
534  samples were thawed at 37 °C and cultured in our optimized culture medium®* with or without
535 the presence of different sugars (10 mM glucose, 20 mM fructose, 10 mM glucose + 20 mM
536  fructose, or 10 mM kestose). Samples were cultured in technical triplicates, and were taken at
537 0 hr, 1hr, 5 hr, 12 hr and 24 hr of culturing for optical density and metaproteomic analyses.
538  After culturing, 96-well deep well plates were first centrifuged at 3,000 g for 45 min under 4 °C.
539  Then the pellets were washed in 4 °C phosphate buffered salin (PBS) buffer and centrifuged
540  at 3,000 g for 45 min again, before pelleting and removing culture debris three times using 300
541 g, 4 °C, 5 min centrifugation. Microbial suspensions were then centrifuged at 3,000 g, 4 °C
542  for another 45 min. The purified cell pellets were stored at -80 °C before protein extraction.
543
544  Protein extraction, digestion and LC-MS/MS analysis. For single strain samples, proteins
545  were extracted with 4% SDS 8M urea buffer in 100 mM Tris-HCI buffer and precipitated
546  overnight at -20 °C, before being purified by washing with ice-cold acetone three times.
547  Quantified proteins were then reduced and alkylated before being digested using trypsin (50:1
548  protein-to-trypsin ratio) for 24 hours at 37 °C and were desalted using reverse phase beads®.
549  Proteomic samples were analyzed using an Orbitrap Exploris 480 mass spectrometer
550 (ThermoFisher Scientific Inc.) coupled with an UltiMate 3000 RSLCnano liquid
551  chromatography system following a 1-hour gradient of 5 to 35% (v/v) acetonitrile (v/v) at the
552  flow rate of 300 L/min. MS full scan was performed from 350 - 1400 m/z with a resolution of
553 60,000, followed by an MS/MS scan of 12 most intense ions, a dynamic exclusion repeat count
554  of one, exclusion duration of 30 s, and resolution of 15,000. Metaproteomics samples of the
555  cultured individual microbiomes were prepared using a semi-automated approach. Briefly,
556  samples were lysed in a buffer containing 8 M urea, 4% SDS in 100 mM Tris-HCI (pH = 8.0) to
557  extract microbial total proteins. The proteins were purified by a double-precipitation procedure
558  in50%:50%:0.1% (v/v/v) acetone: ethanol: acetic acid solution. Protein digestion and desalting
559  steps were performed using an automated liquid handler (Hamilton Nimbus-96). Briefly, 100
560  pg proteins were dissolved in 100 uL 6 M urea in 100 mM Tris-HCI (pH 8) buffer, before being
561  reduced by 10 uL 0.1 M dithiothreitol (DTT) solution under 56 °C for 30 minutes and alkylated
562 by 10 uL 0.2 M iodoacetamide (IAA) solution in dark, 25 °C for 40 minutes. Samples were each
563  added 1000 pL 100 mM Tris-HCI buffer containing 2 ug/mL trypsin (trypsin:proteins = 1:50) for
17
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564  a 24-hour digestion under 37 °C, before being desalted using an automated pipeline based on
565 reverse-phase (RP) desalting columns. 11-plex tandem mass tag (TMT11plex) was used for
566  metaproteomic quantification for a total of 189 samples. An even mixture of all samples was
567  used as the reference channel in each 11-plex. Samples were scrambled before labeling with
568 TMT11plex, so that each labeled sample contains samples from different individuals, different
569 time points and different treatments to avoid any bias that may be induced between analyses.
570  TMT-labelled samples were analyzed using an Orbitrap Exploris 480 mass spectrometer
571  (ThermoFisher Scientific Inc.) coupled with an UltiMate 3000 RSLCnano liquid
572  chromatography system following a 2-hour gradient of 5% to 35% solvent B (80% acetone
573 nitrile, 0.1% formic acid, v/v).

