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Abstract 

Resting-state fMRI is commonly used to derive brain parcellations, which are widely used for 

dimensionality reduction and interpreting human neuroscience studies. We previously 

developed a model that integrates local and global approaches for estimating areal-level 

cortical parcellations. The resulting local-global parcellations are often referred to as the 

Schaefer parcellations. However, the lack of homotopic correspondence between left and 

right Schaefer parcels has limited their use for brain lateralization studies. Here, we extend 

our previous model to derive homotopic areal-level parcellations. Using resting-fMRI and 

task-fMRI across diverse scanners, acquisition protocols, preprocessing and demographics, 

we show that the resulting homotopic parcellations are as homogeneous as the Schaefer 

parcellations, while being more homogeneous than five publicly available parcellations. 

Furthermore, weaker correlations between homotopic parcels are associated with greater 

lateralization in resting network organization, as well as lateralization in language and motor 

task activation. Finally, the homotopic parcellations agree with the boundaries of a number of 

cortical areas estimated from histology and visuotopic fMRI, while capturing sub-areal (e.g., 

somatotopic and visuotopic) features. Overall, these results suggest that the homotopic local-

global parcellations represent neurobiologically meaningful subdivisions of the human 

cerebral cortex and will be a useful resource for future studies. Multi-resolution parcellations 

estimated from 1479 participants are publicly available (GITHUB_LINK). 
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1 Introduction 

Information processing in the human brain is facilitated by the transformation of 

neural signals across cortical areas (Ungerleider and Desimone, 1986; Felleman and Van 

Essen, 1991). Therefore, accurate delineation of cortical areas is an important goal in systems 

neuroscience (Amunts and Zilles, 2015). Cortical areas are defined based on the principle that 

an area should exhibit distinct architectonics, topography, connectivity, and function (Kaas, 

1987; Felleman and Van Essen, 1991; Eickhoff et al., 2018a). Traditionally, these criteria 

were evaluated with a broad range of invasive techniques. However, recent progress in non-

invasive brain imaging techniques offer the opportunities to delineate cortical areas in vivo 

(Sereno et al., 1995; Cohen et al., 2008; Van Essen and Glasser 2014). 

One popular non-invasive brain imaging technique is resting-state functional 

connectivity (RSFC). RSFC measures the synchrony of fMRI signals between brain regions, 

while a participant is <resting= in the scanner in the absence of any explicit task (Biswal et 

al., 1995). RSFC has been widely used to estimate a small number of (typically less than 20) 

large-scale brain networks (Damoiseaux et al., 2006; Calhoun et al., 2008; Smith et al., 2009; 

Power et al., 2011). RSFC has also been used to parcellate (or subdivide) the brain into 

hundreds of finer parcels (Craddock et al., 2012; Shen et al., 2013; Honnorat et al., 2015; 

Eickhoff et al., 2015). We refer to these finer parcellations as areal-level parcellations, since 

their boundaries are known to align with certain cortical areas (Wig et al., 2014; Gordon et 

al., 2016; Schaefer et al., 2018). However, cortical areas are internally heterogeneous (Kaas 

1987), so most RSFC parcellations also capture sub-areal features, such as visual eccentricity 

and somatomotor representations of different body parts (Yeo et al., 2011; Gordon et al., 

2016; Schaefer et al., 2018). This sub-areal characteristic can be advantageous, for instance 

when modeling a behavioral task involving button presses, it might be useful for hand and 

tongue motor regions to be represented by different parcels.  

We previously developed a gradient-weighted Markov Random Field (gwMRF) 

model for estimating areal-level RSFC parcellations (Schaefer et al., 2018). The gwMRF 

model integrates two popular approaches for estimating brain parcellations. The local 

gradient approach (Hirose et al., 2012; Wig et al., 2014; Laumann et al., 2015; Xu et al., 

2016) detects abrupt changes in RSFC patterns between adjacent spatial locations in the 

cerebral cortex. The locations of these abrupt changes often correspond to known cortical 

areal boundaries (Wig et al., 2014; Gordon et al., 2016). On the other hand, the global 

similarity approach clusters the brain into parcels with similar RSFC patterns or resting-fMRI 

time courses (van den Heuvel et al., 2008; Power et al., 2011; Yeo et al., 2011; Ryali et al., 
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2013). By construction, the resulting parcels are more homogeneous (than those obtained 

with the local gradient approach), which is useful for dimensionality reduction of fMRI data. 

By combining both local gradient and global similarity approaches, the gwMRF parcellations 

agreed well with the boundaries of certain cortical areas defined using histology and 

visuotopic fMRI (Schaefer et al., 2018). The resulting gwMRF parcels were also more 

homogeneous than other parcellations evaluated using task-fMRI and resting-fMRI (Schaefer 

et al., 2018). 

However, there is no homotopic correspondence between left and right gwMRF 

parcels, which limits their use for lateralization studies. Histological studies suggest the 

presence of homotopic pairs of cortical areas in roughly spatially homotopic locations across 

the hemispheres (Amunts et al., 2020). Homotopic areas do not necessarily have the same 

function, e.g., language processing is lateralized towards the left hemisphere in most 

participants (Szaflarski et al., 2006; Hartwigsen et al., 2021; Malik-Moraleda et al., 2022). 

Despite functional lateralization, most higher-level cognitive functions are supported by 

distributed networks across the two hemispheres, enabled by inter-hemispheric commissural 

fibers (e.g., corpus callosum) and subcortical relays (Middleton and Strick, 2020; 

Schmahmann et al., 2008; Jones 2012). Direct and indirect connections between the two 

hemispheres in turn lead to strong homotopic RSFC observed in both electrophysiological 

(Duffy et al., 1996) and fMRI (Lowe et al., 1998; Salvador et al., 2005) studies. Spatial 

variation in homotopic RSFC has been observed along the functional hierarchy with sensory-

motor regions exhibiting stronger homotopic RSFC than association regions (Stark et al., 

2008). Within the sensory-motor cortex, tongue regions exhibit stronger homotopic RSFC 

than hand and foot regions (Yeo et al., 2011), consistent with nonhuman primate studies 

showing that the representations of midline structures in S1 and M1 (e.g., face) have denser 

callosal connections than those of distal limbs (e.g., hand and foot; Pandya and Vignolo 

1971; Jones and Wise 1977; Killackey et al., 1983; Gould et al., 1986). 

In this study, we extend the gwMRF model to derive homotopic areal-level 

parcellations, in which pairs of parcels exist in approximately spatially homotopic locations 

across the cerebral cortical hemispheres. Homotopic parcellations have been derived by 

manual delineation of parcellation boundaries (Glasser et al., 2016) or post hoc grouping of 

parcel pairs (Joliot et al., 2015). By contrast, our homotopic Markov Random Field (hMRF) 

approach is fully automated and seeks to preserve the desirable properties of the original 

gwMRF approach. We compared the hMRF parcellations with six publicly available 

parcellations (Craddock et al., 2012; Shen et al., 2013; Joliot et al., 2015; Glasser et al., 2016; 
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Gordon et al., 2016; Schaefer et al., 2018) using multiple datasets. Based on task-fMRI and 

resting-fMRI, the hMRF parcels were as homogeneous as gwMRF parcels, while being more 

homogeneous than the other five parcellations. Compared with other fully automated 

approaches, the hMRF parcellations exhibited similar alignment with architectonic and 

visuotopic areal boundaries. Overall, while the hMRF parcellations do not correspond to 

cortical areas, they nevertheless provide a meaningful subdivision of the cerebral cortex that 

is useful for future analyses.  
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2 Material and Methods 

2.1 Overview 

A homotopic Markov Random Field (hMRF) parcellation procedure was developed 

and applied to resting-fMRI from the GSP dataset. Using data collected from multiple 

scanners, acquisition protocols and preprocessing procedures, the estimated homotopic 

parcellations were compared with six previously published resting-fMRI parcellations 

(Craddock et al., 2012; Shen et al., 2013; Joliot et al., 2015; Glasser et al., 2016; Gordon et 

al., 2016; Schaefer et al., 2018). Of these six parcellations, two of them were homotopic 

(Joliot et al., 2015; Glasser et al., 2016). A final set of hMRF parcellations at various 

resolutions were estimated from the full GSP dataset and further characterized.  

 

2.2 fMRI Datasets 

2.2.1 GSP dataset 

The GSP dataset consisted of resting-fMRI data from 1489 young adults aged 

between 18 to 35 years old (Holmes et al., 2015). All imaging data were collected on 

matched 3T Tim Trio scanners (Siemens Healthcare) at Harvard University and 

Massachusetts General Hospital using the vendor-supplied 12-channel phased-array head 

coil. For each participant, one or two resting-fMRI runs were acquired. Out of the total 1489 

participants, 1083 participants had two runs and 406 participants had one run. Each run was 

acquired in 3 mm isotropic resolution with a TR of 3.0 s and lasted for 6 min and 12 s. The 

structural data consisted of one 1.2 mm isotropic scan for each participant. 

Detailed information about the resting-fMRI preprocessing can be found elsewhere 

(Li et al., 2019). Here we provide the broad outlines of the processing steps, which utilized a 

mixture of FreeSurfer 5.3.0 (Fischl, 2012), FSL 5.0.8 (Jenkinson et al., 2012) and in-house 

Matlab functions. The processing steps were as follows. (1) First four frames were removed. 

(2) Slice time correction was applied. (3) Motion correction and censoring of outlier volumes 

were performed. Volumes with framewise displacement (FD) > 0.2 mm or root-mean-square 

of voxel-wise differentiated signal (DVARS) > 50, along with one volume before and two 

volumes after, were marked as outliers. Uncensored segments of data lasting fewer than five 

contiguous volumes were also labeled as censored frames. BOLD runs with more than half of 

the volumes labeled as censored frames were removed. (4) Alignment with structural images 

with boundary-based registration was performed (Greve and Fischl, 2009). (5) White matter 

and ventricular signals, whole brain signal, six motion parameters, and their temporal 
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derivatives were regressed from the fMRI data. Outlier frames from step 3 were excluded 

when computing the regression coefficients. (6) Censored frames were interpolated with 

Lomb-Scargle periodogram (Power et al., 2014), (7) Bandpass filtering (0.009Hz < f < 

0.08Hz) was performed. (8) Data was projected to the FreeSurfer fsaverage6 space and 

smoothed by a 6mm full-width half-maximum (FWHM) kernel. Only participants with at 

least one run remaining (N = 1479) were considered. The 1479 participants were further 

divided with no participant overlap between training (N = 740) and test (N = 739) sets. Age, 

sex, handedness and number of available runs were balanced across the training and test sets 

(Table 1). The GSP training set was used to estimate hMRF parcellations, while the GSP test 

set was used to evaluate the parcellations (Sections 2.4 and 2.5). The full dataset (N = 1479) 

was also used to estimate a final set of hMRF parcellations at different resolution (Section 

2.6). 

