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Abstract

The validation of genome-wide association signals for tuberculosis (TB) susceptibility and the
development of type 2 diabetes (T2D) across diverse populations remain problematic. The
ancestry-specific variants (coding and non-coding) that contribute to previously identified
differentially expressed genes (DEG) in patients with TB, T2D and comorbid TB-T2D, remain
unknown. Identifying ancestry-specific expression quantitative trait loci (€QTLs) can aid in
distinguishing the most probable disease-causing variants for population-specific therapeutic
interventions. Therefore, this study conducted cis-eQTL mapping in TB, T2D and TB-T2D
patients to identify variants associated with DEG. Both genotyping (Infinium H3A array with
~2.3 M markers) and RNA sequencing data of 96 complex multi-way admixed South Africans
were used for this purpose. Importantly, both global-and local ancestry adjustment were
included in statistical analysis to account for complex admixture. Unique gene-variant pairs
were associated with TB-T2D on chromosome 7p22 whilst adjusting for Bantu-speaking
African  ancestry (PRKARIB:rs4464850; P=7.68e-07) and Khoe-San ancestry
(PRKARIB:1s117842122; P=3.66e-07). In addition, IFITM3 (a biomarker for the development
of TB) was associated with three SNPs (rs11025530, rs3808990, and rs10896664) on
chromosome 11p15 while adjusting for Khoe-San ancestry. Our results also indicated that the
upregulation of the NLRP6 inflammasome is strongly associated with people with TB-T2D
while adjusting for Khoe-San ancestry. Three African-specific eGenes (NLRP6, IFITM3 and
PRKARIB) would have been missed if local ancestry adjustment was not conducted. This study
determined a list of ancestry-specific eQTLs in TB-T2D patients that could potentially guide

the search for new therapeutic targets for TB-T2D in African populations.

Author Summary

The limitation of genome-wide association study (GWAS) is that the particular biological
pathway impacted by a variant might not be evident. eQTL mapping can be conducted to
determine the impact that a genetic variant might have on the expression of a specific gene in
a biological pathway. In this study the use of cis-eQTL mapping was explored to elucidate the
underlying genetic variants that regulate gene expression between TB-T2D and T2D patients,
and between TB patients and healthy controls with multi-way genetic admixture from South
Africa. Using RNA sequencing data and newly genotyped dataset of 96 individuals (Illumina
Infinium H3Africa array with ~2.5 M markers), we were able to identify ancestry-specific

eQTLs. eQTLs of indigenous Khoe-San ancestral origin were identified in genetic regions
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previously implicated in TB and T2D in African populations. If local ancestry was not
incorporated in the cis-eQTL mapping analysis these important African-specific eQTLs would
have been missed. Our results provide a list of possible ancestry-specific causal variants
associated with TB-T2 comorbidity that could guide the search for new therapeutic targets for
African-specific populations. Including populations with complex ancestry and admixture in
genetic studies is necessary to improve the quality of genetic research in sub-Saharan African

groups.

Introduction

The dual burden of tuberculosis (TB) and type 2 diabetes (T2D) is a global health problem [1].
Worldwide, an estimated 10 million cases of TB, caused by Mycobacterium tuberculosis
(M.th), were reported in 2020 [2]. The World Health Organisation (WHO) estimated that
African countries accounted for 25% of the estimated 10 million cases of TB, with South Africa
at the epicentre of the TB epidemic. More than 15% of all TB patients are estimated to have
diabetes which equates to approximately 1.5 million people who require directed therapy and
follow-up treatments to manage both diseases [3]. Currently, there is a lack of multidisciplinary
approaches to develop therapeutic interventions for infectious and non-communicable diseases

in Africa.

Over the past decade, the diabetes prevalence has increased in low- and middle-income
countries, where the TB epidemic is also gaining pace at an alarming rate [3—6]. Almost 80%
of individuals with T2D in sub-Saharan Africa are undiagnosed and may pose a substantial
threat to TB control efforts [7]. According to the International Diabetes Federation (IDF), the
diabetes prevalence in Africa is expected to increase by 48% (28 million people) in 2030 and
by 129% (55 million people) in 2045, the highest predicted increase of all the IDF Regions [3].
Furthermore, the corona virus disease-19 (COVID-19) pandemic has adversely affected the
global efforts to control both TB and T2D, most notably in low-and middle-income countries

with populations of diverse ancestry and admixture.

The co-epidemic of TB and T2D is not confined to South Africa or the African continent. South
India (54%), some Pacific Islands (40%), South Korea (26.5%), Texas-Mexico (25%), and
Ethiopia (15.8%) also suffer from larger numbers of diabetes-associated TB [3]. Moreover,

clinical characteristics of TB-T2D vary considerably between countries, for example, the
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100  median glycated haemoglobin (HbA1c) among TB-T2D patients in Indonesia is 11.3%, in Peru
101 10.6%, in South Africa 10.1% and in Romania 7.4% [4].There are thus clear epidemiological
102 and population-specific genetic disease risk factors contributing to TB-T2D comorbidity.

103

104  Distinct differentially expressed gene (DEG) profiles were identified in blood to determine the
105  underlying immunological mechanisms that contribute to TB-T2D comorbidity [8]. RNA
106  sequencing of whole blood identified a reduced type 1 interferon response in both TB-T2D
107  patients and TB patients with intermediate hyperglycaemia compared to TB-only patients.
108  Nonetheless, the focus of the study was to identify biomarkers based on DEG between TB-
109  T2D compared to TB, T2D and healthy controls for diagnostic purposes. Thus, the contribution
110  of ancestry-specific genetic variants (coding or non-coding) to the DEG in TB-T2D patients
111 compared to TB, T2D, and healthy controls remains unknown.

