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ABSTRACT 

Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the 

neuropathology of a clinically, genetically and pathologically heterogeneous group of 

diseases, including frontotemporal dementia (FTD) and progressive supranuclear palsy 

(PSP). Among the major FTLD pathological subgroups, FTLD with TDP-43 positive inclusions 

(FTLD-TDP) and FTLD with tau positive inclusions (FTLD-tau) are the most common, 

representing about 90% of the cases. Although alterations in DNA methylation have been 

consistently associated with neurodegenerative diseases, including Alzheimer’s disease and 

Parkinson’s disease, little is known for FTLD and its heterogeneous subgroups and subtypes. 

The main goal of this study was to investigate DNA methylation variation in FTLD-TDP and 

FTLD-tau. We used frontal cortex genome-wide DNA methylation profiles from three FTLD 

cohorts (234 individuals), generated using the Illumina 450K or EPIC microarray. We 

performed epigenome-wide association studies (EWAS) for each cohort followed by meta-

analysis to identify shared differential methylated loci across FTLD subgroups/subtypes. 

Additionally, we used weighted gene correlation network analysis to identify co-methylation 

signatures associated with FTLD and other disease-related traits. Wherever possible, we also 

incorporated relevant gene/protein expression data. After accounting for a conservative 

Bonferroni multiple testing correction, the EWAS meta-analysis revealed two differentially 

methylated loci in FTLD, one annotated to OTUD4 (5’UTR-shore) and the other to NFATC1 

(gene body-island). Of these loci, OTUD4 showed consistent upregulation of mRNA and 

protein expression in FTLD. Additionally, in the three independent co-methylation networks, 

OTUD4-containing modules were enriched for EWAS meta-analysis top loci and were 

strongly associated with the FTLD status. These co-methylation modules were enriched for 

genes implicated in the ubiquitin system, RNA/stress granule formation and glutamatergic 

synaptic signalling. Altogether, our findings identified novel FTLD-associated loci, and 

support a role for DNA methylation as a mechanism involved in the dysregulation of 

biological processes relevant to FTLD, highlighting novel potential avenues for therapeutic 

development.  

Keywords: DNA methylation; frontotemporal dementia; progressive supranuclear palsy; 

human brain tissue; EWAS; co-methylation   
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INTRODUCTION 

Frontotemporal lobar degeneration (FTLD) is an umbrella term describing the 

neuropathology of a group of neurodegenerative disorders, which are characterised by the 

selective degeneration of the frontal and temporal lobes of the brain. These disorders are 

clinically, pathologically and genetically heterogeneous. Clinically, patients with FTLD 

frequently present with frontotemporal dementia (FTD), which is the second most common 

form of early onset dementia and is often associated with behavioural and language 

changes. A fraction of patients may present with or develop Parkinsonism as part of their 

disease, including those with progressive supranuclear palsy (PSP), and frontotemporal 

dementia and parkinsonism linked to chromosome 17 (FTDP-17). An overlap with 

amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) is also observed in a 

proportion of patients with FTLD, highlighting a spectrum of clinical phenotypes that relate 

to shared neuropathologic features [17, 41].  

A considerable number of FTLD cases report a positive family history (30-50%), and the 

majority of familial cases can be attributed to  mutations in three genes, namely 

chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), and microtubule-

associated protein tau (MAPT). Apart from those cases in which a genetic mutation has been 

identified, neuropathological assessment is essential to confirm the disease entity 

underlying FTLD. The neuropathological classification of FTLDs, based on the 

presence/absence of specific proteinaceous inclusions, recognizes five major subgroups. 

FTLD with 43NkDa transactive response DNA-binding protein (TDP-43) positive inclusions 

(FTLD-TDP), and with tau positive inclusions (FTLD-tau), account for the vast majority of 

cases, representing around 50% and 40% of FTLD cases, respectively [27, 58]. 

Even though progress has been made in identifying genetic risk factors for diseases under 

the FTLD umbrella [19, 23, 34, 66, 87], the molecular mechanisms driving FTLD pathology 

are not completely understood. Mounting evidence reveals changes in the FTLD brain 

transcriptional landscapes [3, 15, 28, 30, 81]. However, studies investigating non-sequence-

based regulatory mechanisms such as epigenetic modifications in FTLD brain tissue are 

limited [9, 51, 83, 86]. Variable DNA methylation, the most well studied epigenetic 

modification, has consistently been associated with Alzheimer’s disease pathology in 
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epigenome-wide studies (EWAS) and subsequent meta-analyses [72, 74, 89]. In FTLD, brain 

tissue EWAS are scarce and limited to a single PSP study [83]. 

To investigate further the relevance of DNA methylation variation in FTLD, we set out a 

study investigating epigenome-wide DNA methylation variation in frontal lobe tissue from 

three cohorts, spanning different subtypes of FTLD-TDP and FTLD-tau subgroups, followed 

by an EWAS meta-analysis, co-methylation network analysis in each cohort, and subsequent 

module preservation analysis in the other datasets. Through the EWAS meta-analysis we 

identified two differentially methylated loci shared across the FTLD subgroups and subtypes 

after a conservative Bonferroni correction for multiple testing. These methylation sites were 

annotated to OTUD4 (5’UTR-shore) and NFATC1 (gene body-island). We also identified co-

methylation modules associated with the FTLD status, FTLD subtypes, and pathological 

features (e.g., brain atrophy and severity of neuronal loss). Functional and cellular 

enrichment analyses have shown an overrepresentation of gene ontology terms related to 

regulation of gene expression and the ubiquitin system as well as specific cell types, 

including pyramidal neurons and endothelial cells, across FTLD subgroups and subtypes. In 

all three independent co-methylation networks, OTUD4-containing modules were enriched 

for top EWAS meta-analysis loci, and were strongly associated with the disease status, 

further supporting their role in FTLD. Our findings implicate DNA methylation in the 

dysregulation of important processes in FTLD, including the ubiquitin system, RNA/stress 

granule formation and glutamatergic synaptic signalling.  

 

METHODS 

Demographic and clinical characteristics of post-mortem brain donors 

For FTLD cohort 1 (FTLD1, N=23), all post-mortem tissues originated from brains donated to 

the Queen Square Brain Bank archives, where tissues are stored under a licence from the 

Human Tissue authority (No. 12198). Both the brain donation programme and protocols 

have received ethical approval for donation and research by the NRES Committee London – 

Central. All cases were characterized by age, gender, disease history (including disease onset 

and duration) as well as neuropathological findings. For FTLD cohort 2 (FTLD2, N=48), all 
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post-mortem tissues were obtained under a Material Transfer Agreement from the 

Netherlands Brain Bank, and MRC Kings College London, as described by Menden et al. [53]. 

