

1 ***cis*-eQTL mapping of TB-T2D comorbidity elucidates the**

2 **involvement of African ancestry in TB susceptibility**

3

4 Yolandi Swart¹, Caitlin Uren^{1,2}, Clare Eckold³, Jacqueline M Cliff^{3,4}, Stephanus T Malherbe¹,
5 Katharina Ronacher^{1,5}, Vinod Kumar⁶, Cisca Wijmenga⁶, Hazel M Dockrell³, Reinout van
6 Crevel^{7,8}, Gerhard Walzl¹, Léanie Kleynhans^{1#}, Marlo Möller^{1,2*}

7

8 ¹DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical
9 Research Council Centre for Tuberculosis Research, Division of Molecular Biology and
10 Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape
11 Town, South Africa.

12 ²Centre for Bioinformatics and Computational Biology, Stellenbosch University,
13 Stellenbosch, South Africa

14 ³Faculty of Infectious and Tropical Diseases and Tuberculosis Centre, London School of
15 Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK

16 ⁴Department of Life Sciences, Brunel University London, United Kingdom

17 ⁵Translational Research Institute, Mater Research Institute – The University of Queensland,
18 Brisbane, Australia

19 ⁶University of Groningen, Department of Genetics, University Medical Center Groningen,
20 Groningen, The Netherlands

21 ⁷Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud
22 University Medical Center, Nijmegen, the Netherlands

23 ⁸Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine,
24 University of Oxford, Oxford, United Kingdom

25

26 **Keywords:** TB-T2D comorbidity; ancestry-specific eQTLs; South Africa; local ancestry;
27 African TB susceptibility

28

29 *Corresponding author:
30 marlom@sun.ac.za

31

32

33

34 **Abstract**

35 The validation of genome-wide association signals for tuberculosis (TB) susceptibility and the
36 development of type 2 diabetes (T2D) across diverse populations remain problematic. The
37 ancestry-specific variants (coding and non-coding) that contribute to previously identified
38 differentially expressed genes (DEG) in patients with TB, T2D and comorbid TB-T2D, remain
39 unknown. Identifying ancestry-specific expression quantitative trait loci (eQTLs) can aid in
40 distinguishing the most probable disease-causing variants for population-specific therapeutic
41 interventions. Therefore, this study conducted *cis*-eQTL mapping in TB, T2D and TB-T2D
42 patients to identify variants associated with DEG. Both genotyping (Infinium H3A array with
43 ~2.3 M markers) and RNA sequencing data of 96 complex multi-way admixed South Africans
44 were used for this purpose. Importantly, both global-and local ancestry adjustment were
45 included in statistical analysis to account for complex admixture. Unique gene-variant pairs
46 were associated with TB-T2D on chromosome 7p22 whilst adjusting for Bantu-speaking
47 African ancestry (*PRKAR1B*:rs4464850; P=7.68e-07) and Khoe-San ancestry
48 (*PRKAR1B*:rs117842122; P=3.66e-07). In addition, *IFITM3* (a biomarker for the development
49 of TB) was associated with three SNPs (rs11025530, rs3808990, and rs10896664) on
50 chromosome 11p15 while adjusting for Khoe-San ancestry. Our results also indicated that the
51 upregulation of the *NLRP6* inflammasome is strongly associated with people with TB-T2D
52 while adjusting for Khoe-San ancestry. Three African-specific eGenes (*NLRP6*, *IFITM3* and
53 *PRKAR1B*) would have been missed if local ancestry adjustment was not conducted. This study
54 determined a list of ancestry-specific eQTLs in TB-T2D patients that could potentially guide
55 the search for new therapeutic targets for TB-T2D in African populations.

