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 15 

Making informed decisions in noisy environments requires integrating sensory information 16 

over time. However, recent work has suggested that it may be difficult to determine whether 17 

an animal’s decision-making strategy relies on evidence integration or not. In particular, 18 

strategies based on extrema-detection or random snapshots of the evidence stream may be 19 

difficult or even impossible to distinguish from classic evidence integration.  Moreover, such 20 

non-integration strategies might be surprisingly common in experiments that aimed to study 21 

decisions based on integration. To determine whether temporal integration is central to  22 

perceptual decision making, we developed a new model-based approach for comparing 23 

temporal integration against alternative “non-integration” strategies for tasks in which the 24 

sensory signal is composed of discrete stimulus samples. We applied these methods to 25 

behavioral data from monkeys, rats, and humans performing a variety of sensory decision-26 

making tasks. In all species and tasks, we found converging evidence in favor of temporal 27 

integration. First, in all observers across studies, the integration model better accounted for 28 

standard behavioral statistics such as psychometric curves and psychophysical kernels. 29 

Second, we found that sensory samples with large evidence do not contribute 30 

disproportionately to subject choices, as predicted by an extrema-detection strategy. Finally, 31 

we provide a direct confirmation of temporal integration by showing that the sum of both early 32 

and late evidence contributed to observer decisions. Overall, our results provide experimental 33 

evidence suggesting that temporal integration is an ubiquitous feature in mammalian 34 

perceptual decision-making. Our study also highlights the benefits of using experimental 35 

paradigms where the temporal stream of sensory evidence is controlled explicitly by the 36 

experimenter, and known precisely by the analyst, to characterize the temporal properties of 37 

the decision process. 38 
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INTRODUCTION 39 

Perceptual decision-making is thought to rely on the temporal integration of noisy sensory 40 

information on a timescale of hundreds of milliseconds to seconds. Temporal integration 41 

corresponds to summing over time the evidence provided by each new sensory stimulus, and 42 

optimizes perceptual judgments in face of noise (Bogacz et al. 2006; Gold and Shadlen 2007). 43 

A perceptual decision can then be made on the basis of this accumulated evidence, either as 44 

some threshold on accumulated evidence is reached, or if some internal or external cue 45 

signals the need to initiate a response.  46 

Although many behavioral and neural results are consistent with this integration framework, 47 

temporal integration is a feature that has often been taken for granted rather than explicitly 48 

tested. Recently, the claim that standard perceptual decision-making tasks rely on (or even 49 

frequently elicit) temporal integration has been challenged by theoretical results showing that 50 

non-integration strategies can produce behavior that carries superficial signatures of temporal 51 

integration (Stine et al. 2020). These signatures include the relationship between stimulus 52 

difficulty, stimulus duration and behavioral accuracy, the precise temporal weighting of 53 

sensory information on the decisions, and the patterns of reaction times. 54 

Here, we propose new analytical tools for directly assessing integration and non-integration 55 

strategies from fixed-duration or variable-duration paradigms where, critically, the 56 

experimenter controls the fluctuations in perceptual evidence over time  within each trial 57 

(discrete-sample stimulus, or DSS). By leveraging these controlled fluctuations, our methods 58 

allow us to make direct comparisons between integration and non-integration strategies. We 59 

apply these tools to assess temporal integration in data from monkeys, humans and rats that 60 

performed a variety of perceptual decision-making tasks with DSS. Applying these analyses 61 

to these behavioral datasets yields strong evidence that perceptual decision-making tasks in 62 

all three species rely on temporal integration. Temporal integration, a critical element of many 63 

major theories of perception at both the neural and behavioral levels, is indeed a robust and 64 

pervasive aspect of mammalian behavior. Our results also illuminate the power of targeted 65 

stimulus design and statistical analysis to test specific features of behavior. 66 

 67 

RESULTS 68 

 69 

Integration and non-integration models 70 

In a typical perceptual evidence-integration experiment (Figure 1A), an observer is presented 71 

in each trial with a time-varying stimulus and must report which of two possible stimulus 72 

categories it belongs to. Typical examples include judging whether a dynamic visual stimulus 73 

is moving  leftwards or rightwards (Yates et al. 2017; Katz et al. 2015); whether the orientation 74 

of a set of gratings is more aligned with cardinal or diagonal directions (Wyart et al. 2012); 75 

whether a combination of tones is dominated by high or low frequencies (Morillon, Schroeder, 76 

and Wyart 2014; Hermoso-Mendizabal et al. 2020; Znamenskiy and Zador 2013); or which of 77 

two acoustic streams is more intense or dense (Brunton, Botvinick, and Brody 2013; Pardo-78 

Vazquez et al. 2019). Such paradigms have been used extensively in humans, nonhuman 79 

primates and rodents. Here we focus on experiments in which observers report their choice at 80 
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the end of a period whose duration is controlled by the experimenter (Kiani and Shadlen 2009; 81 

Wyart et al. 2012; Brunton, Botvinick, and Brody 2013; Raposo et al. 2012), in contrast to so-82 

called “reaction time” tasks, in which the observer can respond after viewing as brief a portion 83 

of the stimulus as they wish (Roitman and Shadlen 2002; Znamenskiy and Zador 2013; Pardo-84 

Vazquez et al. 2019; Hermoso-Mendizabal et al. 2020).  85 

Moreover, we focus on experimental paradigms in which the sensory evidence in favor of each 86 

category arrives in a sequence of discrete samples. Samples can correspond to motion pulses 87 

(Yates et al. 2017), individual gratings (Wyart et al. 2012), acoustic tones (Morillon, Schroeder, 88 

and Wyart 2014; Hermoso-Mendizabal et al. 2020; Znamenskiy and Zador 2013) numbers 89 

(Bronfman et al. 2015) or symbols representing category probabilities (Yang and Shadlen 90 

2007). We refer to this configuration as the discrete-sample stimulus (DSS) paradigm.  In this 91 

paradigm, the perceptual evidence provided by each sample can be controlled independently, 92 

allowing for detailed analyses of how different samples contribute to the behavioral response. 93 

The DSS framework can be contrasted with experiments in which the experimenter specifies 94 

only the mean stimulus strength on each trial, and variations in sensory evidence over time 95 

are not finely controlled or are not easily determined from the raw spatio-temporal stimulus.  96 

Tasks using the DSS paradigm  are classically thought to rely on sequential accumulation of 97 

the stimulus evidence (Bogacz et al. 2006), which we refer to here as temporal integration. 98 

Figure 1A shows an example stimulus sequence composed of n samples that provide differing 99 

amounts of evidence in favor of one alternative vs. another (“A” vs. “B”).  The accumulated 100 

evidence fluctuates as new samples are integrated and finishes at a positive value indicating 101 

overall evidence for stimulus category A (Figure 1B). This integration process can be 102 

formalized by defining the the decision variable or accumulated evidence 𝑥𝑖  and its updating 103 

dynamics across stimulus samples: 𝑥𝑖 = 𝑥𝑖−1 + 𝑚𝑖 where 𝑚𝑖 = 𝑆𝑖 + 𝜀𝑖 represents a noisy 104 

version of the true stimulus evidence 𝑆𝑖 in the i-th sample corrupted by sensory noise 𝜀𝑖. The 105 

binary decision r is simply based on the sign of the accumulated evidence 𝑥𝑛 at the end of the 106 

sample sequence (composed of n samples): 𝑟 = 𝐴 if 𝑥𝑛 > 0, and 𝑟 = 𝐵 if 𝑥𝑛 < 0. This 107 

procedure corresponds to the normative strategy with uniform weighting that maximizes 108 
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accuracy. For such perfect integration, 𝑥𝑛  =109 

 𝛴𝑖𝑆𝑖 + 𝛴𝑖𝜀𝑖, so that the probability of response A is 𝑝(𝑟 = 𝐴)  =  𝛷(𝛴𝑖𝛽𝑆𝑖) where 𝛷 is the 110 

cumulative normal distribution function (the normative weight for the stimuli β depends on the 111 

noise variance 𝑉𝑎𝑟(𝜀) and the number of samples through 𝛽 = 1/√𝑛 𝑉𝑎𝑟(𝜀)). Departures 112 

from optimality in the accumulation process such as accumulation leak, categorization 113 

dynamics, sensory adaptation or sticky boundaries may however yield unequal weighting of 114 

the different samples (Yates et al. 2017; Brunton, Botvinick, and Brody 2013; Prat-Ortega et 115 

al. 2021; Bronfman, Brezis, and Usher 2016). To accommodate for these, we allowed the 116 

model to take any arbitrary weighting of the samples: 𝑝(𝑟 = 𝐴)  =  𝛷(𝛽0 + 𝛴𝑖𝛽𝑖𝑆𝑖) (see 117 

Methods for details). The mapping from final accumulated evidence to choice was 118 

probabilistic, to account for the effects of noise from different sources in the decision-making 119 

process (Drugowitsch et al. 2016). 120 

Although it has been commonly assumed that observers use evidence integration strategies 121 

to perform these psychophysical tasks, recent work has suggested that observers may employ 122 

non-integration strategies instead (Stine et al. 2020).  Here we consider two specific alternative 123 

models. The first non-integration model corresponds to an extrema-detection model (Waskom 124 

and Kiani 2018; Stine et al. 2020; Ditterich 2006). In this model, observers do not integrate 125 

evidence across samples but instead base their decision on extreme or salient bits of 126 

evidence. More specifically, the observer commits to a decision based on the first sample i in 127 

the stimulus sequence that exceeds one of the two symmetrical thresholds, i.e. such that 128 

|𝑚𝑖| ≥ 𝜃. In our example stimulus, the first sample that reaches this threshold in evidence 129 
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space is the fifth sample, which points towards stimulus category B, so response B is selected 130 

(Figure 1C). This policy can be viewed as a memory-less decision process with sticky bounds. 131 

If the stimulus sequence contains no extreme samples, so that neither threshold is reached, 132 

the observer selects a response at random. (Following  (Stine et al. 2020), we also explored 133 

an alternative mechanism where in such cases the response is based on the last sample in 134 

the sequence). 135 

The second non-integration model corresponds to the snapshot model (Stine et al. 2020; Pinto 136 

et al. 2018). In this model, the observer attends to only one sample i within the stimulus 137 

sequence, and makes a decision based solely on the evidence from the attended sample: 𝑟 =138 

𝐴 if 𝑚𝑖 > 0, and 𝑟 = 𝐵 if 𝑚𝑖 < 0. The position in the sequence of the attended sample is 139 

randomly selected on each trial. In our example, the fourth sample is randomly selected, and 140 

since it contains evidence towards stimulus category A, response A is selected (Figure 1D). 141 

