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Abstract 11 

In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One 12 

exception to these assumptions is called doubly uniparental inheritance (DUI): a phenomenon 13 

involving the independent transmission of female and male mitochondrial genomes. DUI is 14 

known only from the molluscan class Bivalvia. The phylogenetic distribution of male 15 

mitochondrial DNA in bivalves is consistent with several evolutionary scenarios, including 16 

multiple independent gains, losses, and varying degrees of recombination with female 17 

mitochondrial DNA. In this study, we use phylogenetic methods to test male mitochondrial DNA 18 

origination hypotheses and infer the prevalence of mitochondrial recombination in bivalves with 19 

DUI. Phylogenetic modeling using site concordance factors supported a single origin of male 20 

mitochondrial DNA in bivalves coupled with recombination acting over long evolutionary 21 

timescales. Ongoing mitochondrial recombination is present in Mytilida and Venerida, which 22 

results in a pattern of concerted evolution of female and male mitochondrial DNA. 23 

Mitochondrial recombination could be favored to offset the deleterious effects of asexual 24 

inheritance and maintain mitonuclear compatibility across tissues. Cardiida and Unionida have 25 

gone without recent recombination, possibly due to an extension of the COX2 gene in male 26 

mitochondrial DNA. The loss of recombination may be neutral but could be connected to the role 27 

of M mtDNA in sex determination or sexual development. Our results support recombination 28 

events in DUI species may occur throughout their genomes. Future investigations may reveal 29 

more complex patterns of inheritance of recombinants, which could explain the retention of 30 

signal for a single origination of male mitochondrial DNA in protein coding genes. 31 

 32 

Keywords: site concordance factors, selection, concerted evolution, mitonuclear coevolution 33 
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Introduction 34 

Mitochondria are found in almost all eukaryotic cells and possess their own independently 35 

inherited mitochondrial DNA (mtDNA). Typically, animal mtDNA is ~16 kb long and contains 36 

37 genes (13 protein-coding, two rRNAs, and 22 tRNAs) and a control region (a non-coding 37 

region that often contains the origin of replication) (Boore 1999). In most bilaterian animals, 38 

mtDNA is assumed to be strictly maternally inherited and non-recombining. However, 39 

exceptions to these generalizations have been documented across multiple phyla (Piganeau, 40 

Gardner and Eyre-Walker 2004; Barr, Neiman and Taylor 2005; Tsaousis et al. 2005; Ghiselli et 41 

al. 2021). One such exception occurs in molluscan bivalves, where several lineages show doubly 42 

uniparental inheritance (DUI). This unusual mode of mitochondrial inheritance is characterized 43 

by the transmission of two mitochondrial genomes, one passed by females to all offspring and a 44 

second passed by males to only male offspring (Hoeh, Blakley and Brown 1991; Skibinski, 45 

Gallagher and Beynon 1994). Females only possess F-mtDNA, while males are globally 46 

heteroplasmic in their somatic tissues and exclusively possess M mtDNA in their sperm (Breton 47 

et al. 2017, 2022; Ghiselli et al. 2019; Bettinazzi et al. 2020). 48 

Doubly uniparental inheritance has been described from five bivalve orders: Cardiida, 49 

Mytilida, Nuculanida, Unionida, and Venerida (Gusman et al. 2016; Capt et al. 2020). Although 50 

the phylogenetic distribution is thought to be well characterized (Fig. 1), the origin and evolution 51 

of many aspects of DUI remains poorly understood. For example, there are conflicting 52 

hypotheses regarding whether male (M) mtDNA has originated once and has been lost multiple 53 

times (Stewart et al. 2009, 2021; Doucet-Beaupré et al. 2010), or if it has originated 54 

independently multiple times (Hoeh et al. 1996; Maeda et al. 2021). Uncertainty stems from 55 

inconsistent phylogenetic relationships between female (F) and M mtDNA, and non-monophyly 56 

of M mtDNA. Phylogenetic relationships between F and M mtDNA in DUI taxa exhibit two 57 

distinct patterns. Female and M mtDNA are reciprocally monophyletic across species in some 58 

orders, while they show sister relationships within a species in others. In other words, M mtDNA 59 

is non-monophyletic across all DUI species but shows topologies consistent with a single 60 

origination in some lineages (Unionida), independent originations in others (Mytilida, 61 

