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Abstract 

 

Despite their involvement in many cognitive functions, beta oscillations are among the 

least understood brain rhythms. Reports on whether the functional role of beta is primarily 

inhibitory or excitatory have been contradictory. Our framework attempts to reconcile 

these findings and proposes that several beta rhythms co-exist at different frequencies. 

Beta frequency shifts and their potential influence on behavior have thus far received little 

attention. In this magnetoencephalography experiment, we asked whether changes in 

beta power or frequency in auditory cortex and motor cortex influence behavior (reaction 

times) during an auditory sweep discrimination task. We found that in motor cortex, 

increased beta power slowed down responses, while in auditory cortex, increased beta 

frequency slowed down responses. We further characterized beta as transient burst 

events with distinct spectro-temporal profiles influencing reaction times. Finally, we found 

that increased motor-to-auditory beta connectivity also slowed down responses. In sum, 

beta power, frequency, bursting properties, cortical focus, and connectivity profile all 

influenced behavioral outcomes. Our results imply that the study of beta oscillations 

requires caution as beta dynamics are multifaceted phenomena, and that several 

dynamics must be taken into account to reconcile mixed findings in the literature. 
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Introduction 

 

Beta rhythms (~13-30 Hz) are traditionally associated with the sensorimotor system 

where they are prominent (Pfurtscheller and Lopes da Silva, 1999). Beyond this 

sensorimotor role, beta has been implicated in a wide range of cognitive phenomena 

including visual perception (Piantoni et al., 2010; Kloosterman et al., 2015), language 

processing (Weiss and Mueller, 2012), working memory (Axmacher et al., 2008; Siegel 

et al., 2009), long-term memory (Hanslmayr et al., 2016), decision-making (Wimmer et 

al., 2016; Wong et al., 2016), and reward processing (Marco-Pallarés et al., 2015). In 

non-human primates, beta was shown to reflect top-down attention (Buschman and Miller, 

2007), and in rodents beta was linked to working memory (Parnaudeau et al., 2013; 

Bolkan et al., 2017). However, the functional role of beta is still unclear (Engel and Fries, 

2010; Kilavik et al., 2012), as some studies report decreased beta with task engagement, 

suggesting an inhibitory function, while others report the opposite (Kornblith et al., 2016), 

suggesting an excitatory function. Similarly, on the neural level, there have been mixed 

and contradictory findings on the relationship between beta and other neural measures 

such as firing rate (Rule et al., 2017) and BOLD activity (Hanslmayr et al., 2011). 

 

Current accounts of beta mechanism and function have tried to reconcile these findings 

(Engel and Fries, 2010; Spitzer and Haegens, 2017). One account states that beta-band 

activity is related to the maintenance of the current sensorimotor or cognitive state via a 

top-down mechanism (Engel and Fries, 2010). Our account suggests that beta-band 

activity is involved in (re)activating latent sensorimotor and cognitive states (Spitzer and 

Haegens, 2017). We further propose that several beta rhythms co-exist, including 

functionally inhibitory beta as predominantly observed in sensorimotor regions, and 

functionally excitatory beta as observed throughout cortex. These different beta rhythms 

possibly operate at different frequencies (Spitzer and Haegens, 2017). At the 

neurophysiological level, we posit that while beta events are likely excitatory in nature, 

there are several biologically plausible ways they could lead to functional inhibition, for 

example by activating inhibitory neurons or saturating excitatory neurons (Shin et al., 

2017; Spitzer and Haegens, 2017).  

