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10 Abstract

11  TP53 is a master tumor suppressor gene, mutated in approximately half of all human
12 cancers. Given the many regulatory roles of the corresponding p53 protein, it is
13 possible to infer loss of p53 activity -- which may occur from trans-acting alterations --
14  from gene expression patterns. We apply this approach to transcriptomes of ~8,000
15 tumors and ~1,000 cell lines, estimating that 12% and 8% of tumors and cancer cell
16 lines phenocopy TP53 loss: they are likely deficient in the activity of the p53 pathway,
17  while not bearing obvious TP53 inactivating mutations. While some of these are
18 explained by amplifications in the known phenocopying genes MDM2, MDM4 and
19 PPM1D, others are not. An analysis of cancer genomic scores jointly with
20 CRISPR/RNAI genetic screening data identified an additional TP53-loss phenocopying
21 gene, USP28. Deletions in USP28 are associated with a TP53 functional impairment in
22 2.9-7.6% of breast, bladder, lung, liver and stomach tumors, and are comparable to
23 MDM4 amplifications in terms of effect size. Additionally, in the known CNA segments
24  harboring MDM2, we identify an additional co-amplified gene (CNOT2) that may
25  cooperatively boost the TP53 functional inactivation effect. An analysis using the
26 phenocopy scores suggests that TP53 (in)activity commonly modulates associations
27  between anticancer drug effects and relevant genetic markers, such as PIK3CA and
28 PTEN mutations, and should thus be considered as a relevant interacting factor in
29 personalized medicine studies. As a resource, we provide the drug-marker
30 associations that differ depending on TP53 functional status.

31

32 Introduction

33  Mutations in the TP53 tumor suppressor gene are a very common feature across
34  almost all types of human cancer. These mutations abrogate or reduce TP53 activity
35 via various mechanisms: dominant-negative acting missense mutations, loss-of-
36  function missense, nonsense, frameshift indel, splice site, or synonymous mutations, or
37 copy number losses that frequently delete one TP53 allele while the other allele is
38 inactivated by a mutation. That such TP53 genetic alterations occur at high frequency
39 in many cancer types implies that they have very strong selective advantages for the
40  expanding cancer cell clones (1, 2); indeed this is borne out in experimental data on
41  cell lines and animal models of cancer (3, 4).
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43  The large selective advantage of TP53 losses are consistent with its roles in arresting
44  the cell cycle or triggering apoptosis upon threats to genome integrity. TP53-null cells
45  better tolerate genomic instability, which can result from endogenous causes, most
46  prominently oncogene-overexpressing and thus replication-stress inducing cancerous
47  genetic backgrounds. Consistently, TP53-mutant tumors have higher frequencies of
48  segmental copy number alterations (CNA), whole-genome duplications, and overall
49  mutation rates (5, 6). Moreover, TP53-null cells better tolerate DNA damaging
50 conditions that would normally trigger cell cycle checkpoints, such as those resulting
51  from DNA-acting drugs or radiation (7, 8). Consistently, TP53-mutation bearing tumors
52  tend to be more resistant to various cancer chemotherapies (4, 9-11) and radiotherapy
53  (10-12), and more aggressive i.e. TP53 R273 and R248 mutants are associated with
54  accelerated cancer progression in colorectal tumors (13).

55

56  The frequency of TP53 mutations --highest of all cancer genes, standing at 37% in the
57  TCGA cohort-- indicates that most cancers benefit from the loss of TP53. However,
58 there are nonetheless many tumors which do not bear a mutation in TP53. A part of
59 those is explained by genetic events that phenocopy TP53 loss i.e. that have similar
60 downstream phenotypic consequences as TP53 loss itself. There are three
61 established examples of TP53 loss phenocopying events occuring in tumors. Most
62  prominently, this is the amplification of the MDM2 and MDM4 oncogenes and
63  overexpression of the corresponding proteins. These negatively regulate TP53 protein
64 levels by promoting its proteasomal degradation, and that otherwise inhibit TP53
65  activity by binding to its transactivation domain(14-16). The third implicated gene is
66 PPMI1D, whose amplification overexpresses a serine/threonine phosphatase acting
67  upon various targets including TP53, reducing its activity. (We note that PPM1D can
68  also be affected by point mutations that result in gain-of-function(17-19))

69

70  Given the strong selective advantages of the TP53 activity loss in cancer evolution, we
71 hypothesized that TP53 loss phenocopying in human cancers extends beyond these
72 known examples of MDM2, MDM4 and PPM1D alterations. If indeed other common
73  mechanisms of TP53 phenocopying exist, this would be relevant to predicting tumor
74  cell response to various drugs, and to predicting tumor aggressiveness, thus having
75  implications to personalized medicine. Because TP53 loss has clear consequences on
76  the mRNA expression levels of various downstream targets (4, 21), the TP53-null-like
77  phenotype can be inferred from large scale transcriptomic data (20-23). Here, we
78  apply a statistical framework to jointly analyse ~966 cancer cell line and ~8000 tumor
79 genomes and transcriptomes, to identify additional TP53 phenocopying genetic events
80 and impact on drug sensitivity. We find that TP53 loss phenocopies are remarkably
81 common across tumors and cancer cell lines, and we identify USP28 deletions as one
82 cause of TP53 loss phenocopying, and reveal many links between drugs and their
83 targets that are modulated by TP53 activity.

84
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g7 Results

88 Inferring the functional TP53 status of tumors from

89 transcriptomes

90

91 We developed a machine learning method to detect TP53 phenocopies in tumors and
92 cell lines, integrating RNA-seq data with TP53 mutation data in a logistic regression,
93 regularized with an Elastic Net penalty (very similar cross-validation accuracy was
94 obtained with Ridge or Lasso penalties; see Methods). Regression models were
95 trained using cross-validation on mRNA levels of ~8000 tumor samples from the TCGA
96 project, across 20 different cancer types, controlling for cancer type. In addition to
97 using this global analysis mRNA expression levels to infer the functional TP53 status
98 state of each tumor, we also identified the expression patterns of which genes are
99 associated with TP53 status. Tumors with TP53 putatively causal mutations were
100 included as a positive set (TP53 status was categorized according to GDSC
101  methodology; see Methods). Previously known phenocopying events (MDM2, MDM4
102 and PPM1D amplifications), as well as samples with TP53 deletions were excluded
103 from the training set (these known phenocopying events will be used to calibrate
104  decision thresholds; see below). Our classifier learned a combination of relevant gene
105  weights that differentiate samples with an aberrant TP53 activity. Tumor samples that
106  are not TP53 mutated (by GDSC criteria), but are classified as mutated by the machine
107  learning model are considered to be TP53 phenocopies.

108

109  Our classifier showed a high performance with an area under the receiver operating
110  characteristic (AUROC) curve of 96% in cross-validation on TCGA tumors (out-of-
111 sample accuracy), and 95% on the testing set (consisting of 10% of the samples held
112 out from training set, Fig.1A). Thus, we were able to often correctly detect TP53 status
113  in unseen tumor samples the classifier was not exposed to, with an area under
114  precision-recall curve=0.9654. The TP53 loss phenocopy scores for each TCGA tumor
115  sample and the cancer cell lines are provided in Supplementary Data 1.

116

117  Out of the ~12000 genes available to the classifier, 217 genes were deemed relevant
118 for TP53 status classification (non-zero coefficients; gene score provided in
119  Supplementary Data 2). These represent a sparse (but not necessarily exhaustive) set
120  of genes that are, considered together, highly informative for predicting TP53 status.
121

122 Expectedly, many of the classifier's most relevant genes are known to be related to
123 TP53 functionality. For instance, apoptosis-enhancing nuclease (AEN) was the gene
124  with the highest absolute importance score. This exonuclease is a direct TP53 target
125 whose expression is regulated by the phosphorylation of TP53 and its tumor
126 suppressor role has been reported (25). Tumors with a high expression of AEN are
127  expected to be p53 functional, and indeed highly expressed AEN was associated with
128  TP53 WT status in our classifier's coefficients. On the other extreme, COP1, a ubiquitin
129 ligase that acts as an important p53 negative regulator, was the strongest coefficient
130 associated with TP53 mutated status in the classifier (26). We further performed a GO
131  enrichment analysis, revealing that top functional enriched sets were related to
132 apoptotic signals, supporting the biological rationale underlying this set (Supp Fig. 1A).
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133  Most enriched pathways were: Intrinsic apoptotic signalling pathway in response to
134 DNA damage by p53 class mediator (8.1-fold enrichment, FDR=4.2%), Pyrimidine
135  deoxyribonucleoside monophosphate biosynthetic process (47.4 fold enrichment,
136 FDR=1.9%) and Response to UV-B (17.2 fold enrichment, FDR=3.7%) (ShinyGO, see
137  Methods).

138

139  Our classifier extends recent gene expression-based models for TP53 functionality (20-
140  23) by being able to generalize across both tumor and cancer cell lines (important for
141  identifying drug sensitivity associations, see below), and moreover it can provide
142 calibrated FDR estimates for TP53 status of each tumor or cell line. In particular, to
143  assess the reliability of the individual predictions from the model, FDR for each tumor
144  was computed via the analysis of cross-validation precision-recall curves (Fig.1B). The
145  previously known phenocopies (MDM2, MDM4 and PPM1D amplifications) and TP53
146  deep deletions, which were held out from the training set, were largely scored as TP53
147  mutated. Tumors harbouring a known phenocopying amplification were assigned
148  higher scores than the rest of TP53 wild-type tumors (means=0.56 and 0.27
149  respectively, p=1e-65 by t-test). Cells harbouring a TP53 deep deletion also had higher
150 scores (mean TP53 deleted=0.47, mean TP53 not deleted=0.27, p=1e-08). Our choice
151  of threshold to detect TP53 phenocopied tumors was set based on these known
152  phenocopies, conservatively, corresponding to score >0.6, Methods; Fig.1B).

153

154  This resulted in an empirical FDR estimated at 15% (i.e. precision of 85%), based on
155 the known TP53 mutations. Importantly this 15% is a conservative upper-bound
156  estimate of FDR, since it is based on the assumption that there do not exist any
157  unknown TP53 phenocopying events: it classifies all high-scoring TP53 wild-type
158 tumors as false positives. Conversely, using the known phenocopying events we
159  estimate a lower-bound recall (sensitivity) of this classifier at 63% (Fig. 1B). Again, this
160 estimate is conservatively biased, since it is not a priori known whether every copy
161  number gain in MDM2/MDM4/PPM1D causes a phenocopy; some low-level gains may
162  not have effects and thus would appear as false-negatives.

