

1 **Landscape heterogeneity and soil biota are central to multi-taxa diversity for**
2 **landscape restoration**

3
4 **Authors:** Vannesa Montoya-Sánchez^{a,b,*}, Holger Kreft^{a,c}, Isabelle Arimond^{d,e}, Johannes
5 Ballauff^f, Dirk Berkelmann^g, Fabian Brambach^a, Rolf Daniel^g, Ingo Grass^h, Jes Hines^{i,j}, Dirk
6 Hölscher^{c,k}, Bambang Irawan^l, Alena Krause^m, Andrea Pollef^c, Anton Potapov^m, Lena
7 Sachsenmaier^{a,i,n}, Stefan Scheu^{m,c}, Leti Sundawati^o, Teja Tscharntke^e, Delphine Clara
8 Zemp^{a,b,c,†}, Nathaly R. Guerrero-Ramírez^{a,†}

9
10 ^aMacroecology & Biogeography, Faculty of Forest Sciences and Forest Ecology, University of
11 Göttingen, 37077 Göttingen, Germany

12 ^bConservation Biology, Institute for Biology, Faculty of Sciences, University of Neuchâtel,
13 2000 Neuchâtel, Switzerland

14 ^cCentre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, 37077
15 Göttingen, Germany

16 ^dFunctional Agrobiodiversity, Dept. of Crop Sciences, Faculty of Agricultural Science,
17 University of Göttingen, 37077 Göttingen, Germany

18 ^eAgroecology, University of Göttingen, 37077 Göttingen, Germany

19 ^fForest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology,
20 University of Göttingen, 37077 Göttingen, Germany

21 ^gDepartment of Genomic and Applied Microbiology, Institute of Microbiology and Genetics,
22 University of Göttingen, 37077 Göttingen, Germany

23 ^hEcology of Tropical Agricultural Systems, Institute of Agricultural Sciences in the Tropics,
24 University of Hohenheim, 70599 Stuttgart, Germany

25 ⁱGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103
26 Leipzig, Germany

27 ^jInstitute of Biology, Leipzig University, 04103 Leipzig, Germany

28 ^kTropical Silviculture and Forest Ecology, Faculty of Forest Sciences and Forest Ecology,
29 University of Göttingen, 37077 Göttingen, Germany

30 ^lFaculty of Forestry, University of Jambi, 36361 Jambi, Indonesia

31 ^mAnimal Ecology, J.F. Blumenbach Institute of Zoology and Anthropology, University of
32 Göttingen, 37073 Göttingen, Germany

33 ⁿSystematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University,
34 04103, Leipzig, Germany

35 ^oDepartment of Forest Management, Faculty of Forestry and Environment, IPB University,
36 16680 Bongor, Indonesia

37 [†]Joint senior authors

38 *Corresponding author: Vannessa Montoya-Sánchez, Conservation biology lab, Institute of
39 Biology, University of Neuchâtel, Rue Emile-Argand 11 - CH 2000 Neuchâtel, +41 32 718 30
40 86. Email: vamontoyas@gmail.com

41

42 **Abstract**

43 How to enhance biodiversity in monoculture-dominated landscapes is a key sustainability
44 question that requires considering the spatial organization of ecological communities (beta
45 diversity). Here, we experimentally tested if increasing landscape heterogeneity – through
46 tree islands – is a suitable landscape restoration strategy when aiming to enhance multi-taxa
47 diversity. We found that multi-taxa diversity resulted from islands fostering unique species
48 (turnover: between 0.18 - 0.73) rather than species losses and gains (nestedness: between
49 0.03 - 0.34), suggesting that tree islands enhance diversity at the landscape scale. Through
50 partial correlation networks, we revealed that landscape heterogeneity is associated with
51 multi-taxa diversity (strength = 0.84). Soil biota were also central to the overall community by
52 connecting beta diversity patterns across taxa. Our results show that increasing landscape
53 heterogeneity enhances multi-taxa diversity in monoculture-dominant landscapes.
54 Furthermore, we highlight that strategies aiming to enhance multi-taxa diversity should
55 consider that spatial distributions of above- and below-ground communities are associated.
56

57 *Keywords:* above-belowground biodiversity, biotic associations, Indonesia, landscape
58 restoration, multi-taxa beta diversity, oil palm plantation, species turnover, TreeDivNet

59

60 **Introduction**

61 Habitat loss and degradation of natural ecosystems are major drivers of the global
62 biodiversity crisis^{1,2}, with more than half of the terrestrial land surface converted for
63 anthropogenic uses³. Croplands have become the largest terrestrial land cover type on the
64 planet⁴, with the net increase in tropical regions exceeding 100 million ha / decade⁵. Across
65 the tropics, oil palm production has increased 15-fold in the last decades⁶, contributing
66 significantly to land-use change and intensification and impacting global biodiversity
67 hotspots. Specifically, oil palm plantations occupy 21 million hectares, mostly in Indonesia
68 and Malaysia⁷. In the face of this biodiversity crisis, there is currently an unprecedented
69 political will to restore degraded ecosystems and landscapes globally⁸. Therefore, it is
70 fundamental to bring a complementary perspective to the United Nations (UN) on Ecosystem
71 Restoration by expanding the restoration scope from degraded and abandoned lands to
72 agricultural productive systems.

73 Embedding small patches of native trees ("tree islands") in degraded landscapes is a
74 promising strategy to enhance biodiversity and facilitate landscape restoration⁹. By actively
75 planting trees or through natural regeneration, integrating natural habitats in monoculture-
76 dominated landscapes can positively affect environmental heterogeneity^{9–11}, where
77 heterogeneous habitats can be associated with higher species diversity across taxa and
78 spatial scales^{12,13}. However, it remains uncertain to what extent environmental heterogeneity
79 at the landscape-scale (i.e., landscape heterogeneity) can be leveraged to enhance the
80 diversity of multiple taxonomic groups (i.e., multi-taxa diversity) in monoculture-dominated
81 landscapes.

82 To inform conservation management and landscape restoration, it is essential to integrate
83 insights from community assembly mechanisms; for example, through beta diversity that is
84 the spatial distribution of ecological communities^{14,15}. The assembly of ecological
85 communities is determined by different factors, including biotic and abiotic filtering,
86 environmental drift, and dispersal^{16,17}. For instance, through direct and indirect species
87 interactions, biotic filtering may play an important role in shaping biodiversity^{18–20} and the
88 spatial organisation of (meta)communities^{21–24}; explaining the growing interest in
89 understanding the role of biotic interactions on community assembly in restoration contexts²⁵

90 27. Yet, our understanding of assembly mechanisms of multi-taxa communities in human-
91 modified landscapes, particularly in the tropics, remains limited^{15,28}.