 

Beta activity has been characterized and modeled as transient, high-amplitude events or 

8bursts9, which can be detected at the single-trial level (Lundqvist et al., 2016; Sherman 

et al., 2016). Beta bursts have been observed both focally (Bonaiuto et al., 2021) and as 

part of long-range communication between brain regions, where beta-band synchrony is 

assumed to facilitate inter-areal connectivity (Seedat et al., 2020). One property of beta 

that has received little attention is instantaneous variability in its peak frequency (Cohen, 

2014). Here we asked how frequency shifts within the beta band influence behavior. 
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The influence of beta on behavioral outcomes might depend on several factors such as 

beta power, frequency, bursting properties, cortical focus, and connectivity profile. In the 

current experiment we investigated the relationship between single-trial beta activity and 

behavior, specifically reaction times. Since analyzing neural activity in a pre-stimulus or 

pre-target interval is a convenient method to uncover the influence of ongoing neural 

activity on subsequent behavior (Rassi et al., 2019), we made use of 

magnetoencephalography (MEG) data recorded during an auditory sweep discrimination 

task. To test how the various characteristics of beta relate to behavior, we analyzed 

reaction times as a function of pre-target beta differences in power, shifts in frequency, 

and bursting profiles, within and between motor and auditory cortices.  

 

Methods 

 

Participants 

We recorded MEG in 35 adult participants, 28 of which we included in our analyses 

(22 female; mean age = 22.86 years, SD = 2.84; 3 participants excluded due to 

excessively noisy MEG data and 4 due to near-chance performance on the task). The 

study was approved by the local ethics committee (CMO Arnhem-Nijmegen). All 

participants gave informed consent before the experiment and were given monetary 

compensation for their participation. 

 

Auditory target discrimination task 

The auditory target discrimination task consisted of 5 rhythmic blocks and 5 non-

rhythmic blocks (60 trials per block). The order of the blocks was randomized. In the 

rhythmic blocks, four cue tones were presented, separated by 0.5 s. Following the 

rhythmic cue, a target tone was presented at 0.5, 1, 1.5 or 2 s (80% of trials) or at .75, 

1.25, 1.75 s (20% of trials) after the onset of the last cue tone. In the non-rhythmic blocks, 

the cue tone was presented continuously for a period of 1.5 s, followed by a target that 

was presented with a flat probability distribution within a window of 0.5 to 2 s after cue 

offset. The task for the participant was to determine whether the target tone (a 40-ms 

chirp) went up or down in pitch. As we had previously shown the experimental cueing 

manipulation not to produce behaviorally different effects (Wilsch et al., 2020; Lin et al., 

2021), here we pooled all trial types (Figure 1a). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.03.515019doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.515019
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 1. Trial sequence and region of interest definition. a) After a variable 

baseline delay (1-2 s), an auditory cue lasting 1.5 s played, followed by a variable 

pre-target delay (0.5-2 s). This pre-target delay was our analysis window. After 

target onset, participants responded as fast as possible, indicating via button press 

whether the target tone shifted upward or downward in pitch. b) Regions of interest 

(ROI) were defined as the source location with maximum evoked activation vs. 

baseline, based on the evoked response to the auditory cue for the auditory cortex 

ROI (left panel) and based on the evoked response to the button press for the 

motor cortex ROI (right). Showing source reconstruction for one representative 

subject (with a 95%-maximum activity threshold applied for illustrative purposes). 

 

Stimuli 

The cue tones had a pitch frequency of 400 Hz, a sample rate of 44,100 Hz, and 

a duration of 40 ms (rhythmic blocks) or 1.5 s (non-rhythmic blocks). We used a Hanning 

taper to remove sharp edges. The target tone consisted of 30 different frequencies 

randomly drawn from within 500 to 1500 Hz. The target was a frequency-modulated 

sweep created with the Matlab function chirp and was either increasing or decreasing in 

pitch. The sound had a 10-ms cosine ramp fading in and fading out to avoid onset and 

offset click perception. The resulting target tone had a sample rate of 44,100 Hz and a 

duration of 40 ms. 