163

164 To additionally validate the classifier, we inspected the relationship between known
165 phenocopy genes’ allele copy-number (see Methods), and the TP53 phenocopy score.
166  There were significant positive correlations between three known phenocopying genes
167  copy-number, and the TP53 phenocopy score in TP53 wild-type tumors (Fig.1C).

168

169 The prevalence of phenocopying events was substantial: overall 12 % of all tumor
170  samples were redefined into a TP53 mutated-like category (Fig.1D) by our criteria.
171  Different cancer types display different phenocopy frequencies (Fig.1D), overall
172 frequency ranging from 19% for breast cancer (BRCA cancer type) to 3% for B-cell
173  lymphoma (DLBC cancer type, overall phenocopy frequencies are shown in Supp Fig.
174 1B). For instance, most breast cancer TP53-phenocopied tumors derive from
175  previously known events i.e. the MDM4/MDM2/PPM1D amplifications are the most
176  common event, while a remaining 27% of the phenocopies (5% of all breast cancer
177  samples) is not associated with a known phenocopying event (proportion shown for
178  every cancer type Fig.1D). We do note that it is still possible that individual examples of
179 tumor may be erroneously classified as TP53-deficient at this threshold. More
180  generally, 51% of TP53-loss phenocopied tumor samples across all cancer types were
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181 not linked with one of the three known genes nor a CNA deletion in TP53 itself,
182  suggesting that additional TP53 phenocopying mechanisms are commonly occurring in
183  tumors.
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184

185  Figure 1. Evaluation of the functional TP53-loss score classifier and prevalence
186  of TP53 loss phenocopying events in cancer.

187  A. Receiver operating characteristic (ROC) curve and area under the ROC (AUROC) curve for

188 training and testing sets in TCGA tumor transcriptomes.

189 B. Bottom: False discovery rate (FDR) for each tumor sample. X axis is the classification
190 threshold for each tumor sample. The general threshold used for classification (0.6) is
191 highlighted. Top: the histogram of frequency of CNV events (“density” refers to smoothed
192 relative frequency) affecting TP53 and the known phenocopying genes MDM4, MDM2 and
193 PPM1D at various phenocopy-score thresholds.
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194 C. TP53 loss phenocopying score stratified by 3 known phenocopying CNA events and by

195 TP53 deletions. Data points are tumor samples coloured by TP53 status; boxes show
196 median, Q1 and Q3, while whiskers show range (outlying examples shown as separate
197 dots). X axis represents the GISTIC thresholded CNV of each given gene. Tumor samples
198 with deletions in the corresponding genes (for MDM2, MDM4 and PPM1D) and
199 amplifications (TP53) are omitted for simplicity. P values represent results from the t-test
200 comparison of the TP53 phenocopy score between each CNV category to neutral CNV (0)
201 category in TP53 wild-type samples.

202 D. TP53 functional status classification across TCGA cancers. Left: pan-cancer; “Phenocopy”
203 refers to TP53-loss phenocopying tumors according to the classifier in panels A, B. Right:
204 showing only theTP53 loss phenocopying tumor samples, stratified by cancer type and by
205 cause of the phenocopy. Tumor samples harbouring a known event that affects TP53
206 functionality are shown with colours, and the remaining TP53-loss phenocopy tumors are
207 labelled as “Unknown cause

208

209

210 USP28 deletion phenocopies a TP53 mutated state in tumors

211

212 Prompted by the abundance of tumor samples that are functionally TP53 null but
213  lacking an obvious TP53 loss or a known phenocopying event, we sought to identify
214  other phenocopying genes across all cancer types. We designed a custom association-
215  testing methodology that combines six different statistical tests across four different
216  genomic data types with this goal (see Methods).

217

218 In brief, our methodology is based on the rationale that genes that cause a phenocopy
219 via altered dosage at DNA and mRNA levels should exhibit a distinct copy number
220  variant (“CNV” tests) and also gene expression (“GE” tests) pattern. Each of these two
221  genomic data types is considered in two tests, one comparing TP53 phenocopying
222  against TP53 wild-type tumors, and other comparing TP53 phenocopying against
223 TP53-mutant tumors, for a total of four tests. As two additional tests, we considered
224  external data from genetic screens across large panels of cancer cell lines (28,29). In
225  particular we test for significant codependency scores, explaining how a knockout
226  (“CRISPR”) or knock-down (“RNAI") of a candidate phenocopying gene affects fitness
227 across a panel of cell lines, when compared with the fitness profile of a TP53
228  knockout/knock-down across the same panel(30, 31). An example supporting the use
229  of this methodology that combines cancer genomic analysis and genetic screening
230 data analysis, a CRISPR knockout of the known TP53 negative regulator MDM2
231 decreases cell line fitness, in a manner anticorrelated to a TP53 knockout across cell
232 lines. (Supp Fig. 3A)

233

234  In summary, we tested differences of tumor genomics CNV and GE patterns (two tests
235  each as above), additionally considering “CRISPR” and “RNAIJ” test scores from genetic
236  screens, for each gene, performing tests stratified by cancer type. Our final score
237 combines each of the 6 tests together providing a ranking of potential TP53
238  phenocopying genes.

239

240 As anticipated, top 3 prioritization scores correspond to MDM2, MDM4 and PPM1D
241 genes (Fig. 2A). Following those known TP53 phenocopies, the gene USP28 was the
242  4th ranked gene in terms of overall statistical significance (p=5.9e-07, combined across

6
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243  all six tests), and in particular scored highly on CRISPR codependency (pan-cancer
244  score for USP28=0.54, compared with -0.71 for MDM2 and -0.53 for MDM4). A break-
245 down of our custom prioritization scores by different cancer types is provided in
246 Supplementary Figure 2. We note that, in contrast to MDM2 and MDM4, it is the
247  deletions not amplifications of USP28 that were associated with TP53 phenocopies;
248  this is reflected in the mirrored direction of the codependency score. USP28 encodes a
249  deubiquitinase enzyme with substantial evidence from previous biochemistry and cell
250 model studies that link it to p53 activity. In particular, USP28 was linked to DNA
251 damage apoptotic response through the Chk2-p53-PUMA pathway (32). Recent
252 evidence suggests that the TP53BP1-USP28 complex might positively regulate p53
253  and influence arrest after centrosome loss and prolonged mitosis (33). It has been
254  proposed that TP53BP1-USP28 complexes could counteract MDM2-dependent p53
255  ubiquitination (34). Additional studies have linked USP28 loss with a defective
256  apoptotic response (35). A 10% of the total of 437 tumors classified as TP53 loss
257  phenocopied but with an undefined source (Supp Fig.1B) had a USP28 deletion.

258

259  Overall, diverse experimental evidence from genetic screens strongly supports our
260 identification of USP28 deletions as p53-loss phenocopying events, and our genomic
261  analysis suggests a widespread distribution of causal USP28 deletions across human
262 tumors.

263

264  Additional hits from this association study might provide promising genes for follow-up.
265  For instance, MSI2 was the 5th most highly prioritized gene, predicted to phenocopy
266  TP53 loss by amplification. MSI2 encodes a transcriptional regulator that has been
267  recently identified as an oncogene in hematologic and solid cancers (36—38). Similar
268  results to CRISPR analyses were observed using RNAi screening codependency
269  scores, further supporting the role of USP28 loss in the TP53 phenocopying, as well as
270  MSI2 gains (Supp Fig. 3B). Other apoptosis-related genes such as DRAM2, CHEK2, or
271 ATM (39-41) were also in the prioritized genes in our analysis albeit at more modest
272  statistical significance. Of note, the TPR gene also had a highly significant
273 codependency score but was driven by a single cancer type (kidney) and thus with less
274  clear relevance to diverse tumor types.

275

276
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278  Figure 2: Transcriptomics scores predicting phenocopying events can pinpoint
279 causal genes in CNA-affected chromosomal segments.
280  A. Prioritization score of genes for TP53 loss phenocopying effects. Y axis shows gene
281 significance (FDR) when combining six statistical tests (two cancer genomic/transcriptomic,
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282 and two based on CRISPR and RNAI screens), and further pooling p-values across cancer
283 types; see Methods for details. X axis represents the effect size from the CRISPR
284 codependency score of each gene. Crosses represent gene neighbours (same cytoband) to
285 a known phenocopying gene. Relevant hits in terms of FDR and codependency score are
286 labelled. Shown thresholds for effect size and significance were determined based on
287 scores of known phenocopy events (Methods).

288 B. Top: CNV frequency in tumors, and their associations with TP53 phenocopy transcriptomic
289 scores, of the segment of chromosome 1 containing MDM4. Each dot represents one gene,
290 while colours represent groups of tumor samples by TP53 status. Bottom: A zoomed-in view
291 of a commonly amplified region of the chromosome, showing the CRISPR (blue) and the
292 RNAI (red) TP53-codependency scores for each gene. The determination of the TP53 co-
293 dependency score is shown for the top score of the region (left panels), showing the actual
294 CRISPR and RNAI fitness effects for the MDM4 disruption (Y axis) across many cell lines
295 (dots), compared to TP53 disruption fithess effects (X axis) across the same cell lines.

296 C. Same as (B), but for USP28, a gene we identified to be associated with a TP53 loss
297 phenocopying via a deletion. Here, the y axis on the top plot shows frequency of gene
298 deletions in tumors, divided by TP53 functional status, whereas panel B shows frequency of
299 amplification. Bottom plots are the same as in B.

300 D. Comparison of the TP53 phenocopy score of USP28 CNV deletions (by negative GISTIC
301 score), ATM deletions, ATM mutations and MDM4 amplifications. Each dot represents a
302 tumor sample. Only TP53 wild-type samples were considered. P-values by Mann-Whitney
303 test.

