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Abstract

According to most memory theories, encoding involves continuous communication between the
hippocampus and neocortex leaving the temporal dynamics of hippocampal-neocortical
interactions often overlooked. Recent work has shown that we perceive complex events in our
lives as dynamic, with relatively distinct starting and stopping points known as event boundaries.
Event boundaries may be important for memory, as they are associated with increased activity in
the hippocampus, and extended neocortical regions (the posterior cingulate cortex, lateral
parietal cortex, and parahippocampal cortex). Our objective was to determine how functional
connectivity between the hippocampus and neocortical regions during the encoding of
naturalistic events (movies) related to subsequent retrieval and retention of those events.
Participants encoded two 16-minute cartoon movies during fMRI scanning. After encoding,
participants freely recalled one of the movies immediately, and the other after a 2-day delay. We
quantified hippocampal-neocortical functional connectivity (FC) at time windows around each
event onset, middle, and offset, and compared these FC measures with subsequent recall. These
analyses revealed that higher FC between the hippocampus and the posterior medial network
(PMN) at an event’s offset related to whether that event was subsequently recalled. In contrast,
mid-event connectivity between the hippocampus and PMN was associated with poorer memory.
Furthermore, hippocampal-PMN offset connectivity predicted not only whether events were
retained in memory, but also the degree to which these events could be recalled in detail after a
2-day delay. These data demonstrate that the relationship between memory encoding and
hippocampal-neocortical interaction is more dynamic than suggested by most memory theories,
and they converge with recent modeling work suggesting that event offset is an optimal time for
encoding.
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Since the pioneering work of Ebbinghaus (Ebbinghaus, 1885), researchers have studied
memory by investigating recognition or recall of lists of verbal stimuli or pictures. Neuroscience
research in this tradition has shown that memory for this kind of arbitrary episodic information is
supported by the hippocampus, which is thought to index neocortical representations during an
event (Frankland and Bontempi, 2005; McClelland et al., 1995; Nadel and Moscovitch, 1997;
Squire and Zola-Morgan, 1991; Teyler and DiScenna, 1986). Real-world events, however, are
not entirely arbitrary. Considerable evidence suggests that we can use our prior knowledge of
event structure to generate mental models (called event models) that enable inferences about
current experiences and prediction of upcoming information (Radvansky and Zacks, 2014;
Rumelhart and Ortony, 1977; Thorndyke, 1977). It is our knowledge of this predictive structure
that led Bartlett to note that memories for events in our lives are not an exact replay of past
events, but rather are an “imaginative reconstruction” of the past based on our prior knowledge
of the world (Bartlett, 1932). Different theories have been proposed to explain memory for
arbitrary event information (Cohen et al., 1997; Howard et al., 2005), compared to constructive
elements of memory and event cognition (Radvansky and Zacks, 2014; Rumelhart and Ortony,
1977).

Recent work investigating encoding and retrieval of structured events in films and stories
(Bird, 2020; Finn, 2021; Hasson et al., 2015; Lee et al., 2020) has indicated, surprisingly, that the
default mode network (DMN) carries event-specific information in multivariate fMRI activation
patterns during event encoding and retrieval (Baldassano et al., 2017; Chen et al., 2017;
Oedekoven et al., 2017; Reagh and Ranganath, 2021). These regions tend to have stable
activation patterns within events and shift their patterns at points that coincide with subject-

identified event boundaries (Baldassano et al., 2017; Ben-Yakov and Henson, 2018; Geerligs et
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al., 2021). Hippocampal activity, on the other hand, increases during transitions between events,
also known as event boundaries (Reagh et al., 2020; Zheng et al., 2022), which in turn, coincide

with pattern shifts in the DMN (Baldassano et al., 2017). This hippocampal activity at the end of
an event is reliably correlated with successful encoding of event details (Ben-Yakov and Dudai,

2011; Ben-Yakov et al., 2013).

Recent cognitive modeling has suggested that event information, represented in the
neocortex, is encoded into the hippocampus and this may preferentially occur at event offsets
(Franklin et al., 2020; Lu et al., 2022). The prediction that the hippocampus disproportionately
indexes neocortical activity at event boundaries is a radical departure from traditional models of
memory, but it does align with the Complementary Learning Systems framework which suggests
that the hippocampus may be specialized for rapid encoding of arbitrary associations (i.e.,
information at event boundaries) whereas neocortical networks may be optimized for learning
about regularities across events (i.e., event schemas)(McClelland et al., 1995; O’Reilly et al.,
2022).

The neocortex, however, is not a homogeneous collection of regions and specific
networks of neocortical regions are thought to play a role in representing event models and
connect with the hippocampus. Analyses of cortical networks with fMRI have indicated that the
hippocampus shows high functional connectivity with a “Medial Temporal Network” (MTN)
and 3 subnetworks of the DMN (Andrews-Hanna et al., 2010; Barnett et al., 2021; Cooper et al.,
2021; Gordon et al., 2020)—the “Posterior Medial Network” (PMN), “Anterior Temporal
Network (ATN)”, and the “Medial Prefrontal Network™ (MPN). These networks can be
differentiated based on multivariate representations during memory-guided decision making

(Barnett et al., 2021), task activation (DiNicola et al., 2020), and functional connectivity patterns
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(Barnett et al., 2021; Braga et al., 2019; Cooper et al., 2021; Gordon et al., 2020). While these
networks show reliable connectivity with the hippocampus, it is unclear how their interactions
with the hippocampus support encoding and whether this support is amplified at event
boundaries.

Here, using fMRI, we tested the idea that the encoding of structured events is supported
by cortico-hippocampal interactions at event boundaries. Participants were scanned while
viewing custom-made animated films and subsequently recalled events from these films either in
the same scanning session, or after a 2-day delay (Figure 1A). We tested the prediction that
functional connectivity between the hippocampus and neocortical will be associated with
subsequent retrieval success and this association would be specifically pronounced at the offset
of an event. Based on evidence that recall quality of naturalistic events changes over time (Fisher
and Radvansky, 2018; Sekeres et al., 2016, 2018), we also examined whether functional
interactions at encoding were particularly important for detailed memory after a longer (2-day)

versus shorter (5 minute) delay.
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Figure 1. A. overview of procedure. B. screen shot from each movie with accompanying kernel
density estimates of event boundaries from 62 online participants. Gray Lines are where event
boundaries were used in fMRI analysis.
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Results

Activation patterns in the posterior medial network, medial temporal network, and anterior

temporal network contain event-specific representations at encoding and retrieval