For FTLD cohort 3 (FTLD3, N=163, after quality control), data made available by Weber et al. 

[83] was retrieved from GEO (accession code GSE75704). Figure 1 shows an outline of the 

study design and analysis framework. More details on each cohort are presented in Table 1.  

Table 1: Clinical and pathological characteristics of the three FTLD cohorts and selected models for cohort-

specific EWAS. 

Cohort Pathological FTLD 

subtypes present 

Samples included after quality control + 

age/sex distribution 

Regression models used 

for cohort-specific EWAS 

FTLD1 FTLD-TDP type A 

(C9orf72 mutation 

carriers), and FTLD-TDP 

type C (sporadic) 

15 FTLD donors: mean age±SD = 

70.07±5.59 years, sex = 7M/8F 

- 7 FTLD-TDP C9orf72: mean age 

±SD =66.86±4.85, sex = 3M/4F 

 

- 8 FTLD-TDP sporadic: mean age 

±SD =72.88±4.79, sex = 4M/4F  

 

8 control donors: mean age±SD = 

75.75±5.63 years, sex = 3M/5F 

~ 0 + disease + age + sex + 

SOX10
+

 proportions + 

Double
-

 proportions + array  

(0 surrogate variables 

detected) 

 

FTLD2[53] FTLD-TDP types A (GRN 

mutation carriers) and B 

(C9orf72 mutation 

carriers), and FTLD-tau 

(FTDP-17 - MAPT 

mutation carriers) 

34 FTLD donors: mean age±SD = 

63.18±7.92 years, sex = 14M/20F 

- 14 FTLD-TDP C9orf72: mean  

age±SD = 64.57±8.41, sex = 

5M/9F  

 

- 7 FTLD-TDP GRN: age±SD 

=65.57±7.63, sex = 2M/5F  

 

- 13 FTLD-tau MAPT: mean 

age±SD = 60.92±7.60, sex = 

7M/6F  

 

14 control donors: mean age±SD 

=78.43±11.76 years, sex =5M/9F  

~0 + disease + age + sex + 

SOX10
+

 proportions + 

Double
-

 proportions + array 

+ slide 

(0 surrogate variables 

detected) 

 

FTLD3[83] FTLD-tau (sporadic PSP) 93 FTLD donors: mean age±SD = 

71.16±5.32, sex = 54M/39F  

 

70 control donors: mean age±SD = 

76.17±7.93, sex = 45M/25F 

~0 + disease + age + sex + 

SOX10
+

 proportions + 

Double
-

 proportions + array 

+ slide + surrogate variable  

(1/1 surrogate variables 

detected) 

FTLD – Frontotemporal lobar degeneration; FTLD-TDP – FTLD with 438kDa transactive response DNA-binding 

protein (TDP-43) positive inclusions; FTLD-Tau – FTLD with tau positive inclusions; FTDP-17 – frontotemporal 

dementia and parkinsonism linked to chromosome 17; PSP – progressive supranuclear palsy; SD – Standard 

deviation; F – Females; M – Males; Double
-
 proportions – NeuN

-
/SOX10

-
 proportions. 
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Figure 1. Outline of the study design and analysis framework. FTLD – Frontotemporal lobar degeneration; PSP 

– Progressive supranuclear palsy. Figure created with BioRender. 
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Measures of brain atrophy, neuronal cell loss and pathology related traits 

For FTLD1 and a proportion of cohort FTLD2, formalin-fixed paraffin-embedded (FFPE) 

sections were also available for more detailed neuropathological evaluations, including 

sections stained for standard haematoxylin and eosin (H&E). These FFPE sections were from 

the opposite brain hemisphere with respect to the frozen tissue used for the DNA 

methylation profiling. 

For FTLD1 and FTLD2, microscopic atrophy was assessed on H&E stained slides, by 

examining the cortical thickness and neuronal loss in the frontal and temporal cortices. A 

four point grading system was used in comparison to a neurological normal control with no 

underlying neurodegenerative changes: 0 - the cortical thickness was within normal limits 

and no neuronal loss was observed; 1 - reduction in cortical thickness but the number of 

neurons was comparable to normal levels; 2 - reduction in cortical thickness and reduction 

in the numbers of neurons; 3 - severe reduction in cortical thickness and no neurons 

observed. For each region, the microscopic atrophy was scored semi-quantitatively by an 

experienced observer blinded to clinical, histopathological and genetic status, at an 

objective magnification ofN×N20. Macroscopic atrophy was also determined for FTLD1 based 

on observations of gyri and sulci from the coronal slices observed during brain cutting 

procedures. Levels of atrophy were graded, as previously described [69], into four stages: 

none, mild, moderate, and severe. These neuropathological scores of the frontal and 

temporal regions were used in the module-trait correlations with the DNA co-methylation 

network modules. 

 

DNA methylation profiling and data quality control  

For FTLD1, genomic DNA was extracted from carefully dissected flash frozen frontal cortex 

grey matter tissue using standard protocols. Bisulfite conversion was performed with the EZ 

DNA Methylation Kit (Zymo Research) using 500 ng of genomic DNA. For FTLD2 and FTLD3, 

DNA extractions and bisulfite conversions were performed previously as described by 

Menden et al. [53] and Weber et al. [83]. Genome-wide methylation profiles were 

generated using the Infinium HumanMethylationEPIC BeadChip (Illumina) for FTLD1 and 
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FTLD2, or the Infinium HumanMethylation450 BeadChip (Illumina) for FTLD3, as per the 

manufacturer’s instructions.  

Beta values ranging from 0 to 1 (approximately 0% to 100% methylation, respectively), were 

used to estimate the methylation levels of each CpG site using the ratio of intensities 

between methylated and unmethylated alleles. Data analysis was conducted using several R 

Bioconductor packages as previously described [11]. All three cohorts were subjected to 

harmonized quality control checks and pre-processing. Briefly, raw data (idat files) were 

imported and subjected to rigorous pre-processing and thorough quality control checks 

using minfi [4], wateRmelon [67], and ChAMP packages [76]. The following criteria were 

used to exclude probes that did not pass quality control checks from further analysis: 1) 

poor quality, 2) cross reactive, 3) included common genetic variants, and 4) mapped to X or 

Y chromosome. In addition, samples were dropped during quality control if: 1) they 

presented with a high failure rate (≥ 2% of probes), 2) the predicted sex did not match the 

phenotypic sex, and 3) they clustered inappropriately on multidimensional scaling analysis. 

Beta values were normalised with ChAMP using the Beta-Mixture Quantile (BMIQ) 

normalisation method. M-values, computed as the logit transformation of beta values, were 

used for all statistical analysis, as recommended by Du et al. [22], owing to their reduced 

heteroscedasticity (as opposed to beta-values) and improved statistical validity for 

differential methylation analysis. 