We considered variants of this model that gave it additional flexibility, including: allowing the 142 

prior probability over the attended sample to depend on its position in the sequence using a 143 

non-parametric probability mass function estimated from the data; allowing for deterministic 144 

vs. probabilistic decision-making rule based on the attended evidence; including attentional 145 

lapses that were either fixed to 0.02 (split equally between leftward and rightward responses) 146 

or estimated from behavioral data. We finally considered a variant of the snapshot where the 147 

decision was made based on a sub-sequence of K consecutive samples within the main 148 

stimulus sequence (1 ≤ 𝐾 < 𝑛), rather than based on a single sample. 149 

 150 

Standard behavioral statistics favor integration accounts of pulse-based motion 151 

perception in primates 152 

To compare the three decision-making models defined above (i.e., temporal integration, 153 

extrema-detection, snapshots), we first examined behavioral data from two monkeys 154 

performing a fixed-duration motion integration task  (Yates et al. 2017). In this experiment, 155 

each stimulus was composed of a sequence of 7 motion samples of 150 ms each where the 156 

motion strength towards left or right was manipulated independently for each sample. At the 157 

end of the stimulus sequence, monkeys reported with a saccade whether the overall sequence 158 

contained more motion towards the left or right direction. The animals performed 72137 and 159 

33416 trials for monkey N and monkey P respectively, allowing for in-depth dissection of their 160 

response patterns. 161 

We fit the three models (and their variants) to the responses for each animal individually (see 162 

Supplementary Figure 1 for estimated parameters for the different models).  We then 163 

simulated the fitted model and computed, for simulated and experimental data, the 164 

psychophysical kernels capturing the weights of the different sensory samples based on their 165 

position in the stimulus sequence (Figure 2B). Psychophysical kernels were non-monotonic 166 

and differed in shape between the two animals, probably reflecting the complex contributions 167 

of various dynamics and sub-optimalities along the sensory and decision pathways (Yates et 168 

al. 2017).  169 

 170 

The temporal profile of the kernel was perfectly matched by the integration model, almost by 171 

design, as we gave full flexibility to the model to adjust the sample weights. The snapshot 172 
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model was provided with similar flexibility, as the prior probability of attending each sample 173 

could be fully adjusted to the monkey decisions. Surprisingly, however, the snapshot model 174 

could not match the experimental psychophysical kernel as accurately. It consistently 175 

underestimated the magnitude of weighting in monkey P (Figure 2B, bottom row). The 176 

extrema-detection model was not endowed with such flexibility of sensory weighting. On the 177 

contrary, since the decision was based on the first sample in the sequence reaching a certain 178 

criterion, this inevitably generates a primacy effect in the psychophysical kernels - or at best 179 

a flat weighting (Stine et al. 2020). The model thus failed to capture the non-monotonic 180 

psychophysical kernels from animal data.  181 

Next, we looked at the psychometric curves and choice accuracy predictions of each fitted 182 

model (Figure 2C-D). Stine and colleagues have argued that integration and non-integration 183 

models can capture the psychometric curves equally well (Stine et al. 2020). For both animals, 184 

the accuracy and psychometric curves were accurately captured  by the integration model.  In 185 

line with Stine and colleagues, we also found that both non-integration models could 186 

reproduce the shape of the psychometric curve in monkey N, although the quantitative fit was 187 

always better for the integration than non-integration models. By contrast both non-integration 188 

models failed to capture the psychometric curve for monkey P (Figure 2B, bottom row). More 189 

systematically, the overall accuracy, which is an aggregate measure of the psychometric 190 

curve, clearly differs between models, as the accuracy of the non-integration models 191 

systematically deviated from animal data for both animals (Figure 2C). In other words, all 192 

models produce the same type of psychometric curves up to a scaling factor, and this scaling 193 

factor (directly linked to the model accuracy) is key to differentiate model fits. For the snapshot 194 

model in monkey P, this discrepancy was explained because the model, limited to using one 195 

stimulus sample, could not reach the performance of the model (compare the maximum 196 

accuracy of the model indicated by the blue mark with the accuracy of the animal), as the 197 

snapshot model is limited to making decisions based on one sensory sample only. (This also 198 

explains why the psychophysical kernel of the snapshot model underestimated the true kernel 199 

in monkey P). For the extrema-detection model in monkey P and for both non-integration 200 

models in the other animal (monkey N) and for the extrema-detection model, the model 201 

accuracy is not bounded below the subject’s accuracy. In such cases, the model can produce 202 

better-than-observed accuracy for certain parameter ranges, but these are not the parameters 203 

found by the maximum likelihood procedure, probably because they produce a pattern of 204 

errors that is inconsistent with the observed pattern of errors. This indicates an inability of the 205 

models to match the pattern of errors of the animal (see Discussion).  206 

Finally, we assessed quantitatively which model provided the best fit, while correcting for 207 

model complexity using the Akaike Information Criterion (AIC, Figure 2A). In both monkeys, 208 

AIC favored the integration model over the two non-integration models by a very large margin. 209 

We also explored whether variants of the extrema-detection and snapshot models could 210 

provide a better match to the behavioral metrics considered above (Supp Figure 2 & 3). We 211 

found using the AIC metric that the integration model was preferred over all variants of both 212 

non-integration models, for both monkeys. Moreover, these model variants could not replicate 213 

the psychophysical kernels as well as the integration model did (Supp Figure 2 & 3). In 214 

conclusion, while psychometric curves may not always discriminate between integration and 215 

non-integration strategies, other metrics including psychophysical kernels, predicted accuracy 216 

and quality of fit (AIC) support temporal integration in monkey perceptual decisions. For one 217 

model in one monkey (the snapshot model in monkey P), even the simple metric of overall 218 
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accuracy compellingly supported temporal integration (Fig. 2C). For the other monkey and/or 219 

model, where the distinction was less clear, our model-based approach allowed us to leverage 220 

these other metrics to reveal strong support for the temporal integration model (Fig. 2A-C). 221 

Although these data relies only on two experimental subjects, we show below further evidence 222 

supporting the integration model in humans and rats. 223 

 224 

 225 

Figure 2. The integration model better described monkey behavior than non-integration models. 226 

A. Difference between AIC of models (temporal integration: red bar; snapshot model: blue; extrema-227 

detection model: green) and temporal integration model for each monkey. Positive values indicate 228 

poorer fit to data. B. Psychophysical kernels for behavioral data (black dots) vs. simulated data from 229 

temporal integration model (left panel, red curve), snapshot model (middle panel, blue curve) and 230 

extrema-detection model (right panel, green curve) for the two animal (monkey N: top panels; monkey 231 

P: bottom panels). Each data point represents the weight of the motion pulse at the corresponding 232 

position on the animal/model response.  Error bars and shadowed areas represent the standard error 233 

of the weights for animal and simulated data, respectively. C. Accuracy of animal responses (black 234 

bars) vs simulated data from fitted models (colour bars), for each monkey. Blue and green marks 235 

indicate the maximum performance for the snapshot and extrema-detection models, respectively. Error 236 

bars represent standard error of the mean. D. Psychometric curves for animal (black dots) and 237 

simulated data (colour lines) for monkey N, representing the proportion of rightward choices per quantile 238 

of weighted stimulus evidence. 239 

 240 

 241 

Monkey responses where the largest evidence sample is at odds with the overall 242 

stimulus sequence are inconsistent with the extrema-detection model 243 
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While formal model comparison leads us to reject the non-integration models in favor of the 244 

integration models, it is informative to examine qualitative features of the animal strategies 245 

and identify how non-integration models failed to capture them. We started by designing two 246 

analyses aimed at testing whether choices were consistent with the extrema-detection model, 247 

namely by testing whether choices were strongly correlated with the largest-evidence 248 

samples. In the first analysis, we looked at the subset of trials where the evidence provided 249 

by the largest-evidence sample in the sequence was at odds with the total evidence in the 250 

sequence: we show one example in Figure 3B, where the largest evidence sample points 251 

towards response B, while the overall evidence points towards response A. These ‘disagree 252 

trials’ represent a substantial minority of the whole dataset: 1865 trials (2.6%) in monkey N, 253 

1831 trials (5.5%) in monkey P. If integration is present, the response of the animal should in 254 

general be aligned with the total evidence from the sequence (Figure 3A, red bars). By 255 

contrast, if it followed the extrema-detection model (Figure 1C), it  should in general follow the 256 

largest evidence sample (Figure 3A, green bars). In both monkeys, animal choices were more 257 

often than not aligned with the integrated evidence (Figure 3A, black bars), as predicted by 258 

the integration model. The responses generated from the extrema-detection model tended to 259 

align more with the largest evidence sample, although that behaviour was somehow erratic 260 

(for monkey N) due to the large estimated decision noise in the model. This rules out that 261 

monkey decisions rely on a memoryless strategy of simply detecting large evidence samples, 262 

discarding all information provided by lower evidence samples. Our results complement a 263 

previous analysis on disagree trials in this task (Levi et al. 2018), by explicitly comparing 264 

monkey behavior to model predictions.  265 

  266 

We reasoned that the extrema-detection would also leave a clear signature in the “subjective  267 

weight” of the samples, defined as the impact of each sample on the decision as a function of 268 

absolute sample evidence (Yang and Shadlen 2007; Waskom and Kiani 2018; Nienborg and 269 

Cumming 2007). The extrema-detection model predicts that, in principle, samples whose 270 

evidence is below the threshold have little impact on the decision, while samples whose 271 

evidence is above the threshold have full impact on the decision. By contrast, the integration 272 

model predicts that subjective weight should grow linearly with sample evidence. We 273 

estimated subjective weights from monkey choices using a regression method similar in spirit 274 

to previous methods (Yang and Shadlen 2007; Waskom and Kiani 2018), taking the form 275 

𝑝(𝑟𝑡 = 𝐴)  =  𝜎(𝛽0𝛴𝑖∈[1..𝑛]𝛽𝑖 𝑓(𝑆𝑡𝑖)). Here f is a function that captures the subjective weight of 276 

the sample as a function of its associated evidence. Whereas previous methods estimated 277 

subjective weights assuming a uniform psychophysical kernel, our method estimated 278 

simultaneously subjective weights 𝑓(𝑆) and the psychophysical kernel 𝛽, thus removing 279 

potential estimation biases due to unequal weighting of sample evidence (see Methods). In 280 

both monkeys, we indeed found that the subjective weight depends linearly on sample 281 

evidence for low to median values of sample evidence (motion pulse lower than 6), in 282 

agreement with the integration model (Supp. Figure 4). Surprisingly however, simulated data 283 

of the extrema-detection model displayed the same linear pattern for low to median values of 284 

sample evidence. We realized this was due to the very high estimated sensory noise (Supp 285 