112

113 A multi-omics approach, such as Expression Quantitative Trait Loci (eQTL) mapping, can
114  provide important information regarding the underlying biological mechanisms of genetic
115  variants (coding or non-coding variants) by linking these to DEG [9]. eQTLs are genetic
116  variants that are associated with gene expression, either located within a short distance (1 Mega
117  base pairs) on either side of a gene’s transcription starting site (TSS) (cis-eQTLs) or located at
118  longer distances (5 Mega base pairs) (trans-eQTLs) [10]. This enables the identification of
119  interindividual regulatory candidate variants of transcription and improves our understanding
120  of the effects of genetic polymorphisms on tissue-specific variability in physiological processes
121 [11]. Consequently, eQTL data can be used to model regulatory networks and provide a better
122 understanding of the underlying phenotypic variation.

123
124 The major goal of identifying eQTLs is to reduce the number of candidate causal variants for

125  follow-up verification by functional assays [9]. Once identified, eQTLs can provide invaluable
126  genomic information to enhance the power of future GWAS and assist in identifying the most
127  probable disease-causing variants associated with TB-T2D [12]. Currently, the lack of eQTL
128  mapping studies in populations with southern African ancestry hinders the progress of
129  comparative analysis between South African and other populations in terms of differences in
130  genetic architecture underlying gene expression variation [10].

131

132 Given the complex nature of both TB and T2D (onset of disease, progression, and treatment

133 variability), cis-eQTL mapping was done on samples from South African patients to identify
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134 the most probable candidate population-specific causal variants in TB-T2D compared to T2D-
135  only, and in TB-only patients compared to healthy individuals. This was done to understand
136  the genetic risk factors contributing to TB development in T2D patients and healthy controls.
137  Two ancestry adjustment methods, namely Global Ancestry Adjustment (GlobalAA) and Local
138  Ancestry Adjustment (LocalAA), were used. The unique genetic diversity and admixture
139  present in populations in South Africa facilitated the study of ancestry-specific eQTLs. This
140  involves five ancestries from various continents, with differential exposure to M.7b throughout
141  history, contributing to the genomic architecture in the country [13].

142

143  Results

144  Population structure and ancestry inference of study population

145  The summary statistics and distributions of the age, sex, body mass index (BMI), and HbAlc
146  for each ancestry are summarized in the supplementary materials (Table S3, Fig S3-5). As
147  expected, there was a significant difference in HbAlc levels between T2D patients and TB-
148  T2D patients compared to no T2D (P value = 4.17e-06).

149

150  Cross validation was conducted to identify the correct number of contributing ancestral
151  populations (K=3-8) of the admixed population, before inferring global and local ancestry. The
152  estimations indicated that K=5 had the lowest cross validation error (k=0.419, Table S4) and
153  thus represented the most likely number of contributing ancestral populations in the cohort. Fig
154 1 represents the global ancestry proportions of all 96 admixed individuals included in the
155  statistical analysis. For more refined global ancestry proportions, RFMix was used to infer local
156 and in turn global ancestry. Bantu-speaking African ancestry contributed ~40.7% of the
157  average global ancestry, indigenous Khoe-San ~30.8%, European ancestry ~19.8%, Southeast
158  Asian ancestry ~6.9% and East Asian ancestry ~1.9% (Fig 1). In addition to estimating global
159  ancestry using RFMix, local ancestry estimation was conducted, which involves the inference
160  of ancestry at each genomic locus. The local ancestry represented in karyograms indicates the
161  ancestry of each genomic region from chromosome 1 to 22 (Fig S8). Noticeably, the local
162 ancestry patterns appear to be highly heterogeneous, which is in line with previous studies
163 [13,14]. The successful inference of both global and local ancestry allowed the efficient
164  inclusion of this covariate in the subsequent statistical models.

165

166


https://doi.org/10.1101/2022.10.19.512814
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.19.512814; this version posted October 19, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

167

168 ®
169
170

171  Fig 1. RFMix analysis results using K=5 clusters to infer global ancestry proportions for all 96 admixed
172 South African individuals (SA). The average proportion of Southeast Asian (Malaysian in purple),
173 African (Luhya and Eson in red), East Asian (Chinese in orange), European (England in green), and
174 Khoe-San (Nama in blue) genetic ancestry were 6.9%, 40.7%, 1.9%, 19.8%, and 30.8%, respectively.
175  Displayed populations from left to right on the x-axis: admixed South African individuals from this
176  study (n=96), Khoe-San ancestry (Nama gathered from the European Genome-Phenome archive),
177  Northern and Western European ancestry (GBR from the 1000GP phase 3), East Asian ancestry (CHB
178  from the 1000GP phase 3), Western African ancestry (LWK and MSL from the 1000GP phase 3), and
179 Southeast Asian ancestry (Malaysian from Wong et al.’s 2013 study).

180

181 DEGs amongst TB-T2D-, T2D- and TB patients and healthy

182 controls

183  Intotal, 1,581 DEGs were identified when comparing TB-T2D and T2D patients. 178 DEGs
184  were identified between TB patients and healthy controls (Table S5). When quantifying the
185  number of DEGs it became apparent that individuals with preT2D (no TB) had no distinct
186  phenotype compared to T2D patients and healthy controls (Tables S5). For this reason, as well
187  as the low sample number, individuals with preT2D were excluded from the eQTL analysis.
188  Since we were interested in investigating the genetic risk factors (identified through DEG)
189  contributing to TB development in T2D patients and healthy controls, TB-IH patients were
190  excluded from the analysis. Furthermore, DEG analysis of TB-IH patients compared to healthy
191  controls, preT2D and T2D only, were previously reported (Table S5) [8].

192

193  Although different DEGs analysis methods (edgeR, limma and voom in R versus DESeq2)
194 were used, this study validated the results on the same cohort as presented in Eckold et al. More

195  specifically, overlapping DEGs (across the two studies) include, BATF2, SOC3, Septin 4,
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196  ANKRD?22, C1QA, B, C and GBP5 when comparing TB patients and healthy controls (Table
197  S6 and S7).

