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Abstract

Although unmanned aerial vehicle (UAV) remote sensing is widely used for high-throughput crop
monitoring, few attempts have been made to assess nitrogen content (NC) at the organ level and its
impact on nitrogen use efficiency (NUE). Also, little is known about the performance of UAV-based
image texture features in crop nitrogen and NUE monitoring. In this study, eight flying missions
were carried out throughout different stages of winter wheat (from the jointing stage to the stage 25
days after flowering) to acquire multispectral images. Forty-three multispectral vegetation indices
(VIs) and forty texture features (TFs) were calculated from images and fed into the partial least
squares regression (PLSR) and random forest (RF) regression models for predicting nitrogen-related
indicators. Our main purposes were to (1) evaluate the potential of UAV-based images to predict
NC in different organs of winter wheat and nitrogen agronomic efficiency (NAE); (2) compare the
performances of VIs, TFs and the combination of them for nitrogen monitoring. The results showed
that the correlation between different features (VIs and TFs) and NC in different organs varied
between the vegetative and reproductive phases. Most of VIs were found to be positively correlated
with NC, while most of the TFs were negatively correlated with NC. PLSR latent variables extracted
from VIs and TFs explained 80% of the variations in NAE. However, no significant differences
were found between VIs and TFs in their performance in predicting NC in different organs. This
study demonstrated the promise of applying UAV-based imaging to estimate NC and NAE in
different organs of winter wheat.

Keywords: unmanned aerial vehicle; organs; nitrogen content monitoring; nitrogen agronomic

efficient; vegetation indices; texture features; vegetative and reproductive growth phases
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33 1 Introduction

34 Higher requirements for crop yield and quality are needed in modern society. Nitrogen (N), as
35  avital macronutrient, has always been regarded as a key factor in improving crop yield and quality
36  (Wang et al., 2016). In order to ensure high yield, excessive use of N fertilizers in agricultural
37  production have been reported in the North China Plain (NCP) (Cui et al., 2008). Excessive use of
38 N fertilizer causes environmental problems such as soil acidification and water pollution(Ju et al.,
39  2009; Schroder et al., 2011). However, insufficient and inefficient (e.g., wrong time) N fertilizer
40  applications affect the photosynthesis of crops, resulting in reduced crop yield and poor quality
41  (Chlingaryan et al., 2018; Sinclair et al., 2019). Efficient N management for improved N use
42  efficiency (NUE) is critical not only for grain yield and quality but also for environment
43  conservation. Thus, continuous monitoring of crop N status is necessary for the planning of N
44 fertilization measures in the vegetative growth phase and for providing valuable information
45  forecasting yield quality in the reproductive phase (Hank et al., 2019).

46 Traditional methods for crop N status monitoring based on filed destructive sampling and
47  chemical analysis such as the Kjeldahl technique has the disadvantages of being time-consuming,
48  labor-intensive and costly, limiting the progress in accurate and continuous assessment of crop N
49  status in field (Yao et al., 2015; Onojeghuo et al., 2018). A portable chlorophyll meter was first used
50  for the diagnosis of the leaf N content of rice, and achieved great performance (T. et al., 1986).
51 Subsequently, many studies using portable chlorophyll meters such as SPAD-502 for the monitoring
52 of crop NC have been reported (Errecart et al., 2012; Yuan et al., 2016; Kitonyo et al., 2018). Besides,
53  other handheld crop sensors like GreenSeeker, Crop Circle multispectral active canopy sensors have
54 been developed and applied in the diagnosing of crop N status (Li et al., 2008; Stroppiana et al.,
55 2009; Cao et al., 2013). However, most proximal sensing tools face the challenge of limited
56  throughput. In recent years, the newly emerged UAV remote sensing technology has allowed for
57  high-throughput monitoring and mapping of agricultural ecosystems and has been proven to be
58  convenient and efficient for crop N status monitoring (Kalacska et al., 2015).

59 With the development of UAV technology, it has been widely used in precision agriculture for
60 its low cost, flexibility and high temporal and spatial resolution (Bendig et al., 2015). Monitoring N
61  status using UAVs has been found successful in different crops in previous studies. For example,
62  (Lietal., 2018c) found it held great potential using UAV-based active sensing for monitoring rice
63  leaf N status. An octocopter UAV was used for capturing multi-angular images to estimate the
64  nitrogen content and accumulation of winter wheat at leaf and plant scale, with the highest accuracy
65  obtained for leaf NC from single-angle images (Lu et al., 2019). There are also many studies about
66 N determination using UAV in other crops such as maize (Maresma et al., 2016), winter oilseed rape
67  (Liuetal., 2018) and sorghum (Li et al., 2018b).

68 Typically, several methods including statistical regression techniques alongside physically
69  based models are adopted in phenotyping. The physically based models have not been fully
70  examined for crop N monitoring so far though better transferability can be offered (Wang et al.,
71 2015). A few studies proposed modification of radiative transfer models such as the N-PROSPECT
72  (Yangetal., 2015) or N-PROSAIL (Li et al., 2018a) for monitoring crop N status at leaf or canopy
73 scale. However, the models are restricted to few crops and the parameters are complex and not
74  convenient to obtain in agricultural practice (Verrelst et al., 2015; Yang et al., 2015), limiting their
75  usein crop N monitoring. Actually, previous works on N diagnosis in crops predominantly adopted
76  statistical regression techniques. Different spectral features were used to establish parametric or
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77  nonparametric linkages with crop physiological and biochemical traits including NC and many other
78 N related indicators. A range of studies has used VIs to construct N estimation empirical regression
79  models and achieve great performance (Song et al., 2016; Tilly and Bareth, 2019). Through the
80  combination of different bands, VIs could be sensitive to the differences (e.g., biomass variation
81  among different stages) in crop phenotypes. (Wang et al., 2012) reported an effective approach of
82  leaf N monitoring using three-band VIs both in wheat and rice. (Zhang et al., 2018) constructed the
83  modified simple ratio index, and found it had a great correlation with wheat NUE. Some published
84  VIs were proved to be well correlated with leaf NC of maize and a new optimized red-edge
85  absorption area index was proposed for the estimation of the vertically integrated leaf NC (Wen et
86  al, 2021). However, crop N monitoring based on single VI could be unreliable due to the limited
87  band information of single VI. With the development of numerous algorithms such as parametric
88  regressions, linear nonparametric regression and nonlinear nonparametric regression, one can make
89  full use of the different bands for crop N monitoring based on VIs (Berger et al., 2020). Texture, as
90  an important characteristic for image classification, has been used in the estimation of forest
91  aboveground biomass (Murray et al., 2010; Kelsey and Neff, 2014). Recently, image texture
92  information have been increasingly used for crop monitoring. (Zheng et al., 2019) found that the
93  using the combination of textural information with spectral information derived from UAV-based
94  images could significantly improve the accuracy for rice biomass estimation compared to the use of
95  spectral information alone. (Yue et al., 2019) has also found similar results in winter wheat biomass
96  monitoring. (Zheng et al., 2020) found that the integration of texture information and VIs could
97  significantly improve all N nutrition parameters estimation using multiple linear regression.
98  However, little is known about the feasibility of using image texture information extracted from
99  UAV images for assessing crop NUE indicators.
100 It is well known that crop growth is a dynamic process with constant nitrogen turnover. The
101  operation of nitrogen varies in different growth stages and different organs in crops (Ohyama Takuji,
102  2010). Studies have indicated that different organs could have different effects on the crop spectral
103  features (Li et al., 2015, 2021). However, few investigations under field conditions address the
104  differences of estimated the NC in different organs when using UAV-based multispectral data.
105  Therefore, the main objectives of this study are to (1) evaluate the potential of UAV-based remote
106  sensing images to predict NC in different organs of winter wheat; (2) compare the performance of
107  nitrogen monitoring in winter wheat based on VIs, TFs and the combination of them, in combination

