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Abstract:

Therapeutic antibodies are widely used to treat severe diseases. Most of them alter immune
cells and act within the immunological synapse; an essential cell-to-cell interaction to direct the
humoral immune response. Although many antibody designs are generated and evaluated, a
high-throughput tool for systematic antibody characterization and prediction of function is
lacking. Here, we introduce the first comprehensive open-source framework, scifAI (single-cell
imaging flow cytometry AI), for preprocessing, feature engineering and explainable, predictive
machine learning on imaging flow cytometry (IFC) data. Additionally, we generate the largest
publicly available IFC data set of the human immunological synapse containing over 2.8 million
images. Using scifAI, we analyze class frequency- and morphological changes under different
immune stimulation. T cell cytokine production across multiple donors and therapeutic
antibodies is quantitatively predicted in vitro, linking morphological features with function and
demonstrating the potential to significantly impact antibody design. scifAI is universally
applicable to IFC data, and, given its modular architecture, straightforward to incorporate into
existing workflows and analysis pipelines, e.g. for rapid antibody screening and functional
characterization.

Keywords: immunological synapse, mechanistic insight, therapeutic antibodies, imaging flow
cytometry, IFC, functional characterization, explainable, machine learning, AI, feature extraction,
prediction, classification, computer vision, deep learning, python, framework
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Introduction

The formation of an immunological synapse is the first event of the adaptive immune reaction
induced by the interaction of a T cell with its corresponding antigen-presenting cell (APC). This
rapidly formed cell-cell interface is initiated by the recognition of peptide-loaded MHC
complexes by the T cell receptor (TCR). It involves the rearrangement of actin filaments of the
cytoskeleton and the recruitment of signaling, co-stimulatory, co-inhibitory, and adhesion
molecules to the nascent synapse 1,2. This process is crucial to trigger and fine-tune T cell
responses and ensure intact immune reactions. Dysfunctional immunological synapse formation
has been observed in several immune-related disorders 3–8 and has thus been considered a
potential target to stimulate or inhibit immune responses by modulating its assembly or function
9–11. For instance, various therapeutic antibodies were developed that alter immunological
synapse formation to treat cancer and autoimmune diseases 12–15. Although significant progress
in developing immunological synapse targeting agents has been achieved in the last years 9,
there is still need to refine the compounds further, especially to improve their efficacy. It has
been identified that antibody size and format 16,17, the dose, as well as target expression 18 can
be critical parameters for immunological synapse formation and its effect on T cell function.

However, so far no study has provided a tool to systematically quantify and characterize the
morphology of the immunological synapse, investigate its correlation to T cell response, or
identify properties predictive for the efficacy of antibodies in vitro. As a consequence, only a
literature-guided set of fluorescent stainings relevant for investigating the immunological
synapse is set in an otherwise untargeted approach, allowing the exploration of a broad range
of possible characteristics. The key technology for high-throughput data acquisition for this
purpose is imaging flow cytometry (IFC), combining the benefits of traditional flow cytometry
with deep, multi-channel imaging on the single-cell level. IFC has recently been successfully
applied to visualize and quantify the immunological synapse of primary human T:APC cell
conjugates 19–21, however, none of these studies investigated the formation of the immunological
synapse in the context of T cell function.

Recent studies have demonstrated the potential of machine learning algorithms for a more
robust and accurate analysis of high-throughput imaging data, an approach that has been
demonstrated to overcome limitations of conventional gating strategies 22–24. Leveraging
machine learning for IFC data analysis has also enabled the identification of morphological
patterns in the cell, a combined analysis of RNA and protein data, and the implementation of
predictive models 22–26. While limited open-source software implementations designed for IFC
data analysis are available 26,27, they either rely on additional third-party software adding
complexity in the analysis pipeline, or they focus on prediction performance only and lack
explainability.

Here, we present scifAI, a machine learning framework for the efficient and explainable analysis
of high-throughput imaging data based on a modular open-source implementation. We also
publish the largest publicly available multi-channel IFC data set with over 2.8 million images of
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primary human T-B cell conjugates from multiple donors, and demonstrate how scifAI can be
used to detect patterns and build predictive models. We showcase the potential of our
framework for (i) the prediction of immunologically relevant cell class frequencies, (ii) the
systematic morphological profiling of the immunological synapse, (iii) the investigation of inter
donor and inter and intra-experiment variability, as well as (iv) the characterization of the mode
of action of therapeutic antibodies and (v) the prediction of their functionality in vitro. Combining
high-throughput imaging of the immunological synapse using IFC with rigorous data
preprocessing and machine learning enables researchers in pharma to screen for novel
antibody candidates and improved evaluation of lead molecules in terms of functionality,
mode-of-action insights and antibody characteristics such as affinity, avidity and format.

Results

Comprehensive multi-channel imaging flow cytometry data set of the immunological
synapse
Using high-throughput IFC we generated a comprehensive data set for the systematic analysis
of the immunological synapse of T-B conjugates (Fig. 1a and Supplementary Fig. 1a). Human
memory CD4+ T cells, isolated from peripheral blood of different donors, were co-cultured with
superantigen (Staphylococcus aureus enterotoxin A, SEA)-pulsed EBV-transformed
lymphoblastoid B cells (B-LCL) expressing high levels of the co-stimulatory molecules CD86
and CD80 or left untreated (Supplementary Fig. 1b-c and Supplementary Fig. 2a-b) . P-CD3ζ
(Y142) as a readout of early T cell activation, the highest titrated concentration of SEA (100
ng/mL), and a time point of 45 min was chosen to investigate functional immune synapses
(Supplementary Fig. 1 d-e). In total, we screened nine donors in four independent experiments
(Supplementary Fig. 1a) and acquired 1,182,782 images (±SEA, Supplementary Fig. 1b). The
designed multi-channel panel consisted of brightfield (BF), F-actin (cytoskeleton), MHCII, CD3,
and P-CD3ζ (TCR signaling) allowed to capture a wide range of biologically motivated,
potentially relevant characteristics of the immunological synapse (Fig. 1a). Dead, deformed,
unfocused or cropped cells were removed using a multi-step pipeline (Methods). Additionally, a
set of 5221 images from seven randomly selected donors was labeled by an expert
immunologist (K.E.) into nine classes organized in two levels. (Fig. 1b and Supplementary Fig.
2e). The first level represented the number of existing cells in the image: singlets (n=1),
doublets (n=2), and multiplets (n>2). The second level characterizes the type of the cells, their
interactions to each other and the presence of TCR signaling. The singlets are composed of
“single B-LCL”, “single T cell w/o signaling” and “single T cell w/ signaling” classes. The doublets
include the “T cell w/ small B-LCL”, “B-LCL and T cell in one layer”, “synapse w/o signaling”,
“synapse w/ signaling”, and “no cell-cell interaction” classes. The class “multi-synapse”, contains
more than two cells and at least one B-LCL and T cell. Even though the ‘T cell w/ small B-LCL’
and ‘no cell-cell interaction’ classes were artifacts of the experiments, they were annotated to
enhance the predictive power of classification models and subsequently filtered out and not
used in further analyses (Methods).
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scifAI: An explainable AI python framework for the analysis of multi-channel imaging
flow cytometry data
As the foundation for all further analysis, we developed the single-cell imaging flow cytometry AI
(scifAI) framework. The open-source framework was developed in python, leveraging
functionality from state-of-the-art modules, such as scikit-learn, SciPy, NumPy and pandas
(Methods), allowing for smooth integration and extension of existing analysis pipelines.
Universally applicable for single-cell brightfield or fluorescent imaging projects, the framework
provides functionality for import and preprocessing of input data, several feature engineering
pipelines including the implementation of a set of biologically motivated features and
autoencoder-generated features (Methods), as well as methodology for efficient and meaningful
feature selection. Moreover, the framework implements several machine learning and deep
learning models for training supervised image classification models, e.g. for the prediction of cell
configurations such as the immunological synapse. Following the principle of multi-instance
learning, the framework also implements functionality to regress a set of selected images,
against a downstream continuous readout such as cytokine production. Extensive
documentation, as well as how to reproduce the analysis in the form of Jupyter notebooks is
provided online at https://github.com/marrlab/scifAI/ and
https://github.com/marrlab/scifAI-notebooks.

scifAI enables high-throughput profiling of the immunological synapse
In order to characterize the immunological synapse in an unbiased fashion, we first designed
and computed a series of biologically motivated, interpretable features using the scifAI
framework. These features were based on morphology, intensity, co-localization, texture and
synaptic features extracted from the 5-panel stained images and their corresponding masks
(Methods and Supplementary Fig. 3a-b). Synaptic features were implemented based on the
ratio of the signal intensity of each fluorescent channel in the synaptic area to the whole cell.
Leveraging the large amount of unlabeled data, we also implemented a multi-channel
convolutional autoencoder to learn a second set of data-driven features from the images in an
unsupervised fashion 24. The autoencoder was designed to encode the images to a
128-dimensional abstract feature space by reconstructing the input images (Methods).