Nuculanida, Venerida), or has not been examined in more than one species (Cardiida) in yet 62 

others (Breton, Stewart and Blier 2009; Gusman et al. 2016). Depending on the lineage, F and M 63 

mtDNA genes can be up to 90% identical (Mytilida and Venerida) or differ by more than 50% in 64 
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their amino acid sequences (Unionida) (Mizi, Zouros and Rodakis 2006; Breton et al. 2007; 65 

Breton, Stewart and Blier 2009; Gusman et al. 2016).  66 

Recombination events between F and M mtDNA have been documented in several DUI 67 

species (Mytilus spp. and Ruditapes philippinarum) (Ladoukakis and Zouros 2001; Burzyński et 68 

al. 2003; Passamonti, Boore and Scali 2003; Filipowicz et al. 2008; Ladoukakis et al. 2011). 69 

These events are similar to homologous recombination in bacteria, where novel fragments from 70 

the donor genome replace existing homologous genetic material in the recipient genome (Spratt 71 

et al. 1992). In Mytilus, mitochondrial recombination often precipitates a “role-reversal” in 72 

which the F mtDNA receives a M control region and is subsequently transmitted as M mtDNA 73 

(Cao et al. 2004; Mizi, Zouros and Rodakis 2006; Stewart et al. 2009; Kyriakou et al. 2015). In 74 

this event, recombination erases divergence between the rest of the F and M mtDNA genes (e.g., 75 

those involved with oxidative phosphorylation (OXPHOS)). This recombination also results in a 76 

phylogenetic pattern of concerted evolution in OXPHOS genes, which could cause the observed 77 

conflict in sequence divergence and topologies of F and M mtDNA between DUI lineages 78 

(Stewart et al. 2009; Gusman et al. 2016). Recombination events have also been documented to 79 

occur in other areas of mtDNA in DUI species (Burzyński et al. 2003; Passamonti, Boore and 80 

Scali 2003), including within OXPHOS genes (Ladoukakis and Zouros 2001; Ladoukakis et al. 81 

2011). If occasional recombination in OXPHOS genes has occurred throughout the evolutionary 82 

history of bivalves, certain OXPHOS genes could retain sites informative about the origin of M 83 

mtDNA, but signal from these sites has likely been masked when using concatenation-based 84 

methods. Recent advances in site-based methodologies that estimate concordance at the level of 85 

individual sites, including the site concordance factor (Minh, Hahn and Lanfear 2020), are 86 

therefore useful for investigating the origin of M mtDNA. 87 

Mitochondrial recombination is well-documented in Mytilida and Venerida, but 88 

recombination is apparently absent in Unionida. This may be due a large extension in the COX2 89 

gene in the M mtDNA or the presence of sex-specific open reading frames (orfs) in the F and M 90 

mtDNA (Stewart et al. 2009; Breton et al. 2011; Gusman et al. 2016). Most DUI bivalves exhibit 91 

extensions to the COX2 gene in the M mtDNA, ranging from ~300 bp to 4.5 kb (Curole and 92 

Kocher 2002; Bettinazzi, Plazzi and Passamonti 2016; Capt et al. 2020), which have been 93 

hypothesized to serve as a tag for cells or organelles harboring M mtDNA (Chakrabarti et al. 94 

2007). Sex-specific orfs likely originated via duplication and have been confirmed to code for 95 
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proteins in Mytilida, Unionida, and Venerida (Breton et al. 2011; Milani et al. 2014; Ouimet et 96 

al. 2020). Although their function is uncertain, it is hypothesized orfs are involved in sex 97 

determination or sexual development (Breton et al. 2011, 2022; Milani et al. 2014; Guerra et al. 98 

2019; Ouimet et al. 2020). Although COX2 extensions and sex-specific orfs are found in most 99 

DUI lineages, they have been comparably evolutionarily conserved across Unionida (Curole and 100 

Kocher 2002; Guerra et al. 2019), suggesting one of these two characteristics may explain why 101 

recombination is selected against.  102 

In this study, we revisit the related issues of the origins of M mtDNA and recombination 103 

in mtDNA. Specifically, we use phylogenetic methods to 1) investigate the number of origins of 104 

