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Temporal integration is a robust feature of perceptual decisions
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Making informed decisions in noisy environments requires integrating sensory information
over time. However, recent work has suggested that it may be difficult to determine whether
an animal’'s decision-making strategy relies on evidence integration or not. In particular,
strategies based on extrema-detection or random snapshots of the evidence stream may be
difficult or even impossible to distinguish from classic evidence integration. Moreover, such
non-integration strategies might be surprisingly common in experiments that aimed to study
decisions based on integration. To determine whether temporal integration is central to
perceptual decision making, we developed a new model-based approach for comparing
temporal integration against alternative “non-integration” strategies for tasks in which the
sensory signal is composed of discrete stimulus samples. We applied these methods to
behavioral data from monkeys, rats, and humans performing a variety of sensory decision-
making tasks. In all species and tasks, we found converging evidence in favor of temporal
integration. First, in all observers across studies, the integration model better accounted for
standard behavioral statistics such as psychometric curves and psychophysical kernels.
Second, we found that sensory samples with large evidence do not contribute
disproportionately to subject choices, as predicted by an extrema-detection strategy. Finally,
we provide a direct confirmation of temporal integration by showing that the sum of both early
and late evidence contributed to observer decisions. Overall, our results provide experimental
evidence suggesting that temporal integration is an ubiquitous feature in mammalian
perceptual decision-making. Our study also highlights the benefits of using experimental
paradigms where the temporal stream of sensory evidence is controlled explicitly by the
experimenter, and known precisely by the analyst, to characterize the temporal properties of
the decision process.
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INTRODUCTION

Perceptual decision-making is thought to rely on the temporal integration of noisy sensory
information on a timescale of hundreds of milliseconds to seconds. Temporal integration
corresponds to summing over time the evidence provided by each new sensory stimulus, and
optimizes perceptual judgments in face of noise (Bogacz et al. 2006; Gold and Shadlen 2007).
A perceptual decision can then be made on the basis of this accumulated evidence, either as
some threshold on accumulated evidence is reached, or if some internal or external cue
signals the need to initiate a response.

Although many behavioral and neural results are consistent with this integration framework,
temporal integration is a feature that has often been taken for granted rather than explicitly
tested. Recently, the claim that standard perceptual decision-making tasks rely on (or even
frequently elicit) temporal integration has been challenged by theoretical results showing that
non-integration strategies can produce behavior that carries superficial signatures of temporal
integration (Stine et al. 2020). These signatures include the relationship between stimulus
difficulty, stimulus duration and behavioral accuracy, the precise temporal weighting of
sensory information on the decisions, and the patterns of reaction times.

Here, we propose new analytical tools for directly assessing integration and non-integration
strategies from fixed-duration or variable-duration paradigms where, critically, the
experimenter controls the fluctuations in perceptual evidence over time within each trial
(discrete-sample stimulus, or DSS). By leveraging these controlled fluctuations, our methods
allow us to make direct comparisons between integration and non-integration strategies. We
apply these tools to assess temporal integration in data from monkeys, humans and rats that
performed a variety of perceptual decision-making tasks with DSS. Applying these analyses
to these behavioral datasets yields strong evidence that perceptual decision-making tasks in
all three species rely on temporal integration. Temporal integration, a critical element of many
major theories of perception at both the neural and behavioral levels, is indeed a robust and
pervasive aspect of mammalian behavior. Our results also illuminate the power of targeted
stimulus design and statistical analysis to test specific features of behavior.

RESULTS

Integration and non-integration models

In a typical perceptual evidence-integration experiment (Figure 1A), an observer is presented
in each trial with a time-varying stimulus and must report which of two possible stimulus
categories it belongs to. Typical examples include judging whether a dynamic visual stimulus
is moving leftwards or rightwards (Yates et al. 2017; Katz et al. 2015); whether the orientation
of a set of gratings is more aligned with cardinal or diagonal directions (Wyart et al. 2012);
whether a combination of tones is dominated by high or low frequencies (Morillon, Schroeder,
and Wyart 2014; Hermoso-Mendizabal et al. 2020; Znamenskiy and Zador 2013); or which of
two acoustic streams is more intense or dense (Brunton, Botvinick, and Brody 2013; Pardo-
Vazquez et al. 2019). Such paradigms have been used extensively in humans, nonhuman
primates and rodents. Here we focus on experiments in which observers report their choice at
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81 the end of a period whose duration is controlled by the experimenter (Kiani and Shadlen 2009;
82  Wyart et al. 2012; Brunton, Botvinick, and Brody 2013; Raposo et al. 2012), in contrast to so-
83 called “reaction time” tasks, in which the observer can respond after viewing as brief a portion
84  of the stimulus as they wish (Roitman and Shadlen 2002; Znamenskiy and Zador 2013; Pardo-
85 Vazquez et al. 2019; Hermoso-Mendizabal et al. 2020).

86  Moreover, we focus on experimental paradigms in which the sensory evidence in favor of each
87  category arrives in a sequence of discrete samples. Samples can correspond to motion pulses
88 (Yatesetal. 2017), individual gratings (Wyart et al. 2012), acoustic tones (Morillon, Schroeder,
89 and Wyart 2014; Hermoso-Mendizabal et al. 2020; Znamenskiy and Zador 2013) numbers
90 (Bronfman et al. 2015) or symbols representing category probabilities (Yang and Shadlen
91 2007). We refer to this configuration as the discrete-sample stimulus (DSS) paradigm. In this
92  paradigm, the perceptual evidence provided by each sample can be controlled independently,
93 allowing for detailed analyses of how different samples contribute to the behavioral response.
94  The DSS framework can be contrasted with experiments in which the experimenter specifies
95  only the mean stimulus strength on each trial, and variations in sensory evidence over time
96 are not finely controlled or are not easily determined from the raw spatio-temporal stimulus.

97  Tasks using the DSS paradigm are classically thought to rely on sequential accumulation of

98 the stimulus evidence (Bogacz et al. 2006), which we refer to here as temporal integration.

99  Figure 1A shows an example stimulus sequence composed of n samples that provide differing
100 amounts of evidence in favor of one alternative vs. another (“A” vs. “B”). The accumulated
101  evidence fluctuates as new samples are integrated and finishes at a positive value indicating
102 overall evidence for stimulus category A (Figure 1B). This integration process can be
103 formalized by defining the the decision variable or accumulated evidence x; and its updating
104 dynamics across stimulus samples: x; = x;_; + m; where m; = S; + ¢; represents a noisy
105 version of the true stimulus evidence S; in the i-th sample corrupted by sensory noise ¢;. The
106  binary decision r is simply based on the sign of the accumulated evidence x,, at the end of the
107 sample sequence (composed of n samples): r =4 if x, >0, and r =B if x, <0. This
108 procedure corresponds to the normative strategy with uniform weighting that maximizes
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A _ Sensory integration paradigm Figure 1. A. Schematic of a typical fixed-duration
t%ﬂg?ggi perceptual task with discrete-sample stimuli (DSS).
A stimulus is composed of a discrete sequence of n

samples (here, n=6). The subjects must report at the
end of the sequence whether one specific quality of
the stimulus was “overall” leaning more towards one
of two possible categories A or B. Evidence in favor
of category A or B varies across samples (blue and
Temporal integration model orange bars). B. Temporal integration model. The
_I_l— relative evidence in favor of each category is
-’ accumulated sequentially as each new sample is

presented (black line), resulting in temporal
integration of the sequence evidence. The choice is
determined by the end point of the accumulation
process: here, the overall evidence in favor of
C Extrema detection model category A is positive, so response A is selected. C.
thresholdTorA A~ "~ ~~~~~—- Extrema detegtion model. A _decision is m_ade
whenever the instantaneous evidence for a given

T 1 sample (blue and orange arrows) reaches a certain

L 4 fixed threshold (dotted lines). The selected choice

corresponds to the sign of the evidence of the
sample that reaches the threshold (here, response
B). Subsequent samples are ignored (gray bars). D.
D Snapshot model Snapshot model. Here, only one sample is attended.
| |random Which sample is attended is determined in each trial

; Isample
I
l |
|
I

evidence
towards B

v

accumulated @
evidence
!
|

threshold for B _}

1 _ by a stochastic policy. The response of the model
! T 4 —+ simply depends on the evidence of the attended
| sample. Other samples are ignored (gray bars).
1
|

Variants of the model include attending K>1
sequential samples.

-

109 accuracy. For such perfect integration, x, =

110  X;S; + 2;¢;, so that the probability of response A is p(r = A) = ®(2;£S;) where @ is the
111 cumulative normal distribution function (the normative weight for the stimuli 8 depends on the
112  noise variance Var(e) and the number of samples through g = 1/,/nVar(e)). Departures
113  from optimality in the accumulation process such as accumulation leak, categorization
114  dynamics, sensory adaptation or sticky boundaries may however yield unequal weighting of
115 the different samples (Yates et al. 2017; Brunton, Botvinick, and Brody 2013; Prat-Ortega et
116  al. 2021; Bronfman, Brezis, and Usher 2016). To accommodate for these, we allowed the
117 model to take any arbitrary weighting of the samples: p(r = A) = ®(f, + 2;6:S;) (see
118 Methods for details). The mapping from final accumulated evidence to choice was
119 probabilistic, to account for the effects of noise from different sources in the decision-making
120  process (Drugowitsch et al. 2016).

