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ABSTRACT

Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the
neuropathology of a clinically, genetically and pathologically heterogeneous group of
diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy
(PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions
(FTLD-TDP) and FTLD with tau positive inclusions (FTLD-tau) are the most common,
representing about 90% of the cases. Although alterations in DNA methylation have been
consistently associated with neurodegenerative diseases, including Alzheimer’s disease and
Parkinson’s disease, little is known for FTLD and its heterogeneous subgroups and subtypes.
The main goal of this study was to investigate DNA methylation variation in FTLD-TDP and
FTLD-tau. We used frontal cortex genome-wide DNA methylation profiles from three FTLD
cohorts {234 individuals), generated using the Illumina 450K or EPIC microarray. We
performed epigenome-wide association studies (EWAS) for each cohort followed by meta-
analysis to identify shared differential methylated loci across FTLD subgroups/subtypes.
Additionally, we used weighted gene correlation network analysis to identify co-methylation
signatures associated with FTLD and other disease-related traits. Wherever possible, we also
incorporated relevant gene/protein expression data. After accounting for a conservative
Bonferroni multiple testing correction, the EWAS meta-analysis revealed two differentially
methylated loci in FTLD, one annotated to OTUD4 (5’UTR-shore) and the other to NFATC1
(gene body-island). Of these loci, OTUD4 showed consistent upregulation of mMRNA and
protein expression in FTLD. Additionally, in the three independent co-methylation networks,
OTUD4-containing modules were enriched for EWAS meta-analysis top loci and were
strongly associated with the FTLD status. These co-methylation modules were enriched for
genes implicated in the ubiquitin system, RNA/stress granule formation and glutamatergic
synaptic signalling. Altogether, our findings identified novel FTLD-associated loci, and
support a role for DNA methylation as a mechanism involved in the dysregulation of
biological processes relevant to FTLD, highlighting novel potential avenues for therapeutic

development.
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INTRODUCTION

Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the
neuropathology of a group of neurodegenerative disorders, which are characterised by the
selective degeneration of the frontal and temporal lobes of the brain. These disorders are
clinically, pathologically and genetically heterogeneous. Clinically, patients with FTLD
frequently present with frontotemporal dementia (FTD), which is the second most common
form of early onset dementia and is often associated with behavioural and language
changes. A fraction of patients may present with or develop Parkinsonism as part of their
disease, including those with progressive supranuclear palsy (PSP), and frontotemporal
dementia and parkinsonism linked to chromosome 17 (FTDP-17). An overlap with
amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) is also observed in a
proportion of patients with FTLD, highlighting a spectrum of clinical phenotypes that relate

to shared neuropathologic features [17, 41].

A considerable number of FTLD cases report a positive family history (30-50%), and the
majority of familial cases can be attributed to mutations in three genes, namely
chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), and microtubule-
associated protein tau (MAPT). Apart from those cases in which a genetic mutation has been
identified, neuropathological assessment is essential to confirm the disease entity
underlying FTLD. The neuropathological classification of FTLDs, based on the
presence/absence of specific proteinaceous inclusions, recognizes five major subgroups.
FTLD with 43kDa transactive response DNA-binding protein (TDP-43) positive inclusions
(FTLD-TDP), and with tau positive inclusions (FTLD-tau), account for the vast majority of

cases, representing around 50% and 40% of FTLD cases, respectively [27, 58].

Even though progress has been made in identifying genetic risk factors for diseases under
the FTLD umbrella [19, 23, 34, 66, 87], the molecular mechanisms driving FTLD pathology
are not completely understood. Mounting evidence reveals changes in the FTLD brain
transcriptional landscapes [3, 15, 28, 30, 81]. However, studies investigating non-sequence-
based regulatory mechanisms such as epigenetic modifications in FTLD brain tissue are
limited [9, 51, 83, 86]. Variable DNA methylation, the most well studied epigenetic

modification, has consistently been associated with Alzheimer’s disease pathology in
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epigenome-wide studies (EWAS) and subsequent meta-analyses [72, 74, 89]. In FTLD, brain
tissue EWAS are scarce and limited to a single PSP study [83].

To investigate further the relevance of DNA methylation variation in FTLD, we set out a
study investigating epigenome-wide DNA methylation variation in frontal lobe tissue from
three cohorts, spanning different subtypes of FTLD-TDP and FTLD-tau subgroups, followed
by an EWAS meta-analysis, co-methylation network analysis in each cohort, and subsequent
module preservation analysis in the other datasets. Through the EWAS meta-analysis we
identified two differentially methylated loci shared across the FTLD subgroups and subtypes
after a conservative Bonferroni correction for multiple testing. These methylation sites were
annotated to OTUD4 (5'UTR-shore) and NFATC1 (gene body-island). We also identified co-
methylation modules associated with the FTLD status, FTLD subtypes, and pathological
features (e.g., brain atrophy and severity of neuronal loss). Functional and cellular
enrichment analyses have shown an overrepresentation of gene ontology terms related to
regulation of gene expression and the ubiquitin system as well as specific cell types,
including pyramidal neurons and endothelial cells, across FTLD subgroups and subtypes. In
all three independent co-methylation networks, OTUD4-containing modules were enriched
for top EWAS meta-analysis loci, and were strongly associated with the disease status,
further supporting their role in FTLD. Our findings implicate DNA methylation in the
dysregulation of important processes in FTLD, including the ubiquitin system, RNA/stress

granule formation and glutamatergic synaptic signalling.

METHODS
Demographic and clinical characteristics of post-mortem brain donors

For FTLD cohort 1 (FTLD1, N=23), all post-mortem tissues originated from brains donated to
the Queen Square Brain Bank archives, where tissues are stored under a licence from the
Human Tissue authority (No. 12198). Both the brain donation programme and protocols
have received ethical approval for donation and research by the NRES Committee London —
Central. All cases were characterized by age, gender, disease history (including disease onset

and duration) as well as neuropathological findings. For FTLD cohort 2 (FTLD2, N=48), all
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post-mortem tissues were obtained under a Material Transfer Agreement from the

Netherlands Brain Bank, and MRC Kings College London, as described by Menden et al. [53].

For FTLD cohort 3 (FTLD3, N=163, after quality control), data made available by Weber et al.

[83] was retrieved from GEO (accession code GSE75704). Figure 1 shows an outline of the

study design and analysis framework. More details on each cohort are presented in Table 1.