As significant batch effects were detected during quality control checks, and different FTLD 

subgroups/subtypes were studied in FTLD1-3, the three cohorts were analysed separately 

first and then meta-analysed. Similarly, co-methylation network analyses were conducted 

on each cohort separately, and module preservations were then cross-checked with data 

from the other cohorts (as described in more detail below). 

 

Cell type deconvolution based on DNA methylation data 

As DNA methylation patterns are often cell-type specific, changes in different brain cell-type 

proportions constitute an important confounding factor for DNA methylation studies 

performed on ‘bulk’ brain tissue. We used a novel cell-type deconvolution reference panel 
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recently described by Shireby et al. [72] which brings more granularity and expands previous 

methods that account only for neuronal (NeuN+) versus all other cell types (NeuN-). This 

new method uses novel DNA methylation data obtained from fluorescence activated sorted 

nuclei from cortical brain tissue to estimate the relative proportions of neurons (NeuN+), 

oligodendrocytes (SOX10+) and other glial brain cell types (Double- [NeuN-/SOX10-]). Cell-

type proportions in bulk brain tissue were thus estimated using the CETYGO (CEll TYpe 

deconvolution GOodness) package (https://github.com/ds420/CETYGO), and the sorted cell-

type reference datasets as described by Shireby et al. [72]. Pairwise comparisons between 

FTLD cases and controls were conducted using Wilcoxon rank sum test with Benjamini-

Hochberg correction for multiple testing, and adjusted p<0.05 was considered significant. 

 

Differential methylation analysis and EWAS meta-analysis 

We applied linear regression models (Table 1) using the M-values as the input to identify 

associations between DNA methylation variation at specific CpG sites and FTLD using the 

limma package [64]. For FTLD1, we have accounted for possible confounding factors, such as 

age and sex as well as factors detected in principal components 1 and 2 as seen in Singular 

Value Decomposition (SVD) plots (ChAMP package), which included cell proportions 

(SOX10+ and Double-) and sample position in the array. Using this regression model, no 

surrogate variables were detected with the num.sv function of the SVA package [42], 

meaning there were no remaining unknown, unmodelled, or latent sources of noise [64]. 

The same process was applied to FTLD2 and FTLD3. The model for FTLD2 was further 

adjusted for slide, whereas for FTLD3, the model was further adjusted for slide and one 

surrogate variable (Table 1). False discovery rate (FDR) adjusted p-values <0.05 were 

considered genome-wide significant. 

We used the estimated coefficients and SEs obtained from the regression models, described 

above for the three FTLD cohorts, to undertake an inverse variance meta-analysis using the 

metagen function from the meta R package [8]. Only methylation probes present in all 

datasets (N= 363,781) were considered for this analysis. When reporting differentially 

methylated sites, a conservative Bonferroni significance was defined as pN<N1.374N×N10−7 

(p < 0.05/363,781) to account for multiple testing. We report random-effects meta-analysis 
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results as the three cohorts included different FTLD subgroups/subtypes according to the 

neuropathological classification possibly leading to high heterogeneity in the meta-analysis. 

We also used a less stringent FDR adjusted p < 0.10 to report top meta-analysis loci, all of 

which were then investigated in the co-methylation networks. 

 

Co-methylation network analysis 

To identify clusters of highly correlated CpGs (co-methylation modules) in an unsupervised 

manner, i.e., agnostic of gene ontology, we used a systems biology approach based on 

weighted gene correlation network analysis (WGCNA) [38]. For this analysis, we focused on 

CpGs present in all three FTLD datasets, non-intergenic CpGs (i.e. CpGs annotated to genes), 

and selected the top 20% with the highest variance across individuals in each cohort 

regardless of their disease status (i.e., most variable 56,001 CpG sites per cohort). After 

outlier exclusion, a total of 23, 42 and 157 samples remained in the FTLD1, FTLD2 and FTLD3 

cohorts, respectively. For each network, we used as input the M-values adjusted for the 

covariates included in the models described above (Table 1) and constructed signed 

networks. Modules were calculated using the WGCNA blockwiseModules function, with a 

minimum module size of 200 and a soft-thresholding power of 16, 10 and 12 for the FTLD1, 

FTLD2 and FTLD3 networks, respectively. Module membership (MM) was then reassigned 

for each network using the applyKMeans function of the CoExpNets package [13]. Highly 

connected CpGs within a module (hub CpGs) present with high MM values to the respective 

module. In the results section, we refer to hub CpGs as those with the highest MM within a 

given module.  

By using a principal component analysis on the CpG methylation values within each module, 

the CpGs inside each module were represented by a weighted average, the module 

eigengene (ME). The MEs were then correlated with the FTLD status, FTLD subtypes, and 

other sample traits, including disease onset and duration, measures of macroscopic atrophy 

and neuronal loss scores, and other pathology related traits, as available for each cohort.  

To gain insights into the biology underlying the FTLD-related modules, we carried out 

functional enrichment for CpGs mapping to genes using the default parameters of 
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clusterProfiler [85]. We also carried out cell-type enrichment analysis on the FTLD-related 

modules using the package EWCE [73] and associated single-cell transcriptomic data [88]. 

 

DNA methylation cross-network module preservation analysis 

As a method for differential network analysis, i.e., to identify which co-methylation modules 

in each of the three generated FTLD networks were preserved (i.e., shared) or perturbed 

(i.e., unique) in the other two datasets, we employed module preservation analysis, as 

described by Langfelder et al. [39] . For each network (taken as the <reference dataset=), 

module preservation in the other two datasets (the <test data=) was calculated using the 

modulePreservation function implemented in WGCNA. In all instances, the <test data= 

contained methylation values (adjusted M-values) for the 56,001 CpG sites used to 

construct the <reference dataset= network. A total of 200 permutations for each 

preservation analysis was used. As a measurement of module preservation, we used the Z-

summary statistic (a composite measure to summarise multiple preservation statistics). A Z-

summary greater than 10 indicates a strong preservation of this module in the <test data=, a 

Z-summary of between 2 and 10 indicates moderate preservation, and a Z-summary less 

than 2 indicates no preservation. 

 

Comparisons of DNA methylation hits with FTLD frontal/temporal cortex gene expression 

data  

To examine the gene expression patterns of the EWAS meta-analysis gene hits, we used 

previously published transcriptomics data from bulk frontal cortex tissue of FTLD-TDP cases 

and controls [30] as well as bulk temporal cortex tissue of FTLD-tau cases (PSP) and controls 

[82]. To further infer the expression patterns of selected DNA methylation hit genes in 

specific brain cell types, we also correlated gene expression levels (adjusted for age, sex, 

and RNA integrity number) with cellular proportions using data from Hasan et al. [30], with 

cellular proportions estimated using the method described by Mathys et al. [50] 
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Comparisons of DNA methylation hits with FTLD-TDP frontal cortex proteomics data  

To examine the gene expression patterns of the EWAS meta-analysis gene hits at the 

protein level, we used proteomics data from FTLD-TDP and controls. Briefly, frontal cortex 

homogenate of frozen post-mortem human brain tissue was prepared from control (N=6), 

FTLD-TDP type A with C9orf72 repeat expansion (N=6), and FTLD-TDP type C (N=6) cases. 