121  Although it has been commonly assumed that observers use evidence integration strategies
122  to perform these psychophysical tasks, recent work has suggested that observers may employ
123  non-integration strategies instead (Stine et al. 2020). Here we consider two specific alternative
124  models. The first non-integration model corresponds to an extrema-detection model (Waskom
125 and Kiani 2018; Stine et al. 2020; Ditterich 2006). In this model, observers do not integrate
126  evidence across samples but instead base their decision on extreme or salient bits of
127  evidence. More specifically, the observer commits to a decision based on the first sample i in
128 the stimulus sequence that exceeds one of the two symmetrical thresholds, i.e. such that
129 |my;| = 6. In our example stimulus, the first sample that reaches this threshold in evidence
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130 space is the fifth sample, which points towards stimulus category B, so response B is selected
131  (Figure 1C). This policy can be viewed as a memory-less decision process with sticky bounds.
132  If the stimulus sequence contains no extreme samples, so that neither threshold is reached,
133 the observer selects a response at random. (Following (Stine et al. 2020), we also explored
134  an alternative mechanism where in such cases the response is based on the last sample in
135 the sequence).

136  The second non-integration model corresponds to the snapshot model (Stine et al. 2020; Pinto
137 et al. 2018). In this model, the observer attends to only one sample i within the stimulus
138 sequence, and makes a decision based solely on the evidence from the attended sample: r =
139 A ifm; >0, and r =B if m; < 0. The position in the sequence of the attended sample is
140 randomly selected on each trial. In our example, the fourth sample is randomly selected, and
141  since it contains evidence towards stimulus category A, response A is selected (Figure 1D).
142  We considered variants of this model that gave it additional flexibility, including: allowing the
143  prior probability over the attended sample to depend on its position in the sequence using a
144  non-parametric probability mass function estimated from the data; allowing for deterministic
145  vs. probabilistic decision-making rule based on the attended evidence; including attentional
146  lapses that were either fixed to 0.02 (split equally between leftward and rightward responses)
147  or estimated from behavioral data. We finally considered a variant of the snapshot where the
148  decision was made based on a sub-sequence of K consecutive samples within the main
149  stimulus sequence (1 < K < n), rather than based on a single sample.

150

151 Standard behavioral statistics favor integration accounts of pulse-based motion
152 perception in primates

153 To compare the three decision-making models defined above (i.e., temporal integration,
154  extrema-detection, snhapshots), we first examined behavioral data from two monkeys
155 performing a fixed-duration motion integration task (Yates et al. 2017). In this experiment,
156  each stimulus was composed of a sequence of 7 motion samples of 150 ms each where the
157  motion strength towards left or right was manipulated independently for each sample. At the
158 end of the stimulus sequence, monkeys reported with a saccade whether the overall sequence
159 contained more motion towards the left or right direction. The animals performed 72137 and
160 33416 trials for monkey N and monkey P respectively, allowing for in-depth dissection of their
161  response patterns.

162  We fit the three models (and their variants) to the responses for each animal individually (see
163  Supplementary Figure 1 for estimated parameters for the different models). We then
164  simulated the fitted model and computed, for simulated and experimental data, the
165 psychophysical kernels capturing the weights of the different sensory samples based on their
166  position in the stimulus sequence (Figure 2B). Psychophysical kernels were non-monotonic
167 and differed in shape between the two animals, probably reflecting the complex contributions
168  of various dynamics and sub-optimalities along the sensory and decision pathways (Yates et
169 al. 2017).

170

171  The temporal profile of the kernel was perfectly matched by the integration model, almost by
172  design, as we gave full flexibility to the model to adjust the sample weights. The snapshot
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173  model was provided with similar flexibility, as the prior probability of attending each sample
174  could be fully adjusted to the monkey decisions. Surprisingly, however, the snapshot model
175 could not match the experimental psychophysical kernel as accurately. It consistently
176  underestimated the magnitude of weighting in monkey P (Figure 2B, bottom row). The
177  extrema-detection model was not endowed with such flexibility of sensory weighting. On the
178  contrary, since the decision was based on the first sample in the sequence reaching a certain
179  criterion, this inevitably generates a primacy effect in the psychophysical kernels - or at best
180 a flat weighting (Stine et al. 2020). The model thus failed to capture the non-monotonic
181 psychophysical kernels from animal data.

182  Next, we looked at the psychometric curves and choice accuracy predictions of each fitted
183 model (Figure 2C-D). Stine and colleagues have argued that integration and non-integration
184  models can capture the psychometric curves equally well (Stine et al. 2020). For both animals,
185 the accuracy and psychometric curves were accurately captured by the integration model. In
186 line with Stine and colleagues, we also found that both non-integration models could
187  reproduce the shape of the psychometric curve in monkey N, although the quantitative fit was
188  always better for the integration than non-integration models. By contrast both non-integration
189 models failed to capture the psychometric curve for monkey P (Figure 2B, bottom row). More
190 systematically, the overall accuracy, which is an aggregate measure of the psychometric
191 curve, clearly differs between models, as the accuracy of the non-integration models
192  systematically deviated from animal data for both animals (Figure 2C). In other words, all
193 models produce the same type of psychometric curves up to a scaling factor, and this scaling
194  factor (directly linked to the model accuracy) is key to differentiate model fits. For the snapshot
195 model in monkey P, this discrepancy was explained because the model, limited to using one
196  stimulus sample, could not reach the performance of the model (compare the maximum
197 accuracy of the model indicated by the blue mark with the accuracy of the animal), as the
198 snapshot model is limited to making decisions based on one sensory sample only. (This also
199 explains why the psychophysical kernel of the snapshot model underestimated the true kernel
200 in monkey P). For the extrema-detection model in monkey P and for both non-integration
201 models in the other animal (monkey N) and for the extrema-detection model, the model
202  accuracy is not bounded below the subject’s accuracy. In such cases, the model can produce
203  better-than-observed accuracy for certain parameter ranges, but these are not the parameters
204  found by the maximum likelihood procedure, probably because they produce a pattern of
205 errors that is inconsistent with the observed pattern of errors. This indicates an inability of the
206  models to match the pattern of errors of the animal (see Discussion).

207  Finally, we assessed quantitatively which model provided the best fit, while correcting for
208 model complexity using the Akaike Information Criterion (AIC, Figure 2A). In both monkeys,
209 AIC favored the integration model over the two non-integration models by a very large margin.
210 We also explored whether variants of the extrema-detection and snapshot models could
211  provide a better match to the behavioral metrics considered above (Supp Figure 2 & 3). We
212  found using the AIC metric that the integration model was preferred over all variants of both
213 non-integration models, for both monkeys. Moreover, these model variants could not replicate
214  the psychophysical kernels as well as the integration model did (Supp Figure 2 & 3). In
215  conclusion, while psychometric curves may not always discriminate between integration and
216  non-integration strategies, other metrics including psychophysical kernels, predicted accuracy
217  and quality of fit (AIC) support temporal integration in monkey perceptual decisions. For one
218 model in one monkey (the snapshot model in monkey P), even the simple metric of overall
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219  accuracy compellingly supported temporal integration (Fig. 2C). For the other monkey and/or
220  model, where the distinction was less clear, our model-based approach allowed us to leverage
221  these other metrics to reveal strong support for the temporal integration model (Fig. 2A-C).
222  Although these data relies only on two experimental subjects, we show below further evidence
223  supporting the integration model in humans and rats.
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226  Figure 2. The integration model better described monkey behavior than non-integration models.
227  A. Difference between AIC of models (temporal integration: red bar; snapshot model: blue; extrema-
228 detection model: green) and temporal integration model for each monkey. Positive values indicate
229 poorer fit to data. B. Psychophysical kernels for behavioral data (black dots) vs. simulated data from
230 temporal integration model (left panel, red curve), snapshot model (middle panel, blue curve) and
231 extrema-detection model (right panel, green curve) for the two animal (monkey N: top panels; monkey
232 P: bottom panels). Each data point represents the weight of the motion pulse at the corresponding
233 position on the animal/model response. Error bars and shadowed areas represent the standard error
234  of the weights for animal and simulated data, respectively. C. Accuracy of animal responses (black
235 bars) vs simulated data from fitted models (colour bars), for each monkey. Blue and green marks
236 indicate the maximum performance for the snapshot and extrema-detection models, respectively. Error
237 bars represent standard error of the mean. D. Psychometric curves for animal (black dots) and
238  simulated data (colour lines) for monkey N, representing the proportion of rightward choices per quantile
239  of weighted stimulus evidence.