Subsequently, scifAI was used to compose a supervised machine learning pipeline for the
classification of the 5221 annotated images across the nine immunologically relevant cell
classes. We trained and benchmarked a series of supervised machine learning models for the
prediction of all nine classes using both the interpretable feature space as well as the abstract
autoencoder features across all donors and experimental conditions. The models included an
XGBoost classifier on the interpretable features and a multi-class logistic regression (LR) on the
interpretable and data-driven features. To pre-select the features and reduce the dimensionality,
we implemented a feature pre-selection pipeline using an ensemble of different methods
(Methods and Supplementary Fig. 4a-b). We also trained a number of convolutional neural
network (CNN) architectures such as Resnet18, ResNet34, DeseNet121 and DeepFlow which
had previously been shown to be successful in classification tasks on imaging flow cytometry
data 22,24,28. The CNN architectures intrinsically learned a feature representation based on the
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input images and their corresponding labels. All models were trained on a stratified subset,
comprising 2923 (70%) annotated images. In order to benchmark the classification model and
feature space combinations, we compared macro F1 scores on the remainder of images as the
hold-out test set comprising 1567 (30%) annotated images (Methods). The XGBoost model
using the interpretable feature set performed best (F1-macro=0.92±0.01, mean ± std 5-fold
cross-validation with 10 repetition) among all the classifiers. It was followed by convolutional
neural networks ResNet34 (0.91±0.01), ResNet18 (0.90±0.01), and DeepFlow (0.90±0.02). They
were followed by multi-class logistic regression using the interpretable feature set (0.90±0.02),
and logistic regression using the data-driven feature set (0.79±0.02). Based on the performance
and explainability, the XGBoost model was selected as the final classifier for label expansion to
the full dataset (Fig. 1c). Investigation of the model’s confusion matrix on the hold-out set
revealed that misclassifications occurred mostly within the cell classes’ signaling property ,
whereas all other classes showed good overall concordance (Supplementary Fig. 4c). After
training the XGBoost classifier, we also explored which underlying features drive the class
prediction, ranking features by their respective Gini-index (Fig. 1E). The most predictive features
were based on colocalization of CD3 & MHCII, colocalization of MHCII & P-CD3ζ, texture of
MHCII and CD3, and intensity of P-CD3ζ. Based on the features and the definition of classes,
one could speculate that the classifier uses (i) the texture of CD3 and MHCII to detect the
existence of T and B-LCL cells in the image, (ii) the colocalization of CD3 & MHCII to detect the
different doublets types and (iii) the intensity of P-CD3ζ and colocalization of MHCII & P-CD3ζ to
detect whether there is a signaling T cell in the image (Fig. 1d).

A subset of annotated data and available IFC channels suffices for a high classification
performance
Following the identification of the final model, we investigated how many annotated samples
were necessary to reach a reasonable classification performance. We repeatedly trained the
model on stratified subsets of the training data and evaluated the F1-macro on the test set. The
results showed that by using 1500 images (45% of the training data), we could achieve 90% of
F1-macro on the test set (Supplementary Fig. 5a). Next, we explored which channels were
sufficient for reaching high performance. We kept the BF channel and used all possible
combinations of the fluorescent channels to train the model. We found that the channels BF,
MHCII and P-CD3ζ sufficed to reach an F1-macro similar to using all the channels
(Supplementary Fig. 5b).

Characterizing the impact of therapeutic antibodies on synapse formation
We next used scifAI to investigate effects of therapeutic antibodies on the formation of the
immunological synapse and to better characterize their morphological profiles. This analysis
included the investigation of potential class frequency changes and feature differences. We
chose two antibodies, one activator and one inhibitor of immune responses. The activating T
cell bi-specific (TCB) antibody was designed to target CD3 and CD19, a co-receptor of B cells 29

(Fig. 2c). The inhibitory antibody, Teplizumab, is described to only bind to CD3 (Fig. 2a) and has
been shown to dampen T cell responses 30,31. For each antibody an appropriate control
(Ctrl-TCB and isotype) was run within the same experiment and donor. Since Teplizumab
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required an existing immune response for subsequent inhibition, we used SEA to first stimulate
the T cells (Fig. 2c). The same setup was also used for the isotype control. Six donors across
two experiments for CD19-TCB and seven donors across three experiments for Teplizumab
were measured (Fig. 2b,d and Supplementary Fig. 2c-d). To determine class frequency changes
between the antibody and its control, the previous XGBoost classifier (Fig. 1c,d) was used to
predict the class for all images based on the interpretable features (Methods). To ensure that
the previously trained XGBoost model was transferable from ±SEA to the antibody experiments,
an expert (K.E.) annotated a randomly selected subset of 396 images for CD19-TCB and 227
images for Teplizumab. A high concordance between ground truth annotations and XGBoost
predictions on the new experiments (macro F1-score=0.86 for TCB and 0.85 for the Teplizumab)
confirmed that the trained model generalizes across experiments and can thus be utilized for
further analyses (Supplementary Fig. 6a). For a compact representation of class frequency
changes, we computed log2-fold changes between the antibodies and their controls. In a
second step, we focused on the feature differences of synapses under antibody stimulation and
selected all the images predicted as ‘synapses w/ signaling’ for each donor and compared
interpretable features from only fluorescent channels including texture, synaptic features,
morphology, intensity and co-localization between antibodies and their controls. We avoided
using the BF channel as its intensity is difficult to interpret and its morphological characteristics
can be captured also by other fluorescent channels (Methods).

CD19-TCB increases the formation of stable immune synapses
Stimulation of the immune response by CD19-TCB led to a significant increase of doublets and
multiplets frequencies. The ‘synapse w/ signaling’ class showed thereby the highest increase
(median log_2(CD19-TCB/Ctrl-TCB)=2.7, n=6 donors, p=0.036) followed by ‘multi-synapse’
(median=2.03, p=0.036), ‘B-LCL & T cell in one layer’ (median=1.99,p=0.036), and ‘synapse w/o
signaling’ class (median=0.59,p=0.036). For the singlets, the overall trend was a decrease in
class frequency of ‘single B-LCL’ (median=-0.21, p=0.036) and `single T cell w/o signaling`
(median=-0.77, p=0.036) (Fig. 2e).

Next, we investigated the feature differences in synapses induced by the CD19-TCB (Methods),
comparing the 210 interpretable features from all fluorescent channels. We found 210
significantly increased and 163 significantly decreased features out of 210*6=1260 possibilities
from combination of features and donors (Fig. 3a). All donors exhibited mostly similar responses
towards the stimulation with CD19-TCB. On average 27±4 features were significantly decreased
and 33±7 features were significantly increased per donor (dashed lines bottom Fig. 3a). From
these features, we were able to find a number of features with similar changes within at least 4
out of 6 donors (Fig. 3a and Supplementary Table 1). We also observed an increase in ‘mean
intensity of P-CD3ζ’ with higher enrichment within the synaptic area (Fig. 3b-c and
Supplementary Table 1). In addition, we also detected a stronger enrichment of F-actin and
MHCII towards the synapse (Fig. 3d-g). Taken together, the observed increase in doublet and
multiplet frequencies as well as a stronger enrichment of F-actin and MHCII in the synaptic area
indicated an enhanced formation of tight immunological synapses, translating into an efficient
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TCR signaling. These observations are in line with the mode of action that is already described
in general for TCBs, promoting a stable interaction between tumor cells and T cells 32–34.

Teplizumab alters synapse formation and TCR signaling
In contrast to the CD19-TCB, treatment with Teplizumab reduced the frequency of doublets and
multiplets significantly (Fig. 2f). The highest decrease was observed for the ‘synapse w/
signaling’ class (median log_2(Teplizumab/Isotype)=-0.75, n=7, p=0.022), followed by
‘multiplets’ (median=-0.69, p=0.036), and ‘synapse w/o signaling’ (median=-0.57, p=0.022).
Accordingly, ‘single T cell w/ signaling’ (median=0.70, p=0.022) and ‘single B-LCL’
(median=0.09, p=0.022) were increased significantly as compared to the isotype. Surprisingly,
the T cell w/o signaling’ class frequency was significantly decreased (median=-0.30, p=0.022),
probably d​​ue to the significant increase of ‘single T cell w/ signaling’ (Fig. 2f).