198  Ancestry-specific eQTLs identified between TB patients and

199  healthy controls

200  The eGenes (of which gene expression is associated with at least one genetic variant) and the
201  eQTLs with the corresponding assigned ancestry for each statistical analysis are shown in
202  Table 1. In total, five significant eGenes (P value <1e-06) were identified. Two of these were
203  identified using LocalAA and three with GlobalAA. Notably, one eGene of Khoe-San origin
204  (ENSGO00000269981.1) was identified using GlobalAA. This eGene is located on chromosome
205 1 and has one transcript which is a splice variant, with no known biological function. Four
206  eQTLs were associated with this eGene (rs2088212; rs2088210; rs10916169; rs903697) and
207  appear to be in linkage with each other (Table 1).

208

209  Using LocalAA, the eGene protein Kinase cAMP-Dependent Type I Regulatory Subunit Beta
210  (PRKARIB) was identified. An eQTL (rs4464850) was identified to affect the expression of
211  PRKARIB when comparing TB patients and healthy controls whilst adjusting for Bantu-
212 speaking African ancestry. Interestingly, an eQTL (rs117842122) affecting the expression of
213 PRKARIB was also identified whilst adjusting for Khoe-San ancestry, when comparing TB-
214 T2D to T2D patients. This suggests that this eGene may be implicated in TB progression in
215  T2D patients and healthy controls whilst adjusting for Bantu-speaking African ancestry and
216  Khoe-San ancestry.

217

218  Although there are examples where one genetic variant affects the expression of a gene,
219  previous studies suggest that it is more likely that multiple variants affect the expression of a
220  gene [15]. In support of this, our data shows that two eQTLs (rs321909 and rs12459238) both
221  appear to affect the expression of ARID3A (AT-Rich Interaction Domain 3A) while adjusting
222 for East Asian ancestry (Table 2). In addition, ARID3A was also identified when comparing
223 TB-T2D to T2D patients while adjusting for Khoe-San ancestry. This suggests that this eGene
224  may be implicated in TB progression in both T2D patients and healthy controls. All gene-
225  variant pairs identified with a P value threshold of < 1e-04 are summarized in table S8 for TB
226  patients compared to healthy controls.

227
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228  Common pathways across eGenes were investigated using GO analysis. When only including
229  eGenes with a P value <le-06, no statistically significant (FDR corrected < 0.05) GO results

230  were observed. However, when decreasing the cut-off to a less stringent value of <le-04,
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Table 1. Unique eGenes significantly associated (P value <le-06) with TB patients compared to healthy controls for each ancestry using GlobalAA

and LocalAA.
eGene SNP ID P value Gene Location Ancestry Method
RBCKI rs6041222  1.680e-07 20:12223190 Bantu-speaking African; East Asian; European; GlobalAA
Southeast Asian
ARID3A 1s321909 7.776e-08 19:52799034 Bantu-speaking African; East Asian; European; GlobalAA
Southeast Asian
ENSG00000269981.1  rs2088212  7.196e-07 1:227763544 All ancestries GlobalAA
ENSG00000269981.1  rs2088210  7.196e-07 1:227763840 All ancestries GlobalAA
ENSG00000269981.1 1510916169  7.196e-07 1:227764857 All ancestries GlobalAA
ENSG00000269981.1 rs903697 7.196e-07 1:227766845 All ancestries GlobalAA
PRKARIB rs4464850 7.679e-07 7:62169785 Bantu-speaking African LocalAA
MRPL28 1579630695  7.884e-07 16:78831326 Bantu-speaking African; East Asian; European; LocalAA

Southeast Asian

Table 2. Differential lead SNPs (P value <le-06) for the same eGene for TB patients compared to healthy controls using GlobalAA and LocalAA.

eGene ID SNP ID P value Gene Location Ancestral Origin Method
SLC6AI12 rs17009851 2.341e-07 12:83084188 Bantu-speaking African; European ; East Asian ; Southeast Asian GlobalAA
ARID3A rs321909 7.776e-08 19:52799034 East Asian GlobalAA
SLC6AI2 rs17010578 1.460e-08 12:83457942 Bantu-speaking African; European ; East Asian ; Southeast Asian LocalAA
ARID3A rs12459238 2.447e-07 19:16593359 East Asian LocalAA
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241  statistically significant results were observed. Similar results were obtained previously by
242 Eckold et al., with genes involved in the type 1 interferon (IFN) signalling pathway, cellular
243  response to type 1 IFN and the IFN-alpha/beta signalling pathways between TB patients and
244 healthy controls while adjusting for Khoe-San ancestry (Table S10). In addition, a NOD-like
245  receptor signalling pathway was identified between TB patients and healthy controls while
246  adjusting for Khoe-San ancestry (Table S10).

247

248  Ancestry-specific eQTLs identified between TB-T2D and T2D

249 patients

250 The eGenes and the eQTLs with the corresponding assigned ancestry for each statistical
251  analysis is shown in Table 3. In total, four significant (P value <le-06) eGenes were identified
252 using LocalAA. Three eGenes were identified while adjusting for of Khoe-San ancestry and
253  one while adjusting for East Asian ancestry. An eQTL (rs346066) of Khoe-San ancestry origin,
254  affecting the expression of a long non-coding RNA (LINC01002) was identified while
255  adjusting for Khoe-San ancestry. Two eGenes (PRKARIB and ARID3A), were identified
256  between TB-T2D and T2D patients as well as TB patients and healthy controls while adjusting
257  for Khoe-San ancestry, but were associated with different eQTLs (rs117842122 and
258  1s56369375). Importantly, both eGenes would have been missed if LocalAA was not used. An
259  eQTL (rs2571075) affecting the expression of the ATP Binding Cassette Subfamily A Member
260 7 (ABCA7) was identified while adjusting for East Asian ancestry.

