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Abstract

How to enhance biodiversity in monoculture-dominated landscapes is a key sustainability
question that requires considering the spatial organization of ecological communities (beta
diversity). Here, we experimentally tested if increasing landscape heterogeneity — through
tree islands — is a suitable landscape restoration strategy when aiming to enhance multi-taxa
diversity. We found that multi-taxa diversity resulted from islands fostering unique species
(turnover: between 0.18 - 0.73) rather than species losses and gains (nestedness: between
0.03 - 0.34), suggesting that tree islands enhance diversity at the landscape scale. Through
partial correlation networks, we revealed that landscape heterogeneity is associated with
multi-taxa diversity (strength = 0.84). Soil biota were also central to the overall community by
connecting beta diversity patterns across taxa. Our results show that increasing landscape
heterogeneity enhances multi-taxa diversity in monoculture-dominant landscapes.
Furthermore, we highlight that strategies aiming to enhance multi-taxa diversity should
consider that spatial distributions of above- and below-ground communities are associated.
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Introduction

Habitat loss and degradation of natural ecosystems are major drivers of the global
biodiversity crisis'2, with more than half of the terrestrial land surface converted for
anthropogenic uses®. Croplands have become the largest terrestrial land cover type on the
planet*, with the net increase in tropical regions exceeding 100 million ha / decade®. Across
the tropics, oil palm production has increased 15-fold in the last decades®, contributing
significantly to land-use change and intensification and impacting global biodiversity
hotspots. Specifically, oil palm plantations occupy 21 million hectares, mostly in Indonesia
and Malaysia’. In the face of this biodiversity crisis, there is currently an unprecedented
political will to restore degraded ecosystems and landscapes globally®. Therefore, it is
fundamental to bring a complementary perspective to the United Nations (UN) on Ecosystem
Restoration by expanding the restoration scope from degraded and abandoned lands to
agricultural productive systems.

Embedding small patches of native trees ("tree islands") in degraded landscapes is a
promising strategy to enhance biodiversity and facilitate landscape restoration®. By actively
planting trees or through natural regeneration, integrating natural habitats in monoculture-
dominated landscapes can positively affect environmental heterogeneity®'!, where
heterogeneous habitats can be associated with higher species diversity across taxa and
spatial scales'®'3. However, it remains uncertain to what extent environmental heterogeneity
at the landscape-scale (i.e., landscape heterogeneity) can be leveraged to enhance the
diversity of multiple taxonomic groups (i.e., multi-taxa diversity) in monoculture-dominated

landscapes.

To inform conservation management and landscape restoration, it is essential to integrate
insights from community assembly mechanisms; for example, through beta diversity that is
the spatial distribution of ecological communities' . The assembly of ecological
communities is determined by different factors, including biotic and abiotic filtering,
environmental drift, and dispersal'®'”. For instance, through direct and indirect species
interactions, biotic filtering may play an important role in shaping biodiversity'®-2° and the
spatial organisation of (meta)communities?'~24; explaining the growing interest in

understanding the role of biotic interactions on community assembly in restoration contexts?s-
3
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90 2. Yet, our understanding of assembly mechanisms of multi-taxa communities in human-

91  modified landscapes, particularly in the tropics, remains limited'®2.