M mtDNA, 2) infer the prevalence of mitochondrial recombination, and 3) investigate the 105 

potential drivers or inhibitors of mtDNA recombination. Our findings support a single 106 

origination of M mtDNA in bivalves with occasional recombination events causing observed 107 

non-monophyly of M mtDNA using concatenation-based methods. 108 

 109 

Materials and Methods 110 

Phylogenetic distribution of doubly uniparental inheritance 111 

To provide an overview of the phylogenetic distribution of DUI in bivalves, we downloaded the 112 

phylogeny presented in Combosch et al. (2017). We collapsed the phylogeny to the family-level 113 

(93 families; see Table S1) and compiled DUI reports from the literature (Theologidis et al. 114 

2008; Gusman et al. 2016; Capt et al. 2020). 115 

  116 

Mitogenomic dataset and phylogenetic analyses 117 

We downloaded M and F mitogenomes for 37 DUI species and 10 representative orders in 118 

Bivalvia from the NCBI nucleotide collection (Table S2). Octopus bimaculatus (Cephalopoda) 119 

was used as an outgroup. In cases where annotations of mitogenomes were incomplete, we used 120 

MITOS2 (Bernt et al. 2013) to identify protein-coding genes. We excluded ATP8 due to missing 121 

data across most species and a partial portion of COX2 for Limecola balthica and Scrobicularia 122 

plana (Cardiida) M mtDNA due to a large insertion (Capt et al. 2020). Protein-coding genes 123 

were aligned using MACSE v 2.05 (Ranwez and Douzery 2018). We then concatenated the 12 124 

mitochondrial genes and removed all sites with missing data. The resulting concatenated 125 

alignment was used for phylogenetic analysis and consisted of 83 sequences represented by 126 
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2,622 amino acids (File S1). A phylogeny was estimated in IQ-TREE v 2.2.0.3 (Minh et al. 127 

2020) using 10 independent runs. ModelFinder (Kalyaanamoorthy et al. 2017) was used to select 128 

the best amino acid model of evolution (mtInv+F+I+G4) and 103 ultrafast bootstrap replicates 129 

were used to assess nodal support (Hoang et al. 2018). 130 

We used site concordance factors (Minh, Hahn and Lanfear 2020) to test M mtDNA 131 

origination hypotheses. Briefly, site concordance factors measure the percentage of sites 132 

supporting a certain branch in a phylogeny. Hypotheses can be tested by comparing observed site 133 

concordance factors with a distribution of site concordance factors from data simulated under a 134 

given phylogenetic hypothesis (e.g., Hibbins, Gibson and Hahn 2020). We used site concordance 135 

factors from both individual genes and a concatenated alignment of all genes to test two 136 

hypotheses: 1) ten independent originations of M mtDNA (as supported by concatenation 137 

methods; Fig. 2), and 2) a single origination of M mtDNA. Specifically, our methodology 138 

evaluated these two hypotheses by directly comparing observed site concordance factors for a 139 

single origination of M mtDNA to a distribution of site concordance factors for a single 140 

origination of M mtDNA that could occur by chance under multiple origins. To generate 141 

distributions of site concordance factors for hypothesis testing from the concatenated dataset and 142 

each gene independently, we used AliSim (Ly-Trong et al. 2022) to simulate 103 amino acid 143 

datasets based on the resolved topology from each empirical alignment using the best model of 144 

amino acid evolution as determined by ModelFinder. We chose to use AliSim over other 145 

methods (e.g., Seq-Gen, Dawg, INDELible) to account for the non-independence of mtDNA 146 

substitutions. Next, we used Mesquite v 3.3.1 (Maddison and Maddison 2017) to create a 147 

topology from the concatenated analysis that enforced the monophyly of all M mtDNA while 148 

retaining branch length information (Fig. S1; File S2). We then calculated site concordance 149 

factors for all empirical and simulated datasets using 100 quartets. With those, we gathered site 150 

concordance factors for the branch coinciding to a single origin of M mtDNA (Fig. S1) and used 151 

one-tailed tests (with p = 0.05) to determine if the observed site concordance factor was 152 

significantly larger than expected under 10 independent originations. 153 

We investigated the hypothesis that the lack of recent recombination in Cardiida and 154 

Unionida is a result of intensified selection on M mtDNA genes that have adapted to male 155 

functions. We chose to perform this test in Cardiida given we resolved a similar phylogenetic 156 

pattern between F and M mtDNA as Unionida (Fig. 2). We used RELAX (Wertheim et al. 2015) 157 
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in HyPhy v 2.5.25 (Pond, Frost and Muse 2005) with a concatenated nucleotide alignment of 12 158 