 

 % Female % Right-handers Age (mean ± std) # runs (mean ± std) 

Training Set 58.1 92.4 21.5 ± 2.9 1.7 ± 0.4 

Test Set 58.3 92.3 21.5 ± 2.9 1.7 ± 0.4 

Table 1. Training and test sets were balanced across sex, handedness, age, and number of 

runs. There was no participant overlap across training and test sets. 

 

2.2.2 HCP dataset 

For the purpose of evaluation (Section 2.4), we considered resting-fMRI data from the 

HCP S1200 release. Details about the acquisition protocol and minimal processing for the 

HCP data can be found elsewhere (Glasser et al., 2013; Van Essen et al., 2012b). Briefly, 

each participant has 4 resting-fMRI runs acquired from a custom-made Skyra scanner. Each 

run was acquired in 2 mm isotropic resolution with a TR of 0.72 s and lasted for 14 min and 

33 s. The structural data consisted of one 0.7 mm isotropic scan for each participant. 

We utilized ICA-FIX resting-fMRI data in MNI152 space, which have been denoised 

with ICA-FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) and smoothed by a 

Gaussian kernel with 6 mm FWHM. We also considered MSMAII ICA-FIX resting-fMRI 

data, which were projected to fs_LR32k surface space (Van Essen et al., 2012b), smoothed 

by a Gaussian kernel with 2 mm FWHM and aligned with MSMAII (Robinson et al., 2014).  

To further remove head motion-related artifacts (Burgess et al., 2016; Siegel et al., 

2017), additional censoring was performed (volumes with FD > 0.2 mm or DVARS > 50 

were marked as outliers) and runs with more than 50% censored frames were removed. Only 

participants with at least one resting-fMRI run remaining (N = 1030) were considered.  
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Furthermore, for the purpose of evaluation, we utilized task contrasts released by the 

HCP in fs_LR32k surface space. Details of the task contrasts can be found in the HCP 

documentation and publications (Barch et al., 2013). Briefly, there were seven tasks: social 

cognition, motor, gambling, working memory, language processing, emotional processing, 

and relational processing. For each task, there were multiple task contrasts released by the 

HCP in fsLR surface space. We used all independent task contrasts. The subset of HCP 

participants with available contrasts for all tasks was considered (N = 956). 

 

2.2.3 ABCD dataset 

The GSP test set (Section 2.2.1) and HCP dataset (Section 2.2.2) allowed us to 

evaluate parcellation quality in young adults in MNI152, fsaverage and fs_LR32k spaces. We 

also considered 9- to 10-year-old children from the Adolescent Brain Cognitive Development 

(ABCD) dataset to evaluate parcellation quality in children. Details of the ABCD dataset can 

be found elsewhere (Casey et al., 2018). Briefly, each participant has 4 resting-fMRI runs 

acquired from Philips, GE or Siemens scanners. Consistent with our previous study (Chen et 

al., 2022), individuals from Philips scanners were excluded due to incorrect preprocessing. 

Each resting-fMRI run was acquired in 2.4 mm isotropic resolution with a TR of 0.8 s and 

lasted for 5 min. The structural data consisted of one 1 mm isotropic scan for each 

participant. 

We considered 2262 participants from our previous study (Chen et al., 2022). Briefly, 

we utilized minimally preprocessed fMRI data released by the ABCD study (Hagler et al., 

2019). The minimally processed data were further preprocessed with the following steps. (1) 

Functional images were aligned to T1 images using boundary-based registration (Greve & 

Fischl, 2009). (2) Respiratory pseudo-motion was removed with a bandstop filter of 0.31-

0.43Hz (Fair et al., 2020). (3) Frames with FD > 0.3 mm or DVARS > 50, along with one 

volume before and two volumes after, were marked as outliers and subsequently censored. 

Uncensored segments of data consisting of less than 5 frames were also censored. Runs with 

more than 50% censored frames were not considered. (4) Global, white matter and 

ventricular signals, 6 motion parameters, and their temporal derivatives were regressed from 

the fMRI data. Censored frames were not considered when computing the regression 

coefficients. (5) Censored frames were interpolated with Lomb-Scargle periodogram (Power 

et al., 2014). (6) Bandpass filtering (0.009Hz – 0.08Hz) was applied. (7) Finally, the data was 
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projected onto FreeSurfer fsaverage6 surface space and smoothed using a 6 mm full-width 

half maximum kernel. 

The ABCD study also provided task-fMRI data from the N-back, monetary incentive 

delay (MID), and stop signal tasks (SST). There were 2 fMRI runs for each task. Each run 

was acquired in 2.4 mm isotropic resolution with a TR of 0.8 s. Each MID run was 322.4-

secs long. Each N-back run was 289.6-secs long. Each SST run was 349.6-secs long. 

Preprocessing of the task data was similar to the resting-fMRI data with some notable 

differences. Briefly, we utilized minimally preprocessed fMRI data released by the ABCD 

study (Hagler et al., 2019). The minimally processed data were further preprocessed with the 

following steps. (1) Functional images were aligned to T1 images using boundary-based 

registration (Greve & Fischl, 2009). (2) Respiratory pseudo-motion was removed with a 

bandstop filter of 0.31-0.43Hz (Fair et al., 2020). (3) Frames with FD > 0.3 mm or DVARS > 

50, along with one volume before and two volumes after, were marked as outliers. Segments 

of data consisting of less than 5 non-outlier frames were also marked as outliers. Runs with 

more than 50% outlier frames were not considered. (4) 6 motion parameters, and their 

temporal derivatives were regressed from the fMRI data. Outlier frames were not used to 

compute regression coefficients. (5) Finally, the data was projected onto FreeSurfer 

fsaverage6 surface space and smoothed using a 6 mm full-width half maximum kernel. To 

estimate the task-related activation, we fitted general linear model to the preprocessed task-

fMRI data using AFNI’s 3dDevonvolve (Cox, 1996). We utilized task regressors provided by 

ABCD (Casey et al., 2018), comprising 15 task conditions from MID, 9 conditions from N-

back and 8 conditions from SST. The resulting activation z-scores were finally projected to 

the fsaverage6 surface mesh. 

 

2.2.4 GUSTO dataset 

The previous evaluation datasets comprised mostly participants from North America. 

Given concerns about cross-ethnicity generalization failures in neuroimaging studies (Li et 

al., 2022), we also considered resting-fMRI data from 7.5-year-old children in the Growing 

Up in Singapore Towards Healthy Outcomes (GUSTO) dataset (Soh et al., 2014). Each 

participant has 1 resting-fMRI run collected on a Siemens Prisma scanner. Each run was 

acquired in 3 mm isotropic resolution with a TR of 2.62 s and lasted for 5.24 min. The 

structural data consisted of one 1 mm isotropic scan for each participant.  

The processing steps are as follows. (1) First four frames were removed. (2) Slice time 

correction was applied. (3) Motion correction was performed, and frames with FD > 0.6 mm 
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or DVARS > 80 were marked as outliers. (4) Alignment with structural images with 

boundary-based registration was performed (Greve and Fischl, 2009). (5) White matter and 

ventricular signals, whole brain signal, six motion parameters, and their temporal derivatives 

were regressed from the fMRI data. Outlier frames from step 3 were excluded when 

computing the regression coefficients (6) AFNI despiking was applied to the data. (7) The 

resulting time courses were bandpass filtered (0.009Hz < f < 0.08Hz). (8) The fMRI data was 

projected to the FreeSurfer fsaverage6 space. (9) Surface data were smoothed by a 6mm full-

width half-maximum (FWHM) kernel. Participants with poor T1-fMRI alignment (based on 

visual QC) was excluded. Participants with less than 4 minutes of non-outlier frames were 

also excluded, yielding a final set of 393 participants. 

 
2.3 hMRF parcellation procedure 

A typical MRF model is defined by an objective function comprising several 

competing terms encoding the ideal properties of a segmentation or parcellation. The 

homotopic Markov Random Field (hMRF) model is the same as the gwMRF model (Schaefer 

et al., 2018) except for two additional terms to encourage homotopic parcels.  

The gwMRF objective function comprises three terms, which encode the global 

connectivity similarity objective, the local gradient objective, and a spatial contiguity 

constraint. The global connectivity similarity term encourages brain locations with similar 

preprocessed fMRI time courses to be assigned to the same parcel. The local gradient term 

penalizes adjacent brain locations with different parcellation labels. This penalty is relaxed in 

the presence of strong local RSFC gradients (hence the name <gradient weighted=). With 

only the first two terms, the resulting parcellation will contain spatially distributed parcels 

due to long-range RSFC. Therefore, the spatial contiguity term encourages brain locations 

within a parcel to be near to the parcel center. However, the spatial contiguity term has the 

side effect of encouraging rounder parcels. Therefore, care was taken to ensure the spatial 

contiguity term was just sufficiently strong to obtain spatially contiguous parcels. More 

details about the gwMRF model can be found elsewhere (Schaefer et al., 2018). For 

completeness, Supplementary Methods S1 provides details about the three gwMRF terms.  

Our proposed hMRF objective function has a fourth homotopic constraint term that 

encourages homotopic pairs of vertices to be assigned to homotopic pairs of parcels. 

Homotopic vertex pairs were defined as follows. The left and right fsaverage6 hemispheres 

were first registered using the Freesurfer’s <mris_left_right_register= function. After 

registration, the closest right hemisphere vertex was found for each left hemisphere vertex. 
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Similarly, the closest left hemisphere vertex was found for each right hemisphere vertex. 

Here, the closest vertex was defined based on geodesic distance on the spherical surface 

mesh. A pair of left and right hemisphere vertices was considered homotopic if they were 

each other’s closest neighbor. Without loss of generality, the p-th parcels on the left and right 

hemispheres are assumed to be homotopic pair of parcels. For example, in the case of the 

400-region hMRF parcellation, we assume that parcels 1 to 200 are in the left hemisphere and 

parcels 201 to 400 are in the right hemisphere. Furthermore, we assume that parcels 1 and 

201 are homotopic, parcels 2 and 202 are homotopic, etc. The homotopic constraint imposes 

a penalty if a pair of homotopic vertices is assigned to non-homotopic pairs of parcels.  

Because of the strong homotopic correlations between the two hemispheres, a fifth 

<bookkeeping= term is necessary to prevent any parcel from spanning across both 

hemispheres. Using the example of the 400-region hMRF parcellation, this bookkeeping term 

imposes a very large penalty if any right hemisphere vertex is assigned to parcels 1 to 200 or 

if any left hemisphere vertex is assigned to parcels 201 to 400. 