We normalized all sounds (using peak normalization) to the same sound pressure 

level. We individually adjusted target stimuli to participants9 discrimination threshold, 

using a custom adaptive-tracking procedure aiming for a discrimination performance 

between 65 and 85% correct responses. The threshold was the slope of the pitch increase 

and decrease, measured as the range from lowest to highest frequency (starting point to 

end). We presented each participant with a pair of sounds (<up= and <down=) consisting 

of the a priori randomly generated frequencies, modulated depending on their individual 

threshold; i.e., the 30 base-frequencies were the same for each participant, with the 

participant9s individual threshold changing the start and end frequencies of the sounds.  
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Data acquisition      

Whole-head MEG data were recorded at a 1,200-Hz sampling rate with a 275-

channel CTF MEG system with axial gradiometers (CTF MEG Systems, VSM MedTech 

Ltd.) in a magnetically shielded room. To monitor the participants9 head movements online 

and for offline co-registration of anatomical landmarks, three fiducial coils were placed at 

the nasion and both ear canals. Anatomical MRI scans for source localization purposes 

were obtained in a separate session.  

    

MEG preprocessing 

We processed the MEG data offline with the Fieldtrip toolbox (Oostenveld et al., 

2011). First, we down-sampled the data to a sampling frequency of 300 Hz. We then 

applied a notch filter at 50 Hz to remove line noise. Next, we segmented trials into 6-s 

segments starting 1 s prior to cue onset. We rejected bad channels (~5%) and bad trials 

(~10%) via visual inspection before independent component analysis, which was used to 

remove components representing eye blinks and heartbeats.  

    

MEG source reconstruction     

We used the obob_ownft toolbox for source reconstruction 

(https://gitlab.com/obob/obob_ownft). In order to model virtual sensors at the locations of 

maximum evoked activity in both the auditory and motor sources in the right and left 

hemispheres respectively, we used a linearly constrained minimum variance (LCMV) 

beamformer approach (Van Veen et al., 1997). We first constructed volume conduction 

models of the participants9 brains using a single-shell model of their individual anatomical 

scans (Nolte, 2003), which we then used to compute leadfields for each gridpoint. Using 

these leadfields, we computed common spatial filters for each participant using time 

windows that included a baseline period and the evoked responses.  

For the auditory source, we used a time window of 100 ms centered at the peak of 

the individual auditory evoked response, time-locked to the onset of the auditory cue, and 

a 100-ms baseline window prior to cue onset. For the motor source, we used an activation 

time window of 100 ms centered at the peak of the individual motor response, time-locked 

to the button press, and a 100-ms baseline window prior to the activation window). We 

then normalized the difference of the sources of the pre and post windows and projected 

onto their co-registered anatomical scans (Figure 1b). For visualization, we normalized 

each participant9s brain to Montreal Neurological Institute space. We then identified the 

location of maximum pre vs. post differences in auditory and motor sources in the right 

and left hemispheres, respectively. Using the spatial filters for these positions, we then 

extracted the time series for these two virtual channels. 
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Data analysis 

 We performed all further data analysis using the Fieldtrip toolbox (Oostenveld et 

al., 2011) and custom Matlab code. We time-locked the source-reconstructed signals 

from auditory and motor cortices to the onset of the target tones and analyzed a 700-ms 

pre-target interval. To counteract the 1/f effect in the data, we took the derivative of the 

time-series data. Note that whether or not we removed the 1/f component had no 

influence on any of our results. However, beta activity in the resulting flattened spectra 

was more visually salient, so we used those for visualization.  

Spectral power 

To compare pre-target beta power with baseline (i.e., the pre-cue period) activity, 

and to test the relationship between reaction times and beta power, we extracted 700 ms 

of pre-cue and pre-target data and computed single-trial Fourier spectra (0-30 Hz) with a 

fast Fourier approach and a Hanning taper, padded to 2 s for a frequency resolution of 

0.5 Hz. We log-transformed the single-trial power data and extracted power in the beta 

frequency range (13330 Hz). For the reaction time contrast, we split the pre-target data 

along the median reaction time, and averaged the power spectra for faster and slower 

reaction times. We tested for group-level differences in both contrasts with a cluster-

based permutation approach (Maris and Oostenveld, 2007), clustering across beta 

frequencies. 