We next investigated feature differences in synapses induced by Teplizumab in seven donors.
From ‘synapses w/ signaling’ images we extracted 132 features based on F-actin, MHCII and
P-CD3ζ and their co-localizations. CD3 features could not be included for the analysis because
the binding of Teplizumab and the anti-CD3 staining antibody interfere, therefore an anti-CD4
staining antibody was used to identify T cells. We found 131 significantly increased and 169
significantly decreased features out of 132*7=924 possibilities (Fig. 3h and Supplementary
Table 2). In particular, Teplizumab, on average, led to 25±8 significantly decreased features and
19±17 significantly increased features per donor (dashed lines bottom Fig. 3h). Donor 6 showed
the least number of changes with five significantly increased features. In contrast, donor 4
yielded the highest number of increased features with 50 features, indicating a fair amount of
inter donor-variability. We found a set of features which were significantly increased or
decreased for at least 5 out 7 donors (Fig. 3i,k). We observed a decrease in the mean intensity
of F-actin whereas donor 2 and 4 indicated a significant increase (Fig. 3i,j). This opposite
reaction of the two donors could be also detected for other F-actin related features
(Supplementary Table 2). Besides the changes in F-actin features, we also detected a
significant reduction of P-CD3ζ intensity within the synapse and observed a stronger clustering
of TCR signaling around the whole T cell (Fig. 3k,l). In conclusion, we gained new insights into
the immunosuppressive mode of action of Teplizumab as we observed a reduction in the
number of synapses as well as changes in the F-actin reorganization and P-CD3ζ signaling
towards the synapse.

Morphological profiles of the immunological synapse predict functionality of therapeutic
antibodies in vitro
Next, the capabilities of scifAI in predicting the functionality of antibodies by analyzing T cell
cytokine production were explored. We included an additional antibody in our analysis, the
CD20-TCB. CD20-TCB is a therapeutic antibody with the same format similar to CD19-TCB but
varying target moiety 32. Given the richness of interpretable features, we investigated whether it
is possible to forecast downstream T cell responses as measured by GrzmB for the TCBs.
While the IFC measurement was taken after 45 minutes, GrzmB was measured after 24 hours,
respectively, using conventional FACS for each donor and condition to address the effects of the
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antibodies in later time points (Fig. 4b). In line with the differences in target expression, the
CD20-TCB (20.23±6.32, n=4) showed the highest expression of GrzmB, followed by the
CD19-TCB (12.58±3.04) and Ctrl-TCB (1.16±0.51) (Fig. 4b and Supplementary Fig. 6b). A
similar pattern was also detected for killing of two tumor cell lines with different expression levels
of CD19 and CD20 (Supplementary Fig. 6c-d).

Since there is a one-to-many relationship between FACS cytokine measurements and IFC
images, where each cytokine measurement corresponds to an IFC cell population consisting of
54,708 images on average, an aggregation pipeline based on the interpretable features was
implemented (Methods). For each donor and condition, first images predicted as synapses were
selected and their previously extracted features were aggregated using the 5th, 50th, and 95th
percentile. This aggregation ensured that every feature's extrema and average expression were
captured (Fig. 4c and Methods). Next, it was attempted to predict the cytokines for an unseen
antibody. Due to the low number of samples, a linear model with Lasso Lars penalization was
used (Methods). The cross validation was performed on CD19-TCB and CD20-TCB, while the
No Ab and Ctrl-TCB were kept in the training set. The prediction performance reached a
Spearman correlation of 0.38. While we could observe subtle differences between the
predictions and the ground truth, the model correctly identified the separation between
CD20-TCB and CD19-TCB. Furthermore, the model suggested that the 'standard deviation of
MHCII (95th perc.) [intensity]' and 'eccentricity of F-actin (95th perc.) [morphology]' as the most
important features.
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Discussion
In the present work we established scifAI, a pipeline based on two innovative technologies,
imaging flow cytometry and explainable machine learning to understand the mode of action and
predict the functionality of therapeutic antibodies in vitro. We analyzed morphological profiles of
the immunological synapse to better characterize the mode of action of therapeutic antibodies
early after the initiation of an immune response and to apply it to forecast downstream T cell
responses.

We generated the largest publicly available imaging flow cytometry data using human primary
immune cells from nine donors in four independent experiments that were treated with various
therapeutic antibodies to study synapse formation. This is in contrast to previous works that did
not take into account inter-experiments effects on synapse formation 21,35. To detect and study
immunological synapses, we implemented an interpretable feature extraction and machine
learning framework in python by only using well-maintained python modules. This choice
guarantees performance, scalability, reproducibility and facilitates the deployment into existing
workflows, which differs from previous works that use a combination of CellProfiler, R and
python for each stage of the analysis 27,36,37. The combination of using interpretable features and
explainable machine learning enabled us to identify various relevant classes, such as
immunological synapses, with state-of-the-art accuracy. It also allowed us to investigate the
morphological profiles of the immunological synapse in an unbiased way as well as the
characterization of the mode of action of antibodies in a biologically relevant context. This
methodology is thus a substantial contribution to the field which is otherwise primarily focused
on performance over interpretability by using ResNet CNN architecture as the backbone 26,38.

To demonstrate the capabilities of the scifAI framework we investigated the effects of two
therapeutic antibodies on the immunological synapse, the CD19-TCB and Teplizumab, which
are both binding CD3 and have been described to activate and suppress T cell responses,
respectively 29–31. We found that the CD19-TCB forms more stable immune synapses as
indicated by a stronger enrichment of MHCII and F-actin within the synapse that was paralleled
by a higher intensity of P-CD3ζ. The formation of stable T cell-tumor cell synapses has already
been reported for other TCBs like the CEA- and CD20-TCB 32,33. In contrast to the CD19-TCB,
treatment of Teplizumab yielded a decrease in synapse formation and prevented F-actin
reorganization as well as localization of P-CD3ζ towards the synapse. These observations gave
new insights into the immunosuppressive mode of action of Teplizumab that has rarely been
investigated in vitro so far 30,31. One could speculate that steric hindrance by Teplizumab
prevented T cell-APC interactions leading to less stable synapses and reduced cytokine
production. It has been shown that antibody size and format can have a substantial impact on
synapse formation 16,17. Another hypothesis could be that binding of Teplizumab induced strong
TCR internalization that led to diminished SEA-mediated TCR-MHCII crosslinking and thus
inhibited T cell activation. The reduced P-CD3ζ intensity in the synaptic area and the observed
unpolarized distribution of P-CD3ζ signal around the whole T cell could also indicate altered
TCR signaling that might be translated into a reduced T cell effector function. High numbers of
peripheral P-CD3ζ microclusters have been already reported for self-reactive T cells with altered
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synapse formation and aberrant T cell responses 6. Interestingly, scifAI identified features within
the synapse class revealing inter donor-variability upon stimulation with the different antibodies.
However, we were not able to correlate the variability of those features to a different functionality
in vitro because the differences in the T cell responses between donors were just minor. Patient
material from ongoing clinical trials could help to further elaborate if these synapse features
could be used to predict clinical response. In that case, scifAI could enable us to rapidly screen
for responders in vitro and potentially pre-select suitable patients for clinical trials. Taken
together, by applying scifAI we were not only able to thoroughly investigate the mode of action
of therapeutic antibodies by identifying significant features, but also to gain more insights into
inter donor-variability that might potentially translate into different functional outcomes in vivo.

The immunological synapse has previously been studied using high-content cell imaging on
human cell lines and primary cells with an artificial APC system that utilized plate-bound ICAM-1
and stimulatory antibodies 37. Although German et al. convincingly demonstrated the capabilities
of their pipeline by profiling the immunological synapse, they did not investigate whether they
can use these profiles in predicting drug effectiveness 37. In other studies, the potential of
synapse formation was also investigated for CAR T cell therapy, where investigators used the
mean intensity of stainings such as F-actin and P-CD3ζ per cell, clustering of tumor antigen and
polarization of perforin-containing granules as a measure of synapse formation quality. These
features varied between different CAR T cells and correlated with their effectiveness in vitro and
in vivo as well as with clinical outcomes 39,40. In our work, we improved this by incorporating 296
biologically motivated features such as texture, intensity statistics and synaptic related features.

