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 41 

Abstract 42 

How to enhance biodiversity in monoculture-dominated landscapes is a key sustainability 43 

question that requires considering the spatial organization of ecological communities (beta 44 

diversity). Here, we experimentally tested if increasing landscape heterogeneity – through 45 

tree islands – is a suitable landscape restoration strategy when aiming to enhance multi-taxa 46 

diversity. We found that multi-taxa diversity resulted from islands fostering unique species 47 

(turnover: between 0.18 - 0.73) rather than species losses and gains (nestedness: between 48 

0.03 - 0.34), suggesting that tree islands enhance diversity at the landscape scale. Through 49 

partial correlation networks, we revealed that landscape heterogeneity is associated with 50 

multi-taxa diversity (strength = 0.84). Soil biota were also central to the overall community by 51 

connecting beta diversity patterns across taxa. Our results show that increasing landscape 52 

heterogeneity enhances multi-taxa diversity in monoculture-dominant landscapes. 53 

Furthermore, we highlight that strategies aiming to enhance multi-taxa diversity should 54 

consider that spatial distributions of above- and below-ground communities are associated. 55 

 56 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514517doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514517
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

 

Keywords: above-belowground biodiversity, biotic associations, Indonesia, landscape 57 

restoration, multi-taxa beta diversity, oil palm plantation, species turnover, TreeDivNet  58 

 59 

Introduction 60 

Habitat loss and degradation of natural ecosystems are major drivers of the global 61 

biodiversity crisis1,2, with more than half of the terrestrial land surface converted for 62 

anthropogenic uses3. Croplands have become the largest terrestrial land cover type on the 63 

planet4, with the net increase in tropical regions exceeding 100 million ha / decade5. Across 64 

the tropics, oil palm production has increased 15-fold in the last decades6, contributing 65 

significantly to land-use change and intensification and impacting global biodiversity 66 

hotspots. Specifically, oil palm plantations occupy 21 million hectares, mostly in Indonesia 67 

and Malaysia7. In the face of this biodiversity crisis, there is currently an unprecedented 68 

political will to restore degraded ecosystems and landscapes globally8. Therefore, it is 69 

fundamental to bring a complementary perspective to the United Nations (UN) on Ecosystem 70 

Restoration by expanding the restoration scope from degraded and abandoned lands to 71 

agricultural productive systems. 72 

Embedding small patches of native trees ("tree islands") in degraded landscapes is a 73 

promising strategy to enhance biodiversity and facilitate landscape restoration9. By actively 74 

planting trees or through natural regeneration, integrating natural habitats in monoculture-75 

dominated landscapes can positively affect environmental heterogeneity9–11, where 76 

heterogeneous habitats can be associated with higher species diversity across taxa and 77 

spatial scales12,13. However, it remains uncertain to what extent environmental heterogeneity 78 

at the landscape-scale (i.e., landscape heterogeneity) can be leveraged to enhance the 79 

diversity of multiple taxonomic groups (i.e., multi-taxa diversity) in monoculture-dominated 80 

landscapes. 81 

To inform conservation management and landscape restoration, it is essential to integrate 82 

insights from community assembly mechanisms; for example, through beta diversity that is 83 

the spatial distribution of ecological communities14,15. The assembly of ecological 84 

communities is determined by different factors, including biotic and abiotic filtering, 85 

environmental drift, and dispersal16,17. For instance, through direct and indirect species 86 

interactions, biotic filtering may play an important role in shaping biodiversity18–20 and the 87 

spatial organisation of (meta)communities21–24; explaining the growing interest in 88 

understanding the role of biotic interactions on community assembly in restoration contexts25–89 
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27. Yet, our understanding of assembly mechanisms of multi-taxa communities in human-90 

modified landscapes, particularly in the tropics, remains limited15,28. 91 

Here, we assessed if multi-taxa diversity can be enhanced in large monoculture-dominated 92 

landscapes by embedding environmentally dissimilar tree islands. Furthermore, we 93 

investigated to what extent biotic associations are central to defining the spatial distribution of 94 

multi-taxa communities (i.e., multi-taxa beta diversity). To this end, we used comprehensive 95 