Table 1: Clinical and pathological characteristics of the three FTLD cohorts and selected models for cohort-

specific EWAS.
Cohort Pathological FTLD Samples included after quality control + | Regression models used
subtypes present age/sex distribution for cohort-specific EWAS
FTLD1 FTLD-TDP type A 15 FTLD donors: mean agezSD = ~0 +disease + age + sex +
(C9orf72 mutation 70.0745.59 years, sex = 7M/8F SOX10" proportions +
carriers), and FTLD-TDP - 7FTLD-TDP C9orf72: mean age Double proportions + array
type C (sporadic) +SD =66.86+4.85, sex = 3M/4F (0 surrogate variables
detected)
- 8 FTLD-TDP sporadic: mean age
+SD =72.88+4.79, sex = 4AM/4F
8 control donors: mean age+SD =
75.75+5.63 years, sex = 3M/5F
FTLD2[53] | FTLD-TDP types A (GRN | 34 FTLD donors: mean age+SD = ~0 +disease + age + sex +
mutation carriers)and B | 63.18+7.92 years, sex = 14M/20F SOX10" proportions +
(C9orf72 mutation - 14 FTLD-TDP C9orf72: mean Double proportions + array
carriers), and FTLD-tau agetSD =64.5718.41, sex = + slide
(FTDP-17 - MAPT 5M/9F (0 surrogate variables
mutation carriers) detected)
- 7 FTLD-TDP GRN: age+SD
=65.57+7.63, sex = 2M/5F
- 13 FTLD-tau MAPT: mean
agexSD =60.9217.60, sex =
7M/6F
14 control donors: mean age+SD
=78.43111.76 years, sex =5M/9F
FTLD3[83] | FTLD-tau (sporadic PSP) | 93 FTLD donors: mean age+SD = ~0 + disease + age + sex +
71.16%5.32, sex = 54M/39F SOX10" proportions +
Double proportions + array
70 control donors: mean age+SD = + slide + surrogate variable
76.17+7.93, sex = 45M/25F (1/1 surrogate variables
detected)

FTLD —Frontotemporal lobar degeneration; FTLD-TDP — FTLD with 43RkDa transactive response DNA-binding
protein (TDP-43) positive inclusions; FTLD-Tau — FTLD with tau positive inclusions; FTDP-17 — frontotemporal
dementia and parkinsonism linked to chromosome 17; PSP — progressive supranuclear palsy; SD —Standard
deviation; F — Females; M — Males; Double” proportions — NeuN/SOX10" proportions.
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Figure 1. Outline of the study design and analysis framework. FTLD — Frontotemporal lobar degeneration; PSP

— Progressive supranuclear palsy. Figure created with BioRender.
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Measures of brain atrophy, neuronal cell loss and pathology related traits

For FTLD1 and a proportion of cohort FTLD2, formalin-fixed paraffin-embedded (FFPE)
sections were also available for more detailed neuropathological evaluations, including
sections stained for standard haematoxylin and eosin (H&E). These FFPE sections were from
the opposite brain hemisphere with respect to the frozen tissue used for the DNA

methylation profiling.

For FTLD1 and FTLD2, microscopic atrophy was assessed on H&E stained slides, by
examining the cortical thickness and neuronal loss in the frontal and temporal cortices. A
four point grading system was used in comparison to a neurological normal control with no
underlying neurodegenerative changes: O - the cortical thickness was within normal limits
and no neuronal loss was observed; 1 - reduction in cortical thickness but the number of
neurons was comparable to normal levels; 2 - reduction in cortical thickness and reduction
in the numbers of neurons; 3 - severe reduction in cortical thickness and no neurons
observed. For each region, the microscopic atrophy was scored semi-quantitatively by an
experienced observer blinded to clinical, histopathological and genetic status, at an
objective magnification ofEIx@20. Macroscopic atrophy was also determined for FTLD1 based
on observations of gyri and sulci from the coronal slices observed during brain cutting
procedures. Levels of atrophy were graded, as previously described [69], into four stages:
none, mild, moderate, and severe. These neuropathological scores of the frontal and
temporal regions were used in the module-trait correlations with the DNA co-methylation

network modules.

DNA methylation profiling and data quality control

For FTLD1, genomic DNA was extracted from carefully dissected flash frozen frontal cortex
grey matter tissue using standard protocols. Bisulfite conversion was performed with the EZ
DNA Methylation Kit (Zymo Research) using 500 ng of genomic DNA. For FTLD2 and FTLD3,
DNA extractions and bisulfite conversions were performed previously as described by
Menden et al. [53] and Weber et al. [83]. Genome-wide methylation profiles were

generated using the Infinium HumanMethylationEPIC BeadChip (lllumina) for FTLD1 and
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FTLD2, or the Infinium HumanMethylation450 BeadChip {lllumina) for FTLD3, as per the

manufacturer’s instructions.

Beta values ranging from O to 1 (approximately 0% to 100% methylation, respectively), were
used to estimate the methylation levels of each CpG site using the ratio of intensities
between methylated and unmethylated alleles. Data analysis was conducted using several R
Bioconductor packages as previously described [11]. All three cohorts were subjected to
harmonized quality control checks and pre-processing. Briefly, raw data (idat files) were
imported and subjected to rigorous pre-processing and thorough quality control checks
using minfi [4], wateRmelon [67], and ChAMP packages [76]. The following criteria were
used to exclude probes that did not pass quality control checks from further analysis: 1)
poor quality, 2) cross reactive, 3) included common genetic variants, and 4) mapped to X or
Y chromosome. In addition, samples were dropped during quality control if: 1) they
presented with a high failure rate (= 2% of probes), 2) the predicted sex did not match the
phenotypic sex, and 3) they clustered inappropriately on multidimensional scaling analysis.
Beta values were normalised with ChAMP using the Beta-Mixture Quantile (BMIQ)
normalisation method. M-values, computed as the logit transformation of beta values, were
used for all statistical analysis, as recommended by Du et al. [22], owing to their reduced
heteroscedasticity (as opposed to beta-values) and improved statistical validity for

differential methylation analysis.

As significant batch effects were detected during quality control checks, and different FTLD
subgroups/subtypes were studied in FTLD1-3, the three cohorts were analysed separately
first and then meta-analysed. Similarly, co-methylation network analyses were conducted
on each cohort separately, and module preservations were then cross-checked with data

from the other cohorts (as described in more detail below).