240
241

242  Monkey responses where the largest evidence sample is at odds with the overall
243  stimulus sequence are inconsistent with the extrema-detection model
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244 While formal model comparison leads us to reject the non-integration models in favor of the
245  integration models, it is informative to examine qualitative features of the animal strategies
246  and identify how non-integration models failed to capture them. We started by designing two
247  analyses aimed at testing whether choices were consistent with the extrema-detection model,
248 namely by testing whether choices were strongly correlated with the largest-evidence
249  samples. In the first analysis, we looked at the subset of trials where the evidence provided
250 by the largest-evidence sample in the sequence was at odds with the total evidence in the
251  sequence: we show one example in Figure 3B, where the largest evidence sample points
252  towards response B, while the overall evidence points towards response A. These ‘disagree
253  trials’ represent a substantial minority of the whole dataset: 1865 trials (2.6%) in monkey N,
254 1831 trials (5.5%) in monkey P. If integration is present, the response of the animal should in
255 general be aligned with the total evidence from the sequence (Figure 3A, red bars). By
256  contrast, if it followed the extrema-detection model (Figure 1C), it should in general follow the
257  largest evidence sample (Figure 3A, green bars). In both monkeys, animal choices were more
258  often than not aligned with the integrated evidence (Figure 3A, black bars), as predicted by
259 the integration model. The responses generated from the extrema-detection model tended to
260 align more with the largest evidence sample, although that behaviour was somehow erratic
261  (for monkey N) due to the large estimated decision noise in the model. This rules out that
262  monkey decisions rely on a memoryless strategy of simply detecting large evidence samples,
263 discarding all information provided by lower evidence samples. Our results complement a
264  previous analysis on disagree trials in this task (Levi et al. 2018), by explicitly comparing
265 monkey behavior to model predictions.

266

267  We reasoned that the extrema-detection would also leave a clear signature in the “subjective
268  weight” of the samples, defined as the impact of each sample on the decision as a function of
269  absolute sample evidence (Yang and Shadlen 2007; Waskom and Kiani 2018; Nienborg and
270 Cumming 2007). The extrema-detection model predicts that, in principle, samples whose
271  evidence is below the threshold have little impact on the decision, while samples whose
272  evidence is above the threshold have full impact on the decision. By contrast, the integration
273  model predicts that subjective weight should grow linearly with sample evidence. We
274  estimated subjective weights from monkey choices using a regression method similar in spirit
275 to previous methods (Yang and Shadlen 2007; Waskom and Kiani 2018), taking the form
276 p(r; =A) = d(BoZicq1.mbi f(Swi))- Here fis a function that captures the subjective weight of

277 the sample as a function of its associated evidence. Whereas previous methods estimated
278  subjective weights assuming a uniform psychophysical kernel, our method estimated
279  simultaneously subjective weights f(S)and the psychophysical kernel g, thus removing
280 potential estimation biases due to unequal weighting of sample evidence (see Methods). In
281  both monkeys, we indeed found that the subjective weight depends linearly on sample
282  evidence for low to median values of sample evidence (motion pulse lower than 6), in
283  agreement with the integration model (Supp. Figure 4). Surprisingly however, simulated data
284  of the extrema-detection model displayed the same linear pattern for low to median values of
285 sample evidence. We realized this was due to the very high estimated sensory noise (Supp
286  Fig 1), such that, according to the model, even samples with minimal sample evidence were
287 likely to reach the extrema-detection threshold. In other words, unlike the previous analyses,
288 inferring the subjective weights used by animals was inconclusive as to whether animals
289 deployed the extrema-detection strategy. This somewhat surprising dependency reinforces
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290 the importance of validating intuitions by fitting and simulating models (Wilson and Collins
291  2019).
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293 Figure 3. The pattern of animal choices is incompatible with extrema-value based decisions. A.
294 Example of an ‘agree trial’ where the total stimulus evidence (accumulated over samples) and the
295  evidence from the largest-evidence sample point towards the same response (here, response A). In
296  this case, we expect that temporal integration (TI) and extrema-detection (ED) will produce similar
297  responses (here, A). B. Example of a ‘disagree trial’, where the total stimulus evidence and evidence
298 from the largest-evidence sample point towards opposite responses (here A for the former; B for the
299 latter). In this case, we expect that integration and extrema-detection models will produce opposite
300 responses. C. Proportion of choices out of all disagree trials aligned with total evidence, for animal
301  (black bars), integration (red) and extrema-detection model (green).

302

303 Choice dependence on early and late stimulus evidence show direct evidence for
304 temporal integration

305 Following model comparisons favoring integration over both snapshot and extrema-detection
306 models, the immediately previous analysis relied on a special subset of trials to provide an
307 additional, and perhaps more intuitive, signature of integration, which ruled out extrema-
308 detection as a possible strategy of either monkey. We next employed another novel analysis
309 specifically designed to tease apart unique signatures of the integration and snapshot models.
310 More specifically, we tested whether decisions were based on the information from only one
311  part of the sequence, as predicted by the snapshot model, or from the full sequence, as
312  predicted by the integration model. To facilitate the analysis, we defined early evidence E; by
313  grouping evidence from the first three samples in the sequence, and late evidence L;, as the
314  grouped evidence from the last four samples. We then displayed the proportion of rightward
315 responses as a function of both early and late evidence in a graphical representation that we
316 call integration map (Figure 4A). A pure integration strategy corresponds to summing early
317 and late evidence equally, which can be formalized as p(r) = o(E; + L;), where ois a
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318  sigmoidal function. Because this only depends on the sum E; + L, the probability of response
319 is invariant to changes in the (E; L;)space along the diagonal, which leaves the sum
320 unchanged. These diagonals correspond to isolines of the integration map (Figure 4A, left;
321  Supp Figure 5A). In other words, straight diagonal isolines in the integration map reflect the
322  fact that the decision only depends on the sum of evidence E; + L;. Straight isolines thus
323  constitute a specific signature of evidence integration.

324  We contrasted this integration map with the one obtained from a non-integration strategy
325  (Figure 4A middle panel; Supp Figure 5A). There we assumed that the decision depends either
326  onthe early evidence or on the late evidence, as in the snapshot model, with equal probability.
327  This can be formalized as p(r) = 0.5¢(E;) + 0.50(L;). In this case, if late evidence is null
328 (a(L;) = 0.5) and early evidence is very strong toward the right (¢(E;) = 1) the overall
329  probability for rightward response is p(r) = 0.75. This probability contrasts with that obtained
330 inthe integration case where the early evidence would dominate and lead to an overwhelming
331  proportion of rightward responses, i.e. p(r) = 1. The 25% of leftwards responses yielded by
332 the non-integration model correspond to trials where only the late (uninformative) part of the
333  stimulus is attended and a random response to the left is drawn. More generally, in regions of
334  the space in which either early or late evidence take large absolute values, their corresponding
335 probability of choice saturates to 0 or 1, when that evidence is attended, so the overall
336 response probability becomes only sensitive to the other evidence. As a result, the
337  equiprobable lines bend towards the horizontal and vertical axes (Figure 4A middle). Finally,
338  to compare predictions from both integration and non-integration models to monkey behavior,
339  we plotted the integration maps for both monkeys (Figure 4A, right; Supp Figure 5A). The
340 isolines were almost straight diagonal lines and showed no consistent curvature towards the
341  horizontal and vertical axes. This provides direct evidence that monkey responses depend
342  directly on the sum of early and late evidence— a clear signature of temporal integration.