M mtDNA genes (File S3; Table S3) to test if selection on M mtDNA in Cardiida and Unionida 159 

was significantly different than Mytilida and Venerida. Considering extensions to the COX2 160 

gene in the M mtDNA are shared in Cardiida and Unionida and hypothesized to be a proximate 161 

cause of the absence of recombination, we also used RELAX independently on a nucleotide 162 

alignment of M mtDNA COX2 gene (File S4; Table S3). Codons with missing or ambiguous 163 

data in each alignment were removed. Likelihood ratio tests were used to evaluate models with a 164 

significance level of p = 0.05. 165 

  166 

Estimation of recombination frequency 167 

To estimate the frequency of recombination, we estimated divergence times between F and M 168 

mtDNA lineages. We used BEAST v 2.6.7 (Bouckaert et al. 2019) with a concatenated 169 

nucleotide alignment of 12 F and M mtDNA genes for all taxa sampled in Mytilida (File S5; 170 

Table S4), where recombination between M and F mtDNA has been observed and reliable fossil 171 

calibrations are available. Codons with missing or ambiguous data in each alignment were 172 

removed. The best fit model of nucleotide evolution for each codon position was selected by 173 

ModelFinder, a relaxed molecular clock was fit to each codon position, and a calibrated Yule 174 

process was used as the tree prior. We enforced priors that date the MRCA of F and M mtDNA 175 

for Mytilus edulis, M. galloprovincialis, and M. trossolus between 3.1 and 4.8 Mya (Rawson and 176 

Harper 2009). The analysis was run for 108 MCMC generations with an initial 10% burn-in. 177 

Tracer v1.7.1 (Rambaut et al. 2018) was used to determine the appropriate burn-in value and 178 

ensure convergence of all parameters (ESS > 200), and a maximum clade credibility tree was 179 

created using TREEANNOTATOR v 2.6 (Bouckaert et al. 2019). To get a rough estimate of the 180 

timing of recombination events, we calculated an average divergence time between putatively 181 

recombinant F and M mtDNA lineages. 182 

 183 

Results and Discussion 184 

Phylogenetic reconstruction based on the concatenated alignment of 12 of the 13 mitochondrial 185 

protein coding OXPHOS genes showed non-monophyly of M mtDNA across bivalves (Fig. 2; 186 

File S6), as shown previously (Hoeh et al. 1996; Gusman et al. 2016; Maeda et al. 2021). While 187 

this topology has been previously interpreted as consistent with multiple origins or losses of M 188 
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mtDNA (Hoeh et al. 1996; Stewart et al. 2009; Doucet-Beaupré et al. 2010; Gusman et al. 2016; 189 

Maeda et al. 2021), it is also consistent with concerted evolution due to recombination between F 190 

and M mtDNA in Mytilida and Venerida, and a lack of recombination in Cardiida and Unionida 191 

(Fig. 2). As has been seen in previous studies (Gusman et al. 2016; Maeda et al. 2021), we found 192 

that F and M mtDNA within species in Mytilida and Venerida are generally sister, which is 193 

expected under the hypothesis of recombination between F and M mtDNA. One exception is 194 

Mytilus edulis, M. galloprovincialis, and M. trossolus (Mytilus spp.) have reciprocally 195 

monophyletic F and M mtDNA (Fig. 2), despite the fact that Mytilus spp. are known to 196 

recombine (Ladoukakis and Zouros 2001; Burzyński et al. 2003; Filipowicz et al. 2008; 197 

Ladoukakis et al. 2011). We estimate that recombinant M mtDNA fix less frequently (~11 My; 198 

95% CI: 7.3–14.5 My; Fig. S2) than do speciation events in Mytilus (~3.1–4.8 Mya). We 199 

hypothesize the reciprocal monophyly of F and M mtDNA will appear frequently across the 200 

phylogeny of certain DUI bivalve lineages at shallow taxonomic scales when data for additional 201 

taxa become available. 202 

Mitochondrial recombination in Mytilida and Venerida results in a pattern of concerted 203 

evolution of F and M mtDNA, which may be favored to combat the deleterious effects of asexual 204 

inheritance and maintain mitonuclear compatibility across tissues (Muller 1964). If there are two 205 

sets of highly divergent mtDNAs within the same organism, interacting nuclear genes necessary 206 

for proper function may not cooperate efficiently with both mtDNAs, resulting in mitonuclear 207 

incompatibility for one mitogenome (Hill 2015). Mitonuclear coevolution has recently been 208 

confirmed in bivalves, with highly correlated evolution between mitochondrial and nuclear 209 

subunits involved with OXPHOS (Piccinini et al. 2021). However, relaxed selection on M 210 

mtDNA may be common in DUI bivalves, therefore favoring nuclear coevolution with F over M 211 

mtDNAs (Maeda et al. 2021). Here we suggest that mitonuclear compatibility may be restored 212 

via recombination in some DUI lineages in an analogous process to the "Fountain of Youth" 213 

