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Abstract

The statistical validation of peptide and protein identifications in mass spectrometry proteomics
is a critical step in the analytical workflow. This is particularly important in discovery experiments
to ensure only confident identifications are accumulated for downstream analysis and biomarker con-
sideration. However, the inherent nature of discovery proteomics experiments leads to scenarios
where the search space will inflate substantially due to the increased number of potential proteins
that are being queried in each sample. In these cases, issues will begin to arise when the machine
learning algorithms that are trained on an experiment specific basis cannot accurately distinguish
between correct and incorrect identifications and will struggle to accurately control the false discov-
ery rate. Here, we propose an alternative validation algorithm trained on a curated external data
set of 2.8 million extracted peakgroups that leverages advanced machine learning techniques to cre-
ate a generalizable peakgroup scoring (GPS) method for data independent acquisition (DIA) mass
spectrometry. By breaking the reliance on the experimental data at hand and instead training on a
curated external dataset, GPS can confidently control the false discovery rate while increasing the
number of identifications and providing more accurate quantification in different search space sce-
narios. To first test the performance of GPS in a standard experimental environment and to provide
a benchmark against other methods, a novel spike-in data set with known varying concentrations
was analyzed. When compared to existing methods GPS increased the nunmber of identifications
by 5-18% and was able to provide more accurate quantification by increasing the number of ratio
validated identifications by 24-74%. To evaluate GPS in a larger search space, a novel data set of 141
blood plasma samples from patients developing acute kidney injury after sepsis was searched with a
human tissue spectral library (10000+ proteins). Using GPS, we were able to provide a 207-377% in-
crease in the number of candidate differentially abundant proteins compared to the existing methods
while maintaining competitive numbers of global identifications. Finally, using an optimized human
tissue library and workflow we were able to identify 1205 proteins from the 141 plasma samples and
increase the number of candidate differentially abundant proteins by 70.87%. With the addition of
machine learning aided differential expression, we were able to identify potential new biomarkers
for stratifying subphenotypes of acute kidney injury in sepsis. These findings suggest that by using
a generalized model such as GPS in tandem with a massive scale spectral library it is possible to
expand the boundaries of discovery experiments in DIA proteomics. GPS is open source and freely
available on github at (https://github.com/InfectionMedicineProteomics/gscore).

1 Introduction

One disadvantage of data independent acquisition (DIA) proteomics is that a spectral library based on
previously identified peptides in a sample is required to interpret the complex signal and quantify pep-
tides. In the past, this has made the practice of discovery proteomics in DIA difficult, as samples would
first need to be run with data dependent acquisition (DDA) and extensive offline fractionation to reach
the depth needed to see the benefits of the more sensitive DIA methods. However, recent computational
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advances in the development of fragment spectra prediction [I9] 65 [£9], and the creation of repository
scale spectral libraries for selected organisms and sample types [51), [66, B9, 47, 6, BT] have allowed for
the exploration of DIA as a means for discovery proteomics. Although these large libraries can help
facilitate the identification of novel markers in a DIA experiment, they present significant computational
difficulties, particularly when attempting to control the false discovery rate (FDR) using the target-decoy
approach [I4]. The increased search space of massive libraries can cause a decrease in sensitivity and
statistical power as more false positives are introduced into the library, leading to less precursors being
correctly identified when they are in fact in the sample [42] [I8, [I7]. In these cases, validation algorithms
struggle to distinguish the true signal from the false, resulting in low numbers of validated peakgroups
and imprecise FDR control. Attempts have been made to filter down these massive libraries to man-
ageable sample-type specific libraries in a data-dependent fashion to a more manageable search space
that statistical validation algorithms can readily deal with [26] [I8]. However, if the library filtering is
done too strictly potential true peptides are eliminated unnecessarily from the library and the benefits
that could be gleaned from using these massive libraries are reduced, decreasing the potential depth of
a discovery analysis. If the filtering is done too liberally, where too many false peptides are left in the
library, the same issue arises where validation algorithms have trouble distinguishing true signal in the
large search space. In both cases, this can result in an unreliable estimation of the FDR, so care must
be taken when filtering large spectral libraries for analysis.

Alternative to the filtering and sub-setting of spectral libraries to analyze data with large spectral
libraries, one case that has not been investigated with the same vigor is the effect of the choice of statis-
tical validation algorithms on their ability to navigate this large search space and control the FDR in a
stable manner. The algorithm of choice in the validation of DIA mass spectrometry data is the mProphet
algorithm [49], which is similar to the percolator algorithm commonly used in DDA proteomics [58]. This
mProphet algorithm, implemented in the python package PyProphet [50] for the use of validating DIA
data extracted with the OpenSwath software [52], uses a semi-supervised method to combine all calcu-
lated sub-scores into a final classification score used to control the FDR. This method works by selecting
positive training targets above a particular g-value cutoff in an iterative fashion once they are identified
and validated by the algorithm in the previous iteration. The initial targets are identified using a selected
sub-score and a broad g-value cutoff (typically 0.15 or 15% FDR) and the method progresses until no
more new identifications are found to pass below a selected FDR threshold (1%). In most cases, where
the library very closely matches with the data contained in the sample of interest, this method works
exceedingly well. However, when searching a sample with a repository scale library, where the majority
of precursors in the library are likely not contained in the sample, a situation arises where the normally
7true” target labels are noisy. This means that the peakgroups labeled as a ”target” in the spectral
library and assumed to be in the sample are not actually contained in the sample. This is a particularly
tricky area of machine learning research, and research has been done to develop methods that identify
noisy labels and stabilize the training of models in the presence of noisy labels [43] [TT]. PyProphet, and
additionally the tool Percolator [58] designed for validating identifications in data dependent acquisi-
tion, attempt to mitigate this issue with the iterative semi-supervised learning approach, but when the
number of true positives in the sample is so low, it is not guaranteed that each iteration can actually
select true positives for training. If some true targets are identified, it would be an exceedingly small
amount compared to the negative decoys in the data, creating a overwhelming class imbalance, which
can destabilize the training of machine learning algorithms if not dealt with in an appropriate manner [2].

