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Abstract 12 

Although unmanned aerial vehicle (UAV) remote sensing is widely used for high-throughput crop 13 

monitoring, few attempts have been made to assess nitrogen content (NC) at the organ level and its 14 

impact on nitrogen use efficiency (NUE). Also, little is known about the performance of UAV-based 15 

image texture features in crop nitrogen and NUE monitoring. In this study, eight flying missions 16 

were carried out throughout different stages of winter wheat (from the jointing stage to the stage 25 17 

days after flowering) to acquire multispectral images. Forty-three multispectral vegetation indices 18 

(VIs) and forty texture features (TFs) were calculated from images and fed into the partial least 19 

squares regression (PLSR) and random forest (RF) regression models for predicting nitrogen-related 20 

indicators. Our main purposes were to (1) evaluate the potential of UAV-based images to predict 21 

NC in different organs of winter wheat and nitrogen agronomic efficiency (NAE); (2) compare the 22 

performances of VIs, TFs and the combination of them for nitrogen monitoring. The results showed 23 

that the correlation between different features (VIs and TFs) and NC in different organs varied 24 

between the vegetative and reproductive phases. Most of VIs were found to be positively correlated 25 

with NC, while most of the TFs were negatively correlated with NC. PLSR latent variables extracted 26 

from VIs and TFs explained 80% of the variations in NAE. However, no significant differences 27 

were found between VIs and TFs in their performance in predicting NC in different organs. This 28 

study demonstrated the promise of applying UAV-based imaging to estimate NC and NAE in 29 

different organs of winter wheat.  30 

Keywords: unmanned aerial vehicle; organs; nitrogen content monitoring; nitrogen agronomic 31 

efficient; vegetation indices; texture features; vegetative and reproductive growth phases 32 
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1 Introduction 33 

 Higher requirements for crop yield and quality are needed in modern society. Nitrogen (N), as 34 

a vital macronutrient, has always been regarded as a key factor in improving crop yield and quality 35 

(Wang et al., 2016). In order to ensure high yield, excessive use of N fertilizers in agricultural 36 

production have been reported in the North China Plain (NCP) (Cui et al., 2008). Excessive use of 37 

N fertilizer causes environmental problems such as soil acidification and water pollution(Ju et al., 38 

2009; Schroder et al., 2011). However, insufficient and inefficient (e.g., wrong time) N fertilizer 39 

applications affect the photosynthesis of crops, resulting in reduced crop yield and poor quality 40 

(Chlingaryan et al., 2018; Sinclair et al., 2019). Efficient N management for improved N use 41 

efficiency (NUE) is critical not only for grain yield and quality but also for environment 42 

conservation. Thus, continuous monitoring of crop N status is necessary for the planning of N 43 

fertilization measures in the vegetative growth phase and for providing valuable information 44 

forecasting yield quality in the reproductive phase (Hank et al., 2019).  45 

 Traditional methods for crop N status monitoring based on filed destructive sampling and 46 

chemical analysis such as the Kjeldahl technique has the disadvantages of being time-consuming, 47 

labor-intensive and costly, limiting the progress in accurate and continuous assessment of crop N 48 

status in field (Yao et al., 2015; Onojeghuo et al., 2018). A portable chlorophyll meter was first used 49 

for the diagnosis of the leaf N content of rice, and achieved great performance (T. et al., 1986). 50 

Subsequently, many studies using portable chlorophyll meters such as SPAD-502 for the monitoring 51 

of crop NC have been reported (Errecart et al., 2012; Yuan et al., 2016; Kitonyo et al., 2018). Besides, 52 

other handheld crop sensors like GreenSeeker, Crop Circle multispectral active canopy sensors have 53 

been developed and applied in the diagnosing of crop N status (Li et al., 2008; Stroppiana et al., 54 

2009; Cao et al., 2013). However, most proximal sensing tools face the challenge of limited 55 

throughput. In recent years, the newly emerged UAV remote sensing technology has allowed for 56 

high-throughput monitoring and mapping of agricultural ecosystems and has been proven to be 57 

convenient and efficient for crop N status monitoring (Kalacska et al., 2015). 58 

 With the development of UAV technology, it has been widely used in precision agriculture for 59 

its low cost, flexibility and high temporal and spatial resolution (Bendig et al., 2015). Monitoring N 60 

status using UAVs has been found successful in different crops in previous studies. For example, 61 

(Li et al., 2018c) found it held great potential using UAV-based active sensing for monitoring rice 62 

leaf N status. An octocopter UAV was used for capturing multi-angular images to estimate the 63 

nitrogen content and accumulation of winter wheat at leaf and plant scale, with the highest accuracy 64 

obtained for leaf NC from single-angle images (Lu et al., 2019). There are also many studies about 65 

N determination using UAV in other crops such as maize (Maresma et al., 2016), winter oilseed rape 66 

(Liu et al., 2018) and sorghum (Li et al., 2018b). 67 

 Typically, several methods including statistical regression techniques alongside physically 68 

based models are adopted in phenotyping. The physically based models have not been fully 69 

examined for crop N monitoring so far though better transferability can be offered (Wang et al., 70 

2015). A few studies proposed modification of radiative transfer models such as the N-PROSPECT 71 

(Yang et al., 2015) or N-PROSAIL (Li et al., 2018a) for monitoring crop N status at leaf or canopy 72 

scale. However, the models are restricted to few crops and the parameters are complex and not 73 

convenient to obtain in agricultural practice (Verrelst et al., 2015; Yang et al., 2015), limiting their 74 

use in crop N monitoring. Actually, previous works on N diagnosis in crops predominantly adopted 75 

statistical regression techniques. Different spectral features were used to establish parametric or 76 
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nonparametric linkages with crop physiological and biochemical traits including NC and many other 77 

N related indicators. A range of studies has used VIs to construct N estimation empirical regression 78 

models and achieve great performance (Song et al., 2016; Tilly and Bareth, 2019). Through the 79 

combination of different bands, VIs could be sensitive to the differences (e.g., biomass variation 80 

among different stages) in crop phenotypes. (Wang et al., 2012) reported an effective approach of 81 

leaf N monitoring using three-band VIs both in wheat and rice. (Zhang et al., 2018) constructed the 82 

modified simple ratio index, and found it had a great correlation with wheat NUE. Some published 83 