92  Here, we assessed if multi-taxa diversity can be enhanced in large monoculture-dominated
93 landscapes by embedding environmentally dissimilar tree islands. Furthermore, we
94  investigated to what extent biotic associations are central to defining the spatial distribution of
95  multi-taxa communities (i.e., multi-taxa beta diversity). To this end, we used comprehensive
96 data from a unique tropical biodiversity enrichment experiment (EFForTS-BEE [Ecological
97  and socio-economic functions of tropical lowland rainforest transformation systems:
98  biodiversity enrichment experiment]?®), located in Sumatra, Indonesia, a global hotspot of
99  biodiversity loss®® and recent tropical deforestation®'. Embedded within a 140-ha oil palm
100 plantation, 52 experimental tree islands were planted with varying tree diversity and island
101  size. In our study, we defined a landscape as “a geographical area, characterised by its
102  content of observable, natural and human-induced, landscape elements” following®2, with tree
103  islands as the landscape elements (and no other surrounding land-use patches). This
104 landscape-scale perspective with tree islands makes EFForTS-BEE unique among the
105  largest network of tree diversity experiments worldwide (TreeDivNet?). We analysed multi-
106  taxa diversity sampled three to five years after establishment, when the tree islands
107  substantially differed in vegetation structural complexity®*. We calculated beta diversity and
108 its turnover and nestedness components (i.e., species losses and gains) using community
109 data of understorey arthropods, soil biota (fungi, bacteria, and fauna), herbaceous plants,
110 and trees (excluding planted trees). We expected that tree islands, varying in vegetation
111  structural complexity (as a result of differences in island size and planted diversity®®) and soil
112 conditions, will increase total landscape diversity (i.e., gamma diversity) by fostering unique
113 species resulting in higher turnover rather than species losses and gains, i.e., nestedness
114  (Fig. 1).

115  To reveal the factors shaping the spatial distribution of multi-taxa communities (beta diversity,
116  turnover and nestedness) across tree islands, we used partial correlation networks, which
117  quantify associations among landscape heterogeneity (i.e., dissimilarity in vegetation

118  structural complexity and soil conditions across tree islands) and beta diversities (or its

119  underlying components) across taxa. Partial correlations can provide insights about

120  associations shaping the spatial organisation of communities across taxa, e.g., similar niche
121  requirements, dispersal limitations, and potential biotic interactions due to co-occurrences;
122 with this approach particularly helpful in hyperdiverse regions such as the tropics, where

123  biotic interactions likely structure strongly community assembly?! but assessing interactions is

4
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124  extremely challenging®®*’. In the network, the nodes represent landscape heterogeneity and
125  beta diversity (or one of its two components) for each taxon, and the links represent

126  associations between the nodes. For example, positive associations between landscape
127  heterogeneity and beta diversity translate into greater dissimilarity in vegetation structural
128  complexity between islands being associated with dissimilar multi-taxa communities. A

129  positive association between beta diversity of two taxa (e.g., herbaceous plants and soil

130 bacteria) implies that tree islands that differ in herbaceous plant composition also differ in soil
131  bacteria composition. Similarly, a positive association between turnover (or nestedness)

132 between herbaceous plants or soil bacteria implies that tree islands that foster unique

133 species (or are driven by species losses and gains) for herbaceous plants also show the
134  same pattern(s) for soil bacteria (Fig 1).

135
136 Results and discussion
137

138 Gamma and beta diversity across tree islands embedded in an oil palm plantation

139  Across the 52 tree islands, we recorded 958 morphospecies of understorey arthropods,

140 8,159 operational taxonomic units (OTUs) of soil fungi, 47,856 OTUs of soil bacteria, 27

141  taxonomic groups of soil fauna (Supplementary Table S4), 75 herbaceous plant species, and
142 50 trees species - excluding planted trees (gamma diversity; all classifications are referred to
143  as "species" below). Overall, across the 52 tree islands, beta diversity (calculated as Jaccard
144  pairwise dissimilarity) varied among taxa, ranging from 0.31 for soil fauna to 0.77 for

145  understorey arthropods. Beta diversity was mainly driven by species turnover, while

146  nestedness, except for trees and soil fauna, played a minor role (Fig. 2). Specifically, the

147  highest species turnover was found for soil fungi, understorey arthropods, and soil bacteria,
148  accounting for ~ 94% of the total beta diversity. Species turnover was lowest for trees (52%)
149  and soil fauna (59%). We did not find major differences in the results when calculating beta
150  diversity using Sarensen pairwise dissimilarity (Supplementary Figures S2 and S5). Hence,
151  our results consistently indicate that beta diversity is primarily associated with the uniqueness
152  of species assemblages rather than smaller assemblages being a subset of larger ones.