343  We derived subsequent tests based on the integration map. We computed conditional
344  psychometric curves as the probability for rightward responses as a function of early evidence
345  E;, conditioned on late evidence value L, (Figure 4B; Supp Figure 5B). From the integration
346 formula p(r) = o(E; + L;), we see that a change in late evidence value corresponds to a
347  horizontal shift of the conditional psychometric curves. By contrast, according to the non-
348 integration formula p(r) = 0.50(E;) + 0.50(L;), conditioning on different values of late
349 evidence adds a fixed value to the response probability irrespective of early evidence, a
350 vertical shift akin to that introduced by lapse responses (Figure 4B middle panel). The
351  conditional psychometric curves for monkeys (Figure 4B right panel; Supp Fig 5 & 6) displayed
352  horizontal shifts as late evidence was changed, consistently with the integration hypothesis.
353  We sought to quantify these shifts in better detail. To this purpose, we fitted each conditional
354  psychometric curve with the formula p(r) = (1 —n, — g) o(aE; + B) + mg, Where m;, gz, @
355 and B correspond to the left lapse, right lapse, sensitivity and lateral bias parameters,
356 respectively (Figure 4C, Supp Fig 5 & 6). The integration model predicts that the bias
357 parameter § should vary linearly with L;, while lapse parameters should remain null (Figure
358 4D, left panel). By contrast, the non-integration model predicts that the horizontal shift
359  parameter 8 should remain constant while left and right lapse parameters (r;, ) should vary
360 (middle panel), as these lapse parameters correspond to the trials where early evidence is not
361 attended and the response depends simply on late evidence. Both monkeys showed a very
362  strong linear dependence between late evidence and the horizontal shift g (Figure 4D, right
363  panel; see also Supp Fig 5), further supporting that late evidence is summed to early evidence.
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By contrast, the lapse parameters showed no consistent relationship with late evidence L;
(Figure 4E, right panel). Finally, we directly assessed the similarities between the integration
maps from monkey responses and from simulated responses for the three models (integration,
snapshot, extrema-detection). The model-data correlation was larger in the integration model
than in the non-integration strategies for both monkeys (Figure 4E; unpaired t-test on
bootstrapped r values: p<0.001 for each animal and comparison against extrema-detection
and against snapshot model). Overall, integration maps allow to dissect how early and late
parts of the stimulus sequence are combined to produce a behavioral response. In both
monkeys, these maps carried signatures of temporal integration. For monkey P, the integration
model and the data look very similar. For monkey N, there is still a qualitative dependency that
deviates from non-integration, but which is not as uniquely matched to the integration strategy
(although the imperfect coverage of the two-dimensional space impedes further investigations).
Thus, complementing the statistical model tests favoring integration, this richer visualization
allows the data to show us that some degree of integration is occurring, albeit not perfect.
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Figure 4. Integration of early and late evidence into animal responses is incompatible with the
snapshot model. A. Integration map representing the probability of rightward responses (orange: high
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382 probability; blue: low probability) as a function of early stimulus evidence E,and late stimulus evidence
383 L., illustrated for a toy integration model (where p(right) = o(E; + L;); left panel) and a toy non-
384  integration model (p(right) = 0.50(E;) + 0.50(L;); middle panel), and computed for monkey N
385 responses (right panel). Black lines represent the isolines for p(rightwards)=0.15, 0.3, 0.5, 0.7 and 0.85.
386 B. Conditional psychometric curves representing the probability for rightward response as a function of
387  early evidence E,, for different values of late evidence L, (see inset for L,values), for toy models and
388 monkey N. The curves correspond to horizontal cuts in the integration maps at L; values marked by
389 colour triangles in panel A. C. lllustration of the fits to conditional psychometric curves. The value of the
390 bias S, left lapse m and right lapse mzare estimated from the conditional psychometric curves for each
391  value of late evidence. D. Lateral bias as a function of late evidence for toy models and monkey N.
392 Shaded areas represent standard error of weights for animal data. E. Lapse parameters (blue: left lapse;
393  orange: right lapse) as a function of late evidence for toy models and monkey N. F. Pearson correlation
394 between integration maps for animal data and integration maps for simulated data, for each animal.
395 Red: integration model; blue: snapshot model; green: extrema-detection model.

396
397 Temporal integration in human visual orientation judgments

398 Overall, all our analyses converged to support the idea that monkey decisions in a fixed-
399  duration motion discrimination task relied on temporal integration. We explored whether the
400 same results would hold for two other species and perceptual paradigms. We first analyzed
401 the behavioral responses from 9 human subjects performing a variable-duration orientation
402  discrimination task (Cheadle et al. 2014). In each trial, a sequence of 5 to 10 gratings with a
403 certain orientation were shown to the subject, and the subject had to report whether they
404  thought the gratings were overall mostly aligned to the left or to the right diagonal. In this task,
405 the experimenter can control the evidence provided by each sample by adjusting the
406  orientation of the grating. We performed the same analyses on the participant responses than
407 on monkey data. As for monkeys, we found that the integration model nicely captured
408 psychometric curves, participant accuracy and psychophysical kernels (Figure 5A-C, red
409  curves and symbols). By contrast, both non-integration models failed to capture these patterns
410 (Figure 5A-C, blue and green curves and symbols). The accuracy from both models
411  consistently underestimated participant performance: 8 and 6 out of 9 subjects outperformed
412 the maximum performance for the snapshot and extrema-detection models, respectively
413  (Supp. Figure 7). This suggests that human participants achieved such accuracy by integrating
414  sensory evidence over successive samples. Moreover, subjects overall weighted more later
415  samples (Figure 5C), which is inconsistent with the extrema-detection mechanism. A formal
416  model comparison confirmed that in each patrticipant, the integration model provided a far
417  better account of subject responses than either of the non-integration models did (Figure 5D).
418 We then assessed how subjects combined information from weak and strong evidence
419 samples into their decisions, using the same analyses as for monkeys. As predicted by the
420 integration model, but not by the extrema-detection model, humans choices consistently
421  aligned with the total stimulus evidence and not simply with the strongest evidence sample
422  (Figure 5E). Finally, the average integration map for early and late evidence within the stimulus
423  sequence displayed nearly linear diagonal isolines, showing that both were integrated into the
424  response (Figure 5F). Integration maps from participants correlated better with maps predicted
425 by the integration model than with maps predicted by either of the alternative non-integration
426  strategies (Figure 5G; two-tailed t-test on bootstrapped r values: p<0.001 for 7 out 9
427  participants in the integration vs snapshot comparison; in all 9 participants for the integration
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vs extrema-detection comparison). Overall, these analyses show converging evidence that
human decisions in an orientation discrimination task rely on temporal integration.
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Figure 5. Behavioral data from orientation discrimination task in humans provides further
evidence for temporal integration. A. Psychometric curves for human data and simulated data,
averaged across participants (n=9). Legend as in figure 2C. B. Simulated model accuracy (y-axis) vs
participant accuracy (x-axis) for integration model (red), snapshot model (blue) and extrema-detection
model (green). Each symbol corresponds to a participant. C. Psychophysical kernel for human data and
simulated data, averaged across participants. Legend as in A. D. Difference in AIC between each model
and the integration model. Legend as in B. E. Proportion of choices aligned with total stimulus evidence
in disagree trials, for participant data (black bars) and simulated models, averaged over participants. F.
Integration map for early and late stimulus evidence, computed as in Figure 4A, averaged across
participants. G. Correlation between integration map of participants and simulated data for integration,
shapshot and extrema-detection models, averaged across participants. Colour code as in B. Error bars
represent the standard error of the mean across participants in all panels.
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444  Temporal integration in rat acoustic intensity judgments

445  Finally, we analyzed data from 5 rats performing a fixed-duration auditory task where the
446  animals had to discriminate the side with larger acoustic intensity (Pardo-Vazquez et al. 2019).
447  The relative intensity of the left and right acoustic signals was modulated in sensory samples
448  of 50 ms, so that the stimulus sequence provided time-varying evidence for the rewarded port.
449  The stimulus sequence was composed of either 10 or 20 acoustic samples of 50 ms each, for
450 atotal duration of 500 or 1000 ms. We applied the same analysis pipeline as for monkey and
451  human data. The integration model provided a much better account of rat choices than non-
452  integration strategies, based on psychometric curves (Fig. 6A), predicted accuracy (Fig. 6B),
453  psychophysical kernel (Fig. 6C) and model comparison using AIC (Fig. 6D). Similar to humans
454  and monkeys, rats tended to select the side corresponding to the total stimulus evidence and
455  not the largest sample evidence in “disagree” trials, as predicted by the integration model (Fig.
456  6E). Finally, the integration map was largely consistent with an integration strategy (Fig. 6F),
457  and correlated more strongly with simulated maps from the integration model (unpaired t-test
458  on bootstrapped r values: p<0.001 for each animal and comparison against extrema-detection
459  and against snapshot model).

460
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Figure 6. Behavioral data from auditory discrimination task in 5 rats provides further evidence
for temporal integration. Rats were rewarded for correctly identifying the auditory sequence of larger
intensity (number of samples: 10 or 20; stimulus duration: 500 or 1000 ms). Legend as in Figure 5.
Psychophysical kernels are computed only for 10-sample stimuli (in 4 animals). See Supp Figure 8 for
psychophysical kernels with 20-sample stimuli.

DISCUSSION

We investigated the presence of temporal integration in perceptual decisions in monkeys,
humans and rats through a series of standard and innovative analyses of response patterns.
In all analyses we contrasted predictions from one integration and two non-integration
computational models of behavioral responses (Figure 1). For each non-integration model, we
considered multiple variants to explore the maximal flexibility offered by each framework to
capture animal behavior. For our datasets, evidence in favor of integration was easy to achieve
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476  using standard model comparison technique as well as comparing simulated psychometric
477  curves and psychophysical kernels to their experimental counterparts (Figure 2). Our results
478  are in line with previous evidence for temporal integration in perceptual decisions of humans
479  and mice (Pinto et al. 2018; Stine et al. 2020; Waskom and Kiani 2018). Importantly, we also
480  suggest new analyses targeted at revealing specific signatures of temporal integration.

481

482  Insome cases, we could link the failure of the non-integration model to a fundamental limitation
483  of the model. For example, the extrema-detection model cannot explain the non-monotonic
484  psychophysical kernels of monkeys or the increasing psychophysical kernels in humans. This
485 is because the decision in that mode is based on the first sample to reach a certain fixed
486  criterion, so it will always produce a primacy effect, i.e., a decreasing psychophysical kernel.
487  Although this effect can be small, and in practice yields approximately flat kernels (Stine et al.
488  2020), it cannot produce increasing or non-monotonic kernels.

