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Abstract

Despite their involvement in many cognitive functions, beta oscillations are among the
least understood brain rhythms. Reports on whether the functional role of beta is primarily
inhibitory or excitatory have been contradictory. Our framework attempts to reconcile
these findings and proposes that several beta rhythms co-exist at different frequencies.
Beta frequency shifts and their potential influence on behavior have thus far received little
attention. In this magnetoencephalography experiment, we asked whether changes in
beta power or frequency in auditory cortex and motor cortex influence behavior (reaction
times) during an auditory sweep discrimination task. We found that in motor cortex,
increased beta power slowed down responses, while in auditory cortex, increased beta
frequency slowed down responses. We further characterized beta as transient burst
events with distinct spectro-temporal profiles influencing reaction times. Finally, we found
that increased motor-to-auditory beta connectivity also slowed down responses. In sum,
beta power, frequency, bursting properties, cortical focus, and connectivity profile all
influenced behavioral outcomes. Our results imply that the study of beta oscillations
requires caution as beta dynamics are multifaceted phenomena, and that several
dynamics must be taken into account to reconcile mixed findings in the literature.
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Introduction

Beta rhythms (~13-30 Hz) are traditionally associated with the sensorimotor system
where they are prominent (Pfurtscheller and Lopes da Silva, 1999). Beyond this
sensorimotor role, beta has been implicated in a wide range of cognitive phenomena
including visual perception (Piantoni et al., 2010; Kloosterman et al., 2015), language
processing (Weiss and Mueller, 2012), working memory (Axmacher et al., 2008; Siegel
et al., 2009), long-term memory (Hanslmayr et al., 2016), decision-making (Wimmer et
al., 2016; Wong et al., 2016), and reward processing (Marco-Pallarés et al., 2015). In
non-human primates, beta was shown to reflect top-down attention (Buschman and Miller,
2007), and in rodents beta was linked to working memory (Parnaudeau et al., 2013;
Bolkan et al., 2017). However, the functional role of beta is still unclear (Engel and Fries,
2010; Kilavik et al., 2012), as some studies report decreased beta with task engagement,
suggesting an inhibitory function, while others report the opposite (Kornblith et al., 2016),
suggesting an excitatory function. Similarly, on the neural level, there have been mixed
and contradictory findings on the relationship between beta and other neural measures
such as firing rate (Rule et al., 2017) and BOLD activity (HansImayr et al., 2011).

Current accounts of beta mechanism and function have tried to reconcile these findings
(Engel and Fries, 2010; Spitzer and Haegens, 2017). One account states that beta-band
activity is related to the maintenance of the current sensorimotor or cognitive state via a
top-down mechanism (Engel and Fries, 2010). Our account suggests that beta-band
activity is involved in (re)activating latent sensorimotor and cognitive states (Spitzer and
Haegens, 2017). We further propose that several beta rhythms co-exist, including
functionally inhibitory beta as predominantly observed in sensorimotor regions, and
functionally excitatory beta as observed throughout cortex. These different beta rhythms
possibly operate at different frequencies (Spitzer and Haegens, 2017). At the
neurophysiological level, we posit that while beta events are likely excitatory in nature,
there are several biologically plausible ways they could lead to functional inhibition, for
example by activating inhibitory neurons or saturating excitatory neurons (Shin et al.,
2017; Spitzer and Haegens, 2017).

Beta activity has been characterized and modeled as transient, high-amplitude events or
‘bursts’, which can be detected at the single-trial level (Lundqvist et al., 2016; Sherman
et al., 2016). Beta bursts have been observed both focally (Bonaiuto et al., 2021) and as
part of long-range communication between brain regions, where beta-band synchrony is
assumed to facilitate inter-areal connectivity (Seedat et al., 2020). One property of beta
that has received little attention is instantaneous variability in its peak frequency (Cohen,
2014). Here we asked how frequency shifts within the beta band influence behavior.
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The influence of beta on behavioral outcomes might depend on several factors such as
beta power, frequency, bursting properties, cortical focus, and connectivity profile. In the
current experiment we investigated the relationship between single-trial beta activity and
behavior, specifically reaction times. Since analyzing neural activity in a pre-stimulus or
pre-target interval is a convenient method to uncover the influence of ongoing neural
activity on subsequent behavior (Rassi et al., 2019), we made use of
magnetoencephalography (MEG) data recorded during an auditory sweep discrimination
task. To test how the various characteristics of beta relate to behavior, we analyzed
reaction times as a function of pre-target beta differences in power, shifts in frequency,
and bursting profiles, within and between motor and auditory cortices.