108  with regression algorithms.

109 2 MATERIALS AND METHODS

110 2.1 Study Area and Experimental Design

111 Field trials were conducted at the Wugqiao Experimental Station of China Agricultural
112 University (37°41'N, 116°37'E) in Hebei Province in the North China Plain (NCP) (Figure 1) within
113  the winter wheat season of 2020 to 2021. NCP belongs to a warm temperate semi-humid continental
114  monsoon climate. The average rainfall, temperature and altitude were about 550 mm, 12.5 °C and
115 18 m. JiMai22 (Triticum aestivum L.), one of the most widely grown winter wheat varieties in NCP
116  wasused in this study. It was sowed in October 2020 and harvested in June 2021 with a row spacing
117  of 15 cm and a density of 430 x 10* ha"!. The experiment followed a block design and five levels of
118  nitrogen fertilizer treatments were established, including 0 kg N ha' (NO), 120 kg N ha! (N1), 180
119 kg N ha' (N2), 240 kg N ha'! (N3) and 300 kg N ha"! (N4). 120 kg P>Os ha™! and 90 kg K>O ha™!
120  were applied to the soil as basal dressings and the rest of the field management followed the local
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121 crop production standards throughout the winter wheat season. Besides, three replications were
122 conducted for each treatment, and each plot area was 40 m? (10 m x 4 m).

123 2.2 Data Collection

124 2.2.1 Field Sampling and NC Determination

125 Destructive samplings were performed eight times (dates) during the growth of winter wheat,
126  including three times in the vegetative growth phase and five times in the reproductive growth phase
127  of winter wheat (Table 1).

128  Table 1: Cultivar, treatments and data acquisition schedule.

Cultivar N rate (Kgha') UAV Flight Date  Field sampling Date Growth stage Zg:;);s
18 April 2021 18 April 2021 Jointing stage (JS) GS31
27 April 2021 27 April 2021 Booting stage (BS) GS40
May 2021 May 2021 Headi
0 (NO), 80 (N1), 152 Mazz; 20021 152 Maaf;/ 20021 5 Daysezgt;tgﬂscjivgeii(llis()zAFS) g:ig
JiMai22 120 (N2), 160 i
(N3). 200 (N4) 17 May 2021 17 May 2021 10 Days after ﬂower%ng (AF10) GS75
22 May 2021 22 May 2021 15 Days after flowering (AF15) GS80
27 May 2021 27 May 2021 20 Days after flowering (AF20) GS85
1 June 2021 1 June 2021 25 Days after flowering (AF25) GS90
129 Winter wheat plants within an area of 0.06 m? (0.2 m x 0.3 m) of were randomly selected from

130  each plot and transported back to the laboratory immediately. All plants were separated into different
131  organs (leaf, stem, spike and grain). The samples of organs were oven-dried for 30 mins at 105 °C
132 and later at 80 °C to a constant weight. After obtaining the dry matter weight (DMW) of the different
133  organs, dried organ samples were ground to pass through a 1 mm screen and stored in plastic bags
134 for further elemental (N) analysis. At the mature stage of wheat, a 1.8 m? area of wheat plants were
135  randomly harvested from each plot to determine the final yield. The micro-Kjeldahl method (A.,
136 1982) was used to determine the total N concentration of different organs. Equation (1) was used to
137  calculate the plant NC. As one of the indicators for crop NUE, the nitrogen agronomic efficiency
138 (NAE) can be calculated by equation (2).

139 PNC = (Ly X Ly + Sy X Sy + SPy X SPy)/(Lyw + Sy +SPy) (1)

140 NAE = (GY, — GYy)/NFA (2)

141 Where Lw, Sw, Pw were the DMW of leaf, stem and spike, respectively. Ln, Sn, SPn were the N
142  concentration of leaf, stem and spike, respectively. And GY, is the grain yield with N fertilizer
143 application, GYy is the grain yield without N fertilizer application. NF4 means the amount of applied
144 N fertilizers (kg/ ha).

145  2.2.2 UAV Image Acquisition

146 The acquisition dates of UAV-based images can be found in Table 1. All UAV flight missions
147  were carried out at approximately 10:00 am and 14:00 pm on sunny days. DJI Phantom 4 quadcopter
148  (DJI, Shenzhen, Guangdong, China), which was equipped with a consumer-grade multispectral
149  camera was used in this study. The camera consists of six sensors, including five monochromatic
150  sensors and one Red-Green-Blue (RGB) sensor. The spectral resolution of the monochromatic
151  sensors includes: a blue band with 450 nm center and 16 nm bandwidth, a green band with 560 nm
152  center and 16 nm bandwidth, a red band with 650 nm center and 16 nm bandwidth, a red-edge band
153  with 730 nm and 16 nm bandwidth and a near-infrared band with 840 nm and 26 nm bandwidth.
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154  More specific parameters of the UAV and the camera are demonstrated in (Wang et al., 2022a).
155 Nine ground control points (GCPs) were evenly placed over the field for subsequent image
156  geometry correction. To record the precise coordinate information of GCPs, a D-RTK 2 high-
157  precision GNSS mobile station (DJI, Shenzhen, Guangdong, China) operating at centimeter-level
158  positioning precision with uninterrupted data transmission was used in this experiment. The UAV
159  was flown over the winter wheat field at an altitude of 25 m above the ground level. All flight
160  missions were conducted using the DJI go pro software (DJI, Shenzhen, Guangdong, China), with
161  the heading and side overlaps of 80% and 70%, respectively. All acquired images were saved in
162  TIFF format on the SD card onboard the UAV.