304 E. Fitness effect of USP28 knock-out in TP53 wild-type and mutant isogenic cell lines.
305 Comparison of the mean beta score (fitness effect upon CRISPR gene disruption, y-axis) of
306 USP28, with the mean beta scores of genes located within its 1Mbp immediate
307 surroundings as negative controls ("1 Mbp neighbours”, see Methods). Genes TP53,
308 MDM2, and MDM4 are also shown as a reference. x-axis bottom labels indicate the TP53
309 status of the cell line. USP28 Z-scores, comparing to the distribution of neighbouring
310 genes, are plotted in red (see Methods)

311

312

313

314 Phenocopy scores prioritize causal genes in CNA-affected

315 chromosomal segments

316

317  Amplifications of certain chromosomal segments or whole arms in case of MDM2,
318 MDM4 and PPM1D commonly underlie TP53 phenocopies. Such CNA genetic events
319 in cancers however often affect multiple adjacent genes, where an open question in
320 cancer genomics is which of the gene or genes in the affected segment are causal
321  (42). We hypothesized that the known TP53 phenocopying gene CNA segments might
322 in some cases harbor more than one causal gene. Our combination-test approach can
323  prioritize genes with enriched gene expression and CNA in our TP53 phenocopying
324  group. Considered together with CRISPR and RNAi codependency, this method
325 provided a plausible ranking of possible TP53 loss phenocopying genes. Applied
326  globally, this identified USP28 as a novel phenocopying gene (see above). To more
327  formally study if the USP28-adjacent genes could contribute to this, we considered that
328 the same method could be applied on a local scale: examining profiles of CNVs and
329  our genomic prioritization scores would be able to single out the causal gene(s) in the
330 chromosomal segment of recurrent CNA.
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331

332  As a control for this approach, we sought to confirm previously known phenocopies.
333  Indeed, MDM4 amplification was found to be enriched in the TP53-phenocopying group
334  of tumor samples, but not in the rest of tumor groups --the TP53 mutant and the non-
335  phenocopying TP53 wild-type (Fig. 2B). The local profile of this enrichment for the
336 chromosome 1q segment 32.1 peaks at the MDM4 gene and falls off towards its
337 flanking genes (Fig. 2B). Our CRISPR and RNAi data analysis, consistently, indicate
338 MDM4 as the gene with the strongest effect in the region (Fig. 2B). As expected,
339 similar CNA and CRISPR/RNAI profiles were observed at PPM1D (Supp Fig. 3C).
340 Next, the MDM2 CNA enrichment score segment peak was narrower, suggesting a
341  more focal gene amplification process (Supp Fig. 3C)

342

343 Next, we examined the shape of the local USP28-adjacent CNA profiles. USP28
344  deletions were found to be enriched in the TP53 phenocopying group when compared
345  to the rest of tumor groups (2.3-fold in TP53 w.t, 2.8-fold in TP53 mutant). USP28
346  enrichment was comparable to MDM4 region enrichments of 2.5-3.7-fold (TP53 wt.,
347  TP53 mutant) (Fig. 2B, C).TP53 phenocopying tumor samples appear to have more
348 deletions in the USP28 region than TP53 wild-type (non-phenocopying) and TP53
349  mutant samples. The local profile of enrichments presents a plateau-like pattern rather
350 than a sharp peak, and USP28 is within the top-ranked genes in the plateau however
351  some neighbouring genes appear similarly so. Therefore, we further used the CRISPR
352 and RNAI codependency scores to prioritize the causal genes in the segment; this
353  score clearly distinguishes USP28 from immediate neighbours (Fig. 2C), suggesting
354  that USP28 is indeed the main causal gene in the chromosomal segment.

355

356  Furthermore, this ‘local scan’ can be applied chromosome-wide, where we noted
357 another small region on chromosome 11q.12.1-q1.13.1 modestly enriched with
358 amplifications in TP53-phenocopying tumors (Supp Fig. 3D), thus raising our interest.
359  However, neither genes in this region nor other chromosome 11 regions showed a
360 positive CRISPR codependency score of even half of USP28 score (Fig. 2C). We note
361 here that the USP28 codependency score exceeds, in absolute magnitude, the score
362  of the known MDM4 phenocopy (Fig. 2B, C).

363

364 In the broader neighborhood of USP28, the gene ATM seems to also be frequently
365 deleted in the TP53-phenocopying tumor group, meaning ATM is also a candidate for
366  the causal gene in this deletion segment at chrll g22.3-g23.2. However, the statistical
367 support from genomic enrichment scores (using our custom methodology for
368  metanalysis across 6 statistical tests) for ATM were less strong than for USP28 (p=1e-
369 5 versus p=6e-7, respectively). Consistently, comparing the RNAi and CRISPR TP53-
370 codependency scores of ATM versus USP28 shows a stronger effect of the USP28
371  knockout (USP28 RNAI codependency score p=4.9e-112 versus ATM p=3e-80, in a
372 pan-cancer analysis; Supp Fig. 3E). To further rule out that ATM has the causal role in
373  this deleted segment, we considered the cases of tumors where ATM is disrupted by a
374  point mutation; unlike CNA in the ATM gene, these cases are not commonly linked with
375  disruptions in USP28. The ATM mutated but USP28 wild-type tumors had considerably
376  weaker TP53 phenocopy transcriptomic scores (median=0.36) than the USP28 deleted
377  but ATM non-mutated tumors (median=0.84; p=0.0013 by Mann-Whitney test; Fig. 2D).
378 The cases where both USP28 and ATM were disrupted, by deletion or mutation, had

10


https://doi.org/10.1101/2022.11.01.514743
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.01.514743; this version posted November 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

379  very similar phenocopy scores (median=0.73) as the USP28 deleted but ATM non-
380 mutated cases. This analysis of ATM mutations supports that USP28 deletion, rather
381 than ATM disruption, is the causal change in the deleted segment at chrll g22-g23.
382

383 To validate the USP28 finding, we analyzed an independent CRISPR data set,
384  consisting of 3 genome-wide screens performed on TP53 wild-type and TP53 -/-
385 isogenic pairs of cell lines: one on the A549 cell line pair and two on the RPE1 cell line
386 pairs (see details in Methods). In the TP53 wild-type background, the TP53 k.o.
387 increases cell fitness (as expected for a high-effect tumor suppressor gene; Fig. 2E).
388  Thus, if the USP28 loss were to phenocopy TP53 loss, the USP28 k.o. by CRISPR
389 should also increase fitness. Indeed, it does so: compared to the 10 neighboring
390 control genes residing within 1 Mb of USP28, the USP28 k.o. has a stronger fithess
391 effect (beta score from MAGeCK tool, see Methods) for 10 out of 10 genes in 2 out of 3
392 screens, and 8 out of 10 neighboring genes in the remaining screen (Fig. 2E). For
393 ATM, this effect is less pronounced (Supp Fig. 3F). In 3 out of 3 cell screening
394  experiments, USP28 fitness effect was stronger than ATM effect (1.4-fold, 2.4-fold and
395  2.6-fold increased beta score). To further support this finding, we asked if the fitness
396  gain resulting from USP28 loss is because of downstream effects on TP53 activity. We
397 thus considered the isogenic cells where TP53-/- was ablated, in which indeed the
398 fitness gain from USP28 k.o. was attenuated or disappeared (Fig. 2E) compared to
399  TP53 wild-type cells. In 2 out of 3 cell line screens, the fitness attenuation effect of
400 TP53-/- background cells was stronger in USP28 than in the neighboring ATM gene,
401  supporting the causal role of USP28 in that segment (Supplementary Data 3). Of note,
402 in this analysis the effect sizes of USP28 k.o. were less than of full TP53 k.o., however
403  they were still substantial: in 2 out of 3 screens considered, the fithess gain effect of
404  USP28 disruption was comparable in size to the fitness loss effect of MDM4 disruption
405  (Fig. 2E).

406

407  Overall, these analyses highlight USP28 as the likely causal gene for TP53 loss
408  phenocopying via deletion CNVs in the chrll g22-g23 segment.

409

410 Cancer type specificity of TP53 phenocopying events

411

412  As stated above, not every cancer type seems to be affected by the same types of
413  phenocopies. For instance, MDM2 amplification phenocopy occurs often in BRCA,
414 CESC, BLCA, LUAD and STAD but it does not in HNSC, OV, MESO nor LIHC
415  (Fig.1D). To further elucidate the tissue-specificity of USP28 phenocopying events, we
416  considered the prioritization scores separately for different cancer types (Supp Fig. 2).
417  We observed that BRCA, BLCA and LUAD were the cancer types which showed the
418  strongest signal in our prioritization score for USP28 phenocopies, with a suggestive
419  signal in STAD.

420

421  To elucidate the cancer type spectrum of the USP28 phenocopies, we considered the
422  USP28 amplifications as a negative control (deletions are expected to phenocopy). In
423  particular, we determined in which tumor types USP28 deletions had a higher TP53
424  phenocopy score than USP28 copy number amplified samples. As expected, statistical
425 significance when comparing the TP53 phenocopy score of USP28 copy number-
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426  neutral tumor samples versus those bearing deletions was higher than comparing
427  neutral to amplifications. This supports that the impact of USP28 deletions on TP53
428 loss phenocopy score was stronger than for the amplification CNVs. The strongest
429  effect was found in BLCA, STAD, BRCA, LIHC and LUAD (Fig. 2E). In further support
430  of this tissue spectrum, when CRISPR TP53 codependency scores were checked,
431  highest USP28 scores were found in cancer cell lines originating from BLCA, STAD,
432  BRCA, LIHC, LIHC and LUAD (Fig. 2E). The leading codependency score was found in
433  BLCA (Effect size=0.73, p= 2.2e-08) and BLCA also had the most significant value
434  when comparing deletions to neutral copy numbers TP53 phenocopy score (p=4.2e-06,
435 Supp Fig. 3G). LUAD had the second most significant codependency p-value
436  (p=3.78e-6), and is also highly ranked in comparison of phenocopy score between
437  deletion versus neutral USP28 CNV tumors (Fig. 3F). We found a positive association
438 between USP28 CRISPR codependency score and the effect of USP28 deletions in
439  TP53 phenocopying score across cancer types (Supp Fig. 3G). Of note, that the
440  “oncogene-tumor suppressor” dichotomy of USP28 was reported (43), which might
441  imply that USP28 amplification could also result in a TP53 phenocopy in certain
442  contexts. However, our analysis did not support this in the majority of cancer types: out
443  of 14 cancer types, only 3 of them had a stronger TP53 phenocopy score in USP28-
444  amplified samples than in USP28-deleted samples (Fig. 2E); this was the case for none
445  of the primary cancer types for USP28 phenocopying (BLCA, STAD, LIHC, BRCA and
446  LUAD).

447

448  Taken together, these results suggest that USP28 deletion is a novel TP53 phenocopy
449  that commonly affects major cancer types such as breast cancer (6.2% of total breast
450 tumors, not counting known phenocopying events and TP53 deletions) and also
451 bladder, lung, liver and stomach cancer (7.6 %, 7.0%, 3.8% and 2.9% cases).