153  Consequently, promoting the uniqueness of species assemblages with multiple tree islands
154  appears as a promising strategy for enhancing biodiversity in monoculture-dominated

155  landscapes, at least during the first years after tree island establishment.
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156  The differences in beta diversity across taxa that our study revealed, might be explained by
157  ecological processes related to dispersal ability, body size and life history. For instance, due
158  to the long lifespan of trees, the influence of processes such as local extinction and

159  colonisation may require more time than for other taxa. Furthermore, tree beta diversity

160  patterns may be shaped mainly by seed sources in the surrounding landscape and by tree
161  species with higher dispersal capacities®, explaining the unexpected high nestedness in

162  human-modified ecosystems compared to tropical forests for trees®®. While we expect overall
163  patterns to hold, the influence of differences in sample coverage across taxa - particularly
164  incomplete coverage for highly diverse taxon such as fungi - in terms of turnover and

165 nestedness under- or over-estimations remains unknown. Finally, taxonomic resolution may
166  impact our ecological understanding®, particularly for soil fauna that mainly was assessed at
167  the level of orders (that often represent functional groups*'). Contrasting resolutions reflect
168  the challenge of biodiversity assessment in the species-rich tropics®. Despite that, soil fauna
169  was a good indicator of overall multi-taxa community dissimilarity (see below). Therefore, we
170  expect this crucial role to remain or be strengthened with higher resolution, but increases in
171  resolution will likely result in higher beta diversity due to higher turnover.

172

173  Insights of multi-taxa beta diversity through landscape heterogeneity and biotic

174  associations

175  Beta diversity patterns across multiple taxa were correlated, with the network for beta

176  diversity comprising 17 edges (Fig. 3A, Supplementary Table S6). The most connected taxa
177  were soil fauna and bacteria (strength, i.e., the sum of absolute edge weights, = 0.82 and
178  0.71, with five and four edges with other nodes, respectively; Fig. 4A). By contrast, trees

179  were the least connected (strength = 0.46, with four edges). The highest correlation

180  coefficient was observed between soil fungi and bacteria beta diversity (+0.25). Turnover

181  patterns for multi-taxa diversity were also correlated, with the network for turnover comprising
182  eight edges (Fig. 3B, Supplementary Table S7). In the case of turnover, turnover of soil fauna
183  and understorey arthropods were disconnected from the network. In other words, neither

184  turnover patterns of soil fauna nor understory arthropods follow dis(similar) turnover patterns
185  of other taxa, neither were associated with landscape heterogeneity. Finally, nestedness

186  patterns for multi-taxa diversity were correlated except for trees (Fig. 3C, Supplementary

187  Table S8), with the network retaining six edges. Yet, the nestedness network had low

188  stability. Together, these results suggest that direct and indirect associations shape the
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189  spatial organisation of communities across taxa in tropical human-modified landscapes,
190  supporting previous studies in temperate ecosystems?324,

191  Our results point toward the key role of below-ground organisms in structuring multi-taxa beta
192  diversity patterns. Soil biota (soil fauna, bacteria, and fungi) are central to the overall

193  ecological community as its beta diversity patterns are associated with beta diversity patterns
194  of other taxonomic groups and with abiotic variables (for different centrality indices,

195  Supplementary Fig. S3). Soil biota may act as an indicator of current conditions, the result of
196 legacy effects from previous land-uses (e.g., oil palm plantation or tropical forest), or both*2.
197  For example, soil fauna composition can be associated with differences in specific organic
198  materials (reflecting the heterogeneity before the land-use conversion) and time delays

199  because of the limited dispersion of soil fauna*:. Similar beta diversity patterns between soil
200 fauna and soil fungi may be underlain by species interactions (e.g., soil fungi as an important
201  food source in soil food webs*#), similar niche requirements and/or dispersal limitations

202 influencing soil biota (symbiotroph, pathotroph and saprotroph, Supplementary Fig. S4 — S7;
203  Supplementary Tables S9 — S11). Associations between soil biota and trees can result from
204  plant-soil feedbacks, with soil fauna potentially influencing vegetation dynamics and above-
205  ground biodiversity*. For instance, soil biota have been shown to affect understorey