163 2.3 Image processing

164  2.3.1 Generation of orthophoto maps

165 We used the Pix4D (Pix4D SA, Lausanne, Switzerland) based on the structure-from-motion
166  (SfM) technique to generate orthophoto images. Following image alignment, matching, mosaicking,
167  sparse point cloud, and dense point cloud constructing, the orthoimages were generated. The ‘Multi-
168  spectral Ag’ template was selected as the processing model for the orthomosaic reflectance images.
169  The coordinates of GCPs were used for orthomosaic georeferencing by manually identifying the
170  points after generating the sparse point cloud. Finally, five georeferenced single-band orthophotos
171  were obtained in each observed stage with the Geo-TIFF format.

172 2.3.2 Selection and extraction of vegetation index and image texture

173 Forty-three nitrogen-related VIs (Table S1 in Supplementary Material S1) were screened for
174 further analysis. QGIS (QGIS Version 3.14) was used to calculate the vegetation index maps. We
175  used the function of the “raster calculator” to obtain the VI-maps based on single-band orthophotos
176  generated by Pix4D for each observation stage. Also, eight grey-level co-occurrence matrix
177 (GLCM)-based textures including the mean (Mean), variance (Var), homogeneity (Hom), contrast
178  (Con), dissimilarity (Dis), entropy (Ent), second moment (Sec), and correlation (Cor) (Haralick et
179  al., 1973) were computed using the ENVI software (Exelis Visual Information Solutions, Boulder,
180  Colorado, USA) with the size of moving window of 5 x 5 and in the direction of 45° for all the five
181  single-band orthophotos (Table S2 in Supplementary Material S1). Next, regions of interest (ROIs)
182  were selected for each plot, and the mean values of the VI-maps and texture maps were extracted
183  using the “Zonal Statistic” function in QGIS.

184 2.4 Model development and evaluation

185  2.4.1 Model calibration

186 Correlation analysis was performed for the VIs and the nitrogen content of different organs.
187  Meanwhile, to evaluate the performance of the 43 VIs and 40 TFs obtained from the UAV-based
188  images, the Pearson correlations between VIs/TFs and NC of winter wheat were implemented
189  during the vegetative and reproductive growth phase. For further determination optimal
190  combination of multispectral VIs, TFs and regression algorithms for nitrogen prediction, the Partial
191  Least Squares Regression (PLSR) and Random Forest (RF) algorithms were adopted in this study.
192 Partial least squares regression is one of the most used algorithms to search the basic
193  relationship between two matrices (independent and dependent variables), that is, a latent variable
194  method for modeling the covariance structure in these two vector spaces. It has the advantages of
195  being stable, and suitable for small datasets and can avoid multicollinearity. By conducting the one-
196  sigma algorithm (Wold et al., 2001), the optimal number of latent variables was determined. For the


https://doi.org/10.1101/2022.11.02.514839
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.02.5148309; this version posted November 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

197  evaluation of the contribution of different VIs to the prediction model, the Variable Importance in
198  Projection (VIP) criterion was introduced (Hastie et al., 2005). In general, variables with a VIP score
199  greater than 1 are considered to be more important to the model. Meanwhile, the larger the VIP
200  value obtained by the variable, the greater the contribution of the variable to the model.

201 The random forests algorithm was developed by (Breiman and Cutler, 2012) in 2001. As a
202  typical ensemble algorithm, it is composed of multiple unrelated decision trees, and the final output
203 of'the model is jointly determined by each decision tree in the forest. It shows a promising capability
204 to avoid overfitting by sampling the predictor space randomly. The number of decision tree (ntree)
205  and the input variables per node (mtry) are two key hyperparameters that have great impact for the
206  complexity of RF models (Wang et al., 2019). In this study, they were selected based on the root
207  mean square error (RMSE) with the RF algorithm. Besides, as an effective indicator for evaluating
208 the contribution of variables to the model, the percentage increase in mean squared error (%IncMSE)
209  (Farrés et al., 2015) was used in our research. By using the function of ‘rfPermute’ in RF models,
210  the image feature with great importance for the models can be screened out.

211 All datasets were randomly divided into a training dataset (80%) and a test dataset (20%). The
212 packages “pls” (Mevik and Wehrens, 2007) and “randomForest” (Breiman and Cutler, 2012) were
213 used to construct the prediction models in R programming language in R Studio (R Version 3.6.1).

214 2.4.2 Model evaluation

215 The 1:1 line of the estimated and measured nitrogen concentrations were used to assess the
216 fitness of different prediction models. Coefficients of determination (R?) and root mean square error
217  (RMSE) were selected to evaluate the performances of the different models. Generally, the higher
218  the R? and the lower the RMSE, the better the precision and accuracy of the models. These statistical

219  indicators were expressed as equations (3) and (4):

220 R? = XL 10 — 02 — 32/ Lz 0 — 02 XL, i = 9)* (3)
221 RMSE = \/1/k X (g —v)? 4)
222 Where #n is the number of samples, i is the ith sample, x; and y; stand for the estimated NC

223  values and measured nitrogen concentration values, X and y stand for the average estimated NC
224 values and measured NC values, respectively. Figure 1 shows the flowchart of the experiment.
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226  Figure 1. The flowchart of the key steps for data collection and analysis in this study.
227 3 RESULTS
228 3.1 Measured data from destructive sampling
229  3.1.1 Descriptive analysis of NC and dry matter weight (DMW)
230 As shown in Table S3 in Supplementary Material S1, the DMW ranges from 1.22 to 4.18 t/ha
231  with CV of 31.01% in leaf DWM, from 2.72 to 9.87 t/ha with CV of 39.71% in stem DMW, from
232 0.42t02.37 t/ha with CV 0f 51.53% in spike DMW, and from 3.97 to 15.96 t/ha with CV of 31.71%
233 in plant DMW during the vegetative growth phase. For the reproductive growth phase, leaf-, stem-,
234  spike-, grain- and plant DWM ranges from 0.84 to 3.93 t/ha, 5.14 to 13.80 t/ha, 1.42 to 11.20 t/ha,
235 0.26 to 8.14 t/ha and 8.26 to 27.08 t/ha, respectively, with CV of 30.76%, 23.44%, 47.86%, 74.41%
236 24.06%.
237 Nitrogen content (NC) varies from 2.24% to 4.95%, 0.85% to 1.81%, 1.99% to 4.73%, 1.45%
238 to 3.00% in the leaf, stem, spike and plant, respectively, with CV of 16.84%, 19.48%, 31.01% and
239  20.86% during the vegetative growth phase. For the reproductive growth phase, the leaf, stem, spike,
240 grain and plant NC varies from 0.91% to 3.64%, 0.29% to 1.31%, 1.41% to 2.60%, 1.62% to 3.06%,
241 and 0.80% to 1.85%, respectively, with CV of 33.41%, 31.10%, 12.00%, 15.04% and 17.78%. It
242 can also be found that the variation of leaf NC and stem NC in the reproductive growth phase was
243 greater than that in the vegetative growth phase (Table S3), which was opposite with the variation
244 trend of spike NC and plant NC in the vegetative and reproductive growth phases.
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Figure 2 shows the relationship between the DMW of leaf, stem, spike and plant and the
corresponding NC values for the vegetative and reproductive growth phases. Except for the leaf NC,