Fig 1), such that, according to the model, even samples with minimal sample evidence were 286 

likely to reach the extrema-detection threshold. In other words, unlike the previous analyses, 287 

inferring the subjective weights used by animals was inconclusive as to whether animals 288 

deployed the extrema-detection strategy. This somewhat surprising dependency reinforces 289 
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the importance of validating intuitions by fitting and simulating models (Wilson and Collins 290 

2019). 291 

 292 

Figure 3. The pattern of animal choices is incompatible with extrema-value based decisions. A. 293 

Example of an ‘agree trial’ where the total stimulus evidence (accumulated over samples) and the 294 

evidence from the largest-evidence sample point towards the same response (here, response A). In 295 

this case, we expect that temporal integration (TI) and extrema-detection  (ED) will produce similar 296 

responses (here, A). B. Example of a ‘disagree trial’, where the total stimulus evidence and evidence 297 

from the largest-evidence sample point towards opposite responses (here A for the former; B for the 298 

latter). In this case, we expect that integration and extrema-detection models will produce opposite 299 

responses. C. Proportion of choices out of all disagree trials aligned with total evidence, for animal 300 

(black bars), integration (red) and extrema-detection model (green).  301 

 302 

Choice dependence on early and late stimulus evidence show direct evidence for 303 

temporal integration 304 

Following model comparisons favoring integration over both snapshot and extrema-detection 305 

models, the  immediately previous analysis  relied on a special subset of trials to provide an 306 

additional, and perhaps more intuitive, signature of integration, which ruled out extrema-307 

detection as a possible strategy of either monkey. We next employed another novel analysis 308 

specifically designed to tease apart unique signatures of the integration and snapshot models. 309 

More specifically, we tested whether decisions were based on the information from only one 310 

part of the sequence, as predicted by the snapshot model, or from the full sequence, as 311 

predicted by the integration model. To facilitate the analysis, we defined early evidence Et by 312 

grouping evidence from the first three samples in the sequence, and late evidence Lt, as the 313 

grouped evidence from the last four samples. We then displayed the proportion of rightward 314 

responses as a function of both early and late evidence in a graphical representation that we 315 

call integration map (Figure 4A). A pure integration strategy corresponds to summing early 316 

and late evidence equally, which can be formalized as 𝑝(𝑟) = 𝜎(𝐸𝑡 + 𝐿𝑡), where 𝜎 is a 317 
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sigmoidal function. Because this only depends on the sum 𝐸𝑡 + 𝐿𝑡, the probability of response 318 

is invariant to changes in the (𝐸𝑡 , 𝐿𝑡) space along the diagonal, which leaves the sum 319 

unchanged. These diagonals correspond to isolines of the integration map (Figure 4A, left; 320 

Supp Figure 5A). In other words, straight diagonal isolines in the integration map reflect the 321 

fact that the decision only depends on the sum of evidence 𝐸𝑡 + 𝐿𝑡. Straight isolines thus 322 

constitute a specific signature of evidence integration.  323 

We contrasted this integration map with the one obtained from a non-integration strategy 324 

(Figure 4A middle panel; Supp Figure 5A). There we assumed that the decision depends either 325 

on the early evidence or on the late evidence, as in the snapshot model, with equal probability. 326 

This can be formalized as 𝑝(𝑟) = 0.5𝜎(𝐸𝑡) + 0.5𝜎(𝐿𝑡). In this case, if late evidence is null 327 

(𝜎(𝐿𝑡) = 0.5) and early evidence is very strong toward the right (𝜎(𝐸𝑡) ≃ 1) the overall 328 

probability for rightward response is 𝑝(𝑟) = 0.75. This probability contrasts with that obtained 329 

in the integration case where the early evidence would dominate and lead to an overwhelming 330 

proportion of rightward responses, i.e. 𝑝(𝑟) ≃ 1. The 25% of leftwards responses yielded by 331 

the non-integration model correspond to trials where only the late (uninformative) part of the 332 

stimulus is attended and a random response to the left is drawn. More generally, in regions of 333 

the space in which either early or late evidence take large absolute values, their corresponding 334 

probability of choice saturates to 0 or 1, when that evidence is attended, so the overall 335 

response probability becomes only sensitive to the other evidence. As a result, the 336 

equiprobable lines bend towards the horizontal and vertical axes (Figure 4A middle). Finally, 337 

to compare predictions from both integration and non-integration models to monkey behavior, 338 

we plotted the integration maps for both monkeys (Figure 4A, right; Supp Figure 5A). The 339 

isolines were almost straight diagonal lines and showed no consistent curvature towards the 340 

horizontal and vertical axes. This provides direct evidence that monkey responses depend 341 

directly on the sum of early and late evidence— a clear signature of temporal integration. 342 

We derived subsequent tests based on the integration map. We computed conditional 343 

psychometric curves as the probability for rightward responses as a function of early evidence 344 

𝐸𝑡, conditioned on late evidence value 𝐿𝑡 (Figure 4B; Supp Figure 5B). From the integration 345 

formula 𝑝(𝑟) = 𝜎(𝐸𝑡 + 𝐿𝑡), we see that a change in late evidence value corresponds to a 346 

horizontal shift of the conditional psychometric curves. By contrast, according to the non-347 

integration formula 𝑝(𝑟) = 0.5𝜎(𝐸𝑡) + 0.5𝜎(𝐿𝑡), conditioning on different values of late 348 

evidence adds a fixed value to the response probability irrespective of early evidence, a 349 

vertical shift akin to that introduced by lapse responses (Figure 4B middle panel). The 350 

conditional psychometric curves for monkeys (Figure 4B right panel; Supp Fig 5 & 6) displayed 351 

horizontal shifts as late evidence was changed, consistently with the integration hypothesis. 352 

We sought to quantify these shifts in better detail. To this purpose, we fitted each conditional 353 

psychometric curve with the formula  𝑝(𝑟) = (1 − 𝜋𝐿 − 𝜋𝑅) 𝜎(𝛼𝐸𝑡 + 𝛽) + 𝜋𝑅, where 𝜋𝐿, 𝜋𝑅, 𝛼 354 

and 𝛽 correspond to the left lapse, right lapse, sensitivity and lateral bias parameters, 355 

respectively (Figure 4C, Supp Fig 5 & 6). The integration model predicts that the bias 356 

parameter 𝛽 should vary linearly with Lt, while lapse parameters should remain null (Figure 357 

4D, left panel). By contrast, the non-integration model predicts that the horizontal shift 358 

parameter 𝛽 should remain constant while left and right lapse parameters (𝜋𝐿 , 𝜋𝑅) should vary 359 

(middle panel), as these lapse parameters correspond to the trials where early evidence is not 360 

attended and the response depends simply on late evidence. Both monkeys showed a very 361 

strong linear dependence between late evidence and the horizontal shift 𝛽 (Figure 4D, right 362 

panel; see also Supp Fig 5), further supporting that late evidence is summed to early evidence. 363 
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By contrast, the lapse parameters showed no consistent relationship with late evidence 𝐿𝑡 364 

(Figure 4E, right panel). Finally, we directly assessed the similarities between the integration 365 

maps from monkey responses and from simulated responses for the three models (integration, 366 

snapshot, extrema-detection). The model-data correlation was larger in the integration model 367 

than in the non-integration strategies for both monkeys (Figure 4E; unpaired t-test on 368 

bootstrapped r values: p<0.001 for each animal and comparison against extrema-detection 369 

and against snapshot model).  Overall, integration maps allow to dissect how early and late 370 

parts of the stimulus sequence are combined to produce a behavioral response. In both 371 

monkeys, these maps carried signatures of temporal integration. For monkey P, the integration 372 

model and the data look very similar. For monkey N, there is still a qualitative dependency that 373 

deviates from non-integration, but which is not as uniquely matched to the integration strategy 374 

(although the imperfect coverage of the two-dimensional space impedes further investigations). 375 

Thus, complementing the statistical model tests favoring integration, this richer visualization 376 

allows the data to show us that some degree of integration is occurring, albeit not perfect. 377 

 378 

 379 

Figure 4. Integration of early and late evidence into animal responses is incompatible with the 380 

snapshot model. A. Integration map representing the probability of rightward responses (orange: high 381 
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probability; blue: low probability) as a function of early stimulus evidence 𝐸𝑡and late stimulus evidence 382 

𝐿𝑡, illustrated for a toy integration model (where 𝑝(𝑟𝑖𝑔ℎ𝑡) = 𝜎(𝐸𝑡 + 𝐿𝑡); left panel) and a toy non-383 

integration model (𝑝(𝑟𝑖𝑔ℎ𝑡) = 0.5𝜎(𝐸𝑡) + 0.5𝜎(𝐿𝑡); middle panel), and computed for monkey N 384 

responses (right panel). Black lines represent the isolines for p(rightwards)=0.15, 0.3, 0.5, 0.7 and 0.85. 385 

B. Conditional psychometric curves representing the probability for rightward response as a function of 386 

early evidence 𝐸𝑡, for different values of late evidence 𝐿𝑡 (see inset for 𝐿𝑡values), for toy models and 387 

monkey N. The curves correspond to horizontal cuts in the integration maps at 𝐿𝑡 values marked by 388 

colour triangles in panel A. C. Illustration of the fits to conditional psychometric curves. The value of the 389 

bias 𝛽, left lapse 𝜋𝐿and right lapse 𝜋𝑅are estimated from the conditional psychometric curves for each 390 

value of late evidence. D. Lateral bias as a function of late evidence for toy models and monkey N. 391 

Shaded areas represent standard error of weights for animal data. E. Lapse parameters (blue: left lapse; 392 

orange: right lapse) as a function of late evidence for toy models and monkey N. F. Pearson correlation 393 

between integration maps for animal data and integration maps for simulated data, for each animal. 394 

Red: integration model; blue: snapshot model; green: extrema-detection model. 395 