Instead of dealing with these types of noisy label and class imbalance problems on the fly during sam-
ple specific model training, we propose to create a stable, generalizable machine learning model that can
be used to combine sub-scores from DIA extraction software by training on a curated data set of known
true and false positive peakgroups. This approach has been demonstrated to work using static models
with percolator in the context of DDA proteomics [58] but the static models are trained on the sample
types that they are used to evaluate, so it is unclear if they would generalize to diverse datasets of unre-
lated sample types. We hypothesize that a good peakgroup is a good peakgroup, no matter the sample
type, and that statistical validation models can be trained on an unrelated external data set if the data
is curated properly. To that end, we have trained a generalizable scoring model and implemented a suite
of algorithms to provide the stable validation of extracted peakgroups through the spectral library size-
agnostic Generalizable Peakgroup Scoring (GPS) framework. Here, we compare the GPS to two existing
validation tools, PyProphet[50] and Percolator[58] and evaluate the performance on 3 different novel
datasets using different spectral libraries and search spaces. We demonstrate the use of GPS in a practical
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setting by analyzing blood plasma samples from patients with septic acute kidney injury using the repos-
itory scale Pan Human Library (PHL) [51] and evaluate the possibility of using this type of framework
for the discovery of potential disease markers. GPS is a freely available as an open source Python package
and command line tool on github (https://github.com/InfectionMedicineProteomics/gscore).

2 Results

2.1 Generalizable model training

To enable the generalized scoring of peakgroups, we first aimed to train a machine learning model that can
detect true peakgroups in a sample with high precision. 129 yeast samples were run with varying gradient
lengths (30, 45, 60, 90, 120 minutes) and analyzed with OpenSWATH [52] to generate 1893804 target
peakgroups and 1857563 decoy peakgroups using the ms2-level sub-scores calculated by OpenSWATH
as features. We split the dataset so 80% remained for training and 20% was reserved for evaluating the
performance the machine learning models. Because many of the target labels in the dataset are noisy (ie.
they originate from false targets) we developed an algorithm to filter out noisy labels from the dataset
that we will refer to as the denoising algorithm. The denoising algorithm trains an ensemble of weak
learners using bagging [7] that vote on each peakgroup from a particular mass spectrometric sample.
If every single classifier in the ensemble voted that the peakgroup was a target, then the peakgroup is
kept as a target in the training set, otherwise it is removed. The overall workflow for this method is
depicted in Figure[[B. This results in a filtered training set with 1278834 true targets, marking a 15.53%
decrease in the number of targets used for training, along with 1486043 decoy peakgroups. In Figure [LA
the UMAP [38] projection shows that the cluster of decoy datapoints (labeled 0.0) is contaminated with
target labels, making the cluster appear almost purple. After denoising, the effects can be visualized in
Figure which depicts the purity of the projected components for the target and decoy data points
in the training set. To evaluate the performance of the denoising algorithm in generating a classifier to
identify only true peakgroups, we trained 2 classifiers, 1 based on the unfiltered training data, and the
2nd of the filtered training set, and analyzed a held-out subset of the unfiltered training data that we will
refer to as the testset. Overall on this testset we observed an 11.66% increase in the precision using the
filtered model, from 89.19% to 99.58%, and a 96.13% decrease in the false discovery rate (FDR), from
10.81% to 0.42%. In D-E of Figure 1] the confusion matrices display the overall classification numbers
that were used to calculate these metrics, and the overall score distributions for each method. The true
and false labels widened substantially and the portion of targets deemed false more accurately model the
decoy distribution in the filtered model as seen in D-E of Figure

2.2 Method Benchmark Comparison

To establish the validity of data produced using GPS with the filtered model described above, we first
performed an analysis on samples with known ratios of 4X more yeast peptides in one sample group
spiked-in into a constant mouse kidney proteome background. To verify that our method was validating
correct peakgroups, we monitored the expected ratios to make sure that the quantification is accurate,
while still maintaining high levels of identifications. We used OpenSwath [52] to perform signal extraction
and then GPS, PyProphet [50], and Percolator [58] to validate the extracted peakgroups and compare
between the different tools. To ensure that we were directly comparing the ability of only each machine
learning tool to validate peakgroups, the scoring functions of each tool were used and then the scored
samples were compiled and exported into global quantification matrices in the exact same way. At a 1%
FDR, we observed 15.69% increase in precursors, an 18.20% percent increase in peptides, and a 14.79%
increase in proteins identified by GPS compared to PyProphet and a 12.68% increase in precursors, a
14.40% increase in peptides, and a 4.7% increase in proteins identified by GPS compared to Percolator
(Figure [2)). To measure the accuracy of each validation method at identifying precursors correctly, we
measured the number of true ratio validated identifications in a 0.2 log2 fold-change (log2FC) window
around the known yeast and mouse log2 fold concentrations as done previously [41l 26]. Compared
to PyProphet, we observed a 24.30% increase in the number of ratio validated yeast identifications
and a 28.83% increase in the number of mouse ratio validated identifications (Figure . Compared to
Percolator, we observed a 68.52% increase in the number of ratio validated yeast identifications and a
74.06% increase in the number of mouse ratio validated identifications (Figure [2). The log2 fold change
distributions and the ratio validation windows of interest for each method can be seen in A, C, and E of
Figure[2l To measure the quantification accuracy beyond an arbitrary window of £0.2, we measured the
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Figure 1: a) The UMAP projection of the unfiltered training labels. 1.0 is a target label and 0.0 is a
decoy label. As visible by the projection, the cluster on the left corresponding to the decoy labels, is
also fully populated with target labels. This means that during training, noisy target labels that are
indistinguishable from decoy labels will be used as positive training instances when they should not be
b) The overall workflow for denoising the noisy target labels in the training set. The training data is first
split into k number of folds, for each held-out fold, the remaining training data is randomly sampled n-
times with replacement to train n-classifiers that are then used to vote on the held-out data to determine
if an instance is a true target or not. The probability threshold to consider a vote positive can be adjusted
for stringency. ¢) The UMAP projection of the filtered training labels with a 0.75 probability vote cutoff
after denoising. Each individual cluster is very pure, with only a few overlapping data points in the
middle, meaning that the target labels used for training are much more confident that they are a true
positive instance. d) The confusion matrices and score distributions for the classifier trained using the

noisy unfiltered labels. e) The confusion matrices and score distributions for the classifier trained using

the filtered labels. A
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average precision of ratio validations at increasing thresholds from the known concentrations of yeast and
mouse proteins (Figure ) The average precision is calculated as the number of yeast identifications
in the yeast window plus the number of mouse identifications in the mouse window divided by the total
number of identifications found both windows at each given threshold. As seen in Figure 2F, GPS starts
out with the highest precision closest to the known ratios and then drops as the windows widen while
maintaining comparable precision to PyProphet until around the £0.4 window when it is slightly lower
than PyProphet (0.9744 PyProphet compared to 0.9746 GPS at the final cutoff). Percolator displays a
lower precision at all windows compared to GPS and PyProphet, although it is worth noting that the
precision of each method here is very high with 0.97 being the minimum precision found among all three
methods.