data from a unique tropical biodiversity enrichment experiment (EFForTS-BEE [Ecological 96 

and socio-economic functions of tropical lowland rainforest transformation systems: 97 

biodiversity enrichment experiment]29), located in Sumatra, Indonesia, a global hotspot of 98 

biodiversity loss30 and recent tropical deforestation31. Embedded within a 140-ha oil palm 99 

plantation, 52 experimental tree islands were planted with varying tree diversity and island 100 

size. In our study, we defined a landscape as <a geographical area, characterised by its 101 

content of observable, natural and human-induced, landscape elements= following32, with tree 102 

islands as the landscape elements (and no other surrounding land-use patches). This 103 

landscape-scale perspective with tree islands makes EFForTS-BEE unique among the 104 

largest network of tree diversity experiments worldwide (TreeDivNet33). We analysed multi-105 

taxa diversity sampled three to five years after establishment, when the tree islands 106 

substantially differed in vegetation structural complexity34. We calculated beta diversity and 107 

its turnover and nestedness components (i.e., species losses and gains) using community 108 

data of understorey arthropods, soil biota (fungi, bacteria, and fauna), herbaceous plants, 109 

and trees (excluding planted trees). We expected that tree islands, varying in vegetation 110 

structural complexity (as a result of differences in island size and planted diversity35) and soil 111 

conditions, will increase total landscape diversity (i.e., gamma diversity) by fostering unique 112 

species resulting in higher turnover rather than species losses and gains, i.e., nestedness 113 

(Fig. 1). 114 

To reveal the factors shaping the spatial distribution of multi-taxa communities (beta diversity, 115 

turnover and nestedness) across tree islands, we used partial correlation networks, which 116 

quantify associations among landscape heterogeneity (i.e., dissimilarity in vegetation 117 

structural complexity and soil conditions across tree islands) and beta diversities (or its 118 

underlying components) across taxa. Partial correlations can provide insights about 119 

associations shaping the spatial organisation of communities across taxa, e.g., similar niche 120 

requirements, dispersal limitations, and potential biotic interactions due to co-occurrences; 121 

with this approach particularly helpful in hyperdiverse regions such as the tropics, where 122 

biotic interactions likely structure strongly community assembly21 but assessing interactions is 123 
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extremely challenging36,37. In the network, the nodes represent landscape heterogeneity and 124 

beta diversity (or one of its two components) for each taxon, and the links represent 125 

associations between the nodes. For example, positive associations between landscape 126 

heterogeneity and beta diversity translate into greater dissimilarity in vegetation structural 127 

complexity between islands being associated with dissimilar multi-taxa communities. A 128 

positive association between beta diversity of two taxa (e.g., herbaceous plants and soil 129 

bacteria) implies that tree islands that differ in herbaceous plant composition also differ in soil 130 

bacteria composition. Similarly, a positive association between turnover (or nestedness) 131 

between herbaceous plants or soil bacteria implies that tree islands that foster unique 132 

species (or are driven by species losses and gains) for herbaceous plants also show the 133 

same pattern(s) for soil bacteria (Fig 1). 134 

 135 

Results and discussion 136 

 137 

Gamma and beta diversity across tree islands embedded in an oil palm plantation  138 

Across the 52 tree islands, we recorded 958 morphospecies of understorey arthropods, 139 

8,159 operational taxonomic units (OTUs) of soil fungi, 47,856 OTUs of soil bacteria, 27 140 

taxonomic groups of soil fauna (Supplementary Table S4), 75 herbaceous plant species, and 141 

50 trees species - excluding planted trees (gamma diversity; all classifications are referred to 142 

as "species" below). Overall, across the 52 tree islands, beta diversity (calculated as Jaccard 143 

pairwise dissimilarity) varied among taxa, ranging from 0.31 for soil fauna to 0.77 for 144 

understorey arthropods. Beta diversity was mainly driven by species turnover, while 145 

nestedness, except for trees and soil fauna, played a minor role (Fig. 2). Specifically, the 146 

highest species turnover was found for soil fungi, understorey arthropods, and soil bacteria, 147 

accounting for ~ 94% of the total beta diversity. Species turnover was lowest for trees (52%) 148 

and soil fauna (59%). We did not find major differences in the results when calculating beta 149 

diversity using Sørensen pairwise dissimilarity (Supplementary Figures S2 and S5). Hence, 150 

our results consistently indicate that beta diversity is primarily associated with the uniqueness 151 

of species assemblages rather than smaller assemblages being a subset of larger ones. 152 