Proteins in both the soluble supernatant and the insoluble pellet fraction were analysed, 

and samples were pooled per disease group (three cases per pooled sample). Proteins were 

quantitated using 2D-LCMS and UDMSe label-free proteomics and SYNAPT G2- Si High 

Definition mass spectrometer operating in ion mobility mode. Data was processed using 

Progenesis software, as previously described [78]. A total of 6114 proteins were detected in 

the supernatant, and 5108 in the pellet, with an overlap in some proteins that were found 

both in the supernatant and pellet. Fold-changes between FTLD-TDP subtypes compared to 

controls were calculated. Of the Bonferroni significant EWAS meta-analysis hits, only the 

OTUD4 protein was detected (both in the supernatant and in the pellet). 

 

Comparisons of DNA methylation hits with additional datasets 

We further investigated the normal expression patterns of the meta-analysis gene hits both 

in the human and mouse brains using single nuclei RNAseq data from the Allen Brain Map 

(https://celltypes.brain-map.org/)[7], and data from the Allen Mouse Brain Atlas 

(http://mouse.brain-map.org)[43]. Given the OTUD4-related findings, we investigated the 

list of cortical tissue OTUD4 protein interactors made available by Das et al. [20]. The RNA 

granule database (http://rnagranuledb.lunenfeld.ca/) collates curated literature evidence 

that support gene or protein association with the stress granules (SGs) and P-bodies (PBs). 

We used a list of tier 1 genes from the RNA granule database version 2.0 for comparisons 

with the lists of genes composing the three OTUD4 FTLD-associated co-methylation 

modules.  
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OTUD4 immunohistochemical staining  

To investigate tissue expression patterns of OTUD4 protein across the human cortex, FFPE 

frontal cortex tissue from 7 FTLD cases (4 FTLD-TDP type A and 3 FTLD-TDP type C) and 3 

controls (overlapping with FTLD1) were utilized. Briefly, eight-micrometre-thick sections cut 

from the FFPE blocks were immunostained using a standard avidin-biotin-peroxidase 

complex method with di-aminobenzidine as the chromogen [40]. The rabbit anti-OTUD4 

antibody (Atlas Antibodies HPA036623, 1:200) was used, along with heat antigen retrieval 

pre-treatment prior to application of the primary antibody. The samples were mounted and 

examined using a light microscope.  

 

RESULTS 

Cell-type deconvolution based on DNA methylation data highlights important cellular 

composition differences in FTLD 

To estimate brain cell-type proportions in our bulk frontal cortex DNA methylation datasets, 

we used a refined cell-type deconvolution algorithm based on reference DNA methylation 

profiles from purified nuclei from neurons (NeuN+), oligodendrocytes (SOX10+) and other 

brain cell types (NeuN-/SOX10-)[72]. This new model controls better for cellular 

heterogeneity in bulk cortex tissue compared to previous models, which account only for 

neuronal (NeuN+) versus all glial cells (NeuN-). Within each sample group, we observed 

extensive variability in cell-type proportions across cell types (Fig. 2). When comparing 

disease cases with controls, no overall differences were overall detected in the proportions 

of oligodendrocytes (SOX10+) and other glial cells (NeuN-/SOX10-) after accounting for 

multiple testing corrections. However, with the exception of the PSP cases (FTLD3), all FTLD 

subgroups/subtypes showed a significant decrease in neuronal proportions compared to 

controls (Wilcoxon rank sum test, adjusted-p<0.05), as expected in neurodegenerative 

diseases. These findings highlight the importance of adjusting for cell-type proportions in 

bulk tissue EWAS studies. Accounting for this allowed us to identify DNA methylation 

changes that are relevant to the disease rather than merely reflecting changes in cell-type 

composition, which could be related partly to the disease pathogenesis itself and partly due 
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to technical issues (e.g., a result of capturing different proportions of grey and white matter 

during tissue dissection).  

 

Figure 2. Brain cell-type proportion estimates derived from bulk DNA methylation data in frontal lobe of 

frontotemporal lobar degeneration (FTLD) and controls. *indicates significant differences for each cell-type 

between FTLD subtypes and the corresponding controls; pairwise comparisons were performed using the 

Wilcoxon rank sum test, and adjusted p-values <0.05 we considered significant. CTRL – controls; TDPA_GRN – 

FTLD with TDP-43 positive inclusions (FTLD-TDP) subtype A, carriers of GRN mutations; TDPA_C9 – FTLD-TDP 

subtype A, carriers of C9orf72 repeat expansion; TDPB_C9 – FTLD-TDP subtype B, carriers of C9orf72 repeat 

expansion; TDPC – FTLD-TDP subtype C, sporadic; MAPT – FTLD with tau positive inclusions (FTLD-Tau), carriers 

of MAPT mutations; PSP – FTLD-Tau, sporadic progressive supranuclear palsy (PSP); Neurons – NeuN+; 

Oligodendrocytes – SOX10+; other glial cells – NeuN-/SOX10-. 

Frontal cortex case-control EWAS meta-analysis identifies shared differentially methylated 

CpG sites across FTLD pathological subgroups and subtypes  

First, we investigated DNA methylation variation in specific loci across the genome as 

covered by the 450K/EPIC arrays, using linear regressions models to perform cohort-specific 

case-control EWAS. For FTLD1 and FTLD2, which comprise heterogeneous cases with 

sporadic and genetic forms of FTLD-TDP and FTLD-tau pathology, no genome-wide 

significant CpGs were identified. For FTLD3, which only includes cases with FTLD-tau 

pathology (sporadic PSP), 234 differentially methylated positions were identified 

(Supplementary Table S1, Online Resource). The top differentially methylated CpG in the 

FTLD3 cohort was cg09202319, which was hypomethylated in FTLD-tau (PSP) compared to 

controls (adjusted-p=6.54 x 10-8). This CpG mapped to a CpG island in the promoter region 

of PFDN6 (Prefoldin Subunit 6), which is involved in promoting the assembly of cytoskeletal 
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proteins [44]. Supplementary figure 1 (Online Resource) shows the quantile-quantile (Q-Q) 

plots for each of the single cohort-specific EWAS.  