2.3 Percentage of Incorrect Target (PIT) Analysis

To further establish confidence in the GPS method and to investigate the necessity of down-weighting
decoys with the PIT during g-value calculation, we analyzed samples comprised of mouse kidney tissue
and queried it with the same spectral library from the mouse-yeast spike-in analysis described above.
The PIT (or pi0) correction has been used previously to allow for more identifications to be identified
at the same FDR threshold due to the downweighting of decoys [27]. This method is implemented
in both Percolator and PyProphet in order to increase the number of identifications overall, but it
is possible that the inclusion of these identifications can lead to less accurate quantification and the
inclusion of incorrect identifications in the resulting quantitative matrices. To test this, we used the
denoising algorithm developed for model training above and applied it to the classification of putative
peakgroups in a sample. The denoising voting ensemble proves accurate in identifying which portion
of the target distribution should be classified as the false target distribution, and the overlay of these
predicted distributions can be seeing in Figure [BJA. To measure the true FDR, we used these false target
classifications to perform a PIT correction during g-value calculation and then measured the number of
yeast identifications that passed at the equivalent estimated FDR (Figure BB). At a 1.0% FDR, GPS
obtained the lowest Yeast FDR (1.94%), while the Yeast FDR calculated using GPS with the estimated
PIT correction (2.15%) was 10.97% higher. The PyProphet (2.38%) and Percolator (2.13%) Yeast FDRs
were 22.40% and 9.97% higher respectively. We also compared the true positive rate (TPR), measured
using mouse identifications, and the false positive rate (FPR), measured using yeast identifications, at
increasing FDR thresholds (Figur-D). At all thresholds, Percolator displays the lowest FPR, but also
identifies significantly less mouse identifications at the same cutoffs (GPS with PIT estimation increases
the number of identifications at a 1.0% FDR by 71.01% compared to Percolator). At a 1.0% FDR GPS
with PIT estimation identifies the most correct mouse identifications, while maintaining a comparable
FPR and Yeast FDR.

2.4 Acute kidney injury (AKI) analysis in patient blood plasma

To provide a biological context to the improvements provided by GPS, we analyzed 141 previously
unpublished blood plasma samples from a subcohort of sepsis patients with acute kidney injury from
the FINNAKI study [48] 20]. These 141 samples are comprised of 2 established subphenotypes, based
on severity of the illness, that were developed from a combination of multiple clinical markers [61]. We
interrogated this data using the repository scale Pan Human Library (PHL) (10838 proteins) [51] and
an optimized PHL where we corrected the retention time and appended spectra from identifications
obtained by searching the DIA data directly with MSFragger-DIA (v3.5) [30] [57] (10952 proteins). This
analysis puts into context the benefits that GPS provides when querying a large search space and the
benefit of using extensive curated repository spectral libraries in discovery DIA approaches and how they
can be optimized.

2.4.1 Large Search Space Comparison

When repository scale spectral libraries are used to query samples, classic peakgroup scoring methods
can struggle to correctly validate a large portion of the proteins that truly exist in the sample due to
the increased complexity of the data extracted. We analyzed the 141 blood plasma samples with the
PHL and then used GPS, PyProphet, and Percolator to score the extracted signal, calculate g-values
at the precursor, global peptide, and global protein levels, and aggregate the data into a quantitative
matrix. The precursors validated by the 3 tools were rolled up into their proteins using a Python
implementation of the relative quantification iq algorithm [46]. The resulting volcano plots in Figure
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Figure 2: a) Distributions of the fold changes for GPS of the precursors with at least 2 measurements
per group. The 0.2 log2FC windows around the expected mouse and yeast ratios are highlighted. b)
Global precursor, peptide, and protein counts for each tool in the benchmark at a 1.0% global protein
and peptide FDR. c¢) Distributions of the fold changes for PyProphet of the precursors with at least
2 measurements per group. The 0.2 log2FC windows around the expected mouse and yeast ratios are
highlighted. d) Barplot showing the percent increase of ratio validated identifications for PyProphet and
Percolator for the expected yeast ratio and the expected mouse ratio. This measures the accuracy and
number of identifications in the indicated areas from a, ¢, and e in the figure. e) Distributions of the
fold changes for Percolator of the precursors with at least 2 measurements per group. The 0.2 log2FC
windows around the expected mouse and yeast ratios are highlighted. f) Lineplot that visualizes the
precision of measurements of each tool at increasing log2FC threshold windows around the expected
mouse and yeast ratios. Precision is measured by the proportion of correct identifications divided by all
identifications within the tolerance windows.
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Figure 3: a) Density plots of the target, decoy, and false target distributions from a particular mouse
kidney sample. The predicted false target distribution is determined using the denoising algorithm to
correct g-value calculation during PIT estimation. The overlay of the decoy and false target distributions
show the accuracy of the denoising method in predicting targets and false targets. b) The number of
yeast identifications that pass at particular FDR thresholds for each measured method. Since no yeast
identifications should be found in the sample, a completely linear relationship (y=x) would indicate
perfect entrapment FDR, control ¢) The true positive rate of mouse proteins identified with increasing
g-value cutoffs for all measured methods. This acts as a proxy for the number of identifications at
particular g-value cutoffs. d) The false positive rate as a measurement of the yeast peptides that pass
at certain FDR thresholds compared to all yeast peptides in the library.
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—C visualize the differentially abundant proteins between the 2 subphenotypes of AKI (81 samples
were from subphenotype 2 and 60 samples were from subphenotype 1) above an absolute value of 1
log2FC and an adjusted p-value of 0.1. At these cutoffs GPS provides a 377.78% increase in the number
of differentially expressed proteins compared to PyProphet, and a 207.14% increase in differentially
expressed proteins compared to Percolator (Figure ) Percolator identified the most proteins at a
global 1.0% FDR at the protein level with 937, compared to 768 using GPS, and 164 with PyProphet
(Figure @D) The quantitative matrices produced by Percolator and GPS contain 87.91% and 78.29%
missing values (MV) respectively while PyProphet produced substantially less MVs overall (35.74%),
although the number of proteins at the global level was also much lower (Figure . Overall GPS was
able to identify 768 proteins globally, 91 differentially abundant proteins (adjusted p-value j 0.1), and
381 potentially differentially abundant proteins (proteins found in at least 2 samples per group). The
large increases in the number of differentially abundant proteins in Figure [@F that pass the specified
1.0 log2FC and 0.1 adjusted p-value cutoffs can be attributed to the fact that GPS provides a more
complete data matrix in the sense that a greater number of proteins have multiple measurements per
subphenotype, so more proteins can be accurately compared (a 38.55% increase compared to Percolator
and a 154.0% increase compared to PyProphet).
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Figure 4: a) Volcano plot visualizing the distribution of differential abundance values (log2FC) for GPS
on the AKI data and their -logl0(adjusted p-value). The cutoffs are set at a 0.1 adjusted p-value and
1 log2FC. b) Volcano plot visualizing the distribution of differential abundance values (log2FC) for
Percolator on the AKI data and their -logl0(adjusted p-value). The cutoffs are set at a 0.1 adjusted p-
value and 1 log2FC. ¢) Volcano plot visualizing the distribution of differential abundance values (log2FC)
for PyProphet on the AKI data and their -logl0(adjusted p-value). The cutoffs are set at a 0.1 adjusted
p-value and 1 log2FC. d) Barplot of the overall global protein counts that pass a 1.0% FDR cutoff for
the compared methods. e) Barplot of the percent of missing values in the dataset for proteins that
pass a 1.0% FDR cutoff for the compared methods. f) Barplot of the number of differentially abundant
proteins that pass a 1.0% FDR cutoff for the compared methods.