Mathematical details of the hMRF model are found in Supplementary Methods S1 

and S2. Tradeoffs among different terms of the hMRF model are governed by a set of 

hyperparameters. For a fixed set of hyperparameters, we used the alpha expansion algorithm 

to estimate the parcellation labels within a maximum-a-posteriori estimation framework 

(Delong et al., 2010), following our previous study (Schaefer et al., 2018). Details of the 

estimation procedure is found in Supplementary Methods S3 and S4. Supplementary 

Methods S5 provides details on how the hyperparameters are set in the following analyses.  

 

2.4 Quantitative Evaluation Measures 

Evaluating the quality of a human cerebral cortical parcellation is difficult due to a 

lack of ground truth. Motivated by the definition of a cortical area (Felleman and Van Essen, 

1991), we considered four evaluation metrics utilized in previous parcellation studies 

(Glasser et al., 2016; Gordon et al., 2016; Gordon et al., 2017; Schaefer et al., 2018): 

architectonic alignment, visuotopic alignment, task functional inhomogeneity and resting-

state connectional homogeneity. These evaluation metrics were utilized to compare hMRF 

parcellations with other public parcellations after controlling for the number of parcels 

(Section 2.5). A good parcellation should align well with known cytoarchitectonic and 

visuotopic boundaries, as well as have homogeneous function and connectivity. 
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2.4.1 Architectonic boundaries 

Ten human architectonic areas were considered: 1, 2, 3 (areas 3a and 3b combined), 4 

(areas 4a and 4p combined), 6, 17, 18 hOc5, 44, and 45 (Geyer et al., 1996, 1999, 2000, 

2001; Amunts et al., 1999, 2000, 2004; Geyer 2004; Malikovic et al., 2007). These 

histological areas were projected to the fsLR surface template by Van Essen et al (2012a) 

based on Fischl et al (2008). To evaluate the alignment between these histological areas and 

the boundaries of a given parcellation, averaged geodesic distances were computed. In short, 

for each boundary vertex of an architectonic area, the geodesic distance to the nearest 

parcellation boundary was computed, then averaged across all boundary vertices of the area. 

Lower geodesic distance indicated better alignment between histological and parcellation 

boundaries. When comparing two parcellations, paired-sample t-test of the geodesic distances 

from both hemispheres was used (degrees of freedom or dof = 19). 

 

2.4.2 Visuotopic boundaries 

Eighteen visuotopic areas were considered (Abdollahi et al., 2014). The areas were 

obtained by averaging individual fMRI visuotopic mapping in fsLR surface space after 

multimodal alignment (Abdollahi et al., 2014). Each visuotopic area generally occupied half 

of its true extent since it was difficult to stimulate the peripheral visual field (Hinds et al., 

2009). Therefore, we only considered visuotopic boundaries between adjacent areas, yielding 

46 pairs of adjacent areas across both hemispheres. The agreement between visuotopic areal 

boundaries and parcellation boundaries was quantified by computing the geodesic distance. 

For each visuotopic boundary vertex, the geodesic distance to the nearest parcellation 

boundary was computed. The geodesic distances were averaged across all boundary vertices 

of each pair of adjacent areas. Lower geodesic distance indicated better alignment between 

visuotopic and parcellation boundaries. When comparing two parcellations, paired-sample t-

test of the geodesic distances was used (dof = 45). 

 

2.4.3 Task functional inhomogeneity 

Given a task activation contrast, the task functional inhomogeneity of a parcel was 

defined as the standard deviation (SD) of activation z-values across vertices within the parcel. 

The task functional inhomogeneities were combined across all parcels, yielding an overall 

task functional inhomogeneity metric (Gordon et al., 2017; Schaefer et al., 2018): 
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∑ ��� ∗ |�|��=1∑ |�|��=1  , 
where ��� was the task functional inhomogeneity of the �-th parcel, |�| indicated the number 

of vertices in parcel � and � was the total number of parcels. Therefore, larger parcels were 

weighted more in the overall task functional inhomogeneity metric. A lower task 

inhomogeneity metric indicated that activation within each parcel was more uniform, 

suggesting higher parcellation quality.  

In this study, we utilized task contrasts from the HCP and ABCD datasets (Sections 

2.2.2 and 2.2.3), which were in fsLR and fsaverage space respectively. For a given 

parcellation, task inhomogeneity was computed for each task contrast and each participant. 

Task inhomogeneities were then averaged across all contrasts within each task. When 

comparing two parcellations for a given dataset, task inhomogeneities were further averaged 

across all tasks before applying the paired-sample t-test (dof = 955 for the HCP dataset and 

dof = 2261 for the ABCD dataset). 

 

2.4.4 Resting-state connectional homogeneity 

RSFC homogeneity was defined as the averaged Pearson’s moment-product 

correlations between resting-fMRI time courses of all pairs of vertices (or voxels) within a 

given parcel. The correlations were then averaged across all parcels, while accounting for 

parcel size (Schaefer et al 2018; Kong et al 2021a): ∑ �� ∗ |�|��=1∑ |�|��=1  , 
where ��  was the averaged correlation within parcel �, |�| indicated the number of vertices in 

parcel � and � was the total number of parcels. A higher resting-state homogeneity meant that 

vertices within a parcel shared more similar time courses. Therefore, a higher resting-state 

homogeneity indicated better parcellation quality. 

The above normalization by parcel size is important to avoid situations in which a 

high homogeneity measure can be obtained for a meaningless parcellation. For example, 

imagine a 400-region parcellation comprising 399 parcels (containing 1 voxel each) and 1 

huge parcel (containing the remaining voxels). Then the 399 small parcels have a resting-

homogeneity of 1, while the gigantic parcel has a resting-homogeneity of about zero. If we 

simply average the homogeneity across the 400 parcels without accounting for parcel size, 
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the mean homogeneity would be almost 1 (almost perfect homogeneity), while in reality, this 

400-region parcellation is meaningless. Therefore, the normalization by parcel size was 

performed for both task functional inhomogeneity and resting-state homogeneity.  

 In the current study, resting homogeneity was computed using (1) GSP test set in 

fsaverage space (N = 739), (2) HCP dataset in MNI152 volumetric space (N = 1030), (3) 

HCP dataset in fsLR space (N = 1030), (4) ABCD dataset in fsaverage space (N = 2262) and 

(5) GUSTO dataset in fsaverage space (N = 393). Therefore, the datasets spanned across 

multiple volume and surface coordinate systems. The GSP dataset consisted of participants 

aged 18 to 35, the HCP datasets consisted of participants aged 22 to 35, while the ABCD and 

GUSTO datasets comprised children aged 7 to 10 years old. Furthermore, while the GSP, 

HCP and ABCD datasets comprised largely white participants, the GUSTO comprised East 

Asian participants. Finally, the HCP dataset was processed using ICA-FIX, while the 

remaining datasets were processed with whole brain signal regression. The wide variety of 

datasets allowed us to evaluate the generalizability of the hMRF parcellations to new datasets 

in terms of resting-homogeneity.    

To compare two parcellations for a given dataset, resting-state homogeneity was 

computed for each participant before a paired-sample t-test was performed (dof = 738 for 

GSP, dof = 1029 for HCP, dof = 2261 for ABCD and dof = 392 for GUSTO). 

 

A cortical parcellation with more parcels will have smaller parcels, so will generally 

perform better on the resting homogeneity and task inhomogeneity metrics. A cortical 

parcellation with more parcels will also generally have lower architectonic and visuotopic 

geodesic distances. The reason is that more parcels will lead to more parcellation boundary 

vertices. Therefore, it is more likely that histological (or visuotopic) boundaries will lie closer 

to some parcellation boundary vertices. Overall, when assessing the above evaluation 

metrics, it is critical to control for the number of parcels (see next section). 

 

2.4.5 Homotopic resting-state functional connectivity 

RSFC was computed between homotopic pairs of parcels. More specifically, for each 

parcel pair, every vertex from one parcel was correlated with every vertex from the 

homotopic parcel. These correlations were averaged within parcel pairs, then averaged across 

all parcel pairs, weighted by the number of vertices within each parcel pair. The resulting 

resting-state homotopic connectivity was compared between the hMRF parcellations and the 
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two homotopic parcellations (AICHA and Glasser) using the same datasets as in section 

2.4.4. The assumption was that a better homotopic parcellation should exhibit stronger 

homotopic RSFC. 

 

2.5 Comparison with other parcellations 

To evaluate the hMRF parcellations, we utilized the GSP training set (N = 740) to 

estimate a set of hMRF parcellations with different resolutions in fsaverage6 surface space. 

Details regarding the estimation procedure can be found in the Supplementary Methods. The 

resulting hMRF parcellations were compared with six public parcellations (Craddock et al., 

2012; Shen et al., 2013; Joliot et al., 2015; Glasser et al., 2016; Gordon et al., 2016; Schaefer 

et al., 2018) using four evaluation metrics (Section 2.4). Five of these parcellations were 

generated with automatic algorithms from resting-fMRI data (Craddock et al., 2012; Shen et 

al., 2013; Joliot et al., 2015; Gordon et al., 2016; Schaefer et al., 2018). The remaining 

parcellation was generated from multimodal MRI data using a semi-automatic algorithm with 

inputs from an anatomist (Glasser et al., 2016).  

Both the Glasser (Glasser et al., 2016) and AICHA (Joliot et al., 2015) parcellations 

were homotopic parcellations, while the remaining parcellations were non-homotopic. The 

Shen, Craddock and Schaefer parcellations are available in multiple resolutions. Given that 

there are estimated to be about 300 to 400 areas in the human cerebral cortex (Van Essen et 

al., 2012a), we chose the 400-region Craddock parcellation as a baseline. The most 

commonly used resolutions for the Shen and Schaefer parcellations were 268 and 400 parcels 

respectively, so they were chosen for comparison. Finally, the Gordon, Glasser and AICHA 

parcellations had 333, 360 and 384 parcels respectively.  

For fair comparisons, there were several important issues to consider. First, the 

number of parcels had a strong influence on the evaluation metrics, so the hMRF parcellation 

procedure was run with different number of parcels to match the publicly available 

parcellations. Second, the Gordon parcellation included many unlabeled vertices near parcel 

boundaries, which artificially inflated the evaluation metrics. Therefore, when comparing 

with the Gordon parcellation, boundary vertices with the worst resting homogeneity in the 

GSP training set were removed from the hMRF parcellation to match the number of 

unlabeled vertices in the Gordon parcellation. 

Another issue is that different parcellations were developed in different coordinate 

systems. The Shen, Craddock, and AICHA parcellations were in MNI152 volumetric space. 