92 Here, we assessed if multi-taxa diversity can be enhanced in large monoculture-dominated
93 landscapes by embedding environmentally dissimilar tree islands. Furthermore, we
94 investigated to what extent biotic associations are central to defining the spatial distribution of
95 multi-taxa communities (i.e., multi-taxa beta diversity). To this end, we used comprehensive
96 data from a unique tropical biodiversity enrichment experiment (EFForTS-BEE [Ecological
97 and socio-economic functions of tropical lowland rainforest transformation systems:
98 biodiversity enrichment experiment]²⁹), located in Sumatra, Indonesia, a global hotspot of
99 biodiversity loss³⁰ and recent tropical deforestation³¹. Embedded within a 140-ha oil palm
100 plantation, 52 experimental tree islands were planted with varying tree diversity and island
101 size. In our study, we defined a landscape as “a geographical area, characterised by its
102 content of observable, natural and human-induced, landscape elements” following³², with tree
103 islands as the landscape elements (and no other surrounding land-use patches). This
104 landscape-scale perspective with tree islands makes EFForTS-BEE unique among the
105 largest network of tree diversity experiments worldwide (TreeDivNet³³). We analysed multi-
106 taxa diversity sampled three to five years after establishment, when the tree islands
107 substantially differed in vegetation structural complexity³⁴. We calculated beta diversity and
108 its turnover and nestedness components (i.e., species losses and gains) using community
109 data of understorey arthropods, soil biota (fungi, bacteria, and fauna), herbaceous plants,
110 and trees (excluding planted trees). We expected that tree islands, varying in vegetation
111 structural complexity (as a result of differences in island size and planted diversity³⁵) and soil
112 conditions, will increase total landscape diversity (i.e., gamma diversity) by fostering unique
113 species resulting in higher turnover rather than species losses and gains, i.e., nestedness
114 (Fig. 1).

115 To reveal the factors shaping the spatial distribution of multi-taxa communities (beta diversity,
116 turnover and nestedness) across tree islands, we used partial correlation networks, which
117 quantify associations among landscape heterogeneity (i.e., dissimilarity in vegetation
118 structural complexity and soil conditions across tree islands) and beta diversities (or its
119 underlying components) across taxa. Partial correlations can provide insights about
120 associations shaping the spatial organisation of communities across taxa, e.g., similar niche
121 requirements, dispersal limitations, and potential biotic interactions due to co-occurrences;
122 with this approach particularly helpful in hyperdiverse regions such as the tropics, where
123 biotic interactions likely structure strongly community assembly²¹ but assessing interactions is

124 extremely challenging^{36,37}. In the network, the nodes represent landscape heterogeneity and
125 beta diversity (or one of its two components) for each taxon, and the links represent
126 associations between the nodes. For example, positive associations between landscape
127 heterogeneity and beta diversity translate into greater dissimilarity in vegetation structural
128 complexity between islands being associated with dissimilar multi-taxon communities. A
129 positive association between beta diversity of two taxa (e.g., herbaceous plants and soil
130 bacteria) implies that tree islands that differ in herbaceous plant composition also differ in soil
131 bacteria composition. Similarly, a positive association between turnover (or nestedness)
132 between herbaceous plants or soil bacteria implies that tree islands that foster unique
133 species (or are driven by species losses and gains) for herbaceous plants also show the
134 same pattern(s) for soil bacteria (Fig 1).

135

136 **Results and discussion**

137

138 **Gamma and beta diversity across tree islands embedded in an oil palm plantation**

139 Across the 52 tree islands, we recorded 958 morphospecies of understorey arthropods,
140 8,159 operational taxonomic units (OTUs) of soil fungi, 47,856 OTUs of soil bacteria, 27
141 taxonomic groups of soil fauna (Supplementary Table S4), 75 herbaceous plant species, and
142 50 tree species - excluding planted trees (gamma diversity; all classifications are referred to
143 as "species" below). Overall, across the 52 tree islands, beta diversity (calculated as Jaccard
144 pairwise dissimilarity) varied among taxa, ranging from 0.31 for soil fauna to 0.77 for
145 understorey arthropods. Beta diversity was mainly driven by species turnover, while
146 nestedness, except for trees and soil fauna, played a minor role (Fig. 2). Specifically, the
147 highest species turnover was found for soil fungi, understorey arthropods, and soil bacteria,
148 accounting for ~ 94% of the total beta diversity. Species turnover was lowest for trees (52%)
149 and soil fauna (59%). We did not find major differences in the results when calculating beta
150 diversity using Sørensen pairwise dissimilarity (Supplementary Figures S2 and S5). Hence,
151 our results consistently indicate that beta diversity is primarily associated with the uniqueness
152 of species assemblages rather than smaller assemblages being a subset of larger ones.
153 Consequently, promoting the uniqueness of species assemblages with multiple tree islands
154 appears as a promising strategy for enhancing biodiversity in monoculture-dominated
155 landscapes, at least during the first years after tree island establishment.

156 The differences in beta diversity across taxa that our study revealed, might be explained by
157 ecological processes related to dispersal ability, body size and life history. For instance, due
158 to the long lifespan of trees, the influence of processes such as local extinction and
159 colonisation may require more time than for other taxa. Furthermore, tree beta diversity
160 patterns may be shaped mainly by seed sources in the surrounding landscape and by tree
161 species with higher dispersal capacities³⁸, explaining the unexpected high nestedness in
162 human-modified ecosystems compared to tropical forests for trees³⁹. While we expect overall
163 patterns to hold, the influence of differences in sample coverage across taxa - particularly
164 incomplete coverage for highly diverse taxon such as fungi - in terms of turnover and
165 nestedness under- or over-estimations remains unknown. Finally, taxonomic resolution may
166 impact our ecological understanding⁴⁰, particularly for soil fauna that mainly was assessed at
167 the level of orders (that often represent functional groups⁴¹). Contrasting resolutions reflect
168 the challenge of biodiversity assessment in the species-rich tropics³⁶. Despite that, soil fauna
169 was a good indicator of overall multi-taxa community dissimilarity (see below). Therefore, we
170 expect this crucial role to remain or be strengthened with higher resolution, but increases in
171 resolution will likely result in higher beta diversity due to higher turnover.

172

173 **Insights of multi-taxa beta diversity through landscape heterogeneity and biotic
174 associations**

175 Beta diversity patterns across multiple taxa were correlated, with the network for beta
176 diversity comprising 17 edges (Fig. 3A, Supplementary Table S6). The most connected taxa
177 were soil fauna and bacteria (strength, i.e., the sum of absolute edge weights, = 0.82 and
178 0.71, with five and four edges with other nodes, respectively; Fig. 4A). By contrast, trees
179 were the least connected (strength = 0.46, with four edges). The highest correlation
180 coefficient was observed between soil fungi and bacteria beta diversity (+0.25). Turnover
181 patterns for multi-taxa diversity were also correlated, with the network for turnover comprising
182 eight edges (Fig. 3B, Supplementary Table S7). In the case of turnover, turnover of soil fauna
183 and understorey arthropods were disconnected from the network. In other words, neither
184 turnover patterns of soil fauna nor understory arthropods follow dis(similar) turnover patterns
185 of other taxa, neither were associated with landscape heterogeneity. Finally, nestedness
186 patterns for multi-taxa diversity were correlated except for trees (Fig. 3C, Supplementary
187 Table S8), with the network retaining six edges. Yet, the nestedness network had low
188 stability. Together, these results suggest that direct and indirect associations shape the

189 spatial organisation of communities across taxa in tropical human-modified landscapes,
190 supporting previous studies in temperate ecosystems^{23,24}.