Consequently, promoting the uniqueness of species assemblages with multiple tree islands 153 

appears as a promising strategy for enhancing biodiversity in monoculture-dominated 154 

landscapes, at least during the first years after tree island establishment. 155 
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The differences in beta diversity across taxa that our study revealed, might be explained by 156 

ecological processes related to dispersal ability, body size and life history. For instance, due 157 

to the long lifespan of trees, the influence of processes such as local extinction and 158 

colonisation may require more time than for other taxa. Furthermore, tree beta diversity 159 

patterns may be shaped mainly by seed sources in the surrounding landscape and by tree 160 

species with higher dispersal capacities38, explaining the unexpected high nestedness in 161 

human-modified ecosystems compared to tropical forests for trees39. While we expect overall 162 

patterns to hold, the influence of differences in sample coverage across taxa - particularly 163 

incomplete coverage for highly diverse taxon such as fungi - in terms of turnover and 164 

nestedness under- or over-estimations remains unknown. Finally, taxonomic resolution may 165 

impact our ecological understanding40, particularly for soil fauna that mainly was assessed at 166 

the level of orders (that often represent functional groups41). Contrasting resolutions reflect 167 

the challenge of biodiversity assessment in the species-rich tropics36. Despite that, soil fauna 168 

was a good indicator of overall multi-taxa community dissimilarity (see below). Therefore, we 169 

expect this crucial role to remain or be strengthened with higher resolution, but increases in 170 

resolution will likely result in higher beta diversity due to higher turnover. 171 

 172 

Insights of multi-taxa beta diversity through landscape heterogeneity and biotic 173 

associations 174 

Beta diversity patterns across multiple taxa were correlated, with the network for beta 175 

diversity comprising 17 edges (Fig. 3A, Supplementary Table S6). The most connected taxa 176 

were soil fauna and bacteria (strength, i.e., the sum of absolute edge weights, = 0.82 and 177 

0.71, with five and four edges with other nodes, respectively; Fig. 4A). By contrast, trees 178 

were the least connected (strength = 0.46, with four edges). The highest correlation 179 

coefficient was observed between soil fungi and bacteria beta diversity (+0.25). Turnover 180 

patterns for multi-taxa diversity were also correlated, with the network for turnover comprising 181 

eight edges (Fig. 3B, Supplementary Table S7). In the case of turnover, turnover of soil fauna 182 

and understorey arthropods were disconnected from the network. In other words, neither 183 

turnover patterns of soil fauna nor understory arthropods follow dis(similar) turnover patterns 184 

of other taxa, neither were associated with landscape heterogeneity. Finally, nestedness 185 

patterns for multi-taxa diversity were correlated except for trees (Fig. 3C, Supplementary 186 

Table S8), with the network retaining six edges. Yet, the nestedness network had low 187 

stability. Together, these results suggest that direct and indirect associations shape the 188 
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spatial organisation of communities across taxa in tropical human-modified landscapes, 189 

supporting previous studies in temperate ecosystems23,24. 190 

Our results point toward the key role of below-ground organisms in structuring multi-taxa beta 191 

diversity patterns. Soil biota (soil fauna, bacteria, and fungi) are central to the overall 192 

ecological community as its beta diversity patterns are associated with beta diversity patterns 193 

of other taxonomic groups and with abiotic variables (for different centrality indices, 194 

Supplementary Fig. S3). Soil biota may act as an indicator of current conditions, the result of 195 

legacy effects from previous land-uses (e.g., oil palm plantation or tropical forest), or both42. 196 

For example, soil fauna composition can be associated with differences in specific organic 197 

materials (reflecting the heterogeneity before the land-use conversion) and time delays 198 

because of the limited dispersion of soil fauna43. Similar beta diversity patterns between soil 199 

fauna and soil fungi may be underlain by species interactions (e.g., soil fungi as an important 200 

food source in soil food webs44), similar niche requirements and/or dispersal limitations 201 

influencing soil biota (symbiotroph, pathotroph and saprotroph, Supplementary Fig. S4 – S7; 202 