Previous studies that used across-subject pattern similarity analysis (Chen et al., 2017) have
shown that a number of neocortical areas carry information about events within movies. Here,
we sought to identify event representations in the neocortical networks that interact most closely
with the hippocampus. We focused these analyses the MTN, PMN, ATN and MPN (Figure 3A),
based on previous work showing that these networks show high functional connectivity with the
hippocampus (Barnett et al., 2021; see also Braga and Buckner, 2017 and Gordon et al., 2020).
Events were defined as the time in between event boundaries that were designed into the
stimuli and confirmed by an independent sample of 62 participants online (Figure 1B). The mean
activity of each ROI in a network was calculated for each event, for each subject, resulting in one
“multi-ROI activity pattern” per event, per subject, per network (see Figure 2 for an overview).
This novel approach allowed us to assess the event representation of whole networks by using a
multi-ROI activity pattern rather than the multi-voxel activity pattern within an ROI. The multi-
ROI activity pattern of a network for each participant i was correlated with the averaged multi-
ROI activity pattern for the rest of the group (excluding subject i) for each matching event and
Fisher z-transformed to determine whether event-specific activation patterns were shared across

participants. Significance was assessed via permutation testing which compared the average
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correlation to a null distribution (see Methods).
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Figure 2. A visual schematic depicting the inter-subject pattern similarity (ISPS) analysis. For a
given Participant i (top row), network level patterns of ROI activity are calculated for each event
for each movie (depicted here are example data from the PMN on an inflated brain). The group
averaged pattern excluding Participant i (bottom row) is also calculated. The vector of ROI
patterns for the network (depicted by colored boxes) are correlated between the participant and
group-averaged patterns (black arrows in the middle). To create a null distribution, this process is
repeated 1000 times after randomly shuffling the event labels (grey arrows). A Schematic
example of the mean of the true correlation between the participants and the group (the ISPS)
which can be compared to the null distributions to determine significance is shown on the right.

During encoding, this analysis revealed that shared event-specific patterns in the PMN (z
=13.7, p <.000001), MTN (z = 16.8, p <.0000001), ATN (z=11.7, p <.000001), and MPN (z
= 5.3, p <.000001). During recall, when participants had to internally generate event
information, event-specific activation patterns were shared in the PMN (z = 4.8, p <.001), MTN
(z=3.8,p <.001), and the ATN (z = 2.9, p = .003), but not the MPN (z = 1.5, p = .13). Thus,
shared event-specific representations were present in the PMN, MTN and ATN at both encoding

and retrieval (Figure 3). These findings dovetail with previous work and suggest that these

cortical networks carry event information that may be encoded into memory (Chen et al., 2017).
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Figure 3. A. Regions of interest from the HCP-MMP atlas, color-coded by the cortico-
hippocampal network to which they belong as identified in (Barnett et al., 2021). B. The average
intersubject pattern similarity (PS) for each network represented by the circle and the grey violin
plots display the group null distributions for each network. ATN, anterior temporal network;

MPN, medial prefrontal network; MTN, medial temporal network; PMN, posterior medial
network.

Hippocampal to posterior medial network functional connectivity at event offset relates to

subsequent retrieval success for events

Having established that event-specific activity patterns are present in the PMN, MTN, and ATN,
we next tested how functional connectivity of these networks with the hippocampus relates to
subsequent retrieval success for these events and whether this connectivity is particularly
important at the offset of an event, as predicted by Lu, Hasson, & Norman (2022). For each
subject and each event, we calculated the functional connectivity between the hippocampus and
each ROI within the PMN, MTN, and ATN. Since the long-axis of the hippocampus has
differential functional connectivity and specialization, we performed this separately for the
anterior and posterior hippocampus (Brunec et al., 2017; Poppenk et al., 2013; Strange et al.,

2014). These values were calculated at 20 TR (24.4s) time windows around each event’s onset,
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middle, and offset (see Methods). We averaged the hippocampal-ROI FC within networks to get
a measure of hippocampal to cortical network functional connectivity (Figure 4A). The
hippocampal-cortical FC for each network was entered as a regressor to predict subsequent recall
using a generalized linear mixed-effects model. Memory for an event was determined by
examining the free recall of each participant. If a participant recalled an occurrence from an
event, then it was classified as recalled in a binary fashion. In the model we tested how delay
(immediate vs. 2-day), hippocampal long-axis (anterior vs. posterior), and temporal window
(start vs. middle vs. offset) interacted with the relationship between FC and memory by including
these variables as regressors. We also included hippocampal boundary activity as a regressor to
control for univariate activity effects (see Methods), since univariate activity in the hippocampus
at stimulus offset has previously been shown to predict subsequent memory (Ben-Yakov and
Dudai, 2011).

For the PMN, our analyses revealed a significant interaction between FC and window
(Wald X%(2, N = 24) = 13.22, p = .001), but no interaction of FC with delay, hippocampal long-
axis, univariate boundary activity or any combination of those factors (all p > .1). The significant
interactions observed in this analysis reflected the fact that FC was differentially predictive of
subsequent memory across different time windows, with significant effect at the event middle
and event offset (Figure 4). At the event start, FC was not significantly related to subsequent
recall, but during the middle window, we observed a significant effect such that higher FC was
predictive of subsequent recall failure (z = 2.12, p = .044 FDR-corrected). To determine the
consistency of this effect within the ROIs of this network, we repeated this analysis for each ROI

in the PMN individually, finding that the estimated slope showed a negative relationship with
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memory in 21/24 ROIs suggesting that nearly all ROIs in the network shared this effect
(Supplemental Figure 1).

Conversely, at the event offset, increased FC between the hippocampus and PMN was
predictive of subsequent recall success (z = 3.08, p = .006, FDR-corrected). To determine the
consistency of this effect, we repeated this analysis for each ROI in the PMN individually,
finding that the estimated slope was positive in 24/24 ROIs demonstrating a consistent pattern of
effects across the network (Supplemental Figure 1). These results indicate that the event offset is

a critical moment for event encoding processes.
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Figure 4. A. Schematic example of windows used for FC analysis. Ten TRs on either side of
event boundaries, or the event middle point were used to estimate FC between the hippocampus

10


https://doi.org/10.1101/2022.10.23.513391
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.23.513391; this version posted October 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and PMN. B. FC between the hippocampus and PMN at the event start, event middle, and event
offset, split based on whether the event was subsequently recalled or not. Each small point
represents a participant’s mean Hippocampal-PMN FC and each large dot with error bars
represents the group mean and 95% confidence interval of the sample.