574

575 Datasets. Metagenomics data corresponding to the ultra-deep metaproteomic analysis of the

1428 (accessible

576  four individual microbiomes were obtained from the previous MetaPro-1Q study
577  from the NCBI sequence read archive (SRA) under the accession of SRP068619) and the
578 same samples were reanalyzed by an ultra-deep metaproteomics approach'™ (accessible
579  through the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE
580 partner repository®®). Proteomics dataset of the cultured singles strain samples has been
581  deposited to ProteomeXchange Consortium via the PRIDE partner repository. Metaproteomic
582 dataset of the RapidAlIM-cultured microbiome samples has been deposited to
583  ProteomeXchange Consortium via the PRIDE partner repository.

584

585 Database search and data processing. Proteomics database searches were performed by
586  combining FASTA databases of the individual strains downloaded from NCBI. The databases
587  were combined for performing database search using MaxQuant®” 1.6.17.0, with the label-free
588 quantification option turned off. Metaproteomic database searches of cultured microbiome
589  samples were performed using MetalLab V2.2%8 MaxQuant option was used to search the TMT
590 dataset against the IGC database of the human gut microbiome. The resulting data table was
591 normalized using R package MSstatsTMT®, and missing values were imputed using R
592  package DreamAlI®. The "fraction" of each taxon-specific protein is computed by dividing the
593  protein intensity by the sum of intensities of all proteins assigned to the same taxon. The log2
594  fold change of each protein is obtained by taking log2 of the ratio between its fraction in the
595  treatment group (with added sugars) and its fraction in the control group (without added sugars).
596
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597  Generation of GCN and PCN. For the ultra-deep metaproteomic dataset, the genus-COG
598  version of GCN and PCN tables were directly obtained from the previous work'. In addition,
599  here we generated a genus-KEGG version of GCN and PCN for each individual microbiome
600 using a similar method. Briefly, for the genus-KEGG GCN, by searching raw metagenomic
601 reads against an integrated gene catalog (IGC) database of the human gut microbiome3®, we
602  obtained a list of proteins quantified by read counts. FASTA sequences of these proteins were
603  searched against the KEGG database using GhostKOALA®'. Taxonomic origination of the
604  proteins was obtained by searching against an in-house database generated with the NCBI
605  non-redundant (nr) database (downloaded 2/3/2016). To generate genus-KEGG PCN, the
606  taxonomic table of the metaproteomics dataset was directly obtained from MetalLab, and
607 KEGG annotation was also performed by querying protein FASTA sequences with
608  GhostKOALA. Protein group intensity was used as the quantification information in PCNs. For
609 the proteomic dataset of single strains, the whole proteomic FASTA database was submitted

610 to EggNOG mapper (http://eggnog-mapper.embl.de/, submitted Oct-30-2021, ran emapper.py

611  2.1.6) to obtain functional annotations. To generate GCN, protein coding sequence (CDS) files
612  were downloaded from NCBI, and the count of each protein id in the CDS files was considered
613  as the copy number of each gene in the GCN. For PCN generation, intensities of identified
614  proteins matched to each strain were used. Note that protein ids in the CDS file were 100%
615  matched with those in the proteomic FASTA database in each strain. For the metaproteomics
616  dataset of the cultured microbiome samples, functional information for the generation of PCN
617 was obtained from the resulting functional table automatically generated by the MetalLab
618  software. Taxonomic assignment was performed using the ‘protein-peptide bridge’ method as
619  described previously'. The PCNs for this dataset were then generated based on intensities of
620  COG-genus pairs.