This work is the first in using interpretable features of the immunological synapse to predict the
effectiveness of therapeutic antibodies on T cell cytokine production. These features allowed us
to predict the functional outcome of an unseen antibody and to pinpoint the driving factors
required for the prediction. For the TCBs we found intensity of MHCII and morphology of F-actin
as the most prominent features in predicting cytokine readouts. The ability to predict unseen
antibodies could potentially enable the investigation of various antibody formats to better
understand mechanistically how different formats can impact T cell responses and help to guide
format selection.

scifAI is an end-to-end data acquisition and analysis framework which can be adjusted to
investigate various hypotheses and to develop diverse applications based on imaging flow
cytometry data. For instance, while in this study memory CD4+ T cells were analyzed as they
are poised to show faster immune responses and a higher synapse propensity compared to
naive T cells 49, imaging and analysis of CD8+ T cells, as the main players in cytotoxicity, could
further elaborate how synapse features correlate with killing efficiency of therapeutic antibodies
against tumor cells. scifAI can also be utilized in the design of IFC experiments, optimizing the
number and type of stainings, as well as the total number of images per donor to be acquired. In
Pharma R&D, scifAI has the great potential to improve the quality and the speed of antibody
development, for example giving new insights towards the mode of action of particular
candidate molecules, or to predict in vitro efficacy in high-throughput. AI assisted identification of
lead molecules and better prioritization in terms of epitope, affinity, avidity and antibody format
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can have a huge impact on the decision making process. Above that, we can foresee that scifAI
can even help to identify responders among patient populations and predict their clinical
outcomes. In a nutshell, IFAI could provide substantial benefit by assisting the investigation of
the mode of action and the functionality of newly generated antibody candidates.
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Materials & Methods

Cell line culture

EBV-transformed B-lymphoblastoid cell line (B-LCL) from donor 333 was obtained from Astarte
Biologics (# 1038-3161JN16) and cells were cultivated in RPMI-1640 medium (PAN-Biotech; cat
# P04-17500) with 10% FBS (Anprotec; cat # AC-SM-0014Hi) and 2 mM L-glutamine
(PAN-Biotech; cat# P04-80100). Z138 (MCL, gift from University of Leicester) and Nalm-6 (ALL,
DSMZ ACC 128) tumor cells were cultivated in RPMI1640 containing 10% FBS and 1%
Glutamax (Invitrogen/Gibco # 35050-038).

Immune synapse formation and imaging flow cytometry

To analyze immune synapses, human memory CD4+ T cells were isolated from PBMCs of nine
healthy human donors using a negative selection EasySep Enrichment kit from STEMCELL
Technologies (cat #19157). Live/dead staining of T and B-LCL cells was separately performed
using the fixable viability dye eF780 for 15 min at RT (eBioscience; cat # 65-0865-14). Cells
were then re-suspended in RPMI-1640 medium supplemented with 10% FBS (Anprotec; cat #
AC-SM-0014Hi), 5% Penicillin-Streptomycin (Gibco; cat # 15140-122) and 2 mM L-glutamine
(PAN-Biotech; cat # P04-80100). Afterwards B-LCL cells were transferred into a well of a
96-well round bottom plate (300.000 cells per well) and were pre-incubated with the
superantigen Staphylococcal enterotoxin A (SEA) (Sigma-Aldrich; cat # S9399) for 15 min at
37°C or left untreated. Human CD4+ Tmem were added to the afore-prepared B-LCL cells
(250.000 cells per well) to generate a final ratio of 4:3 (B-LCL:Tmem) and subsequently the
appropriate in-house made compounds (10 µg/mL of Isotype Ctrl or Teplizumab and 1 µg/mL (5
nM) of Ctrl-TCB, CD19-TCB or CD20-TCB) were added to the B-LCL-Tmem cell co-culture. To
strengthen the conjugate formation between B-LCL and T cells they were centrifuged at 300xg
for 30 sec and then directly transferred to a 37°C incubator for 45 min. Thereafter, the medium
in each well was carefully aspirated with a pipette and cells were immediately fixed for 12 min at
RT followed by permeabilization using the Foxp3/Transcription factor staining buffer set from
eBioscience (cat # 00-5523-00). Intracellular staining was performed in permeabilization buffer
containing fluorescently-labeled antibodies for 40 min at 4°C: CD3-BV421 (clone UCHT1,
Biolegend; cat # 300433), HLA-DR-PE-Cy7 (clone L243, Biolegend; cat # 307616), Phalloidin
AF594 (ThermoFisher; cat # A12381) and P-CD3ζ Y142-AF647 (K25-407.69, BD cat # 558489).
After washing, cells were suspended in FACS buffer (PBS supplemented with 2% FBS) and
acquired on an Amnis ImageStreamX Mark II Imaging Flow Cytometer (Luminex) equipped with
five lasers (405, 488, 561, 592 and 640 nm). On average, around 55,000 images were collected
per sample at 60x magnification on a low speed setting. IDEAS software (version 6.2.187.0,
EMD Millipore) was used for data analysis and labeling of cells. To identify immune synapses
using the IDEAS software the gating strategy in Supplementary Fig 1a was implemented. Cells
were first gated on in-focus live+ CD3+ MHCII+ cells. Within this population images that show
single CD3+ T cells and single MHCII+ B-LCL cells were selected using the area and aspect ratio
feature. Next, to exclude non-interacting cells the CD3 intensity within a self-created synapse
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mask was determined. The synapse mask was defined as a combination of the morphology
CD3 and MHCII mask with a dilation of 3. Only synapses that showed a CD3 signal in the mask
were gated. Finally, T+B-LCL cells in one layer were excluded by using the height and area
feature of the brightfield (BF) and single T-B-LCL synapses were analyzed.

Intracellular staining of cytokines using conventional flow cytometry

For intracellular cytokine staining cells were first treated with GolgiPlug (BD Biosciences; cat #
555029) and GolgiStop (BD Biosciences; cat #554724) for at least 2-4 h before being stained.
After incubation live/dead staining was performed using the fixable viability dye eF780 for 20
min at 4°C (eBioscience; cat # 65-0865-14). Cells were then fixed and permeabilized using the
Foxp3/Transcription factor staining buffer set from eBioscience (cat # 00-5523-00) as described
for the synapse formation assay. Intracellular staining was performed in permeabilization buffer
containing fluorescently-labeled antibodies for 30 min at 4°C: TNFα-APC (clone MAb11, BD
Biosciences; cat # 554514), IFN-𝛾-PE (clone B27, BD Biosciences; cat # 554701) and
Granzyme B-PE-Cy7 (clone QA16A02, Biolegend; cat # 372214). Finally, cells were suspended
in FACS buffer (PBS supplemented with 2% FBS and 1 mM EDTA) and acquired on a FACS
Celesta from BD Biosciences.

Tumor Cell Lysis Assays (in vitro)

B cell-depleted PBMCs derived from blood of healthy donors were prepared using standard
density-gradient isolation followed by B cell depletion with CD20 Microbeads (Miltenyi; cat #
130-091-104). B cell-depleted PBMCs were then incubated with the tumor targets (Z-138 or
Nalm-6) at a ratio of 5:1 for 24 h in the presence or absence of CD20-TCB or CD19-TCB. Tumor
cell lysis was calculated based on LDH release (LDH Cytotoxicity Detection Kit from Roche
Applied Science) and normalized to spontaneous release (PBMCs + targets without treatment =
0 % tumor cell lysis) and maximal release (lysis of tumor targets with Triton X-100 = 100 %
lysis).

Quantification of CD20 and CD19 expression

CD19 and CD20 expression on B-LCL cells were determined using the Quantum™ Alexa
Fluor® 647 MESF Kit from Bangs Laboratories (cat # 647) according to the manufacturer’s
instructions using an anti-human CD20-AF647 (Biolegend # 302318) or and anti-human
CD19-AF647 (Biolegend # 302220) antibody as well as the corresponding isotype controls
(muIgG1 (Biolegend # 400130) and muIgG2b (Biolegend # 400330). For the quantification of
CD19 and CD20 molecules on the tumor target cell lines Nalm-6 and Z-138 the QiFi Kit from
Dako (cat # K0078) was performed according to the manufacturer’s instructions by using an
anti-human CD20 purified (BD # 555621) or and anti-human CD19 purified (BD # 555410)
antibody as well as the corresponding isotype controls (muIgG1 (BD # 554121) and muIgG2b
(BD # 557351).

Shetab Boushehri et al. 2022 14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.24.513494doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513494
http://creativecommons.org/licenses/by-nc-nd/4.0/


Preparation of the imaging dataset for analysis

We in total recorded 2,899,575 imaging flow cytometry images. The dataset consists of nine
distinct donors across four independent experiments. Donor 1 and Donor 2 were used twice
(Supplementary Fig. 2a). Different conditions were measured which included -SEA (total
images=625,001), +SEA (557,781), Ctrl-TCB (330,000), CD19-TCB (324,020), CD20-TCB
(254,398), Isotype (405,000), and Teplizumab (403,375). The images contained brightfield (BF),
F-actin, MHCII, CD3, P-CD3ζ, and live-dead stainings. The live-dead staining is only used to
filter out the dead cells. For each experiment, the images were compensated using a
compensation matrix derived from stained single cells. After the compensation, the raw images
(16-bit) and their corresponding channel-wise segmentation masks were exported from the
IDEAS software and saved in an HDF5 format. To enable parallelization, each image and its
corresponding mask were saved separately.