For the MTN, we observed a significant functional connectivity by window by delay
interaction (X*(2, N = 24) = 11.5, p = .003). Follow-up on this interaction showed that higher
functional connectivity between the hippocampus and MTN at the middle of an event during
encoding, was associated with failure to recall that event at an immediate delay (z=3.6, p =
.001, FDR-corrected). To determine the consistency of this effect, we repeated this analysis for
each ROI in the MTN individually, finding that the estimated slope was consistently negative in
28/30 ROIs suggesting that nearly all ROIs in the network shared this pattern of effects
(Supplemental Figure 2). No other relationship between FC and memory was found at any other
delays or windows (all p > .05, FDR).

For the ATN, we did not observe any significant relationship between functional
connectivity and memory, nor any interactions with functional connectivity (all p > .05).

Across all models, we found that univariate hippocampal boundary activity was uniquely
associated with subsequent recall success (X? (1, N =24) > 4.2, all p < .04), and this interacted
with delay (X? (2, N =24) > 6.1, all p < .05), such that this effect was predictive at a 2-day delay
(z > 3.2, all p <.003, FDR-corrected), but not at the immediate delay (z < .26, all p > .79, FDR-
corrected) suggesting that the hippocampal boundary activity is important for forming stable
memory representations. These results relate to the previous findings that hippocampal activity at
the offset of a stimulus is associated with subsequent memory (Ben-Yakov and Dudai, 2011;

Ben-Yakov et al., 2013). This effect is independent of the functional connectivity effects, as they

were included in the same regression model.
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Hippocampal to posterior medial network functional connectivity at event offset relates to

number of subsequently retrieved details

Having observed that increased FC between the hippocampus and PMN was predictive of
subsequent memory success, we then asked whether hippocampal-PMN FC at encoding related
to the number of details participants reported from the events that were successfully recalled.
The audio recordings of each participants recall were transcribed and scored for the number of
details by trained raters (JS & RY) using the scoring methods from the autobiographical
interview (Levine et al., 2002). If hippocampal-PMN FC is a measure of successful encoding,
then we should expect that events with higher FC will be recalled with more detail than those
with low FC.

A mixed linear model to predict the number of details of a retrieved event showed a
significant interaction between hippocampal-PMN FC, delay, and window (F(2, 2684.7) = 8.6, p
=.0002). No other interactions of effects of interest were significant (all p > .05).

When breaking down the significant interactions, we observed that hippocampal-PMN
FC at the event offset was positively associated with the number of details retrieved from an
event at the 2-day retrieval phase (t(2684) = 3.2, p = .003, FDR-corrected; Figure 5), but not at
the immediate recall phase (t(2684)=-1.1, p = .27, FDR-corrected). This finding dovetails with
the above analysis and suggests that the coordinated activity between the hippocampus and PMN
is particularly important for forming detailed, retrievable memories. To determine the
consistency of this effect, we repeated this analysis for each ROI in the PMN individually,
finding that the estimated slope showed this pattern in 22/24 ROIs suggesting that nearly all
ROIs in the network shared this pattern of effects (Supplemental Figure 3). We also observed a

trending effect that showed that hippocampal-PMN FC at the event onset was associated with the

12
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number of details retrieved from an event at immediate recall (t(2684) = 2.2, p = .06, FDR-
corrected). Hippocampal-PMN FC at other windows and delays were not associated with the

number of details retrieved for an event (all p > .09),

Total Details (Log)
he]

=1 0 1 2
HC-PMN FC
(mean centered)

Figure 5. Relationship between HC-PMN FC at the event offset and the number of subsequently
recalled details (log-transformed) for events that were successfully recalled at the 2-day delay.
Each grey line represents the regression line of an individual participant, and each red line
represents the group regression line produced from the linear mixed model.

Discussion
Using dynamic, naturalistic stimuli, we demonstrated that interactions between the hippocampus
and neocortical networks that carry event representations are critical for stable encoding. To do
so, we first demonstrated that cortico-hippocampal networks (the PMN, MTN and ATN) carry
event-specific information that is shared across participants during encoding and recall. Next, we
showed that functional connectivity between the hippocampus and the PMN at event encoding
was associated with subsequent recall success of the event. However, the timing of the

interactions had a significant impact on this relationship such that hippocampal-PMN functional
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connectivity was associated with recall success at the event offset, but was associated with
reduced likelihood of subsequent retrieval at the event middle. Further, the amount of detail
retrieved after a delay was influenced by hippocampal-PMN interactions at encoding and, again,
this relationship was modulated by the timing of the interactions such that higher functional
connectivity between the hippocampus and PMN at the offset of an event was associated with
more retrieved details. Our findings suggest that memory formation depends on communication
between the hippocampus and neocortex at event boundaries, not for the event that is about to
begin, but for the event that just finished.

Theories of episodic memory posit that event information represented in the neocortex is
translated into a memory trace in the hippocampus (McClelland et al., 1995; Nadel and
Moscovitch, 1997; Squire and Zola-Morgan, 1991; Teyler and DiScenna, 1986). The term
“neocortex” is remarkably broad in these models, as much of the brain is important to our
ongoing experience, but there is good reason to believe that a subset of the neocortex, the DMN,
plays a specialized role, particularly for event memory. The DMN is functionally connected to
the hippocampus (Barnett et al., 2021; Kahn et al., 2008) and has been discussed in terms of
memory processing and retrieval (Ranganath and Ritchey, 2012; Robin and Moscovitch, 2017;
Rugg and Vilberg, 2013), as it is known to be especially active during retrieval of
autobiographical memories and recollection. As noted above, recent work has shown that the
DMN can be subdivided into subnetworks (Barnett et al., 2021; Braga et al., 2019; Gordon et al.,
2020; Ritchey and Cooper, 2020) and that these regions also play a role in encoding of
naturalistic events (Baldassano et al., 2017; Chen et al., 2017; Oedekoven et al., 2017; Reagh and
Ranganath, 2021). For example, Chen et al (2017) had participants encode a continuous, 50-

minute segment of a television episode during fMRI scanning. They found that participants had
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shared event-specific multivariate patterns during both encoding and retrieval of events in DMN
regions, particularly in posterior medial, and lateral parietal cortex—regions that are part of the
PMN. These analyses were performed using the voxel-patterns within searchlight spheres across
the brain. Here, we adopted a different approach to identify distributed event representations by
characterizing the multi-ROI activation pattern with networks. We found shared, event-specific
multi-ROI activation patterns across participants in the PMN, MTN and ATN. Given the event
content represented in these regions, these neocortical regions may hold the event information
that is ultimately encoded in hippocampal memory traces (Franklin et al., 2020; O’Reilly et al.,
2021; Reagh and Ranganath, 2018).