 396 

Temporal integration in human visual orientation judgments 397 

Overall, all our analyses converged to support the idea that monkey decisions in a fixed-398 

duration motion discrimination task relied on temporal integration. We explored whether the 399 

same results would hold for two other species and perceptual paradigms. We first analyzed 400 

the behavioral responses from 9 human subjects performing a variable-duration orientation 401 

discrimination task (Cheadle et al. 2014). In each trial, a sequence of 5 to 10 gratings with a 402 

certain orientation were shown to the subject, and the subject had to report whether they 403 

thought the gratings were overall mostly aligned to the left or to the right diagonal. In this task, 404 

the experimenter can control the evidence provided by each sample by adjusting the 405 

orientation of the grating. We performed the same analyses on the participant responses than 406 

on monkey data. As for monkeys, we found that the integration model nicely captured 407 

psychometric curves, participant accuracy and psychophysical kernels (Figure 5A-C, red 408 

curves and symbols). By contrast, both non-integration models failed to capture these patterns 409 

(Figure 5A-C, blue and green curves and symbols). The accuracy from both models 410 

consistently underestimated participant performance: 8 and 6 out of 9 subjects outperformed 411 

the maximum performance for the snapshot and extrema-detection models, respectively 412 

(Supp. Figure 7). This suggests that human participants achieved such accuracy by integrating 413 

sensory evidence over successive samples. Moreover, subjects overall weighted more later 414 

samples (Figure 5C), which is inconsistent with the extrema-detection mechanism. A formal 415 

model comparison confirmed that in each participant, the integration model provided a far 416 

better account of subject responses than either of the non-integration models did (Figure 5D). 417 

We then assessed how subjects combined information from weak and strong evidence 418 

samples into their decisions, using the same analyses as for monkeys. As predicted by the 419 

integration model, but not by the extrema-detection model, humans choices consistently 420 

aligned with the total stimulus evidence and not simply with the strongest evidence sample 421 

(Figure 5E). Finally, the average integration map for early and late evidence within the stimulus 422 

sequence displayed nearly linear diagonal isolines, showing that both were integrated into the 423 

response (Figure 5F). Integration maps from participants correlated better with maps predicted 424 

by the integration model than with maps predicted by either of the alternative non-integration 425 

strategies (Figure 5G; two-tailed t-test on bootstrapped r values: p<0.001 for 7 out 9 426 

participants in the integration vs snapshot comparison; in all 9 participants for the integration 427 
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vs extrema-detection comparison). Overall, these analyses show converging evidence that 428 

human decisions in an orientation discrimination task rely on temporal integration.  429 

 430 
Figure 5. Behavioral data from orientation discrimination task in humans provides further 431 

evidence for temporal integration.  A. Psychometric curves for human data and simulated data, 432 

averaged across participants (n=9). Legend as in figure 2C. B. Simulated model accuracy (y-axis) vs 433 

participant accuracy (x-axis) for integration model (red), snapshot model (blue) and extrema-detection 434 

model (green). Each symbol corresponds to a participant. C. Psychophysical kernel for human data and 435 

simulated data, averaged across participants. Legend as in A. D. Difference in AIC between each model 436 

and the integration model. Legend as in B. E. Proportion of choices aligned with total stimulus evidence 437 

in disagree trials, for participant data (black bars) and simulated models, averaged over participants. F. 438 

Integration map for early and late stimulus evidence, computed as in Figure 4A, averaged across 439 

participants. G. Correlation between integration map of participants and simulated data for integration, 440 

snapshot and extrema-detection models, averaged across participants. Colour code as in B. Error bars 441 

represent the standard error of the mean across participants in all panels. 442 

 443 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.25.513647doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.25.513647
http://creativecommons.org/licenses/by/4.0/


 

14 

Temporal integration in rat acoustic intensity judgments 444 

Finally, we analyzed data from 5 rats performing a fixed-duration auditory task where the 445 

animals had to discriminate the side with larger acoustic intensity (Pardo-Vazquez et al. 2019). 446 

The relative intensity of the left and right acoustic signals was modulated in sensory samples 447 

of 50 ms, so that the stimulus sequence provided time-varying evidence for the rewarded port. 448 

The stimulus sequence was composed of either 10 or 20 acoustic samples of 50 ms each, for 449 

a total duration of 500 or 1000 ms. We applied the same analysis pipeline as for monkey and 450 

human data. The integration model provided a much better account of rat choices than non-451 

integration strategies, based on psychometric curves (Fig. 6A), predicted accuracy (Fig. 6B), 452 

psychophysical kernel (Fig. 6C) and model comparison using AIC (Fig. 6D). Similar to humans 453 

and monkeys, rats tended to select the side corresponding to the total stimulus evidence and 454 

not the largest sample evidence in “disagree” trials, as predicted by the integration model (Fig. 455 

6E). Finally, the integration map was largely consistent with an integration strategy (Fig. 6F), 456 

and correlated more strongly with simulated maps from the integration model (unpaired t-test 457 

on bootstrapped r values: p<0.001 for each animal and comparison against extrema-detection 458 

and against snapshot model). 459 

 460 
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 461 

Figure 6. Behavioral data from auditory discrimination task in 5 rats provides further evidence 462 

for temporal integration. Rats were rewarded for correctly identifying the auditory sequence of larger 463 

intensity (number of samples: 10 or 20; stimulus duration: 500 or 1000 ms). Legend as in Figure 5. 464 

Psychophysical kernels are computed only for 10-sample stimuli (in 4 animals). See Supp Figure 8 for 465 

psychophysical kernels with 20-sample stimuli. 466 

 467 

DISCUSSION 468 

 469 

We investigated the presence of temporal integration in perceptual decisions in monkeys, 470 

humans and rats through a series of standard and innovative analyses of response patterns. 471 

In all analyses we contrasted predictions from one integration and two non-integration 472 

computational models of behavioral responses (Figure 1). For each non-integration model, we 473 

considered multiple variants to explore the maximal flexibility offered by each framework to 474 

capture animal behavior. For our datasets, evidence in favor of integration was easy to achieve 475 
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using standard model comparison technique as well as comparing simulated psychometric 476 

curves and psychophysical kernels to their experimental counterparts (Figure 2). Our results 477 

are in line with previous evidence for temporal integration in perceptual decisions of humans 478 

and mice (Pinto et al. 2018; Stine et al. 2020; Waskom and Kiani 2018). Importantly, we also 479 

suggest new analyses targeted at revealing specific signatures of temporal integration. 480 

 481 

In some cases, we could link the failure of the non-integration model to a fundamental limitation 482 

of the model. For example, the extrema-detection model cannot explain the non-monotonic 483 

psychophysical kernels of monkeys or the increasing psychophysical kernels in humans. This 484 

is because the decision in that mode is based on the first sample to reach a certain fixed 485 

criterion, so it will always produce a primacy effect, i.e., a decreasing psychophysical kernel. 486 

Although this effect can be small, and in practice yields approximately flat kernels (Stine et al. 487 

2020), it cannot produce increasing or non-monotonic kernels. 488 

 489 

Another strong limitation of non-integration models (both the extrema detection and the 490 

snapshot model) is that accuracy is limited by the fact that decisions depend on a single 491 

sample. We found that that boundary performance (i.e. the maximum performance that a 492 

model can reach) was actually lower than subject accuracy for most human participants, de 493 

facto ruling out these non-integration strategies for these participants. This is consistent to 494 

what was observed in a constrast discrimination DSS task where human subjects had to make 495 

judgments about image sequences spanning up to tens of seconds each (Waskom and Kiani 496 

2018). It clearly contrasts however with results from (Stine et al. 2020) where the non-497 

integration strategies matched the accuracy of human subjects performing the classical 498 

random-dot-motion task. This discrepancy may be related to the different sources of noise in 499 

the two paradigms. In DSS tasks, because the sensory evidence provided by the stimulus at 500 

each moment is controlled by the experimenter, the unpredictability of human responses 501 

essentially stems from internal noise at the level of sensory processing and temporal 502 

integration (Waskom and Kiani 2018; Drugowitsch et al. 2016). By contrast, in the random dot 503 

motion task (Kiani, Hanks, and Shadlen 2008), which is a non-DSS task because the 504 

experimenter does not typically specify differing amounts of motion in each time epoch within 505 

a single trial, typically elicits more variable responses due to the presence of stimulus noise. 506 

This overall increased noise level leads to a looser relationship between the stimulus condition 507 

and the behavioral responses, which can thus be accounted for by a larger spectrum of 508 

computational mechanisms. These issues have been addressed by forcing “pulses” of a 509 

certain stimulus strength and/or by performing post hoc analyses to estimate signal and noise 510 

(Kiani, Hanks, and Shadlen 2008) but these are partial solutions that DSS paradigms solve by 511 

design. This illustrates the benefits of using experimental designs where variability in stimulus 512 

information can be fully controlled and parametrized by the experimenter, as these paradigms 513 

discriminate more precisely between different models of perceptual decisions. 514 

In at least one monkey, although quantitative metrics such as penalized log-likelihood and fits 515 

to psychometric curves clearly pointed to the integration model as the best account to 516 

behavior, the qualitative failure modes of the non-integration strategies (especially the 517 

snapshot model) was not immediately clear. Although we tried variants for each non-518 

integration model, there remained a possibility that our precise implementation failed to 519 
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account for monkey behavior but that other possible implementations would. Note that the 520 

extrema-detection and snapshot are two of the many possible non-integration strategies. A 521 

generic form for non-integration strategies corresponds to a policy that implements position-522 

dependent thresholds on the instantaneous sensory evidence. In this framework, the extrema-523 

dependent model corresponds to the case with a position-independent threshold, while the 524 

snapshot model corresponds to a null bound for one sample and infinite bounds for all other 525 

samples. To rule out these more complex strategies, we conducted additional analyses that 526 

specifically targeted core assumptions of the integration and non-integration strategies. 527 

First, the extrema-detection model fails to account for the data because it predicts that largest-528 

evidence samples should have a disproportionate impact on choices. However, this does not 529 

occur, as monkeys and humans tend to respond according to the total evidence and not the 530 

single large-evidence sample (Figure 3C and 5E) - see (Levi et al. 2018) for a similar analysis. 531 