For time-resolved analyses, we performed time-frequency transformation based 

on multiplication in the frequency domain, using a sliding time window of 250 ms in steps 

of 20 ms from -750 ms to +250 ms relative to target onset, in steps of 0.5 Hz between 13 

and 30 Hz. We then averaged power within this window to obtain a per-region 

normalization factor and divided each time-frequency point by that factor. Finally, we 

averaged across the frequency dimension within the beta band and extracted single-trial 

beta time-courses for the 700-ms pre-target window.  

To test the relationship between the beta time-course and reaction time, we z-

scored the power values and reaction times, removed those with z-values above 3 and 

below -3, and used linear regression (Reaction Time = Beta power * slope + intercept), 

relating each single-trial, pre-target time-point of beta power with the subsequent reaction 

time on that trial. This provided a time-course of regression slopes per participant. We 

then generated time-courses of slopes obtained by randomly shuffling the 

correspondence between power values and reaction times, and tested for group-level 

differences between the real and shuffled data with a cluster-based permutation approach 

(Maris and Oostenveld, 2007), clustering across the time dimension (-700 to 0 ms). 

 

Burst properties 

To examine beta burst properties in the source-reconstructed signals, we used the 

time-frequency representations as described above. We computed the mean and 

standard deviation of power within a trial for each frequency, and marked the time-
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frequency points that exceeded two standard deviations above the mean and that lasted 

at least the duration of one cycle (defined as 1/frequency). We zoomed in on the pre-cue 

and pre-target delays, and based on temporal and spectral adjacency, we clustered the 

marked time-frequency points into burst events. We then extracted six parameters of 

interest from these burst events: For each trial, we counted the number of burst events. 

Focusing on the event that contained the time-frequency point with the highest power, we 

extracted the maximum power, the time-point with maximum power, the frequency with 

maximum power, the frequency range, and the time range. This gave us single-trial 

estimates of burst properties during the pre-cue and pre-target intervals. 

To contrast pre-cue and pre-target burst properties at the group level, we used 

paired t-tests. To examine the relationship between reaction times and burst properties, 

we z-scored the burst properties in the pre-target interval and reaction times, and used 

linear regression analysis to relate them. To test for group-level relationships, we used 

paired t-tests contrasting the regression slopes against a shuffled distribution. 

 

Instantaneous frequency 

To investigate the time course of the peak beta frequency in the source-

reconstructed signals, we analyzed instantaneous frequency as detailed by Cohen 

(Cohen, 2014). Briefly, we band-passed the single-trial data within the beta frequency 

range, applied the Hilbert transform, extracted the phase angle time series, took the 

temporal derivative, and applied ten median filters. This resulted in single-trial time-series 

of instantaneous frequency during the pre-target interval. To relate those to reaction 

times, we used the same regression approach detailed above (in Methods, Spectral 

power) to obtain a time-course of regression slopes, and tested them at the group level 

with a cluster-based permutation approach. 

To test the relationship between reaction time and peak frequencies in the power 

spectra, we averaged power spectra separately for slower and faster trials (based on 

median split), and detected the peaks of maximum power within the beta range. We then 

contrasted the peaks at the group level with a paired t-test.  