Supplementary Tables S9 – S11). Associations between soil biota and trees can result from 203 

plant-soil feedbacks, with soil fauna potentially influencing vegetation dynamics and above-204 

ground biodiversity45. For instance, soil biota have been shown to affect understorey 205 

arthropods (particularly pollinators, Supplementary Fig. S4 – S6) when soil biota indirectly 206 

affect floral traits (e.g., bacteria, root herbivores, and mycorrhizal fungi), influencing 207 

pollination attractions and plant fitness46. While detailed plant-soil feedback experiments 208 

would be required to disentangle the mechanisms of above- and below-ground associations 209 

shaping multi-taxa dynamics, here we provide further evidence highlighting the importance of 210 

integrating the belowground compartment towards elucidating dynamics in monoculture-211 

dominated landscapes. 212 

Landscape heterogeneity played a crucial role in all three networks (Fig. 3). For instance, 213 

dissimilarity in vegetation structural complexity was the most connected node (strength = 214 

0.84 with four edges to other nodes) in the beta diversity network. Besides, soil P was the 215 

most connected node (strength = 0.49 with four edges, Fig 4B) in the species turnover 216 

network. The highest and lowest correlation of soil P was found with soil bacteria and fungi 217 

beta diversity, respectively (+0.18 and +0.11). This suggests that landscape heterogeneity 218 

can promote beta diversity by fostering different species compositions, reinforcing the role of 219 

enriched tree islands in influencing community assemblages and biodiversity at the 220 

landscape-scale (i.e., beta and gamma diversity). Further, it implies that dissimilarity in 221 

abiotic conditions can directly or indirectly impact multiple taxa. The influence of vegetation 222 
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structural complexity on multi-taxa diversity may act via altering light and microclimatic 223 

conditions47 and other characteristics associated with variation in local planted tree species 224 

diversity and identity – with both shaping vegetation structural complexity35. Furthermore, the 225 

influence of tree islands on multi-taxa diversity might reflect the removal of environmental 226 

filtering associated with conventional management such as liming and fertilisation, which is 227 

responsible for biotic homogeneity in monoculture-dominated landscapes. Further possible 228 

mechanisms include enhanced nutrient cycling and plant litter decomposition48,49, particularly 229 

in ecosystems under transition (e.g., primary or secondary succession)50. 230 

 231 

Conclusions 232 

We conclude that enriching monocultures with tree islands varying in vegetation structural 233 

complexity (as a result, for instance, of tree planting diversity and island size) can foster 234 

unique ecological communities above- and below-ground and thereby promote multi-taxa 235 

diversity at the landscape-scale (beta and gamma diversity). Additionally, we suggest 236 

distributing tree islands across the monoculture-dominated landscape to enhance multi-taxa 237 

diversity by capturing contrasting soil conditions. Landscape restoration strategies aiming to 238 

enhance multi-taxa diversity should consider not only key abiotic conditions but also the 239 

extent to which biotic associations play an important role in shaping ecological communities 240 

at landscape-scale. By enhancing biodiversity at the landscape level in monoculture-241 

dominated tropical landscapes, we bring a complementary perspective to the UN Decade on 242 

Ecosystem Restoration and provide experimental evidence urgently needed to guide 243 

interventions for landscape restoration in productive agricultural systems. 244 

 245 

Materials and Methods 246 

Study area 247 

This study was conducted in the Biodiversity Enrichment Experiment (EFForTS-BEE) located 248 

in Jambi province, Sumatra, Indonesia. The main aim of EFForTS-BEE is to evaluate the 249 

potential of establishing tree islands9 within an industrial oil palm plantation as a restoration 250 

measure to enhance biodiversity and ecosystem functioning while maintaining financial 251 

benefits (29, Zemp et al., in revision). The area is characterised by a humid tropical climate 252 

with two peak rainy seasons (March and December) and a dryer period extending from July 253 

to August29. The mean temperature is 26.7 ± 1.0 °C, and the mean annual precipitation is 254 

2235 ± 385 mm (1991 - 2011). The predominant soil type in the region is loamy Acrisol51. 255 