Interpretable feature engineering from images

We extracted a set of 296 biologically motivated features to study the immunological synapse.
These features included morphology, intensity, co-localization, texture and synaptic related
values (see Supplementary Fig. 3). The morphology features were calculated based on the
segmentation mask from each channel. The features included ‘area’, ‘bounding box area’,
‘convex area’, ‘eccentricity’, ‘equivalent diameter’, ‘Euler number’, ‘extent’, ‘maximum Feret
diameter’, ‘minimum Feret diameter’, ‘filled area’, ‘length of major axis’, ‘length of minor axis’,
‘Hu moments’, ‘orientation’, ‘perimeter’, ‘Crofton perimeter’, ‘solidity’, ‘weighted Hu moments’. All
the morphology features are extracted using scikit-image library 41. For the intensity
features, first the cells were segmented using their corresponding mask. The intensity features
included ‘min’ ,‘sum’, ‘mean’, ‘standard deviation’, ‘skewness’, ‘kurtosis’, ‘max’ and ‘Shanon
entropy’. In addition, the percentile of intensity values including ‘10th percentile’, ‘20th
percentile’, …, ‘90th percentile’ were calculated. All of the intensity features were calculated
based on NumPy 42 and SciPy 43 functionality. For co-localization features, we implemented
‘dice distance’ and ‘Jaccard distance’ to calculate the masks overlap between two channels
using the SciPy 43 library. In addition, we calculated the ‘correlation distance’ 43, ‘Euclidean
distance’ 43, ‘Manders overlap coefficient’ 44, ‘intensity correlation quotient’ 44, ‘structural similaity’
41 and ‘Hausdorff distance’ 41. For texture features, we used Gray Level Co-occurrence Matrix
(GLCM) features 45 including ‘contrast’, ‘dissimilarity’, ‘homogeneity’, ‘ASM’, ‘energy’ and
‘correlation’. The synapse related features were defined as ‘enrichment of Ch (mean)’=

, ‘enrichment of Ch (sum)’=𝑚𝑒𝑎𝑛(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶ℎ 𝑖𝑛 𝑠𝑦𝑛𝑎𝑝𝑠𝑒)/𝑚𝑒𝑎𝑛(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶ℎ)
, and ‘enrichment of Ch (max)’=𝑠𝑢𝑚(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶ℎ 𝑖𝑛 𝑠𝑦𝑛𝑎𝑝𝑠𝑒)/𝑠𝑢𝑚(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶ℎ)

35. Finally, we implemented𝑚𝑎𝑥(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶ℎ 𝑖𝑛 𝑠𝑦𝑛𝑎𝑝𝑠𝑒)/𝑚𝑒𝑎𝑛(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐶ℎ)
‘background mean’ and ‘gradient RMS’ for quality control of images. All these features were
implemented using NumPy(version=1.18.5), Pandas (1.1.5), SciPy (1.8.0),
scikit-image (0.19.2), and scikit-learn(1.0.2) 46.

Autoencoder feature extraction

To leverage the large amount of unlabeled data, we implemented and trained a multichannel
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autoencoder 24. This autoencoder included a separate encoder for each channel. The encoders
were designed to map each channel to a 32 dimensional vector. The concatenation of these
vectores led to a 5*32 dimensional space. Then these features were mapped to a 256
dimensional feature vector. A decoder on top of the concatenated vectors was implemented for
reconstructing the original image. ‘L2 norm’ was used as the reconstruction loss. The
augmentations used for training the autoencoder included random rotation, random scaling,
random flipping, random gaussian noise.

Feature pre-selection

Considering that the number of features was large, we implemented a feature pre-selection
pipeline to select the most relevant features. We followed the work of Haq et al. 47 (see
Supplementary Fig. 4a). First, the Pearson correlation between the features was measured. If at
least two features were highly correlated (|corr|>0.95), then only one of them was kept (at
random), and the rest were eliminated. In the next step, six different methods were used to rank
the features. These methods included mutual information, linear support vector machine, logistic
regression with L1 regularization, logistic regression with L2 regularization, random forest, and
XGBoost. The top-k (hyper-parameter to be selected) features from each method were
selected, and their union was used. After this reduction, the Spearman correlation matrix
between the features was calculated, and spectral clustering was performed on the correlations.
Then, m clusters were created, and one feature at random per cluster was selected. The last
step was performed to account for multicollinearity between the features.

Classification

There are three main approaches which are used for training a supervised learning algorithm in
this work, feature based approach and deep learning.

Classical supervised learning models

We used two different algorithms for training machine learning models. We used a boosting
method called XGBoost 48 which uses an ensemble of trees on the data (n_trees=100). The
second model was a logistic regression. The advantage of using these models was that they
provide explainability after the training.

Convolutional neural networks

For training supervised deep learning models, we used well-known architectures in the field of
computer vision including ResNet18, Resnet34, ResNet50, ResNet152, DeseNet121 and
DeepFlow 22,24,28. All of the models were pre-trained on ImageNet. Considering the models are
designed for three channels input, we had to remove the first convolutional layer with three input
channels to six input channels. In addition, the classification layer also needed to be adjusted to
have nine classes. However, the rest of the networks were untouched with their predefined
ImageNet weights. We used multi-class cross entropy loss for training. The learning rate (lr) was
set to 0.001, with adaptive strategy of reducing on plateau of 10 epochs. The augmentations
used for training the autoencoder included random rotation, random scaling, random flipping,
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random gaussian noise.

Classification feature importance

As mentioned, a feature pre-selection filtering was used to reduce the number of features and
then an XGBoost classifier was trained on the annotated data. While the XGBoost can provide
feature importance using Gini-index, these importances can be biased due to different reasons
such as correlation between the pre-selected features, number of features, the pre-selection
process, outliers , etc. To account for this, we splitted the training data randomly to 5-folds
(stratified) and trained the XGBoost classifier five times, each time using 4 out of the 5 folds. We
repeated this process 100 times, leading to 500 different models. In each training, we used a
random number of pre-selected features (top-k) between 30 to 200 features. Eventually, for
every feature a series of Gini-indices were obtained. The median Gini-index for each feature
was used to rank the features.

Classification staining importance

To determine which staining contributes the most to the predictions, we used recursive channel
elimination. In every run, we always kept BF as it is stain-free. Then train the ‘interpretable
features + XGBoost’ based on the features of the selected channels (see Supplementary Fig.
5b).

Class frequency analysis

For each donor, first we used the trained XGBoost classifier to predict the classes for every
image. Then we excluded images using this data cleaning protocol:

1. Filtering out images including dead cells (using Live-Dead staining) with ‘mean
Live-Dead intensity’ >=‘mean Live-Dead intensity (90th perc.)’

2. Filtering out dead cells (using Live-Dead staining) with ‘mean Live-Dead intensity’ >
‘mean Live-Dead intensity (90th perc.)’

3. Filtering out unfocused images with these conditions ‘Gradient RMS BF’ > ‘Gradient
RMS BF (2nd perc.)’ and  ‘Gradient RMS BF’ < ‘Gradient RMS BF (90th perc.)’

4. Filtering out images based with high entropy using the XGBoost predictions (entropy>
1.0). The entropy was calculated using the SciPy package. This step is done to omit
images that the classifier is the most uncertain in terms of prediction.

5. Filtering out images predicted as ‘B-LCL’ with ‘mean intensity of MHCII’ < ‘mean intensity
of MHCII (5th perc.)’. This step guarantees that the images predicted ‘B-LCL’ contain a
minimum MHCII intensity

6. Filtering out images predicted as ‘B-LCL’ with ‘area of MHCII’ < ‘area of MHCII (10th
perc.)’. This step guarantees that the images predicted ‘B-LCL’ contain a cell with
appropriate size and reduces artifacts.

7. Filtering out images predicted as ‘T cell’ with ‘mean intensity of CD3’< ‘mean intensity of
CD3 (1st perc.)’. This step guarantees that the images predicted ‘T cell’ contain a
minimum CD3 intensity.
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8. Filtering out images predicted as ‘B-LCL and T cell in one layer’ with ‘area of MHCII’ <
‘area of MHCII (20th perc.)’. This step is performed to omit ‘B-LCL and T cell in one
layer’ with small ‘B-LCL’s.