Second, we meta-analysed the single cohort EWAS results, enabling an analysis of FTLD-

associated differential cortical DNA methylation using tissue from 234 individuals. After a 

conservative Bonferroni adjustment for multiple testing (p<1.37 × 10− 7), the meta-analysis 

identified two differentially methylated CpGs in FTLD compared to controls, regardless of 

the pathological subgroup (FTLD-TDP or FTLD-tau), and corresponding subtypes (Fig. 3; 

Supplementary Fig. 2, Supplementary Table S2, Online Resource). The top CpG was 

annotated to a shore in the 5’UTR of OTUD4 and was hypomethylated in FTLD compared to 

controls, whereas the other was annotated to a CpG island in the body of NFATC1 and 

hypermethylated in FTLD compared to controls (Fig. 3). The direction of the effect was 

consistent across the three FTLD cohorts for these two hits, as well as for nine additional top 

meta-analysis loci obtained when considering a less stringent FDR p < 0.10 multiple testing 

correction (Fig. 3; Supplementary Table S2, Online Resource). Of note, none of these meta-

analysis top differentially methylated sites showed epigenome-wide significant changes in 

FTLD3 alone (Supplementary Table S1, Online Resource) or in previous Alzheimer’s disease 

EWAS meta-analyses (Supplementary Table S2, Online Resource).  

 

Figure 3. Differentially methylated positions identified in a case-control FTLD cross-cohort meta-analysis. a) 

Manhattan plot showing associations between single DNA methylation sites (CpGs) and FTLD from the meta-

analysis random-effect results (total N = 234). CpGs are plotted on the x-axis according to their positions on 

each chromosome against association with FTLD on the y-axis (− log 10 p-value). The top red line indicates the 
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conservative Bonferroni significance threshold (α) of p = 1.37 × 10
−7

. Green points indicate CpGs passing the 

Bonferroni threshold. The blue line indicates a less stringent threshold of p = 2.70 × 10
−6

 (FDR p = 0.10). b) 

Forest plot depicting the CpG in OTUD4, which is significantly hypomethylated in FTLD compared to controls in 

the cross-cohort meta-analysis (FTLD1 N=23, FTLD2 N=48, and FTLD3 N=163). c) Forest plot depicting the CpG 

in NFATC1, which is significantly hypermethylated in FTLD compared to controls in the cross-cohort meta-

analysis (FTLD1 N=23, FTLD2 N=48, and FTLD3 N=163).  

 

Frontal cortex FTLD EWAS meta-analysis hits are consistent with downstream changes in 

mRNA and protein expression patterns 

To investigate the downstream consequences of DNA methylation variation on gene 

expression in FTLD, we investigated available FTLD-TDP and FTLD-tau transcriptomic data 

[30, 82], as well as FTLD-TDP proteomics data. From the EWAS meta-analysis hits passing 

Bonferroni correction, consistent results were observed in both FTLD-TDP (frontal cortex) 

and FTLD-tau (temporal cortex) for OTUD4, which showed higher mRNA expression levels in 

FTLD cases compared to controls (Fig. 4). For NFATC1, increased expression was observed in 

FTLD-TDP when compared to controls (Fig. 4). However, this increase in expression was not 

observed in the FTLD-Tau, as seen in data from Wang et al. [82]. Of the nine additional top 

meta-analysis loci, ZNF804A showed lower mRNA expression levels and IMPA2 showed 

higher mRNA expression levels in FTLD cases compared to controls (p < 0.05, Supplementary 

Fig. 3, Online Resource). DNA methylation levels in upstream regulatory regions are often 

inversely associated with gene expression levels [59, 79]. Therefore, lower methylation 

levels in CpGs annotated to 5’UTR in OTUD4 and to TSS200 in IMPA2, and higher expression 

of these genes in FTLD compared to controls, meets such expectations. On the other hand, 

DNA methylation levels in gene bodies are usually positively associated with gene 

expression. Again, results align with this in the case of NFATC1 (which showed higher 

methylation and higher expression in FTLD-TDP compared to controls) and ZNF804A (which 

showed lower methylation and lower expression in FTLD).  
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Figure 4. Boxplots showing gene expression levels for the two EWAS meta-analysis hits in FTLD-TDP and 

controls. RNA sequencing data from Hasan et al. [30] adjusted for age, sex, and RNA integrity number was 

used. Log2-transformed gene expression data is shown in the y-axis, and non-paired t-test p-value for the 

comparison between FTLD-TDP (N= 80) and controls (N= 48) is denoted at the top. 

 

Only one of the two Bonferroni adjusted meta-analysis gene hits were detected in the 

frontal cortex proteomics data. OTUD4 protein was upregulated in FTLD-TDP in types A and 

C compared to controls (Fig. 5), with the highest fold-change being observed in type C for 

the supernatant soluble fraction (fold-change = 14.72). These findings are in line with our 

observations with the RNAseq data and support consistent dysregulation of the OTUD4 

EWAS meta-analysis hit in FTLD. Therefore, we further investigated the patterns of OTUD4 

protein expression in the frontal cortex and performed anti-OTUD4 immunohistochemical 

analysis (Fig. 6) using FTLD-TDP types A and C cases as well as controls that overlap with 

those used in the DNA methylation analysis (subset of the FTLD1 cohort). Minimal neuronal 

cytoplasmic staining was observed in the normal controls. However, in the FTLD-TDP cases, 

an increase in cytoplasmic staining intensity was observed in both the grey and white 

matter. In the grey matter, neuronal cytoplasmic staining was seen together with glial 
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nuclear staining. In the white matter, there was an increase in glial staining. These results 

concur with the results from our proteomics and transcriptomics data. 

 
Figure 5. Bar plots of protein quantifications for the EWAS meta-analysis hit OTUD4 in FTLD-TDP subtypes 

and controls. Out of the two EWAS meta-analysis hits, only the OTUD4 protein were detected in the 

proteomics data and are presented here. OTUD4 was detected in both fractions (pellet and supernatant). Two 

pooled samples (2 x 3 samples) per group were analysed. The average values were obtained for each group, 

and fold-changes were calculated comparing FTLD-TDP subtypes with controls. Bar plots show mean fold-

change. 
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Figure 6. Immunoreactivity of OTUD4 in FTLD-TDP (N=4 type A and N=3 type C) and controls (N=3). 

Immunohistochemical analysis was carried out in FFPE frontal cortex tissue from FTLD-TDP cases and controls 

overlapping with FTLD1, using a rabbit anti-OTUD4 antibody (Atlas Antibodies HPA036623, 1:200). Scale-bars 

represent 100 µm. 