VIs were proved to be well correlated with leaf NC of maize and a new optimized red-edge 84 

absorption area index was proposed for the estimation of the vertically integrated leaf NC (Wen et 85 

al., 2021). However, crop N monitoring based on single VI could be unreliable due to the limited 86 

band information of single VI. With the development of numerous algorithms such as parametric 87 

regressions, linear nonparametric regression and nonlinear nonparametric regression, one can make 88 

full use of the different bands for crop N monitoring based on VIs (Berger et al., 2020). Texture, as 89 

an important characteristic for image classification, has been used in the estimation of forest 90 

aboveground biomass (Murray et al., 2010; Kelsey and Neff, 2014). Recently, image texture 91 

information have been increasingly used for crop monitoring. (Zheng et al., 2019) found that the 92 

using the combination of textural information with spectral information derived from UAV-based 93 

images could significantly improve the accuracy for rice biomass estimation compared to the use of 94 

spectral information alone. (Yue et al., 2019) has also found similar results in winter wheat biomass 95 

monitoring. (Zheng et al., 2020) found that the integration of texture information and VIs could 96 

significantly improve all N nutrition parameters estimation using multiple linear regression. 97 

However, little is known about the feasibility of using image texture information extracted from 98 

UAV images for assessing crop NUE indicators.  99 

 It is well known that crop growth is a dynamic process with constant nitrogen turnover. The 100 

operation of nitrogen varies in different growth stages and different organs in crops (Ohyama Takuji, 101 

2010). Studies have indicated that different organs could have different effects on the crop spectral 102 

features (Li et al., 2015, 2021). However, few investigations under field conditions address the 103 

differences of estimated the NC in different organs when using UAV-based multispectral data. 104 

Therefore, the main objectives of this study are to (1) evaluate the potential of UAV-based remote 105 

sensing images to predict NC in different organs of winter wheat; (2) compare the performance of 106 

nitrogen monitoring in winter wheat based on VIs, TFs and the combination of them, in combination 107 

with regression algorithms. 108 

2 MATERIALS AND METHODS 109 

2.1 Study Area and Experimental Design 110 

Field trials were conducted at the Wuqiao Experimental Station of China Agricultural 111 

University (37°41′N, 116°37′E) in Hebei Province in the North China Plain (NCP) (Figure 1) within 112 

the winter wheat season of 2020 to 2021. NCP belongs to a warm temperate semi-humid continental 113 

monsoon climate. The average rainfall, temperature and altitude were about 550 mm, 12.5 ℃ and 114 

18 m. JiMai22 (Triticum aestivum L.), one of the most widely grown winter wheat varieties in NCP 115 

was used in this study. It was sowed in October 2020 and harvested in June 2021 with a row spacing 116 

of 15 cm and a density of 430 × 104 ha-1. The experiment followed a block design and five levels of 117 

nitrogen fertilizer treatments were established, including 0 kg N ha-1 (N0), 120 kg N ha-1 (N1), 180 118 

kg N ha-1 (N2), 240 kg N ha-1 (N3) and 300 kg N ha-1 (N4). 120 kg P2O5 ha−1 and 90 kg K2O ha−1 119 

were applied to the soil as basal dressings and the rest of the field management followed the local 120 
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crop production standards throughout the winter wheat season. Besides, three replications were 121 

conducted for each treatment, and each plot area was 40 m2 (10 m × 4 m). 122 

2.2 Data Collection 123 

2.2.1 Field Sampling and NC Determination 124 

 Destructive samplings were performed eight times (dates) during the growth of winter wheat, 125 

including three times in the vegetative growth phase and five times in the reproductive growth phase 126 

of winter wheat (Table 1). 127 

Table 1: Cultivar, treatments and data acquisition schedule. 128 

Winter wheat plants within an area of 0.06 m2 (0.2 m × 0.3 m) of were randomly selected from 129 

each plot and transported back to the laboratory immediately. All plants were separated into different 130 

organs (leaf, stem, spike and grain). The samples of organs were oven-dried for 30 mins at 105 ℃ 131 

and later at 80 ℃ to a constant weight. After obtaining the dry matter weight (DMW) of the different 132 

organs, dried organ samples were ground to pass through a 1 mm screen and stored in plastic bags 133 

for further elemental (N) analysis. At the mature stage of wheat, a 1.8 m2 area of wheat plants were 134 

randomly harvested from each plot to determine the final yield. The micro-Kjeldahl method (A., 135 

1982) was used to determine the total N concentration of different organs. Equation (1) was used to 136 

calculate the plant NC. As one of the indicators for crop NUE, the nitrogen agronomic efficiency 137 

(NAE) can be calculated by equation (2). 138 

𝑃𝑁𝐶 = (𝐿𝑊 × 𝐿𝑁 + 𝑆𝑊 × 𝑆𝑁 + 𝑆𝑃𝑊 × 𝑆𝑃𝑁)/(𝐿𝑊 + 𝑆𝑊 + 𝑆𝑃𝑊)  (1) 139 

𝑁𝐴𝐸 = (𝐺𝑌𝑛 − 𝐺𝑌0)/𝑁𝐹𝐴  (2) 140 

Where LW, SW, PW were the DMW of leaf, stem and spike, respectively. LN, SN, SPN were the N 141 

concentration of leaf, stem and spike, respectively. And GYn is the grain yield with N fertilizer 142 

application, GY0 is the grain yield without N fertilizer application. NFA means the amount of applied 143 

N fertilizers (kg/ ha). 144 

2.2.2 UAV Image Acquisition 145 

 The acquisition dates of UAV-based images can be found in Table 1. All UAV flight missions 146 

were carried out at approximately 10:00 am and 14:00 pm on sunny days. DJI Phantom 4 quadcopter 147 

(DJI, Shenzhen, Guangdong, China), which was equipped with a consumer-grade multispectral 148 

camera was used in this study. The camera consists of six sensors, including five monochromatic 149 

sensors and one Red-Green-Blue (RGB) sensor. The spectral resolution of the monochromatic 150 

sensors includes: a blue band with 450 nm center and 16 nm bandwidth, a green band with 560 nm 151 

center and 16 nm bandwidth, a red band with 650 nm center and 16 nm bandwidth, a red-edge band 152 

with 730 nm and 16 nm bandwidth and a near-infrared band with 840 nm and 26 nm bandwidth. 153 

Cultivar N rate (Kg ha-1) UAV Flight Date Field sampling Date Growth stage 
Zadoks 

Codes 

JiMai22 

0 (N0), 80 (N1), 

120 (N2), 160 

(N3), 200 (N4) 

18 April 2021 18 April 2021 Jointing stage (JS) GS31 

27 April 2021 27 April 2021 Booting stage (BS) GS40 

5 May 2021 5 May 2021 Heading stage (HS) GS50 

12 May 2021 12 May 2021 5 Days after flowering (AF5) GS70 

17 May 2021 17 May 2021 10 Days after flowering (AF10) GS75 

22 May 2021 22 May 2021 15 Days after flowering (AF15) GS80 

27 May 2021 27 May 2021 20 Days after flowering (AF20) GS85 

1 June 2021 1 June 2021 25 Days after flowering (AF25) GS90 
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More specific parameters of the UAV and the camera are demonstrated in (Wang et al., 2022a). 154 