9. Filtering out images based on the isolation forest outlier detection. We used
n_estimators=100, max_samples='auto', contamination='auto', and max_features=20 as
the main parameters. For reducing the run time, we only used top 30 features based on
Gini-index from the XGBoost training.

10. Filtering out images based on Uniform Manifold Approximation and Projection (UMAP).
First we transformed all images to 2D dimensional space using UMAP. The features
were standardized using the mean and std of each feature. For reducing the run time,
we only used top 30 features based on Gini-index from the XGBoost training. Then a
DBSCAN algorithm was run with eps=0.09 and min_samples=5. The resulted clustered
were filtered out if (#images in cluster)/(#total images) < 0.0001.

All these steps are done based on scikit-learn implementations. All parameters were set using
the default value of scikit-learn unless stated otherwise. After the data cleaning, the frequency of
each class was calculated with ‘F_C=(#images predicted as C)/(#total images)’ for each
condition per donor. To deal with the compositional nature of the data, we used
log_2(F_C_antibody/F_C_control) to compare the frequency fold-changes. This transformation
has the advantage that the frequencies do not sum to a constant value. After calculating the
log_2 fold-changes, we used the Wilcoxon-rank-sum test for analyzing the effects of antibodies
on class frequencies. Wilcoxon-rank-sum tests whether two samples are likely to derive from the
same population. To account for multiple testing, we used Benjamini-Hochberg correction for
+SEA/-SEA, CD19-TCB/Control TCB and Teplizumab/isotype respectively. Because the
experiments were performed independently, we only corrected each of these comparisons
separately.

Feature difference analysis

We analyzed the effect of perturbation with CD19-TCB, and Teplizumab on signaling synapses.
First, we selected the images predicted as ‘synapse w/ signaling’. We removed brightfield (BF)
features as the intensity of BF does not contain biological meaning. Also, the morphological
features of BF were already captured based on F-actin masks. Therefore this information was
redundant. This feature reduction was also necessary as it reduces the number of tests and
increases the chance of finding meaningful p-values after correction for multiple testing. This
procedure yielded 210 features for comparison for SEA and TCB based on F-actin, MHCII, CD3,
and P-CD3ζ. For Teplizumab, we had to reduce the features even more. This reduction was
necessary because of the usage of CD4 in recording images for Teplizumab instead of CD3.
Therefore, a meaningful comparison between Teplizumab and its control based on CD3 was not
feasible. Thus we analyzed 132 features extracted from F-actin, MHCII, and P-CD3ζ.

After the feature selection, we compared the features using the Mann-Whitney U test for each
condition and its control. To understand the direction of change, we used the difference in
median of features for each condition and its control. To account for multiple testing, we used
the Benjamini-Hochberg procedure with α=0.05. As the conditions were independent, we
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corrected the p-values for each condition and its control separately.

GrzmB prediction and feature ranking

To predict GrzmB, we only used images predicted as ‘synapse w/o signaling’ and ‘synapse w/
signaling’ for each condition. This choice was done as it is assumed that the synapses will lead
to cytokine production. Considering that for each donor and condition we had thousands of
images, we used an aggregation pipeline to create a feature vector corresponding to each
donor and condition. To reduce the number of features, we only used the consistent feature
changes for the CD19-TCB (Fig. 3). For each donor and condition, we aggregated the features
using 5th, 50th and 95th percentile to capture the extremes and average of every feature.

After deriving the aggregated features, we used a one-donor-leave-out cross validation to train a
linear regression model with LassoLars. The most important features were based on the
magnitude of the coefficients.

Visualizations

For visualizing the conjugates and biological context, we used www.BioRender.com. For the plots
and images, we used matplotlib (version=3.3.2) and seaborn (0.11.2) in Python.
Finally, Inkscape was used for creating the figures.

Shetab Boushehri et al. 2022 19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.24.513494doi: bioRxiv preprint 

http://www.biorender.com
https://doi.org/10.1101/2022.10.24.513494
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Huppa, J. B. & Davis, M. M. T-cell-antigen recognition and the immunological synapse. Nat
Rev Immunol 3, 973–983 (2003).
2. Dustin, M. L. The Immunological Synapse. Cancer Immunol Res 2, 1023–1033 (2014).
3. C.J., K., A.J., B., P.K., D. & J., O. The role of the immunological synapse formed by cytotoxic
lymphocytes in immunodeficiency and anti-tumor immunity. Crit Rev Immunol 35, 325–347
(2015).
4. Kallikourdis, M., Viola, A. & Benvenuti, F. Human Immunodeficiencies Related to Defective
APC/T Cell Interaction. Front Immunol 6, 433 (2015).
5. R., D., Laura et al. Imbalance of immunological synapse-kinapse states reflects tumor escape
to immunity in glioblastoma. Jci Insight 3, e120757 (2018).
6. Schubert, D. A. et al. Self-reactive human CD4 T cell clones form unusual immunological
synapses. J Exp Medicine 209, 335–352 (2012).
7. Ronan Calvez, et al. The Wiskott-Aldrich syndrome protein permits assembly of a focused
immunological synapse enabling sustained T-cell receptor signaling. Haematologica 96,
1415–1423 (2011).
8. G., R., Alan et al. Chronic lymphocytic leukemia T cells show impaired immunological
synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118,
2427–2437 (2008).
9. Francesca, F. & Baldari, C. T. The immunological synapse as a pharmacological target.
Pharmacol Res 134, 118–133 (2018).
10. Tai, Y., Wang, Q., Korner, H., Zhang, L. & Wei, W. Molecular Mechanisms of T Cells
Activation by Dendritic Cells in Autoimmune Diseases. Front Pharmacol 9, 642 (2018).
11. M., S.-T., Scott, Yun-jeong, S., M., S., Richard & J., O., John. Steward-Tharp et al., Ann. NY.
Acad. Sci 2010, New insights into T cell biology and T-cell directed therapy for autoimmunity,
inflammation, and immunosuppression.pdf. Ann Ny Acad Sci 1183, 123–148 (2010).
12. Wetzel, S. A., McKeithan, T. W. & Parker, D. C. Live-Cell Dynamics and the Role of
Costimulation in Immunological Synapse Formation. J Immunol 169, 6092–6101 (2002).
13. Cremasco, F. et al. Cross-linking of T cell to B cell lymphoma by the T cell bispecific
antibody CD20-TCB induces IFNγ/CXCL10-dependent peripheral T cell recruitment in
humanized murine model. Plos One 16, e0241091 (2021).
14. Amita, J. et al. An Overview of the Pharmacokinetics and Pharmacodynamics of Efalizumab:
A Monoclonal Antibody Approved for Use in Psoriasis. J Clin Pharmacol 46, 10–20 (2006).
15. Lee, J. Y. et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer
immunotherapy. Nat Commun 7, 13354 (2016).
16. Dickopf, S., Georges, G. J. & Brinkmann, U. Format and geometries matter: Structure-based
design defines the functionality of bispecific antibodies. Comput Struct Biotechnology J 18,
1221–1227 (2020).
17. Cartwright, A. N. R., Griggs, J. & Davis, D. M. The immune synapse clears and excludes
molecules above a size threshold. Nat Commun 5, 5479 (2014).
18. Vyver, A. J. V. D. et al. Predicting Tumor Killing and T-Cell Activation by T-Cell Bispecific
Antibodies as a Function of Target Expression: Combining In Vitro Experiments with Systems
Modeling. Mol Cancer Ther 20, 357–366 (2021).