EFForTS-BEE was established in December 2013 and consists of 52 experimental plots, i.e., 256 

tree islands varying in plot size of 25 m2, 100 m2, 400 m2, and 1,600 m2, and planted tree 257 
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diversity level 0, equal to no tree planted, 1, 2, 3, and 6 tree species planted in a plot, all 258 

embedded in a 140-ha oil palm plantation (01.95° S and 103.25° E, 47 ± 11 m a.s.l.). The 259 

experiment follows a random partition design aiming to disentangle the linear effects of tree 260 

diversity and plot size and the non-linear effects of tree species composition29. For details of 261 

the experimental design, see ref29. The planted species represent native, multi-purpose trees 262 

used for the production of fruits (Parkia speciosa Hassk, Archidendron jiringa (Jack) 263 

I.C.Nielsen, and Durio zibethinus L.), timber (Peronema canescens Jack, and Shorea 264 

leprosula Miq.), and natural latex (Dyera polyphylla (Miq.) Steenis)34. 265 

Data collection 266 

The data for this study were collected between October 2016 and May 2018. We sampled 267 

above-ground and below-ground taxa, including understorey arthropods, soil biota (soil fungi, 268 

soil bacteria, and soil fauna), herbaceous plants, trees, vegetation structural complexity 269 

measures, and soil conditions, with all measurements within the 52 tree islands, i.e., plots. 270 

Arthropods sampled at the height of the understorey vegetation (referred to as "understorey 271 

arthropods") were sampled three times with six pan traps (2 × 3 pan traps) equally distributed 272 

per plot, for 45 hours from October 2016 to January 2017. The traps were made of white 273 

plastic bowls coloured with yellow UV paint52 and filled with water and a drop of detergent. All 274 

individuals were preserved in 70% Ethanol, sorted by morphospecies, and subsequently 275 

identified into higher taxonomic classification possible (i.e., 14 groups/families) and their 276 

corresponding functional groups (e.g., Table S5). 277 

Soil biota and herbaceous plants were surveyed in the same subplot of 5 × 5 m area 278 

established within each plot29. Specifically, soil fungi were sampled and collected in 279 

December 2016 from three soil cores per plot (10 cm depth and 4 cm diameter) and 280 

identified through DNA extraction and next-generation sequencing42. OTUs were classified 281 

taxonomically using the BLAST algorithm (blastn, v2.7.1; 53) and the UNITE v7.2 282 

(UNITE_public_01.12.2017.fasta; 54). Soil bacteria were obtained for each subplot from three 283 

10 cm cores of topsoil, placed at 1 m far from the adjacent trees. The soil cores were mixed, 284 

homogenised and cleared from roots before DNA and RNA extraction and posterior 285 

classification55. In each plot, soil fauna communities were assessed in four soil samples of 16 286 

× 16 cm using a spade down to a depth of 5 cm plus the entire overlying litter layer. The 287 

animals extracted from the soil samples by heat were counted and classified into taxonomic 288 

groups, corresponding to key functional soil invertebrate guilds (mainly groups/families, 289 

Supplementary Table S4)41,56,57. Herbaceous plants, described as all non-woody plants lower 290 

than 1.3 metres in height, were identified from February to March 2018. Trees refer to all 291 
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free-standing woody plants with a minimum height of 1.3 m, inventoried in the total area of 292 

the experimental tree islands in August 2018, excluding the trees planted at the onset of the 293 

experiment. 294 

Soil nutrient variables, including total carbon (C) and nitrogen (N) concentration (g mg-1), C-295 

to-N ratio, and plant-available P concentration (mg g-1), were quantified using the same soil 296 

samples as for soil fungi collected in December 2016 (see below). Total C and N were 297 

determined via the combustion method in a C/N analyser42. Plant-available P was quantified 298 

following Bray & Kurtz58. The soil samples were mixed with Bray-I Extraction solution, shaken 299 

for 60 min, and filtered with phosphate-free filters. P concentration of filtrates was measured 300 

using inductively coupled plasma mass spectrometry42. 301 

We quantified vegetation structural complexity using multiple terrestrial laser scans taken 302 

between September and October 201635. We calculated Effective Number of Layer (ENL), 303 

which describes the vertical structure of forest stands and is influenced by the stand height 304 

and the vegetation distribution across vertical layers59. In addition, we calculated Mean 305 