191 Our results point toward the key role of below-ground organisms in structuring multi-taxa beta
192 diversity patterns. Soil biota (soil fauna, bacteria, and fungi) are central to the overall
193 ecological community as its beta diversity patterns are associated with beta diversity patterns
194 of other taxonomic groups and with abiotic variables (for different centrality indices,
195 Supplementary Fig. S3). Soil biota may act as an indicator of current conditions, the result of
196 legacy effects from previous land-uses (e.g., oil palm plantation or tropical forest), or both⁴².
197 For example, soil fauna composition can be associated with differences in specific organic
198 materials (reflecting the heterogeneity before the land-use conversion) and time delays
199 because of the limited dispersion of soil fauna⁴³. Similar beta diversity patterns between soil
200 fauna and soil fungi may be underlain by species interactions (e.g., soil fungi as an important
201 food source in soil food webs⁴⁴), similar niche requirements and/or dispersal limitations
202 influencing soil biota (symbiotroph, pathotroph and saprotroph, Supplementary Fig. S4 – S7;
203 Supplementary Tables S9 – S11). Associations between soil biota and trees can result from
204 plant-soil feedbacks, with soil fauna potentially influencing vegetation dynamics and above-
205 ground biodiversity⁴⁵. For instance, soil biota have been shown to affect understorey
206 arthropods (particularly pollinators, Supplementary Fig. S4 – S6) when soil biota indirectly
207 affect floral traits (e.g., bacteria, root herbivores, and mycorrhizal fungi), influencing
208 pollination attractions and plant fitness⁴⁶. While detailed plant-soil feedback experiments
209 would be required to disentangle the mechanisms of above- and below-ground associations
210 shaping multi-taxa dynamics, here we provide further evidence highlighting the importance of
211 integrating the belowground compartment towards elucidating dynamics in monoculture-
212 dominated landscapes.

213 Landscape heterogeneity played a crucial role in all three networks (Fig. 3). For instance,
214 dissimilarity in vegetation structural complexity was the most connected node (strength =
215 0.84 with four edges to other nodes) in the beta diversity network. Besides, soil P was the
216 most connected node (strength = 0.49 with four edges, Fig 4B) in the species turnover
217 network. The highest and lowest correlation of soil P was found with soil bacteria and fungi
218 beta diversity, respectively (+0.18 and +0.11). This suggests that landscape heterogeneity
219 can promote beta diversity by fostering different species compositions, reinforcing the role of
220 enriched tree islands in influencing community assemblages and biodiversity at the
221 landscape-scale (i.e., beta and gamma diversity). Further, it implies that dissimilarity in
222 abiotic conditions can directly or indirectly impact multiple taxa. The influence of vegetation

223 structural complexity on multi-taxa diversity may act *via* altering light and microclimatic
224 conditions⁴⁷ and other characteristics associated with variation in local planted tree species
225 diversity and identity – with both shaping vegetation structural complexity³⁵. Furthermore, the
226 influence of tree islands on multi-taxa diversity might reflect the removal of environmental
227 filtering associated with conventional management such as liming and fertilisation, which is
228 responsible for biotic homogeneity in monoculture-dominated landscapes. Further possible
229 mechanisms include enhanced nutrient cycling and plant litter decomposition^{48,49}, particularly
230 in ecosystems under transition (e.g., primary or secondary succession)⁵⁰.

231

232 **Conclusions**

233 We conclude that enriching monocultures with tree islands varying in vegetation structural
234 complexity (as a result, for instance, of tree planting diversity and island size) can foster
235 unique ecological communities above- and below-ground and thereby promote multi-taxa
236 diversity at the landscape-scale (beta and gamma diversity). Additionally, we suggest
237 distributing tree islands across the monoculture-dominated landscape to enhance multi-taxa
238 diversity by capturing contrasting soil conditions. Landscape restoration strategies aiming to
239 enhance multi-taxa diversity should consider not only key abiotic conditions but also the
240 extent to which biotic associations play an important role in shaping ecological communities
241 at landscape-scale. By enhancing biodiversity at the landscape level in monoculture-
242 dominated tropical landscapes, we bring a complementary perspective to the UN Decade on
243 Ecosystem Restoration and provide experimental evidence urgently needed to guide
244 interventions for landscape restoration in productive agricultural systems.

245

246 **Materials and Methods**

247 **Study area**

248 This study was conducted in the Biodiversity Enrichment Experiment (EFForTS-BEE) located
249 in Jambi province, Sumatra, Indonesia. The main aim of EFForTS-BEE is to evaluate the
250 potential of establishing tree islands⁹ within an industrial oil palm plantation as a restoration
251 measure to enhance biodiversity and ecosystem functioning while maintaining financial
252 benefits (29, Zemp et al., in revision). The area is characterised by a humid tropical climate
253 with two peak rainy seasons (March and December) and a dryer period extending from July
254 to August²⁹. The mean temperature is 26.7 ± 1.0 °C, and the mean annual precipitation is
255 2235 ± 385 mm (1991 - 2011). The predominant soil type in the region is loamy Acrisol⁵¹.
256 EFForTS-BEE was established in December 2013 and consists of 52 experimental plots, i.e.,
257 tree islands varying in plot size of 25 m², 100 m², 400 m², and 1,600 m², and planted tree

258 diversity level 0, equal to no tree planted, 1, 2, 3, and 6 tree species planted in a plot, all
259 embedded in a 140-ha oil palm plantation (01.95° S and 103.25° E, 47 ± 11 m a.s.l.). The
260 experiment follows a random partition design aiming to disentangle the linear effects of tree
261 diversity and plot size and the non-linear effects of tree species composition²⁹. For details of
262 the experimental design, see ref²⁹. The planted species represent native, multi-purpose trees
263 used for the production of fruits (*Parkia speciosa* Hassk, *Archidendron jiringa* (Jack)
264 I.C.Nielsen, and *Durio zibethinus* L.), timber (*Peronema canescens* Jack, and *Shorea*
265 *leprosula* Miq.), and natural latex (*Dyera polyphylla* (Miq.) Steenis)³⁴.

266 **Data collection**

267 The data for this study were collected between October 2016 and May 2018. We sampled
268 above-ground and below-ground taxa, including understorey arthropods, soil biota (soil fungi,
269 soil bacteria, and soil fauna), herbaceous plants, trees, vegetation structural complexity
270 measures, and soil conditions, with all measurements within the 52 tree islands, i.e., plots.
271 Arthropods sampled at the height of the understorey vegetation (referred to as "understorey
272 arthropods") were sampled three times with six pan traps (2 × 3 pan traps) equally distributed
273 per plot, for 45 hours from October 2016 to January 2017. The traps were made of white
274 plastic bowls coloured with yellow UV paint⁵² and filled with water and a drop of detergent. All
275 individuals were preserved in 70% Ethanol, sorted by morphospecies, and subsequently
276 identified into higher taxonomic classification possible (i.e., 14 groups/families) and their
277 corresponding functional groups (e.g., Table S5).

278 Soil biota and herbaceous plants were surveyed in the same subplot of 5 × 5 m area
279 established within each plot²⁹. Specifically, soil fungi were sampled and collected in
280 December 2016 from three soil cores per plot (10 cm depth and 4 cm diameter) and
281 identified through DNA extraction and next-generation sequencing⁴². OTUs were classified
282 taxonomically using the *BLAST* algorithm (blastn, v2.7.1;⁵³) and the UNITE v7.2
283 (UNITE_public_01.12.2017.fasta;⁵⁴). Soil bacteria were obtained for each subplot from three
284 10 cm cores of topsoil, placed at 1 m far from the adjacent trees. The soil cores were mixed,
285 homogenised and cleared from roots before DNA and RNA extraction and posterior
286 classification⁵⁵. In each plot, soil fauna communities were assessed in four soil samples of 16
287 × 16 cm using a spade down to a depth of 5 cm plus the entire overlying litter layer. The
288 animals extracted from the soil samples by heat were counted and classified into taxonomic
289 groups, corresponding to key functional soil invertebrate guilds (mainly groups/families,
290 Supplementary Table S4)^{41,56,57}. Herbaceous plants, described as all non-woody plants lower
291 than 1.3 metres in height, were identified from February to March 2018. Trees refer to all

292 free-standing woody plants with a minimum height of 1.3 m, inventoried in the total area of
293 the experimental tree islands in August 2018, excluding the trees planted at the onset of the
294 experiment.