261

262  Multiple eQTLs affecting the expression of Golgi-associated secretory casein pathway kinase
263 (FAM20C), were identified (Table 4). An additional eQTL (rs12531478) affecting the
264  expression of FAM20C was identified using LocalAA while adjusting for Bantu-speaking
265  African, East Asian and Khoe-San ancestry. Interestingly, Khoe-San ancestry seems to be
266  associated with FAM20C when using LocalAA, but not GlobalAA. Two eQTLs (rs35219837
267  and rs1186214) affecting the expression of Post-Glycosylphosphatidylinositol Attachment to
268  Protein 6 (PGAP6), were identified when comparing TB-T2D and T2D patients while adjusting
269  for Khoe-San ancestry. Three eQTLs (rs11025530, rs3808990 and rs10896664) affecting the
270  expression of NOD-like receptor family Pyrin Domain Containing 6 protein (NLRP6), were
271  identified when comparing TB-T2D and T2D patients while adjusting for Khoe-San ancestry.
272 Three eQTLs (rs55970487, rs77247842 and rs12282149) affecting the expression of the IFN-
273  induced transmembrane protein 3 (/FITM3), were identified when analysing TB-T2D and T2D

10
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278

Table 3. Unique eGenes significantly associated (P value <le-06) with TB-T2D patients compared to T2D patients for each ancestry using

GlobalAA and LocalAA.
Gene SNPID P value Gene Location Ancestral Origin Method
LINCO01002 LncRNA rs346066 9.523e-07 19:44217836 Khoe-San LocalAA
PRKARIB rs117842122 3.655e-07 7:76842468 Khoe-San LocalAA
ARID3A rs56369375 7.489¢-07 19:52770105 Khoe-San LocalAA
ABCA7 rs2571075 6.980e-07 19:44873148 East Asian LocalAA

Table 4. Differential lead SNPs (P value <le-06) for the same eGene for TB patients compared to healthy controls using GlobalAA and LocalAA.

Gene 1D SNP ID P value Gene Location Ancestral Origin Method
FAM20C rs11763876 7.169¢-09 7:7249747 Bantu-speaking African ; East Asian GlobalAA
FAM20C rs78423890 7.169e-09 7:17071336 Bantu-speaking African ; East Asian GlobalAA
FAM20C 1s57549526 7.169¢-09 7:30198960 Bantu-speaking African ; East Asian GlobalAA
FAM20C 1s62460527 7.169¢-09 7:44908078 Bantu-speaking African ; East Asian GlobalAA
FAM20C rs183319053 7.169e-09 7:44910466 Bantu-speaking African ; East Asian GlobalAA
FAM20C rs12616494 7.169e-09 7:44910682 Bantu-speaking African ; East Asian GlobalAA
FAM20C rs188203968 7.169¢-09 7:44911023 Bantu-speaking African ; East Asian GlobalAA
FAM20C r$s62460528 7.169¢-09 7:44912066 Bantu-speaking African ; East Asian GlobalAA
FAM20C rs115428191 7.169¢-09 7:54748201 Bantu-speaking African ; East Asian GlobalAA
FAM20C rs57549526 4.107e-09 7:30198960 Khoe-San GlobalAA
MRPL28 r$759202 3.817e-08 16:5114437 Khoe-San GlobalAA
PGAP6 rs35219837 1.355e-07 16:84193640 Khoe-San GlobalAA
NLRP6 rs11025530 6.415e-07 11:20383324 Khoe-San GlobalAA
NLRP6 r$3808990 6.415e-07 11:20384800 Khoe-San GlobalAA
IFITM3 rs12282149 8.072e-07 11:88092069 Khoe-San GlobalAA
FAM20C rs12531478 2.266e-09 7:15239894 Bantu-speaking African LocalAA
FAM20C rs12531478 1.242e-09 7:15239894 East Asian LocalAA
FAM20C rs12531478 1.237e-09 7:15239894 Khoe-San LocalAA
MRPL28 rs113496159 9.156e-07 16:76054857 Khoe-San LocalAA
MRPL28 rs17677328 9.156e-07 16:76055758 Khoe-San LocalAA
PGAP6 rs11862144 8.888e-08 16:54507876 Khoe-San LocalAA
NLRP6 rs10896664 5.175e-08 11:57707387 Khoe-San LocalAA
IFITM3 1877247842 3.150e-07 11:83811362 Khoe-San LocalAA
IFITM3 r$55970487 3.150e-07 11:83816191 Khoe-San LocalAA

11
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279  patients while adjusting for Khoe-San ancestry. Three eQTLs (rs759202, rs113496159 and
280  rs17677328) affecting the expression of mitochondrial ribosomal protein 128 located
281  (MRPL2S8), were also identified when comparing these two patient groups while adjusting for
282  Khoe-San ancestry. All gene-variant pairs identified with a P value threshold of <le-04 are
283  summarized in table SO for TB-T2D vs T2D patients.

284

285  Common pathways across eGenes were investigated using GO analysis. When only including
286  eGenes with a P value <le-06, no statistically significant (FDR corrected < 0.05) GO results
287  were observed. However, when decreasing the cut-off to a less stringent value of <le-04,
288  statistically significant results were observed. GO analysis indicated a possible upregulation of
289  genes in lung tissue and downregulation of genes in adipose tissue while adjusting for Khoe-
290  San ancestry (Fig S9 and S10). Multiple transcription factors were identified while adjusting
291  for Southeast Asian ancestry. This suggests that Southeast Asian ancestry may have a different
292  biological pathway that drives the development of TB in healthy individuals compared to the
293  other four ancestries in this study. Comparable results were observed between TB-T2D and
294  T2D patients, and TB patients and healthy controls, with genes clustering together in the IFN
295  alpha-beta signalling pathway and NOD-like signalling pathway in both comparisons. This
296  could indicate that both pathways contribute to TB development in T2D patients and healthy
297  controls.