Nine ground control points (GCPs) were evenly placed over the field for subsequent image 155 

geometry correction. To record the precise coordinate information of GCPs, a D-RTK 2 high-156 

precision GNSS mobile station (DJI, Shenzhen, Guangdong, China) operating at centimeter-level 157 

positioning precision with uninterrupted data transmission was used in this experiment. The UAV 158 

was flown over the winter wheat field at an altitude of 25 m above the ground level. All flight 159 

missions were conducted using the DJI go pro software (DJI, Shenzhen, Guangdong, China), with 160 

the heading and side overlaps of 80% and 70%, respectively. All acquired images were saved in 161 

TIFF format on the SD card onboard the UAV. 162 

2.3 Image processing 163 

2.3.1 Generation of orthophoto maps 164 

 We used the Pix4D (Pix4D SA, Lausanne, Switzerland) based on the structure-from-motion 165 

(SfM) technique to generate orthophoto images. Following image alignment, matching, mosaicking, 166 

sparse point cloud, and dense point cloud constructing, the orthoimages were generated. The ‘Multi-167 

spectral Ag’ template was selected as the processing model for the orthomosaic reflectance images. 168 

The coordinates of GCPs were used for orthomosaic georeferencing by manually identifying the 169 

points after generating the sparse point cloud. Finally, five georeferenced single-band orthophotos 170 

were obtained in each observed stage with the Geo-TIFF format. 171 

2.3.2 Selection and extraction of vegetation index and image texture 172 

 Forty-three nitrogen-related VIs (Table S1 in Supplementary Material S1) were screened for 173 

further analysis. QGIS (QGIS Version 3.14) was used to calculate the vegetation index maps. We 174 

used the function of the “raster calculator” to obtain the VI-maps based on single-band orthophotos 175 

generated by Pix4D for each observation stage. Also, eight grey-level co-occurrence matrix 176 

(GLCM)-based textures including the mean (Mean), variance (Var), homogeneity (Hom), contrast 177 

(Con), dissimilarity (Dis), entropy (Ent), second moment (Sec), and correlation (Cor) (Haralick et 178 

al., 1973) were computed using the ENVI software (Exelis Visual Information Solutions, Boulder, 179 

Colorado, USA) with the size of moving window of 5 × 5 and in the direction of 45° for all the five 180 

single-band orthophotos (Table S2 in Supplementary Material S1). Next, regions of interest (ROIs) 181 

were selected for each plot, and the mean values of the VI-maps and texture maps were extracted 182 

using the “Zonal Statistic” function in QGIS. 183 

2.4 Model development and evaluation 184 

2.4.1 Model calibration 185 

 Correlation analysis was performed for the VIs and the nitrogen content of different organs. 186 

Meanwhile, to evaluate the performance of the 43 VIs and 40 TFs obtained from the UAV-based 187 

images, the Pearson correlations between VIs/TFs and NC of winter wheat were implemented 188 

during the vegetative and reproductive growth phase. For further determination optimal 189 

combination of multispectral VIs, TFs and regression algorithms for nitrogen prediction, the Partial 190 

Least Squares Regression (PLSR) and Random Forest (RF) algorithms were adopted in this study.  191 

Partial least squares regression is one of the most used algorithms to search the basic 192 

relationship between two matrices (independent and dependent variables), that is, a latent variable 193 

method for modeling the covariance structure in these two vector spaces. It has the advantages of 194 

being stable, and suitable for small datasets and can avoid multicollinearity. By conducting the one-195 

sigma algorithm (Wold et al., 2001), the optimal number of latent variables was determined. For the 196 
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evaluation of the contribution of different VIs to the prediction model, the Variable Importance in 197 

Projection (VIP) criterion was introduced (Hastie et al., 2005). In general, variables with a VIP score 198 

greater than 1 are considered to be more important to the model. Meanwhile, the larger the VIP 199 

value obtained by the variable, the greater the contribution of the variable to the model. 200 

The random forests algorithm was developed by (Breiman and Cutler, 2012) in 2001. As a 201 

typical ensemble algorithm, it is composed of multiple unrelated decision trees, and the final output 202 

of the model is jointly determined by each decision tree in the forest. It shows a promising capability 203 

to avoid overfitting by sampling the predictor space randomly. The number of decision tree (ntree) 204 

and the input variables per node (mtry) are two key hyperparameters that have great impact for the 205 

complexity of RF models (Wang et al., 2019). In this study, they were selected based on the root 206 

mean square error (RMSE) with the RF algorithm. Besides, as an effective indicator for evaluating 207 

the contribution of variables to the model, the percentage increase in mean squared error (%IncMSE) 208 

(Farrés et al., 2015) was used in our research. By using the function of ‘rfPermute’ in RF models, 209 

the image feature with great importance for the models can be screened out. 210 

All datasets were randomly divided into a training dataset (80%) and a test dataset (20%). The 211 

packages “pls” (Mevik and Wehrens, 2007) and “randomForest” (Breiman and Cutler, 2012) were 212 

used to construct the prediction models in R programming language in R Studio (R Version 3.6.1).  213 

2.4.2 Model evaluation  214 

The 1:1 line of the estimated and measured nitrogen concentrations were used to assess the 215 

fitness of different prediction models. Coefficients of determination (R2) and root mean square error 216 

(RMSE) were selected to evaluate the performances of the different models. Generally, the higher 217 

the R2 and the lower the RMSE, the better the precision and accuracy of the models. These statistical 218 

indicators were expressed as equations (3) and (4): 219 

𝑅2 =  ∑ (𝑥𝑖
𝑛
𝑖=1 − 𝑥̅)2(𝑦𝑖 − 𝑦̅)2/ ∑ (𝑥𝑖 − 𝑥̅)2 ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1
𝑛
𝑖=1  (3) 220 

𝑅𝑀𝑆𝐸 =  √1/𝑘 ∑ (𝑥𝑖
𝑛
𝑖=1 − 𝑦𝑖)2 (4) 221 

Where n is the number of samples, i is the ith sample, 𝑥𝑖  and 𝑦𝑖 stand for the estimated NC 222 

values and measured nitrogen concentration values, 𝑥̅ and 𝑦̅ stand for the average estimated NC 223 

values and measured NC values, respectively. Figure 1 shows the flowchart of the experiment.  224 
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 225 
Figure 1. The flowchart of the key steps for data collection and analysis in this study. 226 

3 RESULTS 227 

3.1 Measured data from destructive sampling 228 

3.1.1 Descriptive analysis of NC and dry matter weight (DMW)  229 

 As shown in Table S3 in Supplementary Material S1, the DMW ranges from 1.22 to 4.18 t/ha 230 

with CV of 31.01% in leaf DWM, from 2.72 to 9.87 t/ha with CV of 39.71% in stem DMW, from 231 

0.42 to 2.37 t/ha with CV of 51.53% in spike DMW, and from 3.97 to 15.96 t/ha with CV of 31.71% 232 

in plant DMW during the vegetative growth phase. For the reproductive growth phase, leaf-, stem-, 233 

spike-, grain- and plant DWM ranges from 0.84 to 3.93 t/ha, 5.14 to 13.80 t/ha, 1.42 to 11.20 t/ha, 234 