Among the regions that showed event-specific patterns, our findings demonstrated that
functional connections between the hippocampus and the PMN supported subsequent memory
for events. This finding is consistent with the idea that event model features represented in the
PMN are encoded in the hippocampus (Franklin et al., 2020). One recent computational
modeling study has suggested that it might be optimal to selectively encode episodic information
at the event offset, particularly when that memory will be subsequently used for comprehension
and prediction (Lu et al., 2022). This model had a component that tracked features of the
ongoing event, akin to event models represented in the PMN. The model also had a component
for long term storage, like the hippocampus, and a dynamic gate that would allow information
from the ongoing event model to be encoded into long-term storage. Opening that gate at the
event offset—allowing for encoding at this moment—was ideal for model performance (Lu et
al., 2022) which dovetails with our findings that PMN-hippocampal FC at the event offset was
associated with higher retrieval success and, at the 2-day delay, more detailed retrieval of the

events. Thus, the event offset may represent a window of time for features present in the ongoing
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event model to be encoded into accessible long-term memory representations, as was the case in
the model proposed by Lu et al., (2022). In rodents and primates, detailed electrophysiological
studies have also supported the idea that neocortical input into the hippocampus is gated via the
rhinal cortex such that not all neocortical input that reaches the rhinal cortex is subsequently
passed to the hippocampus (De Curtis and Paré, 2004). Additionally, the model proposed by Lu
et al., (2022) also found that encoding in the middle of an event was detrimental to model
performance which dovetails with our findings that higher FC between the hippocampus and
PMN during the event middle was negatively associated with recall success. Functional
interactions at the event middle between the hippocampus and the PMN and MTN may reflect
the hippocampus encoding incomplete event information, it may reflect the hippocampus
reinstating information into these networks, or it may reflect a reset of the event models which
could negatively impact comprehension and retrievability of the rest of the event. While the data
here cannot speak to the specific processing occurring, it does suggest that coordinated activity
of the hippocampus and PMN during encoding is beneficial to retrieval specifically when this
coordination occurs at the event offset.

An alternative account of event encoding has hypothesized that event models are
represented in the hippocampus instead of the PMN (Griffiths and Fuentemilla, 2020;
Milivojevic et al., 2016). For example, according to the model outlined by Griffiths and
Fuentemilla (2020), as features of an event are encountered, unique populations of hippocampal
neurons are activated to represent those features. The authors claim that this allows the
hippocampus to build an ongoing event model of an event that is steadily and proactively
encoded as it unfolds. At an event boundary the sequence of features is rapidly replayed to

facilitate retroactive encoding of the final event representation. This logic suggests that ongoing
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interactions between the hippocampus and neocortex should be necessary and important for
encoding, but makes no strong predictions about these interactions at the boundary. These
predictions do not fit with our observations, as we found that hippocampal-cortical functional
connectivity at the beginning and middle of an event were unrelated to memory (or related to
worse memory), and only processing at the end related to subsequent retrieval success. There are
several possible explanations that can reconcile these accounts. First, the model proposed by
Griffiths and Fuentemilla (2018) is largely influenced by studies in which an event is described
as a period in which a sequence of arbitrary stimuli is encoded under a stable context (Axmacher
et al., 2010; Bahramisharif et al., 2018; Heusser et al., 2016). Because participants cannot form a
predictive model of what to expect in these sequences based on any prior event schemas, the
hippocampus may play a much stronger role in binding this sequence of arbitrary stimuli and the
impact of posterior medial representations is low. When the sequence of events conforms to a
familiar structure or schema, like the sequence of events when one visits an airport or restaurant,
the PMN may have a more significant role in forming an event model with a limited role for the
hippocampus as was shown in Baldassano et al., (2018). Further, when a sequence of
information can be reliably predicted from a PMN event model, the hippocampus may not need
to encode each encountered feature, but rather can simply index the PMN model which can
reconstruct the elements. For example, people with hippocampal damage retain immediate recall
of prose information (Baddeley and Wilson, 2002), can tell globally coherent stories (Keven et
al., 2018), and even show similar activation patterns in posterior medial and lateral parietal
cortex during movie viewing when compared to controls (Oedekoven et al., 2019; Zuo et al.,
2020). This suggests that extrahippocampal regions such as the posterior medial cortex represent

event models, especially when prior knowledge of events can inform episodes and memories. A
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modified version of Griffiths and Fuentemilla’s (2018) account could potentially fit our findings.
It may be that, when encoding is particularly successful, the rapid replaying of features
represented in the hippocampus at event boundaries leads to increased functional connectivity
between the hippocampus and PMN. This could be true if the rapid replay leads to a rapid
reinstatement of event features in neocortex. Given the temporal and spatial resolution
limitations of fMRI, we are not able to examine rapid neuronal firing rates within a theta cycle in
the hippocampus to determine if event features are incorporated into a sequence of population
firings. However, using EEG Silva et al (2019) has shown that event boundaries trigger rapid
replaying of multivariate patterns present in the just completed event (Silva et al., 2019). Thus,
future studies using imaging techniques with higher temporal resolution should investigate
whether the relationship between memory and hippocampal-PMN interactions at event
boundaries is related to the rapid replay of hippocampal sequences that reinstate PMN
representations.

The findings presented here seem to demonstrate a privileged role of the PMN in event
memory, as we did not observe robust memory effects in other cortico-hippocampal networks.
When examining multivariate event patterns, we did not find that the MPN showed consistent
event-specific patterns during recall. Episodic memory studies have highlighted medial
prefrontal cortex (mPFC) — hippocampal interactions as a major contributor to schema-related
memory (Audrain and McAndrews, 2022; Ghosh and Gilboa, 2014; van Kesteren et al., 2012;
Preston and Eichenbaum, 2013) and research using naturalistic stimuli has shown that
multivariate patterns in the mPFC generalize between videos that share similar situations
(Baldassano et al., 2018; Reagh and Ranganath, 2021) during viewing. The movie stimuli used in

this study depicted narratives that tended to follow classic tropes of either a crime show or a
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fantasy show. Thus, MPN representations may have pertained to broader fantasy show vs. crime
show schemas which could not differentiate between events within a movie.

While the MTN and ATN did show event-specific representations, their functional
connectivity with the hippocampus was not associated with subsequent memory retrieval.
Previous work has shown that the MTN may play a special role memory precision and
perception (Koen et al., 2017; Kolarik et al., 2018; Ritchey and Cooper, 2020) and the ATN
plays a special role in object, person, and social processing (DiNicola et al., 2020; Ranganath
and Ritchey, 2012; Reagh and Ranganath, 2021). Memory assessment in this study was
examined as overt free recall of the movies and did not impose any specific focus on precision,
social elements, or conceptual elements of memory as participants were encouraged to retrieve
every detail they could possibly remember. A memory task focussed more on the perceptual or
social elements may be more related to hippocampal-MTN or hippocampal-ATN functional
connectivity, respectively, during encoding and could be the subject of future research.