298

299 Interestingly, some eGenes overlapped in the GO analysis for both phenotypes (TB patients
300  compared to healthy controls and TB-T2D patients compared to T2D) and clustered in the same
301  genetic regions (Fig 2). FAM20C and PRKARIB are both located on chromosome 7p22,
302 ARID3A and ABCA7 overlap on chromosome 19p13 and NLRP6 and IFITM3 overlap on
303  chromosome 11pl15. This may indicate genetic regions of interest in the context of TB-T2D

304  comorbidity.

305
Proportion of overlapping . . -
genes in gene sets Enrichment P-value overlapping genes
chr7p22 -
chrl9pl3
chrllpl5 -
A———. — ' L S
MAUNON DN OO TNNVNONVTODOVTODONVRO VNN OIT NN LN
NNYNNQOQOOOO OO0 OGO OO ONNA NN N AN SN NIH=2>2R &
B de o b oA RS Sl AT B A QQQQQNNNNNNNNNQ%.&,‘?@Qﬁgsg‘g\?g
Proportion -log10 adjusted P—valuegé: O*s § TTES
306
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307  Fig 2. GO analysis of common pathways across significant eGenes for both phenotypes (TB
308  patients compared to healthy controls and TB-T2D patients compared to T2D). The proportion
309  of significant eGenes overlapping between the two phenotypes on similar genetic regions are
310  showcased on the far left, with their corresponding overlapping eGenes on the far-right hand
311  side. The enrichment p-value are indicated in the middle, with chromosome 7p22 and
312  chromosome 19p13 with the strongest enrichment p-value for overlapping eGenes.

313
314  Discussion

315  Given the absence of TB-T2D comorbidity studies investigating complex multi-way admixed
316  South African populations, this study aimed to identify ancestry-specific eQTLs that contribute
317  to the progression of TB in healthy individuals and T2D patients. Due to the complex multi-
318  way admixed nature of the South African populations, this study used two ancestry adjustment
319  methods (GlobalAA and LocalAA). To our knowledge, this is the first study to link ancestry-
320  specific genetic variants responsible for gene expression in TB, T2D, and TB-T2D patients.
321

322 An eQTL (rs4464850) affecting the expression of PRKARIB, was identified when comparing
323  TB patients with healthy controls while adjusting for Bantu-speaking African ancestry.
324  Interestingly, when comparing TB-T2D patients with T2D patients, an eQTL (rs117842122)
325  was identified using LocalAA while adjusting for Khoe-San ancestry. PRKARIB encodes for
326  an important protein kinase regulating the subunit of cyclic AMP-dependent protein kinase A
327 (PKA). PRKARIB is mostly responsible for the cyclic adenosine monophosphate (cAMP)-
328  dependent protein kinase (PKA) signalling pathway which is key in regulating energy balance,
329  glucose homeostasis, and lipid metabolism [16]. A decrease in PKA activity indicated
330 improved lipid profiles in a cohort of obese and overweight African American youths and
331  suggests that an increase in PKA activity may contribute to obesity and insulin resistance [16].
332 This implies that the upregulation of PRKARIB increases PKA signalling molecules and other
333  proteins regulated by the cAMP signalling pathway and may be associated with T2D and other
334  obesity-related comorbidities in this cohort of African ancestry origin. Notably, only African
335  ancestry was associated with this eGene (PRKARIB) and both eQTLs (rs117842122 and
336  rs4464850) affecting the expression of PRKARIB, would have been missed if only GlobalAA
337  was used in statistical analysis.

338
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339 A similar trend was observed for the eGene, ARID3A. Two eQTLs (rs12459238 and rs321909)
340  affecting the expression of ARID3A, were identified when comparing TB patients with healthy
341  controls while adjusting for East Asian ancestry. Similar to PRKARIB, when comparing TB-
342 T2D with T2D patients, an eQTL (rs56369375) of Khoe-San ancestry origin was identified
343  using LocalAA while adjusting for Khoe-San ancestry. ARID3A is a potential biomarker for
344  TB diagnosis and treatment response in peripheral blood of TB patients [17]. In addition,
345  ARID3A plays an important role in immune responses against intracellular pathogens by
346  controlling cell cycle progression via the RBI1/E2F1 pathway and is essential for the
347  development of B-cells. Since both eGenes (PRKARIB and ARID3A) were identified in both
348  phenotypes, it suggests that these two eGenes contribute to TB progression in both T2D
349  patients and healthy controls.

350

351 eQTLs affecting the expression of PGAP6, NLRP6 and IFITM3, were identified when
352  comparing TB-T2D and T2D patients while adjusting for Khoe-San ancestry. IFITM3 forms
353  part of a four-gene signature that is able to distinguish active TB patients from healthy controls
354  [18] and is also one of the seventeen TB biomarkers in UK and Indian populations [19].
355  IFITM3, localized on chromosome 11p135, is a genetic region that has previously been linked
356  to TB susceptibility[20,21], and paediatric TB patients of Han Chinese origin [22,23]. PGAP6
357  is upregulated in gestational diabetes patients and is inversely correlated with gene expression
358 in type 1 diabetes [24]. NLRP6 mediates inflammasome activation in response to various
359  pathogen-associated signals, as part of the sensor component of the NLRP6 inflammasome
360  [25-27].

361

362  Inflammasomes play a critical role in innate immunity and inflammation by assembling in the
363  cytosol and acting as a recognition receptor to bind pathogens and other damage-associated
364  signals [26,28]. Interestingly, the dysregulation of inflammasomes has been found to be
365 involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis,
366  atherosclerosis, T2D and obesity [29]. When pro-inflammatory macrophages infiltrate the
367  pancreatic islets of T2D patients, it drives the production of IL-lbeta via the NLRP3
368  inflammasome [30]. Beta-cell proliferation is initially favoured by low concentrations of IL-
369  lbeta, however, chronically elevated levels of IL-1beta may lead to beta-cell failure [31]. In
370  contrast, administration of an IL-1 receptor antagonist, improves glucose tolerance, beta-cell
371  function, and systematic inflammation in humans. Moreover, metabolites produced by

372  intestinal microbiota may drive the development of insulin resistance in obesity and T2D by
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373  initiating an inflammatory response via NLRP6 [31]. Henao-Mejia et al. confirmed the
374  observation that dysbiosis of the microbiota is linked to metabolic diseases in NLRP6 mutant
375  mice [32]. Furthermore, NLRP6 mutant mice have enhanced activation of MAPK and NF-kB
376  signaling via the activation of Toll-like receptors (TLR) and therefore an increased number of
377 immune cells in circulation [33].