(Perrin 2009). In this process, occasional recombination events are hypothesized to counteract 214 

accumulated deleterious mutations in previously non-recombining sex chromosomes (Perrin 215 

2009).  216 

Analyses of energetic metabolism provide support that mitochondrial recombination may 217 

be favored to purge deleterious mutations in M mtDNA. In Mytilida and Venerida, sperm are 218 
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dependent on OXPHOS to sustain motility (Bettinazzi et al. 2019, 2020), which highlights the 219 

importance of compatibility between M mtDNA and nuclear genes. Comparative physiological 220 

studies in M. edulis have shown that recombination events do not have obvious deleterious 221 

effects on sperm performance (Everett et al. 2004). Rather, recombination may be advantageous 222 

because sperm with recently masculinized M mtDNA (i.e., those carrying F mtDNA with M 223 

control regions) swim faster than those with ancestral M mtDNA (Jha et al. 2007). Sperm 224 

swimming velocity has been demonstrated to be correlated with ATP levels in many taxa 225 

(Perchec et al. 1995; Burness, Moyes and Montgomerie 2005), and ATP production is lower in 226 

sperm with M mtDNA than eggs with F mtDNA (Bettinazzi et al. 2019). Mitochondrial 227 

recombination, therefore, may be favored to maximize M mtDNA ATP production in Mytilida 228 

and Venerida by replacing defective M mtDNA OXPHOS genes with more energetically robust 229 

F mtDNA OXPHOS genes (Breton, Stewart and Blier 2009). To our knowledge, physiological 230 

studies have been limited to Mytilida and Venerida (Bettinazzi et al. 2020), and future analogous 231 

studies in Cardiida and Unionida may further support our hypothesis.  232 

We find a different pattern of phylogenetic relationships of mtDNAs in Unionida when 233 

compared to Mytilida and Venerida, consistent with previous studies (Gusman et al. 2016). In 234 

Unionida, F and M mtDNA are reciprocally monophyletic across species (Fig. 2). A similar 235 

relationship was recovered in Cardiida (Fig. 2), albeit based on two species. However, L. 236 

balthica (Cardiida: Tellinidae) and S. plana (Cardiida: Semelidae) are estimated to have diverged 237 

at or near the Cretraceous–Palogene boundary (~66 Mya) (Crouch et al. 2021), far greater than 238 

our estimated frequency of recombinant fixation in Mytilida (~11 My). Therefore, our data is 239 

consistent with the absence of recent recombination between F and M mtDNA in both Cardiida 240 

and Unionida. We hypothesize mitochondrial recombination was the plesiomorphic condition of 241 

DUI species and was independently lost in these lineages. This is because M mtDNA in Cardiida 242 

and Unionida would be monophyletic had recombination independently originated in Mytilida 243 

and Venerida. One possible explanation for the loss of recombination in Cardiida and Unionida 244 

involves a large extension of COX2 in the M mtDNA (Curole and Kocher 2002), which is 245 

hypothesized to promote gender-specific mitochondrial localizations (Chakrabarti et al. 2007). 246 

Recombination between F and M mtDNA could disrupt proper localization and therefore be 247 

selected against.  248 
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Although large extensions to COX2 may be a proximate cause for the loss of 249 

recombination in Cardiida and Unionida, its adaptive significance remains unclear. If COX2 or 250 

additional M mtDNA genes are adapted to certain male functions, those adapted features could 251 

be lost following recombination with F mtDNA. Were this the case, we might expect to see 252 

intensified selection on COX2 and M mtDNA genes in Cardiida and Unionida compared to 253 

Mytilida and Venerida. Our analyses reject this hypothesis, and in fact indicate significant 254 

evidence of relaxed selection in Cardiida and Unionida (COX2: K = 0.71, p = 0.001; 12 genes: K 255 