452

453

454  Multiple neighboring genes in a CNA segment can contribute to

455 a TP53 loss state

456

457  Some of the top hits found in our combined testing approach were near to known TP53
458  loss phenocopying genes such as MDM2. We thus hypothesized that there exist cases
459  of ‘collaboration’ of neighboring genes, affected by a single copy-number alteration,
460  which may bear upon the TP53 loss phenotype. This would represent a special case of
461  epistasis between two genes, caused by a single alteration that affects both genes. Our
462 data suggests that the CNOT2 gene, residing in the MDM2 segment in the
463  chromosome 12q15, is likely an example of this relationship.

464

465  In particular, in our data, MDM2 was frequently co-amplified with CNOTZ2, in 72% of the
466  cases of MDM2 amplification (Supp Fig. 4A, check by cancer type at Supp Fig. 4B).
467 Data from CRISPR and RNAI screening experiments can help resolve associations
468  from genomic analysis, where effects of neighboring genes are in genetic linkage (here
469  implying being jointly affected by CNA). No other gene in that neighborhood that was
470  amplified together with MDM2 had as high CRISPR codependency scores as CNOT2
471  (effect size=-0.24, p=4.1e-14, Fig. 3A, B); next best gene in the 20Mb neighborhood is
472 CDK4 with effect size=-0.16, p=3e-7. However, CDK4 is co-amplified with MDM2 in
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473  only 20% of the cases (Fig. 3A). CNOT2-only amplifications (i.e. without concurrent
474 MDM2 CNA) do not significantly associate with TP53 phenocopy score (Pearson's
475  TP53 phenocopy score vs CNOT2 CNV p=0.45, effect size=-0.83, Supp Fig. 4C). More
476  interestingly, MDM2 CNV was not found to be associated with our TP53 phenocopy
477  score when MDM2-only amplified without CNOT2 (Pearson’s TP53 phenocopy score
478 vs MDM2 CNV p=0.57, effect size=0.09, Supp Fig. 4C). On the other hand, MDM2-
479 CNOT2 co-amplifications were significantly associated with a TP53 deficiency
480  transcriptomic score in tumors (Pearson's correlation TP53 phenocopy score vs MDM2
481  CNV p=2e-05, effect size=0.41, Supp Fig. 4C).

482

483  This genomic evidence we provide here is supported by recent experimental studies,
484  indicating arole for CNOT2 in p53-dependent apoptosis, and suggesting therapeutic
485  potential of CNOT2 suppression (see Supplementary Text S1 for a summary and
486  references). As supporting evidence, we considered fitness effects of CNOT2 k.o. by
487  CRISPR in various subsets of cell lines. The MDM2-gain but CNOT2-neutral genetic
488  backgrounds had more modest fithess effects of CNOT2 k.o. (median=-0.37) than the
489 CNOT2-gain but MDM2-neutral genetic backgrounds (median=-0.62; p=0.072 by
490 Mann-Whitney test, Supplementary Fig. 4D. Consistently, the CNOT2 k.o. by CRISPR
491  had stronger fitness effects (median=-0.55) in the TP53 wild-type backgrounds than in
492  TP53-mutant background cell lines (median=-0.45, p=0.0091 by Mann-Whitney test).
493  In other words, fithess effects of CNOT2 disruption by CRISPR are conditional upon
494  MDM2 alterations and TP53 alterations, implicating CNOT2 in a genetic interaction with
495  the two other genes.

496

497  We hypothesized that this role of CNOT2 in boosting the TP53-phenocopying effect of
498 MDM2 amplification may be variable across tissues. Our data suggests that in some
499 cancer types TP53 functional loss seems to rely on amplifications of both genes
500 together, rather than solely MDM2, but not all (Supplementary Text 2). This suggests a
501 model where the MDM2-CNOT2 coamplification enhances the TP53 loss effect via a
502  genetic interaction, and of MDM2 alone but not CNOT2 alone able to generate a TP53
503 functional loss phenotype. Gene expression profiles match this observation seen in
504 CNA: having a MDM2 and CNOT2 co-overexpression (over the 97th percentile; n=40)
505 implies a high mean TP53 phenocopy score (above the 84th percentile, mean
506  phenocopy score MDM2_CNOT2=0.65, Fig. 3C, Supp Fig. 4F), however less so for a
507 MDM2-only overexpression (76th percentile; mean MDM2 only=0.46, Fig 3 C, Supp
508 Fig. 4F), and, expectedly, even less so for a CNOT2-only overexpression (73th
509 percentile; mean phenocopy score CNOT2 only=0.41).

510

511  This principle might extend beyond the MDM2-CNOT2 pair. For instance, the MSI2
512 gene, another highly prioritized hit in our combined test (Supp Fig. 4 G, H, 1), resides
513  near the known phenocopying gene PPM1D and thus has the potential to boost the
514  effects of the linked amplification of the PPM1D gene to cause a TP53 deficient state.
515  Considered jointly, these findings suggest the possibility of TP53-loss like phenotype
516  being a result of multiple phenocopying events generated by a single segmental CNA.
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517 Figure 3. MDM2-CNOT2 co-amplifications are associated with TP53-loss
518 phenocopy score.
519 A. Top: CNV of MDM2 gene neighborhoods (20Mb segment). Y axis represents the

520 percentage of GISTIC CNV gain states +1 (blue) and +2 (red), compared to neutral CNV
521 state (0). Bottom: CRISPR TP53-codependency scores (y axis) shown by gene on
522 chromosome 12 (x axis). Genes labeled have a codependency score <-0.1, suggesting
523 TP53 phenocopying effects. Color shows the frequency of CNV amplification of each gene,
524 together with MDM2 amplifications.

525 B. Co-dependency source data. CRISPR and RNAI fitness effect scores for phenocopying
526 gene MDM2 and candidate gene CNOT?2 (y axis), and fitness effect scores for TP53 in the
527 genetic screens (x axis). Top plots represent RNAi screening data and bottom plots
528 CRISPR screening data.

529 C. Association between MDM2 and CNOT2 gene expression (GE, top) and CNV status
530 (bottom). Each dot represents a tumor sample, coloured based on the TP53-loss
531 phenocopy score provided by the classifier. Dashed lines represent the 97th quantile across
532 genes, for each data type.
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533 Detecting TP53 loss phenocopies in cancer cell line panels

534

535 It is well known that TP53 mutations associate with overall poorer drug response in
536  tumors (44-46), consistent with a lower ability of TP53 deficient cells to trigger cell
537  cycle arrest and/or apoptosis response(47-51). We hypothesized that, in addition to
538 conferring a generalized drug resistance, the TP53 function loss may also modulate the
539  association between certain drugs and their target genes. In other words, we asked
540 whether in TP53 wild-type cancer cells, for instance, amplification in a particular
541  oncogene predicts sensitivity to a particular drug, while in TP53 mutant cells the same
542  amplification does not associate with sensitivity. Cancer cell line screening panels (52,
543  53) are a convenient system to test this hypothesis, because many drugs were tested
544  systematically across both TP53 wild-type and mutant cells of multiple cancer types.
545  Considering TP53 function loss via phenocopy should afford additional statistical power
546  and clarify the associations discovered; otherwise, some effectively TP53 null cells
547  would be erroneously considered wild-types during association testing, making it more
548  difficult to identify associations.

549

550  First, we aimed to generalize our tumor TP53 phenotype classifier to cancer cell lines.
551 Because cell lines exhibit strong global (i.e. affecting many genes) shifts in gene
552  expression patterns, compared to their tumor tissue of origin, we applied an adjustment
553  methodology as in our recent work (54), using the COMBAT tool (55).

554  Upon adjusting gene expression data from cell lines in the CCLE and GDSC panels to
555 make it comparable with TCGA tumor data (see Methods), we applied the TP53
556  classifier and obtained ranked scores. Reassuringly, the classifier assigned a
557  significantly higher TP53 phenotype score to TP53 mutated cell lines (mean
558  TP53_wt=0.43, TP53 _mut=0.83, p=1.1e-49 t-test), therefore cell line data served as
559 an independent validation set for the classifier. Of the 610 cell lines labeled as TP53
560 mutant based on genomic sequence (see Methods), 87% were classified as TP53-loss
561  phenotype (Fig. 4A), suggesting a reasonable ability of the classifier trained on TCGA
562  tumors transcriptomes to generalize to cell line data.

563

564  Similarly, as in tumors, a notable fraction of cell lines were apparent false positives,
565 labelled as TP53 wild-type by the genomes, but classified as TP53 deficient using the
566  phenocopy score. We stratified these apparent false positives into a high-confidence
567 set (*high-confidence set”); the TP53 phenotype score of the TP53 deleted tumor
568 samples was used as the threshold (see Methods). The high-confidence set was
569 composed of 76 cell lines (FDR=18%, see Methods, Fig 4 B). Only 79% of the total
570  number of cells labelled as TP53 wild-type genetically were also classified as TP53
571  wild-type by the phenocopy score, suggesting that TP53-loss phenocopying events are
572 common among cancer cell lines. In comparison, this percentage was 77% in cancer
573  samples.

574

575
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576  Some of the apparent false positive cell lines had a MDM2, MDM4 or PPM1D
577  amplification or a USP28 deletion (43 out of 109, 39% of the high-confidence set).
578  Samples harboring one of these CNA in known phenocopying genes were assigned
579  higher scores than the rest of TP53 wild-type cell lines (mean score=0.58 and 0.37,
580 respectively; t-test p=5.4e-5, Supp Fig.5A). Cells harboring a TP53 deep deletion (90th
581  percentile of CNA scores) also had higher phenocopy scores than samples without
582  deletion (mean score=0.78 and 0.33, respectively, t-test p=5.4e-8). 28% of the cell
583 lines in the high-confidence harbor a TP53 deep deletion (22 out of 76, 90th percentile
584  of TP53 deletion CNA). These data support that the apparent false positives are often
585 bona fide TP53 phenocopying events in cancer cell lines. All TP53 phenocopy scores
586  and cell line functional TP53 status information is provided in Supplementary Data 4.
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587 Figure 4: TP53 loss phenocopy as estimated by the transcriptome score impact
588  drug sensitivity
589 A. TP53 functional status classifier, derived from tumors, is applied to cancer cell lines.

590 Receiver operating characteristic (ROC) curve and area under curve (AUC) are shown.

591 B. The false discovery rate (FDR) for each cell line is shown as a dot. X axis represents the
592 phenocopy score threshold at which each cell line would be classified as TP53 functionally
593 deficient. Yellow horizontal bar represents the range for the high-confidence set t of TP53

16


https://doi.org/10.1101/2022.11.01.514743
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.01.514743; this version posted November 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

594 phenocopying cell lines (FDR=0.18, threshold=0.93). In the top part of the plot, cell lines
595 harboring deletions of TP53, and amplifications of known phenocopying genes MDM4,
596 MDM2 and PPM1D are marked.