NC in the stem, spike and whole plant decrease as DMW increases due to the dilution effect of N
as described in (Lemaire et al., 2008).
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Figure 2. Winter wheat DMW (g/m?) vs. winter wheat nitrogen content in the vegetative and
reproductive growth phases; (a) leaf DMW and leaf NC; (b) stem DMW and stem NC; (¢) spike
DMW and spike NC; (d) plant DMW and plant NC. VS and RS means the vegetative and

reproductive growth phases.

3.1.2 Yield and nitrogen agronomic efficiency (NAE)
Figure 3 depicts the average yield and the corresponding NAE for each N treatment in the

experiment. The highest yield was observed in the N3 treatment, whereas the lowest yield was

observed in the NO treatment. NAE decreased significantly along with the increase of N fertilizer

inputs.
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260  Figure 3. Yield and NAE of each treatment of N. The different small letters indicate significant
261  differences between treatments.

262 3.2 Correlation between image features vs. N-related indicators

263 Table S4 in Supplementary Material S1 showed the top 5 most relevant VIs and TFs for NC
264 monitoring of winter wheat. In the vegetative growth phase, the RGBVI, MCARI, MCARI2 and
265 RGBVI, were the best correlated VIs for leaf, stem, spike and plant NC, respectively, with r of 0.75,
266  0.80, 0.60 and 0.75. The Reg_mean (r =-0.85), G_cor (r =-0.84), R_con (r=0.32) and Reg_mean
267  (r=-0.86) was the best correlated TF's for leaf, stem, spike and plant NC monitoring. In reproductive
268  growth phase, the GOSAVI and R_ho (with r of 0.88 and 0.84), MSR-REG and G_mean (with r of
269  0.82 and -0.81), DVI-REG and Reg_mean (with r of 0.56 and -0.64), RTVI-CORE and G_mean
270  (withrof0.71 and -0.58) and CVI and Reg_mean (with r of 0.77 and -0.79) yield the highest r with
271  leaf, stem, spike, grain and plant NC (See detail in Supplementary Material S2).

272 In general, most of VIs were found to be positively correlated with NC, while most of TFs
273  were negatively correlated with NC. Among all the organs and the whole plant, it was obvious that
274  the correlation between spike NC and image features was the lowest.

275 Figure 4 shows the absolute value of the r between VIs and NAE in different growth stages. It
276  isclear that the VIs derived from our UAV images can reflect the change of NAE to a certain extent,
277  and the correlation decreases with the winter wheat growth in general.

RITTE

J- .
Stage

0.6 T =
B BS
I 1 B8 HS
E3 AF5
E3 AF10
E3 AFIS
0.4 + T + B3 AF20
. H . B3 AF25

. . E3 RS

the absolute value of r between VIs and NAE

0.0 +

278 JS BS HS AFS5 AF10  AF15 AF20 AF25 A\ RS

279  Figure 4. Variation of the absolute value of the r between VIs and NAE in different growth stage.
280  The white dots in each box represent the mean value of the absolute value of the r, and the black
281  dots represent outliers. JS, BS and HS are jointing, booting and heading stage, respectively. And
282 AFS5, AF10, AF15, AF20 and AF25 means 5, 10, 15, 20 and 25 days after flowering. VS and RS
283  refer to the vegetative and reproductive growth phases, respectively.

284 3.3 PLSR and RF models using VIs for nitrogen content estimation

285 As shown in Table 2, during the vegetative growth phase, the PLSR model obtained the highest
286  RZin spike NC estimating both in training and testing sets but the RMSEs were also generally larger
287  than the ones in the PLSR models. For other organs or the whole plant, there were no obvious
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288  differences in the estimation during the vegetative growth phase (R?> =0.74 - 0.77, RMSE = 0.13 -
289  0.30 in training, R?> = 0.57 - 0.76, RMSE = 0.14 - 0.39 in testing). Our RF model in the vegetative
290  growth phase allowed the best prediction for spike and plant NC, respectively, in the training and
291  testing sets. Similar to the PLSR model in the vegetative growth phase, the prediction of NC by the
292  RF model did not show differences between different organs in wheat or the whole plant (R? =0.91
293  -0.94, RMSE = 0.07 - 0.26 in training, R? = 0.73 - 0.82, RMSE = 0.13 - 0.50 in testing). Figure 5
294  shows the PLSR and RF models that had the best overall performance in the vegetative and
295  reproductive growth phases.
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297  Figure 5. The PLSR and RF models which performed best in vegetative and reproductive growth
298  phases using VIs only. (a) the SPNC PLSR model in VS. (b) the LNC PLSR model in RS. (¢) the
299  SPNC RF model in VS. (d) the LNC RF model in RS.

300 Figure 6 showed the top 10 important VIs for NC estimation models. Among all the NC of
301  different organs or the whole plant in the vegetative growth phase, MCARI2 was found to be the
302  most important VI for leaf NC (VIP = 1.98), spike NC (VIP = 4.87) and plant NC (VIP = 1.92) in
303  PLSR models. MTCI was the 2nd most important VI for leaf NC (VIP = 1.51) and plant NC (VIP
304  =1.47) and was also found to be the most important VI for stem NC (VIP = 1.18).