Methods

Participants

We recorded MEG in 35 adult participants, 28 of which we included in our analyses
(22 female; mean age = 22.86 years, SD = 2.84; 3 participants excluded due to
excessively noisy MEG data and 4 due to near-chance performance on the task). The
study was approved by the local ethics committee (CMO Arnhem-Nijmegen). All
participants gave informed consent before the experiment and were given monetary
compensation for their participation.

Auditory target discrimination task

The auditory target discrimination task consisted of 5 rhythmic blocks and 5 non-
rhythmic blocks (60 trials per block). The order of the blocks was randomized. In the
rhythmic blocks, four cue tones were presented, separated by 0.5 s. Following the
rhythmic cue, a target tone was presented at 0.5, 1, 1.5 or 2 s (80% of trials) or at .75,
1.25, 1.75 s (20% of trials) after the onset of the last cue tone. In the non-rhythmic blocks,
the cue tone was presented continuously for a period of 1.5 s, followed by a target that
was presented with a flat probability distribution within a window of 0.5 to 2 s after cue
offset. The task for the participant was to determine whether the target tone (a 40-ms
chirp) went up or down in pitch. As we had previously shown the experimental cueing
manipulation not to produce behaviorally different effects (Wilsch et al., 2020; Lin et al.,
2021), here we pooled all trial types (Figure 1a).
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Figure 1. Trial sequence and region of interest definition. a) After a variable
baseline delay (1-2 s), an auditory cue lasting 1.5 s played, followed by a variable
pre-target delay (0.5-2 s). This pre-target delay was our analysis window. After
target onset, participants responded as fast as possible, indicating via button press
whether the target tone shifted upward or downward in pitch. b) Regions of interest
(ROI) were defined as the source location with maximum evoked activation vs.
baseline, based on the evoked response to the auditory cue for the auditory cortex
ROI (left panel) and based on the evoked response to the button press for the
motor cortex ROI (right). Showing source reconstruction for one representative
subject (with a 95%-maximum activity threshold applied for illustrative purposes).

Stimuli

The cue tones had a pitch frequency of 400 Hz, a sample rate of 44,100 Hz, and
a duration of 40 ms (rhythmic blocks) or 1.5 s (non-rhythmic blocks). We used a Hanning
taper to remove sharp edges. The target tone consisted of 30 different frequencies
randomly drawn from within 500 to 1500 Hz. The target was a frequency-modulated
sweep created with the Matlab function chirp and was either increasing or decreasing in
pitch. The sound had a 10-ms cosine ramp fading in and fading out to avoid onset and
offset click perception. The resulting target tone had a sample rate of 44,100 Hz and a
duration of 40 ms.

We normalized all sounds (using peak normalization) to the same sound pressure
level. We individually adjusted target stimuli to participants’ discrimination threshold,
using a custom adaptive-tracking procedure aiming for a discrimination performance
between 65 and 85% correct responses. The threshold was the slope of the pitch increase
and decrease, measured as the range from lowest to highest frequency (starting point to
end). We presented each participant with a pair of sounds (“up” and “down”) consisting
of the a priori randomly generated frequencies, modulated depending on their individual
threshold; i.e., the 30 base-frequencies were the same for each participant, with the
participant’s individual threshold changing the start and end frequencies of the sounds.
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Data acquisition

Whole-head MEG data were recorded at a 1,200-Hz sampling rate with a 275-
channel CTF MEG system with axial gradiometers (CTF MEG Systems, VSM MedTech
Ltd.) in a magnetically shielded room. To monitor the participants’ head movements online
and for offline co-registration of anatomical landmarks, three fiducial coils were placed at
the nasion and both ear canals. Anatomical MRI scans for source localization purposes
were obtained in a separate session.

MEG preprocessing

We processed the MEG data offline with the Fieldtrip toolbox (Oostenveld et al.,
2011). First, we down-sampled the data to a sampling frequency of 300 Hz. We then
applied a notch filter at 50 Hz to remove line noise. Next, we segmented trials into 6-s
segments starting 1 s prior to cue onset. We rejected bad channels (~5%) and bad trials
(~10%) via visual inspection before independent component analysis, which was used to
remove components representing eye blinks and heartbeats.