Fractal Dimension (MeanFRAC) and Stand Structural Complexity Index (SSCI). MeanFRAC 306 

is defined as the arithmetic mean of fractal dimensions describing the geometric complexity 307 

of the stand60. MeanFRAC is associated with enriched tree island conditions, i.e., planted 308 

tree composition, richness, and tree island size35. SSCI describes the arrangement of tree 309 

components in three-dimensional space60,61. 310 

Beta diversity and landscape heterogeneity 311 

For each taxa, beta diversity was calculated using species incidence-based pairwise 312 

dissimilarity matrices (presence-absence data) with the function beta.pair from the package 313 

betapart version 1.5.462. We partitioned beta diversity into turnover and nestedness 314 

components62,63. The Jaccard pairwise dissimilarity (βjacc) among plots was computed as βjacc 315 

= βjtu + βjne, where βjtu accounted for the turnover fraction of Jaccard pairwise dissimilarity, and 316 

βjne accounted for the nestedness-resultant dissimilarity fraction. We calculated beta diversity 317 

using community data (incl. operational taxonomic units, taxonomic groups, morphospecies 318 

or species – referred as species in the text). In addition, we calculated beta diversity using 319 

Sørensen pairwise dissimilarity, which incorporates turnover and richness differences as βsor 320 

= βsim + βsne. In this case, βsim accounted for turnover measured as Simpson pairwise 321 

dissimilarity, and βsne accounted for the patterns of beta diversity causing nestedness, 322 

measured as the nestedness-resultant dissimilarity fraction of Sørensen dissimilarity 323 

(Supplementary Fig. S2 and S5). While Jaccard considers the proportion of unique species in 324 

the entire pool, Sørensen considers the proportion of unique species per site64. 325 
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For the abiotic variables (vegetation structural complexity and soil conditions), we calculated 326 

pairwise dissimilarity between all matrix rows, i.e., tree islands, using the function dist from 327 

the R stats package. We used the Euclidean distance method, calculated as a true straight-328 

line distance between all matrix rows in Euclidean space. 329 

Multivariate normality was tested with Mardia's multivariate skewness and kurtosis 330 

coefficients using the function mvn from the R package MVN version 5.965. When the test did 331 

not state multivariate normality, a non-paranormal transformation to achieve Gaussian 332 

distribution was implemented using the function huge.npn and the setting shrinkage based 333 

on a shrunken Empirical Cumulative Distribution Function (ECDF) from the R package huge 334 

version 1.3.566. 335 

Partial correlation networks 336 

We applied partial correlation networks to study associations between landscape 337 

heterogeneity and the beta diversity (turnover or nestedness) among multiple taxa. An 338 

association between taxa indicates the covariation of the spatial distribution of ecological 339 

communities among taxa. Advantages of partial correlation networks are threefold: first, they 340 

describe correlations between a set of conditionally independent variables67, second, they do 341 

not require a priori knowledge of the structure68; and finally, the correlations can be 342 

graphically represented and analysed to reveal key interdependencies and highly connected 343 

variables69. Partial correlation networks have been widely used to infer pairwise species 344 

interactions from observed presence-absence matrices68. A network is composed of nodes 345 

and edges, where the nodes represent the beta diversity (or turnover or nestedness) of the 346 

different taxa and the dissimilarity of vegetation structural complexity and soil conditions. The 347 

edges (i.e., links connecting pairs of nodes) represent correlations between nodes, in our 348 

case, undirected partial correlation coefficients23. Edges can be either positive or negative 349 

correlations (representing the covariation of the spatial distribution of ecological communities 350 

between taxa), and can be absent, indicating no or weak correlation between a set of 351 

variables70. When positive, the (dis)similarity in species composition between tree islands 352 

changes in the same direction for both taxa, when negative, the (dis)similarity in species 353 

composition for a taxon increases while it decreases for the other taxon.  354 

We used the graphical lasso method (Least Absolute Shrinkage and Selection Operator) as 355 

implemented in the R package bootnet version 1.4.371 to build and analyse the networks. 356 