The Glasser and Gordon parcellations were in fsLR surface space. The Schaefer and hMRF 
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parcellations were in fsaverage6 surface space. On the other hand, the data used for 

computing the evaluation metrics were also in different coordinate systems. Data used for 

computing architectonic and visuotopy metrics were in fsLR space. The GSP resting-fMRI 

data, GUSTO resting-fMRI data, ABCD resting-fMRI data and ABCD task-fMRI data were 

in fsaverage6 space. The HCP resting-fMRI data and task-fMRI data were in fsLR space. 

HCP resting-fMRI data was also available in MNI152 space. 

To compute the evaluation metrics, a parcellation was transformed into the coordinate 

system where the evaluation data resided. For example, to compute task activation 

inhomogeneity using the ABCD task-fMRI data, the Shen, Craddock, AICHA, Glasser, and 

Gordon parcellations were transformed into fsaverage6 surface space. On the other hand, to 

evaluate architectonic or visuotopic geodesic distances, the Shen, Craddock, AICHA, 

Schaefer and hMRF parcellations were projected to fsLR surface space. The non-linear 

transformations between fsLR, fsaverage and MNI spaces are detailed elsewhere (Van Essen 

et al., 2012a; https://wiki.humanconnectome.org/display/PublicData/HCP+Users+FAQ; Wu 

et al., 2018). 

The two issues (number of parcels and coordinate systems) were not independent, 

since transforming a parcellation from one space to another might change the number of 

parcels. For example, after projecting the Craddock parcellation from MNI152 to fsaverage 

or fsLR space, the number of parcels was reduced from 400 to 355. Furthermore, the 

coverage of the parcellations varied across different coordinate systems, so an intersection 

procedure was applied to pairs of parcellations to ensure that each pair covered the same 

portion of the cerebral cortex. The intersection procedure can further reduce the number of 

parcels. For example, after the application of the intersection procedure, the resolution of the 

Craddock parcellation in MNI152 space dropped to 346 parcels. In this case, we ran the 

hMRF procedure twice, with 346 and 355 parcels, to match the Craddock parcellations in 

volumetric and surface spaces respectively. In the case of the Shen parcellation, there were 

268 and 197 parcels in volumetric and surface spaces respectively. Therefore, the hMRF 

procedure was run twice, with 268 and 197 parcels, to match the Shen parcellations in 

volumetric and surface spaces respectively.  

For the Shen, Craddock and Gordon parcellations, the number of parcels were 

different between the two hemispheres, which was problematic since hMRF parcellations 

have equal number of parcels on both hemispheres. In the case of the Shen parcellation in 

fsaverage6 space, there were 100 parcels in the left hemisphere and 97 parcels in the right 

hemisphere. Therefore, we ran the hMRF parcellation procedure with 200 parcels. The right 
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hemisphere of the hMRF parcellation has more parcels than the right hemisphere of the Shen 

parcellation. Therefore, a merging procedure was applied to merge parcels in the right 

hemisphere of the hMRF parcellation (in a way that maximizes resting-homogeneity in the 

GSP training set), resulting in 97 parcels in the right hemisphere. The same procedure was 

repeated for the Craddock and Gordon parcellations. 

Finally, when mapping a parcellation from MNI152 to fsaverage space, the 

parcellation boundary tended to become rough, leading to lower resting-homogeneity. To 

reduce such bias, we smoothed the boundaries of the Shen, Craddock and AICHA 

parcellations after projecting them from MNI152 to fsaverage space. The resulting 

parcellations were visually appealing, but it is of course not possible to fully eliminate biases 

that arose from the mismatch between a parcellation’s native coordinate system and the space 

in which the evaluation metrics was computed. For example, the AICHA parcellation (whose 

native space was MNI152) had inherent advantage over the hMRF parcellation (whose native 

space was fsaverage6) when computing resting-state homogeneity with the HCP resting-

fMRI data in MNI152 space. As another example, the hMRF parcellation had inherent 

advantage over the AICHA parcellation when computing resting-state homogeneity with the 

ABCD resting-fMRI data in fsaverage6 space. 

 

2.6 Cerebral cortical parcellations of 1479 participants and further characterization 

The previous analyses served to compare the hMRF parcellations with other existing 

parcellations. To provide a final set of parcellations for the community, the hMRF 

parcellation procedure was finally applied to the full GSP dataset (N = 1479). Details 

regarding the hyperparameter settings can be found in Supplementary Methods S5. Since a 

single parcellation resolution was unlikely to be optimal across all applications, we generated 

parcellations (in the fsaverage6 surface space) from 100 to 1000 parcels in intervals of 100 

parcels. The parcellations were also projected to fsLR and MNI152 spaces. To visualize the 

resulting parcellations, we assigned each parcel to one of 7 or 17 networks based on maximal 

spatial overlap with the Yeo networks (Yeo et al., 2011).  

Since the Yeo networks were asymmetric, homotopic parcels in the hMRF 

parcellations could be assigned to different networks. We further characterized this 

phenomenon for the 400-region hMRF parcellation by computing RSFC between homotopic 

pairs of parcels. We hypothesized that homotopic parcels with different network assignments 

would exhibit weaker homotopic RSFC. Spatial overlap (Dice coefficient) for each pair of 

homotopic parcels was also computed based on our established cross-hemispheric vertex-
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level correspondence. More specifically, for each pair of homotopic parcels, we divided the 

total number of spatially homotopic vertices shared between both parcels by the total number 

of vertices enclosed in both parcels.  

We also investigated the relationship between homotopic RSFC and task activation 

lateralization in the HCP dataset. More specifically, we considered the <story – math= 

contrast from the language, as well as task contrasts (tongue – average, left fingers – average, 

right fingers – average, right foot – average, left foot – average) from the motor task. For 

each activation contrast, we averaged the activation z values within each parcel of the 400-

region hMRF parcellation. For each contrast and each homotopic parcel pair, an activation 

laterality index was defined as the absolute difference between left parcel activation and right 

parcel activation. Activation laterality was only computed for parcels strongly activated by 

the task contrast. We defined strongly activated parcels (of a particular task contrast) as those 

parcels whose average activation was at least 70% of the parcel with the largest average 

activation. In the case of the motor task, we averaged the activation laterality indices across 

the five contrasts, yielding a single activation laterality map for the motor task.  

Finally, we further characterized the 400-region hMRF parcellation by overlaying the 

boundaries of histological areas and visuotopical cortical areas. Visual inspection was then 

performed to explore the agreement between the hMRF parcellation and cortical areal 

boundaries. 

 

2.7 Data and code availability 

Code for the hMRF model can be found here (GITHUB_LINK). Co-authors (RK, AX 

and LA) reviewed the code before merging into the GitHub repository to reduce the chance 

of coding errors. Multi-resolution hMRF parcellations generated from 1489 participants are 

publicly available (GITHUB_LINK).  

The HCP preprocessing code can be found here (https://github.com/Washington-

University/HCPpipelines). The remaining datasets utilized the CBIG preprocessing pipeline 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/CBIG_f

MRI_Preproc2016). The datasets were processed by different researchers, so the pipeline was 

run with slightly different parameters (as reported in Section 2.2).  

The GSP (http://neuroinformatics.harvard.edu/gsp/), HCP 

(https://www.humanconnectome.org/) and ABCD (https://nda.nih.gov/abcd/) datasets are 

publicly available. The list of ABCD participants used in this study have been uploaded to 

the NIMH Data Archive (NDA). Researchers with access to the ABCD data will be able to 
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access the participant list: https://nda.nih.gov/study.html?id=XXX. The GUSTO dataset can 

be obtained via a data transfer agreement (https://www.gusto.sg/). 
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3 Results 

3.1 Homotopic differences between hMRF and gwMRF parcellations within area 17 

The left primary visual area V1 receives stimuli from the right visual hemifield, while 

the right primary visual area V1 receives stimuli from the left visual hemifield (Wandell et 

al., 2007). Given that the cross-hemisphere mapping is symmetric, we do not expect an 

asymmetric parcellation of V1 at the resolution of our parcellations. Given strong 

correspondence between histologically-defined architectonic area 17 and V1, here we use 

architectonic area 17 as a proxy of V1.  

Figure 1 overlays the boundaries of area 17 (Amunts et al., 1999) on the 400-region 

parcellations generated by gwMRF and hMRF. Both parcellations agree well with area 17 

boundary. However, the gwMRF parcellation subdivided left area 17 into three parcels and 

right area 17 into two parcels (Figure 1B). On the other hand, the hMRF parcellation 

subdivided left and right areas 17 into equal number of parcels with similar spatial 

topography across the two hemispheres, consistent with the fact that area 17 is not known to 

be asymmetric.  
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Figure 1. Difference in homotopic correspondence between hMRF and gwMRF parcellations 
within histologically-defined area 17. (A) Parcels (blue) of the 400-region hMRF parcellation 
within histological (red) boundaries of area 17. The hMRF parcellation subdivided left and 
right areas 17 into equal number of parcels with similar spatial topography across the two 
hemispheres. (B) Parcels (blue) of the 400-region gwMRF parcellation within histological 
(red) boundaries of area 17. The gwMRF parcellation subdivided left area 17 into three 
parcels and right area 17 into two parcels.  
 

Comparison of hMRF parcellations with other parcellations are shown in Figure S1. 

The homotopic parcellations (AICHA, Glasser and hMRF) and the Gordon parcellation 

yielded homotopic parcels that were well-aligned with area 17. The non-homotopic Craddock 

parcellation subdivided left area 17 into two parcels and right area 17 into three parcels. The 

non-homotopic Shen parcellation yielded roughly homotopic parcels that overlapped with 

area 17, but the parcel boundaries did not align with the boundary of area 17.  

 

3.2 Architectonic alignment 

Figure S2 shows the geodesic distances between the boundaries of 10 histologically-

defined architectonic areas and six publicly available parcellations. Geodesic distances 

between the architectonic areas and hMRF parcellations are also shown. Number of parcels 

was matched between the publicly available parcellations and corresponding hMRF 

parcellations. Lower distance indicates better alignment. 

Across the 10 architectonic areas, the hMRF approach generated parcellations with 

similar architectonic distance as Shen (p = 0.441, average 3.8%), better distance than Gordon 

(p ≈ 0, average 24.7%), similar distance to AICHA (p = 0.210, average 8.2%), better distance 

than Craddock (p = 0.031, average 11.2%), worse distance than Glasser (p = 0.032, average 

17.9%), and similar distance to Schaefer (p = 0.835, average 1.0%).  

After correcting for multiple comparisons with a false discovery rate (FDR) of q < 

0.05, only the comparison with the Gordon parcellation remained significant. Overall, the 

hMRF parcellations exhibited architectonic alignment comparable with (or better than) other 

parcellations. 