 

DNA co-methylation modules are associated with the FTLD status, FTLD pathological 

subtypes, and disease-related traits 

To provide insight into higher order relationships across DNA methylation sites (CpGs), we 

used an agnostic systems biology approach based on WGCNA and constructed co-

methylation networks. Considering the top 20% most variable CpGs in each of the 3 cohorts 

(N = 56,001 CpGs), we identified clusters of highly correlated CpGs, henceforth called co-

methylation modules, each assigned a colour name. 

For the FTLD1, FTLD2 and FTLD3 networks, 9/33 (pN<N0.002, 0.05/33 modules), 16/49 

(pN<N0.001, 0.05/49 modules) and 10/14 (pN<N0.004, 0.05/14 modules) co-methylation 

modules were found to be associated with the disease status (i.e., FTLD or control), 

respectively (Fig. 7a-c). Our co-methylation network analysis also revealed modules 

associated with specific pathological subgroup/subtypes in FTLD1 and FTLD2 networks 

(Supplementary Fig. 4, Online Resource). In a few cases, opposite effect directions were 

shown in one subgroup/subtype compared to another (e.g., midnightblue and salmon 

modules in FTLD1 TDPA vs TDPC, Supplementary Fig. 4a; and turquoise module in FTLD2 

TDP vs Tau, Supplementary Fig. 4b; Online Resource). More detailed identification of 

subtype-specific DNA methylation signatures warrants further investigation in future 

studies. 

We also tested for correlations with additional disease-related traits as available for FTLD1, 

FTLD2, and FTLD3. We found associations between FTLD-associated co-methylation 

modules and disease duration as well as with macroscopic and/or microscopic measures of 

atrophy/neurodegeneration in the frontal and temporal lobes (Supplementary Fig. 4a-b, 

Online Resource). Two out of the ten modules associated with the disease status in FTLD3 

were also associated with tau pathological burden (Braak stage, Supplementary Fig. 4c, 

Online Resource). 
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Figure 7. Module-trait correlations for the FTLD co-methylation networks. a) FTLD1; b) FTLD3; c) FTLD2. The 

rows represent the co-methylation module eigengenes (ME) and their colours, and the column represents the 

correlation of the methylation levels of CpGs in each module with the disease status. P-values are presented 

within each cell and the colour scale at the right indicates the strength of the correlation (darker cells depict 

stronger correlations, with blue representing negative and red representing positive correlations).   

To assess replication of FTLD-associated co-methylation modules across datasets, we then 

ran preservation analysis for each dataset against each of the networks. We found that most 

of the FTLD-associated co-methylation modules were indeed moderately to highly 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.10.21.513088doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513088
http://creativecommons.org/licenses/by/4.0/


21 
 

preserved (Z-summary > 2) in at least one of the other two datasets (Supplementary Fig. 5, 

Online Resource), further supporting their relevance to FTLD regardless of the pathological 

subgroup/subtype. Exceptions to this were observed only for the FTLD1 brown, 

darkturquoise and grey60, and the FTLD2 darkorange2 modules, which seem to be 

perturbed in the other two datasets. 

 

Genes that compose FTLD-associated co-methylation modules are involved in 

transcription regulation, phosphorylation, the ubiquitin system and actin cytoskeleton 

dynamics 

We then performed functional enrichment analysis to investigate which gene ontologies 

were shared across the three FTLD co-methylation networks. We found significant 

enrichment of terms related with transcription regulation (e.g., <DNA-binding transcription 

factor binding=), phosphorylation (<protein serine/threonine/tyrosine kinase activity=), the 

ubiquitin system (e.g., <ubiquitin protein ligase activity=), and actin cytoskeleton dynamics 

(e.g., <actin filament binding=). This was observed across the three co-methylation networks 

and across different modules of each network (Fig. 8). Dysregulation of all these processes 

had been previously linked to FTLD [68], and our findings now support a role for DNA 

methylation as a mechanism involved in such dysregulation.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.10.21.513088doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513088
http://creativecommons.org/licenses/by/4.0/


22 
 

Figure 8. Functional enrichment for the FTLD-associated co-methylation modules across the three networks. 

Y-axis shows top enriched gene ontology terms, while x-axis depicts FTLD-associated modules in FTLD1 (green), 

FTLD2 (yellow) and FTLD3 (blue) co-methylation networks. Modules not showing enrichment for shared terms 

across the networks are not shown. 

 

FTLD-associated modules are enriched for genes relevant for pyramidal neurons and 

endothelial cells across all three co-methylation networks 

We also aimed to elucidate whether the genes that compose FTLD-associated co-

methylation modules are relevant for specific brain cell-types. Across the three networks 

(FTLD1, FTLD2 and FTLD3), we found significant enrichments for pyramidal neurons and 

endothelial/mural cells (Fig. 9), suggesting these cell types are consistently affected by the 

DNA methylation changes in FTLD regardless of the pathological subgroup/subtype. 

Previous studies with pathological assessment, as well as transcriptomic analysis in FTLD 

brain tissue, support changes in these cell types in FTLD [24–26, 30, 63]. Additionally, in the 

FTLD1 and the FTLD3 networks, we found signatures with an overrepresentation of 

oligodendrocyte markers. Of note, FTLD3 is composed of PSP cases, which, unlike the other 

FTLD groups studied here, is known to present with pathological accumulation of tau in the 

oligodendrocytes [84]. The FTLD3 network was also enriched for microglia and interneurons. 

 

 

Figure 9. Cell-type enrichment for all FTLD-associated co-methylation modules across the three co-

methylation networks. Green denotes FTLD-associated modules in the FTLD1 network; Yellow denotes FTLD-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2023. ; https://doi.org/10.1101/2022.10.21.513088doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513088
http://creativecommons.org/licenses/by/4.0/


23 
 

associated modules in the FTLD2 network; Blue denotes FTLD-associated modules in the FTLD3 network. Dark 

filled circles highlight the cell types found to be significantly enriched with adjusted p < 0.05 after Bonferroni 

correction over all cell types within each module; the size of the circles represents the number of standard 

deviations (SD) from the mean. Cell-type enrichment analysis on the FTLD-related modules was performed 

using the package EWCE [73] and associated single-cell transcriptomic data [88]. 

 

OTUD4 and other top meta-analysis loci are co-methylated in all three networks 

We then examined whether the 11 EWAS meta-analysis top loci (FDR p < 0.10) were present 

(Supplementary Table S2, Online Resource) in the co-methylation networks and whether 

any co-methylation modules were enriched for such loci (Supplementary Table S3, Online 

Resource). Notably, the top meta-analysis hit in OTUD4 was present in all three networks 

(FTLD1 – brown, FTLD2 – blue, and FTLD3 – blue modules), and was always co-methylated 

with the CpG annotated to CEBPZ (Supplementary Table S3, Online Resource). These 

modules showed a significant enrichment for the top EWAS meta-analysis loci [Fisher’s 

exact test, FTLD1 – brown odds ratio (OR) = 14.9, p = 0.003; FTLD2 – blue OR = 10.6, p = 

0.007; FTLD3 – blue OR = 8.0, p = 0.017). We therefore decided to further investigate 

similarities across these three modules (FTLD1 – brown, FTLD2 – blue, and FTLD3 – blue), 

which will henceforth be referred to as <OTUD4-modules=.  