621

622  Normalized gene-level functional redundancy (nFR,;) and normalized protein-level
623  functional redundancy (nFR). Across multiple samples, it is pointless to compare the FR,

624  or FR,, directly because of the difference in microbial taxonomic diversities. In fact, it has been
625 shown in the past that the normalized functional redundancy, which is the functional
626  redundancy divided by the taxonomic diversity, can be compared across samples'®. In our

627  study, the definition for nFR is

S, (1= o
2 FR, = : :
628 R S Sy M
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629  and the definition for nFR, is

630 D 0 ¥ i L,
P 2:11'\,:1 Z;v::ipipj '

631

632 The community assembly model.

633  Step 1: Assignment of species’ genomic capacity. Three types of protein functions are modeled:
634  niche function, specialist function, and essential function. Both specialist function and niche
635  function are considered as the capacity to consume a unique and externally supplied resource.
636  The probability of a random consumer being assigned the ability to have a niche function is
637 0.7. To make fewer species own specialist functions in their genomes, the probability of a
638 random consumer being assigned the ability to have a specialist function is 0.2, much lower
639 than the probability of owning a niche function. The maximal consumption rate of a resource
640 by one species represents the consumption rate that the species would have if it allocates the
641  entire proteome (100%) to the consumption of the resource. If many resources are consumed,
642  the total proteome has to be divided into several parts and the consumption rates would be a
643  fraction of the corresponding maximal consumption rates. The essential function is not
644  modeled as the consumption of alternative resources due to its metabolic essentiality. Instead,
645  the essential function is modeled as multiplying the growth rate by a factor of 0.95 for each
646  missing essential function.

647  Step 2: Assignment of species’ protein functions based on their genomic capacity. Each
648  species sub-samples its genomic potential functions with a sub-sampling probability p (which
649 is a random number uniformly distributed between 0 and 1) to obtain its protein functions (i.e.
650  which resource it can truly consume). As a result, all protein functions of species form the basis
651 for PCN. The true consumption rate of one species on a resource is its maximal consumption
652 rate on the resource divided by the number of resources that can be utilized by the species.
653  This process can be thought of as the proteome allocation to consume several resources
654  simultaneously®*3*. This assumption imposes a trade-off between a generalist and a specialist
655  species: a generalist species utilizes more resources but has lower consumption rates for all
656  resources, while a specialist species consumes fewer resources but has higher consumption
657 rates for consumed resources.

658  Step 3: Community assembly. We assumed a chemostat environment, similar to the setting
659  considered by many Consumer-Resource models’>’’. The dilution rate D is considered as 0.1
660  per hour. A fixed number of resources is considered and the pool concentrations (or supply

661 rates) for all resources are assumed to be the same for simplicity. For each species, the growth
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662 rate is treated as the sum of consumption rates for different resources divided by the yield. For
663  simplicity, all yields are assumed to be equal (Y = 1). Overall, the dynamics for the
664  concentrations of resource i (denoted as C;) and the abundance of the species a (written as
665  By):

. vNm .
666 %6 — h, - D, — 2L TR (3)

667 Dt = —DB, + ¥ Gaj Y™ Ba G, (4)
668  where a,; is the consumption rate of species @ on resource i, h; is the supply rate of
669 resource i, Y is the same yield assumed for all resources, y(= 0.95) is the diminishing rate for
670  the overall consumption rate that is multiplied for each missing essential function, and N, is
671  the number of missing essential functions. The consumption rate of one species of a resource
672 is randomly drawn from the uniform distribution between 0 and 1. Eventually, for each species,
673 its true consumption rates are its randomly drawn consumption rates divided by the number of
674  resources the species can use to constrain the total proteome budget®***. The incidence matrix
675  of the consumption abilities establishes part of PCN for niche functions and specialist functions
676  of the species. The entire PCN is completed by including the presence/absence information of
677  all essential functions.

678  Step 4: Generate GCN and PCN for survived species. When we simulated the above
679  community assembly process to reach a steady-state in the chemostat environment, survived
680  species can be found as species existing with non-negative abundances at the end of the
681  simulation. For survived species, we can reconstruct the GCN and PCN for them. Within
682  equipped GCN and PCN, we would be able to compute FR,, FR,,, and network degrees (kecn
683  and kpcn).