 

3.3 Visuotopic alignment 

Figure S3 shows the geodesic distances between the boundaries of 18 visuotopic areas 

(Abdollahi et al., 2014) and six publicly available parcellations. Geodesic distances between 

the visuotopic areas and hMRF parcellations are also shown. Number of parcels was matched 
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between the publicly available parcellations and corresponding hMRF parcellations. Lower 

distance indicates better alignment.  

Across the 18 visuotopic areas, the hMRF parcellations achieved similar visuotopic 

distance to Shen (p = 0.279, average 10.5%), better distance to Gordon (p ≈ 0, average 

39.7%), similar distance to ACIHA (p = 0.731, average 3.3%), similar distance to Craddock 

(p = 0.989, average 0.1%), worse distance to Glasser (p ≈ 0, average 46.3%) and similar 

distance to Schaefer (p = 0.083, average 16.8%).  

After correcting for multiple comparisons with an FDR of q < 0.05, the comparisons 

with the Gordon and Glasser parcellations remained significant. We note that the Glasser 

parcellation was derived with a semi-automated algorithm that required an anatomist to 

manually select multi-modal information to match prior knowledge of areal boundaries. 

Overall, the hMRF parcellations achieved visuotopic alignment comparable with (or better 

than) other fully automatic approaches. 

 

3.4 Task-fMRI activation inhomogeneity 

Figure 2 compares the task inhomogeneity of the hMRF parcellations with six 

publicly available parcellations using the HCP task-fMRI data. A lower task inhomogeneity 

indicated higher parcellation quality. Task inhomogeneity was not comparable between 

parcellations of different resolutions, so the number of parcels was matched between the 

publicly available parcellations and corresponding hMRF parcellations.  

In the HCP dataset (Figure 2), the hMRF parcellations exhibited lower (better) task 

inhomogeneity than the Shen (average 2.4%; p ≈ 0), Gordon (average 5.6%; p ≈ 0), AICHA 

(average 2.1%; p ≈ 0), Craddock (average 2.4%; p ≈ 0), Glasser (average 2.9%; p ≈ 0) and 

Schaefer (average 0.06%; p = 3.0e-17) parcellations. It is worth mentioning that the Glasser 

parcellation was partially derived using task-fMRI data from the HCP dataset, so should have 

an inherent advantage in this metric. 

Figure 3 compares the task inhomogeneity of the hMRF parcellations with six 

publicly available parcellations using the ABCD task-fMRI data. The hMRF parcellations 

exhibited lower (better) task inhomogeneity than the Shen (average 1.5%, p ≈ 0), Gordon 

(average 4.9%; p ≈ 0), AICHA (average 2.0%; p ≈ 0), Craddock (average 1.8%; p ≈ 0) and 

Glasser (average 4.0%; p ≈ 0) parcellations. On the other hand, the hMRF parcellations 

exhibited higher (worse) task inhomogeneity than the Schaefer parcellation (average 0.02%; 

p = 4.9e-08). 
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Figure 2. Task inhomogeneity computed from task-fMRI data in the HCP dataset (N = 1030).  
Lower task inhomogeneity indicates better parcellation quality. We note that task 

inhomogeneity cannot be compared across the panels because of the different number of 

parcels across panels. The hMRF parcellations exhibited comparable task inhomogeneity 
with the Schaefer parcellation and better task inhomogeneity than all other parcellations.  
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Figure 3. Task inhomogeneity computed from task-fMRI data in the ABCD dataset (N = 
2262). Lower task inhomogeneity indicates better parcellation quality. We note that task 

inhomogeneity cannot be compared across the panels because of the different number of 

parcels across panels. The hMRF parcellations exhibited comparable task inhomogeneity 
with the Schaefer parcellation and better task inhomogeneity than all other parcellations.  
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Overall, the hMRF parcellations exhibited comparable task inhomogeneity with the 

Schaefer parcellation and better task inhomogeneity than the other five parcellations. In 

particular, differences between hMRF and Schaefer parcellations were less than 0.1%, which 

was an order of magnitude smaller than the differences between hMRF and non-Schaefer 

parcellations. Differences between hMRF and non-Schaefer parcellations were larger, but 

still modest with differences in the order of 1% to 5% on average. 

 
 

3.5 Resting-fMRI homogeneity  

Figures 4 and S3 compare the hMRF parcellations with 6 publicly available 

parcellations in terms of resting-fMRI homogeneity across a variety of datasets. Higher 

resting-fMRI homogeneity indicated higher parcellation quality. Resting-fMRI homogeneity 

was not comparable between parcellations of different resolutions, so the number of parcels 

was matched between the publicly available parcellations and corresponding hMRF 

parcellations.   

The hMRF parcellations were significantly more homogeneous across all four 

datasets than the Shen (average 6.6%, p < 7.7e-37), Gordon (average 11.5%, p ≈ 0), AICHA 

(average 6.6%, p ≈ 0), Craddock (average 5.5%, p < 9.8e-324), and Glasser (average 9.0%, p 

< 9.5e-284) parcellations. As noted above, the Glasser parcellation was partially derived from 

the HCP resting-fMRI data, so should have an inherent advantage in the HCP dataset. On the 

other hand, the hMRF and Schaefer parcellations were comparable with mean difference of 

0.11% across all datasets.  

A parcellation with higher number of parcels should result in higher resting-fMRI 

homogeneity. However, we note that the 333-region Gordon parcellation exhibited higher 

resting-fMRI homogeneity than other parcellations of higher resolutions (e.g., Glasser 

parcellation). The reason is that the Gordon parcellation unlabeled vertices at the boundaries 

between parcels, which artificially boosted its homogeneity. Similarly, when generating 

hMRF parcellation for comparison with the Gordon parcellation, we unlabeled the same 

number of vertices as the Gordon parcellation, which boosted our resting-fMRI homogeneity.  

We also note that the resting-fMRI homogeneity was much lower in the HCP dataset 

(in fsLR space) compared with the GSP and ABCD datasets. A major reason is that the HCP 

dataset was smoothed with a 2mm FWHM (in fsLR space), while the GSP and ABCD 

datasets were smoothed with a 6mm FWHM. In general, greater spatial smoothing should 

yield higher resting-fMRI homogeneity (on average).  
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Figure 4. Resting-fMRI homogeneity computed with the (A) HCP dataset (N = 1030) in fsLR 

space, (B) HCP dataset (N = 1030) in MNI152 space, (C) ABCD dataset (N = 2262) in 

fsaverage space, and (D) GUSTO dataset (N = 393) in fsaverage space. We note that resting-

fMRI homogeneity was not comparable across different publicly available parcellations 
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because of differences in the number of parcels. However, the number of parcels was 

matched between the publicly available parcellations and corresponding hMRF parcellations. 

The hMRF parcellations achieved comparable resting-fMRI homogeneity with the Schaefer 

parcellation. On the other hand, the hMRF parcellations were more homogeneous than the 5 

non-Schaefer parcellations across all data sets. Resting-fMRI homogeneity in the GSP test set 

is shown in Figure S4.  

 

In the current results (Figure 4), the HCP data in MNI152 space was smoothed by 6 

mm. As a control analysis, we repeated the analysis with no smoothing. Unsurprisingly, 

compared with 6mm smoothing (Table S1B), resting-fMRI homogeneity of all parcellations 

were significantly lower when there was no spatial smoothing (Table S1A). Nevertheless, the 

hMRF parcellations were significantly more homogeneous than the non-Schaefer 

parcellations with improvements ranging from 3% to 12%. Interestingly, the percentage 

improvements over non-Schaefer parcellations were actually higher when there was no 

spatial smoothing. Similar to the previous results, the hMRF and Schaefer parcellations were 

comparable with mean difference of only 0.16%.   

Finally, we also compared the hMRF parcellation with the popular Automated 

Anatomical Labelling (AAL) atlas (Rolls et al., 2020). Given that the hMRF parcellation was 

derived from resting-state fMRI, we expected the hMRF parcellation to have an inherent 

advantage over the AAL atlas. Indeed, the hMRF parcellation exhibited significantly better 

resting-state homogeneity than the AAL atlas across all datasets (Table S2). 

 

3.6 Homotopic resting-state functional connectivity 

Figures 5 and S5 compare the hMRF parcellations with two homotopic parcellations 

in terms of homotopic resting-state functional connectivity. The hMRF parcellations 

exhibited stronger homotopic resting-state functional connectivity than the two homotopic 

parcellations: Glasser (mean 7.8%; p ≈ 0) and AICHA (mean 4.9%; p ≈ 0). Similar 

conclusions were obtained using HCP data in MNI52 space with no smoothing (Table S3). 
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Figure 5. Homotopic resting-state functional connectivity in the (A) HCP dataset (N = 1030) 

in fsLR space, (B) HCP dataset (N = 1030) in MNI152 space, (C) ABCD dataset (N = 2262) 

in fsaverage space, and (D) GUSTO dataset (N = 393) in fsaverage space. We note that 

homotopic functional connectivity was not comparable between the AICHA and Glasser 

parcellations because of differences in the number of parcels. The hMRF parcellations 

achieved higher (better) homotopic functional connectivity than the Glasser and AICHA 

homotopic parcellations. Results in the GSP test set is shown in Figure S5. 

 

 

3.7 RSFC lateralization of hMRF parcellations estimated from 1479 Participants 

Cerebral parcellations at multiple resolutions, from 100 to 1000 parcel at every 100-

parcel interval, were generated from the full GSP dataset (N = 1479) and visualized in Figure 

S6. The first row of Figure 6 shows the Yeo 7-network and 17-network parcellations (Yeo et 

al., 2011). The second row of Figure 6 shows the 400-region hMRF parcellation, where the 

color of each parcel was assigned based on maximal spatial overlap with the Yeo networks. 

Network assignment for parcellations of other resolutions are shown in Figure S7. 
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Figure 6. Assignment of parcels to 7 or 17 networks for hMRF parcellations with 400 
regions. First row shows the Yeo 7 and 17 networks (Yeo et al., 2011). Second row shows the 
400-region hMRF parcellation with each parcel assigned a network color based on its spatial 
overlap with the 7-network or 17-network parcellation. 
 

Some of the Yeo networks were clearly asymmetric across the hemispheres. For 

example, the frontoparietal control network (orange network in the first column of Figure 6) 

was larger in the right lateral prefrontal cortex than in the left lateral prefrontal cortex. This 

lateralization difference translated to the network assignment of the hMRF parcellations. 

Figure 7A shows the 7-network assignment of the 400-region hMRF parcellation with black 

arrows indicating a pair of homotopic parcels assigned to different networks. The left parcel 

was assigned to the default network, while the right parcel was assigned to the frontoparietal 

control network.  