489

490  Another strong limitation of non-integration models (both the extrema detection and the
491  snapshot model) is that accuracy is limited by the fact that decisions depend on a single
492  sample. We found that that boundary performance (i.e. the maximum performance that a
493  model can reach) was actually lower than subject accuracy for most human participants, de
494  facto ruling out these non-integration strategies for these participants. This is consistent to
495  what was observed in a constrast discrimination DSS task where human subjects had to make
496  judgments about image sequences spanning up to tens of seconds each (Waskom and Kiani
497  2018). It clearly contrasts however with results from (Stine et al. 2020) where the non-
498 integration strategies matched the accuracy of human subjects performing the classical
499 random-dot-motion task. This discrepancy may be related to the different sources of noise in
500 the two paradigms. In DSS tasks, because the sensory evidence provided by the stimulus at
501 each moment is controlled by the experimenter, the unpredictability of human responses
502 essentially stems from internal noise at the level of sensory processing and temporal
503 integration (Waskom and Kiani 2018; Drugowitsch et al. 2016). By contrast, in the random dot
504 motion task (Kiani, Hanks, and Shadlen 2008), which is a non-DSS task because the
505 experimenter does not typically specify differing amounts of motion in each time epoch within
506 a single trial, typically elicits more variable responses due to the presence of stimulus noise.
507 This overall increased noise level leads to a looser relationship between the stimulus condition
508 and the behavioral responses, which can thus be accounted for by a larger spectrum of
509 computational mechanisms. These issues have been addressed by forcing “pulses” of a
510 certain stimulus strength and/or by performing post hoc analyses to estimate signal and noise
511 (Kiani, Hanks, and Shadlen 2008) but these are partial solutions that DSS paradigms solve by
512  design. This illustrates the benefits of using experimental designs where variability in stimulus
513 information can be fully controlled and parametrized by the experimenter, as these paradigms
514  discriminate more precisely between different models of perceptual decisions.

515 In atleast one monkey, although quantitative metrics such as penalized log-likelihood and fits
516 to psychometric curves clearly pointed to the integration model as the best account to
517  behavior, the qualitative failure modes of the non-integration strategies (especially the
518 snapshot model) was not immediately clear. Although we tried variants for each non-
519 integration model, there remained a possibility that our precise implementation failed to
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520 account for monkey behavior but that other possible implementations would. Note that the
521 extrema-detection and snapshot are two of the many possible non-integration strategies. A
522  generic form for non-integration strategies corresponds to a policy that implements position-
523  dependent thresholds on the instantaneous sensory evidence. In this framework, the extrema-
524  dependent model corresponds to the case with a position-independent threshold, while the
525  snapshot model corresponds to a null bound for one sample and infinite bounds for all other
526  samples. To rule out these more complex strategies, we conducted additional analyses that
527  specifically targeted core assumptions of the integration and non-integration strategies.

528  First, the extrema-detection model fails to account for the data because it predicts that largest-
529  evidence samples should have a disproportionate impact on choices. However, this does not
530 occur, as monkeys and humans tend to respond according to the total evidence and not the
531 single large-evidence sample (Figure 3C and 5E) - see (Levi et al. 2018) for a similar analysis.
532  All non-integration strategies share the property that on each trial the decision should only rely
533 either on the early or the late part of the trial. We thus directly examined the assumptions of
534  integration and non-integration models by assessing how the evidence from the early and late
535 parts of each stimulus sequence is combined to produce a decision. We introduced integration
536 maps (Figure 4) to inspect such integration: isolines of the integration maps will be rectilinear
537 if and only if early and late evidence are summed, in other words if and only if temporal
538 integration takes place. Unequal weighting of evidence would still produce rectilinear isolines,
539 albeit with a different angle. By contrast, a non-integration scenario when on each trial only a
540 single piece of evidence contributes to the decision predicts isolines that bend towards the
541  axes. Integration maps from monkey, human and rat subjects nicely matched the predictions
542  of the integration models, proving that their decisions do rely on temporal integration. Note
543 that this innovative analysis technique could be used to probe integration of evidence not only
544  at temporal level but also between different sources of evidence. Indeed, there has been an
545 intense debate about whether sensory information from different spatial locations or different
546  modalities are integrated prior to reaching a decision, or whether decisions are taken
547  separately for each source before being merged, which can be viewed as extensions to the
548  snapshot model (Pannunzi et al. 2015; Otto and Mamassian 2012; Lorteije et al. 2015; Hyafil
549 and Moreno-Bote 2017). Our integration analysis could provide new answers to this old
550 debate.

551

552  Integration maps can be computed not only for choice patterns but for any type of behavioral
553  or neural marker of cognition. We computed a neural integration map (Supp. Figure 9) by
554  looking at the average spike activity of Lateral Intra Parietal (LIP) neurons as a function of
555 early and late evidence, for neurons recorded while the monkeys performed the motion
556  discrimination experiment (Yates et al. 2017). The neural integration map clearly showed
557  rectilinear isolines, as predicted by an integration model of neural spiking. By contrast, neural
558 implementations of the snapshot and extrema-detection predicted strongly curved isolines.
559  The activity of LIP neurons correlates with the evidence accumulated over the presentation of
560 the stimulus in favor of either possible choices (Gold and Shadlen 2007). This result shows
561 that the activity of individual LIP neurons indeed reflects the temporal integration of sensory
562 information that drives animal behavior.

563 We have focused in this study on paradigms where the stimulus duration is fixed by the
564  experimenter, and subjects could only respond after stimulus extinction. Stine et al proposed
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565 a method for distinguishing integration from non-integration strategies mixing experiments
566  where stimulus duration is controlled by the experimenter and experiments where the stimulus
567  plays until the subject responds (“reaction time paradigms”). Our study shows an alternate way
568 to differentiate integration and non-integration strategies that does not require these conditions,
569 and may therefore be applied to existing datasets.

570  Other studies have shown how integration and non-integration strategies can be disentangled
571 in free reaction-time task paradigms. Specifically, different models make different predictions
572  regarding how the total sample evidence presented before response time should vary with
573  response time (Glickman and Usher 2019; Zuo and Diamond 2019). Glickman and Usher used
574  these predictions to rule out non-integration strategies in a counting task in humans, and Zuo
575 and Diamond found evidence for evidence integration to bound when rats discriminate
576  textures using whisker touches (Zuo and Diamond 2019). Furthermore, decisions in self-paced
577  paradigms are influenced by the sensory evidence from the early part of the stimulus (Winkel
578 et al. 2014), ruling out the proposal that they would only depend on the sensory evidence at
579 the time of decisions (Thura et al. 2012). Of note, the absence of integration seems a more
580 viable strategy when the duration of the stimulus is controlled externally and the benefits of
581 integrating in terms of accuracy might not compensate for its cognitive cost. In free-reaction
582  time paradigms, waiting for a long sequence of samples and selecting its response based on
583 a single sample does not seem a particularly efficient strategy. If the cognitive cost of
584  integration is high, it is more beneficial to interrupt the stimulus sequence early with a rapid
585 response. Such rapid responses are commonly seen and can be attributed either to urgency
586  signals modulating the integration of stimulus evidence (Drugowitsch et al. 2012) or to action
587 initiation mechanisms that time the response after a specific time (e.g. one or two samples)
588 following stimulus onset (Hernandez-Navarro et al. 2021). Here, we have shown that even in
589 paradigms where the stimulus duration is controlled by the experimenter, mammals often
590 integrate sensory evidence over the entire stimulus.

591 In conclusion, we have found strong evidence for temporal integration in perceptual tasks
592  across species (monkeys, humans and rats) and perceptual domain (visual motion, visual
593 orientation and auditory discrimination). Thus, although the time scale of integration can be
594  adapted to the statistics of the environment (Ossmy et al. 2013; Glaze, Kable, and Gold 2015;
595 Kilpatrick et al. 2019), the principle that stimulus evidence is integrated over time appears as
596 a hallmark of perception. This evidence was gathered by leveraging experimentally-controlled
597 sensory evidence at each sensory sample composing a stimulus, and novel model-based
598  statistical analysis. We speculate that temporal integration is a ubiquitous feature of perceptual
599 decisions due to hard-wired neural integrating circuits, such as recurrent stabilizing
600 connectivity in sensory and perceptual areas (Wang 2008; Wimmer et al. 2015).

601

602
603 METHODS

604
605 Monkey experiment.