 

Connectivity 

 To estimate the connectivity between auditory and motor cortices, we used the 

Fourier coefficients that we obtained in the spectral power analysis. As connectivity 

measures are not resolved on single-trials, we estimated them after splitting the data 

along the median reaction time. We computed the pairwise phase consistency (Vinck et 

al., 2010), a bias-free method of rhythmic synchronization. We also computed bi-variate, 

nonparametric Granger causality (Dhamala et al., 2008a, 2008b), which gave us separate 

estimates of the connection strengths from motor to auditory cortex and vice versa. We 

finally contrasted slower vs. faster trials on the group level with a cluster-based 

permutation approach, clustering across the beta band. 
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Results 

 

 
 

Figure 2. Beta dynamics. a) Power spectra in motor cortex during the pre-target 

vs. pre-cue delays. b) Instantaneous beta frequency in motor cortex during the pre-

target vs. pre-cue delays. c) Beta burst properties in motor cortex during the pre-

target vs. pre-cue delays: frequency range, time range, timing relative to target 

onset, peak amplitude, number of events, and peak frequency. d,e,f) Same as 

(a,b,c) for auditory cortex. Shaded regions around the line graphs represent the 

standard error of the mean. Horizontal dotted lines represent significant clusters 

(p<.05). Spectra in (a) and (d) were detrended by removing 1/f slope. Note that in 

(b) and (e), the vertical dotted lines corresponding to time-point zero represent the 

cue onset for the pre-cue time courses (blue) and target onset for the pre-target 

time courses (red). Asterisks in (c) and (f) represent significant differences 

between distributions.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.03.515019doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.515019
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pre-target vs pre-cue power, frequency, and burst properties 

First, we examined pre-target beta properties in relation to a baseline (i.e., pre-

cue) interval (Figure 2). We found that in both motor and auditory cortex, beta power 

decreased while beta frequency increased from baseline to pre-target interval.  

In motor cortex, we observed the pre-target power decrease across the whole 

range of beta frequencies (Figure 2a; cluster-based permutation test across frequencies 

13 to 30 Hz; p=1e-5), and the upward shift in beta frequency across the whole interval 

(Figure 2b; cluster-based permutation test across time -700 to 0 ms; p=2e-4). 

Consistently, there were fewer bursts (t(27)=-5.8, p=3.4e-6), with narrower time spans 

(t(27)=-9.8, p=2e-10) and narrower frequency spans (t(27)=-12.3, p=1.4e-12), and the 

peak burst frequency was also increased (t(27)=5.8, p=3.7e-6) during the pre-target delay 

as compared to baseline (Figure 2c). In addition, bursts in motor cortex happened closer 

in time to target onset than they did to cue onset (t(28)=2.8, p=.009). There were no 

differences in the maximum power of the bursts. 

In auditory cortex, we observed the pre-target beta power decrease primarily in the 

14.5 to 17 Hz range (Figure 2d; p=.019), and the upward shift in beta frequency primarily 

from 210 to 75 ms prior to target onset (Figure 2e; p=.039). However, there were more 

bursts (t(27)=5.3, p=1.3e-5) with wider time spans (t(27)=5.7, p=5e-6) and wider 

frequency spans (t(27)=6.0, p=1.9e-6) during the pre-target delay as compared to 

baseline (Figure 2f). Note that while a power decrease seems inconsistent with more 

bursts, the power decrease occurred at frequencies lower than the frequencies at which 

bursts occurred (i.e., 14.5 to 17 Hz vs. ~22 Hz), and lower than peak beta frequency 

(which was at 20 Hz based on peak detection, or 22 Hz based on instantaneous frequency 

analysis), making this decrease in power hard to interpret. There were no differences in 

the maximum power of the bursts, their peak frequency, or their timing relative to stimulus 

onset.  

Next, we tested whether pre-target beta properties related to reaction times using 

two complementary approaches: a median-split approach to relate beta measures to slow 

vs. fast reaction times, and a regression approach to relate single-trial beta measures to 

reaction times. The two approaches yielded the same results: in motor cortex, slower 

reaction times were related with higher beta power, while in auditory cortex, slower 

reaction times were related with higher beta frequency. 
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Figure 3. Relation between beta dynamics and reaction times. a) Power 

spectra in motor cortex for trials with slow vs. fast reaction times. b) Time-resolved 

beta power in motor cortex for trials with slow vs. fast reaction times. c) Regression 

slopes for the relationship between reaction times and time-resolved beta power 

in auditory cortex. d) Same as (a) for auditory cortex. e) Instantaneous beta 

frequency in auditory cortex for trials with slow vs. fast reaction times. f) Regression 

slopes for the relationship between reaction times and instantaneous frequency in 

auditory cortex. Shaded regions around the line graphs represent the standard 

error of the mean. Horizontal dotted lines represent significant clusters (p<.05). 