Cell type deconvolution based on DNA methylation data

As DNA methylation patterns are often cell-type specific, changes in different brain cell-type
proportions constitute an important confounding factor for DNA methylation studies

performed on ‘bulk’ brain tissue. We used a novel cell-type deconvolution reference panel
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recently described by Shireby et al. [72] which brings more granularity and expands previous
methods that account only for neuronal (NeuN+) versus all other cell types (NeuN-). This
new method uses novel DNA methylation data obtained from fluorescence activated sorted
nuclei from cortical brain tissue to estimate the relative proportions of neurons (NeuN+),
oligodendrocytes (SOX10+) and other glial brain cell types (Double- [NeuN-/SOX10-]). Cell-
type proportions in bulk brain tissue were thus estimated using the CETYGO (CEll TYpe
deconvolution GOodness) package (https://github.com/ds420/CETYGO), and the sorted cell-
type reference datasets as described by Shireby et al. [72]. Pairwise comparisons between
FTLD cases and controls were conducted using Wilcoxon rank sum test with Benjamini-

Hochberg correction for multiple testing, and adjusted p<0.05 was considered significant.

Differential methylation analysis and EWAS meta-analysis

We applied linear regression models (Table 1) using the M-values as the input to identify
associations between DNA methylation variation at specific CpG sites and FTLD using the
limma package [64]. For FTLD1, we have accounted for possible confounding factors, such as
age and sex as well as factors detected in principal components 1 and 2 as seen in Singular
Value Decomposition (SVD) plots (ChAMP package), which included cell proportions
(SOX10+ and Double-) and sample position in the array. Using this regression model, no
surrogate variables were detected with the num.sv function of the SVA package [42],
meaning there were no remaining unknown, unmodelled, or latent sources of noise [64].
The same process was applied to FTLD2 and FTLD3. The model for FTLD2 was further
adjusted for slide, whereas for FTLD3, the model was further adjusted for slide and one
surrogate variable (Table 1). False discovery rate (FDR) adjusted p-values <0.05 were

considered genome-wide significant.

We used the estimated coefficients and SEs obtained from the regression models, described
above for the three FTLD cohorts, to undertake an inverse variance meta-analysis using the
metagen function from the meta R package [8]. Only methylation probes present in all
datasets (N=363,781) were considered for this analysis. When reporting differentially
methylated sites, a conservative Bonferroni significance was defined as pE<@1.374@xE10~

(p <0.05/363,781) to account for multiple testing. We report random-effects meta-analysis

9
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results as the three cohorts included different FTLD subgroups/subtypes according to the
neuropathological classification possibly leading to high heterogeneity in the meta-analysis.
We also used a less stringent FDR adjusted p < 0.10 to report top meta-analysis loci, all of

which were then investigated in the co-methylation networks.

Co-methylation network analysis

To identify clusters of highly correlated CpGs (co-methylation modules) in an unsupervised
manner, i.e., agnostic of gene ontology, we used a systems biology approach based on
weighted gene correlation network analysis (WGCNA) [38]. For this analysis, we focused on
CpGs present in all three FTLD datasets, non-intergenic CpGs (i.e. CpGs annotated to genes),
and selected the top 20% with the highest variance across individuals in each cohort
regardless of their disease status (i.e., most variable 56,001 CpG sites per cohort). After
outlier exclusion, a total of 23, 42 and 157 samples remained in the FTLD1, FTLD2 and FTLD3
cohorts, respectively. For each network, we used as input the M-values adjusted for the
covariates included in the models described above (Table 1) and constructed signed
networks. Modules were calculated using the WGCNA blockwiseModules function, with a
minimum module size of 200 and a soft-thresholding power of 16, 10 and 12 for the FTLD1,
FTLD2 and FTLD3 networks, respectively. Module membership (MM) was then reassigned
for each network using the applyKMeans function of the CoExpNets package [13]. Highly
connected CpGs within a module (hub CpGs) present with high MM values to the respective
module. In the results section, we refer to hub CpGs as those with the highest MM within a

given module.

By using a principal component analysis on the CpG methylation values within each module,
the CpGs inside each module were represented by a weighted average, the module
eigengene (ME). The MEs were then correlated with the FTLD status, FTLD subtypes, and
other sample traits, including disease onset and duration, measures of macroscopic atrophy

and neuronal loss scores, and other pathology related traits, as available for each cohort.

To gain insights into the biology underlying the FTLD-related modules, we carried out

functional enrichment for CpGs mapping to genes using the default parameters of

10
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clusterProfiler [85]. We also carried out cell-type enrichment analysis on the FTLD-related

modules using the package EWCE [73] and associated single-cell transcriptomic data [88].

DNA methylation cross-network module preservation analysis

As a method for differential network analysis, i.e., to identify which co-methylation modules
in each of the three generated FTLD networks were preserved (i.e., shared) or perturbed
(i.e., unique) in the other two datasets, we employed module preservation analysis, as
described by Langfelder et al. [39]. For each network (taken as the “reference dataset”),
module preservation in the other two datasets (the “test data”) was calculated using the
modulePreservation function implemented in WGCNA. In all instances, the “test data”
contained methylation values (adjusted M-values) for the 56,001 CpG sites used to
construct the “reference dataset” network. A total of 200 permutations for each
preservation analysis was used. As a measurement of module preservation, we used the Z-
summary statistic {a composite measure to summarise multiple preservation statistics). A Z-
summary greater than 10 indicates a strong preservation of this module in the “test data”, a
Z-summary of between 2 and 10 indicates moderate preservation, and a Z-summary less

than 2 indicates no preservation.

Comparisons of DNA methylation hits with FTLD frontal/temporal cortex gene expression

data

To examine the gene expression patterns of the EWAS meta-analysis gene hits, we used
previously published transcriptomics data from bulk frontal cortex tissue of FTLD-TDP cases
and controls [30] as well as bulk temporal cortex tissue of FTLD-tau cases (PSP) and controls
[82]. To further infer the expression patterns of selected DNA methylation hit genes in
specific brain cell types, we also correlated gene expression levels (adjusted for age, sex,
and RNA integrity number) with cellular proportions using data from Hasan et al. [30], with

cellular proportions estimated using the method described by Mathys et al. [50]

11
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Comparisons of DNA methylation hits with FTLD-TDP frontal cortex proteomics data

To examine the gene expression patterns of the EWAS meta-analysis gene hits at the
protein level, we used proteomics data from FTLD-TDP and controls. Briefly, frontal cortex
homogenate of frozen post-mortem human brain tissue was prepared from control (N=6),
FTLD-TDP type A with C9orf72 repeat expansion (N=6), and FTLD-TDP type C (N=6) cases.
Proteins in both the soluble supernatant and the insoluble pellet fraction were analysed,
and samples were pooled per disease group (three cases per pooled sample). Proteins were
quantitated using 2D-LCMS and UDMSe label-free proteomics and SYNAPT G2- Si High
Definition mass spectrometer operating in ion mobility mode. Data was processed using
Progenesis software, as previously described [78]. A total of 6114 proteins were detected in
the supernatant, and 5108 in the pellet, with an overlap in some proteins that were found
both in the supernatant and pellet. Fold-changes between FTLD-TDP subtypes compared to
controls were calculated. Of the Bonferroni significant EWAS meta-analysis hits, only the

OTUD4 protein was detected (both in the supernatant and in the pellet).