56

57 **Author Summary**

58 The limitation of genome-wide association study (GWAS) is that the particular biological
59 pathway impacted by a variant might not be evident. eQTL mapping can be conducted to
60 determine the impact that a genetic variant might have on the expression of a specific gene in
61 a biological pathway. In this study the use of *cis*-eQTL mapping was explored to elucidate the
62 underlying genetic variants that regulate gene expression between TB-T2D and T2D patients,
63 and between TB patients and healthy controls with multi-way genetic admixture from South
64 Africa. Using RNA sequencing data and newly genotyped dataset of 96 individuals (Illumina
65 Infinium H3Africa array with ~2.5 M markers), we were able to identify ancestry-specific
66 eQTLs. eQTLs of indigenous Khoe-San ancestral origin were identified in genetic regions

67 previously implicated in TB and T2D in African populations. If local ancestry was not
68 incorporated in the *cis*-eQTL mapping analysis these important African-specific eQTLs would
69 have been missed. Our results provide a list of possible ancestry-specific causal variants
70 associated with TB-T2 comorbidity that could guide the search for new therapeutic targets for
71 African-specific populations. Including populations with complex ancestry and admixture in
72 genetic studies is necessary to improve the quality of genetic research in sub-Saharan African
73 groups.

74

75 **Introduction**

76 The dual burden of tuberculosis (TB) and type 2 diabetes (T2D) is a global health problem [1].
77 Worldwide, an estimated 10 million cases of TB, caused by *Mycobacterium tuberculosis*
78 (*M.tb*), were reported in 2020 [2]. The World Health Organisation (WHO) estimated that
79 African countries accounted for 25% of the estimated 10 million cases of TB, with South Africa
80 at the epicentre of the TB epidemic. More than 15% of all TB patients are estimated to have
81 diabetes which equates to approximately 1.5 million people who require directed therapy and
82 follow-up treatments to manage both diseases [3]. Currently, there is a lack of multidisciplinary
83 approaches to develop therapeutic interventions for infectious and non-communicable diseases
84 in Africa.

85

86 Over the past decade, the diabetes prevalence has increased in low- and middle-income
87 countries, where the TB epidemic is also gaining pace at an alarming rate [3–6]. Almost 80%
88 of individuals with T2D in sub-Saharan Africa are undiagnosed and may pose a substantial
89 threat to TB control efforts [7]. According to the International Diabetes Federation (IDF), the
90 diabetes prevalence in Africa is expected to increase by 48% (28 million people) in 2030 and
91 by 129% (55 million people) in 2045, the highest predicted increase of all the IDF Regions [3].
92 Furthermore, the corona virus disease-19 (COVID-19) pandemic has adversely affected the
93 global efforts to control both TB and T2D, most notably in low-and middle-income countries
94 with populations of diverse ancestry and admixture.

95

96 The co-epidemic of TB and T2D is not confined to South Africa or the African continent. South
97 India (54%), some Pacific Islands (40%), South Korea (26.5%), Texas-Mexico (25%), and
98 Ethiopia (15.8%) also suffer from larger numbers of diabetes-associated TB [3]. Moreover,
99 clinical characteristics of TB-T2D vary considerably between countries, for example, the

100 median glycated haemoglobin (HbA1c) among TB-T2D patients in Indonesia is 11.3%, in Peru
101 10.6%, in South Africa 10.1% and in Romania 7.4% [4]. There are thus clear epidemiological
102 and population-specific genetic disease risk factors contributing to TB-T2D comorbidity.

103

104 Distinct differentially expressed gene (DEG) profiles were identified in blood to determine the
105 underlying immunological mechanisms that contribute to TB-T2D comorbidity [8]. RNA
106 sequencing of whole blood identified a reduced type 1 interferon response in both TB-T2D
107 patients and TB patients with intermediate hyperglycaemia compared to TB-only patients.
108 Nonetheless, the focus of the study was to identify biomarkers based on DEG between TB-
109 T2D compared to TB, T2D and healthy controls for diagnostic purposes. Thus, the contribution
110 of ancestry-specific genetic variants (coding or non-coding) to the DEG in TB-T2D patients
111 compared to TB, T2D, and healthy controls remains unknown.