= 0.44, p < 0.001; Table S5). Another possible explanation for the loss of recombination is that 256 

mtDNA may have a role in sex determination, particularly in Unionida (Breton et al. 2011). 257 

Unlike other bivalve lineages with DUI, some families in Unionida (i.e., Margaritiferidae and 258 

Unionidae) have evolutionarily conserved sex-specific orfs (F-orf and M-orf) that have been 259 

confirmed to code for proteins (Breton et al. 2011). Additionally, hermaphroditism has evolved 260 

multiple times in these lineages, and each transition is often associated with the origin of a F-like 261 

mtDNA that has a hermaphrodite-specific orf (Breton et al. 2011 but see Soroka and Burzyński 262 

2017). This suggests mtDNA orfs are associated with sexual transitions in Unionida and may 263 

have a role in sex determination or sexual development (Breton et al. 2011, 2014, 2022). 264 

Recombination between F and M mtDNA would therefore be deleterious, albeit we recognize 265 

this explanation may be limited to the families Margaritiferidae and Unionidae. 266 

In principle, gene trees could be used to determine the number of origins of M mtDNA. 267 

In the absence of mitochondrial recombination, a single origin of M mtDNA would result in 268 

reciprocal monophyly of F and M mtDNA across DUI species. However, it is unlikely that gene 269 

trees with the appropriate topology will be observed when there is recombination. Therefore, our 270 

phylogenetic reconstruction (Fig. 2) is consistent with either multiple origins of M mtDNA (up 271 

to 10) or a single origination of M mtDNA with recombination acting in a lineage-specific 272 

manner over long evolutionary timescales. We tested these hypotheses using site concordance 273 

factors, which supported a single origination of M mtDNA followed by lineage-specific 274 

recombination (Fig. 3; Table S6). Specifically, we found more site-level support for a single 275 

origin and can reject multiple origin hypotheses using both an individual OXPHOS gene (ND1: 276 

p=0.03; Fig. 3; Table S6) and a concatenated alignment of 12 genes (p < 0.001; Fig. 3; Table 277 

S6). Our results agree with hypotheses presented in previous studies (Hoeh et al. 1997; 278 

Theologidis et al. 2008; Stewart et al. 2009; Doucet-Beaupré et al. 2010; Zouros 2013).  279 
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Although we can reject multiple origination hypotheses, the retention of signal in protein 280 

coding genes for a single origin of M mtDNA remains unclear. Recombination events have been 281 

documented to occur throughout mtDNA in DUI species, including within mitochondrial genes, 282 

but have been hypothesized to only occur in somatic tissue and not inherited through gametes 283 

(Ladoukakis and Zouros 2001; Ladoukakis et al. 2011). Given this context, our results suggest 284 

this conclusion may be unrealistic. Future investigations across DUI bivalves may reveal more 285 

complex patterns of recombination in protein coding genes and inheritance of recombinant 286 

mtDNAs, which could explain preserved signal for a single origination of M mtDNA in 287 

mitochondrial OXPHOS genes. 288 

 289 

Conclusion 290 

Our results support a single origination of M mtDNA followed by lineage-specific 291 

recombination, which has led to non-monophyly of M mtDNA using concatenation-based 292 

methods. Mitochondrial recombination events may occur to counteract the accumulation of 293 

deleterious mutations in M mtDNA to restore ATP production but are exclusive to Mytilida and 294 

Venerida (based on available data). It remains uncertain why recombination is absent in Cardiida 295 

and Unionida, but it may be selected against because of the role of mtDNAs in sex determination 296 

or sexual development in these lineages. Future studies into these topics will further contribute to 297 

the understanding of DUI and the functional significance of retaining M mtDNA in bivalves. 298 
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Figure Legends 468 

Figure 1. Phylogenetic distribution of doubly uniparental inheritance (DUI) based on a family-469 

level tree of Bivalvia presented in Combosch et al. (2017). Families confirmed to exhibit DUI 470 

are bolded and colored red. 471 

Figure 2. Phylogeny of the class Bivalvia based on amino acid sequences for 12 mitochondrial 472 

genes, showing lineages with strictly maternal inheritance (SMI), female mtDNA in DUI 473 

species, and male mtDNA in DUI species. Mytilus spp. refers to M. edulis, M. galloprovincialis, 474 

and M. trossolus. Values above branches represent ultrafast bootstrap support. 475 