295 Soil nutrient variables, including total carbon (C) and nitrogen (N) concentration (g mg⁻¹), C-
296 to-N ratio, and plant-available P concentration (mg g⁻¹), were quantified using the same soil
297 samples as for soil fungi collected in December 2016 (see below). Total C and N were
298 determined via the combustion method in a C/N analyser⁴². Plant-available P was quantified
299 following Bray & Kurtz⁵⁸. The soil samples were mixed with Bray-I Extraction solution, shaken
300 for 60 min, and filtered with phosphate-free filters. P concentration of filtrates was measured
301 using inductively coupled plasma mass spectrometry⁴².

302 We quantified vegetation structural complexity using multiple terrestrial laser scans taken
303 between September and October 2016³⁵. We calculated Effective Number of Layer (ENL),
304 which describes the vertical structure of forest stands and is influenced by the stand height
305 and the vegetation distribution across vertical layers⁵⁹. In addition, we calculated Mean
306 Fractal Dimension (MeanFRAC) and Stand Structural Complexity Index (SSCI). MeanFRAC
307 is defined as the arithmetic mean of fractal dimensions describing the geometric complexity
308 of the stand⁶⁰. MeanFRAC is associated with enriched tree island conditions, i.e., planted
309 tree composition, richness, and tree island size³⁵. SSCI describes the arrangement of tree
310 components in three-dimensional space^{60,61}.

311 **Beta diversity and landscape heterogeneity**

312 For each taxa, beta diversity was calculated using species incidence-based pairwise
313 dissimilarity matrices (presence-absence data) with the function *beta.pair* from the package
314 *betapart* version 1.5.4⁶². We partitioned beta diversity into turnover and nestedness
315 components^{62,63}. The Jaccard pairwise dissimilarity (β_{jacc}) among plots was computed as β_{jacc}
316 = $\beta_{jtu} + \beta_{jne}$, where β_{jtu} accounted for the turnover fraction of Jaccard pairwise dissimilarity, and
317 β_{jne} accounted for the nestedness-resultant dissimilarity fraction. We calculated beta diversity
318 using community data (incl. operational taxonomic units, taxonomic groups, morphospecies
319 or species – referred as species in the text). In addition, we calculated beta diversity using
320 Sørensen pairwise dissimilarity, which incorporates turnover and richness differences as β_{sor}
321 = $\beta_{sim} + \beta_{sne}$. In this case, β_{sim} accounted for turnover measured as Simpson pairwise
322 dissimilarity, and β_{sne} accounted for the patterns of beta diversity causing nestedness,
323 measured as the nestedness-resultant dissimilarity fraction of Sørensen dissimilarity
324 (Supplementary Fig. S2 and S5). While Jaccard considers the proportion of unique species in
325 the entire pool, Sørensen considers the proportion of unique species per site⁶⁴.

326 For the abiotic variables (vegetation structural complexity and soil conditions), we calculated
327 pairwise dissimilarity between all matrix rows, i.e., tree islands, using the function *dist* from
328 the R stats package. We used the Euclidean distance method, calculated as a true straight-
329 line distance between all matrix rows in Euclidean space.

330 Multivariate normality was tested with Mardia's multivariate skewness and kurtosis
331 coefficients using the function *mvn* from the R package *MVN* version 5.9⁶⁵. When the test did
332 not state multivariate normality, a non-paranormal transformation to achieve Gaussian
333 distribution was implemented using the function *huge.npn* and the setting *shrinkage* based
334 on a shrunken Empirical Cumulative Distribution Function (ECDF) from the R package *huge*
335 version 1.3.5⁶⁶.

336 **Partial correlation networks**

337 We applied partial correlation networks to study associations between landscape
338 heterogeneity and the beta diversity (turnover or nestedness) among multiple taxa. An
339 association between taxa indicates the covariation of the spatial distribution of ecological
340 communities among taxa. Advantages of partial correlation networks are threefold: first, they
341 describe correlations between a set of conditionally independent variables⁶⁷, second, they do
342 not require *a priori* knowledge of the structure⁶⁸; and finally, the correlations can be
343 graphically represented and analysed to reveal key interdependencies and highly connected
344 variables⁶⁹. Partial correlation networks have been widely used to infer pairwise species
345 interactions from observed presence-absence matrices⁶⁸. A network is composed of nodes
346 and edges, where the nodes represent the beta diversity (or turnover or nestedness) of the
347 different taxa and the dissimilarity of vegetation structural complexity and soil conditions. The
348 edges (i.e., links connecting pairs of nodes) represent correlations between nodes, in our
349 case, undirected partial correlation coefficients²³. Edges can be either positive or negative
350 correlations (representing the covariation of the spatial distribution of ecological communities
351 between taxa), and can be absent, indicating no or weak correlation between a set of
352 variables⁷⁰. When positive, the (dis)similarity in species composition between tree islands
353 changes in the same direction for both taxa, when negative, the (dis)similarity in species
354 composition for a taxon increases while it decreases for the other taxon.

355 We used the graphical lasso method (Least Absolute Shrinkage and Selection Operator) as
356 implemented in the R package *bootnet* version 1.4.3⁷¹ to build and analyse the networks.
357 This method displays the unconditional association between two nodes once the influence of
358 other variables is controlled (i.e., partial correlations⁶⁷), reducing the risk of spurious
359 relationships that can emerge from multicollinearity⁷⁰. The Lasso method applies a

360 regularisation penalty using a tuning parameter to reduce the number of parameters
361 displayed. As a result, only a small number of partial correlations (i.e., the highest values) are
362 used to explain the interconnections among variables⁶⁷. We selected the tuning parameter
363 with the Extended Bayesian Information Criterion EBIC⁷² using the function *EBICglasso* from
364 the package *qgraph* version 1.6.9⁷³ (tuning parameter = 0.5). The partial correlations were
365 represented graphically in networks with undirected weighted edges (i.e., there is an
366 association, but the direction is not determined) using *ggraph* R package version 2.0.5⁷⁴.
367 With the weighted networks, we consider the correlations among nodes and the weight of
368 these correlations (partial correlation coefficients⁷⁵).

369 We tested the influence of different abiotic variables on network connectivity. To do so, we
370 included various combinations of vegetation structural complexity metrics and soil conditions
371 and measured the resulting number of edges in the network and the proportional changes.
372 We found the highest network connectivity when MeanFRAC and soil P were included
373 (Supplementary Tables S2 and S3). Other structural metrics or soil conditions did not
374 increase network connectivity and were highly correlated with other environmental variables
375 (Supplementary Table S1 and Fig. S1). Therefore, we only included MeanFRAC (named
376 hereafter as vegetation structural complexity) and soil P in the final networks presented in
377 this study.