PMN event representations, in contrast, may be more generalized than MTN and ATN
representations. For example, Zadbood et al. (2017) scanned participants as they both viewed
narrative movies verbally recall those movies. They then played the verbal recall of the initial
participants to a new set of participants during scanning. Remarkably, multivariate
representations in the PCC and angular gyrus were shared in the brains of people watching the
movies, those same people recalling the movies, and the new people listening to the recall of the
movies (Zadbood et al., 2017) suggesting that these areas carry modality-invariant event
representations. Even during episodic simulation, when participants must generate an event
based on a cue, activation in the PCC and angular exclusively correlates with the number of

generated details despite the fact that medial and anterior temporal regions are active for this
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type of task (Thakral et al., 2020). This broad involvement in event-based processing suggests a
privileged role of the PMN in maintaining internal event representations necessary for encoding
and reconstructing complex naturalistic memory.

Our study demonstrated that the influence of hippocampal-PMN functional connectivity
on memory was dynamic. However, fMRI requires a relatively large window size for estimating
functional connectivity (Hutchison et al., 2013) which, combined with low temporal resolution,
limits the reliably to infer directionality of information transfer. Although we have hypothesized
that event features represented in the PMN are bound by the hippocampus, we cannot conclude
that the functional connectivity effects are driven by PMN to hippocampal information transfer.
Further, given the time window used here to calculate functional connectivity, we may be
capturing a back-and-forth conversation between the hippocampus and multiple brain regions of
the PMN or MTN, rather than a one-time information packet transfer. However, one study that
used intracranial recordings found that, at event boundaries during story listening, information
flows from the cortex to the hippocampus which is what we would predict if this time point is
important for encoding (Michelmann et al., 2021). Finally, we grouped regions together into
subnetworks based on a group-averaged community detection solution from an independent
sample of participants scanned at rest (Barnett et al., 2021). While we were able to find robust
effects, recent work has shown that there are individual differences in network organization
across participants (Braga et al., 2019; Gordon et al., 2017a). These individual network
estimations are mostly overlapping with group estimated networks (Gordon et al., 2017b), but
future work may be able to rely on individually estimated networks to characterize subtler

memory effects.
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In conclusion, the present study has presented evidence to extend our understanding of
how the brain translates experience into memory by examining the timecourse of interactions
between the hippocampus and neocortex. We discovered that interactions between hippocampus
and PMN at the offset of an event, but not the onset or middle, is beneficial for subsequent recall
and, higher functional connectivity at the offset is associated with more detailed retrieval when
events are retrieved after a longer delay. This suggests that the event offset is a critical moment
in time for encoding complex, narrative events.

Methods
Participants
For the primary resting-state fMRI dataset, twenty-nine healthy, young adult participants were
recruited from the University of California, Davis, and surrounding area. Five participants were
excluded due to scanner artifact or audio recording failures during recall leaving a final sample
size of twenty-four (Nremales = 14, mean age = 23.5 years [SD = 4.1 years]). All participants were
right-handed and neurologically healthy. The study was approved by the Institutional Review
Board of the University of California at Davis (IRB #1352490 & IRB # 637028) and adheres to
all principles of The Belmont Report. All participants provided written informed consent prior to
participation. Participants were compensated $20/hour for their time.

Experimental Stimuli

We constructed a set of animated, short movies using Plotagon

(https://www.plotagon.com/desktop/). All movies were scripted and produced by the first author

(AJB) with voice acting provided by volunteers in the center and with assistance from author
(BICS) for audio preprocessing in Audacity v2.4.2. All movies depicted a continuous narrative.

A practice movie was created that depicted two characters in conversation and was one-minute in
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length. The two experimental movies used in scanner were approximately 16.5 minutes in length
each (Movie 1, 16:47; Movie 2, 16:22). Both movies consisted of a series of events that each
depicted two characters at a time interacting. Each had a total of seven unique characters, and
each had a total of eight spatial locations. One movie was set in a medieval, fantasy-like world
and the other depicted a crime scene investigation narrative. The movies were designed such that
each would elicit 13 event boundaries corresponding to changes in location, changes in time, or
changes in the combination of characters shown.

Event boundary rating

An independent sample of 97 online participants viewed one of the two stimulus movies via the
online platform Testable (www.testable.org). Participants were presented with one of the two
movies, and during viewing, were asked to press the spacebar whenever they perceived that a
meaningful event had ended, and another event had begun. Online participant response data was
examined for data quality and participants who made no response (29 participants) and those that
responded outside the normal distribution of the sample (6 subjects) were excluded resulting in a
sample of 62 participants. Summed participant inputs over time were modelled with a kernel
density function with a 5s bandwidth for each movie and confirmed the temporal location of the
intended event boundaries (Figure 1B). One unplanned, but reliable, event boundary was
observed in both movies. One unplanned event boundary pertained to characters changing
positions within the same scene as they continued the same conversation (characters moved from
standing at a bar to sitting at a table). The other unplanned event pertained to a fade to a black
screen with written text describing a change in location. The periods in between event
boundaries were considered events with each movie having a total of 14 events.

Pre-scan Procedures
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Practice Recall

Prior to scanning, participants completed a brief example trial of the experiment to get
accustomed to the type of task they would be performing in the scanner. After providing written
consent, participants viewed a one-minute cartoon video on a desktop personal computer. They
were instructed to “watch the video as you would a television show you are interested in” and
that they would be asked to remember the video after. They were asked to recall, in as much
detail as possible everything they could from the video. They were also asked to recall in
temporal order, if possible, but completeness and detail were considered more important than
temporal order and, so, if at any point they realized they had missed something, they were
instructed to return to that detail. They were instructed to mention every detail they could recall,
even if it seemed irrelevant. After participants performed this recall, the experimenter provided a
general probe to the participant asking if there was anything else they could recall. Recall data
was not recorded, but participants were encouraged to push themselves to retrieve all details they

could once they performed the task in the scanner.