MEG source reconstruction

We used the obob ownft toolbox for source reconstruction
(https://gitlab.com/obob/obob_ownft). In order to model virtual sensors at the locations of
maximum evoked activity in both the auditory and motor sources in the right and left
hemispheres respectively, we used a linearly constrained minimum variance (LCMV)
beamformer approach (Van Veen et al., 1997). We first constructed volume conduction
models of the participants’ brains using a single-shell model of their individual anatomical
scans (Nolte, 2003), which we then used to compute leadfields for each gridpoint. Using
these leadfields, we computed common spatial filters for each participant using time
windows that included a baseline period and the evoked responses.

For the auditory source, we used a time window of 100 ms centered at the peak of
the individual auditory evoked response, time-locked to the onset of the auditory cue, and
a 100-ms baseline window prior to cue onset. For the motor source, we used an activation
time window of 100 ms centered at the peak of the individual motor response, time-locked
to the button press, and a 100-ms baseline window prior to the activation window). We
then normalized the difference of the sources of the pre and post windows and projected
onto their co-registered anatomical scans (Figure 1b). For visualization, we normalized
each participant’s brain to Montreal Neurological Institute space. We then identified the
location of maximum pre vs. post differences in auditory and motor sources in the right
and left hemispheres, respectively. Using the spatial filters for these positions, we then
extracted the time series for these two virtual channels.
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Data analysis

We performed all further data analysis using the Fieldtrip toolbox (Oostenveld et
al., 2011) and custom Matlab code. We time-locked the source-reconstructed signals
from auditory and motor cortices to the onset of the target tones and analyzed a 700-ms
pre-target interval. To counteract the 1/f effect in the data, we took the derivative of the
time-series data. Note that whether or not we removed the 1/f component had no
influence on any of our results. However, beta activity in the resulting flattened spectra
was more visually salient, so we used those for visualization.

Spectral power

To compare pre-target beta power with baseline (i.e., the pre-cue period) activity,
and to test the relationship between reaction times and beta power, we extracted 700 ms
of pre-cue and pre-target data and computed single-trial Fourier spectra (0-30 Hz) with a
fast Fourier approach and a Hanning taper, padded to 2 s for a frequency resolution of
0.5 Hz. We log-transformed the single-trial power data and extracted power in the beta
frequency range (13—-30 Hz). For the reaction time contrast, we split the pre-target data
along the median reaction time, and averaged the power spectra for faster and slower
reaction times. We tested for group-level differences in both contrasts with a cluster-
based permutation approach (Maris and Oostenveld, 2007), clustering across beta
frequencies.

For time-resolved analyses, we performed time-frequency transformation based
on multiplication in the frequency domain, using a sliding time window of 250 ms in steps
of 20 ms from -750 ms to +250 ms relative to target onset, in steps of 0.5 Hz between 13
and 30 Hz. We then averaged power within this window to obtain a per-region
normalization factor and divided each time-frequency point by that factor. Finally, we
averaged across the frequency dimension within the beta band and extracted single-trial
beta time-courses for the 700-ms pre-target window.

To test the relationship between the beta time-course and reaction time, we z-
scored the power values and reaction times, removed those with z-values above 3 and
below -3, and used linear regression (Reaction Time = Beta power * slope + intercept),
relating each single-trial, pre-target time-point of beta power with the subsequent reaction
time on that trial. This provided a time-course of regression slopes per participant. We
then generated time-courses of slopes obtained by randomly shuffling the
correspondence between power values and reaction times, and tested for group-level
differences between the real and shuffled data with a cluster-based permutation approach
(Maris and Oostenveld, 2007), clustering across the time dimension (-700 to 0 ms).

Burst properties

To examine beta burst properties in the source-reconstructed signals, we used the
time-frequency representations as described above. We computed the mean and
standard deviation of power within a trial for each frequency, and marked the time-
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frequency points that exceeded two standard deviations above the mean and that lasted
at least the duration of one cycle (defined as 1/frequency). We zoomed in on the pre-cue
and pre-target delays, and based on temporal and spectral adjacency, we clustered the
marked time-frequency points into burst events. We then extracted six parameters of
interest from these burst events: For each trial, we counted the number of burst events.
Focusing on the event that contained the time-frequency point with the highest power, we
extracted the maximum power, the time-point with maximum power, the frequency with
maximum power, the frequency range, and the time range. This gave us single-trial
estimates of burst properties during the pre-cue and pre-target intervals.