606  We present here the most relevant features of the behavioral protocol - see (Yates et al. 2017)
607  for further experimental details. Two adult rhesus macaques (subject N, a 10-year old female;
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608 and subject P, a 14-year old male) performed a motion discrimination task. On each trial, a
609  stimulus consisting of a hexagonal grid (5-7 degrees, scaled by eccentricity) of Gabor patches
610 (0.9 cycle per degree; temporal frequency 5 Hz for Monkey P; 7 Hz for Monkey N) was
611 presented. Monkeys were trained to report the net direction of motion in a field of drifting and
612 flickering Gabor elements with an eye movement to one of two targets. Each trial motion
613  stimulus consisted of seven consecutive motion pulses, each lasting 9 or 10 video samples
614 (150 ms or 166 ms; pulse duration did not vary within a session), with no interruptions or gaps
615 between the pulses. The strength and direction of each pulse S;; for trial t and sample i was
616  set by a draw from a Gaussian rounded to the nearest integer value. The difficulty of each trial
617  was modulated by manipulating the mean and variance of the Gaussian distribution. Monkeys
618 were rewarded based on the empirical stimulus and not on the stimulus distribution. We
619 analyzed a total of 112 sessions for monkey N and 60 sessions for monkey P, with a total of
620 72137 and 33416 valid trials, respectively. These sessions correspond to sessions with
621  electrophysiological recordings reported in (Yates et al. 2017) and purely behavioral sessions.
622  All experimental protocols were approved by The University of Texas Institutional Animal Care
623 and Use Committee (AUP-2012-00085, AUP-2015-00068) and in accordance with National
624  Institute of Health standards for care and use of laboratory animals
625

626 Human experiment.

627 9 adult subjects (5 males, 4 females; aged 19-30) performed an orientation discrimination task
628 whereby on each trial they reported in each trial whether a series of gratings were perceived
629 to be mostly tilted clockwise or counterclockwise (Drugowitsch et al. 2016). Each discrete-
630 sample stimulus consisted of five to ten gratings. Each grating was a high-contrast Gabor
631 patch (colour: blue or purple; spatial frequency = 2 cycles per degree; SD of Gaussian
632 envelope = 1 degree) presented within a circular aperture (4 degrees) against a uniform gray
633  background. Each grating was presented during 100 ms, and the interval between gratings
634  was fixed to 300 ms. The angles of the gratings were sampled from a von Mises distribution
635 centered on the reference angle (a, = 45 degrees for clockwise sequences, 135 degrees for
636  anticlockwise sequences) and with a concentration coefficient k¥ = 0.3. The normative
637  evidence provided by sample i in trial t in favor of the clockwise category corresponds to how
638  well the grating orientation a;; aligns with the reference orientation, i.e. S;; = 2k cos(2(a;; —
639 ).

640 Each sequence was preceded by a rectangle flashed twice during 100 ms (the interval
641  between the flashes and between the second flash and the first grating varied between 300
642 and 400 ms). The participants indicated their choice with a button press after the onset of a
643  centrally occurring dot that succeeded the rectangle mask and were made with a button press
644  with the right hand. Failure to provide a response within 1000 ms after central dot onset was
645 classified as invalid trial. Auditory feedback was provided 250 ms after participant response
646 (at latest 1100 ms after end of stimulus sequence). It consisted of an ascending tone (400
647 Hz/800 Hz; 83 ms/167 ms) for correct responses; descending tone (400 Hz/ 400 Hz; 83
648 ms/167 ms) for incorrect responses; a low tone (400 Hz; 250 ms) for invalid trials.

649 Trials were separated by a blank interstimulus interval of 1,200-1,600 ms (truncated
650 exponential distribution of mean 1,333 ms). Experiments consisted of 480 trials in 10 blocks
651  of 48. It was preceded with two blocks of initiation with 36 trials each. In the first initiation block,
652 there was only one grating in the sequence, and it was perfectly aligned with one of the
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653 reference angles. In the second initiation block, sequences of gratings were introduced, and
654 the difficulty was gradually increased (the distribution concentration linearly decreased from
655 Kk =1.21to k =0.3). Invalid trials (mean 6.9 per participant, std 9.4) were excluded from all
656 regression analyses. The study was approved by the local ethics committee (approval
657  2013/5435/I from CEIm- Parc de Salut MAR).

658
659 Rat experiment.

660 Rat experiments were approved by the local ethics committee of the University of Barcelona
661 (Comité d’Experimentacié Animal, Barcelona, Spain, protocol number Ref 390/14). 5 male
662 Long-Evans rats (no genetic modifications; 350-650g; 8-10 weeks-old at the beginning of the
663  experiment), pair-housed and kept on stable conditions of temperature (23°C) and humidity
664  (60%) with a constant light-dark cycle (12h:12h, experiments were conducted during the light
665 phase). Rats had free access to food, but water was restricted to behavioral sessions. Free
666  water during a limited period was provided on days with no experimental sessions.

667 Rats performed a fixed-duration auditory discrimination task where they had to classify noisy
668  stimuli based on the intensity difference between the two lateral speakers (Pardo-Vazquez et
669 al. 2019; Hermoso-Mendizabal et al. 2020). A LED on the center port indicated that the rat
670 could start the trial by poking in that center port. After this poke, rats had to hold their snouts
671 in the central port during 300 ms (i.e. fixation). Following this period, an acoustic DSS was
672 played. Rats had to remain in the central port during the entire presentation of the stimulus.
673 At stimulus offset, the center LED went off and rats could then come out of the center port and
674  head towards one of the two lateral ports. Entering the lateral port associated with the speaker
675 that generated the larger sound intensity led to a reward of 24 pl of water (correct responses),
676  while entering the opposite port lead to a 5s timeout accompanied with a bright light during
677 the entire period (incorrect responses). If rats broke fixation during the pre-stimulus fixation
678 period or during the stimulus presentation, the sound was interrupted, the center LED
679 remained on, and the rat had to initiate a new trial starting by center fixation followed by a new
680  stimulus. Fixation breaks were not included in any of the analyses. Stimulus duration was 0.5
681 s (10 samples) or 1 s (20 samples). Two rats performed 0.5-second stimuli only (77810 and
682 54803 valid trials, respectively); one rat performed 1 s stimuli only (42474 valid trials); the
683  remaining two rats performed a mixture of 0.5 and 1 s stimuli trials randomly interleaved (5016
684 trials and 65212 valid trials, respectively for one animal; 7374 and 38829 trials for the other
685 animal). In each trial k one stimulus S*«(t) was played in each speaker (X=R for the Right
686  speaker and X=L for the Left speaker). Each stimulus was an amplitude modulated (AM)
687 broadband noise defined by S¥(t) =[1+ sin(faut+ @)]ai(t) éx(t) where fau=20 Hz
688  (sensory samples lasted 50 ms), the phase delay ¢ = 3n/2 and &, (t) were broadband noise
689  bursts. The amplitudes of each sound in each frame were af(t) = (1 + S, r)/2 and ag(¢) =
690 (1 - sk_f)/z with Sks(t) being the instantaneous evidence that was drawn independently in
691 eachframef from atransformed Beta distribution with support [-1,1]. With this parametrization
692  of the two sounds the sum of the two envelopes was constant in all frames a“«(t)+aR(t)=1.
693 There were 7 x 5 stimulus conditions, each defined by a Beta distribution, spanning 7 mean
694  values (-1, -0.5, -0.15, 0, 0.15, 0.5 and 1) and 5 different standard deviations (0, 0.11, 0.25,
695 0.57 and 0.8). In around the first half of the sessions, only sample sequences in which the
696 total stimulus evidence matched the targeted nominal evidence were used. This effectively
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697 introduced weak correlations between samples. In the second half of the sessions, this
698  condition was removed and samples in each stimulus were drawn independently from the
699 corresponding Beta distribution.

700
701 Integration model

702  The integration model for human participants corresponds to a logistic regression model,
703  where the probability of selecting the right choice p(r;) at trial t depends on the weighted sum
704 of the sample evidence: p(r;) = o(Bo + Ziep1.n)BiSti), Where Byis a lateral bias, Syis the
705 signed sample evidence at sample i ;5;is the sensory weight associated with the ith sample in
706  the stimulus sequence; and o(x) = (1 + e *)"lis the logistic function. The vector g;’s allowed
707  to capture different shapes of psychophysical kernels (e.g. primacy effects, recency effects)
708  which can emerge due to a variety of suboptimalities in the integration process (leak, attractor
709 dynamics, sticky bounds, sensory after-effects, etc.) (Brunton, Botvinick, and Brody 2013;
710 Yates et al. 2017; Prat-Ortega et al. 2021; Bronfman, Brezis, and Usher 2016).

711  For the monkey and rat data, we included a session-dependent modulation gain y; to capture
712 the large variations in performance in monkeys across the course of sessions (see Supp
713  Figure 1A):

714 p(ry) = 0(Bo + Ve Zier1.n)BiSei)

715  This model corresponds to a bilinear logistic regression model which pertains to the larger
716  family of Generalized Unrestricted Models (GUMs) (Adam and Hyafil 2020). Parameters (8, y)
717  were fitted using the Laplace approximation as described in (Adam and Hyafil 2020). The
718 modulation gain was omitted when applied to human data, yielding a classical logistic
719  regression model.

720
721  Snapshot model

722 In the snapshot model, decisions are based on each trial based upon a single sample. The
723  model also includes the possibility for left and right lapses. In each trial, the attended sample
724 is drawn from a multinomial distribution of parameters (m4,..m,, 7;, mg), Where the first terms
725 m; (1 <i < n) correspond to the probability of attending sample i, and r;and mzcorrespond to
726  the probability of left and right lapses, respectively. Upon selecting sample i, the probability for
727  selecting the right choice is given by the function H;(S;). In the deterministic version of the
728 model, H; is simply determined by the sign of the i-th sample evidence:H;(S;) = 1 if S§;; > 0,
729  H;(S;) =0 if §; <0, and H;(S;) = 0.5 if S;; = 0(i.e. random guess if the sample has null
730 evidence). We also define similar functions for lapse responses: Hx(S) = land H,(S) = 0,
731  irrespective of the stimulus. In the non-deterministic version of the model, the probability
732  H;(S;) is determined by a logistic function of the attended sample evidence H;(S;) = o(B;S¢)
733  where §; describes a sensitivity parameter. The deterministic case can be viewed as the limit
734  of the non-deterministic case when all sensitivity parameters f; diverge to +oo, i.e. when
735 sensory and decision noise are negligible.