597 C. TP53 status - drug sensitivity associations. Each panel represents drugs targeting genes in
598 a given pathway. Each dot represents an association of a drug with two possible TP53
599 functional status labels: X axis with the TP53 phenocopy score and Y axis with the TP53
600 mutational status (“CFE” labels by the GDSC, see Methods). P-values are from a pan-
601 cancer regression of a given drug log IC50 versus the TP53 status. The Y axis represents
602 the same but using TP53 labels according to GDSC. Associations with FDR<0.25 are
603 labeled.

604 D. Distributions of log IC50 values for several example drugs where TP53 status is known to
605 confer resistance. The X axis illustrates the different categories based on TP53 mutated
606 status (“Mutated TP53"), wild type TP53 (“Wild type TP53") and a high TP53 phenocopy
607 score (“High confidence” ); the “Mutated merge” is a combination of the two. Statistical tests
608 results comparing the groups (Mann-Whitney test, two-sided) are plotted on top. Median
609 values are provided inside of each box.

610

611

612 Effects of TP53 on general drug resistance are clarified by TP53

613 phenocopy scores

614

615  Next, we considered the GDSC drug response distributions for various drugs, in light of
616  the TP53 functional status, as determined by the TP53 mutations, or alternatively by
617  our TP53 phenocopy scores. To identify drugs to which response is affected by TP53
618  mutation status, we predicted drug response (log IC50) values of 449 GDSC drugs
619 individually, using TP53 status as an independent variable (see Methods).

620  For most of the tested drugs (105 out of 188 drugs that were significantly associated at
621 <25% FDR, pan-cancer), the associations with TP53 had a lower FDR when testing
622  using TP53 phenocopy score, over the TP53 CFE labels (mutations which alter gene
623  function) (Fig. 4C, effect size at Supp Fig. 5B). For the drugs that affected pathways
624 related to TP53 functionality, this effect of improved significance by using the
625  phenoscore was prominent (hits FDR TP53 phenocopy score < TP53 CFE labels: DNA
626  replication, 12/12 drugs, genome integrity, 8/10, p53 pathway, 3/5, Apoptosis
627  regulation, 4/6, Cell cycle, 4/7, Supp Fig. 5C). As a negative control, randomized TP53
628 labels were not significantly associated with any drug. As a positive control, the drugs
629  known to be affected by TP53 status such as nutlin-3a (Effect size= 1.48 vs 1.01, p=
630 6.7e-68 vs 1.2e-44) or bleomycin (Effect size=0.25 vs 0.16, p= 0.009 vs 0.07), exhibit a
631  stronger association with the TP53 phenotypic score than with TP53 CFE mutation
632  (Fig. 4C).

633 We examined the IC50 drug sensitivity values of all drugs together, considering the
634  different groups of cell lines defined by our TP53 functional status classifier (Supp Fig.
635  5D). Here, the mean IC50 values of our high-confidence cell lines is more similar to the
636  TP53 mutated cell-lines than to the TP53 wild-type cell lines. In drugs known to be
637  affected by TP53 status, such as bleomycin, (Fig. 4D), IC50 values were not notably
638  different between TP53 mutant and the TP53 phenocopying high-confidence cell lines.
639  All drug associations effect size and p-value are plotted in Supplementary Figure 6 A,
640  B. Cancer type-specific associations are shown at Supplementary Figure 6 C.

641
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642  Taken together, the above analyses support the utility of the phenocopy score in
643 identifying TP53-associated drug sensitivity, and also support that our tumor-derived
644  classifier is able to generalize to cancer cell line transcriptomes to detect functional
645  TP53 loss phenotype.

646

647 Associations between drug sensitivity and genetic markers is

648 modified by functional TP53 status

649

650 A central goal in personalized cancer medicine is to discover actionable mutations,
651  which are used as genetic markers to decide which therapy to apply. Based on the role
652  of TP53 mutations in dysregulating various processes relevant to tumorigenesis, we
653  hypothesized that various druggable cancer vulnerabilities may be conditional on TP53
654  functional status. To investigate, a regression was fit to predict activity (log 1C50) for
655 each drug, from cancer type and each cancer gene mutated status (via the CFE
656  classification, see Methods) and additionally introducing TP53 status (either via TP53
657 mutation (CFE), or via phenocopy status) as an interaction term. Comparing TP53
658  phenocopy FDRs against TP53 mutation FDR suggested that use of phenocopy score
659 allowed to more confidently identify the drug-gene associations where TP53 status
660 modulates the effect size; see the comparison of FDR values (Fig. 5A), broken down
661 by pathway that targets the drug. Out of the identified three-way associations (gene x
662  drug x TP53 status), 34% were found only by using the TP53 phenocopy score, but not
663 by the TP53 mutation status (Fig. 5A), while for comparison only 15% are uniquely
664 identified by TP53 mutation status. We provide a tally of all gene-drug associations that
665  were conditional upon TP53 in Supp Fig. 7A and a by-gene comparison of associations
666 identified with TP53 phenocopy score labels, versus those identified by TP53
667  mutational status, in Supp Fig. 7B.

668

669  Next, we aimed to select the more robust associations. To this end, we applied the
670  “two-way” testing approach to identify replicated drug-marker links (56). In this test, it is
671  enforced that the drug-gene association replicates across two or more drugs that share
672  the same target gene or pathway. These were tested separately for specific cancer
673  types, comparing TP53-deficient versus wild-type cells. Here, this “two-way” test (56)
674  was further modified to be able to detect interactions with a third factor, the TP53
675  functional status. As an additional criterion ensuring confidence of associations, only
676  the hits that appear in more than one cancer type were taken into consideration (as a
677  trade-off, this will cause highly tissue-specific associations to be missed). Stratifying by
678  TP53 functional status, we identified a number of drug-gene CFE associations that
679  were not significant when ignoring the TP53 status (60 % of total, <25% FDR, Supp
680 Fig. 7 C). This corresponds to a total of 2303 associations of a drug to specific gene
681 mutational status by cancer type (total humber of tests ignoring TP53=486417 versus
682  n=402945 controlling for TP53 status, Supp Fig. 7D). 133 associations were found in
683  both approaches, but revealed a lower FDR when considering TP53 stratification
684 (mean FDR=15% versus =19% if not stratifying=5e-08); all associations from the “two-
685  way” replication test are listed in Supplementary Data 5.

686

687
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688
689
690

691 Sensitizing effects of driver mutations on HDAC and ATR

692 inhibitors are modulated by TP53

693

694  Several studies suggested a role of the drug AR-42 (a HDACL1 inhibitor) in prolonging
695 p53 life and triggering apoptosis (57, 58). We hypothesized that, if p53 activity is
696 impaired, this effect of HDAC inhibitors should be reduced. Interestingly, our testing
697 reveals that mutations in the PIK3CA oncogene are associated with sensitivity to
698 HDAC1 inhibition in a manner conditional upon TP53 mutation. In other words, when
699  TP53 is functional, the resistance to HDACL1 inhibitor AR-42 due to PIK3CA mutation is
700  higher than when TP53 is mutant or otherwise inactivated as indicated by phenocopy
701  score (TP53 wild-type A PIK3CA_mut regression coefficient test p=0.005, Cohen’s
702  d=1.3, TP53 mutant PIK3CA regression coefficient test p=0.08, Cohen d=-0.38, Fig.
703  5B). We would not retrieve this association ignoring TP53 status (test on regression
704  coefficient only using PIK3CA mutation status p=0.67, Cohen d=-0.08). In particular, in
705  LUAD the difference in AR-42 sensitivity (median of normalized log IC50 across cell
706  lines) between PIK3CA mutant and wild-type is hardly evident: 0.26 versus 0.24
707  respectively, while in TP53-functional LUAD this difference is -0.43 (PIK3CA wild-type)
708  versus 0.35 (PIK3CA wild-mutant). This response is observed across three different
709  HDAC inhibitors and in three different cancer types. AR-42 and belinostat were found
710  significantly associated with PIK3CA mutation in HNSC+LUSC (here considered jointly
711  because of known molecular similarities of the cancer types), BRCA, and LUAD cancer
712 types (Fig 5 B). Similarly, the AR-42 association with PIK3CA mutation was supported
713  in the HDAC1-targeting drug CAY10603 (Supp Fig. 7E). Furthermore, when we
714  analyzed an independent drug screening dataset, the PRISM screen (53), we were
715  able to recover the same associations (Supp Fig. 7E). This example illustrates how
716  being aware of TP53 functional inactivation status, allows to detect drug-gene
717  associations that may be specific to the TP53 wild-type or to the TP53 deficient
718  backgrounds.

719

720  We also noted that the HDAC1i-PIK3CA mutation association (conditional upon TP53
721  functional status) was only recovered when controlling for TP53 phenocopy score, but
722 not when using simply the TP53 mutation status (per CFE method, see Methods) as an
723  interaction term (Belinostat IC50-PIK3CA mutation Mann-Whitney test, in the TP53
724  mutation wild-type background p=0.13, while in the TP53 w.t. phenocopy labels
725  background p=0.01, Fig. 5B). This example illustrates how the use of TP53 phenocopy
726  scores provides additional power to identify drug-gene associations, as already
727  indicated by the comparison of FDR scores for many associations above (Fig. 5A).

728

729  Recent reports have pointed out the potential therapeutic benefit of ATR inhibitors such
730 as VE-821 or VE-822 in PTEN-defective breast, glioma and melanoma cells (59, 60).
731  ATR is a crucial kinase regulating DNA repair and safeguarding genome integrity. ATR
732 inhibition in PTEN-deficient cells was associated with accumulation of DSBs, cell cycle
733  arrest and induction of apoptosis (59, 60), thus based on these phenotypes we
734  hypothesized that the functional status may modulate this effect. Inspecting our data
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735  supports that the ATR inhibitors VE-821, VE-822, and AZD6738 were associated with a
736 lower fitness in PTEN-mutant cells of the SKCM, OV, BRCA and DLBC cancers (Fig.
737  5C, Supp Fig. 7F). This effect was however revealed only when TP53 status was taken
738 into consideration, since p53 defective cells had an increased survival that obscured
739 this association (Fig. 5C, Supp Fig. 7F). Significance of the TP53 interaction term was
740  not reached in this particular example, probably as the number of cell lines with a
741  PTEN mutation (but TP53 wild-type) was low. Nevertheless, association of ATRi IC50
742  values was found to be more significant in a TP53 wild type context than in a TP53
743  deficient context. This means there was a more robust difference in cell fitness
744  comparing PTEN-mutated to PTEN wild-type cells in a TP53-proficient background
745  (TP53 wild-type IC50-PTEN Cohen’s d=-0.41 vs TP53 deficient AZD6738 IC50-PTEN
746  Cohen's d=-0.05).