2.4.2 Discovery DIA in plasma proteomics

To provide biological context, and to show the benefit of using full-tissue libraries in discovery DIA
proteomics, we reanalyzed the 141 blood plasma samples using the optimized PHL with an iterative
retention time alignment workflow described in the methods. Differential expression was performed
between the 2 subphenotypes to identify potential proteins that could act as differentiating markers in
stratifying AKI subtypes in sepsis. Using this optimized PHL and workflow we were able to detect 1205
proteins overall (a 56.90% increase compared to the standard PHL), 170 differentially abundant proteins
(adjusted p-value j 0.1), and 651 potentially differentially abundant proteins (proteins found in at least 2
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samples per group). In Figure we can see the overall distribution of differentially abundant proteins
in the dataset.

2.4.3 Machine learning aided differential expression

Utilizing the boosted number of potential marker proteins detected with the optimized PHL, we wanted to
investigate the potential to train a machine learning model to differentiate between the 2 subphenotypes of
AKI mentioned above, interpret the importance of each protein in the model, and use this interpretation
to guide the selection of interesting proteins for further study. Using 10-fold cross validation we trained
a Random Forest classifier which resulted in a mean accuracy of 0.84 (0.12 standard deviation). To
quantitatively understand the importance of each protein used in the model as a feature we leveraged
the explainable machine intelligence algorithms in the SHAP python package[35]. From the trained
model, we calculated the SHAP values for each protein and have visualized the top 20 proteins with the
greatest mean importance (Figure ) Using these top 20 proteins we performed an average hierarchical
clustering with correlation similarity using a maximum of 2 groups and saw that the subphenotypes
clustered together with 76% accuracy (0.76 Rand score) and we could easily visualize a clear separation
of the 2 groups (Figure ) For the purposes of the visualization, we capped the normalized protein
abundances at -1.0 and 1.0. Additionally, we annotated the volcano plot in Figure to showcase that
the top 20 most important proteins in differentiating between the 2 subtypes using the trained random
forest model would not pass the arbitrary canonical cutoffs used to identify interesting differentially
expressed proteins. In Figure B we plot these top 20 selected proteins to visualize their abundances
across the 2 subphenotypes.

3 Discussion

With the implementation of our new methods, we show an increase in the precision of quantification,
while also increasing the number of identifications when compared to the established methods. We were
also able to demonstrate how these established methods can suffer when the spectral library search space
is too large and does not match the sample, while GPS is able to score data in this scenario in a stable
manner. These combined improvements allow for the deep and in-depth analysis of plasma proteome
samples using repository scale spectral libraries to boost the power of discovery DIA experiments.