0.26 to 8.14 t/ha and 8.26 to 27.08 t/ha, respectively, with CV of 30.76%, 23.44%, 47.86%, 74.41% 235 

24.06%. 236 

Nitrogen content (NC) varies from 2.24% to 4.95%, 0.85% to 1.81%, 1.99% to 4.73%, 1.45% 237 

to 3.00% in the leaf, stem, spike and plant, respectively, with CV of 16.84%, 19.48%, 31.01% and 238 

20.86% during the vegetative growth phase. For the reproductive growth phase, the leaf, stem, spike, 239 

grain and plant NC varies from 0.91% to 3.64%, 0.29% to 1.31%, 1.41% to 2.60%, 1.62% to 3.06%, 240 

and 0.80% to 1.85%, respectively, with CV of 33.41%, 31.10%, 12.00%, 15.04% and 17.78%. It 241 

can also be found that the variation of leaf NC and stem NC in the reproductive growth phase was 242 

greater than that in the vegetative growth phase (Table S3), which was opposite with the variation 243 

trend of spike NC and plant NC in the vegetative and reproductive growth phases. 244 
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 Figure 2 shows the relationship between the DMW of leaf, stem, spike and plant and the 245 

corresponding NC values for the vegetative and reproductive growth phases. Except for the leaf NC, 246 

NC in the stem, spike and whole plant decrease as DMW increases due to the dilution effect of N 247 

as described in (Lemaire et al., 2008).  248 

 249 

Figure 2. Winter wheat DMW (g/m2) vs. winter wheat nitrogen content in the vegetative and 250 

reproductive growth phases; (a) leaf DMW and leaf NC; (b) stem DMW and stem NC; (c) spike 251 

DMW and spike NC; (d) plant DMW and plant NC. VS and RS means the vegetative and 252 

reproductive growth phases.  253 

3.1.2 Yield and nitrogen agronomic efficiency (NAE) 254 

 Figure 3 depicts the average yield and the corresponding NAE for each N treatment in the 255 

experiment. The highest yield was observed in the N3 treatment, whereas the lowest yield was 256 

observed in the N0 treatment. NAE decreased significantly along with the increase of N fertilizer 257 

inputs. 258 

 259 
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Figure 3. Yield and NAE of each treatment of N. The different small letters indicate significant 260 

differences between treatments. 261 

3.2 Correlation between image features vs. N-related indicators 262 

 Table S4 in Supplementary Material S1 showed the top 5 most relevant VIs and TFs for NC 263 

monitoring of winter wheat. In the vegetative growth phase, the RGBVI, MCARI, MCARI2 and 264 

RGBVI, were the best correlated VIs for leaf, stem, spike and plant NC, respectively, with r of 0.75, 265 

0.80, 0.60 and 0.75. The Reg_mean (r = -0.85), G_cor (r = -0.84), R_con (r = 0.32) and Reg_mean 266 

(r = -0.86) was the best correlated TFs for leaf, stem, spike and plant NC monitoring. In reproductive 267 

growth phase, the GOSAVI and R_ho (with r of 0.88 and 0.84), MSR-REG and G_mean (with r of 268 

0.82 and -0.81), DVI-REG and Reg_mean (with r of 0.56 and -0.64), RTVI-CORE and G_mean 269 

(with r of 0.71 and -0.58) and CVI and Reg_mean (with r of 0.77 and -0.79) yield the highest r with 270 

leaf, stem, spike, grain and plant NC (See detail in Supplementary Material S2).  271 

In general, most of VIs were found to be positively correlated with NC, while most of TFs 272 

were negatively correlated with NC. Among all the organs and the whole plant, it was obvious that 273 

the correlation between spike NC and image features was the lowest. 274 

 Figure 4 shows the absolute value of the r between VIs and NAE in different growth stages. It 275 

is clear that the VIs derived from our UAV images can reflect the change of NAE to a certain extent, 276 

and the correlation decreases with the winter wheat growth in general. 277 

 278 
Figure 4. Variation of the absolute value of the r between VIs and NAE in different growth stage. 279 

The white dots in each box represent the mean value of the absolute value of the r, and the black 280 

dots represent outliers. JS, BS and HS are jointing, booting and heading stage, respectively. And 281 

AF5, AF10, AF15, AF20 and AF25 means 5, 10, 15, 20 and 25 days after flowering. VS and RS 282 

refer to the vegetative and reproductive growth phases, respectively. 283 

3.3 PLSR and RF models using VIs for nitrogen content estimation  284 

 As shown in Table 2, during the vegetative growth phase, the PLSR model obtained the highest 285 

R2 in spike NC estimating both in training and testing sets but the RMSEs were also generally larger 286 

than the ones in the PLSR models. For other organs or the whole plant, there were no obvious 287 
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differences in the estimation during the vegetative growth phase (R2 = 0.74 - 0.77, RMSE = 0.13 - 288 

0.30 in training, R2 = 0.57 - 0.76, RMSE = 0.14 - 0.39 in testing). Our RF model in the vegetative 289 

growth phase allowed the best prediction for spike and plant NC, respectively, in the training and 290 

testing sets. Similar to the PLSR model in the vegetative growth phase, the prediction of NC by the 291 

RF model did not show differences between different organs in wheat or the whole plant (R2 = 0.91 292 

- 0.94, RMSE = 0.07 - 0.26 in training, R2 = 0.73 - 0.82, RMSE = 0.13 - 0.50 in testing). Figure 5 293 

shows the PLSR and RF models that had the best overall performance in the vegetative and 294 

reproductive growth phases. 295 

 296 

Figure 5. The PLSR and RF models which performed best in vegetative and reproductive growth 297 

phases using VIs only. (a) the SPNC PLSR model in VS. (b) the LNC PLSR model in RS. (c) the 298 

SPNC RF model in VS. (d) the LNC RF model in RS. 299 

 Figure 6 showed the top 10 important VIs for NC estimation models. Among all the NC of 300 

different organs or the whole plant in the vegetative growth phase, MCARI2 was found to be the 301 

most important VI for leaf NC (VIP = 1.98), spike NC (VIP = 4.87) and plant NC (VIP = 1.92) in 302 

PLSR models. MTCI was the 2nd most important VI for leaf NC (VIP = 1.51) and plant NC (VIP 303 

= 1.47) and was also found to be the most important VI for stem NC (VIP = 1.18).  304 