378

379  NLRP6 is a negative regulator of inflammatory signaling and NF-kB signaling in response to
380  bacterial pathogens in myeloid cells 7. Therefore, NLRP6 expression may prevent clearance of
381  both gram-positive and gram-negative bacterial pathogens. Inflammasome inhibitors that
382  target the polymorphisms of NLRP6 in TB-T2D patients may provide new means of therapeutic
383  interventions for patients with Khoe-San ancestry and may help alleviate the dual burden of
384  both diseases.

385

386 Interestingly, both NLRP6 and IFITM3 are located on chromosome 11p15. This region was
387  associated with multiple facets of innate and adaptive immune responses. The IRF7 gene is
388  located in this region and was associated with developing severe TB [34]. Chromosome 11 was
389 identified in a meta-analysis and a trans-ethnic fine-mapping study to be associated with TB
390 and includes the involvement of the WTI1 signalling pathway [20,35]. Interestingly, the
391 KCNQI gene cluster maps within the 11p15.5 imprinted domain and variants intronic to
392  KCNQI influence diabetes susceptibility which is maternally inherited during early
393  development [36]. Furthermore, KNCNQ1 has been established as a candidate susceptibility
394  gene for T2D and influences the K 7.1 voltage-gated potassium channel subunit located in
395  human beta cells [37]. This evidence points to the involvement of chromosome 11p15 in the
396  development of T2D in individuals of Khoe-San ancestry origin.

397

398  AneQTL (rs2571075) affecting the expression of ABCA7, was identified when comparing TB-
399  T2D with T2D patients while adjusting for East Asian ancestry. ABCA7 plays a role in multiple
400  biological processes such as lipid homeostasis, macrophage-mediated phagocytosis, binds
401  APOAI, apolipoprotein-mediated phospholipid efflux from cells and possibly mediates
402  cholesterol efflux [38—41]. The impact on TB or T2D remains unclear, however, it is involved
403  in the phagocytosis of apoptotic cells by macrophages. Macrophage phagocytosis is stimulated
404 by APOA1 or APOA?2 upon the stabilization of ABCA7 [42].

405
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406  The eGenes that overlapped in certain genetic regions were previously associated with TB
407  susceptibility. Two eGenes (FAM20C and PKRAIB), are both located on chromosome 7p22.
408  This region is associated with TB susceptibility in a Ugandan population [43]. Likewise,
409  ARID3A and ABCA7 are located on chromosome 19p13. This region was associated with TB
410  susceptibility and linked with the CD209 gene. This gene — coding for Dendritic Cell-Specific
411  ICAM3-Grabbing Non-integrin (DC-SIGN), is one of the major receptors for M.tb on human
412 dendritic cells. A relatively large number of studies evaluated the association between CD209
413 polymorphisms (-336A/G, -871A/G) and TB risk, but the results have been inconsistent due to
414  limited sample sizes and different studies populations [44,45].

415

416 It has been hypothesized that the inclusion of local ancestry in eQTL mapping increases the
417  power to identify novel ancestry-specific eQTLs [46,47]. Most of the eGenes and the eQTLs
418  with their corresponding assigned ancestry would not have been identified if Local AA was not
419  used. Furthermore, the eQTL (rs12531478) of Khoe-San ancestry origin, affecting the
420  expression of FAM20C, was only elucidated once applying LocalAA. This indicates that
421  important indigenous African-specific genetic variants could be missed when only global
422  ancestry is used to account for population structure in complex admixed South African
423  individuals.

424

425  Given our modest sample size, findings should be validated in ethnically similar cohorts.
426  Furthermore, whole-genome sequencing could help identify structural variants (small
427  insertions, deletions (indels), and larger structural variations, such as duplications, inversions,
428  and translocations involved in TB-T2D comorbidity. Additionally, future studies should
429  investigate the possible role of methylation (ATAC sequencing) on the DEG, since multiple
430  mechanisms (not only genetic variants) could influence gene expression. cis-eQTLs only
431  identify nearby variants located near DEG (1Mb upstream or downstream). Although the extent
432  of involvement of frans-eQTLs is still uncertain [9,48], it would still be worthwhile to
433  investigate. In addition, genes that are located near GWAS-significant hits from previous
434 studies that are also identified to be eGenes may be candidate causal genes. Therefore, the
435  different lead variants identified for each ancestry for the same eGenes should be included in
436  future studies to compare it to previous GWAS hits for TB and T2D. This will assist with the
437  prioritization of GWAS hits for inclusion in follow-up functional studies. Together, gene-
438  variant pairs can give supporting evidence (genetic information) for GWAS hits.

439
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440  In conclusion, incorporating local ancestry in cis-eQTL mapping enabled the identification of
441  ancestry-specific eQTLs between TB-T2D and T2D patients, as well as between TB patients
442 and healthy controls. Furthermore, a list of possible candidate disease-causing variants was
443 identified between TB-T2D and T2D patients, as well as between TB patients and healthy
444 controls which could be functionally validated. This could facilitate the early identification of
445  T2D patients at risk of developing TB and may improve the health of complex multi-way
446  admixed South Africans.

447

448  Material and methods

449  Ethics Approval and sample collection

450  Sample collection (protocol number N13/05/064) and the research presented here (S20/02/041)
451  were both approved by the Health Research Ethics Committee (HREC) of the Faculty of
452  Medicine and Health Sciences, Stellenbosch University. The research was conducted
453  according to the principles expressed in the Declaration of Helsinki (2013). Written informed
454  consent was obtained from all study participants before recruitment and blood collection.