Vertical dashed lines represent time-point zero (target onset). Spectra in (a) and 

(d) were detrended by removing 1/f slope. 

 

Spectral power 

In motor cortex (Figure 3 a,b,c), slower reaction times were preceded by higher 

beta power. Splitting the power spectra across the median reaction time revealed the 

effect was driven by differences in the 20 to 26 Hz frequency range (Figure 3a; cluster-

based permutation test across frequencies: p=1e-5). This effect was present throughout 
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the whole pre-target interval when looking at the time-resolved power envelopes (Figure 

3b; cluster-based permutation test across time: p=6e-4). A time-resolved single-trial 

regression approach confirmed this effect as well (Figure 3c; slope = 0.030; cluster-

corrected p=4e-4). To further characterize this difference, we zoomed in on the beta 

bursting profile and found that slower reaction times were preceded by more bursts (slope 

= 0.040; p = .0017) with wider time spans (slope = 0.037; p = .0277) and wider frequency 

spans (slope = 0.039; p = .0143).  

In auditory cortex, when splitting the data along the median reaction time and 

contrasting the power spectra, we found an effect opposite to that observed in motor 

cortex, such that faster reaction times were preceded by higher beta power (Figure 3d; 

cluster-corrected p=.016), an effect driven by differences in the 17 to 19 Hz frequency 

range. However, pre-target beta power was not related to reaction times when using the 

time-resolved regression approach (slope = -0.008, no clusters). Given the discrepancy 

in results between the two approaches, we further investigated the observed difference 

in auditory cortex as a possible shift in peak frequency. 

 

Beta frequency 

In auditory cortex (Figure 3 d,e,f), slower reaction times were preceded by a higher 

peak beta frequency when splitting the power spectra across the median reaction time 

and detecting participants9 individual peak beta frequencies (t(24)=2.4, p=.0255). This 

effect was most pronounced around 660 to 450 ms prior to target onset when looking at 

instantaneous frequency (Figure 3e; cluster-based permutation test across time: p= .006). 

A time-resolved single-trial regression approach confirmed the same result (Figure 3f; 

slope = 0.011; cluster-corrected p=.032). When zooming in on the peak burst frequencies, 

we found the same relationship again (slope = 0.029; t(27) = 2.45; p = .021). In motor 

cortex, beta frequency was not related to reaction times (slope = -0.0052; no significant 

clusters). 

 

Connectivity 

 We then asked whether auditory-motor beta connectivity was related to reaction 

times (using the median-split approach). Slower reaction times were preceded by 

increased beta connectivity between auditory and motor cortices, as quantified with 

pairwise phase consistency (p = .027). The difference was most prominent at frequencies 

from 19 to 20 Hz (Figure 4a). We then used Granger causality to check the directionality 

of this effect. There were no differences in auditory-to-motor beta connectivity (Figure 4b; 

no significant clusters), but slower reaction times were preceded by increased motor-to-

auditory beta connectivity (p = .047), most prominently at frequencies from 20 to 21 Hz 

(Figure 4c). 
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Figure 4. Auditory-motor cortex connectivity. a) Pairwise phase consistency 

between auditory and motor cortices for slow vs. fast reaction times. b) Granger 

causality from auditory to motor cortex for slow vs. fast reaction times. c) Granger 

causality from motor to auditory cortex for slow vs. fast reaction times. Shaded 

regions around the line graphs represent the standard error of the mean. Dotted 

lines represent significant clusters (p<.05). 