As for the RF models in the vegetative growth phase, MTCI, GRVI, MCARI2 and GRVI with 305 

contributed most to the leaf-, stem-, spike- and plant NC estimations, respectively, with 306 

the %IncMSE of 10.73, 13.31, 12.64 and 10.73 (Figure 6). Also, MCARI2 and MTCI also played 307 

an important role in the RF models, which had similarly great performance in the PLSR models 308 

during the vegetative growth.  309 
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 310 
Figure 6. Top 10 important VIs for the NC monitoring of different organs and the whole plant 311 

selected by different models. (a) the TOP 10 important VIs for NC monitoring in vegetative growth 312 

phase selected by PLSR. (b) the TOP 10 important VIs for NC monitoring in the reproductive 313 

growth phase selected by PLSR. (c) the TOP 10 important VIs for NC monitoring in the vegetative 314 

growth phase selected by RF. (d) the TOP 10 important VIs for NC monitoring in the reproductive 315 

growth phase selected by RF. LNC, STNC, SPNC, GNC and PNC are leaf, stem, spike, grain and 316 

plant NC, respectively. 317 

For the reproductive growth phase, the VIs that yielded great performance in the NC prediction 318 

models differed. In the PLSR models. TCARI/OSAVI, LCI, SAVI-GREEN, GRVI and S-CCCI have 319 

been found to be the best VIs for leaf, stem, spike, grain and plant NC, respectively, with the VIP of 320 

1.31, 1.37, 1.58, 1.52 and 1.66. In the RF models, GRVI contributed most to the leaf- and stem NC 321 

predictions (%IncMSE = 10.71 and 12.52), CVI contributed most to spike and plant NC (%IncMSE 322 

of 6.36 and 12.30), and SAVI contributed most for grain NC (%IncMSE = 8.82). Besides, it also 323 

indicated that the VIs screened out in the vegetative growth phase are more consistent, while weak 324 

consistency of the top 10 VIs in the reproductive growth phase (Figure 6). Furthermore, we have 325 

also counted the total number of VIs selected by the PLSR and RF models in different growth phases. 326 

Table S4 shows that more VIs have been selected by RF models in the reproductive growth phase 327 

of winter wheat approximately (See detail in Supplementary Material S3). 328 

Table 2. Nitrogen content estimates using 43 vegetation indices. 329 

Growth phase Part of 

winter wheat 

Data set PLSR RF 

R2 RMSE R2 RMSE 

 

 

 

 

Vegetative 

growth phase 

      

Leaf Training set 0.77 0.30 0.91 0.18 

Testing set 0.57 0.39 0.82 0.38 

Stem Training set 0.74 0.13 0.93 0.07 

Testing set 0.76 0.14 0.78 0.13 

Spike Training set 0.82 0.40 0.94 0.26 

Testing set 0.85 0.39 0.73 0.50 

Plant Training set 0.75 0.23 0.93 0.12 

Testing set 0.63 0.26 0.82 0.23 

 

 

      

Leaf Training set 0.86 0.27 0.97 0.13 
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Reproductive 

growth phase 

Testing set 0.82 0.35 0.84 0.30 

Stem Training set 0.77 0.12 0.96 0.06 

Testing set 0.64 0.15 0.77 0.14 

Spike Training set 0.52 0.16 0.89 0.09 

Testing set 0.31 0.15 0.48 0.16 

Grain Training set 0.72 0.20 0.93 0.11 

Testing set 0.44 0.23 0.55 0.25 

Plant Training set 0.79 0.11 0.95 0.06 

Testing set 0.62 0.15 0.74 0.13 

 330 

3.4 PLSR and RF models using texture features for nitrogen content estimation  331 

 In Table 3, it can be found that during the vegetative growth phase, both PLSR (R2 = 0.84, 332 

RMSE = 0.16) and RF (R2 = 0.97, RMSE = 0.06) model performed the best for plant NC estimation 333 

in the training set. And for leaf and spike NC estimation, both PLSR and RF models achieved great 334 

performance with R2 above 0.79, RMSE below 0.28 in the training set and R2 above 0.53, RMSE 335 

below 0.35 in the testing set. Besides, the results also showed that it was more stable for the 336 

prediction of leaf NC than stem NC since the worse performance of both PLSR and RF models in 337 

the testing set. 338 

In the reproductive growth phase, the performance of the PLSR (R2 = 0.88, RMSE = 0.25 in 339 

training, R2 = 0.88, RMSE = 0.32 in testing) and RF (R2 = 0.97, RMSE = 0.14 in training, R2 = 0.76, 340 

RMSE = 0.38 in testing) models for the leaf NC prediction were improved. However, the 341 

performance of the PLSR (R2 = 0.57, RMSE = 0.16 in training and R2 = 0.16, RMSE = 0.18 in 342 

testing) and RF (R2 = 0.91, RMSE = 0.09 in training, R2 = 0.31, RMSE = 0.19 in testing) models 343 

for the spike NC prediction was worse than that in the vegetative growth phase. For plant and stem 344 

NC monitoring, no significant differences were found between two different stages. Besides, the 345 

prediction of grain NC has achieved fairly good performance in the training set though it did not 346 

allow great performance in the testing set. We can find the PLSR and RF models with the best 347 

overall performance in the vegetative and reproductive growth phases in figure 7. 348 
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 349 

Figure 7. The PLSR and RF models which performed best in vegetative and reproductive growth 350 

phases using TFs only. (a) the PNC PLSR model in VS. (b) the LNC PLSR model in RS. (c) the 351 

PNC RF model in VS. (d) the LNC RF model in RS. 352 

Figure 8 shows the top 10 important TFs for NC estimation models except for the RF models 353 

for spike and plant NC for there were fewer than 10 TFs were screened. In the vegetative growth 354 

phase, The best TF for leaf, stem, spike and plant NC were Reg_mean (VIP = 1.41), G_cor (VIP = 355 

1.43), B_cor (VIP = 1.29) and Reg_mean (VIP = 1.42) for the PLSR models. For RF models, 356 

B_mean with %IncMSE of 10.43, R_mean with %IncMSE of 12.69, G_mean with %IncMSE of 357 

7.66 and G_mean with %IncMSE of 11.90 was the best TFs for the estimating of leaf, stem, spike 358 

and plant NC, respectively. In the reproductive growth phase, for PLSR models, R_ho, G_mean, 359 

Reg_cor, B_cor and Reg_mean have been found to be the best TFs for leaf, stem, spike, grain and 360 

plant NC, respectively, with the VIP of 1.32, 1.41, 1.40, 1.40 and 1.47. In contrast in the RF models, 361 

R_dis, G_mean, G_con and contributed the most to the leaf-, stem-, and grain NC preditions, 362 

respectively, with the %IncMSE of 12.04, 8.38 and 7.75. B_cor performed the best for spike and 363 

plant NC predictions, respectively, with %IncMSE of 10.52 and 13.22. Furthermore, the result also 364 

indicated that the TFs of mean and cor accounted for a relatively large proportion of the variations 365 

in both PLSR and RF models.  366 

Table S5 shows the number of TFs selected by the PLSR and RF models in different growth 367 

phases. It can be found that more TFs were selected by the PLSR models than the RF models. 368 