This method displays the unconditional association between two nodes once the influence of 357 

other variables is controlled (i.e., partial correlations67), reducing the risk of spurious 358 

relationships that can emerge from multicollinearity70. The Lasso method applies a 359 
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regularisation penalty using a tuning parameter to reduce the number of parameters 360 

displayed. As a result, only a small number of partial correlations (i.e., the highest values) are 361 

used to explain the interconnections among variables67. We selected the tuning parameter 362 

with the Extended Bayesian Information Criterion EBIC72 using the function EBICglasso from 363 

the package qgraph version 1.6.973 (tuning parameter = 0.5).  The partial correlations were 364 

represented graphically in networks with undirected weighted edges (i.e., there is an 365 

association, but the direction is not determined) using ggraph R package version 2.0.574. 366 

With the weighted networks, we consider the correlations among nodes and the weight of 367 

these correlations (partial correlation coefficients75). 368 

We tested the influence of different abiotic variables on network connectivity. To do so, we 369 

included various combinations of vegetation structural complexity metrics and soil conditions 370 

and measured the resulting number of edges in the network and the proportional changes. 371 

We found the highest network connectivity when MeanFRAC and soil P were included 372 

(Supplementary Tables S2 and S3). Other structural metrics or soil conditions did not 373 

increase network connectivity and were highly correlated with other environmental variables 374 

(Supplementary Table S1 and Fig. S1). Therefore, we only included MeanFRAC (named 375 

hereafter as vegetation structural complexity) and soil P in the final networks presented in 376 

this study. 377 

We quantified the importance of specific nodes (i.e., certain taxon or a particular 378 

environmental variable) for structuring or maintaining the overall (i.e., multi taxa) network by 379 

calculating three centrality measures commonly used in complex network approaches 380 

strength, betweenness, and closeness. Strength is the sum of absolute edge weights that a 381 

node has with the others67. The higher the strength value of a node, the higher the influence 382 

it has on influencing the composition and structure of the community24. Betweenness looks at 383 

the proportion of shortest paths between any pair of nodes that pass through a specific node. 384 

The shortest path is defined as the path with the minimum distance (calculated by adding the 385 

edges' weights) needed to connect two nodes. Hence, a node with high betweenness lies "in-386 

between" other nodes' shortest paths in the network. High betweenness indicates that a node 387 

plays a crucial role in the connectivity and stability of the network, for example, implying a 388 

cascading effect with large consequences on the overall network when the node is lost76. 389 

Closeness describes the undirected connectance of a node to the other nodes in a network, 390 

calculated as the average distance of the shortest path from a specific node to all other 391 

nodes67. Because of its proximity to all other nodes, the node with the highest closeness 392 

centrality plays a crucial role in the overall network76 (Supplementary Fig. S3 and S7). 393 
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The accuracy of the parameters and measures estimated in a network depends greatly on 394 

sample size and variability75. Thus, we assessed the accuracy of the different networks (i.e., 395 

sensitivity to sampling variation) by estimating confidence intervals on the weight of the 396 

edges with a non-parametric bootstrapping of 1000 samples, with a confidence interval of 397 

95%75, using the bootnet R package version 1.4.371. To assess the stability of centrality 398 

indices, we used a case-dropping subset bootstrap from the package bootnet71. We 399 

calculated the correlation stability coefficient (CS-coefficient), which represents the maximum 400 

number of observations that can be dropped (in at least 95 % of the samples) so that the 401 

correlation between original centrality indices and the indices re-calculated with a subset of 402 

the data is 0.7 or higher67. The threshold considered stable for the CS-coefficient should be 403 

no less than 0.25 and desirable higher than 0.5. Results of the sensitivity analysis are 404 

presented in Supplementary Fig. S8-S13. 405 

Data were analysed with the software environment R, version 4.1.1 (R Development Core 406 

Team, 2021), using the packages ade477, betapart62, bootnet71, data.table78, ggplot279, 407 

ggraph74, glasso80, huge66, igraph81, MVN65, plyr82, qgraph73, reshape283, rlist84, tidyverse85, 408 

and vegan86. Our code is based on the R code provided by Ohlmann et al. (2018)23. 409 