305 As for the RF models in the vegetative growth phase, MTCI, GRVI, MCARI2 and GRVI with
306  contributed most to the leaf-, stem-, spike- and plant NC estimations, respectively, with
307  the %IncMSE of 10.73, 13.31, 12.64 and 10.73 (Figure 6). Also, MCARI2 and MTCI also played
308  an important role in the RF models, which had similarly great performance in the PLSR models
309  during the vegetative growth.
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311  Figure 6. Top 10 important VIs for the NC monitoring of different organs and the whole plant
312  selected by different models. (a) the TOP 10 important VIs for NC monitoring in vegetative growth
313  phase selected by PLSR. (b) the TOP 10 important VIs for NC monitoring in the reproductive
314  growth phase selected by PLSR. (¢) the TOP 10 important VIs for NC monitoring in the vegetative
315  growth phase selected by RF. (d) the TOP 10 important VIs for NC monitoring in the reproductive
316 growth phase selected by RF. LNC, STNC, SPNC, GNC and PNC are leaf, stem, spike, grain and
317  plant NC, respectively.

318 For the reproductive growth phase, the Vs that yielded great performance in the NC prediction
319 models differed. In the PLSR models. TCARI/OSAVI, LCI, SAVI-GREEN, GRVI and S-CCCI have
320  been found to be the best VIs for leaf, stem, spike, grain and plant NC, respectively, with the VIP of
321 1.31, 1.37, 1.58, 1.52 and 1.66. In the RF models, GRVI contributed most to the leaf- and stem NC
322  predictions (%IncMSE = 10.71 and 12.52), CVI contributed most to spike and plant NC (%IncMSE
323  of 6.36 and 12.30), and SAVI contributed most for grain NC (%IncMSE = 8.82). Besides, it also
324  indicated that the VIs screened out in the vegetative growth phase are more consistent, while weak
325  consistency of the top 10 VIs in the reproductive growth phase (Figure 6). Furthermore, we have
326  also counted the total number of VIs selected by the PLSR and RF models in different growth phases.
327  Table S4 shows that more VIs have been selected by RF models in the reproductive growth phase
328  of winter wheat approximately (See detail in Supplementary Material S3).

329  Table 2. Nitrogen content estimates using 43 vegetation indices.

Growth phase Part of Data set PLSR RF
winter wheat R2 RMSE R2 RMSE
Leaf Training set 0.77 0.30 0.91 0.18
Testing set 0.57 0.39 0.82 0.38
Stem Training set 0.74 0.13 0.93 0.07
Vegetative Testing set 0.76 0.14 0.78 0.13
growth phase Spike Training set 0.82 0.40 0.94 0.26
Testing set 0.85 0.39 0.73 0.50
Plant Training set 0.75 0.23 0.93 0.12
Testing set 0.63 0.26 0.82 0.23

Leaf Training set 0.86 0.27 0.97 0.13
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Testing set 0.82 0.35 0.84 0.30

Reproductive Stem Training set 0.77 0.12 0.96 0.06
growth phase Testing set 0.64 0.15 0.77 0.14
Spike Training set 0.52 0.16 0.89 0.09

Testing set 0.31 0.15 0.48 0.16

Grain Training set 0.72 0.20 0.93 0.11

Testing set 0.44 0.23 0.55 0.25

Plant Training set 0.79 0.11 0.95 0.06

Testing set 0.62 0.15 0.74 0.13

330

331 3.4 PLSR and RF models using texture features for nitrogen content estimation

332 In Table 3, it can be found that during the vegetative growth phase, both PLSR (R? = 0.84,
333 RMSE=0.16) and RF (R?>=0.97, RMSE = 0.06) model performed the best for plant NC estimation
334  in the training set. And for leaf and spike NC estimation, both PLSR and RF models achieved great
335  performance with R? above 0.79, RMSE below 0.28 in the training set and R? above 0.53, RMSE
336  below 0.35 in the testing set. Besides, the results also showed that it was more stable for the
337  prediction of leaf NC than stem NC since the worse performance of both PLSR and RF models in
338 the testing set.

339 In the reproductive growth phase, the performance of the PLSR (R? = 0.88, RMSE = 0.25 in
340  training, R?=0.88, RMSE = 0.32 in testing) and RF (R?=0.97, RMSE = 0.14 in training, R = 0.76,
341  RMSE = 0.38 in testing) models for the leaf NC prediction were improved. However, the
342  performance of the PLSR (R? = 0.57, RMSE = 0.16 in training and R?> = 0.16, RMSE = 0.18 in
343  testing) and RF (R? = 0.91, RMSE = 0.09 in training, R?> = 0.31, RMSE = 0.19 in testing) models
344 for the spike NC prediction was worse than that in the vegetative growth phase. For plant and stem
345  NC monitoring, no significant differences were found between two different stages. Besides, the
346  prediction of grain NC has achieved fairly good performance in the training set though it did not
347 allow great performance in the testing set. We can find the PLSR and RF models with the best
348  overall performance in the vegetative and reproductive growth phases in figure 7.
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350  Figure 7. The PLSR and RF models which performed best in vegetative and reproductive growth
351  phases using TFs only. (a) the PNC PLSR model in VS. (b) the LNC PLSR model in RS. (c) the
352  PNC RF model in VS. (d) the LNC RF model in RS.

353 Figure 8 shows the top 10 important TFs for NC estimation models except for the RF models
354  for spike and plant NC for there were fewer than 10 TFs were screened. In the vegetative growth
355  phase, The best TF for leaf, stem, spike and plant NC were Reg_mean (VIP = 1.41), G_cor (VIP =
356 1.43), B cor (VIP = 1.29) and Reg mean (VIP = 1.42) for the PLSR models. For RF models,
357  B_mean with %IncMSE of 10.43, R_mean with %IncMSE of 12.69, G_mean with %IncMSE of
358 7.66 and G_mean with %IncMSE of 11.90 was the best TFs for the estimating of leaf, stem, spike
359 and plant NC, respectively. In the reproductive growth phase, for PLSR models, R ho, G_mean,
360 Reg cor, B_cor and Reg_mean have been found to be the best TFs for leaf, stem, spike, grain and
361  plant NC, respectively, with the VIP of 1.32, 1.41, 1.40, 1.40 and 1.47. In contrast in the RF models,
362 R _dis, G mean, G _con and contributed the most to the leaf-, stem-, and grain NC preditions,
363  respectively, with the %IncMSE of 12.04, 8.38 and 7.75. B_cor performed the best for spike and
364  plant NC predictions, respectively, with %IncMSE of 10.52 and 13.22. Furthermore, the result also
365  indicated that the TFs of mean and cor accounted for a relatively large proportion of the variations
366  in both PLSR and RF models.