747

748  Overall, above we highlighted two examples where TP53 functional status modulates
749  the association between HDAC1 inhibitors and PIK3CA mutations, and ATR inhibitors
750 and PTEN mutations. There were however many other significant three-way
751  associations involving TP53 status, cancer driver gene mutations (CNA) and drugs
752  (listed in Supplementary Data 5), for example the association between PIK3R1
753  mutations and sensitivity to MET inhibitors (Supplementary Fig. 7 G).

754

755  To estimate the importance in considering TP53 in discovering drug associations, we
756  considered overlap in associations recovered when TP53 status was accounted for
757  versus associations obtained when TP53 status was ignored. Only 14% of significant
758  associations of a given molecular target to driver gene alteration status were shared
759  between two approaches (Supp Fig. 7 F), indicating that considering TP53 status
760  strongly alters the drug-gene links recovered from statistical testing of drug screens.
761  The TP53 status-aware testing recovered a higher number of associations (n=12150
762  versus 7853, both at <25% FDR). We also noted this effect depended on the particular
763  gene: Drug responses in genes such as KRAS or TP53BP1 are well explained by gene
764  mutational status alone, not benefitting from TP53 stratification (Supp Fig. 7 G).
765  Nevertheless, for most of the gene, their drug associations are often more confidently
766 retrieved when TP53 status was accounted for (e.g. BRAF, HRAS, ATM, APC; n=18
767  genes total). Overall, the above data suggests that TP53 should be considered when
768  matching drugs to cancer patients based on the driver mutations in their tumor, and
769 that this TP53 functional status should ideally be estimated via the phenocopying score
770  rather than TP53 gene mutations.

771
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772 Figure 5. Associations between drug response and genetic markers are
773 commonly affected by TP53 functional status
774  A. Associations of mutations in various genes with antitumour drug sensitivity, controlling for
775 TP53 status. Each panel represents a pathway targeted by drugs, and each dot represents
776 a gene - drug - cancer type combination. Associations are conditioned on TP53 status by
777 including an interaction term in the regression, where the Y axis shows associations using
778 TP53 mutational status using GDSC labels (TP53 CFEs), while the X axis represents the
779 same using TP53 phenocopy score-based labels. Yellow-shaded area contains
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780 associations with FDR<0.25 for TP53 phenocopy labels, and blue-shaded area shows the
781 same for TP53 CFEs. Total counts of associations in shaded areas are shown in the Venn
782 diagram.

783 B. Association of PIK3CA mutation status with HDAC1 targeting drugs (AR-42 and

784 CAY10603), after controlling for TP53 status. Large plots show the association without

785 stratification by TP53 labels. “CFE” denotes mutated (1) or wild-type (0) PIK3CA state. An
786 association p-value is shown on top of each box by Mann-Whitney u-test. Each dot is a
787 tumor sample belonging to one of the cancer types listed above the panel. Dots are colored
788 according to TP53 phenocopy score labels. Small panels represent the same association
789 but upon stratification by TP53 status. Top row, stratification using TP53 phenocopy score
790 labels; bottom row, using TP53 CFEs (“cancer functional events”, functional mutation

791 status, see Methods). The X axis represents tumor samples stratified by both the PIK3CA
792 and TP53 status. PIK3CA CFEs groups refer to PIK3CA stratification (1=mut, 0=w.t)

793 ignoring TP53 status. Labels are as follows: “CFE:(1/0)X53pred:(1/0)” refers to stratification
794 of PIK3CA (CFE i.e. driver mutation status) using TP53 phenocopy labels (53pred). “Last
795 CFE:(1/0)X53cfe:(1/0)" refers to stratification of PIK3CA (CFE) using TP53 mutation labels
796 (53cfe). “CFE:(1/0)X53pred:(1/0)" refers to stratification of PIK3CA (CFE) using TP53

797 phenocopy labels (53pred). Lastly, “CFE:(1/0)X53cfe:(1/0)” refers to stratification of PIK3CA
798 (CFE) using TP53 mutation labels (53cfe)

799 C. Association of PTEN mutation status with ATR targeting drugs (AZD6738 and VE821), after
800 controlling for TP53 status. Organization of the plots matches Fig. 5B, C.

801

802

803

goa DIscussion

805

806  Disabling the master tumor suppressor gene TP53 provides cancer cells with important
807 advantages such as avoiding cell cycle arrest or apoptosis upon replication stress or
808 DNA damage. Because TP53 acts as a transcription factor controlling expression of
809 hundreds of genes, a functional read-out of TP53 activity can be obtained using gene
810 expression data, both at the level of mMRNA or ncRNA, or at the protein level (20-23).
811 These scores were reported to have potential clinical relevance in predicting cancer
812  aggressiveness/patient survival and therapy response(22, 23, 61, 62).

813 In this study, we developed a global transcriptome score of TP53 deficiencies, and
814  applied it to ~8,000 tumors and ~1,000 cancer cell lines, to answer three questions.

815

816  Firstly, we asked how common are the TP53-mutation phenocopying events across
817 various human cancers. We estimated a 12% frequency of TP53 loss phenocopies,
818 compared to a 58% prevalence of TP53 mutant tumors. In some cancer types such as
819 BRCA and BLCA, the TP53 phenocopies may constitute a high fraction of 19% and
820 16% tumor samples, respectively, suggesting that the TP53 status of tumors should
821  preferentially be measured via functional readout (here, transcriptome-wide signature)
822  rather than considering only mutations. Supporting this notion, a recent study using a
823  four-gene expression signature of TP53 activity demonstrated that this significantly
824  predicts patient survival across 11 cancer types, and that in the majority of those it
825  performs better than considering TP53 mutations (22).

826

827  Secondly, given the high prevalence of TP53 phenocopies we observed, we asked if
828 there exist additional genetic events that are associated with these phenocopies. We
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829 developed a method considering CNA profiles and gene expression in tumors,
830 integrating external data from CRISPR and RNAi screens, which identified the USP28
831 gene deletion as a common TP53-loss phenocopying event. This is relevant for at least
832  five cancer types: BLCA, STAD, BRCA, LIHC and LUAD, and affects 2.9%-7.6% tumor
833  samples therein. The same statistical methodology also highlighted additional genes
834  neighbouring the known phenocopies MDM2 and PPM1D -- CNOT2 and MSI2
835  respectively -- which are often co-amplified with the ‘primary’ gene in the CNA gain
836  segment and may boost the resulting TP53-loss phenotype. This analysis provides an
837 example of how molecular phenotypes (here, a transcriptional signature and fitness
838 effects from a CRISPR screen) can be used to identify multiple causal genes in a CNA
839 segment. Analogous genomics methodologies could be applied in future work to
840 interrogate various recurrent CNA events observed in tumors, for which the causal
841  gene(s) are often not known with confidence.

842

843  Thirdly, we asked if a better measurement of the TP53 functional inactivation status
844  may be impactful in terms of predicting response to antitumor drugs based on genetic
845 markers. Given that TP53 deficiencies have myriad downstream consequences on the
846  cell, including e.g. suppression of cell cycle checkpoints, or inactivation of various DNA
847  repair pathways (4) it is conceivable that the TP53 background may affect the ability of
848  various drugs to kill cancer cells, including drugs targeted towards a particular driver
849  mutation. We searched for three-way interactions involving TP53 status, each drug,
850 and each mutated cancer driver gene, finding for instance that the TP53 status
851 modulates the selective activity of HDAC1-inhibitors on PIK3CA-mutant cells. The
852  associations were filtered to retain those supported in multiple compounds targeting the
853 same protein or pathway; enforcing agreement across multiple measurements may
854  allay concerns of reproducibility in cell line screening databases (63—65). Recent work
855 by us and others (56, 66) has used statistical methods to integrate over various
856  screening datasets, considering drug and CRISPR genetic screens jointly, to improve
857 reliability of drug-target association discovery. Our robustly supported set of drug-
858 target gene links (Supplementary Data 5) that may be modulated by TP53 status
859  provides a resource for follow-up work to validate the role of TP53 functional status in
860  modulating particular gene-drug associations.

861

862  The statistical method we employed to identify TP53 loss phenocopying events draws
863  on the expression levels of 217 genes. Given that the model's predictive accuracy is
864  high (demonstrated using cross-validation and application to an independent data set
865 of cancer cell line transcriptomes), the errors it makes are of interest. While the
866  apparent false-positives are often TP53 loss phenocopies, as addressed extensively in
867 this study, it would also be interesting to look into the apparent false negatives in
868  future. These TP53-mutant tumors classified as wild-type-like by our transcriptome
869  score were not considered here, because of their relatively modest number, making
870  statistical analyses difficult. Going forward, analyses of genomes from larger cohorts of
871 cancer patients may provide enough such examples to reveal mechanisms of re-
872  establishing TP53 activity in certain cancers. Conceivably, this may happen by
873 normalizing expression of the TP53-downstream genes which have been dysregulated
874 by the TP53 mutation; understanding these events may inspire new avenues for
875  therapy of TP53 mutant tumors.

876
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877  The general approach presented here could be applied beyond TP53 also to other
878  sorts of phenocopying events which may occur in tumors. For instance, RAS pathway
879  activation transcriptomic scores were proposed (20), and similarly homologous
880 recombination repair scores based on mutational signatures (86,87) Conceivably,
881  other important cancer pathways may be similarly addressed as well, analyzing their
882  distribution across tumors to identify possible phenocopying events, as well as their
883  implications to drug response prediction, as we have done here for TP53 phenocopies.
884
885
886
887

ggs Materials and methods

889 Data collection and preparation

890 Gene expression and Copy Number Alteration (CNA) data

891 We downloaded gene expression data (transcripts per million, TPM) from GDC Data
892  Portal (74) for human tumor samples (TCGA) and from GDSC (52) and CCLE (75) for
893  cell line samples (CL). We filtered out genes with missing values in more than 100
894  samples and selected the overlapping genes between cell lines and tumors. Cancer
895  types with less than 10 samples were filtered out. Low expressed genes were removed
896 (TPM < 1 in 90% of the samples) and applied a square-root transformation to TPM.
897  Cancer types. Tumors with less than 10 samples were filtered out. In total, we have
898 12,419 features for 966 CL samples and 9149 TCGA samples. We collected CNA from
899 GDC Data Portal (74) for TCGA samples and from DepMap (64) for CL samples.