Comparisons of DNA methylation hits with additional datasets

We further investigated the normal expression patterns of the meta-analysis gene hits both
in the human and mouse brains using single nuclei RNAseq data from the Allen Brain Map
(https://celltypes.brain-map.org/)[7], and data from the Allen Mouse Brain Atlas
(http://mouse.brain-map.org)[43]. Given the OTUD4-related findings, we investigated the
list of cortical tissue OTUDA4 protein interactors made available by Das et al. [20]. The RNA

granule database (http://rnagranuledb.lunenfeld.ca/) collates curated literature evidence

that support gene or protein association with the stress granules (SGs) and P-bodies (PBs).
We used a list of tier 1 genes from the RNA granule database version 2.0 for comparisons
with the lists of genes composing the three OTUD4 FTLD-associated co-methylation

modules.

12
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OTUD4 immunohistochemical staining

To investigate tissue expression patterns of OTUD4 protein across the human cortex, FFPE
frontal cortex tissue from 7 FTLD cases (4 FTLD-TDP type A and 3 FTLD-TDP type C) and 3
controls (overlapping with FTLD1) were utilized. Briefly, eight-micrometre-thick sections cut
from the FFPE blocks were immunostained using a standard avidin-biotin-peroxidase
complex method with di-aminobenzidine as the chromogen [40]. The rabbit anti-OTUD4
antibody (Atlas Antibodies HPA036623, 1:200) was used, along with heat antigen retrieval
pre-treatment prior to application of the primary antibody. The samples were mounted and

examined using a light microscope.

RESULTS

Cell-type deconvolution based on DNA methylation data highlights important cellular

composition differences in FTLD

To estimate brain cell-type proportions in our bulk frontal cortex DNA methylation datasets,
we used a refined cell-type deconvolution algorithm based on reference DNA methylation
profiles from purified nuclei from neurons (NeuN+), oligodendrocytes (SOX10+) and other
brain cell types (NeuN-/SOX10-)[72]. This new model controls better for cellular
heterogeneity in bulk cortex tissue compared to previous models, which account only for
neuronal (NeuN+) versus all glial cells (NeuN-). Within each sample group, we observed
extensive variability in cell-type proportions across cell types (Fig. 2). When comparing
disease cases with controls, no overall differences were overall detected in the proportions
of oligodendrocytes (SOX10+) and other glial cells (NeuN-/SOX10-) after accounting for
multiple testing corrections. However, with the exception of the PSP cases (FTLD3), all FTLD
subgroups/subtypes showed a significant decrease in neuronal proportions compared to
controls (Wilcoxon rank sum test, adjusted-p<0.05), as expected in neurodegenerative
diseases. These findings highlight the importance of adjusting for cell-type proportions in
bulk tissue EWAS studies. Accounting for this allowed us to identify DNA methylation
changes that are relevant to the disease rather than merely reflecting changes in cell-type

composition, which could be related partly to the disease pathogenesis itself and partly due
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to technical issues (e.g., a result of capturing different proportions of grey and white matter

during tissue dissection).
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Figure 2. Brain cell-type proportion estimates derived from bulk DNA methylation data in frontal lobe of
frontotemporal lobar degeneration (FTLD) and controls. *indicates significant differences for each cell-type
between FTLD subtypes and the corresponding controls; pairwise comparisons were performed using the
Wilcoxon rank sum test, and adjusted p-values <0.05 we considered significant. CTRL — controls; TDPA_GRN —
FTLD with TDP-43 positive inclusions (FTLD-TDP) subtype A, carriers of GRN mutations; TDPA_C9 — FTLD-TDP
subtype A, carriers of C9orf72 repeat expansion; TDPB_C9 — FTLD-TDP subtype B, carriers of C90rf72 repeat
expansion; TDPC — FTLD-TDP subtype C, sporadic; MAPT — FTLD with tau positive inclusions (FTLD-Tau), carriers
of MAPT mutations; PSP — FTLD-Tau, sporadic progressive supranuclear palsy (PSP); Neurons — NeuN+;

Oligodendrocytes — SOX10+; other glial cells — NeuN-/SOX10-.

Frontal cortex case-control EWAS meta-analysis identifies shared differentially methylated

CpG sites across FTLD pathological subgroups and subtypes

First, we investigated DNA methylation variation in specific loci across the genome as
covered by the 450K/EPIC arrays, using linear regressions models to perform cohort-specific
case-control EWAS. For FTLD1 and FTLD2, which comprise heterogeneous cases with
sporadic and genetic forms of FTLD-TDP and FTLD-tau pathology, no genome-wide
significant CpGs were identified. For FTLD3, which only includes cases with FTLD-tau
pathology (sporadic PSP), 234 differentially methylated positions were identified
(Supplementary Table S1, Online Resource). The top differentially methylated CpG in the
FTLD3 cohort was cg09202319, which was hypomethylated in FTLD-tau (PSP) compared to
controls (adjusted-p=6.54 x 10°%). This CpG mapped to a CpG island in the promoter region

of PFDN6 (Prefoldin Subunit 6), which is involved in promoting the assembly of cytoskeletal
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proteins [44]. Supplementary figure 1 (Online Resource) shows the quantile-quantile (Q-Q)

plots for each of the single cohort-specific EWAS.