Figure 3. Null distribution and observed site concordance factors used to assess support for a 476 

single origination of male mitochondrial DNA for a concatenated alignment and ND1. In each 477 

plot, white bars represent the null distribution based on 1000 simulated amino acid datasets, the 478 

red arrow represents the observed value based on empirical data, and the p-value is reported. 479 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.22.513339doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.22.513339
http://creativecommons.org/licenses/by-nc-nd/4.0/


Laternulidae

Tra
pez

id
ae

Neilonellidae

Cyrenoididae

H
yrii

dae

Poromyidae

Lucinidae

S
em

elid
a
e

Glauconomidae

C
ard

iid
ae

A
n
o
m

ii
d
aeT

ri
go

ni
id

ae

Ir
id

in
id

ae

Astartid
ae

Sareptidae

Verticordiidae

M
ac

tr
id

ae

T
ellin

id
a
e

Tindariidae

G
ryphaeidae

e
a

di
s

p
o

mi
L

Cyrenidae

Cleidothaeridae

Lyonsiidae

Arct
ici

dae

P
la

cu
n
id

ae

T
er

ed
in

id
ae

M
yce

to
podid

ae

P
ro

pe
am

us
si

id
ae

Hemidonacidae

M
ontacutidae

Pharidae

S
o
lecu

rtid
ae

A
rcid

ae

P
u
lv

in
itid

ae

M
arg

arit
ife

rid
ae

S
p
h
ae

ri
id

ae

Eth
er

iid
ae

Chamidae

C
o
rb

u
li

d
ae

P
h
il

o
b
ry

id
ae

U
ng

ul
in

id
ae

N
o
etiid

ae

Pandoridae

Condylocardiidae

Myochamidae

Malletiidae

Siliculidae

G
ly

cy
m

erid
id

ae

N
ucinellidae

Bathyspinulidae

Cuspidariidae

G
lo

ss
id

ae

S
po

nd
yl

id
ae P

teriid
ae

Crassa
tellid

ae

Thraciidae

L
im

id
ae

G
ai

m
ar

di
id

aeM
y
id

ae

Periplomatidae

P
h
o
la

d
id

ae
Carditidae

Pinnidae

O
streidae

G
aleo

m
m

atid
ae

Solenidae

K
elliidae

Clavagellidae

D
re

is
se

n
id

ae

Kelliellidae

Y
oldiidae

M
ytilidae

Nuculidae

Thyasiridae

Gastrochaenidae

M
alleidae

M
es

od
es

m
at

id
ae

Solemyidae

P
ec

ti
ni

da
e

Unionidae

L
asaeidae

Veneridae

C
ya

m
iid

ae

D
im

y
id

ae

Phaseolidae
H

iatellidae

Nuculanidae

P
li

ca
tu

li
d
ae

Iso
g
n
o
m

o
n
id

ae

Vesicomyidae

D
o
n

a
ci

d
a
e

P
sam

m
o
b
iid

ae

DUI confirmed

DUI apparent absence

https://doi.org/10.1101/2022.10.22.513339
http://creativecommons.org/licenses/by-nc-nd/4.0/


SMI - Female mtDNA
DUI - Female mtDNA
DUI - Male mtDNA 0.4

Anomalodesmata

Ostreida

Adapedonta

Perumytilus purpuratus

Pteriida

Mytilus californianus

Lucinida

Mytilus californianus

Solemyida

Ruditapes philippinarum

Pectinida

Myida

Arcuatula senhousia

Arcida

Meretrix lamarckii

Octopoda

Semimytilus algosus

Trigoniida

Perumytilus purpuratus

Geukensia demissa

100

98

65

98

99

99

70

100

100
100

100

100

100

100

100

90 100

100

68

100

100

100
93

100

100

100

100

100

95

100

100

100

100

95

Mytilus spp. 

Cardiida

Unionida

Unionida

https://doi.org/10.1101/2022.10.22.513339
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

50

100

150

200

20.0 22.5 25.0 27.5 30.0 32.5

Concatenated

0

50

100

150

200

20 30 40

ND1

p < 0.001

p = 0.03

C
o
u
n
t

Distribution of Site Concordance Factors

Site Concordance Factor

https://doi.org/10.1101/2022.10.22.513339
http://creativecommons.org/licenses/by-nc-nd/4.0/