378 We quantified the importance of specific nodes (i.e., certain taxon or a particular
379 environmental variable) for structuring or maintaining the overall (i.e., multi taxa) network by
380 calculating three centrality measures commonly used in complex network approaches
381 strength, betweenness, and closeness. Strength is the sum of absolute edge weights that a
382 node has with the others⁶⁷. The higher the strength value of a node, the higher the influence
383 it has on influencing the composition and structure of the community²⁴. Betweenness looks at
384 the proportion of shortest paths between any pair of nodes that pass through a specific node.
385 The shortest path is defined as the path with the minimum distance (calculated by adding the
386 edges' weights) needed to connect two nodes. Hence, a node with high betweenness lies "in-
387 between" other nodes' shortest paths in the network. High betweenness indicates that a node
388 plays a crucial role in the connectivity and stability of the network, for example, implying a
389 cascading effect with large consequences on the overall network when the node is lost⁷⁶.
390 Closeness describes the undirected connectance of a node to the other nodes in a network,
391 calculated as the average distance of the shortest path from a specific node to all other
392 nodes⁶⁷. Because of its proximity to all other nodes, the node with the highest closeness
393 centrality plays a crucial role in the overall network⁷⁶ (Supplementary Fig. S3 and S7).

394 The accuracy of the parameters and measures estimated in a network depends greatly on
395 sample size and variability⁷⁵. Thus, we assessed the accuracy of the different networks (i.e.,
396 sensitivity to sampling variation) by estimating confidence intervals on the weight of the
397 edges with a non-parametric bootstrapping of 1000 samples, with a confidence interval of
398 95%⁷⁵, using the *bootnet* R package version 1.4.3⁷¹. To assess the stability of centrality
399 indices, we used a case-dropping subset bootstrap from the package *bootnet*⁷¹. We
400 calculated the correlation stability coefficient (CS-coefficient), which represents the maximum
401 number of observations that can be dropped (in at least 95 % of the samples) so that the
402 correlation between original centrality indices and the indices re-calculated with a subset of
403 the data is 0.7 or higher⁶⁷. The threshold considered stable for the CS-coefficient should be
404 no less than 0.25 and desirable higher than 0.5. Results of the sensitivity analysis are
405 presented in Supplementary Fig. S8-S13.

406 Data were analysed with the software environment R, version 4.1.1 (R Development Core
407 Team, 2021), using the packages *ade4*⁷⁷, *betapart*⁶², *bootnet*⁷¹, *data.table*⁷⁸, *ggplot2*⁷⁹,
408 *ggraph*⁷⁴, *glasso*⁸⁰, *huge*⁶⁶, *igraph*⁸¹, *MVN*⁶⁵, *plyr*⁸², *qgraph*⁷³, *reshape2*⁸³, *rlist*⁸⁴, *tidyverse*⁸⁵,
409 and *vegan*⁸⁶. Our code is based on the R code provided by Ohlmann *et al.* (2018)²³.

410 **Data availability**

411 The data and code to reproduce the results will be available on Zenodo.

412

413 **References**

414

415 1. Newbold, T. *et al.* Has land use pushed terrestrial biodiversity beyond the planetary boundary? A
416 global assessment. *Science* (2016).

417 2. IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem
418 services of the intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
419 Services. (2019).

420 3. Watson, J. E. M. *et al.* Persistent Disparities between Recent Rates of Habitat Conversion and
421 Protection and Implications for Future Global Conservation Targets. *Conservation Letters* **9**, 413–
422 421 (2016).

423 4. Foley, J. A. *et al.* Global Consequences of Land Use. *Science* **309**, 570–574 (2005).

424 5. Gibbs, H. K. *et al.* Tropical forests were the primary sources of new agricultural land in the 1980s
425 and 1990s. *Proceedings of the National Academy of Sciences* **107**, 16732–16737 (2010).

426 6. FAO. FAOSTAT. <http://www.fao.org/faostat/en/#data> (2019).

427 7. Descals, A. *et al.* High-resolution global map of smallholder and industrial closed-canopy oil palm
428 plantations. *Earth System Science Data* **13**, 1211–1231 (2021).

429 8. Chazdon, R. L. *et al.* A Policy-Driven Knowledge Agenda for Global Forest and Landscape
430 Restoration. *Conservation Letters* **10**, 125–132 (2017).

431 9. Benayas, J. M. R., Bullock, J. M. & Newton, A. C. Creating woodland islets to reconcile ecological
432 restoration, conservation, and agricultural land use. *Frontiers in Ecology and the Environment* **6**,
433 329–336 (2008).

434 10. Shaw, J. A., Roche, L. M. & Gornish, E. S. The use of spatially patterned methods for vegetation
435 restoration and management across systems. *Restoration Ecology* **28**, 766–775 (2020).

436 11. Deák, B. *et al.* Linking environmental heterogeneity and plant diversity: The ecological role of
437 small natural features in homogeneous landscapes. *Science of The Total Environment* **763**,
438 144199 (2021).

439 12. Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species
440 richness across taxa, biomes and spatial scales. *Ecology Letters* **17**, 866–880 (2014).

441 13. Tamme, R., Hillesalu, I., Laanisto, L., Szava-Kovats, R. & Pärtel, M. Environmental heterogeneity,
442 species diversity and co-existence at different spatial scales. *Journal of Vegetation Science* **21**,
443 796–801 (2010).

444 14. Mori, A. S., Isbell, F. & Seidl, R. β -Diversity, Community Assembly, and Ecosystem Functioning.
445 *Trends in Ecology & Evolution* **33**, 549–564 (2018).

446 15. Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How Should Beta-Diversity Inform
447 Biodiversity Conservation? *Trends in Ecology & Evolution* **31**, 67–80 (2016).

448 16. Leibold, M. A. *et al.* The metacommunity concept: a framework for multi-scale community
449 ecology. *Ecology Letters* **7**, 601–613 (2004).

450 17. Ricklefs, R. E. A comprehensive framework for global patterns in biodiversity. *Ecology Letters* **7**,
451 1–15 (2004).

452 18. Bever, J. D. Soil community feedback and the coexistence of competitors: conceptual
453 frameworks and empirical tests. *New Phytologist* **157**, 465–473 (2003).

454 19. De Deyn, G. B. *et al.* Soil invertebrate fauna enhances grassland succession and diversity. *Nature*
455 **422**, 711–713 (2003).

456 20. Kneitel, J. M. & Chase, J. M. Trade-offs in community ecology: linking spatial scales and species
457 coexistence. *Ecology Letters* **7**, 69–80 (2004).

458 21. *Ecological Networks in the Tropics: An Integrative Overview of Species Interactions from Some of*
459 *the Most Species-Rich Habitats on Earth*. (Springer International Publishing, 2018).
460 doi:10.1007/978-3-319-68228-0.

461 22. Mittelbach, G. G. & McGill, B. J. *Community Ecology*. (Oxford University Press, 2019).

462 23. Ohlmann, M. *et al.* Mapping the imprint of biotic interactions on β -diversity. *Ecology Letters* **21**,
463 1660–1669 (2018).

464 24. García-Girón, J., Heino, J., García-Criado, F., Fernández-Aláez, C. & Alahuhta, J. Biotic interactions
465 hold the key to understanding metacommunity organisation. *Ecography* **43**, 1180–1190 (2020).

466 25. Kaiser-Bunbury, C. N. *et al.* Ecosystem restoration strengthens pollination network resilience and
467 function. *Nature* **542**, 223–227 (2017).