206  arthropods (particularly pollinators, Supplementary Fig. S4 — S6) when soil biota indirectly
207  affect floral traits (e.g., bacteria, root herbivores, and mycorrhizal fungi), influencing

208  pollination attractions and plant fitness*¢. While detailed plant-soil feedback experiments

209  would be required to disentangle the mechanisms of above- and below-ground associations
210  shaping multi-taxa dynamics, here we provide further evidence highlighting the importance of
211  integrating the belowground compartment towards elucidating dynamics in monoculture-

212 dominated landscapes.

213 Landscape heterogeneity played a crucial role in all three networks (Fig. 3). For instance,
214  dissimilarity in vegetation structural complexity was the most connected node (strength =
215  0.84 with four edges to other nodes) in the beta diversity network. Besides, soil P was the
216  most connected node (strength = 0.49 with four edges, Fig 4B) in the species turnover

217  network. The highest and lowest correlation of soil P was found with soil bacteria and fungi
218  beta diversity, respectively (+0.18 and +0.11). This suggests that landscape heterogeneity
219  can promote beta diversity by fostering different species compositions, reinforcing the role of
220  enriched tree islands in influencing community assemblages and biodiversity at the

221  landscape-scale (i.e., beta and gamma diversity). Further, it implies that dissimilarity in

222  abiotic conditions can directly or indirectly impact multiple taxa. The influence of vegetation


https://doi.org/10.1101/2022.10.31.514517
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.31.514517; this version posted November 1, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

223 structural complexity on multi-taxa diversity may act via altering light and microclimatic

224  conditions*” and other characteristics associated with variation in local planted tree species
225  diversity and identity — with both shaping vegetation structural complexity®. Furthermore, the
226  influence of tree islands on multi-taxa diversity might reflect the removal of environmental
227  filtering associated with conventional management such as liming and fertilisation, which is
228  responsible for biotic homogeneity in monoculture-dominated landscapes. Further possible
229  mechanisms include enhanced nutrient cycling and plant litter decomposition*®4°, particularly
230 in ecosystems under transition (e.g., primary or secondary succession)®°.

231

232 Conclusions

233 We conclude that enriching monocultures with tree islands varying in vegetation structural
234  complexity (as a result, for instance, of tree planting diversity and island size) can foster

235  unique ecological communities above- and below-ground and thereby promote multi-taxa
236  diversity at the landscape-scale (beta and gamma diversity). Additionally, we suggest

237  distributing tree islands across the monoculture-dominated landscape to enhance multi-taxa
238  diversity by capturing contrasting soil conditions. Landscape restoration strategies aiming to
239  enhance multi-taxa diversity should consider not only key abiotic conditions but also the

240  extent to which biotic associations play an important role in shaping ecological communities
241  at landscape-scale. By enhancing biodiversity at the landscape level in monoculture-

242  dominated tropical landscapes, we bring a complementary perspective to the UN Decade on
243 Ecosystem Restoration and provide experimental evidence urgently needed to guide

244  interventions for landscape restoration in productive agricultural systems.

245
246 Materials and Methods
247  Study area

248  This study was conducted in the Biodiversity Enrichment Experiment (EFForTS-BEE) located
249  in Jambi province, Sumatra, Indonesia. The main aim of EFForTS-BEE is to evaluate the

250 potential of establishing tree islands® within an industrial oil palm plantation as a restoration
251  measure to enhance biodiversity and ecosystem functioning while maintaining financial

252  benefits (?°, Zemp et al., in revision). The area is characterised by a humid tropical climate
253  with two peak rainy seasons (March and December) and a dryer period extending from July
254  to August®. The mean temperature is 26.7 + 1.0 °C, and the mean annual precipitation is
255 2235+ 385 mm (1991 - 2011). The predominant soil type in the region is loamy Acrisol®'.