Meanwhile, by counting the TFs screened by the two models, it was found that almost all the 369 

important TFs screened out by the models were based on the bands of R, G and B instead of NIR 370 

and REG bands (See detail in Supplementary Material S2). 371 
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 372 
Figure 8. Top 10 important TFs for the NC monitoring of different organ and the whole plant 373 

selected by different models. (a) the TOP 10 important TFs for NC monitoring in vegetative growth 374 

phase selected by PLSR. (b) the TOP 10 important TFs for NC monitoring in reproductive growth 375 

phase selected by PLSR. (c) the TOP 10 important TFs for NC monitoring in vegetative growth 376 

phase selected by RF. (d) the TOP 10 important TFs for NC monitoring in reproductive growth 377 

phase selected by RF. LNC, STNC, SPNC, GNC and PNC are leaf, stem, spike, grain and plant NC, 378 

respectively. 379 

Table 3. Nitrogen content estimates using 40 texture features. 380 

Growth stage Part of winter 

wheat 

Data set PLSR RF 

R2 RMSE R2 RMSE 

 

 

 

 

Vegetative 

growth stage 

      

Leaf Training set 0.79 0.28 0.94 0.14 

Testing set 0.72 0.31 0.87 0.35 

Stem Training set 0.81 0.11 0.96 0.06 

Testing set 0.53 0.21 0.77 0.13 

Spike Training set 0.57 0.34 0.97 0.18 

Testing set 0.60 0.44 0.94 0.23 

Plant Training set 0.87 0.16 0.97 0.08 

Testing set 0.72 0.24 0.90 0.17 

 

 

 

Reproductive 

growth stage 

      

Leaf Training set 0.88 0.25 0.97 0.14 

Testing set 0.88 0.32 0.76 0.38 

Stem Training set 0.73 0.13 0.94 0.07 

Testing set 0.76 0.12 0.84 0.13 

Spike Training set 0.57 0.16 0.91 0.09 

Testing set 0.16 0.18 0.31 0.19 

Grain Training set 0.66 0.23 0.93 0.12 

Testing set 0.26 0.28 0.40 0.27 

Plant Training set 0.74 0.13 0.94 0.06 

Testing set 0.68 0.14 0.74 0.13 

3.5 PLSR and RF models using the combination of VIs and texture features for nitrogen 381 

content estimation  382 
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 Table 4 showed that the combination of image VIs and TFs did improve the monitoring 383 

accuracy of NC in winter wheat to a certain extent, but the effect was not significant. Among all the 384 

models in the vegetative growth phase, the estimation for spike NC has allowed great performance 385 

in both PLSR (R2 = 0.93, RMSE = 0.25 in training and R2 = 0.77, RMSE = 0.33 in testing) and RF 386 

(R2 = 0.98, RMSE = 0.16 in training and R2 = 0.94, RMSE = 0.23 in testing) models. And better 387 

results have been achieved for plant NC monitoring than leaf stem NC monitoring (R2 = 0.82 - 0.87, 388 

RMSE = 0.06 - 0.26 in the training set, R2 = 0.52 - 0.94, RMSE = 0.17 - 0.40 in testing set).  389 

In the reproductive growth phase, the worst performance was obtained when estimating spike 390 

NC (R2 = 0.56, RMSE = 0.16 in the training set and R2 = 0.24, RMSE = 0.17 in the testing set for 391 

PLSR model and R2 = 0.91, RMSE = 0.08 in the training set and R2 = 0.43, RMSE = 0.17 in the 392 

testing set for RF model). The performance of grain NC was also not so satisfactory in testing set, 393 

with R2 of 0.41 and RMSE of 0.24 in the PLSR model and R2 of 0.43 and RMSE of 0.17 in the RF 394 

model. Apart from that, the best performance was achieved in leaf NC prediction with the highest 395 

R2 of 0.86 in PLSR model and 0.98 in RF model. Figure 9 shows the PLSR and RF models with the 396 

best overall performance in the vegetative and reproductive growth phases. 397 

 398 

Figure 9. The PLSR and RF models which performed best in vegetative and reproductive growth 399 

phases using TFs only. (a) the SPNC PLSR model in VS. (b) the LNC PLSR model in RS. (c) the 400 

SPNC RF model in VS. (d) the LNC RF model in RS. 401 

 Figure 10 shows the TOP 10 selected features based on the PLSR and RF models. In the 402 

vegetative growth, the feature with the highest VIP was Reg_mean (VIP = 1.51) for leaf NC, G_cor 403 

(VIP = 1.32) for stem NC, MCARI2 (VIP = 1.66) for spike NC and Reg_mean (VIP = 1.43) for 404 

palnt NC in PLSR model. In RF model, B_mean with %IncMSE of 9.26, R_mean with %IncMSE 405 

of 10.54, G_mean with %IncMSE of 7.53 and 12.39 was the best feature for leaf, stem, spike and 406 

plant NC. In the reproductive growth stage, GOSAVI, Reg_mean, SAVI-GREEN, GRVI and 407 
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Reg_mean (with VIP of 1.24, 1.36, 1.39, 1.60 and 1.45) contributed most to the leaf, stem, spike, 408 

grain and plant NC in PLSR models. R_var, GRVI, B_cor, SAVI and B_cor (with %IncMSE of 9.79, 409 

7.94, 8.01, 7.72 and 11.29) contributed most to the corresponding NC estimation in RF models. 410 

Compared with the best image features selected in different growth phases of winter wheat, it also 411 

reflected that the TFs could be more suitable for the monitoring of NC of winter wheat in general. 412 

As for the total number of image features (VIs and TFs) selected by the PLSR and RF models in 413 

different growth phases. For all the PLSR and RF models except for STNC, more TFs was screened 414 

than VIs in the vegetative growth phase. Interestingly, in the reproductive growth phase, more VIs 415 

were screened out than TFs in all the PLSR and RF models except for SPNC, which was different 416 

from the characteristics of in the vegetative growth phase (See detail in Supplementary Material S2). 417 

 418 
Figure 10. Top 10 important image features (VIs and TFs) for the NC monitoring of different organs 419 

and the whole plant selected by different models. (a) the TOP 10 important image features for NC 420 

monitoring in the vegetative growth phase selected by PLSR. (b) the TOP 10 important image 421 

features for NC monitoring in the reproductive growth phase selected by PLSR. (c) the TOP 10 422 

important image features for NC monitoring in vegetative growth phase selected by RF. (d) the TOP 423 

10 important image features for NC monitoring in the reproductive growth phase selected by RF. 424 

LNC, STNC, SPNC, GNC and PNC are leaf, stem, spike, grain and plant NC, respectively. 425 

Table 4: Nitrogen content estimates using the combination of vegetation indices and texture features. 426 

Growth phase Part of winter 

wheat 

Data set PLSR RF 

R2 RMSE R2 RMSE 

 