367 Table S5 shows the number of TFs selected by the PLSR and RF models in different growth
368  phases. It can be found that more TFs were selected by the PLSR models than the RF models.
369  Meanwhile, by counting the TFs screened by the two models, it was found that almost all the
370  important TFs screened out by the models were based on the bands of R, G and B instead of NIR
371  and REG bands (See detail in Supplementary Material S2).
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373  Figure 8. Top 10 important TFs for the NC monitoring of different organ and the whole plant
374 selected by different models. (a) the TOP 10 important TFs for NC monitoring in vegetative growth
375  phase selected by PLSR. (b) the TOP 10 important TFs for NC monitoring in reproductive growth
376  phase selected by PLSR. (¢) the TOP 10 important TFs for NC monitoring in vegetative growth
377  phase selected by RF. (d) the TOP 10 important TFs for NC monitoring in reproductive growth
378  phase selected by RF. LNC, STNC, SPNC, GNC and PNC are leaf, stem, spike, grain and plant NC,
379  respectively.

380  Table 3. Nitrogen content estimates using 40 texture features.

Growth stage Part of winter Data set PLSR RF

wheat R? RMSE R? RMSE

Leaf Training set 0.79 0.28 0.94 0.14

Testing set 0.72 0.31 0.87 0.35

Stem Training set 0.81 0.11 0.96 0.06

Vegetative Testing set 0.53 0.21 0.77 0.13

growth stage Spike Training set 0.57 0.34 0.97 0.18

Testing set 0.60 0.44 0.94 0.23

Plant Training set 0.87 0.16 0.97 0.08

Testing set 0.72 0.24 0.90 0.17

Leaf Training set 0.88 0.25 0.97 0.14

Testing set 0.88 0.32 0.76 0.38

Reproductive Stem Training set 0.73 0.13 0.94 0.07

growth stage Testing set 0.76 0.12 0.84 0.13

Spike Training set 0.57 0.16 0.91 0.09

Testing set 0.16 0.18 0.31 0.19

Grain Training set 0.66 0.23 0.93 0.12

Testing set 0.26 0.28 0.40 0.27

Plant Training set 0.74 0.13 0.94 0.06

Testing set 0.68 0.14 0.74 0.13

381 3.5 PLSR and RF models using the combination of VIs and texture features for nitrogen

382 content estimation
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Table 4 showed that the combination of image VIs and TFs did improve the monitoring
accuracy of NC in winter wheat to a certain extent, but the effect was not significant. Among all the
models in the vegetative growth phase, the estimation for spike NC has allowed great performance
in both PLSR (R? = 0.93, RMSE = 0.25 in training and R> = 0.77, RMSE = 0.33 in testing) and RF
(R? = 0.98, RMSE = 0.16 in training and R? = 0.94, RMSE = 0.23 in testing) models. And better
results have been achieved for plant NC monitoring than leaf stem NC monitoring (R?=0.82 - 0.87,
RMSE = 0.06 - 0.26 in the training set, R> = 0.52 - 0.94, RMSE = 0.17 - 0.40 in testing set).

In the reproductive growth phase, the worst performance was obtained when estimating spike
NC (R? = 0.56, RMSE = 0.16 in the training set and R?> = 0.24, RMSE = 0.17 in the testing set for
PLSR model and R? = 0.91, RMSE = 0.08 in the training set and R?> = 0.43, RMSE = 0.17 in the
testing set for RF model). The performance of grain NC was also not so satisfactory in testing set,
with R? of 0.41 and RMSE of 0.24 in the PLSR model and R? of 0.43 and RMSE of 0.17 in the RF
model. Apart from that, the best performance was achieved in leaf NC prediction with the highest
R? 0f 0.86 in PLSR model and 0.98 in RF model. Figure 9 shows the PLSR and RF models with the
best overall performance in the vegetative and reproductive growth phases.
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Figure 9. The PLSR and RF models which performed best in vegetative and reproductive growth
phases using TFs only. (a) the SPNC PLSR model in VS. (b) the LNC PLSR model in RS. (¢) the
SPNC RF model in VS. (d) the LNC RF model in RS.

Figure 10 shows the TOP 10 selected features based on the PLSR and RF models. In the
vegetative growth, the feature with the highest VIP was Reg_mean (VIP = 1.51) for leaf NC, G_cor
(VIP = 1.32) for stem NC, MCARI2 (VIP = 1.66) for spike NC and Reg _mean (VIP = 1.43) for
palnt NC in PLSR model. In RF model, B_mean with %IncMSE of 9.26, R_mean with %IncMSE
of 10.54, G_mean with %IncMSE of 7.53 and 12.39 was the best feature for leaf, stem, spike and
plant NC. In the reproductive growth stage, GOSAVI, Reg mean, SAVI-GREEN, GRVI and
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408 Reg mean (with VIP of 1.24, 1.36, 1.39, 1.60 and 1.45) contributed most to the leaf, stem, spike,
409  grain and plant NC in PLSR models. R _var, GRVI, B_cor, SAVI and B_cor (with %IncMSE 0f9.79,
410  7.94, 8.01, 7.72 and 11.29) contributed most to the corresponding NC estimation in RF models.
411  Compared with the best image features selected in different growth phases of winter wheat, it also
412  reflected that the TFs could be more suitable for the monitoring of NC of winter wheat in general.
413  As for the total number of image features (VIs and TFs) selected by the PLSR and RF models in
414  different growth phases. For all the PLSR and RF models except for STNC, more TFs was screened
415  than VlIs in the vegetative growth phase. Interestingly, in the reproductive growth phase, more VIs
416  were screened out than TFs in all the PLSR and RF models except for SPNC, which was different
417  from the characteristics of in the vegetative growth phase (See detail in Supplementary Material S2).
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419  Figure 10. Top 10 important image features (VIs and TFs) for the NC monitoring of different organs
420  and the whole plant selected by different models. (a) the TOP 10 important image features for NC
421  monitoring in the vegetative growth phase selected by PLSR. (b) the TOP 10 important image
422  features for NC monitoring in the reproductive growth phase selected by PLSR. (¢) the TOP 10
423  important image features for NC monitoring in vegetative growth phase selected by RF. (d) the TOP
424 10 important image features for NC monitoring in the reproductive growth phase selected by RF.
425  LNC, STNC, SPNC, GNC and PNC are leaf, stem, spike, grain and plant NC, respectively.
426  Table 4: Nitrogen content estimates using the combination of vegetation indices and texture features.
Growth phase Part of winter Data set PLSR RF
wheat R? RMSE R? RMSE
Leaf Training set 0.83 0.26 0.95 0.14
Testing set 0.54 0.40 0.87 0.35
Stem Training set 0.82 0.11 0.96 0.06
Vegetative Testing set 0.52 0.20 0.80 0.12
growth phase Spike Training set 0.93 0.25 0.98 0.16
Testing set 0.77 0.33 0.94 0.23
Plant Training set 0.86 0.17 0.97 0.08
Testing set 0.69 0.23 0.90 0.17
Leaf Training set 0.86 0.27 0.98 0.12
Testing set 0.85 0.31 0.83 0.32
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Reproductive Stem Training set 0.79 0.11 0.95 0.06
growth phase Testing set 0.75 0.13 0.85 0.12
Spike Training set 0.56 0.16 0.91 0.08