256  EFForTS-BEE was established in December 2013 and consists of 52 experimental plots, i.e.,

257  treeislands varying in plot size of 25 m?, 100 m?, 400 m?, and 1,600 m2, and planted tree
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258  diversity level 0, equal to no tree planted, 1, 2, 3, and 6 tree species planted in a plot, all

259  embedded in a 140-ha oil palm plantation (01.95° S and 103.25° E, 47 + 11 m a.s.l.). The
260  experiment follows a random partition design aiming to disentangle the linear effects of tree
261  diversity and plot size and the non-linear effects of tree species composition®. For details of
262 the experimental design, see ref?®. The planted species represent native, multi-purpose trees
263  used for the production of fruits (Parkia speciosa Hassk, Archidendron jiringa (Jack)

264  |.C.Nielsen, and Durio zibethinus L.), timber (Peronema canescens Jack, and Shorea

265  leprosula Miq.), and natural latex (Dyera polyphylla (Miq.) Steenis)3*.

266 Data collection

267  The data for this study were collected between October 2016 and May 2018. We sampled
268  above-ground and below-ground taxa, including understorey arthropods, soil biota (soil fungi,
269  soil bacteria, and soil fauna), herbaceous plants, trees, vegetation structural complexity

270  measures, and soil conditions, with all measurements within the 52 tree islands, i.e., plots.
271  Arthropods sampled at the height of the understorey vegetation (referred to as "understorey
272  arthropods") were sampled three times with six pan traps (2 x 3 pan traps) equally distributed
273  per plot, for 45 hours from October 2016 to January 2017. The traps were made of white

274  plastic bowls coloured with yellow UV paint®? and filled with water and a drop of detergent. All
275 individuals were preserved in 70% Ethanol, sorted by morphospecies, and subsequently

276  identified into higher taxonomic classification possible (i.e., 14 groups/families) and their

277  corresponding functional groups (e.g., Table S5).

278  Soil biota and herbaceous plants were surveyed in the same subplot of 5 x 5 m area

279  established within each plot?®. Specifically, soil fungi were sampled and collected in

280 December 2016 from three soil cores per plot (10 cm depth and 4 cm diameter) and

281 identified through DNA extraction and next-generation sequencing*?. OTUs were classified
282  taxonomically using the BLAST algorithm (blastn, v2.7.1; %) and the UNITE v7.2

283  (UNITE_public_01.12.2017.fasta; °*). Soil bacteria were obtained for each subplot from three
284 10 cm cores of topsoil, placed at 1 m far from the adjacent trees. The soil cores were mixed,
285  homogenised and cleared from roots before DNA and RNA extraction and posterior

286  classification®. In each plot, soil fauna communities were assessed in four soil samples of 16
287  x 16 cm using a spade down to a depth of 5 cm plus the entire overlying litter layer. The

288  animals extracted from the soil samples by heat were counted and classified into taxonomic
289  groups, corresponding to key functional soil invertebrate guilds (mainly groups/families,

290  Supplementary Table S4)*'°657 Herbaceous plants, described as all non-woody plants lower
291 than 1.3 metres in height, were identified from February to March 2018. Trees refer to all
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292  free-standing woody plants with a minimum height of 1.3 m, inventoried in the total area of
293  the experimental tree islands in August 2018, excluding the trees planted at the onset of the
294  experiment.

295  Soil nutrient variables, including total carbon (C) and nitrogen (N) concentration (g mg'), C-
296  to-N ratio, and plant-available P concentration (mg g'), were quantified using the same soil
297  samples as for soil fungi collected in December 2016 (see below). Total C and N were

298  determined via the combustion method in a C/N analyser*2. Plant-available P was quantified
299 following Bray & Kurtz®®. The soil samples were mixed with Bray-I Extraction solution, shaken
300 for 60 min, and filtered with phosphate-free filters. P concentration of filtrates was measured
301  using inductively coupled plasma mass spectrometry*2.