 

 

 

Vegetative 

growth phase 

      

Leaf Training set 0.83 0.26 0.95 0.14 

Testing set 0.54 0.40 0.87 0.35 

Stem Training set 0.82 0.11 0.96 0.06 

Testing set 0.52 0.20 0.80 0.12 

Spike Training set 0.93 0.25 0.98 0.16 

Testing set 0.77 0.33 0.94 0.23 

Plant Training set 0.86 0.17 0.97 0.08 

Testing set 0.69 0.23 0.90 0.17 

 

 

 

      

Leaf Training set 0.86 0.27 0.98 0.12 

Testing set 0.85 0.31 0.83 0.32 
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Reproductive 

growth phase 

Stem Training set 0.79 0.11 0.95 0.06 

Testing set 0.75 0.13 0.85 0.12 

Spike Training set 0.56 0.16 0.91 0.08 

Testing set 0.24 0.17 0.43 0.17 

Grain Training set 0.78 0.18 0.93 0.11 

Testing set 0.41 0.24 0.58 0.23 

Plant Training set 0.81 0.11 0.96 0.06 

Testing set 0.74 0.13 0.76 0.12 

4 Discussion 427 

4.1 UAV-based predictions of nitrogen content in organs and whole plants of winter wheat 428 

 In this study, during vegetative and reproductive growth phases, not only the correlation 429 

between image features (VIs and TFs) and NC of winter wheat were analyzed, but also the 430 

corresponding PLSR and RF models were constructed for the different organs or the whole plant of 431 

winter wheat. As found in several preview studies (Zheng et al., 2018; Fu et al., 2020), the leaf and 432 

plant NC can be well estimated using VIs or TFs derived from UAV-based images. Our study has 433 

also shown great performance of both types of variables for leaf and plant NC predictions during 434 

the vegetative and reproductive growth phases. It is worth noting that these variables extracted from 435 

the images obtained from the UAV have the capability of estimating the stem, spike and grain NC.  436 

It is worth noting that the spike NC always yielded the lowest correlations with VIs and TFs 437 

when compared to other organs or the whole plant (Table 3) and, that the predictions for spike NC 438 

were not as satisfactory as that for other organs. In contrast, the leaf-, stem- and plant NC were 439 

highly correlated in different growth stages, especially in the reproductive growth phase (Figure 11). 440 

The relatively low correlations in the vegetative growth phase suggest that the rapid changes in 441 

canopy structure during the vegetative growth phase constrained the predictions for leaf, stem and 442 

plant NC (Yu et al., 2014). In this study, the VIs and TFs were derived from the delineated subplots 443 

(about 30 m2), which reflected the spectral reflectance as a response to the crop canopy variations. 444 

Compared to spikes, it is certain that, in orthophotos acquired by the UAV, leaves contributed 445 

relatively large to the canopy spectrum (Liu et al., 2017; Yang et al., 2021), which may explain the 446 

relatively weak correlations with the extracted VIs and TFs and the relatively high predictions errors 447 

(RMSE) for spike NC. 448 
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 449 

Figure 11. Correlation between nitrogen content and NAE from different organs or the whole plant 450 

of winter wheat. LNC, STNC, SPNC, GNC and PNC are leaf, stem, spike, grain and plant NC, 451 

respectively. NAE is the nitrogen agronomic efficiency. VS and RS means vegetative and 452 

reproductive growth phases. NAE are correlated with the NC of different organs or the whole plant 453 

obtained from two stages (booting and heading stage) in VS, and five stages (AF5, AF10, AF15, 454 

AF20, AF25) in RS. 455 

4.2 Comparisons between the vegetative and reproductive growth phases 456 

 Many studies have raised the importance of growth stage on crop agronomic parameters 457 

monitoring (Xue et al., 2004; Li et al., 2010; Wang et al., 2019) found the leaf and plant NC could 458 

be well predicted during the vegetative growth phase including tillering, jointing, booting and 459 

heading stages of rice. Similar studies revealed the monitoring performance of leaf NC for winter 460 

wheat in the reproductive growth phase could be worse than it is performed in vegetative growth 461 

phase (Zheng et al., 2018; Ge et al., 2021; Wang et al., 2022b).  462 

In contrast, our results showed inconsistency regarding the best growth stages for leaf NC 463 

prediction. Based on our PLSR and RF models, better prediction performance could be achieved for 464 

predicting leaf NC in the reproductive growth phase though predicting leaf NC in the vegetative 465 

growth phase was also successful. This is attributed to the fact that the unclosed canopy and soil 466 

would be the confusing factors for canopy reflectance in the early vegetative growth phase (Li et 467 

al., 2010). Also, the large variations in biomass over early growth stages will also be responsible for 468 

the worse performance of leaf NC prediction (Yu et al., 2013). In addition, the prediction of spike 469 

NC was found to have the opposite trend compared to the leaf NC, i.e., the vegetative growth phase 470 
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allowed the best prediction of spike NC. As the reproductive organ of winter wheat, the spike acts 471 

as a major photosynthetic organ during the grain filling and has great relevance for plant nitrogen 472 

assimilation (Sanchez-Bragado et al., 2014; Vicente et al., 2018). Recent studies have revealed that 473 

spikes have certain effects on canopy reflectance spectra, though the complexity of canopy structure, 474 

plant density and morphoanatomical and compositional characteristics of spikes in response to 475 

canopy spectra still needs to be investigated (Li et al., 2015; Vergara-Diaz et al., 2020). 476 

After reaching the reproductive growth phase, the grain appears and becomes the “growth 477 

center” of the plant; the N transport mainly happens from the leaf, stem, glume and awn to grain 478 

(Maydup et al., 2012; Sanchez-Bragado et al., 2016; Vergara-Diaz et al., 2020). The bad 479 

performance of grain NC using PLSR and RF models indicated that grain could be the major 480 

confusing factor for the bad performance of spike NC monitoring in the reproductive growth phase, 481 

since we could not fully capture the spectral information of grain which was wrapped in glume. 482 

Furthermore, compared with leaf, the delayed senescence of spike may also worsen the performance 483 

for spike NC monitoring in the reproductive growth phase (Kong et al., 2015; Vicente et al., 2018). 484 

However, no significant differences have been found between the two growth phases for the plant 485 

ant stem NC predictions, which does not allow us to conclude on which stages could be more 486 

suitable for the whole plant and stem NC estimation.  487 

4.3 Comparison between image feature types (VIs and TFs)  488 

 Our result has shown that both VIs and TFs can be great features for winter wheat N monitoring. 489 