All non-integration strategies share the property that on each trial the decision should only rely 532 

either on the early or the late part of the trial. We thus directly examined the assumptions of 533 

integration and non-integration models by assessing how the evidence from the early and late 534 

parts of each stimulus sequence is combined to produce a decision. We introduced integration 535 

maps (Figure 4) to inspect such integration: isolines of the integration maps will be rectilinear 536 

if and only if early and late evidence are summed, in other words if and only if temporal 537 

integration takes place. Unequal weighting of evidence would still produce rectilinear isolines, 538 

albeit with a different angle. By contrast, a non-integration scenario when on each trial only a 539 

single piece of evidence contributes to the decision predicts isolines that bend towards the 540 

axes. Integration maps from monkey, human and rat subjects nicely matched the predictions 541 

of the integration models, proving that their decisions do rely on temporal integration. Note 542 

that this innovative analysis technique could be used to probe integration of evidence not only 543 

at temporal level but also between different sources of evidence. Indeed, there has been an 544 

intense debate about whether sensory information from different spatial locations or different 545 

modalities are integrated prior to reaching a decision, or whether decisions are taken 546 

separately for each source before being merged, which can be viewed as extensions to the 547 

snapshot model (Pannunzi et al. 2015; Otto and Mamassian 2012; Lorteije et al. 2015; Hyafil 548 

and Moreno-Bote 2017). Our integration analysis could provide new answers to this old 549 

debate. 550 

 551 

Integration maps can be computed not only for choice patterns but for any type of behavioral 552 

or neural marker of cognition. We computed a neural integration map (Supp. Figure 9) by 553 

looking at the average spike activity of Lateral Intra Parietal (LIP) neurons as a function of 554 

early and late evidence, for neurons recorded while the monkeys performed the motion 555 

discrimination experiment (Yates et al. 2017). The neural integration map clearly showed 556 

rectilinear isolines, as predicted by an integration model of neural spiking. By contrast, neural 557 

implementations of the snapshot and extrema-detection predicted strongly curved isolines. 558 

The activity of LIP neurons correlates with the evidence accumulated over the presentation of 559 

the stimulus in favor of either possible choices (Gold and Shadlen 2007). This result shows 560 

that the activity of individual LIP neurons indeed reflects the temporal integration of sensory 561 

information that drives animal behavior. 562 

We have focused in this study on paradigms where the stimulus duration is fixed by the 563 

experimenter, and subjects could only respond after stimulus extinction. Stine et al proposed 564 
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a method for distinguishing integration from non-integration strategies mixing experiments 565 

where stimulus duration is controlled by the experimenter and experiments where the stimulus 566 

plays until the subject responds (“reaction time paradigms”). Our study shows an alternate way 567 

to differentiate integration and non-integration strategies that does not require these conditions, 568 

and may therefore be applied to existing datasets.  569 

Other studies have shown how integration and non-integration strategies can be disentangled 570 

in free reaction-time task paradigms. Specifically, different models make different predictions 571 

regarding how the total sample evidence presented before response time should vary with 572 

response time (Glickman and Usher 2019; Zuo and Diamond 2019). Glickman and Usher used 573 

these predictions to rule out non-integration strategies in a counting task in humans, and Zuo 574 

and Diamond found evidence for evidence integration to bound when rats discriminate 575 

textures using whisker touches (Zuo and Diamond 2019). Furthermore, decisions in self-paced 576 

paradigms are influenced by the sensory evidence from the early part of the stimulus (Winkel 577 

et al. 2014), ruling out the proposal that they would only depend on the sensory evidence at 578 

the time of decisions (Thura et al. 2012). Of note, the absence of integration seems a more 579 

viable strategy when the duration of the stimulus is controlled externally and the benefits of 580 

integrating in terms of accuracy might not compensate for its cognitive cost. In free-reaction 581 

time paradigms, waiting for a long sequence of samples and selecting its response based on 582 

a single sample does not seem a particularly efficient strategy. If the cognitive cost of 583 

integration is high, it is more beneficial to interrupt the stimulus sequence early with a rapid 584 

response. Such rapid responses are commonly seen and can be attributed either to urgency 585 

signals modulating the integration of stimulus evidence (Drugowitsch et al. 2012) or to action 586 

initiation mechanisms that time the response after a specific time (e.g. one or two samples) 587 

following stimulus onset (Hernández-Navarro et al. 2021). Here, we have shown that even in 588 

paradigms where the stimulus duration is controlled by the experimenter, mammals often 589 

integrate sensory evidence over the entire stimulus. 590 

In conclusion, we have found strong evidence for temporal integration in perceptual tasks 591 

across species (monkeys, humans and rats) and perceptual domain (visual motion, visual 592 

orientation and auditory discrimination). Thus, although the time scale of integration can be 593 

adapted to the statistics of the environment (Ossmy et al. 2013; Glaze, Kable, and Gold 2015; 594 

Kilpatrick et al. 2019), the principle that stimulus evidence is integrated over time appears as 595 

a hallmark of perception. This evidence was gathered by leveraging experimentally-controlled 596 

sensory evidence at each sensory sample composing a stimulus, and novel model-based 597 

statistical analysis. We speculate that temporal integration is a ubiquitous feature of perceptual 598 

decisions due to hard-wired neural integrating circuits, such as recurrent stabilizing 599 

connectivity in sensory and perceptual areas (Wang 2008; Wimmer et al. 2015).  600 

 601 

 602 

METHODS 603 

 604 

Monkey experiment.  605 

We present here the most relevant features of the behavioral protocol - see (Yates et al. 2017) 606 

for further experimental details. Two adult rhesus macaques (subject N, a 10-year old female; 607 
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and subject P, a 14-year old male) performed a motion discrimination task. On each trial, a 608 

stimulus consisting of a hexagonal grid (5-7 degrees, scaled by eccentricity) of Gabor patches 609 

(0.9 cycle per degree; temporal frequency 5 Hz for Monkey P; 7 Hz for Monkey N) was 610 

presented. Monkeys were trained to report the net direction of motion in a field of drifting and 611 

flickering Gabor elements with an eye movement to one of two targets. Each trial motion 612 

stimulus consisted of seven consecutive motion pulses, each lasting 9 or 10 video samples 613 

(150 ms or 166 ms; pulse duration did not vary within a session), with no interruptions or gaps 614 

between the pulses. The strength and direction of each pulse 𝑆𝑡𝑖 for trial t and sample i was 615 

set by a draw from a Gaussian rounded to the nearest integer value. The difficulty of each trial 616 

was modulated by manipulating the mean and variance of the Gaussian distribution. Monkeys 617 

were rewarded based on the empirical stimulus and not on the stimulus distribution. We 618 

analyzed a total of 112 sessions for monkey N and 60 sessions for monkey P, with a total of 619 

72137 and 33416 valid trials, respectively. These sessions correspond to sessions with 620 

electrophysiological recordings reported in (Yates et al. 2017) and purely behavioral sessions. 621 

All experimental protocols were approved by The University of Texas Institutional Animal Care 622 

and Use Committee (AUP-2012-00085, AUP-2015-00068) and in accordance with National 623 

Institute of Health standards for care and use of laboratory animals 624 

 625 

Human experiment. 626 

9 adult subjects (5 males, 4 females; aged 19-30) performed an orientation discrimination task 627 

whereby on each trial they reported in each trial whether a series of gratings were perceived 628 

to be mostly tilted clockwise or counterclockwise (Drugowitsch et al. 2016). Each discrete-629 

sample stimulus consisted of five to ten gratings. Each grating was a high-contrast Gabor 630 

patch (colour: blue or purple; spatial frequency = 2 cycles per degree; SD of Gaussian 631 

envelope = 1 degree) presented within a circular aperture (4 degrees) against a uniform gray 632 

background. Each grating was presented during 100 ms, and the interval between gratings 633 

was fixed to 300 ms. The angles of the gratings were sampled from a von Mises distribution 634 

centered on the reference angle (𝛼0 = 45 degrees for clockwise sequences, 135 degrees for 635 

anticlockwise sequences) and with a concentration coefficient 𝜅 = 0.3. The normative 636 

evidence provided by sample i in trial t in favor of the clockwise category corresponds to how 637 

well the grating orientation 𝛼𝑡𝑖 aligns with the reference orientation, i.e. 𝑆𝑡𝑖 = 2𝜅 𝑐𝑜𝑠(2(𝛼𝑡𝑖 −638 

𝛼0)) . 639 

Each sequence was preceded by a rectangle flashed twice during 100 ms (the interval 640 

between the flashes and between the second flash and the first grating varied between 300 641 

and 400 ms). The participants indicated their choice with a button press after the onset of a 642 

centrally occurring dot that succeeded the rectangle mask and were made with a button press 643 

with the right hand. Failure to provide a response within 1000 ms after central dot onset was 644 

classified as invalid trial. Auditory feedback was provided 250 ms after participant response 645 

(at latest 1100 ms after end of stimulus sequence). It consisted of an ascending tone (400 646 

Hz/800 Hz; 83 ms/167 ms) for correct responses; descending tone (400 Hz/ 400 Hz; 83 647 

ms/167 ms) for incorrect responses; a low tone (400 Hz; 250 ms) for invalid trials. 648 

Trials were separated by a blank interstimulus interval of 1,200-1,600 ms (truncated 649 

exponential distribution of mean 1,333 ms). Experiments consisted of 480 trials in 10 blocks 650 

of 48. It was preceded with two blocks of initiation with 36 trials each. In the first initiation block, 651 

there was only one grating in the sequence, and it was perfectly aligned with one of the 652 
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reference angles. In the second initiation block, sequences of gratings were introduced, and 653 

the difficulty was gradually increased (the distribution concentration linearly decreased from 654 

𝜅 = 1.2 to 𝜅 = 0.3). Invalid trials (mean 6.9 per participant, std 9.4) were excluded from all 655 

regression analyses.  The study was approved by the local ethics committee (approval 656 

2013/5435/I from CEIm- Parc de Salut MAR). 657 

 658 

Rat experiment. 659 

Rat experiments were approved by the local ethics committee of the University of Barcelona 660 

(Comité d’Experimentació Animal, Barcelona, Spain, protocol number Ref 390/14). 5 male 661 

Long-Evans rats (no genetic modifications; 350-650g; 8-10 weeks-old at the beginning of the 662 

experiment), pair-housed and kept on stable conditions of temperature (23oC) and humidity 663 

(60%) with a constant light-dark cycle (12h:12h, experiments were conducted during the light 664 

phase). Rats had free access to food, but water was restricted to behavioral sessions. Free 665 

water during a limited period was provided on days with no experimental sessions.  666 

Rats performed a fixed-duration auditory discrimination task where they had to classify noisy 667 

stimuli based on the intensity difference between the two lateral speakers (Pardo-Vazquez et 668 

al. 2019; Hermoso-Mendizabal et al. 2020). A LED on the center port indicated that the rat 669 

could start the trial by poking in that center port. After this poke, rats had  to hold their snouts 670 

in the central port  during 300 ms (i.e. fixation).  Following this period, an acoustic DSS was 671 

played. Rats had to remain in the central port during the entire presentation of the stimulus. 672 