 

Discussion 

 In an auditory target discrimination task, we sought to uncover the relationship 

between reaction times and various characteristics of the beta rhythm. We found that 

slower (as compared to faster) reaction times were preceded by increased beta power in 

motor cortex, increased beta frequency in auditory cortex, and increased motor-to-

auditory connectivity in the beta range. The results were robust across our analysis 

approaches. We used a regression approach to relate single-trial reaction times to beta 

measures, as well as a median-split approach to relate slower vs. faster trials to changes 

in beta measures, with both approaches yielding the same pattern of results. We further 

analyzed beta activity separately in a time-resolved manner, a frequency-resolved 

manner, and by characterizing its burst profile, with all approaches yielding the same 

pattern of results.  

 An analysis of the burst properties of the increased beta activity prior to slower 

responses revealed that this increased activity likely reflected an increased number of 

pre-target bursts with wider time and frequency ranges. These results are in line with an 

account of beta which is bursting in nature and inhibitory in function (Shin et al., 2017).  

However, our power results in auditory cortex are at odds with this inhibitory function. At 

the single-trial level, pre-target auditory beta power was not robustly related to reaction 
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times. Based on this set of results, we conclude that the beta rhythm potentially serves 

different functions in different cortical locations. The beta rhythms in motor and auditory 

cortex differed not only in their impact on behavior, but also in their peak frequencies. 

Although a crude distinction between 8higher9 and 8lower9 beta across cortical locations 

has been previously made (e.g., Kopell et al., 2011), attempts to assign them different 

functional roles have had mixed success (Spitzer and Haegens, 2017).  

One aspect of beta rhythms (and cortical rhythms in general) that has so far 

received little attention is the non-stationarity of their frequency across time. Models of 

beta function account for the potential of different beta rhythms occurring at different 

frequencies, assuming different cortical locations or different generators within a location. 

But it is so far under-appreciated that a single rhythm can shift in frequency over time 

(Cohen, 2014). Frequency shifts according to task demands have been observed in 

human EEG/MEG data for the alpha rhythm (Haegens et al., 2014; Samaha and Postle, 

2015; Wutz et al., 2018), and in non-human primate LFP data for the beta rhythm (Kilavik 

et al., 2012). It has also been reported that slower alpha rhythms correlate with slower 

responses across subjects (Surwillo, 1961), but to our knowledge the relationship 

between beta frequency and reaction times has not yet been investigated. We here report 

the opposite relationship for the beta rhythm, such that faster (auditory) beta correlated 

with slower reaction times within subjects. 

 Beyond local beta dynamics, beta has also been shown to be involved in long-

range communication between cortical sites (Seedat et al., 2020). Here we found 

increased beta connectivity between motor and auditory cortex, specifically in the 

direction of motor to auditory cortex, prior to slower (vs. faster) responses. It is unlikely 

that this effect was confounded by the power difference in motor cortex as we used a 

phase-based connectivity measure, and in addition, there were no robust power 

differences in auditory cortex. This finding is in line with the notion of covert active 

sensing, where the motor system actively coordinates sensory systems (Schroeder et al., 

2010). Our effects can also be interpreted in light of the frequency-matching notion (Lowet 

et al., 2017). That is, on trials with slow responses, the difference in peak frequencies 

between auditory and motor cortex is reduced, resulting in stronger synchronization. This 

interpretation is supported by our observation of stronger auditory-motor coupling on slow 

trials (Figure 2). 

 Finally, our results imply that the analysis of beta oscillations requires caution as 

beta dynamics are multifaceted phenomena. For example, it is possible that observed 

power modulations are better explained as frequency shifts (as is the case for our results). 

It is also possible that the beta rhythm serves different functions (i.e., inhibitory or 

excitatory) depending on the cortical region where it is found or depending on whether it 

is local or inter-areal. Future investigations could focus on inter-areal variability in beta 

peak frequency, for example in intracranial human electrophysiological recordings. 
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