Data availability  410 

The data and code to reproduce the results will be available on Zenodo. 411 
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Figures and Tables 610 

 611 

 612 

Figure 1. Tropical biodiversity enrichment experiment (EFForTS-BEE) and conceptual 613 

figures. (A) 52 experimental tree islands were established embedded within a 140-ha oil 614 

palm plantation, tree islands varying in tree native planted diversity and island size; (B) 615 

example of a tree island using a drone image; (C) if multi-taxa beta diversity is driven by 616 

habitat differentiation, higher landscape heterogeneity (resulting from islands differing in their 617 

vegetation structural complexity) is expected to be associated with beta diversity of multiple 618 

taxa. In contrast, if multi-taxa beta diversity is driven mostly by stochastic processes such as 619 

dispersion, landscape heterogeneity may not be associated with changes in beta diversity. 620 

Changes in beta diversity may be underlying by turnover, with higher turnover resulting in 621 
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higher gamma diversity or, by nestedness (i.e., gain and species losses in light grey). 622 

Positive associations between landscape heterogeneity and beta diversity translate into 623 

greater dissimilarity in vegetation structural complexity between islands being associated with 624 

dissimilar multi-taxa communities e.g., (C, D) landscape heterogeneity and understory 625 

arthropods and (C, E) landscape heterogeneity and herbaceous plants. (E-F) A positive 626 

association between beta diversity of two taxa (e.g., herbaceous plants and soil bacteria) 627 

implies that tree islands that differ in herbaceous plant composition also differ in soil bacteria 628 

composition. (G) In the network, the nodes represent landscape heterogeneity and beta 629 

diversity (or one of its two components) for each taxon, and the links represent associations 630 

between the nodes.  631 

  632 
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 633 
 634 

 635 

Figure 2. Turnover and nestedness components of beta diversity for taxonomic groups 636 

calculated with Jaccard index. Similar results were found when beta diversity was calculated 637 

using Sørensen pairwise dissimilarity (Supplementary Fig. S2). 638 

  639 
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 640 
 641 

 642 

Figure 3. The role of landscape heterogeneity and biotic associations shaping multi-643 

taxa beta diversity. Nodes represent (A) total beta diversity, (B) turnover, and (C) 644 

nestedness of multiple taxa and dissimilarity in vegetation structural complexity and soil 645 

phosphorus. Edges thicknesses, i.e., line thickness, are proportional to partial correlation 646 

coefficients, with grey and red edges representing positive (i.e., greater dissimilarity in 647 

vegetation structural complexity between islands being associated with dissimilar multi-taxa 648 

communities or tree islands that differ in composition for a taxon also differ in composition for 649 

another taxon) and negative (i.e., greater dissimilarity in vegetation structural complexity 650 

between islands being associated with similar multi-taxa communities or tree islands that 651 

differ in community compositions for a taxon have similar community compositions for 652 

another taxon) correlations, respectively. Edge length is not meaningful. Nodes with partial 653 

correlation coefficients equal to or near zero are not included in the corresponding network. 654 

 655 
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 656 

 657 

Figure 4. Importance of the individual taxa and landscape heterogeneity in shaping 658 

multi-taxa beta diversity. The centrality value (x-axis) for each node (y axis) is presented. 659 

Nodes represent (A) the total beta diversity and (B) turnover of multiple taxa and dissimilarity 660 

in vegetation structural complexity and soil phosphorus. The centrality value is quantified by 661 

the strength (i.e., the sum of absolute edge weights) in the undirected partial correlation 662 

networks and shown as standardised z-scores. Negative values indicate low centrality, 663 

whereas positive values indicate high centrality. Correlation stability coefficients of strength 664 

for beta diversity and turnover were 0.36 and 0.44, respectively. For nestedness, the 665 

correlation stability coefficient was lower than 0.25, suggesting lower stability of this network 666 

that is therefore not presented in this figure (see Supplementary Fig. S3). Other centrality 667 

measures, i.e., betweenness and closeness, are shown in Supplementary Fig. S3. Observed 668 

and non-parametric bootstrap mean and 95% CI estimated are shown in Supplementary Fig. 669 

S8 and S9. 670 
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