Testing set 0.24 0.17 0.43 0.17

Grain Training set 0.78 0.18 0.93 0.11

Testing set 0.41 0.24 0.58 0.23

Plant Training set 0.81 0.11 0.96 0.06

Testing set 0.74 0.13 0.76 0.12

427 4 Discussion

428 4.1 UAV-based predictions of nitrogen content in organs and whole plants of winter wheat

429 In this study, during vegetative and reproductive growth phases, not only the correlation
430  between image features (VIs and TFs) and NC of winter wheat were analyzed, but also the
431  corresponding PLSR and RF models were constructed for the different organs or the whole plant of
432  winter wheat. As found in several preview studies (Zheng et al., 2018; Fu et al., 2020), the leaf and
433  plant NC can be well estimated using VIs or TFs derived from UAV-based images. Our study has
434  also shown great performance of both types of variables for leaf and plant NC predictions during
435  the vegetative and reproductive growth phases. It is worth noting that these variables extracted from
436  the images obtained from the UAV have the capability of estimating the stem, spike and grain NC.

437 It is worth noting that the spike NC always yielded the lowest correlations with VIs and TFs
438  when compared to other organs or the whole plant (Table 3) and, that the predictions for spike NC
439  were not as satisfactory as that for other organs. In contrast, the leaf-, stem- and plant NC were
440  highly correlated in different growth stages, especially in the reproductive growth phase (Figure 11).
441  The relatively low correlations in the vegetative growth phase suggest that the rapid changes in
442  canopy structure during the vegetative growth phase constrained the predictions for leaf, stem and
443  plant NC (Yu et al., 2014). In this study, the VIs and TFs were derived from the delineated subplots
444  (about 30 m?), which reflected the spectral reflectance as a response to the crop canopy variations.
445  Compared to spikes, it is certain that, in orthophotos acquired by the UAV, leaves contributed
446  relatively large to the canopy spectrum (Liu et al., 2017; Yang et al., 2021), which may explain the
447  relatively weak correlations with the extracted VIs and TFs and the relatively high predictions errors
448  (RMSE) for spike NC.
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450  Figure 11. Correlation between nitrogen content and NAE from different organs or the whole plant
451 of winter wheat. LNC, STNC, SPNC, GNC and PNC are leaf, stem, spike, grain and plant NC,
452  respectively. NAE is the nitrogen agronomic efficiency. VS and RS means vegetative and
453  reproductive growth phases. NAE are correlated with the NC of different organs or the whole plant
454  obtained from two stages (booting and heading stage) in VS, and five stages (AFS5, AF10, AF15,
455  AF20,AF25)inRS.

456 4.2 Comparisons between the vegetative and reproductive growth phases

457 Many studies have raised the importance of growth stage on crop agronomic parameters
458 monitoring (Xue et al., 2004; Li et al., 2010; Wang et al., 2019) found the leaf and plant NC could
459  be well predicted during the vegetative growth phase including tillering, jointing, booting and
460  heading stages of rice. Similar studies revealed the monitoring performance of leaf NC for winter
461  wheat in the reproductive growth phase could be worse than it is performed in vegetative growth
462  phase (Zheng et al., 2018; Ge et al., 2021; Wang et al., 2022b).

463 In contrast, our results showed inconsistency regarding the best growth stages for leaf NC
464  prediction. Based on our PLSR and RF models, better prediction performance could be achieved for
465  predicting leaf NC in the reproductive growth phase though predicting leaf NC in the vegetative
466  growth phase was also successful. This is attributed to the fact that the unclosed canopy and soil
467  would be the confusing factors for canopy reflectance in the early vegetative growth phase (Li et
468  al., 2010). Also, the large variations in biomass over early growth stages will also be responsible for
469  the worse performance of leaf NC prediction (Yu et al., 2013). In addition, the prediction of spike
470  NC was found to have the opposite trend compared to the leaf NC, i.e., the vegetative growth phase
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471  allowed the best prediction of spike NC. As the reproductive organ of winter wheat, the spike acts
472  as a major photosynthetic organ during the grain filling and has great relevance for plant nitrogen
473 assimilation (Sanchez-Bragado et al., 2014; Vicente et al., 2018). Recent studies have revealed that
474  spikes have certain effects on canopy reflectance spectra, though the complexity of canopy structure,
475  plant density and morphoanatomical and compositional characteristics of spikes in response to
476 canopy spectra still needs to be investigated (Li et al., 2015; Vergara-Diaz et al., 2020).

477 After reaching the reproductive growth phase, the grain appears and becomes the “growth
478  center” of the plant; the N transport mainly happens from the leaf, stem, glume and awn to grain
479 (Maydup et al., 2012; Sanchez-Bragado et al., 2016; Vergara-Diaz et al., 2020). The bad
480  performance of grain NC using PLSR and RF models indicated that grain could be the major
481  confusing factor for the bad performance of spike NC monitoring in the reproductive growth phase,
482  since we could not fully capture the spectral information of grain which was wrapped in glume.
483  Furthermore, compared with leaf, the delayed senescence of spike may also worsen the performance
484  for spike NC monitoring in the reproductive growth phase (Kong et al., 2015; Vicente et al., 2018).
485  However, no significant differences have been found between the two growth phases for the plant
486  ant stem NC predictions, which does not allow us to conclude on which stages could be more
487  suitable for the whole plant and stem NC estimation.

488 4.3 Comparison between image feature types (VIs and TFs)

489 Our result has shown that both VIs and TFs can be great features for winter wheat N monitoring.
490  However, inconsistent with the results which were highlighted in crop biomass monitoring (Yue et
491  al, 2019; Zheng et al., 2019), the combination of VIs and TFs didn’t significantly improve the
492  estimation accuracy of NC of winter wheat in our study. Actually, there were a few studies focused
493  on the contribution of the integration of VIs and TFs for crop N monitoring and generally, they
494  concluded that combining VIs and TFs performed better than only using the VIs or TFs, e.g., for
495  leaf and plant NC monitoring (Jia and Chen, 2020; Zheng et al., 2020). The multiple types of VIs
496  can make more extensive use of waveband information and provide more complementary predictors
497  for the NC model construction. Thus, the machine learning algorithms have the ability to integrate
498  and utilize the spectral information contained in VIs, which could be the explanation for the great
499  performance achieved for the combined use of VIs (Wang et al., 2022a). However, probably due to
500  the contrasting correlation patterns observed here - VIs and TF were correlated positively and
501  negatively with NC respectively, the combined use of both types of variables did not improve the
502  predictions of NC.