3.1 Benchmark comparison with existing methods

PyProphet and Percolator both use a semi-supervised learning technique to train on a particular data
set by identifying new true targets every iteration and re-training until the number of peakgroups that
pass a g-value threshold no longer increase. This type of method can provide great results on individual
experiments, particularly by increasing the number of identifications, as it maximizes the local number of
targets that are validated at the end, but could potentially introduce false positives that are elucidated
only when analyzing the precision of the quantitative accuracy on known spiked-in proteins. It has also
been observed that these semi-supervised methods can struggle when the number of samples analyzed
is relatively low (low-n) [I7] or when the spectral library used contains substantially more proteins than
it is possible to find in the sample (Figure [4). To minimize these issues, we looked to leverage one of
the core strengths of machine learning algorithms by training a generalizable model on a diverse dataset
that can accurately separate true targets from false targets independent of the search space size. Since
it is difficult to directly quantify the performance of new computational methods based on individual
metrics, we created a species mixture data set of known ratios of yeast peptides spiked in to a constant
mouse kidney proteome background. This allows us to evaluate the efficiency of different peakgroup
validation methods and compare them directly based on the number of identifications and the accuracy
of quantification based on how close the produced quantitative values are to their expected ratios. We
demonstrate here that the optimized GPS model outperforms existing methods based on the number of
global identifications because the performance of GPS is not hindered by the specificity of the samples
being analyzed since we trained the generalizable model on millions of extracted peakgroups from an
external dataset. We also demonstrate a boost in accuracy and precision of quantification due to the
automated curation of the training data to ensure only true peakgroups are included when building the
model without over-fitting on experiment specific data. These performance improvements suggest that
generalized scoring models can be leveraged in diverse experiment types to provide boost identification
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Figure 5: a-c) Volcano plots for the differential abundant proteins analyzed with the optimized PHL
library. Red corresponds to proteins upregulated in subphenotype 2 and blue corresponds to proteins
upregulated in subphenotype 1. The labeled proteins correspond to the top 20 most important proteins
found that differentiate between subphenotypes with a Random Forest model. It is worth noting that
many of the most important proteins do not fall outside of the arbitrary cutoffs commonly used to identify
proteins of interest in biomarker studies. b) Violin plots of the SHAP scores for the top 20 proteins
indicated in Figurd5A. A red color indicates a higher abundance for a protein and a blue color indicates
a lower abundance for a protein. SHAP scores greater than 0.0 on the x-axis indicate features that
drive classification towards subphenotype 2 and scores less than 0.0 indicate protein values that drive
classification towards subphenotype 1. ¢) Heatmap and cluster analysis of the top 20 proteins identified
using SHAP scores from the Random Forest model. There is a clear grouping of the subphenotypes
(0.76 accuracy), and 2 main clusters of proteins, the first indicating proteins of lower abundance in
subphenotype 2 and the second of higher abundance in subphenotype 2. d) Box plots of the abundance
of the top 20 selected proteins compared between subphenotypes. It is interesting to see that many of the
proteins do not have clear separation of the means between the groups, but are still distinctly important
in classifying between subphenotypes.

10


https://doi.org/10.1101/2022.11.03.515031
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.03.515031; this version posted November 4, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

numbers and quantitative accuracy without the need to train new models for each experiment. Ad-
ditionally, there is no need to optimize hyperparameters to squeeze the best performance out of GPS,
as the generalized model will score peakgroups accurately in a stable manner no matter the conditions
of the data. Existing methods can be optimized in different conditions, but a meticulous optimization
of hyperparameters is required. This non-trivial time consuming parameter optimization task can be
avoided completely by implementing peakgroup scoring with generalizable models such as with GPS.

3.2 PIT estimation

PIT estimation has become an established method to boost the number of identifications that pass
through at a given FDR cutoff in mass spectrometry proteomics. However, predicting this percentage
of false targets is computationally difficult, as it is unknown which targets are in fact false, or where
to split the target distribution to estimate pi0. Existing methods use certain heuristics to estimate
pi0 by calculating the difference between the decoy counts and target counts at certain score cutoffs
[27], or provide naive counts based on the number of targets below a 1.0% FDR, but this can lead to
inaccurate results depending on the shapes of the score distributions. To accurately estimate pi0, we
leveraged the ensemble denoising algorithm used to filter the training data for the high precision GPS
model. By measuring the number of targets below a 100% vote percentage we can accurately model the
false target distribution and use it to down-weight the decoy counts when calculating g-values. This can
considerably increase the number of identifications that pass at certain thresholds, especially in large
search space scenarios (ie. respository scale spectral library searches). It is possible to underestimate
or overestimate pi0 by changing the probability thresholds of the denoising classifier, and these can be
leveraged in different situations depending on the goal of the particular experiment. The implications
of false target prediction goes beyond the downweighting of decoys during g-value calculation, it also
opens up the possibility of decoy free scoring methods that utilize the predicted false target distributions
directly to calculate g-values. This could massively cut down the search space, particularly in discovery
DIA settings using repository scale or deep learning predicted libraries.

3.3 Boosted performance in library-sample size mismatches

In theory, it is particularly beneficial to search blood plasma samples with massive scale complex libraries
to delve deeper into the proteome as it could be possible to pick up and identify potential disease markers
missed in standard analysis, especially in the case of low abundant proteins. In practice, however, classic
peakgroup validation algorithms struggle when the true signal extracted with the library is much smaller
than the library itself, or when the library size is significantly larger than the amount of proteins contained
in the sample. For example, when a blood plasma sample is searched with a repository scale library
containing 500,000 precursors there may only be 15,000 identifiable precursors in the sample, so a massive
imbalance in search space is created. As seen in Figure [4] the existing semi-supervised algorithms can
struggle in these search space imbalances and lead to significantly less candidate differentially expressed
proteins being identified. One potential reason for this is that the library search space imbalance creates
a situation where the true target labels are extremely noisy, ie. only 3% of the target peakgroups
extracted by the library are true peakgroups. Semi-supervised methods attempt to get around this in
an iterative fashion using an algorithm where new targets are selected based on g-value cutoffs [50, [58].
When the true target to decoy ratio is so small, it is not guaranteed that a correct set of true targets
are picked up for training during the semi-supervised iteration, creating a massive imbalance in the ratio
of true training targets to false training targets. There are a few different ways to try and mitigate
training set imbalances, such as down-sampling the majority class, up-sampling the minority class [2],
which Percolator does, or by using the synthetic minority oversampling technique (SMOTE) where
synthetic training instances are created based on the distributions of features found in the minority
class [I5]. It is also possible to provide the class ratios to certain machine learning algorithms to ensure
that over-represented classes do not dominate the training loops. Unfortunately, these methods are not
implemented in all common peakgroup validation algorithms, so even though some may work effectively
in situations where the library size is very similar to the sample composition, they can still struggle in
situations as the library grows larger and larger compared to the sample. In the case of GPS, instead of
choosing to implement imbalanced learning methods to validate the data with sample specific classifiers
we chose to build a static classifier that leverages modern machine learning technologies and generalizes
to diverse sample and experiment types. In these cases, it is also extremely beneficial that there is no
need to optimize the parameters of GPS to get these results, it can realize these improvements out of
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the box.