455

456  Healthy controls, T2D patients without TB as well as TB patients with and without T2D were
457  recruited between December 2013 and February 2016 from communities located in the
458  Northern Suburbs of Cape Town, South Africa as part of the TANDEM study [4]. TB patients
459  were either bacteriologically confirmed (culture positive) or diagnosed by GeneXpert. All
460  participants were between the age of 18 and 70 years and tested negative for HIV. Participants
461  were excluded from the study if they were already on TB medication, receiving steroids
462  therapy, had other serious conditions including cancer, were pregnant, or using excessive
463  amounts of alcohol or illicit drugs. Gestational or steroid-induced diabetes was also excluded.
464  Participants were classified into different groups based on reference laboratory HbAlc levels.
465  Healthy controls (n=23) and TB patients without T2D (TB only; n=10) had an Hb1Ac <5.7%
466  mmol/L. PreT2D (n=6) and TB patients with intermediate hyperglycaemia (TB-IH; n=19) had
467  an HblAc of 5.7% to < 6.5% mmol/L, T2D patients (n=28), including TB patients with T2D
468  (TB-T2D; n=10) had an Hb1Ac > 6.5 mmol/L.

469

470

471

472
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473  Genotype data
474  DNA was extracted for 96 individuals using the Qiagen Blood Midi kit (Qiagen, Germany) as

475  recommended by the manufacturer. RNA sequencing data of the same 96 study participants
476  were also available [8]. Genotype data was generated for all individuals using the Illumina
477  Infintum Human, Hereditary and Health (H3Africa) Consortium Array v2 (comprising ~2.3
478  million markers) at the Centre for Proteomic and Genomic Research, South Africa. The
479  H3Africa array was designed to efficiently capture and characterise the genetic diversity in
480  Africa [49]. GenomeStudio v2.04 (Illumina, Miami, United States) was used to calculate
481  intensity scores and call common variants (MAF > 5%) [50]. The software zCall was used to
482  recall variants (MAF > 1% and < 5%) [51]. Variants called by GenomeStudio were exported
483  as PLINK formatted files for downstream data analysis.

484

485 Quality control and imputation of genotype data

486  Quality control of the raw genotype data was done using a reproducible snakemake pipeline

487  (https://github.com/hennlab/snake-SNP_QC) to filter out low-quality samples and SNPs [52].

488  Quality control and filtering parameters applied to the raw genotypes are indicated in Fig S1.
489

490  GenomeHarmonizer version 3 [53] was used to align the data to the 1000 Genomes Phase 3
491  reference panel (Human genome build 37) [54], to update SNP IDs and remove any variants,
492  not in the reference panel. A minimum linkage disequilibrium (LD) of 0.3 with at least three
493  flanking variants was required for strand alignment. A secondary minor allele frequency
494  (MAF) alignment was also used at a threshold of 5%. Finally, the minimum posterior
495  probability to call genotypes in the input data was left at the default value of 0.4.

496

497  After filtering and quality control of the genotypic data, it was converted from a PLINK file
498  format to Variant Call Format (VCF) using PLINK v2.0 [55]. The Sanger Imputation Server
499  was used for phasing, using SHAPEIT2 [56], followed by imputation using the Positional
500  Burrows-Wheeler Transformation (PBWT) algorithm and the African Genome Resource Panel
501  [57]. VCF files were downloaded from the online server after imputation and converted to
502  PLINK ped/map files using a genotyping threshold of 0.7 (PLINK command: -vcf-min-gp
503  command and -output-missing-genotype N).

504
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505  The UCSC liftOver was used to convert the phased, imputed H3Africa genetic data from
506  reference genome Human genome build 37 (hg19) to Human genome build 38 (hg38) to ensure
507  compatibility with the gene expression data required to conduct the eQTL mapping [58]. After
508  performing the imputation, phasing, quality control and filtering, the final dataset comprised

509  of 4 224 844 variants and 96 individuals (summarized in Table S1 and Fig S2).
510

511 Global Ancestry Inference

512 The genotype data was merged with the appropriate source populations (summarized in Table
513 S2) using PLINK v2.0 [55], to generate input files required for global and local ancestry
514  inference. After merging, all individuals missing more than 10% of the genotypes were
515 removed, SNPs with more than 3% missing data were excluded and a Hardy-Weinberg
516  Equilibrium (HWE) filter of 0.01 was used. The software KING was used to determine
517  relatedness between individuals up to 2nd degree relatedness [59].

518

519  The software ADMIXTURE was used to investigate the population structure of the cohort and
520  to determine the correct number of contributing ancestries [60,61]. Each SNP in LD was
521  defined as 7% > 0.1 within a 50-SNP sliding window (advanced by 10 SNPs at a time) and was
522  removed for the purpose of computational efficiency. A total of 273,175 autosomal markers
523  remained after LD pruning. Global ancestry was inferred in an unsupervised manner for K=3-
524 8, where K represents the number of contributing ancestral populations. After establishing the
525  correct K number of contributing ancestries through cross-validation, the software RFMix was
526  used to infer global ancestry proportions for downstream statistical analysis (see specific
527  parameters below), since ADMIXTURE is not as accurate as haplotype-based analyses [62].
528

529 Local Ancestry Inference

530 The software RFMix was used to infer local ancestry [63]. Default parameters were used,
531  except for the number of generations since admixture, which was set to 15, consistent with
532  previous studies [13]. A total of 4,230,650 autosomal variants were included. For each
533  individual, consecutive phased alleles with the local ancestry assignment were collapsed into
534  BED files of haplotype blocks. These local ancestry BED files were then used to count the

535  number of African, Khoe-San, European, Southeast Asian, and East Asian alleles at each SNP.