Character Familiarization

After responding to the practice video, participants were then familiarized with a set of
characters that they would subsequently view in upcoming movie stimuli in the MRI scanner
task. Participants were presented with a total of 14 character-avatars using PsychoPy v3.0.0
(Peirce et al., 2019). Participants were told that they would see a series of cartoon people with a
name and a fact about each character and they were instructed to try to memorize the names. The
14 characters were split into two blocks of seven characters, based on the two movies in which

they would subsequently feature. Each character avatar was presented one at a time, for 3000m:s,
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in the center of the computer screen and the character’s name was printed underneath the
character’s avatar. In between each character presentation was a 1000ms interstimulus interval.
Following encoding of each character and name, participants performed a two-alternative forced-
choice decision task for each of the character’s names. Participants were shown each character
avatar individually, in random order, with two names (one originally shown with the displayed
character, and one from another character that was previously shown) underneath the character.
Participants were instructed to indicate which name belonged to the displayed character. A
1000ms inter trial interval was present between each testing trial. After this testing block,
participants were once again shown each character avatar, with their name printed underneath,
along with a fact about that character’s role in the upcoming videos. For example, the character
named “Arlene” was presented underneath the cartoon avatar of the Arlene character alongside
Arlene’s role in the video of “Barmaid”. This provided feedback on the names for the participant
and added an additional semantic fact for the participants to encourage memory formation for the
characters.

Pre-scan set-up

Participants were fitted with MRI-compatible earbuds with replaceable foam inserts
(https://www.sens.com/products/model-s14/) and were provided with additional foam padding
inside the head coil for hearing protection and to mitigate head motion. Participants were
additionally given bodily padding, blankets, and corrective lenses as needed. An MRI compatible
microphone (Optoacoustics FOMRI-III; https://www. optoacoustics.com/medical/fomri-iii) with
bidirectional noise-cancelling was affixed to the head coil, and the receiver (covered by a
disposable sanitary pop screen) was positioned over the participant’s mouth. Participants were

given a description of strategies to remain still while speaking during functional image
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acquisition. Participants were told to avoid nodding or shaking their head and have minimal jaw

movement—by keeping their teeth touching—during speaking. During MRI data acquisition, an
eye tracker was operational to monitor participants’ wakefulness and head motion during spoken
recall, but no eye tracking data were recorded.

fMRI task overview

Participants were tasked with encoding and recalling two, 16.5-minute animated videos. One
video was recalled after a brief -minute delay, and the other was recalled after a 48-hour delay.
Participants were split into four groups to counterbalance video order and retention delay
order—half of the participants performed the short delay recall first, and half performed the 48-
hour delay recall first (Figure 1A).

Encoding block instructions: Prior to each encoding scan, participants were instructed to: “Watch
the following movie as you would a television show you are interested in. We will ask you to
remember the movie at a later time.” Participants then viewed the first of the two animated
videos. After encoding, participants underwent a 3.5-minute anatomical scan.

Recall block instructions: During recall scans they were instructed to: “In as much detail as
possible tell me everything you can remember about the last movie we showed you. Try to
recount the events in the original order in which they occurred. Completeness and detail are more
important than temporal order. If at any point you realize that you have missed something, return
to it. Try to describe EVERY detail that you have about the movie you just watched, even if it
seems irrelevant.” The participants then spoke into the scanner safe microphone and recalled
details from the video they had most recently viewed during a functional scan. Participants
received additional instructions regarding head movement prior to recall: “Remember to stay as

still as possible. Try to speak while moving only your lips and not your jaw; Sometimes people
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tend to nod or shake their head when they are talking. Avoid these tendencies as much as
possible.”

If the video was scheduled for the short recall delay, the participant would perform the
recall block immediately after the anatomical scan. If the video was in scheduled for the 48-hour
delay first recall group, the participant would then undergo a reverse phase encoding functional
scan, followed by a diffusion weighted scan, and a reverse phase encoded diffusion weighted
scan (to be reported elsewhere). The participant would then leave the scanner and return two
days later to complete the recall block in the scanner.

After completing the encoding and recall of both movies, participants then watched an
11-minute documentary-style video and were instructed to watch the following video as they
would a television show they are interested in. This final video was not recalled by the

participants.

Recall scoring

Audio recall from each participant’s fMRI recall run was transcribed automatically using the

python tool SpeechRecognition (https://github.com/Uberi/speech recognition#readme) and the

automatic transcription was examined, and any transcription errors were corrected by two trained
research assistants (J.S. and R.Y.). These two trained research assistants parsed the transcripts
into details using an adapted version of the autobiographical interview (Levine et al., 2002). A
detail “was defined as a unique occurrence, observation, or thought, typically expressed as a
grammatical clause. Additional information in the clause was scored separately”. These details
were then categorized as either central details, or peripheral details to determine whether details
that are central to the narrative plot are better retained than those that are peripheral. Central and

peripheral details were both details that could be verified as true from the information presented
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in the movies—the combination of central and peripheral details make up all total verifiable
details (Cohn-Sheehy et al., 2021). To categorize central and peripheral details, four research
assistants watched each video and created an annotation file for each line of dialogue and
occurrence they viewed. This was then combined into a single document and the research
assistants ranked each detail/occurrence on a scale of 1-5 in terms of detail centrality. Raters
were instructed that a detail would be considered central if removal of that detail would affect
their interpretation or comprehension of the narrative. A rating of 5 would be given if removal of
the detail significantly affected their interpretation or comprehension and a 1 was to be given if
removal of the detail would have no effect at all on their interpretation or comprehension of the
narrative. Details that were given an average score greater than 3.5 were considered central
details and summary statements of these details were produced via conferencing among the
group. During scoring, details were classified as central if they matched a detail that was
identified as central by the central detail rating group, and all other verifiable details were
classified as peripheral. While this scoring provided a fine-grained approach to evaluating
memory, we also examined whether events were recalled in a binary fashion. If any event-
specific details were recalled from an event, that event was said to be successfully recalled and
events for which no details were recalled were classified as forgotten or unsuccessfully recalled.
Analysis of details can be found in the Supplemental Results.

MRI Acquisition

MRI scanning for the primary dataset was performed using a 3T Siemens Skyra scanner system
with a 32-channel head coil. T1-weighted structural images were acquired using a magnetization
prepared rapid acquisition gradient-echo pulse sequence (TR = 1900 ms; TE = 3.1 ms; field of

view = 256 mm?; flip angle = 7°; image matrix = 256 x 256, 208 axial slices with 1.0 mm? voxel
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size). Functional images were acquired using a gradient EPI sequence (TR = 1220 ms; TE = 24
ms; field of view = 192 mm? ; image matrix = 64 x 64; flip angle = 67°; multiband factor = 2; 38
interleaved axial slices, voxel size = 3 mm? isotropic), phase encoding: anterior-posterior.
Reverse phase-encoded EPI data was also acquired using the same parameters to correct for

phase encoding distortion in preprocessing (below).