900

901 Data alignment between tumors and cell lines

902 In order to later generalize the model to cell lines we proceed to align TCGA and CL
903 data. For this, we applied ComBat, a batch adjustment method, to account for intrinsic
904  differences between tumor signal and cell lines signal (55). For the alignment of TCGA
905 and CL data, we first applied quantile normalization (normalize.quantiles function,
906 preprocessCore R 1.48.0 package) using tumor data as reference and then applied
907 ComBat (ComBat function, R package sva 3.32.1). Each group (TCGA, GDSC or
908 CLLC) was treated as a different batch.

909

910 TP53 status label (according to GDSC)

911 TCGA Pan-Cancer Atlas somatic mutation data were extracted from the MC3 Public
912  MAF (v0.2.8) data set (76). We followed the lorio et al. methodology (24) to determine
913  bona fide TP53 mutations (O:wild type, 1. mutated). We identify recurrent variants that
914 are likely to contribute to carcinogenesis. We considered mutated variants: non-
915 synonymous missense mutations, indels (in frame insertions and deletions and out of
916 frame insertions and deletions), nonsense mutations and specific splice-site mutations
917  (such as “p.X125_splice”). Samples without any of these mutations annotated were
918 considered TP53 wild type. Just in 5% of the cases (179 out of 3416) our labels
919  differed from the ones provided by lorio et al. In total, we obtained TP53 labels for 7788
920 TCGA tumors.
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921
922 TP53 score classifiers in human tumors

923  We used the aligned human tumor data to train a supervised elastic (20-23) net
924  penalized logistic regression (using cv.glmnet function with alpha = 0.5, R package
925 glmnet 4.0-2) classifier with cyclical coordinate descendent optimization (77). The
926  choice of Elastic net penalization aims to deal with two concerns: the large number of
927 variables can lead to high complexity (overfitting) and the feature multicollinearity.
928 Elastic net regressions are seen as a good trade-off that benefit from the
929 dimensionality reduction provided by Lasso penalization while keeping as many
930 informative variables as possible (Ridge penalization). Of note, these three
931 regularization methods yielded similar cross-validation accuracy: Elastic net (i.e.
932 alpha=0.5) AUC 0.960, Lasso (i.e. alpha=1) AUC 0.965, and Ridge (i.e. alpha=0) AUC
933  0.952, suggesting that the default alpha=0.5 in Elastic net method is a reasonable
934  choice. The model is trained using RNAseq data (X matrix) to infer TP53 status (Y
935  matrix). As a reference (Y) during training we used TP53 mutation status labels.

936  For the training set, we excluded the tumor samples that have an amplification (not
937 neutral, >0, according to GISTIC CNA thresholded calls downloaded using
938  FirebrowseR package, Analyses.CopyNumber.Genes.Thresholded function) in
939  previously known TP53 phenocopying genes (MDM2, MDM4, PPM1D) or a deep
940 deletion of TP53, to prevent the model from relying too much on dosage effects of
941 these genes, instead of the downstream response.

942 In addition, to control for cancer type specific signals we included cancer type as a
943  dummy variable. To control for class imbalance, we included weights in the classifier.
944  The model learns a vector of gene-specific weights that better classifies TP53 status.
945  The score from the models determines the probability of a given tumor of being TP53
946  deficient. Optimization of the penalized regression formula and further details of the
947  classifier can be consulted at (77)

948

949  Assessment of the classifier and calculation of FDR score

950 Using 90% of the training set and 5 balanced folds (balanced based on TP53
951  mutational state) we performed cross-validation. We measured the performance of the
952 training set (folds used for training) and the testing set (10% held out). Areas under the
953  Receiving Operating Curve (AUROC) and the Precision Recall curve (AUPRC) were
954  calculated for both training (cross-validation) and testing sets.

955

956  FDR was calculated by sample using each sample probability score from the classifier
957 as threshold for determining positive and negative samples FDR=false positive / (false
958  positive + true positive). Samples harboring an amplification (GISTIC thresholded
959  amplifications, FirebrowseR package, Analyses.CopyNumber.Genes.Thresholded
960 function) of known phenocopying genes (MDM2,MDM4,PPM1D) or TP53 deletions
961 (GISTIC thresholded deep deletions, FirebrowseR package,
962  Analyses.CopyNumber.Genes.Thresholded function)) were considered as true
963  positives when calculating FDR.

964

965 In Figure 1B, density of known phenocopies was calculated using MDM4, MDM2,
966 PPM1D (amplifications) and TP53 (deletions) CNA over/under the 95/0.05 th quantile.
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967  All TP53 Phenocopy scores (probabilities of being TP53 dysfunctional) are provided at
968 Data S2.

969

970  The classifier coefficients were analyzed using the GO enrichment tool ShinyGO (78).
971  The 12419 genes from the gene expression matrix with a coefficient equal to zero were
972  used as background. Full classifiers relevant coefficients are provided at Data S1.

973  The coefficients of the TP53 model should be interpreted with care, for several
974  reasons: some of these genes may change in expression levels via indirect association
975  meaning they may not be directly regulated by TP53; the gene set may omit genes that
976  are bona fide TP53 targets if the information contained in them is redundant with other
977  genes; and finally these genes may individually be only weakly associated with TP53
978  status, since the method optimizes the expression markers’ collective power.
979  Visualization was performed using Revigo (27).

980

981 TP53 status detection in cell lines

982  Using the downloadedRNAseq from GDSC cell lines data we applied our trained tumor
983 classifier to cell lines. As stated above, RNAseq data was square rooted, normalized
984 and ComBat batch corrected. Cell line prediction performance was measured using as
985 reference TP53 COSMIC labels (79) combined with lorio et al methodology (24) as we
986 did in tumors. FDR was calculated again using samples harboring an amplification of
987 known phenocopying genes (MDM2,MDM4,PPM1D) or TP53 deletions as true
988  positives.

989

990  Using the classifier scores we separate the cell lines high-confidence set (FDR<=18%)
991 using as threshold reference GISTIC tresholded TP53 deep deletions (-2)
992  (threshold=0.93) (FirebrowseR package, Analyses.CopyNumber.Genes.Thresholded
993 function). Therefore, we determine 3 sets derived from our Phenocopy score: high-
994  confidence set (predicted TP53 phenocopies, classified as mutant but originally labeled
995 as wild type), TP53 mutant (classified and labeled as mutant) and TP53 wild type
996 (classified and labeled as wild type). All cell line predictions are provided at Data S3.
997

998 Due to a lack of positive controls, samples that were classified as wild type being
999  originally labeled as TP53 mutant were not considered further. However, in the future,
1000 analyses with a higher number of cancer genomes may reveal mechanisms of re-
1001 establishing TP53 activity in some TP53 mutant cancers (e.g. by normalizing
1002  expression of the TP53-downstream genes which have been dysregulated by the TP53
1003  mutation).

1004

1005 Gene co-dependency with TP53 knockout/knockdown

1006  Following data of the 2021 Q4 release downloaded from the DepMap project website:
1007 CRISPR data from PROJECT Score (28) (“Achilles_gene_effect.csv”), combined RNAI
1008 from DEMETER2 project (29) (“D2_combined_gene_dep_scores.csv”), and the cell line
1009 metadata (“sample_info.csv”). In this data, negative scores imply cell growth inhibition
1010  and/or death following gene knockout.

1011  CRISPR data is normalized so non-essential genes scores are close to 0. We used
1012  Pearson's correlation to correlate the gene effect of CRISPR TP53 knockout in every
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1013  cell line to other genes' effect. We tested 990 cell lines for our 12419 genes. This score
1014  was calculated both by pan-cancer and by cancer type.

1015 Equally to CRISPR codependency data we correlated gene knockdown effect with
1016  TP53 knockdown effect using Pearson's correlation test. We tested 700 cell lines for
1017  our 12419 genes. This score was calculated both for pan-cancer and by cancer type.
1018

1019  Calculation of the prioritization score

1020  We sought to rank possible TP53 loss phenocopying genes testing different data: copy
1021  number variant data, gene expression data (RNAseq), RNAi codependency score and
1022 CRISPR codependency score. We used the downloaded tumor data (previously
1023  described) and our TP53 Phenocopy score to test for differences across our 3 main
1024  TP53 groups: TP53 wild type (labeled and classified as wild type), TP53 mutated
1025 (labeled and classified as mutated) and predicted TP53 phenocopied(labeled as wild
1026  type but classified as mutated). We guessed that phenocopying genes should have a
1027  differential expression in the phenocopies group when comparing to wild type and
1028 mutated TP53 groups individually. We tested 12419 genes (by cancer type) in the

1029  following manner (via Student's t-test):
1030

1031 CNV_gene(i)_TP53_wt versus CNV_gene(i)_TP53_phenocopies (CNVO test),
1032 CNV_gene(i)_TP53_mut versus CNV_gene(i)_TP53_phenocopies (CNV1 test)
1033 GE_gene(i)_TP53_wt versus GE_gene(i)_TP53_phenocopies (GEO test)

1034 GE_gene(i)_TP53_mut versus GE_gene(i)_TP53_phenocopies (GEL1 test)

1035 RNAI_score_gene(i) versus RNAi_score_TP53 (RNAi codependency score,
1036 methodology described above)

1037 CRISPR_score_gene(i) versus CRISPR_score_TP53 (CRISPR codependency
1038 score, methodology described above).

1039

1040 3010 genes out of 12419 did not have gene expression data so GE1 and GEO tests
1041  were omitted from the combination for those genes. We combined the p-values values
1042  from the tests by cancer type using Fisher's method for combining p-values. For each
1043  category (CNV and GE) we only use in the combination the worst p-value (max)
1044  between CNVO and CNV1 and GE1 and GEO as a way of controlling. Genes in which
1045 the test direction is not coherent in CNV, GE and codependency score were dropped.
1046 A gene with a negative codependency score, as negative regulators such as MDM2, is
1047 expected to cause a phenocopy of TP53 by amplification and overexpression
1048 (therefore a higher expression in the phenocopies group that TP53 wt or mut). P-values
1049 were FDR adjusted using Benjamini-Hochberg method (p.adjust function of the stats
1050 package). We further merged each cancer type combined score into one single FDR
1051 value using Fisher's approach. That way we obtained the final Prioritization score for
1052  each gene in a cancer-combined way. We set as reference the known phenocopies
1053 (MDM2, MDM4, PPM1D) FDR and CRISPR codependency score. To establish a
1054  stringent threshold for new possible phenocopying genes, we determine that the gene's
1055  prioritization score (combined by cancer type) should have an FDR as significant as the
1056  best ranked phenocopying gene (by cancer type). Same was applied for CRISPR
1057 codependency score. The known phenocopying genes with the best score by cancer
1058  type was MDM4 in LUAD, with an FDR of 4e-05 and a CRISPR codependency score of
1059  -0.26.
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1060
1061 TP53 wild-type and TP53 -/- isogenic cell line screens

1062  Mean beta scores were calculated using MAGeCK-MLE (80) for TP53-isogenic pair cell
1063  lines A549 (81) and two RPEL1 cell lines (82, 83). Beta scores represent the effect that
1064  gene knock-out has on cell fitness.