To contrast pre-cue and pre-target burst properties at the group level, we used
paired t-tests. To examine the relationship between reaction times and burst properties,
we z-scored the burst properties in the pre-target interval and reaction times, and used
linear regression analysis to relate them. To test for group-level relationships, we used
paired t-tests contrasting the regression slopes against a shuffled distribution.

Instantaneous frequency

To investigate the time course of the peak beta frequency in the source-
reconstructed signals, we analyzed instantaneous frequency as detailed by Cohen
(Cohen, 2014). Briefly, we band-passed the single-trial data within the beta frequency
range, applied the Hilbert transform, extracted the phase angle time series, took the
temporal derivative, and applied ten median filters. This resulted in single-trial time-series
of instantaneous frequency during the pre-target interval. To relate those to reaction
times, we used the same regression approach detailed above (in Methods, Spectral
power) to obtain a time-course of regression slopes, and tested them at the group level
with a cluster-based permutation approach.

To test the relationship between reaction time and peak frequencies in the power
spectra, we averaged power spectra separately for slower and faster trials (based on
median split), and detected the peaks of maximum power within the beta range. We then
contrasted the peaks at the group level with a paired t-test.

Connectivity

To estimate the connectivity between auditory and motor cortices, we used the
Fourier coefficients that we obtained in the spectral power analysis. As connectivity
measures are not resolved on single-trials, we estimated them after splitting the data
along the median reaction time. We computed the pairwise phase consistency (Vinck et
al., 2010), a bias-free method of rhythmic synchronization. We also computed bi-variate,
nonparametric Granger causality (Dhamala et al., 2008a, 2008b), which gave us separate
estimates of the connection strengths from motor to auditory cortex and vice versa. We
finally contrasted slower vs. faster trials on the group level with a cluster-based
permutation approach, clustering across the beta band.
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Figure 2. Beta dynamics. a) Power spectra in motor cortex during the pre-target
vs. pre-cue delays. b) Instantaneous beta frequency in motor cortex during the pre-
target vs. pre-cue delays. c) Beta burst properties in motor cortex during the pre-
target vs. pre-cue delays: frequency range, time range, timing relative to target
onset, peak amplitude, number of events, and peak frequency. d,e,f) Same as
(a,b,c) for auditory cortex. Shaded regions around the line graphs represent the
standard error of the mean. Horizontal dotted lines represent significant clusters
(p<.05). Spectra in (a) and (d) were detrended by removing 1/f slope. Note that in
(b) and (e), the vertical dotted lines corresponding to time-point zero represent the
cue onset for the pre-cue time courses (blue) and target onset for the pre-target
time courses (red). Asterisks in (c) and (f) represent significant differences
between distributions.
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Pre-target vs pre-cue power, frequency, and burst properties

First, we examined pre-target beta properties in relation to a baseline (i.e., pre-
cue) interval (Figure 2). We found that in both motor and auditory cortex, beta power
decreased while beta frequency increased from baseline to pre-target interval.

In motor cortex, we observed the pre-target power decrease across the whole
range of beta frequencies (Figure 2a; cluster-based permutation test across frequencies
13 to 30 Hz; p=1e-5), and the upward shift in beta frequency across the whole interval
(Figure 2b; cluster-based permutation test across time -700 to 0 ms; p=2e-4).
Consistently, there were fewer bursts (1(27)=-5.8, p=3.4e-6), with narrower time spans
(t(27)=-9.8, p=2e-10) and narrower frequency spans (t(27)=-12.3, p=1.4e-12), and the
peak burst frequency was also increased (1(27)=5.8, p=3.7e-6) during the pre-target delay
as compared to baseline (Figure 2c). In addition, bursts in motor cortex happened closer
in time to target onset than they did to cue onset (1(28)=2.8, p=.009). There were no
differences in the maximum power of the bursts.