Second, we meta-analysed the single cohort EWAS results, enabling an analysis of FTLD-
associated differential cortical DNA methylation using tissue from 234 individuals. After a
conservative Bonferroni adjustment for multiple testing (p<1.37 x 10~ ), the meta-analysis
identified two differentially methylated CpGs in FTLD compared to controls, regardless of
the pathological subgroup (FTLD-TDP or FTLD-tau), and corresponding subtypes (Fig. 3;
Supplementary Fig. 2, Supplementary Table S2, Online Resource). The top CpG was
annotated to a shore in the 5’UTR of OTUD4 and was hypomethylated in FTLD compared to
controls, whereas the other was annotated to a CpG island in the body of NFATC1 and
hypermethylated in FTLD compared to controls (Fig. 3). The direction of the effect was
consistent across the three FTLD cohorts for these two hits, as well as for nine additional top
meta-analysis loci obtained when considering a less stringent FDR p < 0.10 multiple testing
correction (Fig. 3; Supplementary Table S2, Online Resource). Of note, none of these meta-
analysis top differentially methylated sites showed epigenome-wide significant changes in
FTLD3 alone (Supplementary Table S1, Online Resource) or in previous Alzheimer’s disease
EWAS meta-analyses (Supplementary Table S2, Online Resource).
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Figure 3. Differentially methylated positions identified in a case-control FTLD cross-cohort meta-analysis. a)
Manhattan plot showing associations between single DNA methylation sites (CpGs) and FTLD from the meta-
analysis random-effect results (total N = 234). CpGs are plotted on the x-axis according to their positions on

each chromosome against association with FTLD on the y-axis (- log 10 p-value). The top red line indicates the
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conservative Bonferroni significance threshold (a) of p = 1.37 x 107. Green points indicate CpGs passing the
Bonferroni threshold. The blue line indicates a less stringent threshold of p = 2.70 x 10™° (FDR p = 0.10). b)
Forest plot depicting the CpG in OTUD4, which is significantly hypomethylated in FTLD compared to controls in
the cross-cohort meta-analysis (FTLD1 N=23, FTLD2 N=48, and FTLD3 N=163). c) Forest plot depicting the CpG
in NFATC1, which is significantly hypermethylated in FTLD compared to controls in the cross-cohort meta-

analysis (FTLD1 N=23, FTLD2 N=48, and FTLD3 N=163).

Frontal cortex FTLD EWAS meta-analysis hits are consistent with downstream changes in

mRNA and protein expression patterns

To investigate the downstream consequences of DNA methylation variation on gene
expression in FTLD, we investigated available FTLD-TDP and FTLD-tau transcriptomic data
[30, 82], as well as FTLD-TDP proteomics data. From the EWAS meta-analysis hits passing
Bonferroni correction, consistent results were observed in both FTLD-TDP (frontal cortex)
and FTLD-tau (temporal cortex) for OTUD4, which showed higher mRNA expression levels in
FTLD cases compared to controls (Fig. 4). For NFATC1, increased expression was observed in
FTLD-TDP when compared to controls (Fig. 4). However, this increase in expression was not
observed in the FTLD-Tau, as seen in data from Wang et al. [82]. Of the nine additional top
meta-analysis loci, ZNF804A showed lower mRNA expression levels and IMPA2 showed
higher mRNA expression levels in FTLD cases compared to controls (p < 0.05, Supplementary
Fig. 3, Online Resource). DNA methylation levels in upstream regulatory regions are often
inversely associated with gene expression levels [59, 79]. Therefore, lower methylation
levels in CpGs annotated to 5’'UTR in OTUD4 and to TSS200 in IMPA2, and higher expression
of these genes in FTLD compared to controls, meets such expectations. On the other hand,
DNA methylation levels in gene bodies are usually positively associated with gene
expression. Again, results align with this in the case of NFATC1 (which showed higher
methylation and higher expression in FTLD-TDP compared to controls) and ZNF804A (which

showed lower methylation and lower expression in FTLD).
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Figure 4. Boxplots showing gene expression levels for the two EWAS meta-analysis hits in FTLD-TDP and
controls. RNA sequencing data from Hasan et al. [30] adjusted for age, sex, and RNA integrity number was
used. Log2-transformed gene expression data is shown in the y-axis, and non-paired t-test p-value for the

comparison between FTLD-TDP (N= 80) and controls (N= 48) is denoted at the top.

Only one of the two Bonferroni adjusted meta-analysis gene hits were detected in the
frontal cortex proteomics data. OTUD4 protein was upregulated in FTLD-TDP in types A and
C compared to controls (Fig. 5), with the highest fold-change being observed in type C for
the supernatant soluble fraction (fold-change = 14.72). These findings are in line with our
observations with the RNAseq data and support consistent dysregulation of the OTUD4
EWAS meta-analysis hit in FTLD. Therefore, we further investigated the patterns of OTUD4
protein expression in the frontal cortex and performed anti-OTUD4 immunohistochemical
analysis (Fig. 6) using FTLD-TDP types A and C cases as well as controls that overlap with
those used in the DNA methylation analysis (subset of the FTLD1 cohort). Minimal neuronal
cytoplasmic staining was observed in the normal controls. However, in the FTLD-TDP cases,
an increase in cytoplasmic staining intensity was observed in both the grey and white

matter. In the grey matter, neuronal cytoplasmic staining was seen together with glial
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nuclear staining. In the white matter, there was an increase in glial staining. These results

concur with the results from our proteomics and transcriptomics data.

OTUDA4(pellet) [ OTUDA4(supernatant) |

Fold Change
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Figure 5. Bar plots of protein quantifications for the EWAS meta-analysis hit OTUD4 in FTLD-TDP subtypes
and controls. Out of the two EWAS meta-analysis hits, only the OTUD4 protein were detected in the
proteomics data and are presented here. OTUD4 was detected in both fractions (pellet and supernatant). Two
pooled samples (2 x 3 samples) per group were analysed. The average values were obtained for each group,
and fold-changes were calculated comparing FTLD-TDP subtypes with controls. Bar plots show mean fold-

change.

Grey matter Grey matter White matter White matter

Normal Control

18


https://doi.org/10.1101/2022.10.21.513088
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513088; this version posted March 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 6. Inmunoreactivity of OTUD4 in FTLD-TDP (N=4 type A and N=3 type C) and controls (N=3).
Immunohistochemical analysis was carried out in FFPE frontal cortex tissue from FTLD-TDP cases and controls
overlapping with FTLD1, using a rabbit anti-OTUD4 antibody (Atlas Antibodies HPA036623, 1:200). Scale-bars

represent 100 pm.

DNA co-methylation modules are associated with the FTLD status, FTLD pathological

subtypes, and disease-related traits

To provide insight into higher order relationships across DNA methylation sites (CpGs), we
used an agnostic systems biology approach based on WGCNA and constructed co-
methylation networks. Considering the top 20% most variable CpGs in each of the 3 cohorts
(N = 56,001 CpGs), we identified clusters of highly correlated CpGs, henceforth called co-

methylation modules, each assigned a colour name.