However, inconsistent with the results which were highlighted in crop biomass monitoring (Yue et 490 

al., 2019; Zheng et al., 2019), the combination of VIs and TFs didn’t significantly improve the 491 

estimation accuracy of NC of winter wheat in our study. Actually, there were a few studies focused 492 

on the contribution of the integration of VIs and TFs for crop N monitoring and generally, they 493 

concluded that combining VIs and TFs performed better than only using the VIs or TFs, e.g., for 494 

leaf and plant NC monitoring (Jia and Chen, 2020; Zheng et al., 2020). The multiple types of VIs 495 

can make more extensive use of waveband information and provide more complementary predictors 496 

for the NC model construction. Thus, the machine learning algorithms have the ability to integrate 497 

and utilize the spectral information contained in VIs, which could be the explanation for the great 498 

performance achieved for the combined use of VIs (Wang et al., 2022a). However, probably due to 499 

the contrasting correlation patterns observed here - VIs and TF were correlated positively and 500 

negatively with NC respectively, the combined use of both types of variables did not improve the 501 

predictions of NC.  502 

 By comparing screened image features, there are a few interesting patterns that deserve our 503 

attention. Firstly, compared to the image features screened out in the vegetative growth phase 504 

(Figures 6, 8, 10), more features with strong consistency were screened out for the PLSR and RF 505 

models of different organs in the reproductive growth phase. This could be explained by the 506 

complicated canopy structure of winter wheat in the late growth stages, leading to many problems 507 

for crop monitoring, such as the saturated VIs (Haboudane et al., 2004). Secondly, among all the 508 

top 10 VIs screened out for different organs, most VIs such as MCARI2, MTCI, TCARI, 509 

TCARI/OSAVI, SAVI and OSAVI could fall into the ‘soil-line’ VIs and the VIs related to 510 

chlorophyll. For example, MCARI2 was reported to be the sensitive VI for the monitoring of N 511 

status in the early stage of maize and winter wheat (Nigon et al., 2020). MTCI have also been 512 

reported to be the promising spectral index for determining N stress level of potato (Nigon et al., 513 

2015), monitoring the leaf NC of rice (Tian et al., 2011) and estimating the N status of maize (Li et 514 
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al., 2014). As for the soil-line VIs, lots of studies have demonstrated its’ promise for N monitoring 515 

(Gabriel et al., 2017; Klem et al., 2018; Guo et al., 2019). The high correlation between N and 516 

chlorophyll and the strong ability to minimize soil background influence may be the main reason 517 

for the great performance of these indices in the early growth stages. In contrast, the VIs selected in 518 

the reproductive growth phase were not as consistent as they were in the vegetative growth phase. 519 

Thirdly, the result of selected TFs showed that among all the TFs derived from five different band, 520 

more TFs based on R, G and B band were selected by our PLSR and RF models. Also, the texture 521 

mean and cor features accounted for a large proportion in the selected top 10 TFs. It has been know 522 

that the mean and cor exhibited great performance in classification tasks (Wan and Chang, 2019). 523 

Similar results have been reported for the performance of the texture mean for biomass monitoring 524 

in (Fu et al., 2021). The texture mean reflects the degree of regularity of the texture and cor describes 525 

the similarity of elements within a line or a row in the GLCM features (Zhu et al., 2022), and thus 526 

it has the capability of smoothing the image and minimizing the interference of background. Lastly, 527 

although the performance of the combination of VIs and TFs did not show better performance for 528 

N monitoring compared with the models based only on VIs and TFs, the top 10 image features 529 

filtered by our models based on the combination of VIs and TFs indicated that TFs deserve more 530 

attention in the future research since more TFs were selected among the top 10 image features in 531 

almost all the models. Overall, these TFs should be further evaluated in future research, such as 532 

whether the accuracy of the models can be improved when using the normalized texture index or 533 

when monitoring nitrogen in different crop species and varieties.  534 

4.4 UAV-based predictions of N use efficiency 535 

As an important indication for crop N use efficiency, the potential of NAE for crop N status 536 

monitoring has not been well evaluated using UAV-based imaging. There were only limited studies 537 

reported the attempts on the UAV-based estimation of N use efficiency, which for instance is 538 

reflected by the correlation between the UAV-based multispectral traits with NUE (Yang et al., 2020). 539 

(Liang et al., 2021) has revealed the capability of using UAV multispectral imagery for the 540 

identification of high N use efficiency phenotype in rice. Our results demonstrated that, by only 541 

using the latent variables extracted from UAV images, we could predict the NAE (Figure 12), 542 

highlighting the prospect of using of UAV-based images to estimate the indicators of NUE. The 543 

results of Pearson’s correlation analysis (Figure 4) over growth stags also confirm the findings of 544 

previous studies that the VIs derived from the multi-temporal images have the potential to forecast 545 

the canopy growth dynamics in relation to NUE. Also, the relatively better correlations between NC 546 

and NAE in the vegetative growth phase (Figure 11) than in the reproductive growth phase suggest 547 

the potential of assessing NUE in the early stages, e.g., for crop variety testing purposes. 548 

Furthermore, since the NAE is derived from the yield, the high correlation between VIs and 549 

NAE might also be due to the observed better performance for spike NC predictions in the vegetative 550 

growth phase. It is worth noting that the application of N fertilizer of winter wheat is mainly in the 551 

early growth stages during the vegetative growth phase, and thus the accurate monitoring of wheat 552 

N status in the early growth stage will provide more practical implications for wheat N fertilization 553 

for improved NUE and reduced environmental costs. 554 
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  555 
Figure 12. The performance of using the ‘Component 1’ and the predicted SPNC from the PLSR 556 

model in the vegetative growth phase for NAE predicting. (a) the performance of using the 557 

component 1 in the PLSR model for NAE predicting in the booting stage; (b) the performance of 558 

using the component 1 in the PLSR model for NAE predicting in the heading stage; (c) the 559 

performance of using the predicted SPNC in the PLSR model for NAE predicting in booting stage; 560 

(d) the performance of using the predicted SPNC in the PLSR model for NAE predicting in heading 561 

stage. 562 

5 Conclusions 563 

In this study, the muti-temporal measured nitrogen content (NC) in different organs or the 564 

whole plant of winter wheat obtained by field sampling was associated with the corresponding 565 

images acquired by a muti-spectral UAV. Stem-, spike- and plant- NC are found to decrease as dry 566 

matter weight (DMW) increased. Positive correlations were found between most of the VIs and NC, 567 

while negative correlations were found between most of the TFs and NC. PLSR and RF models 568 

successfully employed the VIs, TFs and their combinations to estimate the NC in the whole plant 569 

and different organs. PLSR latent variables extracted from the VIs and TFs explained successfully 570 

predicted the nitrogen agronomic efficiency (NAE). Although no significant differences were found 571 

between the VIs and TFs in their performance in predicting NC, some VIs like MCARI2 and TFs 572 

like texture mean were found to perform well in predicting NC. Finally, this study demonstrates that 573 

it is feasible to use UAV imaging and PLS/RF models to estimate NC and nitrogen use efficiency 574 

both in the vegetative and reproductive growth phases of winter wheat. 575 
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