536
537
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538 Gene expression data
539  Venous blood was collected using PAXgene Blood RNA tubes (PreAnalytiX). Sample

540  collection occurred at TB diagnosis (baseline) before TB treatment commenced. Total RNA
541  was extracted using the PAXgene Blood miRNA kit (Qiagen, Germany) with the semi-
542 automated QIAcube (Qiagen, Germany) [8]. RNA sequencing was conducted using the
543  NextSeq500 High Output kit v2 (Illumina) for 75 cycles. The polyA tail library preparation
544  method was used and single-end read sequencing was conducted (n=103) [8].

545

546  Quality control, filtering and trimming of raw reads were conducted with HTStream v1.3.1
547  (Releases s4hts/HTStream). Raw RNA sequencing reads were mapped to the human reference
548  genome (release GRCh38) using STAR v2.5.3a with default parameters [64]. Gene-level
549  quantification was performed with STAR Aligner using the GENCODE v34 annotation file
550  and a subsequent counting table was generated and used as input for DEG identification.
551  Quantified gene expression (TPM and raw counts) was filtered and normalized using the R-

552 package edgeR, limma and voom packages.

553
554 Cis-eQTL mapping with LocalAA and GlobalAA

555  An approach similar to that of Zhong et al. (2018) and Gay et al. (2019) was used to
556  incorporate both global and local ancestry whilst conducting cis-eQTL mapping in a multi-way
557  admixed South African population. This method allows for the identification of associations
558  between variants and gene expression for each contributing ancestral population [46,65].
559  Genome-wide cis-eQTL mapping was performed on 96 individuals and 4,230,650 autosomal
560  variants. All analyses were performed independently for each of the five contributing ancestries
561 (Bantu-speaking African, Khoe-San, European, Southeast Asian and East Asian). The
562  normalized gene expression files were used to calculate 15 hidden confounders with PEER
563  [66]. Additional sample-level covariates (age, gender and HbA1c) were also included in the

564  association analysis.

565
566  The following linear regression model was fitted for each gene-variant pair (gene g, variant v):
K K
567 G= pV+ Zaici+ Zyl-al-+e
i=1 i=1
568

569 G represents the differential gene expression of gene g across all 96 admixed individuals.
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570  Vrepresents the additive effect of alleles at variant v (coded as 0,1 or 2).

571 [ represents the effect size of the alleles of variant v on gene g expression.

572 a; represents the biological or technical covariate C; on gene g expression. This includes age,
573  gender, HbAlc and the PEER hidden confounding factors.

574 v, represents the effect of the ancestry covariate a; on gene g expression.

575 e represents the residual.

576

577  Two iterations of this regression were performed for each gene-variant pair.

578 1. Global Ancestry Adjustment (GlobalAA): Adjusting for global ancestry proportions
579 a; represents the global ancestry proportions of each admixed individual.

580 2. Local Ancestry Adjustment (LocalAA): Adjusting for local ancestry, in which the
581 number of alleles at variant v were assigned to a specific ancestry of interest (1 =
582 ancestry of interest; 0 = other ancestries)

583

584  If any of the 4,230,650 filtered variants were located within one mega base of the transcription
585  start site, they were included in the association analysis with the gene expression. The Im()
586  function in R was used for all regressions performed. An additive genetic effect on gene
587  expression was assumed. The significance of an association was taken to be the two-sided P
588  value corresponding to the z-statistic of the [ coefficient estimate. Additionally, the most
589  significant lead eQTLs were identified for each gene, independently for each ancestry
590  adjustment method. To approximate a 5% False Discovery Rate (FDR), a nominal P value of
591  le-6toidentify significant associations was applied [46]. To discern which biological functions
592  are shared amongst the significant eGenes, gene ontology (GO) and Kyoto Encyclopedia of
593  Genes and Genomes (KEGG) pathway enrichment analyses were done for each ancestry
594  separately. The web-based software g:Profiler was used for this purpose and the default option
595  2:SCS method in g:Profiler was used for multiple testing corrections. Pathways with an
596  adjusted P value < 0.05 were reported [67]. Fig S2 summarizes the analysis pipeline used for
597  cis-eQTL mapping.

598

599

600

601
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865 S8 Fig. Karyograms representing four individuals’ local ancestry at each genomic region

866  from chromosome 1 to 22.

867

868 S9 Fig. Gene Ontology analysis. Gene ontology analysis revealed general tissue types in
869  which DEG would most likely occur while adjusting for Khoe-San ancestry only in TB-T2D
870  comorbid patients compared to T2D.

871

872  S10 Fig. Gene ontology analysis. Gene ontology analysis revealed general tissue types where
873  DEG were mostly up-or-down regulated in TB-T2D comorbid patients compared to T2D in
874  Khoe-San individuals using GlobalAA.

875

876

877 S1 Table. Quality control filtering parameters and the total number of variants and/or
878  individuals removed by the filtering command.

879  S2 Table. Ancestral populations included in analysis for ancestry inference.

880

881  S3 Table. Summary statistics of age, gender, HbAlc, BMI and ancestry proportions.

882

883  S4 Table. Cross validation error values for K=3-8 ancestral populations

884

885 S5 Table. Total number of DEG identified for each comparison. Highlighted in green is the
886  two comparisons used for cis-eQTL mapping.

887

888  S6 Table. Top DEG between TB patients and healthy controls. Highlighted genes are the same
889  DEQG as previously identified in Eckold et al.

890

891 S8 Table. Differential lead SNPs (<1e-04) for the same eGene for TB-T2D patients compared
892  to T2D patients for all ancestries.

893

894  S9 Table. Differential lead SNPs (<1e-04) for the same eGene for TB patients compared to
895  Healthy controls for all ancestries.

896

897  S10 Table. GO between TB patients and Healthy controls of Khoe-San ancestry origin.

898

899  S11 Table. GO between TB patients and Healthy controls of Southeast Asian ancestry origin.
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