MRI preprocessing

Anatomical data preprocessing

A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset. All of them
were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al.,
2010), distributed with ANTs 2.3.3 (Avants et al., 2008) (RRID:SCR_004757). The T1w-
reference was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh
workflow (from ANTSs), using OASIS30ANTS as target template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the
brain-extracted T1w using fast (Zhang et al., 2001) (FSL 5.0.9, RRID:SCR_002823). A T1w-
reference map was computed after registration of 2 T1w images (after INU-correction) using
mri_robust_template (Reuter et al., 2010) (FreeSurfer 6.0.1). Brain surfaces were reconstructed
using recon-all (Dale et al., 1999) (FreeSurfer 6.0.1, RRID:SCR_001847), and the brain mask
estimated previously was refined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein
etal., 2017) (RRID:SCR_002438). Volume-based spatial normalization to one standard space
(MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration

(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The
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following template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical
template version 2009¢ (Fonov et al., 2009) (RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym). Surface-based registration to the HCP-MMP1.0 atlas (Glasser et al.,
2016) was performed, and subject-specific cortical regions of interest (ROIs) were calculated
according to atlas boundaries. Surface-based cortical regions were converted to volumetric ROIs
and transformed into functional native space. The hippocampus was segmented in FreeSurfer in
an automated fashion. Manual adjustments were done to correct mis-classified voxels, and the
hippocampus was divided into anterior and posterior segments based off the disappearance of the
uncal apex (Poppenk et al., 2013), with the posterior hippocampus designated as all of the

hippocampus posterior to the disappearance of the uncal apex on a coronal slice.

Functional data preprocessing

For each of the BOLD runs found per subject (across all tasks and sessions), the following
preprocessing was performed. First, a reference volume and its skull-stripped version were
generated using a custom methodology of fMRIPrep. A BO-nonuniformity map (or fieldmap)
was estimated based on two (or more) echo-planar imaging (EPI) references with opposing
phase-encoding directions, with 3dQwarp (Cox and Hyde, 1997) (AFNI 20160207). Based on
the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference was
calculated for a more accurate co-registration with the anatomical reference. The BOLD
reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which
implements boundary-based registration (Greve and Fischl, 2009). Co-registration was
configured with six degrees of freedom. Head-motion parameters with respect to the BOLD

reference (transformation matrices, and six corresponding rotation and translation parameters)

29


https://doi.org/10.1101/2022.10.23.513391
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.23.513391; this version posted October 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

are estimated before any spatiotemporal filtering using mcflirt (Jenkinson et al., 2002) (FSL
5.0.9). The BOLD time-series were resampled onto the following surfaces (FreeSurfer
reconstruction nomenclature): fsaverage5. The BOLD time-series (including slice-timing
correction when applied) were resampled onto their original, native space by applying a single,
composite transform to correct for head-motion and susceptibility distortions. These resampled
BOLD time-series will be referred to as preprocessed BOLD in original space, or just
preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a
preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its
skull-stripped version were generated using a custom methodology of fMRIPrep. Several
confounding time-series were calculated based on the preprocessed BOLD: framewise
displacement (FD), DVARS and three region-wise global signals. FD was computed using two
formulations following (Power et al., 2014) (absolute sum of relative motions) and (Jenkinson et
al., 2002) (relative root mean square displacement between affines). FD and DVARS are
calculated for each functional run, both using their implementations in Nipype (following the
definitions by (Power et al., 2014)). The three global signals are extracted within the CSF, the
WM, and the whole-brain masks. The head-motion estimates calculated in the correction step
were also placed within the corresponding confounds file. Frames that exceeded a threshold of
0.5 mm FD or 3.0 standardised DVARS were annotated as motion outliers. All resamplings can
be performed with a single interpolation step by composing all the pertinent transformations (i.e.
head-motion transform matrices, susceptibility distortion correction when available, and co-
registrations to anatomical and output spaces). Gridded (volumetric) resamplings were
performed using antsApplyTransforms (ANTSs), configured with Lanczos interpolation to

minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface)
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resamplings were performed using mri_vol2surf (FreeSurfer). Following preprocessing from
fMRIprep, a set of nuisance regressors was made for each participant. Translational motion in
the x, y, and z direction and rotational motion in pitch, roll, and yaw were calculated for each run
for each subject. Scans with greater than 0.5 mm framewise displacement or DVARS > 3 were
flagged as outlier TRs and a regressor was made for each outlier TR. Finally, the global signal of
each TR was calculated. For the functional connectivity analysis, each of these nuisance
regressors was entered into a model and regressed out from the fMRI timecourse of the
participants and the timecourse was bandpass filtered to restrict frequencies to .009 —.08Hz
using the tproject function from AFNI (Cox and Hyde, 1997) via nipype version 1.4.0
(Gorgolewski et al., 2011) to create a confound corrected timeseries for each participant, for each
run. For the intersubject pattern similarity analysis, nuisance regressors were entered into a
model and regressed out from the fMRI timecourse of the participants and the timecourse was
high-pass filtered minimally to remove frequencies below .001Hz using the tproject function
described above.

Intersubject pattern similarity analysis

Prior to addressing our primary hypotheses, we first confirmed that the cortico-hippocampal
networks in our sample showed event specific representations. To do so, we adopted the
intersubject representational similarity analysis used in (Chen et al., 2017). We focused these
analyses the MTN, PMN, ATN and MPN (Figure 3A), based on previous work showing that
these networks show high functional connectivity with the hippocampus (Barnett et al., 2021; see
also Braga and Buckner, 2017 and Gordon et al., 2020) the MTN and three DMN subnetworks.
The mean BOLD activity of each ROI in a network was calculated for each event, for each

subject, resulting in one “multi-ROI activity pattern” per event, per subject, per network (see
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Figure 2 for an overview). The multi-ROI activity pattern of a network for each participant i was
correlated with the averaged multi-ROI activity pattern for the rest of the group (excluding
subject i) for each matching event and Fisher z-transformed. The average Fisher transformed z-
value for the matching events was calculated and compared to a null distribution that was
calculated by repeating this procedure 5000 times, scrambling the event labels on each iteration.
If a network carried event-specific information, then the average correlation of the matching
events should be significantly higher than the null distribution of randomly correlated events.
The values of the true correlations for the group were thus compared to the null distribution to
assess significance. This was done for both movie encoding and recall, separately. For recall, for
each subject i, we calculated the multi-ROI activity pattern for every event e that was recalled by
subject i and correlated it to the average multi-ROI activity pattern for the rest of the group that

also remembered event ¢, as was done in (Chen et al., 2017).