For the FTLD1, FTLD2 and FTLD3 networks, 9/33 (p&<20.002, 0.05/33 modules), 16/49
(pEE0.001, 0.05/49 modules) and 10/14 (pEE0.004, 0.05/14 modules) co-methylation
modules were found to be associated with the disease status (i.e., FTLD or control),
respectively (Fig. 7a-c). Our co-methylation network analysis also revealed modules
associated with specific pathological subgroup/subtypes in FTLD1 and FTLD2 networks
(Supplementary Fig. 4, Online Resource). In a few cases, opposite effect directions were
shown in one subgroup/subtype compared to another (e.g., midnightblue and salmon
modules in FTLD1 TDPA vs TDPC, Supplementary Fig. 4a; and turquoise module in FTLD2
TDP vs Tau, Supplementary Fig. 4b; Online Resource). More detailed identification of
subtype-specific DNA methylation signatures warrants further investigation in future

studies.

We also tested for correlations with additional disease-related traits as available for FTLD1,
FTLD2, and FTLD3. We found associations between FTLD-associated co-methylation
modules and disease duration as well as with macroscopic and/or microscopic measures of
atrophy/neurodegeneration in the frontal and temporal lobes (Supplementary Fig. 4a-b,
Online Resource). Two out of the ten modules associated with the disease status in FTLD3
were also associated with tau pathological burden (Braak stage, Supplementary Fig. 4c,

Online Resource).
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Figure 7. Module-trait correlations for the FTLD co-methylation networks. a) FTLD1; b) FTLD3; c) FTLD2. The
rows represent the co-methylation module eigengenes (ME) and their colours, and the column represents the
correlation of the methylation levels of CpGs in each module with the disease status. P-values are presented
within each cell and the colour scale at the right indicates the strength of the correlation (darker cells depict

stronger correlations, with blue representing negative and red representing positive correlations).

To assess replication of FTLD-associated co-methylation modules across datasets, we then
ran preservation analysis for each dataset against each of the networks. We found that most
of the FTLD-associated co-methylation modules were indeed moderately to highly
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preserved (Z-summary > 2) in at least one of the other two datasets (Supplementary Fig. 5,
Online Resource), further supporting their relevance to FTLD regardless of the pathological
subgroup/subtype. Exceptions to this were observed only for the FTLD1 brown,
darkturquoise and grey60, and the FTLD2 darkorange2 modules, which seem to be

perturbed in the other two datasets.

Genes that compose FTLD-associated co-methylation modules are involved in
transcription regulation, phosphorylation, the ubiquitin system and actin cytoskeleton

dynamics

We then performed functional enrichment analysis to investigate which gene ontologies
were shared across the three FTLD co-methylation networks. We found significant
enrichment of terms related with transcription regulation (e.g., “DNA-binding transcription
factor binding”), phosphorylation (“protein serine/threonine/tyrosine kinase activity”), the
ubiquitin system (e.g., “ubiquitin protein ligase activity”), and actin cytoskeleton dynamics
(e.g., “actin filament binding”). This was observed across the three co-methylation networks
and across different modules of each network (Fig. 8). Dysregulation of all these processes
had been previously linked to FTLD [68], and our findings now support a role for DNA

methylation as a mechanism involved in such dysregulation.
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Figure 8. Functional enrichment for the FTLD-associated co-methylation modules across the three networks.
Y-axis shows top enriched gene ontology terms, while x-axis depicts FTLD-associated modules in FTLD1 (green),
FTLD2 (yellow) and FTLD3 (blue) co-methylation networks. Modules not showing enrichment for shared terms

across the networks are not shown.

FTLD-associated modules are enriched for genes relevant for pyramidal neurons and

endothelial cells across all three co-methylation networks

We also aimed to elucidate whether the genes that compose FTLD-associated co-
methylation modules are relevant for specific brain cell-types. Across the three networks
(FTLD1, FTLD2 and FTLD3), we found significant enrichments for pyramidal neurons and
endothelial/mural cells (Fig. 9), suggesting these cell types are consistently affected by the
DNA methylation changes in FTLD regardless of the pathological subgroup/subtype.
Previous studies with pathological assessment, as well as transcriptomic analysis in FTLD
brain tissue, support changes in these cell types in FTLD [24-26, 30, 63]. Additionally, in the
FTLD1 and the FTLD3 networks, we found signatures with an overrepresentation of
oligodendrocyte markers. Of note, FTLD3 is composed of PSP cases, which, unlike the other
FTLD groups studied here, is known to present with pathological accumulation of tau in the

oligodendrocytes [84]. The FTLD3 network was also enriched for microglia and interneurons.
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Figure 9. Cell-type enrichment for all FTLD-associated co-methylation modules across the three co-

methylation networks. Green denotes FTLD-associated modules in the FTLD1 network; Yellow denotes FTLD-
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associated modules in the FTLD2 network; Blue denotes FTLD-associated modules in the FTLD3 network. Dark
filled circles highlight the cell types found to be significantly enriched with adjusted p < 0.05 after Bonferroni
correction over all cell types within each module; the size of the circles represents the number of standard
deviations (SD) from the mean. Cell-type enrichment analysis on the FTLD-related modules was performed

using the package EWCE [73] and associated single-cell transcriptomic data [88].

OTUD4 and other top meta-analysis loci are co-methylated in all three networks

We then examined whether the 11 EWAS meta-analysis top loci (FDR p < 0.10) were present
(Supplementary Table S2, Online Resource) in the co-methylation networks and whether
any co-methylation modules were enriched for such loci (Supplementary Table S3, Online
Resource). Notably, the top meta-analysis hit in OTUD4 was present in all three networks
(FTLD1 — brown, FTLD2 — blue, and FTLD3 — blue modules), and was always co-methylated
with the CpG annotated to CEBPZ (Supplementary Table S3, Online Resource). These
modules showed a significant enrichment for the top EWAS meta-analysis loci [Fisher’s
exact test, FTLD1 — brown odds ratio (OR) = 14.9, p = 0.003; FTLD2 — blue OR =10.6, p =
0.007; FTLD3 — blue OR = 8.0, p = 0.017). We therefore decided to further investigate
similarities across these three modules (FTLD1 — brown, FTLD2 — blue, and FTLD3 — blue),

which will henceforth be referred to as “OTUD4-modules”.