Figure 7B shows the RSFC between homotopic pairs of parcels in the 400-region 

hMRF parcellation in the GSP dataset. As indicated by the black arrows, the homotopic 

parcels with different network assignment shown in Figure 7A, also exhibited weaker RSFC 

compared to the rest of the cerebral cortex. This phenomenon is further quantified in Figure 

7C, which shows that homotopic parcel pairs assigned to the same networks exhibited 

stronger RSFC than homotopic parcel pairs assigned to different networks (p = 3.72e-4 for 7-
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network assignment and p = 0.0028 for 17-network assignment). Therefore, lateralization 

differences in the spatial topography of the Yeo networks were reflected in the strength of 

RSFC between homotopic parcels.  

Another clear observation was that sensory-motor parcels showed stronger homotopic 

RSFC (Figure 7B), while association parcels showed weaker RSFC, consistent with previous 

studies (Stark et al., 2008; Zuo et al., 2010). Finally, Figure 7D shows the degree of spatial 

overlap (as measured by the Dice coefficient on the fsaverage6 surface) between homotopic 

pair of parcels. The degree of spatial overlap varied across the cortex with no clear pattern. 

There was almost no correlation between the spatial overlap (Figure 7D) and RSFC (Figure 

7B) of homotopic parcel pairs (r = 0.20). In other words, homotopic parcel pairs with greater 

spatial overlap did not necessarily have stronger or weaker homotopic RSFC.  

 

 

Figure 7. RSFC lateralization of the 400-region hMRF parcellation. (A) Lateralization in 
network assignment of the 400-region hMRF parcellation. Black arrows indicate a homotopic 
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pair of regions assigned to two different networks from the Yeo 7-network parcellation. (B) 
RSFC between homotopic pairs of parcels in the GSP dataset. Black arrows indicate that the 
homotopic pair of parcels highlighted in panel A exhibited weaker RSFC with each other 
(i.e., homotopic correlation) compared with other homotopic parcel pairs. (C) Boxplot of 
RSFC between homotopic parcel pairs assigned to the same or different networks for both 7-
network and 17-network assignments. Homotopic parcel pairs assigned to the same network 
exhibited stronger RSFC than homotopic parcel pairs assigned to different networks. (D) 
Spatial overlap (as measured by Dice coefficient) between homotopic pairs of parcels.  
  
 

3.8 Task activation lateralization of the 400-region hMRF parcellation  

Figures S8 to S12 show the HCP task contrasts overlaid on the 400-region hMRF 

parcellation boundaries. Consistent with previous parcellations (e.g., Schaefer et al., 2018), 

task activations were highly distributed across the cortex, cutting across multiple parcellation 

boundaries. This is expected given that a single task contrast involves multiple cognitive 

processes supported by multiple cortical areas (Poldrack 2006; Barrett and Satpute 2013; Yeo 

et al., 2015). 

Figure 8A shows the unthresholded <story – math= language task contrast, in which 

activation z values were averaged within each of the 400-region hMRF parcels. Figure 8B 

shows the task activation laterality index defined as the absolute difference between right 

hemisphere and left hemisphere activation values. This laterality index was only computed 

for parcels whose average activation-z values were at least 70% of the most activated parcel. 

Figure 8C shows the RSFC between homotopic pairs of parcels in the HCP dataset. Because 

the HCP dataset exhibited a strong posterior-to-anterior SNR gradient (Figure S13), the SNR 

map was regressed from the raw homotopic correlations (Figure 8D). We note that this SNR 

gradient was absent in the GSP dataset (see Figure 3 of Yeo et al., 2011), so a similar 

regression was not performed in the GSP dataset (Figure 7B). 

We hypothesized that homotopic parcels with greater task activation laterality also 

exhibited weaker homotopic correlations. This hypothesis was confirmed by the data: 

correlation between language task activation laterality (Figure 8B) and SNR-regressed 

homotopic correlation (Figure 8D) was negative (r = -0.76; spin test p = 0.012). Similar 

results were obtained with the motor task (Figure 9). As expected, finger and foot activations 

were lateralized while the tongue activation was bilateral (Figure 9F). Correlation between 

motor task activation laterality (Figure 9F) and SNR-regressed homotopic correlation (Figure 

8D) was negative (r = -0.83; spin test p = 0.028). Similar results were also obtained with 

different activation thresholds (Figure S14). 
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Figure 8. Language task activation lateralization in the HCP dataset. (A) Group-average 
<story – math= language task contrast in the HCP dataset. Activation z values were averaged 

within each of the 400-region hMRF cortical parcellation (shown as black boundaries). (B) 
Group-average task laterality map defined as the absolute difference between left and right 
hemisphere activation values. Laterality was only computed for parcels whose average 
activations were at least 70% of the most activated parcel (number of suprathreshold parcels 
= 16). Laterality maps for alternative thresholds can be found in Figure S14. (C) RSFC 
between homotopic pairs of parcels in the HCP dataset. (D) RSFC between homotopic pairs 
of parcels in the HCP dataset after regressing HCP SNR map (Figure S13). There was a 
negative correlation between task activation laterality (Figure 8B) and SNR-regressed 
homotopic correlations (Figure 8D).  
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Figure 9. Motor task activation lateralization in the HCP dataset. (A) Group-average <left 
finger 3 average= motor task contrast. Activation z values were averaged within each of the 

400-region hMRF cortical parcellation (shown as black boundaries). (B) Group-average 
<right finger 3 average= motor task contrast. (C) Group-average <left foot 3 average= motor 
task contrast. (D) Group-average <right foot 3 average= motor task contrast. (E) Group-
average <tongue 3 average= motor task contrast. (F) Task laterality map averaged across the 
five contrasts. Similar to Figure 8, task laterality was defined as the absolute difference 
between left and right hemisphere activation values. Laterality was only computed for parcels 
whose average activations were at least 70% of the most activated parcel (number of 
suprathreshold parcels = 16). Laterality maps for alternative thresholds can be found in 
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Figure S14. There was a negative correlation between task activation laterality (Figure 9F) 
and SNR-regressed homotopic correlations (Figure 8D). 
 

3.9 Comparison of 400-region hMRF parcellation with architectonic and visuotopic areas 

Figure 10 shows the 400-region hMRF parcellation (estimated from the full GSP 

dataset) overlaid with boundaries of architectonic areas 3, 4, 2, hOc5, and 17 on the right 

cortical hemisphere (Fischl et al., 2008; Van Essen et al., 2012a). Figures for other 

architectonic areas as well as those on the left hemisphere are shown in Figure S15. 

 

 

Figure 10. Parcels (blue) of the 400-region hMRF parcellation overlaid on histological (red) 

boundaries of right hemisphere (A) area 3, (B) area 4, (C) area 2, (D) hOc5, and (E) area 17. 

Other histological areas are shown in Figure S15.  

 

The parcels corresponded well with the histological boundaries (Figure 10). However, 

consistent with previous studies, the parcellation also seemed to fractionate each area into 

multiple subunits. Within areas 3, 4, and 2, the fractionated parcels might correspond to 

somatotopic representations of different body parts. Parcels within primary area 17 appeared 

to fractionate the eccentricity axis. Area 44 was captured well by the parcellation on both 

hemispheres (Figure S15). 

For other areas, the alignment between the parcels and areal boundaries was less 

precise. The parcels overlapping with area 18 aligned well with the boundary between areas 

18 and 17, but tended to extend beyond the boundary between areas 18 and 19. The 

parcellation was not able to capture area 1 boundary, which was long and thin. Area 45 

maximally overlapped with two hMRF parcels on each hemisphere. For area 6, the alignment 

between the parcels and areal boundary on the left hemisphere was more precise than on the 

right hemisphere. 
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Figure S16 overlays the 400-region parcellation boundary on 18 visuotopically 

mapped areas (Adollahi et al., 2014). The parcels overlapping with visuotopically-defined V1 

(which is known to correspond to architectonic area 17) were in good agreement with V1 

boundaries. For other visuotopic areas, correspondence was more muted. The parcels might 

fractionate higher order visuotopic areas based on eccentricity, similar to the fractionation 

within V1.  
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4 Discussion 

In this study, we extended the gwMRF model to derive a homotopic parcellation of 

the cerebral cortex. Compared with the original gwMRF parcellation (Schaefer et al., 2018), 

the resulting hMRF parcellation exhibited similar alignment to architectonic and visuotopic 

boundaries, as well as similar task-state inhomogeneity and resting-state homogeneity. 

Furthermore, the hMRF parcellations exhibited better task inhomogeneity and resting 

homogeneity than five publicly available parcellations (Craddock et al., 2012; Shen et al., 

2013; Joliot et al., 2015; Glasser et al., 2016; Gordon et al., 2016). Consistent with previous 

studies, we found that weaker correlations between homotopic parcels were associated with 

greater lateralization in resting network organization, as well as greater lateralization in 

language and motor task activation. Similar to the Schaefer parcellation, the 400-region 

homotopic parcellation agreed with the boundaries of a number of cortical areas estimated 

from histology and visuotopic fMRI, while capturing sub-areal (e.g., somatotopic and 

visuotopic) features. Therefore, while the parcels do not correspond to cortical areas, we 

believe the hMRF parcellations represent meaningful functional units of the human cerebral 

cortex, and the multi-resolution parcellations will be a useful resource for future studies. 

 

4.1 Interpretation and potential applications of the hMRF parcellations  

Histological studies have generally found pairs of cortical areas in roughly spatially 

homotopic locations across the left and right hemispheres (Amunts et al., 2020). In fact, 

many histological studies simply report cortical areas on one hemisphere with the strong 

implicit assumption that homotopic cortical areas exist on the other hemisphere (e.g., Petrides 

and Pandya, 1999). However, it is important to note that homotopic areas do not necessarily 

have the same function as demonstrated by well-known lateralization of brain activation 

during language tasks (Malik-Moraleda et al., 2022) 

Similar functional lateralization was also observed for the 400-region hMRF 

parcellation during both resting and task states. For example, a number of homotopic parcels 

overlapped with different large-scale resting-state networks (Yeo et al., 2011). Homotopic 

parcel pairs assigned to the same network exhibited stronger RSFC than homotopic parcel 

pairs assigned to different networks (Figure 7C). Sensory-motor parcels also exhibited 

stronger homotopic correlations than association parcels in both GSP (Figure 7B) and HCP 

(Figures 7D) datasets, consistent with previous studies of homotopic correlations (Stark et al., 

2008; Zuo et al., 2010).  
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A potential mechanism for the observed sensory-association gradient in homotopic 

correlations is that sensory-motor regions are connected by thickly myelinated fast 

conducting callosal fibers, while association regions are connected by thinly myelinated slow 

conducting callosal fibers (LaMantia and Rakic, 1990; Aboitiz et al., 1992). However, we 

note that these fibers cannot fully explain the strong inter-hemispheric coupling in early 

visual regions given that callosal fibers terminate preferentially in regions representing the 

vertical midline of the visual field (Van Essen and Zeki, 1978; Van Essen et al., 1982). 