At stimulus offset, the center LED went off and rats could then come out of the center port and 673 

head towards one of the two lateral ports.  Entering the lateral port associated with the speaker 674 

that generated the larger sound intensity led to a reward of 24 µl of water (correct responses), 675 

while entering the opposite port lead to a 5 s timeout accompanied with a bright light during 676 

the entire period (incorrect responses). If rats broke fixation during the pre-stimulus fixation 677 

period or during the stimulus presentation, the sound was interrupted, the center LED 678 

remained on, and the rat had to initiate a new trial starting by center fixation followed by a new 679 

stimulus. Fixation breaks were not included in any of the analyses. Stimulus duration was 0.5 680 

s (10 samples) or 1 s  (20 samples). Two rats performed 0.5-second stimuli only (77810 and 681 

54803 valid trials, respectively); one rat performed 1 s stimuli only (42474 valid trials); the 682 

remaining two rats performed a mixture of 0.5 and 1 s stimuli trials randomly interleaved (5016 683 

trials and 65212 valid trials, respectively for one animal; 7374 and 38829 trials for the other 684 

animal). In each trial k one stimulus SX
k(t) was played in each speaker (X=R for the Right 685 

speaker and X=L for the Left speaker). Each stimulus was an amplitude modulated (AM) 686 

broadband noise defined by 𝑆𝑘
𝑋(𝑡) = [1 + 𝑠𝑖𝑛(𝑓𝐴𝑀𝑡 + 𝜑)]𝑎𝑘

𝑋(𝑡) 𝜉𝑋(𝑡) where fAM=20 Hz 687 

(sensory samples lasted 50 ms), the phase delay 𝜑 = 3𝜋/2 and 𝜉𝑋(𝑡) were broadband noise 688 

bursts. The amplitudes of each sound in each frame were 𝑎𝑘
𝐿(𝑡) = (1 + 𝑆𝑘,𝑓)/2 and  𝑎𝑘

𝑅(𝑡) =689 

(1 − 𝑆𝑘,𝑓)/2 with Sk,f(t) being the instantaneous evidence that was drawn independently in 690 

each frame f  from a transformed Beta distribution with support [-1,1]. With this parametrization 691 

of the two sounds the sum of the two envelopes was constant in all frames aL
k(t)+aR

k(t)=1. 692 

There were 7 x 5 stimulus conditions, each defined by a Beta distribution, spanning 7 mean 693 

values (-1, -0.5, -0.15, 0, 0.15, 0.5 and 1) and 5 different standard deviations (0, 0.11, 0.25, 694 

0.57 and 0.8). In around the first half of the sessions, only sample sequences in which the 695 

total stimulus evidence matched the targeted nominal evidence were used. This effectively 696 
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introduced weak correlations between samples. In the second half of the sessions, this 697 

condition was removed and samples in each stimulus were drawn independently from the 698 

corresponding Beta distribution. 699 

 700 

Integration model 701 

The integration model for human participants corresponds to a logistic regression model, 702 

where the probability of selecting the right choice 𝑝(𝑟𝑡) at trial t depends on the weighted sum 703 

of the sample evidence: 𝑝(𝑟𝑡)  =  𝜎(𝛽0 + 𝛴𝑖∈[1..𝑛]𝛽𝑖𝑆𝑡𝑖), where 𝛽0is a lateral bias, 𝑆𝑡𝑖is the 704 

signed sample evidence at sample i ;𝛽𝑖is the sensory weight associated with the ith sample in 705 

the stimulus sequence; and 𝜎(𝑥) = (1 + 𝑒−𝑥)−1is the logistic function. The vector 𝛽𝑖’s allowed 706 

to capture different shapes of psychophysical kernels (e.g. primacy effects, recency effects) 707 

which can emerge due to a variety of suboptimalities in the integration process (leak, attractor 708 

dynamics, sticky bounds, sensory after-effects, etc.) (Brunton, Botvinick, and Brody 2013; 709 

Yates et al. 2017; Prat-Ortega et al. 2021; Bronfman, Brezis, and Usher 2016). 710 

For the monkey and rat data, we included a session-dependent modulation gain 𝛾𝑡 to capture 711 

the large variations in performance in monkeys across the course of sessions (see Supp 712 

Figure 1A): 713 

𝑝(𝑟𝑡)  =  𝜎(𝛽0 + 𝛾𝑡𝛴𝑖∈[1..𝑛]𝛽𝑖𝑆𝑡𝑖) 714 

This model corresponds to a bilinear logistic regression model which pertains to the larger 715 

family of Generalized Unrestricted Models (GUMs) (Adam and Hyafil 2020). Parameters (𝛽, 𝛾) 716 

were fitted using the Laplace approximation as described in (Adam and Hyafil 2020). The 717 

modulation gain was omitted when applied to human data, yielding a classical logistic 718 

regression model. 719 

 720 

Snapshot model 721 

In the snapshot model, decisions are based on each trial based upon a single sample. The 722 

model also includes the possibility for left and right lapses. In each trial, the attended sample 723 

is drawn from a multinomial distribution of parameters (𝜋1, . . 𝜋𝑛, 𝜋𝐿, 𝜋𝑅), where the first terms 724 

𝜋𝑖 (1 ≤ 𝑖 ≤ 𝑛) correspond to the probability of attending sample i, and 𝜋𝐿and 𝜋𝑅correspond to 725 

the probability of left and right lapses, respectively. Upon selecting sample i, the probability for 726 

selecting the right choice is given by the function 𝐻𝑖(𝑆𝑡). In the deterministic version of the 727 

model, 𝐻𝑖 is simply determined by the sign of the i-th sample evidence:𝐻𝑖(𝑆𝑡) = 1 if 𝑆𝑡𝑖 > 0, 728 

𝐻𝑖(𝑆𝑡) = 0 if 𝑆𝑡𝑖 < 0, and 𝐻𝑖(𝑆𝑡) = 0.5 if 𝑆𝑡𝑖 = 0 (i.e. random guess if the sample has null 729 

evidence). We also define similar functions for lapse responses: 𝐻𝑅(𝑆) = 1and 𝐻𝐿(𝑆) = 0, 730 

irrespective of the stimulus. In the non-deterministic version of the model, the probability 731 

𝐻𝑖(𝑆𝑡𝑖) is determined by a logistic function of the attended sample evidence 𝐻𝑖(𝑆𝑡) = 𝜎(𝛽𝑖𝑆𝑡𝑖) 732 

where 𝛽𝑖 describes a sensitivity parameter. The deterministic case can be viewed as the limit 733 

of the non-deterministic case when all sensitivity parameters 𝛽𝑖 diverge to +∞, i.e. when 734 

sensory and decision noise are negligible. 735 

The overall probability for selecting right choice (marginalizing over the attended sample, 736 

which is a hidden variable) can be captured by a mixture model : 737 
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𝑝(𝑟𝑡)  = 𝜋𝑅 + 𝛴𝑖∈[1..𝑛]𝜋𝑖𝐻𝑖(𝑆𝑡) = 𝛴𝑖∈[1..𝑛,𝐿,𝑅]𝜋𝑖𝐻𝑖(𝑆𝑡) 738 

The mixture coefficients 𝜋𝑖 (𝑖 = 1, . . 𝑛, 𝐿, 𝑅) are constrained to be non-negative and sum up to 739 

1. In the non-deterministic model, the parameters also include sensitivity parameters 𝛽𝑖.The 740 

model is fitted using Expectation-Maximization (Bishop 2006). In the Expectation step, we 741 

compute the responsibility 𝑧𝑡𝑖, i.e. the posterior probability that the sample i was attended at 742 

trial t (for i=L, R, the probability that the trial corresponded to a lapse trial): 743 

 744 

𝑧𝑡𝑖 = 𝜋𝑖𝜃(𝑆𝑡𝑖)/𝛴𝑗𝜋𝑗𝐻(𝑆𝑡𝑗)   for rightward responses (𝑅𝑡 = 1) 745 

𝑧𝑡𝑖 = 𝜋𝑖(1 − 𝐻(𝑆𝑡𝑖))/𝛴𝑗𝜋𝑗(1 − 𝐻(𝑆𝑡𝑗))   for leftward responses (𝑅𝑡 = 0) 746 

 747 

In the Maximization step, we update the value of the parameters by maximizing the Expected 748 

Complete Log-Likelihood (ECLL): 𝑄(𝜋, 𝛽) = 𝛴𝑡𝑖𝑧𝑡𝑖𝑙𝑜𝑔 𝑝(𝑟𝑡; 𝜋, 𝛽). Maximizing over the mixture 749 

coefficients with the unity-sum constraint provides the classical update: 𝜋𝑖 = 𝛴𝑡𝑖𝑧𝑡𝑖/𝑁, where 750 

N is the total number of trials. In the non-deterministic model, maximizing the ECLL over 751 

sensitivity parameters is equivalent to fitting a logistic regression model with weighted 752 

coefficients 𝑧𝑡𝑖, which is a convex problem. Best fitting parameters can be found using Newton-753 

Raphson updates on the parameters: 754 

𝛽𝑖
(𝑛𝑒𝑤) = 𝛽𝑖 −

𝜕𝑄/𝜕𝛽𝑖

𝜕2𝑄/𝜕𝛽𝑖
2 with 755 

 𝜕𝑄/𝜕𝛽𝑖 = 𝛴𝑡𝑧𝑡𝑖(𝑝(𝑟𝑡) − 𝑅𝑡) and 𝜕2𝑄/𝜕𝛽𝑖
2 = 𝛴𝑡𝑧𝑡𝑖𝑆𝑡𝑖

2𝑝(𝑟𝑡)(1 − 𝑝(𝑟𝑡)) 756 

To speed up the computations, in each M step, we only performed one Newton-Raphson 757 

update for each sensitivity parameter, rather than iterating the updates fully until convergence. 758 

The EM procedure was run until convergence, assessed by an increment in the log-likelihood 759 

𝐿(𝜋, 𝛽) of less than 10-9 after one EM iteration. The log-likelihood for a given set of parameters 760 

is given by 𝐿(𝜋, 𝛽) = 𝛴𝑡𝑙𝑜𝑔 𝑝(𝑟𝑡). The EM iterative procedure was repeated with 10 different 761 

initializations of the parameters to avoid local minima. 762 

 763 

Note that for monkey and rat data, since we observed large variations in performance across 764 

sessions, the model based its choices on session-gain modulated evidence 𝑆𝑡𝑖 = 𝛾𝑡𝑆𝑡𝑖 instead  765 

raw evidence 𝑆𝑡𝑖 (this had no impact for the deterministic variant since 𝑆𝑡𝑖 and 𝑆𝑡𝑖 always have 766 

the same sign). We fitted the model from individual subject responses either with lapses 𝜋𝐿and 767 