In auditory cortex, we observed the pre-target beta power decrease primarily in the
14.5 to 17 Hz range (Figure 2d; p=.019), and the upward shift in beta frequency primarily
from 210 to 75 ms prior to target onset (Figure 2e; p=.039). However, there were more
bursts (t(27)=5.3, p=1.3e-5) with wider time spans (t(27)=5.7, p=5e-6) and wider
frequency spans (1(27)=6.0, p=1.9e-6) during the pre-target delay as compared to
baseline (Figure 2f). Note that while a power decrease seems inconsistent with more
bursts, the power decrease occurred at frequencies lower than the frequencies at which
bursts occurred (i.e., 14.5 to 17 Hz vs. ~22 Hz), and lower than peak beta frequency
(which was at 20 Hz based on peak detection, or 22 Hz based on instantaneous frequency
analysis), making this decrease in power hard to interpret. There were no differences in
the maximum power of the bursts, their peak frequency, or their timing relative to stimulus
onset.

Next, we tested whether pre-target beta properties related to reaction times using
two complementary approaches: a median-split approach to relate beta measures to slow
vs. fast reaction times, and a regression approach to relate single-trial beta measures to
reaction times. The two approaches yielded the same results: in motor cortex, slower
reaction times were related with higher beta power, while in auditory cortex, slower
reaction times were related with higher beta frequency.
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Figure 3. Relation between beta dynamics and reaction times. a) Power
spectra in motor cortex for trials with slow vs. fast reaction times. b) Time-resolved
beta power in motor cortex for trials with slow vs. fast reaction times. c) Regression
slopes for the relationship between reaction times and time-resolved beta power
in auditory cortex. d) Same as (a) for auditory cortex. e) Instantaneous beta
frequency in auditory cortex for trials with slow vs. fast reaction times. f) Regression
slopes for the relationship between reaction times and instantaneous frequency in
auditory cortex. Shaded regions around the line graphs represent the standard
error of the mean. Horizontal dotted lines represent significant clusters (p<.05).
Vertical dashed lines represent time-point zero (target onset). Spectra in (a) and
(d) were detrended by removing 1/f slope.

Spectral power

In motor cortex (Figure 3 a,b,c), slower reaction times were preceded by higher
beta power. Splitting the power spectra across the median reaction time revealed the
effect was driven by differences in the 20 to 26 Hz frequency range (Figure 3a; cluster-
based permutation test across frequencies: p=1e-5). This effect was present throughout
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the whole pre-target interval when looking at the time-resolved power envelopes (Figure
3b; cluster-based permutation test across time: p=6e-4). A time-resolved single-trial
regression approach confirmed this effect as well (Figure 3c; slope = 0.030; cluster-
corrected p=4e-4). To further characterize this difference, we zoomed in on the beta
bursting profile and found that slower reaction times were preceded by more bursts (slope
= 0.040; p = .0017) with wider time spans (slope = 0.037; p = .0277) and wider frequency
spans (slope = 0.039; p = .0143).

In auditory cortex, when splitting the data along the median reaction time and
contrasting the power spectra, we found an effect opposite to that observed in motor
cortex, such that faster reaction times were preceded by higher beta power (Figure 3d;
cluster-corrected p=.016), an effect driven by differences in the 17 to 19 Hz frequency
range. However, pre-target beta power was not related to reaction times when using the
time-resolved regression approach (slope = -0.008, no clusters). Given the discrepancy
in results between the two approaches, we further investigated the observed difference
in auditory cortex as a possible shift in peak frequency.

Beta frequency

In auditory cortex (Figure 3 d,e,f), slower reaction times were preceded by a higher
peak beta frequency when splitting the power spectra across the median reaction time
and detecting participants’ individual peak beta frequencies (t(24)=2.4, p=.0255). This
effect was most pronounced around 660 to 450 ms prior to target onset when looking at
instantaneous frequency (Figure 3e; cluster-based permutation test across time: p=.006).
A time-resolved single-trial regression approach confirmed the same result (Figure 3f;
slope = 0.011; cluster-corrected p=.032). When zooming in on the peak burst frequencies,
we found the same relationship again (slope = 0.029; t(27) = 2.45; p = .021). In motor
cortex, beta frequency was not related to reaction times (slope = -0.0052; no significant
clusters).