It is of note that only eight CpGs were shared across the three <OTUD4-modules=, two of 

which - cg21028777 in OTUD4 and cg07695590 in CEBPZ - correspond to top EWAS meta-

analysis loci (Supplementary Fig. 6, Online Resource), highlighting their importance across 

the FTLD subgroups/subtypes. All three <OTUD4-modules= were inversely related with the 

disease status, i.e., lower levels of methylation in CpGs composing these modules are 

associated with increased risk of FTLD (Fig. 7; FTLD1 – brown r=-0.89, p = 2x10-8; FTLD2 – 

blue r=-0.75, p = 8x10-9; and FTLD3 – blue r=-0.89, p = 3x10-54). FTLD2 blue was also inversely 

associated with the severity of neuronal loss in the frontal cortex (r=-0.48, p=0.001, 

Supplementary Fig. 4b, Online Resource). Although not reaching statistical significance after 

accounting for multiple testing corrections, a similar trend was observed with the severity of 

neuronal loss in the temporal cortex for FTLD2 blue (r=-0.46, Supplementary Fig. 4b, Online 

Resource) as well as for FTLD1 brown in both frontal and temporal cortices (r=-0.29 n.s., and 

r=-0.63 p = 0.001, respectively, Supplementary Fig. 4a, Online Resource). These findings 
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further support the relevance of these signatures enriched for top EWAS meta-analysis loci, 

including CpGs in OTUD4 and CEBPZ, in disease progression/severity.  

Previous studies have shown that OTUD4 [20], tau [5], TDP-43 and a growing number of 

additional FTLD-related RNA-binding proteins [10] play an important role in the biology of 

stress granules. We therefore investigated whether stress granules proteins and OTUD4 

protein interactors were present in the <OTUD4-modules=. Indeed, many genes encoding 

for such proteins were represented in these modules, including several genes associated 

with genetic FTLD risk such as MAPT (encoding for tau), present across the three <OTUD4-

modules=, and FUS, present in FTLD3-blue (Supplementary Tables S4 and S5, Online 

Resource). The same was true for many hnRNPs, such as HNRNPA1, HNRNPC, and 

HNRNPUL1, which are present in the <OTUD4-modules= and are OTUD4 protein interactors 

(Supplementary Tables S4 and S5, Online Resource). These hnRNPs are also known targets 

of the transcription factor CEBPZ (as described by Ma'ayan et al. [65]), which is also a top 

EWAS meta-analysis loci and is co-methylated with OTUD4 across the networks.  

We also identified the hub genes in the three <OTUD4-modules= (i.e., the most 

interconnected genes within the module). These were ADCY1, TLE6 and GDAP1 for FTLD1-

brown, FTLD2-blue and FTLD3-blue, respectively (Supplementary Table S4, Online 

Resource). Of note and highly relevant for FTLD, ADCY1 has been found to be implicated in 

learning, memory, and behaviour [71]. The importance of TLE6 to brain related disease is 

supported through its association with bipolar disorder 

[21], and mutations in GDAP1 cause 

inherited peripheral neuropathies [61]. 

 

<OTUD4-modules= implicate glutamatergic synapse and pyramidal neurons 

More detailed gene ontology enrichment of <OTUD4-modules= once again highlighted 

transcriptional regulation and the ubiquitin system, as well as nuclear speck, synapse 

(particularly glutamatergic synapse), and axon development (Supplementary Fig. 7, Online 

Resource). All three meta-hit modules showed an enrichment for pyramidal neurons and 

the FTLD3 blue module additionally showed an enrichment for oligodendrocytes (Fig. 9). 

Further supporting the importance of OTUD4 and CEBPZ in glutamatergic cells, in the 
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normal brain (human and mouse) these genes show the highest expression in glutamatergic 

neurons and/or cortical and hippocampal pyramidal and granule cell layers (Supplementary 

Fig. 8-9, Online Resource).  

Using gene expression data and derived cellular proportions from Hasan et al. [30], we 

observed a positive relationship between both OTUD4 and CEBPZ expression and 

proportions of excitatory neurons in controls and FTLD-TDP type A (Supplementary Fig. 10, 

Online Resource). This finding further supports the relevance of OTUD4 and CEBPZ in 

excitatory glutamatergic neurons. However, that relationship is perturbed in FTLD-TDP type 

C (Supplementary Fig. 10, Online Resource), which could suggest higher expression of these 

genes by fewer surviving excitatory neurons and/or higher expression by other cell type(s). 

 

DISCUSSION 

We have conducted,to our knowledge, the first FTLD EWAS meta-analysis utilizing three 

independent cohorts and incorporating results from 234 brain donors. We identified two 

differentially methylated CpGs shared across a range of FTLD subgroups (FTLD-TDP and 

FTLD-tau) and corresponding subtypes, which map to OTUD4 and NFATC1. Systems biology 

approaches such as co-methylation network analysis are powerful methodologies for 

identifying pathways and networks which may be more relevant to disease pathophysiology 

than individual genes. We therefore performed a co-methylation network analysis in each of 

the independent cohorts and identified modules associated with the FTLD disease status 

and FTLD-related traits. Interestingly, CEBPZ always clustered with OTUD4, and the <OTUD4- 

modules= were enriched for meta-analysis top loci in each of the three independent 

cohorts. Using functional and cell-type enrichment analysis of modules of interest, we 

identified several biological processes with relevance to FTLD pathology, including the 

ubiquitin system, RNA granule formation and glutamatergic synaptic signalling, which we 

discuss below. It is of note that none of the loci identified in our meta-analysis match with 

neuropathology-associated loci identified in large AD studies [72, 74, 89], therefore 

supporting the hypothesis that molecular changes in these loci reflect shared disease 

biology aspects of FTLD subgroups/subtypes rather than a mere downstream consequence 

of neurodegeneration.  
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The OTUD4 gene encodes the protein OTUD domain-containing protein 4, a de-

ubiquitinating enzyme [54]. Mutations in this gene are associated with Gordon Holmes 

syndrome, which is characterised by ataxia and hypogonadotropism [48]. Interestingly, a 

combination of mutations in OTUD4 along with mutations in RNF216, which codes for a 

ubiquitin ligase, was also found to result in dementia [48]. The protein is known to have 

roles in modulating inflammatory signalling [91] and in the alkylation damage response [90], 

and has more recently been demonstrated to interact with RNA binding proteins (RBPs), 

including TDP-43 (which aggregates in FTLD-TDP), which are important in the functioning of 

neuronal RNA granules and stress granules [18]. RNA granules are structures which facilitate 

the translocation and storage of mRNAs [37], whilst stress granules are formed when 

cellular stressors such as oxidative stress are present, possibly as a mechanism to reversibly 

block translation initiation until the stress has been removed [16, 35]. Notably, similarly to 