1065 We calculated the Z-scores (distance from the mean expressed as number of standard
1066  deviations) of either USP28 or ATM within the distribution of their respective neighbor
1067  genes, for each dataset and TP53 status "1Mbp neighbor genes" are genes present in
1068 Brunello (84) and Gecko v2 (85) libraries and located within a 1Mbp window
1069  surrounding either USP28 or ATM, obtained from genecards.weizmann.ac.il

1070

1071 Drug response associations with TP53 status

1072  We collected GDSC (24) drug data for a total of 1000 cell lines. We used IC50 as a
1073  measure of activity of a compound against a specific cell line. If drug data was
1074 available in both GDSC1 and GDSC2 versions, GDSC1 data was selected.

1075 We also collected each drug putative target and target pathway information from the
1076 GDSC website (https://www.cancerrxgene.org/). We filtered out NA values and
1077  transformed IC50 to log scale. We downloaded GDSC mutational Cancer Functional
1078 Events (CFEs) (24) in order to: make comparisons between TP53 Phenocopy score
1079 and GDSC TP53 CFEs and to test other gen status drug responses controlling for
1080  TP53 status. Mutational CFEs consist of a GDSC curated set of cancer genes (CGS)
1081 for which the mutation pattern in whole-exome sequencing (WES) data is consistent
1082  with positive selection.

1083  We first used drug response (IC50) values of 449 GDSC drugs to fit a pan-cancer
1084  regressions against TP53 status using cancer type as control variable. We fit three
1085  different regressions per drug response: against TP53 CFEs, against predicted TP53
1086  Phenocopy thresholded scores and against TP53 random labels.

1087  log(IC50) ~ TP53.status + cancer.type

1088  For the TP53 status we used the groups obtained from our Phenocopy score being the
1089  TP53 high-confidence set (classified as mutant, labeled as wild-type) and TP53 mutant
1090 set (classified as mutant, labeled as mutant) the TP53 deficient set (TP53.status = 1)
1091 and TP53 wild type (classified as wild-type, labeled as wild-type) as wild type set
1092  (TP53.status = 0). Due to uncertainty, we filtered out samples with a TP53 mutation
1093 classified as wild-type. Cancer types with less than 3 cases for any category were
1094 filtered out. We used the esc R package to calculate effect size (cohens_d function). P-
1095 values of associations were FDR corrected using the Benjamini-Hochberg (“fdr”)
1096  correction of the p.adjust function (stats package).

1097

1098 We separate the drugs into groups according to the pathway the gene they target
1099 belong to. By pathway, we calculated the slope resulting from the comparison of the
1100 FDR Phenocopy score regression versus the FDR TP53 CFEs. For visualization we
1101  plotted raw IC50 values of different drugs and all drugs together across the different
1102  cell line defined sets. For further analysis, we merged the cancer types that were
1103  similar: HNSC with LUSC (jointly known as HNSC_LUSC), GBM with LGG
1104 (LGG_GBM) and OV with UCEC (OV_UCEC).
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1105
1106
1107 Drug response associations of gene status controlling for TP53 status

1108  We collected drug screening data from the PRISM project (53) and GDSC project (52).
1109  NA values were filtered out and IC50 values were transformed to logarithmic scale. We
1110  downloaded mutation features (GDSC mutational CFEs, see above) from (24).

1111

1112 First, we fit a regression for each drug and gene CFE including TP53 loss Phenocopy
1113  score and the interaction term as it follows:

1114  log(IC50) ~ genCFEs+TP53Phenocopy.status+genCFEs *TP53Phenocopy.status

1115  For comparison, we performed the same analysis using TP53 random and TP53 CFEs
1116  instead of TP53 Phenocopy.status.

1117  We tested every gene mutational CFEs out of the 300 genes provided by GDSC. We
1118 filtered out cases with Iss than 3 samples in any category (mutated:1 or wildtype:0) for
1119  TP53 status and gen CFEs. Regressions were fitted by cancer type using glm package
1120 (glment 4.0-2 R package). We selected genCFEs p.value and FDR correct using the
1121  Benjamini-Hochberg (“fdr”) correction of the p.adjust function (stats R package). The
1122 coefficient of the genCFEs variable informs us about the fold change of the different
1123  variable states (mutant:1l-wildtype:0) when TP53Phenocopy.status is set to its
1124  reference levels (wildtype:0). We compared these scores when using TP53 Phenocopy
1125 to TP53 CFEs by plotting FDR values and calculating slope (Figure 5 A,
1126  Supplementary Figure 7 A).

1127

1128

1129 Two-way association tests

1130  To further analyze TP53 interaction in a more stringent way we implemented a version
1131  of the “two-way association test” approach developed by Levatic et al (56). In this
1132  methodology we enforced that, for a given drug, an association between a gen feature
1133  (GDSC gen mutational CFEs) and GDSC drug response is reproduced in other drugs
1134  with the same molecular target (controlled by TP53 status as an interaction).

1135

1136  For this, we curated 996 sets of two drugs with the same target (ie: Dabrafenib and
1137  AZ628, target=BRAF). For the two drugs separately, we fitted a regression comparing
1138 the GDSC drug response against gen status (GDSC mutational CFEs) controlling for
1139  TP53 status (as stated above) by cancer type. We tested the different labels in the
1140 regression: TP53 CFEs, TP53 Random labels and TP53 Phenocopy labels. We
1141  considered associations by cancer type. We calculated the two-way association score
1142 by averaging the estimates (effect size) obtained between drug 1 and drug 2. To
1143  calculate the p-value for each drug-drug combination, we shuffled the TP53 labels and
1144  compared the obtained random estimates with the actual estimate as described in our
1145  previous work (56).

1146

1147  For an association to be selected, we require that it is observed in more than one
1148  cancer type (merged cancer types excluded), FDR<25% across all cancer types where
1149  the hit is observed and that the direction (value from gen CFEs variable estimate) is
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1150 maintained across drugs. When selecting relevant hits we also required that each hit
1151  TP53 interaction term variable in regression is significant (FDR<25%). This informs us
1152  of deviation from the behavior of the regression variables gen_status=1 and
1153  gen_status=0 when TP53 is controlled as interaction. We filtered out cases with less
1154  than 3 samples in any category (mutated:1 or wildtype:0) for TP53 status and gen
1155 CFEs in a cancer type manner. Supported hits by this methodology are reported at
1156  Figure 6 B C, Supplementary Figure 7 C, D and E and in Supplementary Data 5.

1157  In addition, as a validation for some hits we performed a “two-way” using PRISM data.
1158 In this case we enforced that, for a given drug, an association between a gen feature
1159  (GDSC gen mutational CFEs) and GDSC drug response is reproduced in the same
1160  drug using the PRISM dataset. The rest of the methodology was applied in the same
1161  manner (see GDSC “two-way test” above).

1162

1163  As control, we followed the same procedure of the two-way testing method but fitting
1164  regressions of IC50 ~ gen CFEs (without interaction term). FDR corrected p-values of
1165 gen CFEs coefficient in regressions with and without interaction term were compared.
1166 We made different types of comparisons: by gene associations (Supplementary Figure
1167 7 B), molecular target-gen CFEs associations (different 2-sets of drugs can target the
1168  same molecular feature) and all associations (Supplementary Figure 7 A)

1169

1170
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1485 CCR4-NOT is a transcription complex (CNOT), composed of 11 subunits, that plays an
1486  important role in multiple functions in terms of regulating translation, mRNA stability,
1487 and RNA polymerase | and Il transcriptions (67,68). CNOT2, one of the CCR4-NOT
1488  subunits, plays a critical role in deadenylase activity and the structural integrity of the
1489  complex (69) among other functions. An increasing number of studies have suggested
1490 CNOT2s role in tumor progression, such as in metastasis, proliferation and
1491  angiogenesis (70, 71). CNOT2 depletion and CCR4-NOT disruption have been linked
1492  to an apoptotic response via MID1IP1 and increased p53 activity (70, 72) . CNOT2 has
1493  been reported to be among the top 5 amplified genes in chromosome 12, together with
1494 MDM2 (73). Appealingly its overexpression has been demonstrated in several cancer
1495  types such as pancreas, prostate, liver, urinary, ovarian and breast (71). Experiments
1496  inducing CNOT2 overexpression led to increased p21 and p53 expression, decreased
1497  apoptosis and decreased TNF-related apoptosis-inducing ligand (TRAIL) sensitivity
1498 (72, 73).
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1501

1502 In BLCA, co-amplifications are associated with a higher TP53 phenocopy score, and
1503 are more frequent than MDM2-only amplifications (21 out of 32 are co-amplifications,
1504  Supp Fig. 4E). In BRCA, we found almost exclusively MDM2-CNOT2 co-amplifications
1505 and no MDM2 only amplifications. In STAD co-amplifications of MDM2 and CNOT2 are
1506  more frequent (10 out of 13) than MDM2 solely. Just GBM was found to rely more on
1507 MDMZ2 only amplifications (8 out of 14, Supp Fig. 4E).

1508  Only 3 tumor samples were CNOT2 amplified but MDM2-non amplified (all 3 having a
1509  TP53 phenocopy score lower than 0.5, Supp Fig. 4E). No cancer type relied on CNOT2
1510  only amplifications.
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1513  Supplementary Data are attached as separate files.

1514  Supplementary Data 1 - TCGA TP53 Phenocopy scores
1515  Supplementary Data 2 - Gene coefficients

1516  Supplementary Data 3 - USP28/ATM fitness effect

1517  Supplementary Data 4 — Cell lines TP53 Phenocopy scores
1518  Supplementary Data 5 - Two-way associations
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1520 Supplementary Figures 1-7 are given in a separate document.
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