684

685 Calculation of nestedness. To reveal the nested structure of an incidence matrix, we first
686  need to use the Nestedness Temperature Calculator (NTC)* to organize the matrix. Then we
687  adopted the NODF (Nestedness based on Overlap and Decreasing Fill) measure previously
688  defined®. The measure can only be computed for binary incidence matrices. As with any

689  perfectly nested matrix, two properties must be present: (1) decreasing fill, which means that
690 the columns below and to the right should have fewer entries than the columns above and to
691 the left; and (2) paired overlap, which implies that when an entry appears in the columns

692  below and to the right, it should also appear in the columns above and to the left. The NODF
693  measure is calculated by averaging these two properties across all pairs of an upper and

694  lower row and a left and right column. For the comparison of each pair, if decreasing fill is not
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695  satisfied, the pair will contribute 0 to the total nestedness. Otherwise, the pair’s contribution is
696 the percentage overlap in non-zero entries between the two rows or two columns.

697

698  Statistics. To calculate correlation throughout the study, we used Pearson’s correlation
699  coefficient. Wherever we used P values, we explained in the Methods how we calculated them,
700  since for all such measurements in the study, we calculated the associated null distributions
701  from scratch. All statistical tests were performed using standard numerical and scientific
702 computing libraries in the Python programming language (version 3.7.1) and Jupyter Notebook
703 (version 6.1).