112

113 A multi-omics approach, such as Expression Quantitative Trait Loci (eQTL) mapping, can
114 provide important information regarding the underlying biological mechanisms of genetic
115 variants (coding or non-coding variants) by linking these to DEG [9]. eQTLs are genetic
116 variants that are associated with gene expression, either located within a short distance (1 Mega
117 base pairs) on either side of a gene's transcription starting site (TSS) (*cis*-eQTLs) or located at
118 longer distances (5 Mega base pairs) (*trans*-eQTLs) [10]. This enables the identification of
119 interindividual regulatory candidate variants of transcription and improves our understanding
120 of the effects of genetic polymorphisms on tissue-specific variability in physiological processes
121 [11]. Consequently, eQTL data can be used to model regulatory networks and provide a better
122 understanding of the underlying phenotypic variation.

123

124 The major goal of identifying eQTLs is to reduce the number of candidate causal variants for
125 follow-up verification by functional assays [9]. Once identified, eQTLs can provide invaluable
126 genomic information to enhance the power of future GWAS and assist in identifying the most
127 probable disease-causing variants associated with TB-T2D [12]. Currently, the lack of eQTL
128 mapping studies in populations with southern African ancestry hinders the progress of
129 comparative analysis between South African and other populations in terms of differences in
130 genetic architecture underlying gene expression variation [10].

131

132 Given the complex nature of both TB and T2D (onset of disease, progression, and treatment
133 variability), *cis*-eQTL mapping was done on samples from South African patients to identify

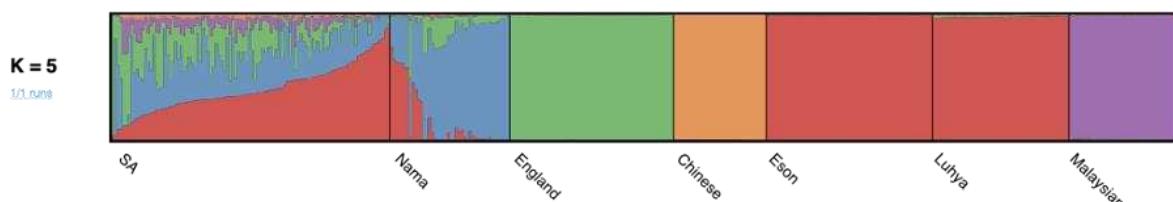
134 the most probable candidate population-specific causal variants in TB-T2D compared to T2D-
135 only, and in TB-only patients compared to healthy individuals. This was done to understand
136 the genetic risk factors contributing to TB development in T2D patients and healthy controls.
137 Two ancestry adjustment methods, namely Global Ancestry Adjustment (GlobalAA) and Local
138 Ancestry Adjustment (LocalAA), were used. The unique genetic diversity and admixture
139 present in populations in South Africa facilitated the study of ancestry-specific eQTLs. This
140 involves five ancestries from various continents, with differential exposure to *M.tb* throughout
141 history, contributing to the genomic architecture in the country [13].

142

143 **Results**

144 **Population structure and ancestry inference of study population**

145 The summary statistics and distributions of the age, sex, body mass index (BMI), and HbA1c
146 for each ancestry are summarized in the supplementary materials (Table S3, Fig S3-5). As
147 expected, there was a significant difference in HbA1c levels between T2D patients and TB-
148 T2D patients compared to no T2D (*P* value = 4.17e-06).


149

150 Cross validation was conducted to identify the correct number of contributing ancestral
151 populations (K=3-8) of the admixed population, before inferring global and local ancestry. The
152 estimations indicated that K=5 had the lowest cross validation error ($k=0.419$, Table S4) and
153 thus represented the most likely number of contributing ancestral populations in the cohort. Fig
154 1 represents the global ancestry proportions of all 96 admixed individuals included in the
155 statistical analysis. For more refined global ancestry proportions, RFMix was used to infer local
156 and in turn global ancestry. Bantu-speaking African ancestry contributed ~40.7% of the
157 average global ancestry, indigenous Khoe-San ~30.8%, European ancestry ~19.8%, Southeast
158 Asian ancestry ~6.9% and East Asian ancestry ~1.9% (Fig 1). In addition to estimating global
159 ancestry using RFMix, local ancestry estimation was conducted, which involves the inference
160 of ancestry at each genomic locus. The local ancestry represented in karyograms indicates the
161 ancestry of each genomic region from chromosome 1 to 22 (Fig S8). Noticeably, the local
162 ancestry patterns appear to be highly heterogeneous, which is in line with previous studies
163 [13,14]. The successful inference of both global and local ancestry allowed the efficient
164 inclusion of this covariate in the subsequent statistical models.