736  The overall probability for selecting right choice (marginalizing over the attended sample,
737  which is a hidden variable) can be captured by a mixture model :
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738 p(re) =g + Liepr.m®iHi(St) = Zig1.nLrTiHi (St)

739  The mixture coefficients ; (i = 1,..n, L, R) are constrained to be non-negative and sum up to
740 1. In the non-deterministic model, the parameters also include sensitivity parameters f;.The
741  model is fitted using Expectation-Maximization (Bishop 2006). In the Expectation step, we
742  compute the responsibility z;;, i.e. the posterior probability that the sample i was attended at
743  trial t (for i=L, R, the probability that the trial corresponded to a lapse trial):

744

745z =m;0(Sy)/2miH(S:j) for rightward responses (R; = 1)
746 zy =m(1 — H(Sy))/Zmi(1 — H(S;;)) for leftward responses (R, = 0)

747

748 In the Maximization step, we update the value of the parameters by maximizing the Expected
749  Complete Log-Likelihood (ECLL): Q(m, B) = Xizilog p(ry; m, B). Maximizing over the mixture
750  coefficients with the unity-sum constraint provides the classical update: n; = X;;z;;/N, where
751 N is the total number of trials. In the non-deterministic model, maximizing the ECLL over
752  sensitivity parameters is equivalent to fitting a logistic regression model with weighted
753  coefficients z;;, which is a convex problem. Best fitting parameters can be found using Newton-
754  Raphson updates on the parameters:

(new) _ p _ _0Q/0Bi_ .
755  f; =pf; 320/05 with

756 0Q/0B; = Xz (p(ry) — R,) and azQ/a,Biz = thtiStizp(rt)(l —p(12))

757 To speed up the computations, in each M step, we only performed one Newton-Raphson
758 update for each sensitivity parameter, rather than iterating the updates fully until convergence.
759  The EM procedure was run until convergence, assessed by an increment in the log-likelihood
760 L(m, B) of less than 10° after one EM iteration. The log-likelihood for a given set of parameters
761 is given by L(w, B) = XZlog p(r). The EM iterative procedure was repeated with 10 different
762 initializations of the parameters to avoid local minima.

763

764  Note that for monkey and rat data, since we observed large variations in performance across
765  sessions, the model based its choices on session-gain modulated evidence S;; = y,S;; instead
766  raw evidence S;; (this had no impact for the deterministic variant since S;; and S;; always have
767  the same sign). We fitted the model from individual subject responses either with lapses 7, and
768 g as free parameters, or fixed to r; = mz = 0.01. Figures in the main manuscript correspond
769  tothe deterministic snapshot model with fixed lapses. We also studied variants of the snapshot
770 model where decisions in each trial are based on K attended samples, i.e depends on
771 (Seip-Stivk-1) Wth1 <K <n-1and 1 <i<n-—K + 1 is the first attended sample. In the
772  deterministic case, the choice is directly determined by the sign of the sum of the signed
773 evidence for the attended samples. In the non-deterministic case, the evidence for the
774 attended samples are weighted and passed through a sigmoid: H;(S;) =
775 0(Zken.x)PriSti+k—1)- The model with a single attended sample presented above is equivalent

776  to this extended model when using K = 1. At the other end, using K = n corresponds to the
777  temporal integration model (without the lateral bias).
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778
779 Extrema-detection model

780 In the extrema-detection model, a choice is selected according to the first sample in the
781 sequence whose absolute evidence value reaches a certain threshold 8, i.e p(r¢|0) =
782  H(my),|my| =0,|mej| <0 for all j <i. Here my is the sample evidence corrupted by
783  sensory noise g; which is distributed normally with variance o%: my = S;; + &; With &; ~
784  N(0,02). His the step function. If the stimulus sequence ends and no sample has reached the
785  threshold, then the decision is taken at chance. As described in (Waskom and Kiani 2018),
786  the probability for a rightward choice at trial t can be expressed as:

S;j—0
787 p) = 0O - oY) o U T ))+ (1 — 0 (C—)
—S;j— 6
788 —¢(T))
789

790  where @ is the cumulative normal distribution. We also included the possibility for left and right
791 lapses with probability m,and m;. Following Stine and colleagues (Stine et al. 2020), we
792  explored an alternative default rule called ‘last sample’ rule: if the stimulus extinguishes and
793 the threshold has not been reached, then the decision is based on the (noisy) last sample
794  rather than simply by chance. This changes the equation describing the probability for
795  rightward choices to:

796 p(ry) = Z'l<nd)( ) <i(1 )) o tn) <n(1 _ (P(St] - 9)

—Stj —6
797 —P(———)

798  As for the snapshot model, we used the session-gain modulated evidence S;;instead of raw
799 evidence Syfor fitting the model to monkey and rat data. The four parameters of the model
800 (0,0,m;,mg) Were estimated from each subject data by maximizing the log-likelihood with
801 interior-point algorithm (function fmincon in Matlab) and 10 different initializations of the
802  parameters.

803

804
805 Model validation and model comparison.

806  Psychophysical kernels were obtained from subject data and simulated data by running a
807 logistic regression model: p(r) = o(By + 2;8;S:;). Standard errors of the weights S;were
808 obtained from the Laplace approximation. For psychometric curves, we first defined the
809  weighted stimulus evidence T at trial t as the session-modulated weighted sum of signed
810 sample evidence; with the weights obtained from the logistic regression model above
811 T, =v.:2B:S:i- We then divided the total stimulus evidence into 50 quantiles (10 for human
812  subjects) and computed the psychometric curve as the proportion of rightward choices for
813  each quantile.

23


https://doi.org/10.1101/2022.10.25.513647
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.25.513647; this version posted October 26, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

814  The boundary performance for the snapshot and extrema-detection models corresponds to
815 the best choice accuracy out of all the parameterizations for each model. In the snapshot
816 model, the boundary performance corresponds to the deterministic version with no-lapse,
817  where the attended sample is always the sample i*whose sign better predicts the stimulus
818 category over all animal trials, i.e. r; = 1and r; = 0if i # i*. For the extrema-detection model,
819 the boundary performance corresponds to the lapse-free model with no sensory noise (¢ = 0)
820 and a certain value for threshold 6 that is identified for each subject by simple parameter
821  search.

822  Finally, model selection was performed using the Akaike Information Criterion AIC = 2p —
823 2Ly, where p is the number of model parameters and L, is the likelihood evaluated at
824  maximum likelihood parameters.
825

826  Analysis of majority-driven choices

827  We selected for each animal the subset of trials corresponding to when the largest evidence
828  sample was at odds with the total stimulus evidence, i.e. where sign(S;;, |S¢;| =[Sy Vi) #
829  sign(Z;S:;). For this subset of trials, we computed the proportion of animal choices that were
830 aligned with the overall stimulus evidence. We repeated the analysis for simulated data from
831 the integration and extrema-detection models.

832

833  Subjective weighting analysis

834 In order to estimate the impact of each sample on the animal choice as a function of sample
835 evidence, we built and estimated the following statistical model

836 p(re=A4) = d(Bo +Veliepr.mBi f(Se))

837 As can be seen, this model is equivalent to the temporal integration model under the
838 assumption that f is a linear function. Rather, here we wanted to estimate the function f (as
839 well as the session gain y;, lateral bias Syand sensory weight g;). Including the session gain
840  was necessary for estimating f accurately from the monkey and rat behavioral data, since the
841  distribution of pulse strength S;;was varied across sessions and could otherwise induce a
842  confound. We assumed that f is an odd function, i.e. f(—=S;;) = —f(S:). This equation takes
843 the form of a Generalized Unrestricted Model and was fitted using the Laplace approximation
844  method as described in (Adam and Hyafil 2020). In the monkey experiment, sample evidence
845  could take only a finite number of values, so f was simply estimated over these values. In the
846 human experiment, sample evidence could take continuous values. In this case, we defined a
847  Gaussian Process prior over f with squared exponential kernel with length scale 0.1 and
848  variance 1.

849
850 Integration of early and late evidence

851 We designed a new analysis tool to characterize the statistical mapping from the
852  multidimensional stimulus space S; = (S¢1,---St) € R™0nto binary choices r; € [0,1]. We first
853  collapsed the stimulus sequence §; onto the two-dimensional space defined by early evidence
854  E;and late evidence L defined by E; = y;21<i<n/2)BiStiand Ly = ¥ 2Zn/2)+1<i<nBiSti» Where the
855 weights B; and session gains y.correspond to parameters estimated from the temporal
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856 integration model (session gains were omitted for human participants). Next we plotted the
857 integration map which represents the probability for rightward choices as a function of (E, L;).
858 The map was obtained by smoothing data points with a two-dimensional gaussian kernel.
859  More specifically, for each pair value (E,L), we selected the trials whose early and late
860 evidence values E; and L, fell within a certain distance to (E,L), i.e. d; = dist((E,L)(E;, Ly)) <
861 2. We then computed the proportion of rightward choices for the selected trials, with a weight
862 for each trial depending on the distance to the pair value w, = N((E;, L.); (E,L),0.1% ).
863  Because the space (E,L) was not sampled uniformly during the experiment, we represent the
864  density of trials by brightness. For each subject we obtained integration maps both from
865  subject data as well as from model simulations. For each model, we computed the Pearson
866  correlation between the maps obtained from the corresponding simulation and from the
867  subject data. We tested the significance of correlation measures between models by using a
868  bootstrapping procedure: we calculated the correlation measure r from 100 bootstraps for
869 each model and patrticipant, and then performed an unpaired t-test between bootstrapped r.