Shetab Boushehri et al. 2022 20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.24.513494doi: bioRxiv preprint 

https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://doi.org/10.1101/2022.10.24.513494
http://creativecommons.org/licenses/by-nc-nd/4.0/


19. Wabnitz, G. H., Nessmann, A., Kirchgessner, H. & Samstag, Y. InFlow microscopy of human
leukocytes: A tool for quantitative analysis of actin rearrangements in the immune synapse. J
Immunol Methods 423, 29–39 (2015).
20. Wabnitz, G. H. et al. L‐plastin phosphorylation: A novel target for the immunosuppressive
drug dexamethasone in primary human T cells. Eur J Immunol 41, 3157–3169 (2011).
21. Ahmed, F., Friend, S., George, T. C., Barteneva, N. & Lieberman, J. Numbers matter:
Quantitative and dynamic analysis of the formation of an immunological synapse using imaging
flow cytometry. J Immunol Methods 347, 79–86 (2009).
22. Lippeveld, M. et al. Classification of Human White Blood Cells Using Machine Learning for
Stain‐Free Imaging Flow Cytometry. Cytom Part A 97, 308–319 (2020).
23. Eulenberg, P. et al. Reconstructing cell cycle and disease progression using deep learning.
Nat Commun 8, 463 (2017).
24. Kranich, J. et al. In vivo identification of apoptotic and extracellular vesicle-bound live cells
using image-based deep learning. J Extracell Vesicles 9, 1792683 (2020).
25. Chlis, N.-K., Rausch, L., Brocker, T., Kranich, J. & Theis, F. J. Predicting single-cell gene
expression profiles of imaging flow cytometry data with machine learning. Nucleic Acids Res 48,
gkaa926- (2020).
26. Doan, M. et al. Deepometry, a framework for applying supervised and weakly supervised
deep learning to imaging cytometry. Nat Protoc 16, 3572–3595 (2021).
27. Hennig, H. et al. An open-source solution for advanced imaging flow cytometry data analysis
using machine learning. Methods San Diego Calif 112, 201–210 (2017).
28. Eulenberg, P. et al. Reconstructing cell cycle and disease progression using deep learning.
Biorxiv 081364 (2017) doi:10.1101/081364.
29. Leclercq, G. et al. JAK and mTOR inhibitors prevent cytokine release while retaining T cell
bispecific antibody in vivo efficacy. J Immunother Cancer 10, e003766 (2022).
30. Xu, D. et al. In Vitro Characterization of Five Humanized OKT3 Effector Function Variant
Antibodies. Cell Immunol 200, 16–26 (2000).
31. Herold, K. C. et al. Activation of human T cells by FcR nonbinding anti-CD3 mAb,
hOKT3γ1(Ala-Ala). J Clin Invest 111, 409–418 (2003).
32. Cremasco, F. et al. Cross-linking of T cell to B cell lymphoma by the T cell bispecific
antibody CD20-TCB induces IFNγ/CXCL10-dependent peripheral T cell recruitment in
humanized murine model. Plos One 16, e0241091 (2021).
33. Bacac, M. et al. A Novel Carcinoembryonic Antigen T-Cell Bispecific Antibody (CEA TCB)
for the Treatment of Solid Tumors. Clin Cancer Res 22, 3286–3297 (2016).
34. Marina, B. et al. Bacac et al., Clinc Cancer Res 2018, CD20-TCB with Obinutzumab
pretreatment as next-generation treatment of hematologic malignancies .pdf. Clin Cancer Res
24, 4785 (2018).
35. Wabnitz, G., Kirchgessner, H. & Samstag, Y. Qualitative and Quantitative Analysis of the
Immune Synapse in the Human System Using Imaging Flow Cytometry. J Vis Exp (2019)
doi:10.3791/55345.
36. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying
cell phenotypes. Genome Biol 7, R100–R100 (2006).
37. German, Y. et al. Morphological profiling of human T and NK lymphocytes by high-content
cell imaging. Cell Reports 36, 109318 (2021).

Shetab Boushehri et al. 2022 21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.24.513494doi: bioRxiv preprint 

https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://doi.org/10.1101/2022.10.24.513494
http://creativecommons.org/licenses/by-nc-nd/4.0/


38. Perakis, A. et al. Contrastive Learning of Single-Cell Phenotypic Representations for
Treatment Classification. Arxiv (2021) doi:10.1007/978-3-030-87589-3_58.
39. Naghizadeh, A. et al. In vitro machine learning-based CAR T immunological synapse quality
measurements correlate with patient clinical outcomes. Plos Comput Biol 18, e1009883 (2022).
40. Xiong, W. et al. Immunological Synapse Predicts Effectiveness of Chimeric Antigen
Receptor Cells. Mol Ther 26, 963–975 (2018).
41. Walt, S. van der et al. scikit-image: image processing in Python. Peerj 2, e453 (2014).
42. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
43. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat
Methods 17, 261–272 (2020).
44. Adler, J. & Parmryd, I. Quantifying colocalization by correlation: The Pearson correlation
coefficient is superior to the Mander’s overlap coefficient. Cytom Part A 77A, 733–742 (2010).
45. Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural Features for Image Classification.
Ieee Transactions Syst Man Cybern SMC-3, 610–621 (1973).
46. Buitinck, L. et al. API design for machine learning software: experiences from the scikit-learn
project. Arxiv (2013).
47. Haq, A. U., Zhang, D., Peng, H. & Rahman, S. U. Combining Multiple Feature-Ranking
Techniques and Clustering of Variables for Feature Selection. Ieee Access 7, 151482–151492
(2019).
48. Krishnapuram, B. et al. XGBoost. Proc 22nd Acm Sigkdd Int Conf Knowl Discov Data Min
785–794 (2016) doi:10.1145/2939672.2939785.

Shetab Boushehri et al. 2022 22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.24.513494doi: bioRxiv preprint 