302 We quantified vegetation structural complexity using multiple terrestrial laser scans taken
303 between September and October 2016%%. We calculated Effective Number of Layer (ENL),
304 which describes the vertical structure of forest stands and is influenced by the stand height
305 and the vegetation distribution across vertical layers®. In addition, we calculated Mean

306  Fractal Dimension (MeanFRAC) and Stand Structural Complexity Index (SSCI). MeanFRAC
307 is defined as the arithmetic mean of fractal dimensions describing the geometric complexity
308 of the stand®®. MeanFRAC is associated with enriched tree island conditions, i.e., planted
309 tree composition, richness, and tree island size®. SSCI describes the arrangement of tree

310 components in three-dimensional space®".
311 Beta diversity and landscape heterogeneity

312  For each taxa, beta diversity was calculated using species incidence-based pairwise

313  dissimilarity matrices (presence-absence data) with the function beta.pair from the package
314  betapart version 1.5.4%2. We partitioned beta diversity into turnover and nestedness

315 components®?8, The Jaccard pairwise dissimilarity (Bjacc) among plots was computed as Bjacc
316 = Bju + Bjne, Wwhere Bjw accounted for the turnover fraction of Jaccard pairwise dissimilarity, and
317  Bjre accounted for the nestedness-resultant dissimilarity fraction. We calculated beta diversity
318  using community data (incl. operational taxonomic units, taxonomic groups, morphospecies
319  or species — referred as species in the text). In addition, we calculated beta diversity using
320 Sarensen pairwise dissimilarity, which incorporates turnover and richness differences as Bsor
321 = Bsim * Bsne- In this case, Bsim accounted for turnover measured as Simpson pairwise

322  dissimilarity, and Bsne accounted for the patterns of beta diversity causing nestedness,

323  measured as the nestedness-resultant dissimilarity fraction of Serensen dissimilarity

324  (Supplementary Fig. S2 and S5). While Jaccard considers the proportion of unique species in

325 the entire pool, Sarensen considers the proportion of unique species per siteb*.

10
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326  For the abiotic variables (vegetation structural complexity and soil conditions), we calculated
327  pairwise dissimilarity between all matrix rows, i.e., tree islands, using the function dist from
328 the R stats package. We used the Euclidean distance method, calculated as a true straight-
329 line distance between all matrix rows in Euclidean space.

330  Multivariate normality was tested with Mardia's multivariate skewness and kurtosis

331  coefficients using the function mvn from the R package MVN version 5.9%%. When the test did
332  not state multivariate normality, a non-paranormal transformation to achieve Gaussian

333  distribution was implemented using the function huge.npn and the setting shrinkage based
334  on a shrunken Empirical Cumulative Distribution Function (ECDF) from the R package huge
335  version 1.3.5¢,

336 Partial correlation networks

337  We applied partial correlation networks to study associations between landscape

338 heterogeneity and the beta diversity (turnover or nestedness) among multiple taxa. An

339  association between taxa indicates the covariation of the spatial distribution of ecological

340 communities among taxa. Advantages of partial correlation networks are threefold: first, they
341  describe correlations between a set of conditionally independent variables®’, second, they do
342  not require a priori knowledge of the structure®®; and finally, the correlations can be

343  graphically represented and analysed to reveal key interdependencies and highly connected
344  variables®. Partial correlation networks have been widely used to infer pairwise species

345 interactions from observed presence-absence matrices®. A network is composed of nodes
346  and edges, where the nodes represent the beta diversity (or turnover or nestedness) of the
347  different taxa and the dissimilarity of vegetation structural complexity and soil conditions. The
348  edges (i.e., links connecting pairs of nodes) represent correlations between nodes, in our
349  case, undirected partial correlation coefficients®. Edges can be either positive or negative
350 correlations (representing the covariation of the spatial distribution of ecological communities
351 between taxa), and can be absent, indicating no or weak correlation between a set of

352  variables’®. When positive, the (dis)similarity in species composition between tree islands
353  changes in the same direction for both taxa, when negative, the (dis)similarity in species

354  composition for a taxon increases while it decreases for the other taxon.