𝜋𝑅 as free parameters, or fixed to 𝜋𝐿 = 𝜋𝑅 = 0.01. Figures in the main manuscript correspond 768 

to the deterministic snapshot model with fixed lapses. We also studied variants of the snapshot 769 

model where decisions in each trial are based on K attended samples, i.e depends on 770 

(𝑆𝑡𝑖, . . 𝑆𝑡,𝑖+𝐾−1) with 1 ≤ 𝐾 ≤ 𝑛 − 1 and 1 ≤ 𝑖 ≤ 𝑛 − 𝐾 + 1 is the first attended sample. In the 771 

deterministic case, the choice is directly determined by the sign of the sum of the signed 772 

evidence for the attended samples. In the non-deterministic case, the evidence for the 773 

attended samples are weighted and passed through a sigmoid: 𝐻𝑖(𝑆𝑡) =774 

𝜎(𝛴𝑘∈[1..𝐾]𝛽𝑘𝑖𝑆𝑡,𝑖+𝑘−1). The model with a single attended sample presented above is equivalent 775 

to this extended model when using 𝐾 = 1. At the other end, using 𝐾 = 𝑛 corresponds to the 776 

temporal integration model (without the lateral bias). 777 
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 778 

Extrema-detection model 779 

In the extrema-detection model, a choice is selected according to the first sample in the 780 

sequence whose absolute evidence value reaches a certain threshold 𝜃, i.e  𝑝(𝑟𝑡|𝜃) =781 

 𝐻(𝑚𝑡𝑖), |𝑚𝑡𝑖| ≥ 𝜃, |𝑚𝑡𝑗| < 𝜃  for all 𝑗 < 𝑖 . Here 𝑚𝑡𝑖 is the sample evidence corrupted by 782 

sensory noise 𝜀𝑡𝑖 which is distributed normally with variance 𝜎2: 𝑚𝑡𝑖 = 𝑆𝑡𝑖 + 𝜀𝑡𝑖 with 𝜀𝑡𝑖 ∼783 

𝑁(0, 𝜎2). H is the step function. If the stimulus sequence ends and no sample has reached the 784 

threshold, then the decision is taken at chance. As described in (Waskom and Kiani 2018), 785 

the probability for a rightward choice at trial t can be expressed as: 786 

𝑝(𝑟𝑡) = 𝛴𝑖𝛷(
𝑆𝑡𝑖 − 𝜃

𝜎
)𝛱𝑗<𝑖(1 − 𝛷(

𝑆𝑡𝑗 − 𝜃

𝜎
) − 𝛷(

−𝑆𝑡𝑗 − 𝜃

𝜎
)) +

1

2
𝛱𝑗≤𝑛(1 − 𝛷(

𝑆𝑡𝑗 − 𝜃

𝜎
)787 

− 𝛷(
−𝑆𝑡𝑗 − 𝜃

𝜎
)) 788 

 789 

where 𝛷 is the cumulative normal distribution. We also included the possibility for left and right 790 

lapses with probability 𝜋𝐿and 𝜋𝑅. Following Stine and colleagues (Stine et al. 2020), we 791 

explored an alternative default rule called ‘last sample’ rule: if the stimulus extinguishes and 792 

the threshold has not been reached, then the decision is based on the (noisy) last sample 793 

rather than simply by chance. This changes the equation describing the probability for 794 

rightward choices to: 795 

𝑝(𝑟𝑡) = 𝛴𝑖<𝑛𝛷(
𝑆𝑡𝑖 − 𝜃

𝜎
)𝛱𝑗<𝑖(1 − 𝛷(

𝑆𝑡𝑗 − 𝜃

𝜎
) − 𝛷(

−𝑆𝑡𝑗 − 𝜃

𝜎
)) + 𝛷(

𝑆𝑡𝑛

𝜎
)𝛱𝑗<𝑛(1 − 𝛷(

𝑆𝑡𝑗 − 𝜃

𝜎
)796 

− 𝛷(
−𝑆𝑡𝑗 − 𝜃

𝜎
)) 797 

As for the snapshot model, we used the session-gain modulated evidence 𝑆𝑡𝑖instead of raw 798 

evidence 𝑆𝑡𝑖for fitting the model to monkey and rat data. The four parameters of the model 799 

(𝜃, 𝜎, 𝜋𝐿 , 𝜋𝑅) were estimated from each subject data by maximizing the log-likelihood with 800 

interior-point algorithm (function fmincon in Matlab) and 10 different initializations of the 801 

parameters. 802 

 803 

 804 

Model validation and model comparison.  805 

Psychophysical kernels were obtained from subject data and simulated data by running a 806 

logistic regression model: 𝑝(𝑟𝑡)  =  𝜎(𝛽0 + 𝛴𝑖𝛽𝑖𝑆𝑡𝑖). Standard errors of the weights 𝛽𝑖were 807 

obtained from the Laplace approximation. For psychometric curves, we first defined the 808 

weighted stimulus evidence Tt at trial t as the session-modulated weighted sum of signed 809 

sample evidence; with the weights obtained from the logistic regression model above 810 

𝑇𝑡 = 𝛾𝑡𝛴𝑖𝛽𝑖𝑆𝑡𝑖. We then divided the total stimulus evidence into 50 quantiles (10 for human 811 

subjects) and computed the psychometric curve as the proportion of rightward choices for 812 

each quantile. 813 
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The boundary performance for the snapshot and extrema-detection models corresponds to 814 

the best choice accuracy out of all the parameterizations for each model. In the snapshot 815 

model, the boundary performance corresponds to the deterministic version with no-lapse, 816 

where the attended sample is always the sample 𝑖∗whose sign better predicts the stimulus 817 

category over all animal trials, i.e. 𝜋𝑖∗ = 1 and 𝜋𝑖 = 0 if 𝑖 ≠ 𝑖∗. For the extrema-detection model, 818 

the boundary performance corresponds to the lapse-free model with no sensory noise (𝜎 = 0) 819 

and a certain value for threshold 𝜃 that is identified for each subject by simple parameter 820 

search.  821 

Finally, model selection was performed using the Akaike Information Criterion 𝐴𝐼𝐶 = 2𝑝 −822 

2𝐿𝑀𝐿, where p is the number of model parameters and 𝐿𝑀𝐿is the likelihood evaluated at 823 

maximum likelihood parameters. 824 

 825 

Analysis of majority-driven choices 826 

We selected for each animal the subset of trials corresponding to when the largest evidence 827 

sample was at odds with the total stimulus evidence, i.e. where 𝑠𝑖𝑔𝑛(𝑆𝑡𝑗, |𝑆𝑡𝑗| ≥ |𝑆𝑡𝑖|  ∨ 𝑖)  ≠828 

𝑠𝑖𝑔𝑛(𝛴𝑖𝑆𝑡𝑖). For this subset of trials, we computed the proportion of animal choices that were 829 

aligned with the overall stimulus evidence. We repeated the analysis for simulated data from 830 

the integration and extrema-detection models. 831 

 832 

Subjective weighting analysis 833 

In order to estimate the impact of each sample on the animal choice as a function of sample 834 

evidence, we built and estimated the following statistical model 835 

𝑝(𝑟𝑡 = 𝐴)  =  𝜎(𝛽0 + 𝛾𝑡𝛴𝑖∈[1..𝑛]𝛽𝑖 𝑓(𝑆𝑡𝑖)) 836 

As can be seen, this model is equivalent to the temporal integration model under the 837 

assumption that f is a linear function. Rather, here we wanted to estimate the function f (as 838 

well as the session gain 𝛾𝑡, lateral bias 𝛽0and sensory weight 𝛽𝑖). Including the session gain 839 

was necessary for estimating f accurately from the monkey and rat behavioral data, since the 840 

distribution of pulse strength 𝑆𝑡𝑖was varied across sessions and could otherwise induce a 841 

confound. We assumed that f is an odd function, i.e.  𝑓(−𝑆𝑡𝑖) =  −𝑓(𝑆𝑡𝑖). This equation takes 842 

the form of a Generalized Unrestricted Model and was fitted using the Laplace approximation 843 

method as described in (Adam and Hyafil 2020). In the monkey experiment, sample evidence 844 

could take only a finite number of values, so f was simply estimated over these values. In the 845 

human experiment, sample evidence could take continuous values. In this case, we defined a 846 

Gaussian Process prior over f with squared exponential kernel with length scale 0.1 and 847 

variance 1. 848 

 849 

Integration of early and late evidence 850 

We designed a new analysis tool to characterize the statistical mapping from the 851 

multidimensional stimulus space 𝑺𝑡 = (𝑆𝑡1, . . . 𝑆𝑡𝑛) ∈ ℜ𝑛onto binary choices 𝑟𝑡 ∈ [0,1]. We first 852 

collapsed the stimulus sequence 𝑺𝑡 onto the two-dimensional space defined by early evidence 853 

𝑬𝑡 and late evidence 𝑳𝑡 defined by 𝐸𝑡 = 𝛾𝑡𝛴1≤𝑖≤[𝑛/2]𝛽𝑖𝑆𝑡𝑖and 𝐿𝑡 = 𝛾𝑡𝛴[𝑛/2]+1≤𝑖≤𝑛𝛽𝑖𝑆𝑡𝑖, where the 854 

weights 𝛽𝑖 and session gains 𝛾𝑡correspond to parameters estimated from the temporal 855 
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integration model (session gains were omitted for human participants). Next we plotted the 856 

integration map which represents the probability for rightward choices as a function of (𝐸𝑡 , 𝐿𝑡). 857 

The map was obtained by smoothing data points with a two-dimensional gaussian kernel. 858 

More specifically, for each pair value (E,L), we selected the trials whose early and late 859 

evidence values 𝐸𝑡 and 𝐿𝑡 fell within a certain distance to (E,L), i.e. 𝑑𝑡 = 𝑑𝑖𝑠𝑡((𝐸, 𝐿)(𝐸𝑡 , 𝐿𝑡))  <860 

 2. We then computed the proportion of rightward choices for the selected trials, with a weight 861 

for each trial depending on the distance to the pair value 𝑤𝑡 = 𝑁((𝐸𝑡 , 𝐿𝑡); (𝐸, 𝐿),0. 12 𝐼). 862 

Because the space (E,L) was not sampled uniformly during the experiment, we represent the 863 

density of trials by brightness. For each subject we obtained integration maps both from 864 

subject data as well as from model simulations. For each model, we computed the Pearson 865 

correlation between the maps obtained from the corresponding simulation and from the 866 

subject data. We tested the significance of correlation measures between models by using a 867 

bootstrapping procedure: we calculated the correlation measure r from 100 bootstraps for 868 

each model and participant, and then performed an unpaired t-test between bootstrapped r. 869 