3.4 Analysis of AKI samples in human plasma

Taking the algorithmic benefits of GPS into consideration, we decided to apply the new method to the
computationally difficult data set of AKI plasma samples described above to provide some biological
context. Using our 1205 globally identified proteins, and instead of selecting candidate proteins for fur-
ther analysis based on arbitrary g-value and log2 fold change cut offs, we trained a machine learning
model to differentiate between the 2 subphenotypes of AKI using the candidate differential proteins in
the dataset and then calculated the importance of each protein to the model during classification us-
ing SHAP values [35]. The high accuracy and separating power of this panel of 20 proteins indicates
that they would provide a good starting point for investigation as potential clinical markers. In fact,
many of these proteins have already been identified and studied as potential clinical sepsis markers or
markers for infection and inflammation [21), 44l [60] [16] 45} [36 [37, 67, [64, 10} 62} 23, O] 55} [0 25]. The
majority of the top 20 proteins were up-regulated in the more severe subphenotype 2. Some examples
which were higher in subphenotype 2 are the neutrophil-enriched NGAL (Neutrophil-gelatinase associ-
ated lipocalin), a previously described marker of severe AKI [60]; CD14 (Cluster of differentiation 14), a
marker of monocyte infiltration; serum acute phase protein LBP (Lipopolysaccharide binding protein);
neutrophil-specific DEF3 (Neutrophil defensin 3); and mitochondria specific MDHM (Malate dehydro-
genase, mitochondrial). Proteins that were downregulated in subphenotype were the liver-specific acute
phase protein ITIH-1, -2 (Inter-alpha-trypsin inhibitor heavy chain-1, -2)[56] and the albumin-like AFAM
(Afamin) whose levels are known to be lowered with increase in sepsis severity [33]. This panel could
further be expanded to any protein that has a significant weight in classifying the severity of AKI based
on a combination of SHAP values and differential expression analysis in an effort to identify novel disease
biomarkers.

These findings suggest that it is possible to identify potential sepsis markers in plasma samples and
accurately quantify them using repository scale spectral libraries and statistical validation with GPS.
These added benefits could significantly aid in the stratification of sepsis subphenotypes by allowing
for a deeper exploratory investigation of the plasma proteome on a systematic basis and the informed
data-driven selection of potential biomarkers for further validation. This approach would also generalize
to other biological conditions or diseases easily, providing a systematic method towards discovery DIA
for a wide range of experiment types.

4 Conclusion

We have proposed GPS as a method for the statistical validation of DIA mass spectrometry data, and
provided evidence that generalized scoring models can outperform dynamically trained models especially
in a large search space environment. GPS provides stable validation that leads to more accurate down-
stream quantification and provides evidence that sophisticated generalized scoring models can be used
in tandem with massive scale spectral libraries to support the development of discovery proteomics in
DIA mass spectrometry.

5 Methods

5.1 Datasets

Dataset MS Acquisition | N Samples | Technical Replicates Usage
HFX-SPD DIA 129 All Generalizable model training
Mouse-Yeast DDA 60 10 Spectral library generation
Mouse-Yeast DIA 60 10 GPS Benchmark
Mouse Kidney DIA 31 None Entrapment FDR, Analysis
AKI DIA 141 None Large Search Space Comparison
Optimized Library Analysis
ML Differential Expression
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5.1.1 GPS model training data: HFX-SPD

In order to provide a chromatographically diverse set of training data, we used a data set comprised of
129 different samples of 500ng Yeast tryptic digest (Promega) with varying gradient lengths (30, 45, 60,
90, 120 minutes) and acquired with DIA. This data set will be referred to as the HFX-SPD data set.

5.1.2 Spike-in data

We generated a spike-in dataset of known concentrations of Yeast tryptic digest peptides (Promega)
spiked in to a constant mouse kidney background. The mouse kidney material was obtained from the a
previous project [40]. All animal use and procedures were approved by the local Malmé/Lund Institu-
tional Animal Care and Use Committee, ethical permit number 03681-2019. C57BL/6 mice (Janvier, Le
Genest-Saint-Isle, France) were sacrificed, and kidneys were isolated into a tube containing DPBS and
silica beads (1 mm diameter, Techtum). The kidneys were then homogenized using MagNAlyser (Roche)
and stored at -80°C. Homogenates were then thawed and centrifuged at 10,000g for 10’ at 4°C. The
supernatant containing the soluble proteins was collected and protein content was estimated using BCA
(Pierce). 25ug of protein was taken for reduction, alkylation, digestion and C18 clean up, as described
below. A serial dilution series of yeast peptides (1X, 2X, 4X, 8X, 16X, 32X) was performed, and 10
technical replicates of each concentration were sampled for a total of 60 samples. Internal retention time
peptides were also added in to each sample. Each of the 60 samples were analyzed on the an Orbitrap
HF-X using both DDA and DIA.

5.1.3 Mouse kidney data

31 mouse kidney samples were selected from a previous study [40] to provide a base for the entrapment
FDR analysis. The samples are from the same study as the mouse kidney material used to prepare the
spike-in data, and follow the same ethical considerations and approvals (ethical permit number 03681-
2019), as well as sample preparation methods described above.

5.1.4 AKI data

AKI plasma samples used in the study belong to the FINNAKI study [48], a prospective, observational,
multicenter study evaluating development of AKI in ICU patients with sepsis and septic shock. AKI
was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) criteria based on
changes in serum creatinine[29]. 51% of the patients developed AKI within the first 5 days in the ICU,
with 30% diagnosed <12 hours from admission. Approximately 100 patients each developed stage 1, 2,
and 3 AKI. 91 patients received RRT and the 90-day mortality for AKI patients was 33.7%. 141 samples
were chosen for up to 5 time points from 23 acute kidney injury patients. The patients were from 2
distinct subphenotypes that were previously defined using a panel of clinical markers and latent class
analysis [61].