704

705 Data and code availability. All code for simulations used in this manuscript can be found at
706  XXX.
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928  Figure 1: Protein functions involved in determining ecological niches are postulated to
929  have larger discrepancies between the gene-level functional redundancy FRy and
930 protein-level functional redundancy FR,. Here we use a hypothetical example with three
931 representative proteins (3 broken circles with complementary shapes to their substrates) to
932  demonstrate this point. a, Schematic of genomic capacity of two microbial taxa (pink oval vs
933  yellow indented oval). Two resources (red pentagon and blue triangle) are externally supplied
934  to the community. The green metabolite can be transformed from the red or blue resource and
935  further utilized in biomass synthesis. The pink taxon has the capacity of converting either
936  supplied resource into the green metabolite (red and blue arrows), while the yellow taxon can
937  only convert the red resource (red arrow). b, Schematic of expressed proteins for two microbial
938 taxa after their competition in the same community. After the competition, the reduced resource
939  conflict (represented by the pink taxon choosing the blue resource as the sole one to consume)
940  can promote their coexistence. Gene content network (GCN) and protein content network
941  (PCN) can be used to capture genomic capacity and expressed protein functions for all taxa.
942  Alternatively, this network can be represented as incidence matrices on the bottom (grey areas
943  imply the existence of edges connecting taxa to proteins). c-d, The comparison between kacn
944  and kecn Or between FRy and FR;, helps to classify proteins into three protein functional clusters:
945  specialist function, essential function, and niche function. In the calculation of FRy and FR,, we
946  we assume equal abundances of the two species, i.e., p; = p, = 0.5.
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948  Figure 2: Three protein functional clusters (specialist function, essential function, and
949  niche function) considered in the community assembly model form three distinct
950 clusters when the network degree and functional redundancy are compared between
951 the GCN and PCN in model-generated synthetic data. a1-a4, Three types of functions
952  modeled have different ecological and metabolic roles. The niche function (red proteins) and
953  specialist function (blue proteins) are modeled as abilities to consume externally supplied
954  resources. The role of essential functions (green proteins) is considered as a reduction in the
955 overall growth rate for each missing essential function. b, A schematic diagram of the
956  community assembly. Species (ovals and indented ovals) with expressed protein functions
957  selected via the sub-sampling of their genomic capacity. Then all species are co-cultured
958  together to simulate their ecological competition. ¢, A simulation example of the community
959 assembly, and the construction of GCN and PCN for the survived species. d-e, The
960  comparison of network degree and functional redundancy respectively based on the GCN and
961  PCN of survived species in the simulation example in panel-c. A Gaussian mixture model with
962 3 clusters is used to identify 3 protein functional clusters. Ellipses around clusters cover areas
963  one standard deviation away from their means. f-g, The comparison of network degree and
964 functional redundancy respectively based on the GCN and PCN of 35 species randomly
965  selected from the 10,000 species in the initial pool. All points/functions are colored red (niche
966 functions), green (essential functions), and blue (specialist functions) according to their types
967  of functions in the model. kecn (or keen) is the network degree of each function in the GCN (or
968 PCN). FRq (or FRy) is the functional redundancy of each function on the gene level (or protein
969 level), respectively.
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Figure 3: Real data of the human gut microbiome showing three clusters on the plot that
compares FRy with FR,. Metagenome and metaproteome of subject HM454 mucosal-luminal
interface samples®® were used to construct GCN and PCN, respectively. a, The GCN shows if
a genus owns (or doesn't own) a COG as its genomic capacity, which is colored in black (or
white). The GCN matrix is ordered to have decreasing network degrees for both genera and
COGs. b, The PCN shows if a genus expresses (or doesn't express) a COG as its protein
function, which is colored in black (or white). The PCN matrix follows the same order as the
GCN. c, Differences in network degree for most COGs are large. kecn is the network degree
of each COG in the GCN (i.e. the number of genera owning each COG in the GCN). kpcn is
the network degree of each COG in the PCN (i.e. the number of genera owning each COG in
the PCN). d, FRy is larger than FR, for most COGs. Three clusters with three distinct colors
(blue, red, and green) are predicted by the Gaussian mixture model with 3 clusters fitted on
synthetic data. The transparent large circles represent centroids of three clusters. e, The
relationship between FR, and network degree of PCN for COGs is not monotonic.
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Figure 4. Comparison of network degree and functional redundancy between the gene
and protein level for ABC-type transporters and ribosomal proteins. a, Network degrees
in GCN are larger than network degrees in PCN for most ABC-type transporter COGs. kacen (or
kecn) is the network degree of each COG in the GCN (or PCN). b, FRg is larger than FR, for
most ABC-type transporter COGs. c-d, The distribution of network degrees and functional
redundancies (violin plots and boxplots) for ABC-type transporter COGs show a significantly
huge reduction from kecn to keen oOr from FRy to FRp. e, Network degrees in GCN are
comparable with that in PCN for most ribosomal protein COGs. f, FRy is comparable with FR,
for most ribosomal protein COGs. Points in scatter plots are colored by the same colors used
in Fig. 3d. g-h, The distribution of network degrees and functional redundancies (violin plots
and boxplots) for ribosomal protein COGs show no significant reduction from kecn to keen or
from FR4 to FRy. In all boxplots, the middle white dot is the median, the lower and upper hinges
correspond to the first and third quartiles, and the black line ranges from the 1.5 x IQR (where
IQR is the interquartile range) below the lower hinge to 1.5 x IQR above the upper hinge. All
violin plots are smoothed by a kernel density estimator and 0 is set as the lower bound. All
statistical analyses were performed using the two-sided Mann-Whitney-Wilcoxon U Test with
Bonferroni correction between genomic capacity (GCN) and protein functions (PCN). P values
obtained from the test is divided into 5 groups: (1) p > 0.05 (ns), (2) 0.01 <p < 0.05 (*), (3)
1073 <p < 0.01 (*), (4)107*<p < 1073 (***), and (5) p < 10~* (****). Network degree
comparison of ABC transporters: p = 7.11 x 10716, Network degree comparison of ribosomal
proteins: proteins: p = 0.10. Redundancy comparison of ABC transporters: p = 2.19 x 10711,
Redundancy comparison of ribosomal proteins: p = 1.00.
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1011  Figure 5: Microbes modify their expression for ABC-type transporters to adapt to added
1012 sugars. All heatmaps share the same color bar on the right. a, Schematic of in-vitro cultures
1013 of a collected human gut microbiome. In the treatment group, one sugar is added to the
1014  community. Metaproteomic measurements 5 hours later enable us to compare the intensity of
1015  each taxon-specific protein using the log2 fold change of each protein’s fraction (i.e. normalized
1016 intensity over each genus) from the treatment group divided by that from the control group.
1017  Log2 fold changes of ABC-type transporters 5 hours after (b) glucose, (¢) fructose, (d) kestose,
1018  or (e) glucose and fructose is added.
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