468 26. Harvey, E., Gounand, I., Ward, C. L. & Altermatt, F. Bridging ecology and conservation: from
469 ecological networks to ecosystem function. *Journal of Applied Ecology* **54**, 371–379 (2017).

470 27. Heleno, R., Lacerda, I., Ramos, J. A. & Memmott, J. Evaluation of restoration effectiveness:
471 community response to the removal of alien plants. *Ecological Applications* **20**, 1191–1203
472 (2010).

473 28. Arroyo-Rodríguez, V. *et al.* Designing optimal human-modified landscapes for forest biodiversity
474 conservation. *Ecology Letters* **23**, 1404–1420 (2020).

475 29. Teuscher, M. *et al.* Experimental Biodiversity Enrichment in Oil-Palm-Dominated Landscapes in
476 Indonesia. *Front. Plant Sci.* **7**, (2016).

477 30. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity
478 hotspots for conservation priorities. *Nature* **403**, 853–858 (2000).

479 31. Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests.
480 *Science* **349**, 827–832 (2015).

481 32. Simensen, T., Halvorsen, R. & Erikstad, L. Methods for landscape characterisation and mapping: A
482 systematic review. *Land Use Policy* **75**, 557–569 (2018).

483 33. Paquette, A. *et al.* A million and more trees for science. *Nature Ecology & Evolution* **2**, 763–766
484 (2018).

485 34. Zemp, D. C. *et al.* Tree performance in a biodiversity enrichment experiment in an oil palm
486 landscape. *Journal of Applied Ecology* **56**, 2340–2352 (2019).

487 35. Zemp, D. C. *et al.* Mixed-species tree plantings enhance structural complexity in oil palm
488 plantations. *Agriculture, Ecosystems & Environment* **283**, 106564 (2019).

489 36. Barlow, J. *et al.* The future of hyperdiverse tropical ecosystems. *Nature* **559**, 517–526 (2018).

490 37. Collen, B., Ram, M., Zamin, T. & McRae, L. The Tropical Biodiversity Data Gap: Addressing
491 Disparity in Global Monitoring. *Tropical Conservation Science* **1**, 75–88 (2008).

492 38. Arroyo-Rodríguez, V. *et al.* Multiple successional pathways in human-modified tropical
493 landscapes: new insights from forest succession, forest fragmentation and landscape ecology
494 research. *Biological Reviews* **92**, 326–340 (2017).

495 39. Condit, R. *et al.* Beta-Diversity in Tropical Forest Trees. *Science* **295**, 666–669 (2002).

496 40. Terlizzi, A. *et al.* Beta diversity and taxonomic sufficiency: Do higher-level taxa reflect
497 heterogeneity in species composition? *Diversity and Distributions* **15**, 450–458 (2009).

498 41. Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R. & Scheu, S. Linking size spectrum,
499 energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. *Journal*
500 *of Animal Ecology* **88**, 1845–1859 (2019).

501 42. Ballauff, J. *et al.* Legacy Effects Overshadow Tree Diversity Effects on Soil Fungal Communities in
502 Oil Palm-Enrichment Plantations. *Microorganisms* **8**, 1577 (2020).

503 43. Eisenhauer, N., Reich, P. B. & Scheu, S. Increasing plant diversity effects on productivity with time
504 due to delayed soil biota effects on plants. *Basic and Applied Ecology* **13**, 571–578 (2012).

505 44. Ruess, L. & Lussenhop, J. Trophic Interactions of Fungi and Animals. in (2005).
506 doi:10.1201/9781420027891.CH28.

507 45. Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning.
508 *Nature* **515**, 505–511 (2014).

509 46. Barber, N. A. & Soper Gorden, N. L. How do belowground organisms influence plant–pollinator
510 interactions? *Journal of Plant Ecology* **8**, 1–11 (2015).

511 47. Donfack, L. S. *et al.* Microclimate and land surface temperature in a biodiversity enriched oil
512 palm plantation. *Forest Ecology and Management* **497**, 119480 (2021).

513 48. Eisenhauer, N. *et al.* Plant Diversity Surpasses Plant Functional Groups and Plant Productivity as
514 Driver of Soil Biota in the Long Term. *PLOS ONE* **6**, e16055 (2011).

515 49. Wardle, D. A. *et al.* Ecological Linkages Between Aboveground and Belowground Biota. *Science*
516 **304**, 1629–1633 (2004).

517 50. Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter
518 stabilization. *Geoderma* **332**, 161–172 (2018).

519 51. Guillaume, T., Damris, M. & Kuzyakov, Y. Losses of soil carbon by converting tropical forest to
520 plantations: erosion and decomposition estimated by $\delta^{13}\text{C}$. *Global Change Biology* **21**, 3548–
521 3560 (2015).

522 52. Westphal, C. *et al.* Measuring Bee Diversity in Different European Habitats and Biogeographical
523 Regions. *Ecological Monographs* **78**, 653–671 (2008).

524 53. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421 (2009).

525 54. Köljalg, U. *et al.* Towards a unified paradigm for sequence-based identification of fungi.
526 *Molecular Ecology* **22**, 5271–5277 (2013).

527 55. Berkelmann, D., Schneider, D., Hennings, N., Meryandini, A. & Daniel, R. Soil bacterial community
528 structures in relation to different oil palm management practices. *Scientific Data* **7**, 421 (2020).

529 56. Klarner, B. *et al.* Trophic niches, diversity and community composition of invertebrate top
530 predators (Chilopoda) as affected by conversion of tropical lowland rainforest in Sumatra
531 (Indonesia). *PLOS ONE* **12**, e0180915 (2017).

532 57. Darras, K. F. A. *et al.* Reducing Fertilizer and Avoiding Herbicides in Oil Palm Plantations—
533 Ecological and Economic Valuations. *Front. For. Glob. Change* **2**, (2019).

534 58. Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in
535 soils. *Soil Science* **59**, 39–46 (1945).

536 59. Ehbrecht, M., Schall, P., Juchheim, J., Ammer, C. & Seidel, D. Effective number of layers: A new
537 measure for quantifying three-dimensional stand structure based on sampling with terrestrial
538 LiDAR. *Forest Ecology and Management* **380**, 212–223 (2016).

539 60. Ehbrecht, M., Schall, P., Ammer, C. & Seidel, D. Quantifying stand structural complexity and its
540 relationship with forest management, tree species diversity and microclimate. *Agricultural and
541 Forest Meteorology* **242**, 1–9 (2017).

542 61. Seidel, D. *et al.* Deriving Stand Structural Complexity from Airborne Laser Scanning Data—What
543 Does It Tell Us about a Forest? *Remote Sensing* **12**, 1854 (2020).

544 62. Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. *Methods in
545 Ecology and Evolution* **3**, 808–812 (2012).

546 63. Baselga, A. Partitioning the turnover and nestedness components of beta diversity. *Global*
547 *Ecology and Biogeography* **19**, 134–143 (2010).

548 64. Baselga, A. The relationship between species replacement, dissimilarity derived from nestedness,
549 and nestedness. *Global Ecology and Biogeography* **21**, 1223–1232 (2012).

550 65. Korkmaz, S., Goksuluk, D. & Zararsiz, G. MVN: An R Package for Assessing Multivariate Normality.
551 *The R Journal* **6**, 151 (2014).