5.2 Mass spectrometry sample preparation and data acquisition
5.2.1 AKI sample preparation and analysis

141 samples were chosen for up to 5 time points from 23 acute kidney injury patients. All sample
preparation steps, including desalting and protein digestion, used the Agilent AssayMAP Bravo Platform
(Agilent Technologies, Inc.) per manufacture’s protocol. Each plasma sample was diluted 1:10 (100-mM
ammonium bicarbonate (AmBic); Sigma-Aldrich Co, St Louis, MO, USA), and 10 1 of each diluted plasma
sample were transferred to a 96-well plate (Greiner G650201) where 40 pL of 4 M urea (Sigma-Aldrich)
in 100 mM AmBic was manually added with a pipette for a final volume of 50 pL. The proteins were
reduced with 10 uL of 60 mM dithiothreitol (DTT, final concentration of 10 mM, Sigma-Aldrich) for one
hour at 37 °C followed by alkylation with 20 pL of 80 mM iodoacetamide (IAA, final concentration of 20
mM, Sigma-Aldrich) for 30 min in a dark at room temperature. The plasma samples were digested with
2 pg Lys-C (FUJIFILM Wako Chemicals U.S.A. Corporation) for five hours at room temperature and
further digested with 2pg trypsin (Sequencing Grade Modified, Promega, Madison, WI, USA) overnight
at room temperature [5]. The digestion was stopped by pipetting 20 nL of 10% trifluoroacetic acid (TFA,
Sigma-Aldrich) and the digested peptides were desalted on Bravo platform. To prime and equilibrate
the AssayMAP C18 cartridges (Agilent, PN: 5190-6532), 90% acetonitrile (ACN, Sigma-Aldrich) with
0.1% TFA and 0.1% TFA were used, respectively. The samples were loaded into the cartridges at the
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flow rate of 5 pL/min. The cartridges were washed with 0.1% TFA before the peptides were eluted with
80% ACN/0.1% TFA. The eluted peptides were dried in a SpeedVac (Concentrator plus Eppendorf) and
resuspended in 25 pL of 2% ACN/0.1% TFA. The peptide concentration was measured using the Pierce
Quantitative Colorimetric Peptide Assay (Thermo Fisher Scientific, Rockford, IL, USA). The samples,
10 pL, were diluted with 10 pL 2% ACN/0.1% TFA and spiked with synthetic iRT peptides (JPT Peptide
Technologies, GmbH, Berlin, Germany) before liquid chromatography-mass spectrometry (LC-MS/MS)
analysis.

5.2.2 All other sample preparations and analysis

All protein samples were denatured with 8M urea and reduced with 5 mM Tris(2-carboxyethyl)phosphine
hydrochloride, pH 7.0 for 45 min at 37 °C, and alkylated with 25 mM iodoacetamide (Sigma) for 30 min
followed by dilution with 100 mM ammonium bicarbonate to a final urea concentration below 1.5 M.
Proteins were digested by incubation with trypsin (1/100, w/w, Sequencing Grade Modified Trypsin,
Porcine; Promega) for at least 9 h at 37 °C. Digestion was stopped using 5% trifluoracetic acid (Sigma)
to pH 2 to 3. The peptides were cleaned up by C18 reversed-phase spin columns as per the manufac-
turer’s instructions (Silica C18 300 A Columns; Harvard Apparatus). Solvents were removed using a
vacuum concentrator (Genevac, miVac) and were resuspended in 50 pl HPLC-water (Fisher Chemical)
with 2% acetonitrile and 0.2% formic acid (Sigma).

Peptide analyses were performed on a Q Exactive HF-X mass spectrometer (Thermo Fisher Scientific)
connected to an EASY-nLC 1200 ultra-HPLC system (Thermo Fisher Scientific). Peptides were trapped
on precolumn (PepMap100 C18 3 pl; 75 pl x 2 cm; Thermo Fisher Scientific) and separated on an EASY-
Spray column (ES903, column temperature 45 °C; Thermo Fisher Scientific). Equilibrations of columns
and sample loading were performed per manufacturer’s guidelines. Mobile phases of solvent A (0.1%
formic acid), and solvent B (0.1% formic acid, 80% acetonitrile) was used to run a linear gradient from
5% to 38% over various gradient length times at a flow rate of 350 nl/min. The 44 variable windows
DIA acquisition method is described by Bruderer et al [[§]]. MS raw data was stored and managed
by openBIS (20.10.0) [[3]] and converted to centrioded indexed mzML files with ThermoRawFileParser
(1.3.1) [[241).

5.3 Spectral library creation
5.3.1 Experiment specific spike-in library

An experiment specific library for the spike-in data was built by analyzing the samples acquired using
DDA using FragPipe (v18.0). First the samples were searched using MSFragger (v3.5) [30] with default
parameters using a fasta file of Swiss-prot reviewed saccharomyces cerevisiae and mus musculus proteomes
concatenated with reverse sequence decoy proteins. Peptide spectrum matches (PSMs) were validated
using Percolator[58]. The Philosopher toolkit (v4.4.0) was used to perform protein level FDR control with
ProteinProphet, generate downstream reports, and filter the resulting identifications[34]. The python
package easypqp was then used to convert and format the library for use by OpenSwath and the OpenMS
(2.6.0) tool chain for formatting PQP files was used to optimize the assays in the library [54]. 10 spiked-in
retention time peptides (iRT) were used for alignment and retention time correction for each sample.

5.3.2 Pan Human Library

The Pan Human Library [51] was downloaded in its original form and then converted to a PQP spectral
library using the OpenSwathAssayGenerator tool available from OpenMS [54].

5.3.3 Optimized Pan Human Library

To augment the PHL with additional identifications and correct the retention time to the experiment
at hand, we first searched the 141 AKI plasma samples using MSFragger-DIA (v3.5) [30, 57]. Using
the resulting set of identifications, shared precursors between the PHL and direct search were selected
for retention time alignment. LOWESS was first used to smooth the correlation between the direct
search results and the PHL and then an interpolated univariate spline function was fit on top of this to
adjust the retention time in the direct search to the scale of the PHL. The shared proteins between the
2 libraries were replaced in the PHL with proteins, and associated precursors, from the direct search,
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and the proteins not contained in the PHL were appended to the library. 10 spiked-in retention time
peptides (iRT) were used for alignment and retention time correction for each sample.

5.4 Refined OpenSwath analysis

We adapted the previously published DIAnRT workflow [I3] to optimize signal extraction at the sample
level before combining the analysis to control for the global FDR. To do this, a first iteration is performed
where sub-optimal retention time peptides are provided to align the experimental chromatograms to
the spectral library. The first pass of signal extraction is scored and validated, and then the highest
scoring peakgroups from a specified number of bins are selected and written out to a sample specific
retention time library. This sample specific retention time library is used to align and correct the
retention time to the spectral library with more stringent parameters in a second pass. Again, the
second pass analysis is scored and validated and the highest scoring peakgroups for a specified number
of bins are extracted and used as sample specific retention time libraries for a final pass. The final
pass uses these sample specific retention time libraries to additionally correct mz and rentention time
in an even more stringent manner. These final validated peakgroups are then used to infer peptide
and proteins in a global manner to control for FDR and are finally combined in an output matrix
that can be analyzed using the DPKS package mentioned above. Software to perform the sample specific
retention time library extraction can be found in combination with the GPS python package and complete
snakemake workflows and corresponding command line options for the different tools used can be found
at (https://github.com/InfectionMedicineProteomics/gscore).