TDP-43 [6], OTUD4 was shown to be important in the correct formation of stress granules 

[20]. Indeed, there is much evidence as to the importance of the ubiquitin system in the 

functioning of stress granules [36, 55, 77]. The hypomethylation of the 5’UTR region of 

OTUD4 (cg21028777), which was observed as the top hit from the FTLD EWAS meta-

analysis, and the inclusion of this CpG in three modules where decreased methylation was 

associated with increased risk of FTLD indicates that decreased methylation of this gene 

might be involved in the pathogenesis of FTLD. Further supporting these findings, the 

OTUD4 gene and protein expression levels are dysregulated in FTLD [30, 82]. 

Also supporting the importance of the role of ubiquitination and granule formation are the 

results from the functional enrichment analysis of the three network modules containing 

OTUD4, which revealed an overrepresentation of terms relating to the ubiquitin system. All 

three meta-hit modules contained terms such as <ubiquitin protein ligase activity=, the 

FTLD2-blue module also showed enrichment of the GO term <ribonucleoprotein granule=, 

indicating that other genes in this module might also have processes relevant to granule 

formation, as with the meta-hit OTUD4. Ubiquitin signalling is well described as a process 

implicated in neurodegenerative disease pathology, and several genes involved in ubiquitin 

and ubiquitin binding processes are known to be mutated/contain risk alleles in multiple 

neurodegenerative diseases, including FTD [68].  
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Ontology terms enriched in our functional analysis of FTLD-associated modules also include 

many relating to regulation of transcription such as <DNA-binding transcription factor 

binding= and <transcription coregulator activity=. Another meta-analysis top loci was 

annotated to the CEBPZ gene, which encodes the CCAAT Enhancer Binding Protein Zeta, a 

transcription factor implicated in cellular response to environmental stimuli through 

transcriptional processes that regulate heat shock factors, including HSP70 [47]. HSP70 is a 

heat-shock protein involved in several protein folding processes, including the refolding of 

aggregated proteins [32, 46, 62]. Furthermore, HSP70 has been shown to have a role in the 

prevention of build-up of misfolded proteins in stress granules [49]. Interestingly, a CpG in 

PFDN6 was the top-most differentially methylated CpG in the FTLD3 (FTLD-tau) EWAS. This 

gene encodes for the subunit 6 of prefoldin, which is a co-chaperone of HSP70, regulates 

the correct folding of proteins and is involved in the proper assembly of cytoskeletal 

proteins [44]. Prefoldin proteins themselves have also been associated with 

neurodegenerative disease pathology [44, 75]. 

Our functional enrichment analysis of the <OTUD4-modules=, FTLD1-brown, FTLD2-blue and 

FTLD3-blue, showed that these modules were enriched for GO terms (for cellular 

component) relating to synapses, including <synaptic membrane=, <asymmetric synapse=, 

<postsynaptic density=, and <glutamatergic synapse=. Cell-type enrichment analysis revealed 

that these three modules were also significantly enriched for markers of 

pyramidal/glutamatergic cells. These findings were further substantiated with expression 

patterns of OTUD4 and CEBPZ single-nuclei and mouse expression data. Glutamate, which is 

the most abundant excitatory neurotransmitter in the human brain [92], is typically 

associated with memory, learning and other higher cognitive functions [12], and has also 

been implicated in neurodegeneration [58]. The contribution of neurotransmitter deficits, 

and specifically, changes in glutamate and glutamate signalling have been described in FTD 

[2, 14, 29, 33, 56]. DNA methylation has previously been suggested to be an important 

regulator of glutamatergic synaptic scaling (also known as homeostatic synaptic plasticity), 

with demethylation found to be associated with increased glutamatergic synapse strength 

in cultured neurons [52], we here find evidence supporting disruption of such processes in 

FTLD. Homeostatic synaptic plasticity has been linked to neurodegeneration, possibly with 

loss of function due to pathogenesis, or through an increase as a mechanism to preserve 
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function despite neurodegenerative deficits [60]. There is a known link between RNA 

granule formation and synapse plasticity; with RNA-binding protein function known to be 

particularly important. This has been proposed to be dysregulated in FTLD, whereby 

mutations in the genes encoding for TDP-43 and FUS lead to dysregulated granule formation 

dynamics and consequent disturbances in mRNA translation and synaptic function [45, 70]. 

Moreover, the levels of known OTUD4 protein interactor FMRP are regulated by 

ubiquitination in response to stimulation by the metabotropic glutamate receptor [31, 57], 

and this is involved in the regulation of synaptic plasticity, providing another possible link 

between separate findings in our study.  

The NFATC1 gene, which was also identified as an FTLD-associated loci in the EWAS meta-

analysis, encodes the nuclear factor of activated T cells 1, and belongs to the NFAT family of 

activity-dependent transcription factors. In the nervous system, the NFAT family has been 

shown to play a regulatory role in neuronal excitability, axonal growth, synaptic plasticity, 

and neuronal survival [80]. Aberrant NFAT-related signalling has been reported in AD, and 

NFAT1 seems to be selectively activated early in cognitive decline [1], supporting its possible 

involvement in the pathogenesis of neurodegenerative diseases/dementias.  

As is the case with any other genome-wide DNA methylation study, there are key 

limitations. First, by studying post-mortem tissue, i.e., the end stage of the disease, causality 

cannot be elucidated. Second, because FTLD is heterogeneous, comprising several 

pathological subgroups and subtypes, and given the relatively small sample size per subtype, 

this might have hampered the identification of additional DNA methylation alterations, 

especially subtype-specific variation. Notwithstanding, we focused on the shared DNA 

methylation variation across FTLD subgroups/subtypes, and we used independent and 

complementary analytical approaches (EWAS followed by meta-analysis, and co-

methylation network analysis followed by preservation analysis) and datasets, which 

identified concordant results and consistently identified the involvement of OTUD4 and 

related genes in FTLD. 

In summary, this study identified genome-wide DNA methylation changes in post-mortem 

frontal cortex tissue of FTLD subjects, highlighting new FTLD-associated loci, and implicated 

DNA methylation as a mechanism involved in the dysregulation of important processes such 
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as ubiquitin and glutamatergic signalling in FTLD. Our findings increase the understanding of 

the biology of FTLD and role of DNA methylation its pathophysiology, pointing towards new 

avenues that could be explored for therapeutic development. 
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