552 66. Jiang, H. *et al.* huge: High-Dimensional Undirected Graph Estimation. (2021).

553 67. Epskamp, S. & Fried, E. I. A Tutorial on Regularized Partial Correlation Networks. *Psychological*
554 *Methods* **23**, 617–634 (2018).

555 68. Harris, D. J. Inferring species interactions from co-occurrence data with Markov networks.
556 *Ecology* **97**, 3308–3314 (2016).

557 69. Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical
558 lasso. *Biostatistics* **9**, 432–441 (2008).

559 70. Bhushan, N. *et al.* Using a Gaussian Graphical Model to Explore Relationships Between Items and
560 Variables in Environmental Psychology Research. *Front. Psychol.* **10**, (2019).

561 71. Epskamp, S. & Fried, E. I. bootnet: Bootstrap Methods for Various Network Estimation Routines.
562 (2020).

563 72. Chen, J. & Chen, Z. Extended Bayesian information criteria for model selection with large model
564 spaces. *Biometrika* **95**, 759–771 (2008).

565 73. Epskamp, S. *et al.* qgraph: Graph Plotting Methods, Psychometric Data Visualization and
566 Graphical Model Estimation. (2021).

567 74. Pedersen, T. L. & RStudio. ggraph: An Implementation of Grammar of Graphics for Graphs and
568 Networks. (2021).

569 75. Epskamp, S., Borsboom, D. & Fried, E. I. Estimating psychological networks and their accuracy: A
570 tutorial paper. *Behav Res* **50**, 195–212 (2018).

571 76. Delmas, E. *et al.* Analysing ecological networks of species interactions. *Biological Reviews* **94**, 16–
572 36 (2019).

573 77. Dray, S. *et al.* ade4: Analysis of Ecological Data: Exploratory and Euclidean Methods in
574 Environmental Sciences. (2021).

575 78. Dowle, M. *et al.* data.table: Extension of ‘data.frame’. (2021).

576 79. Wickham, H. *et al.* ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics.
577 (2021).

578 80. Friedman, J. & Tibshirani, T. H. and R. glasso: Graphical Lasso: Estimation of Gaussian Graphical
579 Models. (2019).

580 81. details, S. A. file igraph author. igraph: Network Analysis and Visualization. (2021).

581 82. Wickham, H. plyr: Tools for Splitting, Applying and Combining Data. (2020).

582 83. Wickham, H. reshape2: Flexibly Reshape Data: A Reboot of the Reshape Package. (2020).

583 84. Ren, K. rlist: A Toolbox for Non-Tabular Data Manipulation. (2021).

584 85. Wickham, H. & RStudio. tidyverse: Easily Install and Load the ‘Tidyverse’. (2021).

585 86. Oksanen, J. *et al.* vegan: Community Ecology Package. (2020).

586

587 **Acknowledgements**

588

589 We thank all scientists who contributed to the data analysed in this study, including Prof. Dr.
590 Mark Maraun. We also thank PT Humusindo Makmur Sejati and Pak Hasbi and his family for
591 granting us access to and use of their properties. We thank the many field assistants, in
592 particular, Juliandi and Eduard J. Siahaan, for their support in the field. We are grateful for
593 the logistical support by the EFForTS staff and coordination. This study was financed by the
594 Deutsche Forschungsgemeinschaft (DFG) German Research Foundation – project number
595 192626868 – SFB 990 in the framework of the collaborative German – Indonesian research
596 project CRC990 EFForTS (<http://www.unigoettingen.de/crc990>). Research permit by the
597 Indonesia Ministry of Research and Technology (337/SIP/FRP/E5/Dit.KI/IX/2016). Nathaly R.
598 Guerrero-Ramírez thanks the Dorothea Schlözer Postdoctoral Programme of the Georg-

599 August-Universität for their support. EFForTS-BEE is a member of the global network of tree
600 diversity experiments TreeDivNet (<http://www.treedivnet.ugent.be>).

601

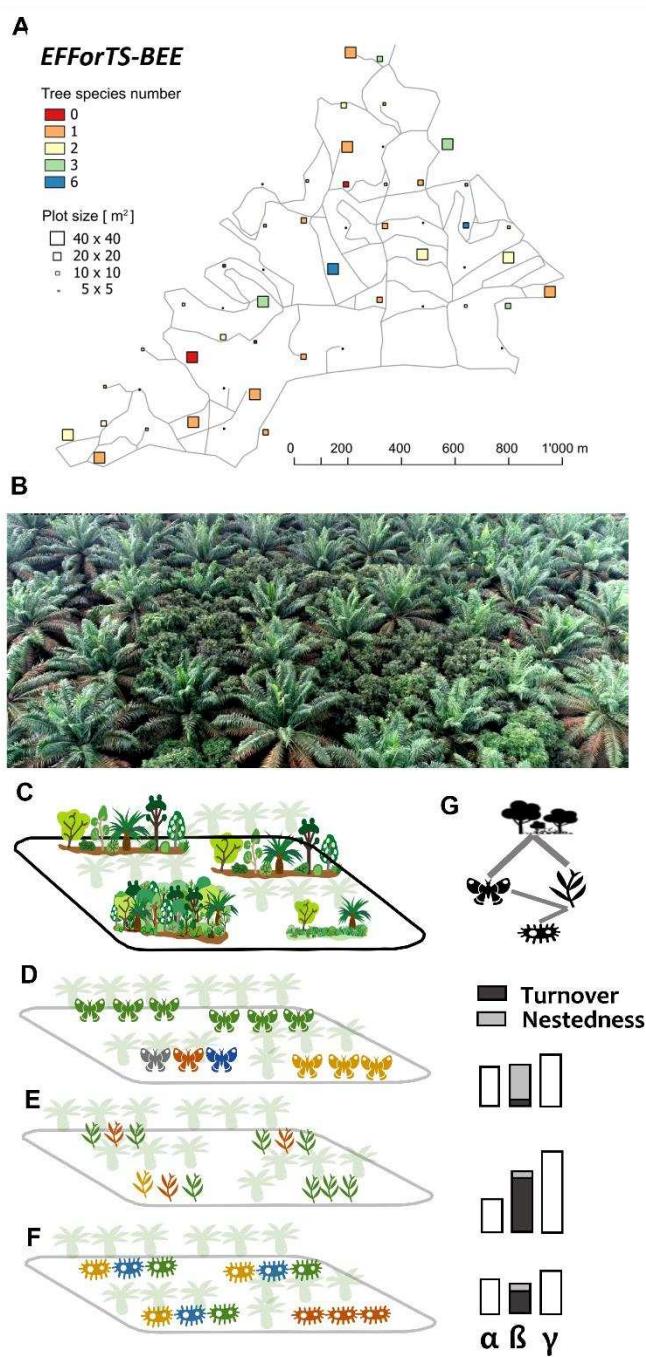
602 **Author Contributions:** V.M-S., H.K., D.H., D.C.Z., and N.R.G-R. designed research; I.A.,
603 J.B., D.B., F.B., A.K., A.P., and L.S., collected data with supervision from H.K., R.D., I.G.,
604 D.H., A.P., S.S, T.T, D.C.Z; V.M-S. analysed data with assistance from D.C.Z. and N.R.G-R.;
605 and V.M-S., D.C.Z., and N.R.G-R. wrote the paper with assistance from H.K., I.A., J.B., D.B.,
606 F.B., R.D., I.G., J.H., D.H., B.I., A.K., A.P., L.S., S.S., L.S., T.T.