It is of note that only eight CpGs were shared across the three “OTUD4-modules”, two of
which - ¢g21028777 in OTUD4 and cg07695590 in CEBPZ - correspond to top EWAS meta-
analysis loci {Supplementary Fig. 6, Online Resource), highlighting their importance across
the FTLD subgroups/subtypes. All three “OTUD4-modules” were inversely related with the
disease status, i.e., lower levels of methylation in CpGs composing these modules are
associated with increased risk of FTLD (Fig. 7; FTLD1 — brown r=-0.89, p = 2x10°®; FTLD2 —
blue r=-0.75, p = 8x10®; and FTLD3 — blue r=-0.89, p= 3x10'54). FTLD2 blue was also inversely
associated with the severity of neuronal loss in the frontal cortex (r=-0.48, p=0.001,
Supplementary Fig. 4b, Online Resource). Although not reaching statistical significance after
accounting for multiple testing corrections, a similar trend was observed with the severity of
neuronal loss in the temporal cortex for FTLD2 blue (r=-0.46, Supplementary Fig. 4b, Online
Resource) as well as for FTLD1 brown in both frontal and temporal cortices (r=-0.29 n.s., and

r=-0.63 p = 0.001, respectively, Supplementary Fig. 4a, Online Resource). These findings
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further support the relevance of these signatures enriched for top EWAS meta-analysis loci,

including CpGs in OTUD4 and CEBPZ, in disease progression/severity.

Previous studies have shown that OTUD4 [20], tau [5], TDP-43 and a growing number of
additional FTLD-related RNA-binding proteins [10] play an important role in the biology of
stress granules. We therefore investigated whether stress granules proteins and OTUD4
protein interactors were present in the “OTUD4-modules”. Indeed, many genes encoding
for such proteins were represented in these modules, including several genes associated
with genetic FTLD risk such as MAPT (encoding for tau), present across the three “OTUD4-
modules”, and FUS, present in FTLD3-blue (Supplementary Tables S4 and S5, Online
Resource). The same was true for many hnRNPs, such as HNRNPA1, HNRNPC, and
HNRNPUL1, which are present in the “OTUD4-modules” and are OTUDA4 protein interactors
(Supplementary Tables S4 and S5, Online Resource). These hnRNPs are also known targets
of the transcription factor CEBPZ (as described by Ma'ayan et al. [65]), which is also a top

EWAS meta-analysis loci and is co-methylated with OTUD4 across the networks.

We also identified the hub genes in the three “OTUD4-modules” {i.e., the most
interconnected genes within the module). These were ADCY1, TLE6 and GDAP1 for FTLD1-
brown, FTLD2-blue and FTLD3-blue, respectively (Supplementary Table S4, Online
Resource). Of note and highly relevant for FTLD, ADCY1 has been found to be implicated in
learning, memory, and behaviour [71]. The importance of TLE6 to brain related disease is
supported through its association with bipolar disorder [21], and mutations in GDAP1 cause

inherited peripheral neuropathies [61].

“OTUD4-modules” implicate glutamatergic synapse and pyramidal neurons

More detailed gene ontology enrichment of “OTUD4-modules” once again highlighted
transcriptional regulation and the ubiquitin system, as well as nuclear speck, synapse
(particularly glutamatergic synapse), and axon development (Supplementary Fig. 7, Online
Resource). All three meta-hit modules showed an enrichment for pyramidal neurons and
the FTLD3 blue module additionally showed an enrichment for oligodendrocytes (Fig. 9).

Further supporting the importance of OTUD4 and CEBPZ in glutamatergic cells, in the
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normal brain (human and mouse) these genes show the highest expression in glutamatergic
neurons and/or cortical and hippocampal pyramidal and granule cell layers (Supplementary

Fig. 8-9, Online Resource).

Using gene expression data and derived cellular proportions from Hasan et al. [30], we
observed a positive relationship between both OTUD4 and CEBPZ expression and
proportions of excitatory neurons in controls and FTLD-TDP type A (Supplementary Fig. 10,
Online Resource). This finding further supports the relevance of OTUD4 and CEBPZ in
excitatory glutamatergic neurons. However, that relationship is perturbed in FTLD-TDP type
C (Supplementary Fig. 10, Online Resource), which could suggest higher expression of these

genes by fewer surviving excitatory neurons and/or higher expression by other cell type(s).

DISCUSSION

We have conducted,to our knowledge, the first FTLD EWAS meta-analysis utilizing three
independent cohorts and incorporating results from 234 brain donors. We identified two
differentially methylated CpGs shared across a range of FTLD subgroups (FTLD-TDP and
FTLD-tau) and corresponding subtypes, which map to OTUD4 and NFATC1. Systems biology
approaches such as co-methylation network analysis are powerful methodologies for
identifying pathways and networks which may be more relevant to disease pathophysiology
than individual genes. We therefore performed a co-methylation network analysis in each of
the independent cohorts and identified modules associated with the FTLD disease status
and FTLD-related traits. Interestingly, CEBPZ always clustered with OTUD4, and the “OTUD4-
modules” were enriched for meta-analysis top loci in each of the three independent
cohorts. Using functional and cell-type enrichment analysis of modules of interest, we
identified several biological processes with relevance to FTLD pathology, including the
ubiquitin system, RNA granule formation and glutamatergic synaptic signalling, which we
discuss below. It is of note that none of the loci identified in our meta-analysis match with
neuropathology-associated loci identified in large AD studies [72, 74, 89], therefore
supporting the hypothesis that molecular changes in these loci reflect shared disease
biology aspects of FTLD subgroups/subtypes rather than a mere downstream consequence

of neurodegeneration.
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The OTUD4 gene encodes the protein OTUD domain-containing protein 4, a de-
ubiquitinating enzyme [54]. Mutations in this gene are associated with Gordon Holmes
syndrome, which is characterised by ataxia and hypogonadotropism [48]. Interestingly, a
combination of mutations in OTUD4 along with mutations in RNF216, which codes for a
ubiquitin ligase, was also found to result in dementia [48]. The protein is known to have
roles in modulating inflammatory signalling [91] and in the alkylation damage response [90],
and has more recently been demonstrated to interact with RNA binding proteins (RBPs),
including TDP-43 (which aggregates in FTLD-TDP), which are important in the functioning of
neuronal RNA granules and stress granules [18]. RNA granules are structures which facilitate
the translocation and storage of mRNAs [37], whilst stress granules are formed when
cellular stressors such as oxidative stress are present, possibly as a mechanism to reversibly
block translation initiation until the stress has been removed [16, 35]. Notably, similarly to
TDP-43 [6], OTUD4 was shown to be important in the correct formation of stress granules
[20]. Indeed, there is much evidence as to the importance of the ubiquitin system in the
functioning of stress granules [36, 55, 77]. The hypomethylation of the 5’UTR region of
OTUD4 (cg21028777), which was observed as the top hit from the FTLD EWAS meta-
analysis, and the inclusion of this CpG in three modules where decreased methylation was
associated with increased risk of FTLD indicates that decreased methylation of this gene
might be involved in the pathogenesis of FTLD. Further supporting these findings, the

OTUD4 gene and protein expression levels are dysregulated in FTLD [30, 82].