355  We used the graphical lasso method (Least Absolute Shrinkage and Selection Operator) as
356  implemented in the R package bootnet version 1.4.3"" to build and analyse the networks.
357  This method displays the unconditional association between two nodes once the influence of
358  other variables is controlled (i.e., partial correlations®”), reducing the risk of spurious

359 relationships that can emerge from multicollinearity’®. The Lasso method applies a
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360 regularisation penalty using a tuning parameter to reduce the number of parameters

361 displayed. As a result, only a small number of partial correlations (i.e., the highest values) are
362  used to explain the interconnections among variables®”. We selected the tuning parameter
363  with the Extended Bayesian Information Criterion EBIC”2 using the function EBICglasso from
364 the package ggraph version 1.6.972 (tuning parameter = 0.5). The partial correlations were
365  represented graphically in networks with undirected weighted edges (i.e., there is an

366  association, but the direction is not determined) using ggraph R package version 2.0.574.

367  With the weighted networks, we consider the correlations among nodes and the weight of
368 these correlations (partial correlation coefficients’®).

369  We tested the influence of different abiotic variables on network connectivity. To do so, we
370 included various combinations of vegetation structural complexity metrics and soil conditions
371  and measured the resulting number of edges in the network and the proportional changes.
372 We found the highest network connectivity when MeanFRAC and soil P were included

373  (Supplementary Tables S2 and S3). Other structural metrics or soil conditions did not

374  increase network connectivity and were highly correlated with other environmental variables
375  (Supplementary Table S1 and Fig. S1). Therefore, we only included MeanFRAC (named
376  hereafter as vegetation structural complexity) and soil P in the final networks presented in
377  this study.

378  We quantified the importance of specific nodes (i.e., certain taxon or a particular

379  environmental variable) for structuring or maintaining the overall (i.e., multi taxa) network by
380 calculating three centrality measures commonly used in complex network approaches

381  strength, betweenness, and closeness. Strength is the sum of absolute edge weights that a
382  node has with the others®’. The higher the strength value of a node, the higher the influence
383 it has on influencing the composition and structure of the community?*. Betweenness looks at
384  the proportion of shortest paths between any pair of nodes that pass through a specific node.
385  The shortest path is defined as the path with the minimum distance (calculated by adding the
386  edges' weights) needed to connect two nodes. Hence, a node with high betweenness lies "in-
387  between" other nodes' shortest paths in the network. High betweenness indicates that a node
388 plays a crucial role in the connectivity and stability of the network, for example, implying a
389 cascading effect with large consequences on the overall network when the node is lost’.

390 Closeness describes the undirected connectance of a node to the other nodes in a network,
391 calculated as the average distance of the shortest path from a specific node to all other

392  nodes®”. Because of its proximity to all other nodes, the node with the highest closeness

393  centrality plays a crucial role in the overall network’® (Supplementary Fig. S3 and S7).
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394  The accuracy of the parameters and measures estimated in a network depends greatly on
395 sample size and variability’®. Thus, we assessed the accuracy of the different networks (i.e.,
396  sensitivity to sampling variation) by estimating confidence intervals on the weight of the

397 edges with a non-parametric bootstrapping of 1000 samples, with a confidence interval of
398  95%"°, using the bootnet R package version 1.4.37". To assess the stability of centrality

399 indices, we used a case-dropping subset bootstrap from the package bootnet’'. We

400 calculated the correlation stability coefficient (CS-coefficient), which represents the maximum
401  number of observations that can be dropped (in at least 95 % of the samples) so that the
402  correlation between original centrality indices and the indices re-calculated with a subset of
403  the datais 0.7 or higher®”. The threshold considered stable for the CS-coefficient should be
404  no less than 0.25 and desirable higher than 0.5. Results of the sensitivity analysis are

405  presented in Supplementary Fig. S8-S13.

406  Data were analysed with the software environment R, version 4.1.1 (R Development Core
407  Team, 2021), using the packages ade4”’, betapart®?, bootnet’!, data.table’®, ggplot2”,

408  ggraph™, glasso®®, huge®®, igraph®', MVIN®S, plyr®2, qgraph”, reshape2®®, rlist*, tidyverse®®,
409 and vegan®®. Our code is based on the R code provided by Ohimann et al. (2018)23.