165

166

167

168

169

170

171 **Fig 1.** RFMix analysis results using K=5 clusters to infer global ancestry proportions for all 96 admixed
172 South African individuals (SA). The average proportion of Southeast Asian (Malaysian in purple),
173 African (Luhya and Eson in red), East Asian (Chinese in orange), European (England in green), and
174 Kho-San (Nama in blue) genetic ancestry were 6.9%, 40.7%, 1.9%, 19.8%, and 30.8%, respectively.
175 Displayed populations from left to right on the x-axis: admixed South African individuals from this
176 study (n=96), Kho-San ancestry (Nama gathered from the European Genome-Phenome archive),
177 Northern and Western European ancestry (GBR from the 1000GP phase 3), East Asian ancestry (CHB
178 from the 1000GP phase 3), Western African ancestry (LWK and MSL from the 1000GP phase 3), and
179 Southeast Asian ancestry (Malaysian from Wong et al.'s 2013 study).

180

181 **DEGs amongst TB-T2D-, T2D- and TB patients and healthy 182 controls**

183 In total, 1,581 DEGs were identified when comparing TB-T2D and T2D patients. 178 DEGs
184 were identified between TB patients and healthy controls (Table S5). When quantifying the
185 number of DEGs it became apparent that individuals with preT2D (no TB) had no distinct
186 phenotype compared to T2D patients and healthy controls (Tables S5). For this reason, as well
187 as the low sample number, individuals with preT2D were excluded from the eQTL analysis.
188 Since we were interested in investigating the genetic risk factors (identified through DEG)
189 contributing to TB development in T2D patients and healthy controls, TB-IH patients were
190 excluded from the analysis. Furthermore, DEG analysis of TB-IH patients compared to healthy
191 controls, preT2D and T2D only, were previously reported (Table S5) [8].

192

193 Although different DEGs analysis methods (edgeR, limma and voom in R versus DESeq2)
194 were used, this study validated the results on the same cohort as presented in Eckold *et al.* More
195 specifically, overlapping DEGs (across the two studies) include, *BATF2*, *SOC3*, *Septin 4*,

196 *ANKRD22*, *C1QA*, *B*, *C* and *GBP5* when comparing TB patients and healthy controls (Table
197 S6 and S7).

198 **Ancestry-specific eQTLs identified between TB patients and 199 healthy controls**

200 The eGenes (of which gene expression is associated with at least one genetic variant) and the
201 eQTLs with the corresponding assigned ancestry for each statistical analysis are shown in
202 Table 1. In total, five significant eGenes (*P* value < 1e-06) were identified. Two of these were
203 identified using LocalAA and three with GlobalAA. Notably, one eGene of Khoe-San origin
204 (ENSG00000269981.1) was identified using GlobalAA. This eGene is located on chromosome
205 1 and has one transcript which is a splice variant, with no known biological function. Four
206 eQTLs were associated with this eGene (rs2088212; rs2088210; rs10916169; rs903697) and
207 appear to be in linkage with each other (Table 1).

208

209 Using LocalAA, the eGene protein Kinase cAMP-Dependent Type I Regulatory Subunit Beta
210 (*PRKAR1B*) was identified. An eQTL (rs4464850) was identified to affect the expression of
211 *PRKAR1B* when comparing TB patients and healthy controls whilst adjusting for Bantu-
212 speaking African ancestry. Interestingly, an eQTL (rs117842122) affecting the expression of
213 *PRKAR1B* was also identified whilst adjusting for Khoe-San ancestry, when comparing TB-
214 T2D to T2D patients. This suggests that this eGene may be implicated in TB progression in
215 T2D patients and healthy controls whilst adjusting for Bantu-speaking African ancestry and
216 Khoe-San ancestry.