Connectivity

We then asked whether auditory-motor beta connectivity was related to reaction
times (using the median-split approach). Slower reaction times were preceded by
increased beta connectivity between auditory and motor cortices, as quantified with
pairwise phase consistency (p = .027). The difference was most prominent at frequencies
from 19 to 20 Hz (Figure 4a). We then used Granger causality to check the directionality
of this effect. There were no differences in auditory-to-motor beta connectivity (Figure 4b;
no significant clusters), but slower reaction times were preceded by increased motor-to-
auditory beta connectivity (p = .047), most prominently at frequencies from 20 to 21 Hz
(Figure 4c).
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Figure 4. Auditory-motor cortex connectivity. a) Pairwise phase consistency
between auditory and motor cortices for slow vs. fast reaction times. b) Granger
causality from auditory to motor cortex for slow vs. fast reaction times. c) Granger
causality from motor to auditory cortex for slow vs. fast reaction times. Shaded
regions around the line graphs represent the standard error of the mean. Dotted
lines represent significant clusters (p<.05).

Discussion

In an auditory target discrimination task, we sought to uncover the relationship
between reaction times and various characteristics of the beta rhythm. We found that
slower (as compared to faster) reaction times were preceded by increased beta power in
motor cortex, increased beta frequency in auditory cortex, and increased motor-to-
auditory connectivity in the beta range. The results were robust across our analysis
approaches. We used a regression approach to relate single-trial reaction times to beta
measures, as well as a median-split approach to relate slower vs. faster trials to changes
in beta measures, with both approaches yielding the same pattern of results. We further
analyzed beta activity separately in a time-resolved manner, a frequency-resolved
manner, and by characterizing its burst profile, with all approaches yielding the same
pattern of results.

An analysis of the burst properties of the increased beta activity prior to slower
responses revealed that this increased activity likely reflected an increased number of
pre-target bursts with wider time and frequency ranges. These results are in line with an
account of beta which is bursting in nature and inhibitory in function (Shin et al., 2017).
However, our power results in auditory cortex are at odds with this inhibitory function. At
the single-trial level, pre-target auditory beta power was not robustly related to reaction
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times. Based on this set of results, we conclude that the beta rhythm potentially serves
different functions in different cortical locations. The beta rhythms in motor and auditory
cortex differed not only in their impact on behavior, but also in their peak frequencies.
Although a crude distinction between ‘higher’ and ‘lower’ beta across cortical locations
has been previously made (e.g., Kopell et al., 2011), attempts to assign them different
functional roles have had mixed success (Spitzer and Haegens, 2017).

One aspect of beta rhythms (and cortical rhythms in general) that has so far
received little attention is the non-stationarity of their frequency across time. Models of
beta function account for the potential of different beta rhythms occurring at different
frequencies, assuming different cortical locations or different generators within a location.
But it is so far under-appreciated that a single rhythm can shift in frequency over time
(Cohen, 2014). Frequency shifts according to task demands have been observed in
human EEG/MEG data for the alpha rhythm (Haegens et al., 2014; Samaha and Postle,
2015; Wutz et al., 2018), and in non-human primate LFP data for the beta rhythm (Kilavik
et al., 2012). It has also been reported that slower alpha rhythms correlate with slower
responses across subjects (Surwillo, 1961), but to our knowledge the relationship
between beta frequency and reaction times has not yet been investigated. We here report
the opposite relationship for the beta rhythm, such that faster (auditory) beta correlated
with slower reaction times within subjects.

Beyond local beta dynamics, beta has also been shown to be involved in long-
range communication between cortical sites (Seedat et al., 2020). Here we found
increased beta connectivity between motor and auditory cortex, specifically in the
direction of motor to auditory cortex, prior to slower (vs. faster) responses. It is unlikely
that this effect was confounded by the power difference in motor cortex as we used a
phase-based connectivity measure, and in addition, there were no robust power
differences in auditory cortex. This finding is in line with the notion of covert active
sensing, where the motor system actively coordinates sensory systems (Schroeder et al.,
2010). Our effects can also be interpreted in light of the frequency-matching notion (Lowet
et al., 2017). That is, on trials with slow responses, the difference in peak frequencies
between auditory and motor cortex is reduced, resulting in stronger synchronization. This
interpretation is supported by our observation of stronger auditory-motor coupling on slow
trials (Figure 2).

Finally, our results imply that the analysis of beta oscillations requires caution as
beta dynamics are multifaceted phenomena. For example, it is possible that observed
power modulations are better explained as frequency shifts (as is the case for our results).
It is also possible that the beta rhythm serves different functions (i.e., inhibitory or
excitatory) depending on the cortical region where it is found or depending on whether it
is local or inter-areal. Future investigations could focus on inter-areal variability in beta
peak frequency, for example in intracranial human electrophysiological recordings.
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