Functional connectivity analysis

Pairwise FC was estimated between every pair of ROIs in the brain by correlating the confound
corrected timeseries between each pair of ROIs, for each subject, during each functional run. The
resulting Pearson’s correlations were then Fisher z-transformed. To assess the FC between the
hippocampus and a cortico-hippocampal networks of interest, we calculated the average FC of
the hippocampus to all the ROIs in the cortico-hippocampal network. FC estimations were
performed at three time-windows of interest—the event onset, middle and offset. For each event,
we took a 20 TR window (24.4s) around the event onset, a 20 TR window around the event
offset, and a 20 TR window around the event middle—a window length previously shown to be
sensitive to BOLD signal correlations using naturalistic movie stimuli (Lin et al., 2019;

Mukamel et al., 2005). This was done separately for anterior and posterior hippocampus, as some
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evidence suggests that there are different functions and different network connections along the
hippocampal long-axis (Adnan et al., 2016; Poppenk and Moscovitch, 2011; Strange et al.,
2014).

Univariate boundary activity

The anatomically registered functional data was entered into single subject general linear models
for each subject and each movie using SPM12. A separate regressor was made for each event
boundary and each event middle (the arithmetic middle of the event) having durations of Os and
were convolved with the canonical hemodynamic response function in SPM12. Nuisance
regressors for motion (pitch, roll, yaw, x-translation, y-translation, z-translation) along with
regressors flagging outlier TRs of high motion (FD > 0.5 or DVARS > 3) were entered as
regressors of no interest. We also attempted to control for low-level visual information in our
GLM by using the routine outlined by Reagh et al (2020). Edge pixels were calculated via a
python routine, which read in each video stimulus, split it into its constituent frames, and in an
automated fashion performed edge-detection on each frame (using python package opencv). The
proportion of edge pixels to total pixel count was calculated (NumPy) for each frame, and was
output into a comma-separated value file. We then resampled frame-wise edge information to
correspond to the temporal scale of the fMRI data by averaging across adjacent frames within the
interval of each TR (1220 ms). This resultant temporally smoothed vector served as our estimate
of low-level visual information in each timepoint of the video. This visual information vector for
each video was entered into the GLMs as a regressor of non-interest. Data underwent a high-pass
filter with a cut-off of 128s.

For each subject GLM, for each movie, we estimated the beta values for each event

boundary and event middle at every voxel in the brain. We extracted the beta values for these
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regressors averaged within the anterior and posterior hippocampus of each subject using the ROI
extraction toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). To calculate the univariate
boundary effect in the hippocampus, we subtracted the beta value of the event middle from the
beta value of the event boundary for each event.

Subsequent Memory effects analysis

The hippocampal to network FC values were mean centered within each participant for each
cortico-hippocampal network of interest that showed event-specific multivariate patterns. These
mean-centered values were entered into our statistical models. A generalized linear mixed model
was used to run a logistic regression determining whether subsequent recall success could be
predicted from FC, delay condition (immediate vs. two-day delay), the interaction of these two
terms, and whether these interacted with FC window (beginning vs. middle vs. offset), and
hippocampal long-axis (anterior vs. posterior) using glmer from the Ime4 package in R. Since
hippocampal boundary activity has previously been associated with recall success, we included
boundary activity as a regressor in the model. Significance for terms in the logistic generalized
linear mixed model was determined using Wald Chi-square tests. A random intercept was
entered into the model for each participant. Movie label was entered as a covariate of no interest.
Follow-up effects were calculated using emtrends from the emmeans package in R.

A second model was constructed using only events that were successfully recalled to
determine the influence of FC on the amount of detail remembered from events. Since we
observed no differences in central and peripheral details (Supplemental Results), here the
dependent variable was the log-transformed total numbers of details recalled from events and the
predictors were the same as above. Details were log-transformed since a Shapiro-Wilk test

revealed that the detail distribution was not normal, W = .72, p < .001. This analysis was
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modelled using a linear mixed model with Imer from the Ime4 package in R. Thus, rather than
examining how FC relates to success of recall of events, we examined how it relates to the
amount of detail retrieved when the event is recalled. Follow-up effects were calculated using
emtrends from the emmeans package in R. Statistical probabilities were adjusted for multiple
comparisons using the FDR method (Benjamini and Yekutieli, 2001) implemented in the

emmeans package.
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Supplemental Methods:
Recall statistical analysis

A mixed linear model was used to determine the effect of delay on the number of events
subsequently recalled, and the number of details recalled. An event was considered recalled if
participants mentioned any detail that was specific to a given event. Movie and counter-balance
group were entered as covariates of no interest. The model predicting number of details recalled
from delay also included detail type (central vs. peripheral) as an effect of interest. The Shapiro—

Wilk test was used to evaluate normality on the distribution of details.

Supplemental Results:
Recall statistical analysis

Participants retrieved a fewer number of events after a 2-day delay compared to the immediate
recall condition (t(44) =4.91, p <.001). The distribution of the number of details recalled by
participants was skewed, with some subjects recalling many more details above average than the
group. A Shapiro-Wilk test revealed that the distribution was not normal, W = .72, p <.001. The
distribution was therefore log-transformed using the natural log, resulting in a normal
distribution, W = 0.97, p = .058. Using the log-transformed detail scoring, we observed that
participants reported fewer details after a 2-day delay compared to the immediate recall
condition (t(88) = 3.2, p =.001). Participants also tended to report more peripheral details than
central details (t(88) = 8.7, p <.001), but there was no interaction between detail type and delay
in terms of details recalled (t(88) = .36, p = .7. In all models, there was no effect of movie, (t-
values < 1, p-values > 0.29) or counter-balance group, (F-values < 1.76, p-values > .17). Since

there were no interactions with detail type, future analysis pooled details into total details.
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Subsequent memory associated with FC to hippocampus
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Supplemental Figure 1

Relationship between subsequent recall success and hippocampal FC with ROIs in the PMN
plotted on an inflated brain surface. Warm colors indicate that functional connectivity between
the ROI and hippocampus is associated with better subsequent memory for events and cool
colors indicate that functional connectivity with the hippocampus is associated with worse
subsequent memory.
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Supplemental Figure 2

Relationship between subsequent recall success and hippocampal FC with ROIs in the MTN at
the immediate recall time point plotted on an inflated brain surface.
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Supplemental Figure 3
Relationship between number of subsequently recalled and hippocampal FC with ROIs in the
PMN at the delayed recall time point plotted on an inflated brain surface.

50


https://doi.org/10.1101/2022.10.23.513391
http://creativecommons.org/licenses/by-nc-nd/4.0/