217

218 Although there are examples where one genetic variant affects the expression of a gene,
219 previous studies suggest that it is more likely that multiple variants affect the expression of a
220 gene [15]. In support of this, our data shows that two eQTLs (rs321909 and rs12459238) both
221 appear to affect the expression of *ARID3A* (AT-Rich Interaction Domain 3A) while adjusting
222 for East Asian ancestry (Table 2). In addition, *ARID3A* was also identified when comparing
223 TB-T2D to T2D patients while adjusting for Khoe-San ancestry. This suggests that this eGene
224 may be implicated in TB progression in both T2D patients and healthy controls. All gene-
225 variant pairs identified with a *P* value threshold of < 1e-04 are summarized in table S8 for TB
226 patients compared to healthy controls.

227

228 Common pathways across eGenes were investigated using GO analysis. When only including
229 eGenes with a *P* value <1e-06, no statistically significant (FDR corrected < 0.05) GO results
230 were observed. However, when decreasing the cut-off to a less stringent value of <1e-04,

231 **Table 1.** Unique eGenes significantly associated (P value $<1e-06$) with TB patients compared to healthy controls for each ancestry using GlobalAA
 232 and LocalAA.

eGene	SNP ID	P value	Gene Location	Ancestry	Method
<i>RBCK1</i>	rs6041222	1.680e-07	20:12223190	Bantu-speaking African; East Asian; European; Southeast Asian	GlobalAA
<i>ARID3A</i>	rs321909	7.776e-08	19:52799034	Bantu-speaking African; East Asian; European; Southeast Asian	GlobalAA
ENSG00000269981.1	rs2088212	7.196e-07	1:227763544	All ancestries	GlobalAA
ENSG00000269981.1	rs2088210	7.196e-07	1:227763840	All ancestries	GlobalAA
ENSG00000269981.1	rs10916169	7.196e-07	1:227764857	All ancestries	GlobalAA
ENSG00000269981.1	rs903697	7.196e-07	1:227766845	All ancestries	GlobalAA
<i>PRKAR1B</i>	rs4464850	7.679e-07	7:62169785	Bantu-speaking African	LocalAA
<i>MRPL28</i>	rs79630695	7.884e-07	16:78831326	Bantu-speaking African; East Asian; European; Southeast Asian	LocalAA

233
 234
 235
 236

237 **Table 2.** Differential lead SNPs (P value $<1e-06$) for the same eGene for TB patients compared to healthy controls using GlobalAA and LocalAA.

eGene ID	SNP ID	P value	Gene Location	Ancestral Origin	Method
<i>SLC6A12</i>	rs17009851	2.341e-07	12:83084188	Bantu-speaking African; European ; East Asian ; Southeast Asian	GlobalAA
<i>ARID3A</i>	rs321909	7.776e-08	19:52799034	East Asian	GlobalAA
<i>SLC6A12</i>	rs17010578	1.460e-08	12:83457942	Bantu-speaking African; European ; East Asian ; Southeast Asian	LocalAA
<i>ARID3A</i>	rs12459238	2.447e-07	19:16593359	East Asian	LocalAA

238
 239
 240

241 statistically significant results were observed. Similar results were obtained previously by
242 Eckold *et al.*, with genes involved in the type 1 interferon (IFN) signalling pathway, cellular
243 response to type 1 IFN and the IFN-alpha/beta signalling pathways between TB patients and
244 healthy controls while adjusting for Khoe-San ancestry (Table S10). In addition, a NOD-like
245 receptor signalling pathway was identified between TB patients and healthy controls while
246 adjusting for Khoe-San ancestry (Table S10).