https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://app.readcube.com/library/?style=Nature+%7B%22language%22:%22en-US%22%7D
https://doi.org/10.1101/2022.10.24.513494
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Figure  1:  Explainable  machine  learning  accurately  predicts  immunologically  relevant  cell  classes  from  IFC  data  and 
 identifies most informative image features. 
 a  Schematic  representation  of  the  data  generation  and  analysis  pipeline.  To  systematically  analyze  the  immunological  synapse  of 
 T-B  conjugates,  1,182,782  images  were  acquired  with  an  imaging  flow  cytometer.  Next,  scifAI  was  used  to  extract  morphological 
 features, train machine learning models, profile immunological synapses and characterize the functionality of therapeutic antibodies. 
 b  A  subset  of  5221  images  was  annotated  by  an  expert  into  nine  immunologically  relevant  classes  that  can  be  grouped  into  singlets 
 (either  B  or  T  cells),  doublets  (with  one  B  and  one  T  cell),  and  multiplets  (containing  >2  cells).  Cell  images  show  brightfield  (BF, 
 scale bar = 2.4μm), F-actin (cytoskeleton), MHCII, CD3 and P-CD3ζ (a marker for TCR signaling). 
 c  Six  different  approaches  to  train  predictive  machine  learning  models  for  the  identification  of  the  immunologically  relevant  classes 
 were  benchmarked,  combining  different  classification  algorithms  and  feature  engineering  strategies.  These  approaches  included 
 interpretable  (interp.)  features  combined  with  explainable  classifiers,  an  autoencoder  to  generate  data-driven  features,  an 
 explainable  classifier,  and  three  convolutional  neural  networks.  Interpretable  features  combined  with  the  XGBoost  classifier  resulted 
 in the best trade-off between interpretability and classification performance. 
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 d  Top  eight  features  for  the  detection  of  cell  classes  were  ranked  based  on  Gini-index.  The  features  include  colocalization,  texture 
 and  intensity  of  MHCII,  CD3  and  P-CD3ζ.  The  exemplary  images  are  taken  from  donor  7  in  experiment  IV  (Supplementary  Fig.  2) 
 sampling from the 5th, 50th and 95th percentile of the distribution of each feature. 
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 Figure 2. CD19-TCB and Teplizumab show significant changes in frequencies of synapses 
 a, c  Schematic representation of the mode of action  of CD19-TCB and Teplizumab. 
 b,  d  Donors  and  their  respective  experiments  that  were  used  for  the  class  frequency  analysis  in  Fig  3.  e-f  and  feature  difference 
 analysis in Fig. 4. 
 e-f  Class  frequency  differences  depicted  as  log2  fold-changes  between  CD19-TCB  or  Teplizumab  and  their  corresponding  controls 
 (Ctrl  TCB  &  isotype).  Each  dot  represents  a  donor  color  coded  as  in  b  or  d.  The  vertical  black  line  is  the  median  across  donors  for 
 each class. 
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 Figure  3.  CD19-TCB  and  Teplizumab  induce  morphological  changes  on  synapse  formation  including  texture,  intensity  and 
 synaptic features. 
 a  Systematic  comparison  of  210  relevant  features  between  CD19-TCB  and  Ctrl-TCB  across  images  predicted  as  ‘synapse  w/ 
 signaling’  across  six  donors.  Each  line  represents  a  feature  and  each  column  represents  a  donor.  For  each  donor,  the  features 
 which  are  significantly  increased  are  depicted  with  red  and  the  significantly  decreased  ones  are  depicted  with  blue.  The  donors  are 
 sorted  based  on  the  number  of  significantly  changed  features.  The  bottom  bar  plot  shows  the  count  of  increased  or  decreased 
 features per donor. Heatmap rows with arrows are shown in detail in  b  ,  d  and  f  . 
 b,  d,  f  Statistical  and  visual  inter-donor  comparison  of  three  representative  features  between  CD19-TCB  and  Ctrl-TCB.  For 
 visualization purposes, the features are mapped between zero and one for each donor separately. 
 c,  e,  g  Visual  representatives  for  all  features  were  randomly  sampled  for  both  Ctrl-TCB  and  CD19-TCB  from  donor  9,  and  were 
 found to be in concordance with the statistical results (scale bar = 2.4μm). 
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 h  Systematic  comparison  of  132  relevant  features  between  Teplizumab  and  isotype  across  images  predicted  as  ‘synapse  w/ 
 signaling’ among all six donors. The color code, barplot and sorting are the same as described in  a  . 
 i,  k  Statistical  and  visual  inter-donor  comparison  of  two  representative  features  between  Teplizumab  and  its  isotype  (also  shown  by 
 three small arrows in  h  ). 
 j,  l  Visual  representatives  for  two  features  were  randomly  sampled  for  both  isotype  and  Teplizumab  from  donor  3  and  were  found  to 
 be in concordance with the statistical results (scale bar = 2.4μm). 
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 Figure 4. Morphological profiles of synapses are predictive of the functionality of antibodies in vitro. 
 a  Frequencies  of  GrzmB  +  CD4  +  T  cells  measured  by  FACS  after  24  hours.  Corresponding  to  each  imaging  flow  cytometry 
 experiment,  a  separate  FACS  experiment  was  performed  with  the  same  batch  to  obtain  the  cytokine  production  values.  Each  dot 
 represents a donor, color represents experiments. 
 b  Data  aggregation  pipeline:  For  each  donor  and  condition,  images  identified  as  synapses  with  and  without  signaling  are  selected  (N 
 =  number  of  detected  images).  Then  image-level  features  (F  =  number  of  relevant  features)  are  extracted  across  all  selected 
 images.  For  each  donor  and  condition,  the  features  were  aggregated  using  5th,  50th  and  95th  percentile.  This  620  dimensional 
 aggregated feature reduces the cytokine  prediction  to a multivariate regression task. 
 c  Analysis  scheme:  Cytokines  are  predicted  for  an  unseen  activator  antibody  by  only  using  the  control  (No  Ab  and  Ctrl-TCB)  and 
 another activator antibody. Data originates from one experiment with four donors. 
 d  Scatterplot  of  the  predictions  versus  ground  truth  values  of  GrzmB  +  CD4  +  frequencies.  The  dots  are  only  based  on  the  predictions 
 from (c). 
 e,f  Scatterplot  of  the  features  ‘standard  deviation  of  MHCII  (95th  percentile)’  and  ‘eccentricity  of  F-actin  (95th  percentile)’  versus  the 
 GrzmB  +  CD4  +  frequencies.  These  two  features  were  selected  based  on  the  trained  linear  model  in  (d).  Both  features  show  high 
 correlation with respect to GrzmB  +  CD4  +  frequencies. 
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 Supplementary  Figure  1:  Assay  conditions  to  analyze  immune  responses  between  primary  human  CD4  +  T  cells  and  B-LCL 
 cells using conventional and imaging flow cytometry 
 a  Gating strategy to identify single interacting T-B-LCL  synapses using the IDEAS software of the imaging flow cytometer. 
 b  FACS  histograms  showing  the  surface-expression  levels  of  MHCII  (HLA-DR),  CD80  and  CD86  of  primary  CD19  +  B  cells  from 
 PBMCs and B-LCL cells. 
 c  Quantification  (MFI)  of  MHCII,  CD80  and  CD86  surface  expression  on  primary  CD4  +  T  cells,  CD19  +  B  cells  and  monocytes  from 
 PBMCs  and  B-LCL  cells.  Data  are  from  five  donors  in  three  independent  experiments.  The  B-LCL  cell  line  was  analyzed  in 
 triplicates. 
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 d  Pre-testing  of  assay  conditions  using  conventional  FACS.  Primary  memory  CD4  +  T  cells  isolated  from  PBMCs  of  healthy  donors 
 were  stimulated  with  B-LCL  cells  in  the  presence  of  different  concentrations  of  SEA  (0.1-100  ng/mL)  or  left  untreated  (-SEA). 
 Frequencies  of  P-CD3ζ  +  ,  TNF-ɑ  +  and  CD69  +  CD4  +  T  cells  were  determined  at  various  time  points.  The  small  FACS  histograms  in  the 
 bar  graphs  show  the  expression  levels  of  the  three  markers  by  comparing  the  highest  concentration  of  SEA  (100  ng/mL)  with  the 
 untreated control (-SEA) after 60 min. The data shown represents one experiment using T cells from three different donors. 
 e  Percentage  of  single  T-B-LCL  synapses  and  P-CD3ζ  +  CD4  +  T  cells  measured  by  imaging  flow  cytometry  between  two  different 
 SEA concentrations (10 and 100 ng/mL) after 45 and 120 min. Data represents two donors. 
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 Supplementary Figure 2. Donors and experiments information 
 a  List of the donors, their age, gender and experiment  numbers which are used in this study. 
 b  List of experiments and donors with and without  SEA. 
 c  List of experiments and donors with TCBs and their  control. 
 d  List of experiments and donors with Teplizumab and  isotype control 
 e  Number of labeled by expert data per donor 
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 Supplementary Figure 3. scifAI interpretable feature list. 
 a  Visual  representation  of  each  multi-channel  image  and  corresponding  masks.  Masks  were  exported  along  with  images  from  the 
 IDEAS software 
 b  List of all features implemented in scifAI. The  morphology, intensity statistics, textures synaptic features are based on one 
 channel. The colocalization features are based on two channels. scifAI automatically detects the existing channels and generates 
 the specified features. 
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 Supplementary Figure 4. Machine learning pipeline for classification. 
 a  Feature  pre-selection  pipeline  to  reduce  the  dimensionality  of  the  feature  space  and  removing  multicollinearity.  First  the  highly 
 correlated  features  are  dropped.  Then  an  ensemble  of  different  classifiers  is  trained  on  the  data,  and  their  top-k  features  are 
 selected. Finally, hierchical clustering is done on top of the union of the features to account for multicollinearity. 
 b  The  optimal  number  of  selected  features  before  passing  the  selected  features  to  the  XGBoost  classifier.  For  obtaining  the  optimal 
 top-k  the  data  selection  pipeline  +  XGboost  was  trained  on  stratified  randomly  selected  85%  of  the  training  set  and  tested  on  the 
 rest 15%. 
 c  Confusion matrix of the data selection pipeline  (top-k = 211) + XGBoost, based on the predictions on the test set. 
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 Supplementary Figure 5. Extracted information in the annotated data 
 a  TSNE visualization of annotated images by only using  the top features obtained in Fig1d. 
 b  Number of annotated images vs. the classification  performance 
 c  The  same  XGBoost  model  was  used  to  train  the  classifier.  The  training  data  was  used  for  this  evaluation  using  a  5-fold  cross 
 validation.  In  each  step,  features  based  on  the  selected  channels  were  used  for  training  the  classifier.  As  brightfield  (BF)  is  a 
 stain-free channel, it is always kept in the data. The combinations are ranked based F1-macro. 
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 Supplementary Figure 6. 
 a  Confusion  matrix  for  classifications  in  CD19-TCB  and  Teplizumab  based  on  396  and  227  expert-annotated  images,  respectively. 
 The previously trained model (Fig 1c) reached a  macro F1-score of 0.86 and 0.85, respectively, on both datasets. 
 b  Number  of  CD19  and  CD20  molecules  expressed  on  B-LCL,  Nalm-6  and  Z-138  cells.  The  measured  values  are  derived  from  cell 
 culture and were not measured in parallel to the experiment. 
 c,d  Tumor  cell  lysis  induced  by  CD19-  and  CD20-TCB,  determined  using  LDH  release  after  24  h  incubation  of  B-cell  depleted 
 human PBMCs with the tumor targets Nalm-6 or Z-138 and indicated TCB concentrations. One donor is shown. 
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 Supplementary Table 1. Significant features induced by CD19-TCB 
 The  table  represents  the  features  that  significantly  changed  for  at  least  four  donors  due  to  stimulation  by  CD19-TCB.  The  table 
 represents  the  list  of  consistent  features  from  Fig.  3a.  1  represents  a  significant  increase  (red  in  Fig.  3a),  -1  represents  a  significant 
 decrease (blue in Fig. 3a) and 0 represents no significant change (gray in Fig. 3a). 
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 Supplementary Table 2. Significant features induced by Teplizumab 
 The  table  represents  the  features  that  significantly  changed  for  at  least  six  donors  due  to  stimulation  by  Teplizumab.  The  table 
 represents  the  list  of  consistent  features  from  Fig.  3h.  1  represents  a  significant  increase  (red  in  Fig.  3h),  -1  represents  a  significant 
 decrease (blue in Fig. 3h) and 0 represents no significant change (gray in Fig. 3h). 
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