410  Data availability

411  The data and code to reproduce the results will be available on Zenodo.
412
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613  Figure 1. Tropical biodiversity enrichment experiment (EFForTS-BEE) and conceptual
614  figures. (A) 52 experimental tree islands were established embedded within a 140-ha oil
615  palm plantation, tree islands varying in tree native planted diversity and island size; (B)

616  example of a tree island using a drone image; (C) if multi-taxa beta diversity is driven by

617  habitat differentiation, higher landscape heterogeneity (resulting from islands differing in their
618  vegetation structural complexity) is expected to be associated with beta diversity of multiple
619 taxa. In contrast, if multi-taxa beta diversity is driven mostly by stochastic processes such as
620 dispersion, landscape heterogeneity may not be associated with changes in beta diversity.
621  Changes in beta diversity may be underlying by turnover, with higher turnover resulting in
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622  higher gamma diversity or, by nestedness (i.e., gain and species losses in light grey).

623  Positive associations between landscape heterogeneity and beta diversity translate into

624  greater dissimilarity in vegetation structural complexity between islands being associated with
625  dissimilar multi-taxa communities e.g., (C, D) landscape heterogeneity and understory

626  arthropods and (C, E) landscape heterogeneity and herbaceous plants. (E-F) A positive

627  association between beta diversity of two taxa (e.g., herbaceous plants and soil bacteria)

628 implies that tree islands that differ in herbaceous plant composition also differ in soil bacteria
629  composition. (G) In the network, the nodes represent landscape heterogeneity and beta

630  diversity (or one of its two components) for each taxon, and the links represent associations
631  between the nodes.

632
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636  Figure 2. Turnover and nestedness components of beta diversity for taxonomic groups
637  calculated with Jaccard index. Similar results were found when beta diversity was calculated
638  using Serensen pairwise dissimilarity (Supplementary Fig. S2).

639
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643  Figure 3. The role of landscape heterogeneity and biotic associations shaping multi-
644  taxa beta diversity. Nodes represent (A) total beta diversity, (B) turnover, and (C)

645  nestedness of multiple taxa and dissimilarity in vegetation structural complexity and soil

646  phosphorus. Edges thicknesses, i.e., line thickness, are proportional to partial correlation
647  coefficients, with grey and red edges representing positive (i.e., greater dissimilarity in

648  vegetation structural complexity between islands being associated with dissimilar multi-taxa
649  communities or tree islands that differ in composition for a taxon also differ in composition for
650  another taxon) and negative (i.e., greater dissimilarity in vegetation structural complexity
651  between islands being associated with similar multi-taxa communities or tree islands that
652  differ in community compositions for a taxon have similar community compositions for

653  another taxon) correlations, respectively. Edge length is not meaningful. Nodes with partial
654  correlation coefficients equal to or near zero are not included in the corresponding network.

655
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658  Figure 4. Importance of the individual taxa and landscape heterogeneity in shaping
659  multi-taxa beta diversity. The centrality value (x-axis) for each node (y axis) is presented.
660  Nodes represent (A) the total beta diversity and (B) turnover of multiple taxa and dissimilarity
661  in vegetation structural complexity and soil phosphorus. The centrality value is quantified by
662  the strength (i.e., the sum of absolute edge weights) in the undirected partial correlation

663  networks and shown as standardised z-scores. Negative values indicate low centrality,

664  whereas positive values indicate high centrality. Correlation stability coefficients of strength
665  for beta diversity and turnover were 0.36 and 0.44, respectively. For nestedness, the

666  correlation stability coefficient was lower than 0.25, suggesting lower stability of this network
667  that is therefore not presented in this figure (see Supplementary Fig. S3). Other centrality
668  measures, i.e., betweenness and closeness, are shown in Supplementary Fig. S3. Observed
669  and non-parametric bootstrap mean and 95% CI estimated are shown in Supplementary Fig.
670 S8 and S9.
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