5.5 GPS
5.5.1 Implementation

GPS is a Python library and command line utility for the generalized statistical validation of peakgroups.
The source can be found here (https://github.com/InfectionMedicineProteomics/gscore). GPS
leverages the package numpy [22] for efficient processing of numerical data, scikit-learn, sklearn and
xgboost for implementing machine learning algorithms, and numba [32] for its just-in-time (JIT) com-
pilation that compiles Python to machine code for optimization in performance critical areas of the
library.

5.5.2 Denoising algorithm

The denoising algorithm used to filter the HFX-SPD training set and predict the false target distribution
for PIT correction is based on the concept of bagging from machine learning[7]. The data to be analyzed
is first split into k number of folds (default is 10, and what is used throughout the study). Each fold
is scored by training an ensemble of n logistic regression classifiers (default is 10, and what is used
throughout the study) using stochastic gradient descent [53]) on data that is randomly sampled with
replacement from the data left out of the selected k-fold. The ensemble of classifiers is then used to score
the k-fold data, providing an average target probability for each peakgroup if the fold, and voting on
each peakgroup to determine the vote percentage. A vote is considered a positive vote if the predicted
probability for the individual classifier in the ensemble exceeds a threshold.

5.5.3 Filtering training data

In an attempt to remove the noisy labels from the training dataset, the denoising algorithm described
above was used to calculate a vote percentage for each peakgroup. If the calculated vote percentage was
100% then the peakgroup was kept as a true target. The probability to accept a positive vote was set at
0.75 to more strictly filter out potential false positives at the risk of losing some true identifications in
the dataset. The negative training set, the decoy peakgroups, remained unfiltered.

5.5.4 PIT Estimation

To estimate the PIT, the denoising algorithm was used to calculate the vote percentage for each peak-
group in the dataset, where only the top scoring peakgroup was kept per precursor. For Figurd3| 0.75
was the probability threshold for a positive vote, and all peakgroups below a 100% vote percentage are
considered false targets. The PIT is calculated by then dividing the number of false targets by the
number of decoys.
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For global PIT calculations on the peptide and protein level, the PIT is estimated by counting the
number of peptides or proteins below a 1% FDR cutoff and then dividing that by the number of decoys.

5.5.5 Peakgroup scoring and g-value calculation

The algorithm used to score each peakgroup in GPS is very straightforward. The peakgroups and their
associated sub-scores are read in and parsed into a data structure that maps each scored peakgroup
to the potential precursor. All of the peakgroups are scored using the filtered model trained above.
Each peakgroup is additionally ran through the denoising algorithm to provide the needed scores to
estimate the PIT. After scoring, the top ranked peakgroup for each precursor is selected to represent
that precursor and the PIT is estimated. Q-values are calculated using an implementation of the qvality
algorithm[28], where an interpolated spline is fit to the distributions of the target and decoy scores. A
g-value for a particular peakgroup is calculated by first integrating the area under the curve of the decoy
distribution from that particular score to the max and multiplying it by the PIT to get the decoy counts
at a particular score threshold. The target counts are then obtained by integrating the area under the
curve of the target distribution from that particular score to the max. Finally, the decoy counts are
divided by the target counts plus the decoy counts to calculate a g-value, which can be used to filter
for a given FDR. The highest scoring peakgroup for each precursor and the corresponding scores and
g-value are written out to a file for downstream processing.

5.5.6 Global FDR control

Global FDR control is implemented in a similar manner to PyProphet[50], where all scored samples
in an experiment are aggregated and the highest scoring precursor is selected to represent either the
peptide or the protein at the desired level. Once the highest scoring precursors are selected, g-values are
estimated using the method described above and PIT corrected using the global PIT correction method.
The resulting scoring models are exported as serialized Python objects that can then easily be used from
the command line by GPS to export an annotated quantitative matrix.

5.5.7 Quantitative matrix export

GPS can aggregate all scored samples, and the global peptide and protein models, into a quantitative
matrix for downstream analysis. Each sample is read in to a data structure that filters the samples in the
precursor based on their individual g-values. Once all samples have been parsed, they are annotated with
their global peptide and protein level g-values using the score distribution objects that were previously
built. The resulting annotated quantitative matrix is then written out for downstream analysis by the
tool of your choosing.

5.6 Downstream statistical analysis

All down stream analysis was performed using the Data Processing Kitchen Sink (DPKS) Python package
for general purpose data processing of mass spectrometry proteomics data. (https://github.com/
InfectionMedicineProteomics/DPKS)

For all datasets, a retention time-mean sliding window normalization method was used based on the
implementation in the NormalyzerDE R package [63]. Proteins were quantified for the AKI analysis
using an implementation of the iQ) relative quantification algorithm [46] (also known as MaxLFQ[12]).
Differential expression was preformed using linear models, at the precursor level for the spike-in analysis
and protein level for the AKI analysis. Multiple testing correction was performed using the Benjamini-
Hochberg method [4].

All of these methods, including other options, are available in the DPKS package.

5.6.1 Machine learning enhanced differential expression

In order to provide context and a ranking to the differentially expressed proteins, we trained a Random
Forest Classifier (RFC) using the potentially differentially abundant proteins to classify between the
subphenotypes in the AKI analysis. Missing values in the quantitative matrix were first imputed with
zero values, as it is assumed if the protein was not quantified and identified that it is not in the sample.
The protein quantities are then scaled to remove the mean and scale to unit variance. The model was
evaluated using 10-fold cross validation to provide mean accuracy and confusion matrices. We used the
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SHAP[35] python package to then calculate the relative importance of each protein in differentiating
between the subphenotypes of AKI. It was then possible to rank the differentially expressed proteins by
their relative importance instead of setting arbitrary p-value and log2FC cutoffs to identify proteins for
further investigation.
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