Instead, homotopic correlations (and RSFC in general) are mediated by indirect synaptic 

coupling (Vincent et al., 2007; Stark et al., 2008; Lu et al., 2011; Xue et al., 2021). 

Previous studies (e.g., Yeo et al., 2011) have demonstrated that somatomotor regions 

representing distal limbs (e.g., hand and foot) exhibited stronger homotopic correlations than 

somatomotor regions representing midline regions (e.g., tongue), which is consistent with 

non-human primate studies showing denser callosal fibers connecting regions representing 

midline structures (Pandya and Vignolo 1971; Jones and Wise 1977; Killackey et al., 1983; 

Gould et al., 1986). It is also well-known that finger or foot movements activate contralateral 

somatomotor regions while tongue movements activate bilateral tongue regions (Ehrsson et 

al., 2003). Therefore, it is perhaps not surprising that homotopic parcels exhibiting stronger 

laterality during the motor task also exhibited weaker homotopic correlations (Figure 9). 

Similar results were obtained during the language task: homotopic parcels exhibiting stronger 

laterality during the language task also exhibited weaker homotopic correlations (Figure 8). 

Overall, the hMRF parcels replicated well-known homotopic properties of the 

cerebral cortex during resting and task states. The hMRF parcellations also exhibited stronger 

homotopic RSFC than other homotopic parcellations (Joliot et al., 2015; Glasser et al., 2016). 

Therefore, we expect the hMRF parcellations to be a useful dimensionality reduction tool for 

future brain lateralization studies in health and disease. Finally, hMRF and Schaefer 

parcellations exhibit highly matched properties in terms of architectonic alignment, 

visuotopic alignment, task inhomogeneity and resting homogeneity. Therefore, the hMRF 

parcellations can also be utilized in studies of brain organization unrelated to lateralization.  

 
4.2 hMRF parcels align with cortical areal boundaries 

The local gradient approach for parcellating the cerebral cortex detects abrupt changes 

in RSFC patterns (Cohen et al., 2008; Laumann et al., 2015; Gordon et al., 2016). On the 

other hand, the global similarity approach clusters voxels (or vertices) with similar functional 

connectivity patterns (van den Heuvel et al., 2008; Power et al., 2011; Yeo et al., 2011; Ryali 
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et al., 2013; Gordon et al., 2017). Studies have suggested that the local gradient approach can 

detect certain areal boundaries not revealed by the global similarity approach (Wig et al., 

2014; Buckner and Yeo, 2014).  

We previously proposed the gwMRF model to integrate local and global parcellation 

approaches (Schaefer et al., 2018). The resulting 400-region Schaefer parcellation aligned 

well with certain areal boundaries, while exhibiting excellent resting homogeneity and task 

inhomogeneity. In the current study, the proposed hMRF model extended the gwMRF model 

by encouraging homotopic parcels. One concern was that the additional homotopic constraint 

might lead to parcellations with worse areal alignment. However, across both histological and 

visuotopic areas, we found that the hMRF parcellations exhibited comparable areal alignment 

with the Schaefer, Craddock, Shen and AICHA parcellations (Craddock et al., 2012; Shen et 

al., 2013; Joliot et al., 2015; Schaefer et al., 2018) and better areal alignment that the Gordon 

parcellation (Gordon et al., 2016). Compared with the semi-manual multimodal Glasser 

parcellation (Glasser et al., 2016), the hMRF parcellation exhibited comparable histological 

areal alignment, but worse visuotopic areal alignment (see further discussion in Sections 4.6 

and 4.7).  

Similar to the Schaefer parcellation, the 400-region hMRF parcellation aligned well 

with certain cortical areas, e.g., the boundary of histological area 17 (and visuotopic V1), as 

well as the boundary between histological areas 3 and 4 along the central sulcus. However, 

the hMRF parcellation did not align well with all cortical areas. It is worth noting that for 

some areas, the architectonic and retinotopic boundaries are themselves not perfectly aligned. 

For example, histological area 18 is not well aligned to visuotopic areas V2 or V3. Therefore, 

it is not possible for the hMRF parcellation to align well with both histological and visuotopic 

boundaries.  

Similar to the Schaefer parcellation, the 400-region hMRF parcellation also captured 

subareal features. For example, the hMRF parcellation appeared to fractionate somatosensory 

and motor areas based on the different body representations, as well as visual regions based 

on their eccentricity representation. This was particularly clear for area 17 or V1 (Figure 1), 

but likely extended to other visuotopic areas. As mentioned in the introduction, we believe 

that this subareal characteristic can be potentially useful in many applications. For example, 

differentiation of the hand and tongue regions might be useful when modeling a task 

involving button presses. Similarly, many tasks require participants to fixate on certain visual 

stimuli, so we expect differential response between central (low eccentricity) and peripheral 

(high eccentricity) visual regions.  
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4.3 hMRF parcels are homogeneous during resting and task states 

Brain parcellations are often used for dimensionality reduction in MRI analyses 

(Eickhoff et al., 2018b). For example, resting-state or task-state fMRI time courses within 

each brain parcel are often averaged to compute function connectivity matrices, which are in 

turn used for studying mental disorders (Fair et al., 2013; Xia et al., 2018; Kebets et al., 

2019), predicting behavioral traits (Finn et al., 2015; Greene et al., 2018; Chen et al., 2022), 

graph theoretic analyses (Achard et al., 2006; Wang et al., 2010; Fornito et al., 2013) and 

neural mass modeling (Cabral et al., 2011; Hansen et al., 2015; Kong et al., 2021b). Such a 

dimensionality reduction strategy only makes sense if the resting-fMRI or task-fMRI time 

courses are similar (i.e., homogeneous) within each parcel.  

In our previous study (Schaefer et al., 2018), we demonstrated that the Schaefer 

parcellations exhibited better task inhomogeneity and resting homogeneity than four other 

public parcellations (Craddock et al., 2012; Shen et al., 2013; Glasser et al., 2016; Gordon et 

al., 2016). One concern is that the additional homotopic constraint in the hMRF model might 

weaken the homogeneity properties of the local-global parcellations. However, we found that 

the hMRF parcellations exhibited comparable homogeneity with the Schaefer parcellation 

and better homogeneity than five other parcellations (Craddock et al., 2012; Shen et al., 2013; 

Joliot et al., 2015; Glasser et al., 2016; Gordon et al., 2016).  

Here, we evaluated task inhomogeneity using task contrasts from the HCP and ABCD 

datasets. We note that a strict task contrast might isolate a purer cognitive construct, but it 

was unlikely that any HCP or ABCD task contrast would isolate a single cognitive process. 

We also did not expect that any task contrast would only activate a single cortical area. 

Therefore, similar to our previous study (Schaefer et al., 2018), task inhomogeneity was 

defined as the standard deviation of task activation z-values within each parcel. Furthermore, 

rather than choosing a subset of <pure= task contrasts, we utilized all unique contrasts in the 

HCP and ABCD datasets. Low (good) task inhomogeneity could be achieved if activation 

strength was uniform within each parcel. This approach did not require the task contrast to 

activate a single cognitive process or single parcel. 

To further elaborate this logic, suppose every location within parcel X supports 30% 

cognitive process A, 50% cognitive process B and 20% cognitive process C. In this scenario, 

the parcel should still exhibit low task inhomogeneity with respect to a task contrast T that 

recruits 60% cognitive process A and 40% cognitive process B. Although task contrast T 

does not recruit the same distribution of cognitive processes as parcel X, this will not affect 
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the task inhomogeneity of the parcel, since all locations within the parcel are affected 

equally. Therefore, this hypothetical example shows that the task inhomogeneity metric does 

not rely on the task contrasts recruiting pure cognitive processes. 

As another example, suppose every location within parcel Y supports 30% cognitive 

process A, 50% cognitive process B and 20% cognitive process D. In this case, parcel Y 

should still exhibit low task inhomogeneity with respect to task contrast T from the previous 

paragraph. However, task contrast T will not be able to differentiate between parcels X and 

Y. Therefore, an implication is that although we used all available task contrasts within HCP 

and ABCD, these contrasts might not sufficiently differentiate among parcels. For example, 

none of the task contrasts likely differentiate among visual areas MT, MST and FST (Amano 

et al. 2009; Huk et al. 2002; Kolster et al. 2010). 

A final point is that cortical areas are often functional heterogeneous, e.g., ocular 

dominance bands, orientation bands, and cytochrome oxidase dense <puffs= in primary visual 

cortex (Kaas et al., 1987). Therefore, a task contrast might only activate a portion of a 

cortical area. In this scenario, separating this portion of a cortical area out as a separate parcel 

might improve (decrease) the task inhomogeneity metric (although two other parcels will 

need to be fused to maintain the same number of parcels). Since our primary goal is to 

provide functional units for future fMRI analyses, the separation of a cortical area into more 

functionally uniform regions (as measured by task fMRI) can be desirable. 

In the case of resting homogeneity, our evaluation utilized data across diverse 

acquisition protocols, preprocessing and demographics. The hMRF parcellations were 

estimated from young adults in the GSP dataset acquired from Siemens Tim Trio scanners 

(Holmes et al., 2015) whose fMRI data was preprocessed using a pipeline involving whole-

brain signal regression in FreeSurfer fsaverage space (Li et al., 2019). The improvements in 

resting homogeneity were demonstrated in additional data from different Siemens and GE 

scanners with different acquisition protocols (single-band versus multiple-band), 

preprocessed with different pipelines (ICA-FIX versus whole-brain signal regression), in 

different coordinate systems (fsaverage, fsLR and MNI152) and in participants with different 

demographics (young adults, children and Asian populations).  

Overall, our results suggest that hMRF parcellations are homogeneous during resting 

and task states, suggesting their potential utility for dimensionality reduction in future fMRI 

studies.  
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4.4 Resolution of cortical parcellation 

There is no consensus on the <optimal= resolution of brain parcellations (Eickhoff et 

al., 2015). From the neuroscience perspective, the brain is hierarchically organized 

(Churchland and Sejnowski 1988; Mesulam 1998) from molecules to synapses to neurons to 

areas to systems. Large-scale networks comprise multiple cortical areas, while cortical areas 

can be again subdivided given their heterogeneity (Kaas 1987; Amunts and Zilles 2015). 

Consequently, finding the <right= number of parcels is a biologically ill-posed problem. 

Indeed, it is unlikely that there is an optimal resolution for cortical parcellations. In fact, 

parcellations of different resolutions are likely useful for different applications. For example, 

behavioral prediction generally improves with higher dimensional parcellations before 

plateauing or becoming worse, although the exact results can be quite variable across studies 

(Dadi et al., 2019; Pervaiz et al., 2020; Kong et al., 2022). On the other hand, a recent study 

has suggested that brain–behavior relationships are scale-dependent (Betzel et al., 2019). 