247

248 **Ancestry-specific eQTLs identified between TB-T2D and T2D 249 patients**

250 The eGenes and the eQTLs with the corresponding assigned ancestry for each statistical
251 analysis is shown in Table 3. In total, four significant (*P* value <1e-06) eGenes were identified
252 using LocalAA. Three eGenes were identified while adjusting for of Khoe-San ancestry and
253 one while adjusting for East Asian ancestry. An eQTL (rs346066) of Khoe-San ancestry origin,
254 affecting the expression of a long non-coding RNA (*LINC01002*) was identified while
255 adjusting for Khoe-San ancestry. Two eGenes (*PRKAR1B* and *ARID3A*), were identified
256 between TB-T2D and T2D patients as well as TB patients and healthy controls while adjusting
257 for Khoe-San ancestry, but were associated with different eQTLs (rs117842122 and
258 rs56369375). Importantly, both eGenes would have been missed if LocalAA was not used. An
259 eQTL (rs2571075) affecting the expression of the ATP Binding Cassette Subfamily A Member
260 7 (*ABCA7*) was identified while adjusting for East Asian ancestry.

261

262 Multiple eQTLs affecting the expression of Golgi-associated secretory casein pathway kinase
263 (*FAM20C*), were identified (Table 4). An additional eQTL (rs12531478) affecting the
264 expression of *FAM20C* was identified using LocalAA while adjusting for Bantu-speaking
265 African, East Asian and Khoe-San ancestry. Interestingly, Khoe-San ancestry seems to be
266 associated with *FAM20C* when using LocalAA, but not GlobalAA. Two eQTLs (rs35219837
267 and rs1186214) affecting the expression of Post-Glycosylphosphatidylinositol Attachment to
268 Protein 6 (*PGAP6*), were identified when comparing TB-T2D and T2D patients while adjusting
269 for Khoe-San ancestry. Three eQTLs (rs11025530, rs3808990 and rs10896664) affecting the
270 expression of NOD-like receptor family Pyrin Domain Containing 6 protein (*NLRP6*), were
271 identified when comparing TB-T2D and T2D patients while adjusting for Khoe-San ancestry.
272 Three eQTLs (rs55970487, rs77247842 and rs12282149) affecting the expression of the IFN-
273 induced transmembrane protein 3 (*IFITM3*), were identified when analysing TB-T2D and T2D

274 **Table 3.** Unique eGenes significantly associated (P value $<1e-06$) with TB-T2D patients compared to T2D patients for each ancestry using
275 GlobalAA and LocalAA.

Gene	SNP ID	P value	Gene Location	Ancestral Origin	Method
<i>LINC01002 LncRNA</i>	rs346066	9.523e-07	19:44217836	Khoe-San	LocalAA
<i>PRKAR1B</i>	rs117842122	3.655e-07	7:76842468	Khoe-San	LocalAA
<i>ARID3A</i>	rs56369375	7.489e-07	19:52770105	Khoe-San	LocalAA
<i>ABCA7</i>	rs2571075	6.980e-07	19:44873148	East Asian	LocalAA

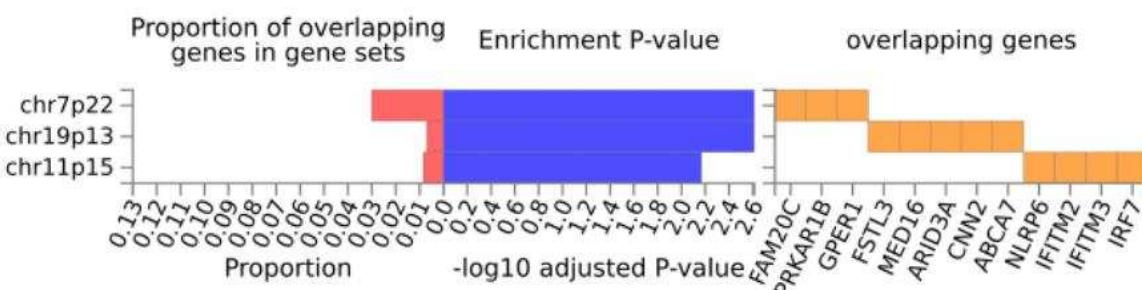
276

277 **Table 4.** Differential lead SNPs (P value $<1e-06$) for the same eGene for TB patients compared to healthy controls using GlobalAA and LocalAA.