870

871  Next, we analyzed the conditional psychometric curves, i.e. the psychometric curves for the
872  early evidence conditioned on the value of late evidence, which correspond to vertical cuts in
873 theintegration map. To do so, we first binned late evidence L;by bins of width 0.5. Conditional
874  psychometric curve represent the probability of rightward choices as a function of early
875 evidence E;, separately for each late evidence bin. For each late evidence bin, we also
876  estimated the corresponding bias g, left lapse m, and right lapse myby fitting the following
877  function on the corresponding subset of trials:

878 p(ry) =np+ (1 —mp —m)o(BE)
879
880  Analysis of LIP neuron activity

881 We analyzed the activity of 82 LIP neurons recorded over 43 sessions of the motion
882  discrimination tasks (Yates et al. 2017). We applied the following procedure to extract the
883 integration map for LIP neurons. For each neuron n, we computed the spike count s, in a
884  window of 500 ms width following each stimulus offset, which is where LIP neurons were found
885 to have maximal selectivity to motion evidence from the entire pulse sequence (Yates et al.
886  2017). We then applied a Poisson GLM E(s,™) = exp(w,™ + Z;w;™s5,;) for each neuron n
887  to extract the impact of each sample i on the individual neural spike count w;™. For each trial
888 t, we used these weights to compute the neuron-weighted early and late evidence defined by
889 and E™ =3, w,™s,; L™ =2,.,w;™S,;. Note that this weighting converts the
890 evidence onto the space defined by the preferred direction of the neuron, such that positive
891 evidence signals evidence towards the preferred direction and negative evidence signals
892 evidence towards the anti-preferred direction. We then merged the vectors for normalized
893  spike counts s, = 5, Jexp(w,™), early evidence E,™ and late evidence L, across all
894  neurons. The normalized spike counts were binned by values of early and late evidence (bin
895  width: 0.02), and the average over each bin was computed after convolving with a two-
896 dimensional gaussian kernel of width 0.1. The neural integration map represents the average
897  normalized activity per bin.
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898  Simulations of spiking data for the integration and non-integration models were proceeded as
899  follows. First, the neural integration model corresponds to linear summing with neuron-specific
900  weights which are then passed through an exponential nonlinearity; the spike counts for each
901 trial are generated using a Poisson distribution whose rate is equal to the nonlinear output
902 (Supp Figure 9a, top). This corresponds exactly to the generative process of the Poisson GLM
903 described above. For the extrema detection model (Supp Figure 9a middle), we hypothesized
904 that LIP activity would only be driven by the sample that reaches the threshold (and dictates
905 the animal response). To this end, we first simulated the behavioral extrema detection model
906  for all trials, using parameters (6,0, m;,my) fitted from the corresponding animal, to identify
907 which sample i reaches the subject-specific threshold. We then assumed that the spiking
908 activity of the neuron would follow the stimulus value at sample i S;; (signed by the preferred
909 direction of the neuron p™ through:

910 EED(St(n)) = exp(wo™ +P(n)5ti2jwj(n)/2)

911  Again the spike count were generated from a Poisson distribution with rate Egp (st(")).

912  Finally, for the snapshot model (Supp. Figure 9a bottom), we assumed that the neuron activity
913  would merely reflect the sensory value of the only sample it would attend. We assumed that
914 the probability mass function to attend each of the 7 samples would be neuron-specific, so we
915 used the normalized weights of the Poisson GLM for that specific neuron as defining such
916  probability (weights were signed by the neuron preferred direction so that the vast majority of
917 weights were positive; negative weights were ignored). For each trial, we thus randomly
918 sampled the attended sample i using this probability mass function and then simulated the

919 spike count s, ™ from a Poisson distribution with rate Esyapsnot(s:") = exp(wo™ +

921 We simulated spiking activity for each neuron and for each integration and non-integration
922 model, and then used simulated data to compute neural integration maps exactly as described
923  above for the actual LIP neuron activity.

924
925 Data and code availability

926  All experimental data (behavioral and neural data in monkeys, behavioral data in rats and
927 humans) and code to run the analysis will be made publicly available
928  at https://github.com/ahyafil prior to final publication
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1056  Supplementary Figure 1. Parameter fits for integration and non-integration models. A. Modulation
1057 gain y per session for the integration model, for each animal (green: monkey P; purple: monkey N). B.
1058  Mixture coefficients m; of the snapshot model estimated for each monkey, representing the prior
1059  probability that each sample is attended on each trial. C. Parameters T and ¢ of the extrema-detection
1060 model, estimated for each monkey. Error bars correspond to the confidence interval obtained using the
1061  Laplace approximation.
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Supplementary Figure 2. Model fits for variants of the snapshot model. A. Predicted accuracy for
the snapshot model fitted to monkey data, as a function of memory span K, for fixed lapses (blue curve,
1, = g = 0.01) and lapses estimated from the data (black curve). Full lines represent the model with
sensory noise (“probabilistic”), dotted lines represent the model without sensory noise (“non-
probabilistic”). Memory span K corresponds to the number of successive samples used to define the
decision on each trial (see Methods). The horizontal bar corresponds to the average accuracy of the
animal. B. AIC difference between snapshot and integration model. Legend as in A. Positive values
indicate that the snapshot model provides a worse fit. C. Psychometric curve for the snapshot model
with span K=3 samples, sensory noise and free lapse parameters (best snapshot model variant
according to AIC). D. Psychophysical kernel for the same variant of the model. E. Correlation between
data and model integration maps for variants of the snapshot model.
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Supplementary Figure 3. Model fits for variants of the extrema-detection model. A. Predicted
accuracy for the extrema-detection model fitted to the monkey data, for random (black curves) and last
sample (red curve) default rule, and for fixed lapses (m, = mz = 0.01) or lapse parameters estimated
from the data. The horizontal bar indicates animal accuracy. B. AIC difference between variants of the
extrema-detection model and the integration model. Legend as in A. Positive values indicate that the
extrema-detection model provides a worse fit. C-D. Psychometric curve (C) and psychophysical kernel
(D) for the model variant that provided the best match to behavior in terms of predicted accuracy and
AIC: free lapse parameters and last sample rule. E. Correlation between integration maps from animal
data and simulated data (see Figure 4) for variants of the extrema-detection model. The horizontal bar
marks the correlation between experimental data and the integration model.
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Supplementary Figure 4. Subjective weights for animal data and simulated models. Impact on
decision of individual samples as a function of absolute sample evidence. Shaded area: standard error
of the weight. Top row: monkey P; bottom row: monkey N. A. Integration model. B. extrema-detection
model. The vertical dotted line marks the value of the threshold T estimated from animal data. C. Impact
on decision of individual pulses, estimated from each monkey.
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Supplementary Figure 5. Integration of early and late evidence for monkey P. A. Integration map.
Legend as in Figure 4A. B. Conditional psychometric curves. Legend as in Figure 4B. C. Bias and lapse
parameters from conditional psychometric curves, as a function of late evidence. Legend as in Figure

4D-E.
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1097
1098  Supplementary Figure 6. Integration between early and late evidence for simulated data from

1099 integration and non-integration models. Data was simulated for each model from parameters
1100 estimated from monkey N. Left panels: integration model. Middle panels: snapshot models. Right
1101 panels: extrema-detection models. A. Integration maps. B. Conditional psychometric curves. C. Lateral
1102 bias and D. lapse parameters estimated from conditional psychometric curves, as a function late
1103  evidence. Legend as in Figure 4.
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1105  Supplementary Figure 7. Maximum accuracy of the non-integration models vs. human subject
1106  accuracy in the orientation discrimination task. Left panel: snapshot model (with span K=1). Right
1107  panel: extrema-detection. Each symbol represents a subject.
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1110  Supplementary Figure 8. Psychophysical kernels for animals and models in rats (n=3)
1111  performing the DSS task with 20-sample stimuli.
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1113

1114  Supplementary Figure 9. Individual LIP neurons integrate sensory information over stimulus
1115 sequence. A. Neural models for temporal integration, extrema-detection and snapshot model. B.
1116 Integration map for LIP neurons, and simulated neurons following either integration, extrema-detection
1117  or snapshot model. Color represents the average normalized spike count per bins of neuron-weighted
1118 early and late evidence (see Methods). Isolines represent values of 0.4, 0.6, 1, 1.4 and 1.8.
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