Also supporting the importance of the role of ubiquitination and granule formation are the
results from the functional enrichment analysis of the three network modules containing
OTUD4, which revealed an overrepresentation of terms relating to the ubiquitin system. All
three meta-hit modules contained terms such as “ubiquitin protein ligase activity”, the
FTLD2-blue module also showed enrichment of the GO term “ribonucleoprotein granule”,
indicating that other genes in this module might also have processes relevant to granule
formation, as with the meta-hit OTUD4. Ubiquitin signalling is well described as a process
implicated in neurodegenerative disease pathology, and several genes involved in ubiquitin
and ubiquitin binding processes are known to be mutated/contain risk alleles in multiple

neurodegenerative diseases, including FTD [68].
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Ontology terms enriched in our functional analysis of FTLD-associated modules also include
many relating to regulation of transcription such as “DNA-binding transcription factor
binding” and “transcription coregulator activity”. Another meta-analysis top loci was
annotated to the CEBPZ gene, which encodes the CCAAT Enhancer Binding Protein Zeta, a
transcription factor implicated in cellular response to environmental stimuli through
transcriptional processes that regulate heat shock factors, including HSP70 [47]. HSP70 is a
heat-shock protein involved in several protein folding processes, including the refolding of
aggregated proteins [32, 46, 62]. Furthermore, HSP70 has been shown to have a role in the
prevention of build-up of misfolded proteins in stress granules [49]. Interestingly, a CpG in
PFDN6 was the top-most differentially methylated CpG in the FTLD3 (FTLD-tau) EWAS. This
gene encodes for the subunit 6 of prefoldin, which is a co-chaperone of HSP70, regulates
the correct folding of proteins and is involved in the proper assembly of cytoskeletal
proteins [44]. Prefoldin proteins themselves have also been associated with

neurodegenerative disease pathology [44, 75].

Our functional enrichment analysis of the “OTUD4-modules”, FTLD1-brown, FTLD2-blue and
FTLD3-blue, showed that these modules were enriched for GO terms (for cellular
component) relating to synapses, including “synaptic membrane”, “asymmetric synapse”,
“postsynaptic density”, and “glutamatergic synapse”. Cell-type enrichment analysis revealed
that these three modules were also significantly enriched for markers of
pyramidal/glutamatergic cells. These findings were further substantiated with expression
patterns of OTUD4 and CEBPZ single-nuclei and mouse expression data. Glutamate, which is
the most abundant excitatory neurotransmitter in the human brain [92], is typically
associated with memory, learning and other higher cognitive functions [12], and has also
been implicated in neurodegeneration [58]. The contribution of neurotransmitter deficits,
and specifically, changes in glutamate and glutamate signalling have been described in FTD
[2, 14, 29, 33, 56]. DNA methylation has previously been suggested to be an important
regulator of glutamatergic synaptic scaling (also known as homeostatic synaptic plasticity),
with demethylation found to be associated with increased glutamatergic synapse strength
in cultured neurons [52], we here find evidence supporting disruption of such processes in
FTLD. Homeostatic synaptic plasticity has been linked to neurodegeneration, possibly with

loss of function due to pathogenesis, or through an increase as a mechanism to preserve

27


https://doi.org/10.1101/2022.10.21.513088
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.21.513088; this version posted March 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

function despite neurodegenerative deficits [60]. There is a known link between RNA
granule formation and synapse plasticity; with RNA-binding protein function known to be
particularly important. This has been proposed to be dysregulated in FTLD, whereby
mutations in the genes encoding for TDP-43 and FUS lead to dysregulated granule formation
dynamics and consequent disturbances in mRNA translation and synaptic function [45, 70].
Moreover, the levels of known OTUD4 protein interactor FMRP are regulated by
ubiquitination in response to stimulation by the metabotropic glutamate receptor [31, 57],
and this is involved in the regulation of synaptic plasticity, providing another possible link

between separate findings in our study.

The NFATC1 gene, which was also identified as an FTLD-associated loci in the EWAS meta-
analysis, encodes the nuclear factor of activated T cells 1, and belongs to the NFAT family of
activity-dependent transcription factors. In the nervous system, the NFAT family has been
shown to play a regulatory role in neuronal excitability, axonal growth, synaptic plasticity,
and neuronal survival [80]. Aberrant NFAT-related signalling has been reported in AD, and
NFAT1 seems to be selectively activated early in cognitive decline [1], supporting its possible

involvement in the pathogenesis of neurodegenerative diseases/dementias.

As is the case with any other genome-wide DNA methylation study, there are key
limitations. First, by studying post-mortem tissue, i.e., the end stage of the disease, causality
cannot be elucidated. Second, because FTLD is heterogeneous, comprising several
pathological subgroups and subtypes, and given the relatively small sample size per subtype,
this might have hampered the identification of additional DNA methylation alterations,
especially subtype-specific variation. Notwithstanding, we focused on the shared DNA
methylation variation across FTLD subgroups/subtypes, and we used independent and
complementary analytical approaches (EWAS followed by meta-analysis, and co-
methylation network analysis followed by preservation analysis) and datasets, which
identified concordant results and consistently identified the involvement of OTUD4 and

related genes in FTLD.

In summary, this study identified genome-wide DNA methylation changes in post-mortem
frontal cortex tissue of FTLD subjects, highlighting new FTLD-associated loci, and implicated

DNA methylation as a mechanism involved in the dysregulation of important processes such
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as ubiquitin and glutamatergic signalling in FTLD. Our findings increase the understanding of
the biology of FTLD and role of DNA methylation its pathophysiology, pointing towards new

avenues that could be explored for therapeutic development.
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