503 By comparing screened image features, there are a few interesting patterns that deserve our
504  attention. Firstly, compared to the image features screened out in the vegetative growth phase
505  (Figures 6, 8, 10), more features with strong consistency were screened out for the PLSR and RF
506  models of different organs in the reproductive growth phase. This could be explained by the
507  complicated canopy structure of winter wheat in the late growth stages, leading to many problems
508 for crop monitoring, such as the saturated VIs (Haboudane et al., 2004). Secondly, among all the
509  top 10 VIs screened out for different organs, most VIs such as MCARI2, MTCI, TCARI,
510 TCARI/OSAVI, SAVI and OSAVI could fall into the ‘soil-line’ VIs and the VIs related to
511  chlorophyll. For example, MCARI2 was reported to be the sensitive VI for the monitoring of N
512  status in the early stage of maize and winter wheat (Nigon et al., 2020). MTCI have also been
513  reported to be the promising spectral index for determining N stress level of potato (Nigon et al.,
514  2015), monitoring the leaf NC of rice (Tian et al., 2011) and estimating the N status of maize (Li et
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515  al., 2014). As for the soil-line VIs, lots of studies have demonstrated its’ promise for N monitoring
516 (Gabriel et al., 2017; Klem et al., 2018; Guo et al., 2019). The high correlation between N and
517  chlorophyll and the strong ability to minimize soil background influence may be the main reason
518  for the great performance of these indices in the early growth stages. In contrast, the VlIs selected in
519  the reproductive growth phase were not as consistent as they were in the vegetative growth phase.
520  Thirdly, the result of selected TFs showed that among all the TFs derived from five different band,
521 more TFs based on R, G and B band were selected by our PLSR and RF models. Also, the texture
522  mean and cor features accounted for a large proportion in the selected top 10 TFs. It has been know
523  that the mean and cor exhibited great performance in classification tasks (Wan and Chang, 2019).
524 Similar results have been reported for the performance of the texture mean for biomass monitoring
525  in (Fuetal, 2021). The texture mean reflects the degree of regularity of the texture and cor describes
526  the similarity of elements within a line or a row in the GLCM features (Zhu et al., 2022), and thus
527 it has the capability of smoothing the image and minimizing the interference of background. Lastly,
528  although the performance of the combination of VIs and TFs did not show better performance for
529 N monitoring compared with the models based only on VIs and TFs, the top 10 image features
530 filtered by our models based on the combination of VIs and TFs indicated that TFs deserve more
531  attention in the future research since more TFs were selected among the top 10 image features in
532 almost all the models. Overall, these TFs should be further evaluated in future research, such as
533  whether the accuracy of the models can be improved when using the normalized texture index or
534  when monitoring nitrogen in different crop species and varieties.

535 4.4 UAV-based predictions of N use efficiency

536 As an important indication for crop N use efficiency, the potential of NAE for crop N status
537  monitoring has not been well evaluated using UAV-based imaging. There were only limited studies
538  reported the attempts on the UAV-based estimation of N use efficiency, which for instance is
539  reflected by the correlation between the UAV-based multispectral traits with NUE (Yang et al., 2020).
540  (Liang et al., 2021) has revealed the capability of using UAV multispectral imagery for the
541  identification of high N use efficiency phenotype in rice. Our results demonstrated that, by only
542  using the latent variables extracted from UAV images, we could predict the NAE (Figure 12),
543  highlighting the prospect of using of UAV-based images to estimate the indicators of NUE. The
544 results of Pearson’s correlation analysis (Figure 4) over growth stags also confirm the findings of
545  previous studies that the VIs derived from the multi-temporal images have the potential to forecast
546  the canopy growth dynamics in relation to NUE. Also, the relatively better correlations between NC
547  and NAE in the vegetative growth phase (Figure 11) than in the reproductive growth phase suggest
548  the potential of assessing NUE in the early stages, e.g., for crop variety testing purposes.

549 Furthermore, since the NAE is derived from the yield, the high correlation between VIs and
550  NAE might also be due to the observed better performance for spike NC predictions in the vegetative
551  growth phase. It is worth noting that the application of N fertilizer of winter wheat is mainly in the
552  early growth stages during the vegetative growth phase, and thus the accurate monitoring of wheat
553 N status in the early growth stage will provide more practical implications for wheat N fertilization
554  for improved NUE and reduced environmental costs.
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556  Figure 12. The performance of using the ‘Component 1’ and the predicted SPNC from the PLSR
557  model in the vegetative growth phase for NAE predicting. (a) the performance of using the
558  component 1 in the PLSR model for NAE predicting in the booting stage; (b) the performance of
559  using the component 1 in the PLSR model for NAE predicting in the heading stage; (c) the
560  performance of using the predicted SPNC in the PLSR model for NAE predicting in booting stage;
561 (d) the performance of using the predicted SPNC in the PLSR model for NAE predicting in heading
562  stage.

563 5 Conclusions

564 In this study, the muti-temporal measured nitrogen content (NC) in different organs or the
565  whole plant of winter wheat obtained by field sampling was associated with the corresponding
566  images acquired by a muti-spectral UAV. Stem-, spike- and plant- NC are found to decrease as dry
567  matter weight (DMW) increased. Positive correlations were found between most of the VIs and NC,
568  while negative correlations were found between most of the TFs and NC. PLSR and RF models
569  successfully employed the VIs, TFs and their combinations to estimate the NC in the whole plant
570  and different organs. PLSR latent variables extracted from the VIs and TFs explained successfully
571  predicted the nitrogen agronomic efficiency (NAE). Although no significant differences were found
572  between the VIs and TFs in their performance in predicting NC, some Vs like MCARI2 and TFs
573  like texture mean were found to perform well in predicting NC. Finally, this study demonstrates that
574 it is feasible to use UAV imaging and PLS/RF models to estimate NC and nitrogen use efficiency
575  both in the vegetative and reproductive growth phases of winter wheat.

576 DATA AVAILABILITY STATEMENT
577  The datasets generated for this study are available on request to the corresponding author.
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