Finally, in many applications (e.g., neural mass modelling or edge-centric network analyses), 

higher resolution brain parcellations are often not computationally feasible, so studies often 

employ lower resolution parcellations (Deco et al., 2013; Hansen et al., 2015; Faskowitz et 

al., 2020; Kong et al., 2021b). Consequently, we generated hMRF parcellations at multiple 

resolutions, ranging from 100 to 1000 parcels at 100-parcel interval, which will hopefully be 

useful for a wide range of applications.  

 

4.5 Considerations when comparing brain parcellations 

An important consideration when comparing parcellations is the number of parcels. In 

general, greater number of parcels will lead to better evaluation metrics. Here, we controlled 

for the number of parcels by estimating hMRF parcellations with the same number of parcels 

as the benchmarked parcellations.  

Another important consideration is that different parcellations are typically estimated 

from different datasets in different coordinate systems. Therefore, we employed multiple 

datasets across different coordinate systems to increase confidence in the generalizability of 

our parcellations to new datasets and coordinate systems. However, we note that some biases 

could not be fully eliminated. Projecting a parcellation from the original coordinate system 

(in which the parcellation was derived) will lead to some degradation in the parcellation 

quality. This is especially true when projecting parcellations between a surface coordinate 

system (fsLR or fsaverage) and a volumetric coordinate system (MNI152).  
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Therefore, a parcellation estimated in coordinate system X will enjoy inherent 

advantage over other parcellations projected to coordinate system X. For example, when 

using the HCP dataset in fsLR space, hMRF parcellations exhibited better resting 

homogeneity than the Shen, Craddock and AICHA parcellations with relatively large 

improvements of 8.1%, 6.4% and 5.9% respectively. On the other hand, when using the same 

HCP dataset in MNI152 space (with no spatial smoothing), hMRF parcellations were still 

statistically more homogeneous than the Shen and Craddock parcellations, but the margins 

were reduced to 5.5%, 3.0% and 5.0% improvements respectively.  

 

4.6 Parcel size and shape 

Consistent with the Schaefer parcellation, the hMRF parcellation utilized a spatial 

contiguity constraint encouraging brain locations within a parcel to be near to the parcel 

center. This is necessary to achieve spatially connected (as opposed to distributed) parcels. 

However, this has the side effect of encouraging rounder and more uniformly sized parcels. 

As discussed in our previous study (Schaefer et al., 2018), there is not a trivial way to impose 

a spatial contiguity constraint in <global similarity= approaches. Therefore, global similarity 

approaches (e.g., Craddock and Shen parcellations) generally have rounder parcels.  

In terms of roundness, the hMRF parcellations were less round than the Gordon and 

Craddock parcellation, similar in roundness as the Shen parcellation and rounder than the 

AICHA, Glasser and Schaefer parcellations (Table S4). On the other hand, in terms of parcel 

size distribution as measured by the volumetric ratio between the 90th percentile parcel to the 

10th percentile parcel, hMRF parcellations were more uniform than the AICHA, Glasser and 

Gordon parcellations, less uniform than the Craddock parcellation, and comparable to the 

Shen and Schaefer parcellations (Table S5). Therefore, compared with the other six 

parcellations, the hMRF parcellations were intermediate in terms of roundness and parcel size 

distribution. 

There might be concerns that parcel roundness and size distribution might bias the 

homogeneity metrics in the presence of significant spatial smoothing. However, in the control 

analysis using HCP data in MNI152 space with no spatial smoothing, the hMRF parcellations 

exhibited better (greater) resting-fMRI homogeneity than the non-Schaefer parcellations. 

Indeed, the magnitude of improvement was greater when there was no spatial smoothing than 

when there was 6mm spatial smoothing. This suggests that the better resting-fMRI 

homogeneity exhibited by hMRF parcellations was not simply a result of rounder and more 

uniformly sized parcels.  
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 From the neuroscience perspective, cortical areas can exhibit irregular size and shape 

distributions. In terms of size, the ratio of the largest and smallest cortical areas was roughly 

200 (Van Essen et al., 2012a). In terms of shape, cortical areas can range from relatively 

round areas (e.g., area 44) to narrow long areas (e.g., area 3). The 400-region hMRF 

parcellation split V1 into visual eccentricity bands and areas 3 into somatotopic subregions. 

While these splits were biologically meaningful, they also increased parcel uniformity. Since 

V1 is one of the largest cortical areas, splitting V1 resulted in parcels with more uniform 

sizes. Similarly, splitting the long and thin cortical area 3 into somatotopic subregions 

resulted in parcels that were rounder. 

 The main goal of our parcellations is to provide functional units that are useful for 

future fMRI analysis. Therefore, the task inhomogeneity and resting-state homogeneity 

metrics are in some sense more important than the architectonic and visuotopic alignment 

metrics. Nevertheless, the architectonic and visuotopic alignment metrics do provide 

neurobiological insights into the cortical parcellations. The hMRF parcellation exhibited 

better architectonic and visuotopic alignment than the Gordon parcellation, suggesting that 

the hMRF parcellation might align with traditional cortical areal boundaries as well as 

gradient-based parcellations derived from resting-state fMRI.  

Compared with the multimodal Glasser parcellation, the hMRF parcellation exhibited 

similar architectonic alignment and worse visuotopic alignment. This suggests that at least in 

the visual cortex, the Glasser parcellation aligned better with traditional cortical areal 

boundaries, although this likely came at the expense of worse task inhomogeneity and resting 

homogeneity (see discussion in Section 4.7).  

Overall, given the superior task inhomogeneity and resting homogeneity, hMRF 

parcellations might be more useful than gradient-based parcellations when utilized as a 

dimensionality reduction tool for new fMRI data. 

 

4.7 Limitations and future work 

There are several limitations in the current study. First, the hMRF parcellations were 

derived by combining resting-fMRI data across many participants. However, recent studies 

have documented that the topography of brain networks and parcellations vary substantially 

across individuals, so a group-average parcellation will miss out on fine-scale individual-

specific features (Laumann et al., 2015; Glasser et al., 2016; Gordon et al., 2017; 

Bijsterbosch et al., 2019; Kong et al., 2019; Seitzman et al., 2019). Future work will 

investigate the estimation of homotopic areal-level parcellations in individual participants. 
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Similarly, the lateralization analyses in the current study were performed at the group-level. 

We leave individual-level analysis for future work. 

Second, the hMRF parcellations were estimated only from resting-fMRI data. 

Traditionally, cortical areas are defined based on multi-modal criteria, including 

architectonics, topography, function and connectivity (Kaas, 1987; Felleman and Van Essen, 

1991). In the current study, we estimated parcellations from resting-fMRI, which provides an 

indirect measure of brain connectivity reflecting multi-synaptic coupling (Vincent et al., 

2007; Lu et al., 2011). We then validated the parcellations using histological boundaries, 

visuotopic boundaries, task inhomogeneity and resting homogeneity, which acted as proxies 

for architectonics, topography, function and connectivity respectively.  

Given that the multi-modal Glasser parcellation exhibited better alignment with 

visuotopic boundaries, incorporating further multimodal information might further improve 

alignment with cortical areal boundaries. Indeed, several studies have suggested that brain 

networks reconfigure during tasks (Cole et al., 2014; Krienen et al., 2014) and estimates of 

brain parcellations are sensitive to task states (Salehi et al., 2020). Some have interpreted 

these results to suggest the need for separate parcellations during resting and task states 

(Salehi et al., 2020). However, our interpretation is that the boundaries of cortical areas (e.g., 

V1) should be invariant to transient task states over the span of a few days, although cortical 

areal boundaries can certainly be shaped during development and long-term experiences 

(Arcaro et al., 2017; Gomez et al., 2019). Instead, these results (Salehi et al., 2020) suggest 

the value of estimating areal-level parcellations from multi-modal data.  

However, we note that incorporating multi-modal features can be challenging because 

of the need to select among potentially conflicting information (Eickhoff et al., 2018a). In the 

case of the semi-manual Glasser parcellation (Glasser et al., 2016), a trained anatomist 

ignored strong gradients within somatomotor and visual cortices based on prior 

neuroanatomical knowledge. More specifically, cortical visual maps are arranged in clusters 

with parallel eccentricity representations (Wandell et al., 2007). For example, the eccentricity 

representations within visual areas V1, V2, V3, hV4, LO-1 and LO-2 are spatially contiguous 

(Wandell et al., 2017). Consequently, regions with the same eccentricity representations 

across different visual areas might share more similar resting-fMRI and task-fMRI properties 

than regions with different eccentricity representations within a given visual area. By 

selecting for visual areas, the Glasser parcellation achieved better visuotopic alignment at the 

expense of worse task-inhomogeneity and resting-homogeneity across all datasets, including 

the HCP dataset from which the Glasser parcellation was partially derived from.  
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As another example, the Glasser parcellation <wasted= precious parcels distinguishing 

between cortical areas (e.g., areas 3a and 3b), which have extremely similar resting-fMRI and 

task-fMRI properties. On the other hand, the Glasser parcellation did not differentiate among 

body representations (e.g., hand and tongue) with highly distinctive resting-fMRI and task-

fMRI properties. Overall, it remains an open problem how to automatically select among 

competing and conflicting information across multimodal features. We leave this for future 

work. 

Finally, the cerebral cortex forms spatially organized circuits with subcortical 

structures (Jones 1985; Haber 2003; Strick et al. 2009). Here, we limited our parcellations to 

the cerebral cortex, but there are also homotopic correspondences across subcortical 

structures (Saltoun et al., 2022). Our approach is in principle applicable to subcortical 

structures, but accurate whole-brain parcellation in a single step is nontrivial because of 

significant signal-to-noise difference between the cerebral cortex and subcortical structures. 

As such, subcortical structures might be more effectively parcellated separate from the 

cerebral cortex, as is done in many studies (Choi et al. 2012; Dobromyslin et al. 2012; Plachti 

et al., 2019; Tian et al., 2020; Xue et al., 2021). We leave the parcellation of subcortical 

structures for future work.  

 

5 Conclusion 

We develop a homotopic variant of the gwMRF local-global parcellation model, where each 

parcel has a spatial counterpart on the other hemisphere. The resulting parcels are 

homogeneous in both resting and task states across datasets from diverse scanners, 

acquisition protocols, preprocessing and demographics. The parcellations also agree well 

with a number of known visuotopic and histological boundaries, while capturing meaningful 

sub-areal features. Finally, the homotopic local-global parcellations replicate known 

homotopic and lateralization properties of the cerebral cortex. Multi-resolution homotopic 

local-global parcellations are publicly available as a resource for future studies 

(GITHUB_LINK).  
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