607 **Competing Interests:** The authors declare no competing interest.

608 **Materials and correspondence:** Correspondence and materials requests should be
609 addressed to Vannessa Montoya-Sánchez.

610 **Figures and Tables**

611

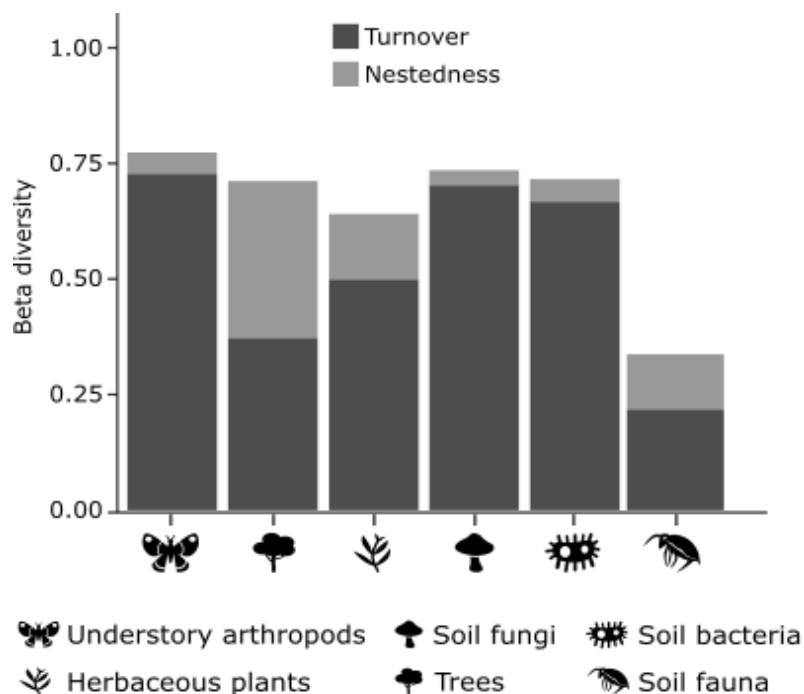


612

613 **Figure 1. Tropical biodiversity enrichment experiment (EFForTS-BEE) and conceptual**
614 **figures. (A)** 52 experimental tree islands were established embedded within a 140-ha oil
615 palm plantation, tree islands varying in tree native planted diversity and island size; **(B)**
616 example of a tree island using a drone image; **(C)** if multi-taxa beta diversity is driven by
617 habitat differentiation, higher landscape heterogeneity (resulting from islands differing in their
618 vegetation structural complexity) is expected to be associated with beta diversity of multiple
619 taxa. In contrast, if multi-taxa beta diversity is driven mostly by stochastic processes such as
620 dispersion, landscape heterogeneity may not be associated with changes in beta diversity.
621 Changes in beta diversity may be underlying by turnover, with higher turnover resulting in

622 higher gamma diversity or, by nestedness (i.e., gain and species losses in light grey).
623 Positive associations between landscape heterogeneity and beta diversity translate into
624 greater dissimilarity in vegetation structural complexity between islands being associated with
625 dissimilar multi-taxa communities e.g., **(C, D)** landscape heterogeneity and understory
626 arthropods and **(C, E)** landscape heterogeneity and herbaceous plants. **(E-F)** A positive
627 association between beta diversity of two taxa (e.g., herbaceous plants and soil bacteria)
628 implies that tree islands that differ in herbaceous plant composition also differ in soil bacteria
629 composition. **(G)** In the network, the nodes represent landscape heterogeneity and beta
630 diversity (or one of its two components) for each taxon, and the links represent associations
631 between the nodes.

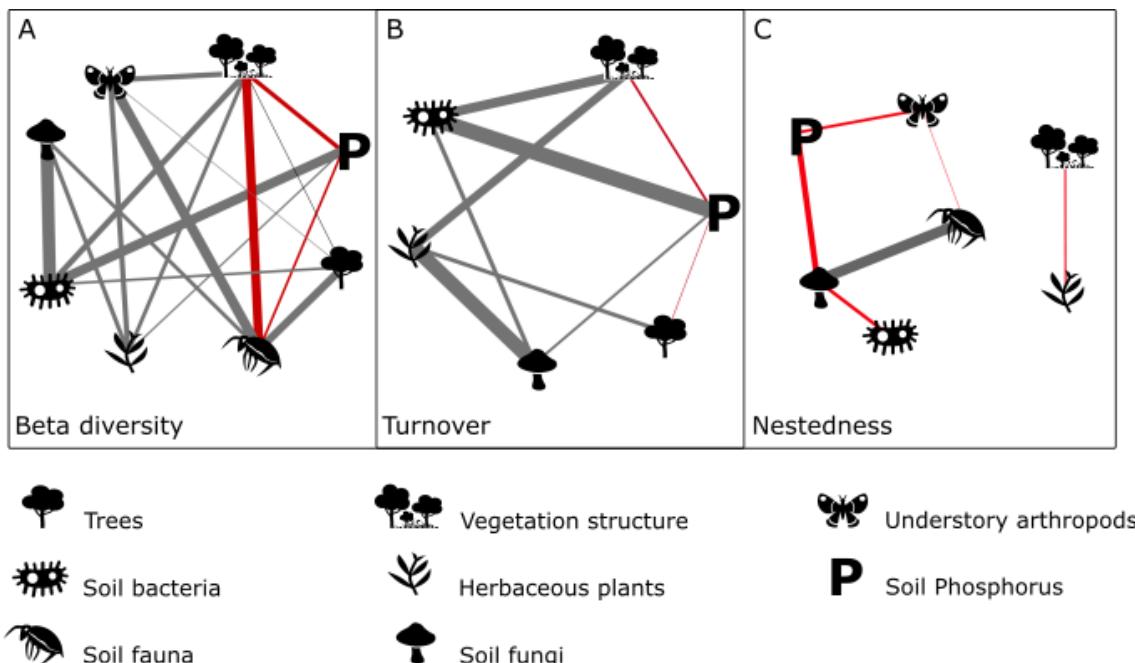
632



633
634
635

636 **Figure 2. Turnover and nestedness components of beta diversity** for taxonomic groups
637 calculated with Jaccard index. Similar results were found when beta diversity was calculated
638 using Sørensen pairwise dissimilarity (Supplementary Fig. S2).

639



640
641
642

643 **Figure 3. The role of landscape heterogeneity and biotic associations shaping multi-**
644 **taxa beta diversity.** Nodes represent (A) total beta diversity, (B) turnover, and (C)

645 nestedness of multiple taxa and dissimilarity in vegetation structural complexity and soil
646 phosphorus. Edges thicknesses, i.e., line thickness, are proportional to partial correlation
647 coefficients, with grey and red edges representing positive (i.e., greater dissimilarity in
648 vegetation structural complexity between islands being associated with dissimilar multi-taxa
649 communities or tree islands that differ in composition for a taxon also differ in composition for
650 another taxon) and negative (i.e., greater dissimilarity in vegetation structural complexity
651 between islands being associated with similar multi-taxa communities or tree islands that
652 differ in community compositions for a taxon have similar community compositions for
653 another taxon) correlations, respectively. Edge length is not meaningful. Nodes with partial
654 correlation coefficients equal to or near zero are not included in the corresponding network.

655