 870 

Next, we analyzed the conditional psychometric curves, i.e. the psychometric curves for the 871 

early evidence conditioned on the value of late evidence, which correspond to vertical cuts in 872 

the integration map. To do so, we first binned late evidence 𝐿𝑡by bins of width 0.5. Conditional 873 

psychometric curve represent the probability of rightward choices as a function of early 874 

evidence 𝐸𝑡, separately for each late evidence bin. For each late evidence bin, we also 875 

estimated the corresponding bias 𝛽, left lapse 𝜋𝐿and right lapse 𝜋𝑅by fitting the following 876 

function on the corresponding subset of trials: 877 

𝑝(𝑟𝑡) = 𝜋𝑅 + (1 − 𝜋𝑅 − 𝜋𝐿)𝜎(𝛽𝐸𝑡) 878 

 879 

Analysis of LIP neuron activity 880 

We analyzed the activity of 82 LIP neurons recorded over 43 sessions of the motion 881 

discrimination tasks (Yates et al. 2017). We applied the following procedure to extract the 882 

integration map for LIP neurons. For each neuron n, we computed the spike count 𝑠𝑡
(𝑛) in a 883 

window of 500 ms width following each stimulus offset, which is where LIP neurons were found 884 

to have maximal selectivity to motion evidence from the entire pulse sequence (Yates et al. 885 

2017). We then applied a Poisson GLM 𝐸(𝑠𝑡
(𝑛))  =  𝑒𝑥𝑝(𝑤0

(𝑛) + 𝛴𝑖𝑤𝑖
(𝑛)𝑆𝑡𝑖) for each neuron n 886 

to extract the impact of each sample i on the individual neural spike count 𝑤𝑖
(𝑛). For each trial 887 

t, we used these weights to compute the neuron-weighted early and late evidence defined by 888 

and 𝐸𝑡
(𝑛) = 𝛴1≤𝑖≤3𝑤𝑖

(𝑛)𝑆𝑡𝑖 𝐿𝑡
(𝑛) = 𝛴4≤𝑖≤7𝑤𝑖

(𝑛)𝑆𝑡𝑖. Note that this weighting converts the 889 

evidence onto the space defined by the preferred direction of the neuron, such that positive 890 

evidence signals evidence towards the preferred direction and negative evidence signals 891 

evidence towards the anti-preferred direction. We then merged the vectors for normalized 892 

spike counts 𝑠𝑡
(𝑛) = 𝑠𝑡

(𝑛)/𝑒𝑥𝑝(𝑤0
(𝑛)), early evidence  𝐸𝑡

(𝑛) and late evidence 𝐿𝑡
(𝑛) across all 893 

neurons. The normalized spike counts were binned by values of early and late evidence (bin 894 

width: 0.02), and the average over each bin was computed after convolving with a two-895 

dimensional gaussian kernel of width 0.1. The neural integration map represents the average 896 

normalized activity per bin. 897 
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Simulations of spiking data for the integration and non-integration models were proceeded as 898 

follows. First, the neural integration model corresponds to linear summing with neuron-specific 899 

weights which are then passed through an exponential nonlinearity; the spike counts for each 900 

trial are generated using a Poisson distribution whose rate is equal to the nonlinear output 901 

(Supp Figure 9a, top). This corresponds exactly to the generative process of the Poisson GLM 902 

described above. For the extrema detection model (Supp Figure 9a middle), we hypothesized 903 

that LIP activity would only be driven by the sample that reaches the threshold (and dictates 904 

the animal response). To this end, we first simulated the behavioral extrema detection model 905 

for all trials, using parameters (𝜃, 𝜎, 𝜋𝐿, 𝜋𝑅) fitted from the corresponding animal, to identify 906 

which sample i reaches the subject-specific threshold. We then assumed that the spiking 907 

activity of the neuron would follow the stimulus value at sample i 𝑆𝑡𝑖 (signed by the preferred 908 

direction of the neuron 𝑝(𝑛) through: 909 

𝐸𝐸𝐷(𝑠𝑡
(𝑛))  =  𝑒𝑥𝑝(𝑤0

(𝑛) + 𝑝(𝑛)𝑆𝑡𝑖𝛴𝑗𝑤𝑗
(𝑛)/2) 910 

Again the spike count were generated from a Poisson distribution with rate 𝐸𝐸𝐷(𝑠𝑡
(𝑛)). 911 

Finally, for the snapshot model (Supp. Figure 9a bottom), we assumed that the neuron activity 912 

would merely reflect the sensory value of the only sample it would attend. We assumed that 913 

the probability mass function to attend each of the 7 samples would be neuron-specific, so we 914 

used the normalized weights of the Poisson GLM for that specific neuron as defining such 915 

probability (weights were signed by the neuron preferred direction so that the vast majority of 916 

weights were positive; negative weights were ignored). For each trial, we thus randomly 917 

sampled the attended sample i using this probability mass function and then simulated the 918 

spike count 𝑠𝑡
(𝑛) from a Poisson distribution with rate 𝐸𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡(𝑠𝑡

(𝑛))  =  𝑒𝑥𝑝(𝑤0
(𝑛) +919 

𝑝(𝑛)𝑆𝑡𝑖𝛴𝑗𝑤𝑗
(𝑛)).  920 

We simulated spiking activity for each neuron and for each integration and non-integration 921 

model, and then used simulated data to compute neural integration maps exactly as described 922 

above for the actual LIP neuron activity. 923 

 924 

Data and code availability 925 

All experimental data (behavioral and neural data in monkeys, behavioral data in rats and 926 

humans) and code to run the analysis will be made publicly available 927 

at https://github.com/ahyafil prior to final publication  928 
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 1053 

SUPPLEMENTARY FIGURES 1054 

 1055 
Supplementary Figure 1. Parameter fits for integration and non-integration models. A. Modulation 1056 

gain 𝛾 per session for the integration model, for each animal (green: monkey P; purple: monkey N). B. 1057 

Mixture coefficients 𝜋𝑖 of the snapshot model estimated for each monkey, representing the prior 1058 

probability that each sample is attended on each trial. C. Parameters T and 𝜎 of the extrema-detection 1059 

model, estimated for each monkey. Error bars correspond to the confidence interval obtained using the 1060 

Laplace approximation. 1061 
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 1062 
Supplementary Figure 2. Model fits for variants of the snapshot model. A. Predicted accuracy for 1063 

the snapshot model fitted to monkey data, as a function of memory span K, for fixed lapses (blue curve, 1064 

𝜋𝐿 = 𝜋𝑅 = 0.01) and lapses estimated from the data (black curve). Full lines represent the model with 1065 

sensory noise (“probabilistic”), dotted lines represent the model without sensory noise (“non-1066 

probabilistic”). Memory span K corresponds to the number of successive samples used to define the 1067 

decision on each trial (see Methods). The horizontal bar corresponds to the average accuracy of the 1068 

animal. B. AIC difference between snapshot and integration model. Legend as in A. Positive values 1069 

indicate that the snapshot model provides a worse fit.  C. Psychometric curve for the snapshot model 1070 

with span K=3 samples, sensory noise and free lapse parameters (best snapshot model variant 1071 

according to AIC). D. Psychophysical kernel for the same variant of the model. E. Correlation between 1072 

data and model integration maps for variants of the snapshot model. 1073 
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 1074 

Supplementary Figure 3. Model fits for variants of the extrema-detection model. A. Predicted 1075 

accuracy for the extrema-detection model fitted to the monkey data, for random (black curves) and last 1076 

sample (red curve) default rule, and for fixed lapses (𝜋𝐿 = 𝜋𝑅 = 0.01) or lapse parameters estimated 1077 

from the data. The horizontal bar indicates animal accuracy. B. AIC difference between variants of the 1078 

extrema-detection model and the integration model. Legend as in A. Positive values indicate that the 1079 

extrema-detection model provides a worse fit. C-D. Psychometric curve (C) and psychophysical kernel 1080 

(D) for the model variant that provided the best match to behavior in terms of predicted accuracy and 1081 

AIC: free lapse parameters and last sample rule. E. Correlation between integration maps from animal 1082 

data and simulated data (see Figure 4) for variants of the extrema-detection model. The horizontal bar 1083 

marks the correlation between experimental data and the integration model.  1084 
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 1085 

Supplementary Figure 4. Subjective weights for animal data and simulated models.  Impact on 1086 

decision of individual samples as a function of absolute sample evidence. Shaded area: standard error 1087 

of the weight. Top row: monkey P; bottom row: monkey N. A.  Integration model. B. extrema-detection 1088 

model.  The vertical dotted line marks the value of the threshold T estimated from animal data. C. Impact 1089 

on decision of individual pulses, estimated from each monkey.  1090 

 1091 

 1092 

Supplementary Figure 5. Integration of early and late evidence for monkey P. A. Integration map. 1093 

Legend as in Figure 4A. B. Conditional psychometric curves. Legend as in Figure 4B. C. Bias and lapse 1094 

parameters from conditional psychometric curves, as a function of late evidence. Legend as in Figure 1095 

4D-E. 1096 
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1097 
Supplementary Figure 6. Integration between early and late evidence for simulated data from 1098 

integration and non-integration models. Data was simulated for each model from parameters 1099 

estimated from monkey N. Left panels: integration model. Middle panels: snapshot models. Right 1100 

panels: extrema-detection models. A. Integration maps. B. Conditional psychometric curves. C. Lateral 1101 

bias and D. lapse parameters estimated from conditional psychometric curves, as a function late 1102 

evidence. Legend as in Figure 4.  1103 
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 1104 

Supplementary Figure 7. Maximum accuracy of the non-integration models vs. human subject 1105 

accuracy in the orientation discrimination task. Left panel: snapshot model (with span K=1). Right 1106 

panel: extrema-detection. Each symbol represents a subject.   1107 

 1108 

 1109 

Supplementary Figure 8. Psychophysical kernels for animals and models in rats (n=3) 1110 

performing the DSS task with 20-sample stimuli. 1111 

  1112 
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 1113 

Supplementary Figure 9. Individual LIP neurons integrate sensory information over stimulus 1114 

sequence. A. Neural models for temporal integration, extrema-detection and snapshot model. B. 1115 

Integration map for LIP neurons, and simulated neurons following either integration, extrema-detection 1116 

or snapshot model. Color represents the average normalized spike count per bins of neuron-weighted 1117 

early and late evidence (see Methods). Isolines represent values of 0.4, 0.6, 1, 1.4 and 1.8. 1118 
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