Gene ID	SNP ID	P value	Gene Location	Ancestral Origin	Method
<i>FAM20C</i>	rs11763876	7.169e-09	7:7249747	Bantu-speaking African ; East Asian	GlobalAA
<i>FAM20C</i>	rs78423890	7.169e-09	7:17071336	Bantu-speaking African ; East Asian	GlobalAA
<i>FAM20C</i>	rs57549526	7.169e-09	7:30198960	Bantu-speaking African ; East Asian	GlobalAA
<i>FAM20C</i>	rs62460527	7.169e-09	7:44908078	Bantu-speaking African ; East Asian	GlobalAA
<i>FAM20C</i>	rs183319053	7.169e-09	7:44910466	Bantu-speaking African ; East Asian	GlobalAA
<i>FAM20C</i>	rs12616494	7.169e-09	7:44910682	Bantu-speaking African ; East Asian	GlobalAA
<i>FAM20C</i>	rs188203968	7.169e-09	7:44911023	Bantu-speaking African ; East Asian	GlobalAA
<i>FAM20C</i>	rs62460528	7.169e-09	7:44912066	Bantu-speaking African ; East Asian	GlobalAA
<i>FAM20C</i>	rs115428191	7.169e-09	7:54748201	Bantu-speaking African ; East Asian	GlobalAA
<i>FAM20C</i>	rs57549526	4.107e-09	7:30198960	Khoe-San	GlobalAA
<i>MRPL28</i>	rs759202	3.817e-08	16:5114437	Khoe-San	GlobalAA
<i>PGAP6</i>	rs35219837	1.355e-07	16:84193640	Khoe-San	GlobalAA
<i>NLRP6</i>	rs11025530	6.415e-07	11:20383324	Khoe-San	GlobalAA
<i>NLRP6</i>	rs3808990	6.415e-07	11:20384800	Khoe-San	GlobalAA
<i>IFITM3</i>	rs12282149	8.072e-07	11:88092069	Khoe-San	GlobalAA
<i>FAM20C</i>	rs12531478	2.266e-09	7:15239894	Bantu-speaking African	LocalAA
<i>FAM20C</i>	rs12531478	1.242e-09	7:15239894	East Asian	LocalAA
<i>FAM20C</i>	rs12531478	1.237e-09	7:15239894	Khoe-San	LocalAA
<i>MRPL28</i>	rs113496159	9.156e-07	16:76054857	Khoe-San	LocalAA
<i>MRPL28</i>	rs17677328	9.156e-07	16:76055758	Khoe-San	LocalAA
<i>PGAP6</i>	rs11862144	8.888e-08	16:54507876	Khoe-San	LocalAA
<i>NLRP6</i>	rs10896664	5.175e-08	11:57707387	Khoe-San	LocalAA
<i>IFITM3</i>	rs77247842	3.150e-07	11:83811362	Khoe-San	LocalAA
<i>IFITM3</i>	rs55970487	3.150e-07	11:83816191	Khoe-San	LocalAA

278

279 patients while adjusting for Khoe-San ancestry. Three eQTLs (rs759202, rs113496159 and
280 rs17677328) affecting the expression of mitochondrial ribosomal protein L28 located
281 (*MRPL28*), were also identified when comparing these two patient groups while adjusting for
282 Khoe-San ancestry. All gene-variant pairs identified with a *P* value threshold of <1e-04 are
283 summarized in table S9 for TB-T2D vs T2D patients.


284

285 Common pathways across eGenes were investigated using GO analysis. When only including
286 eGenes with a *P* value <1e-06, no statistically significant (FDR corrected < 0.05) GO results
287 were observed. However, when decreasing the cut-off to a less stringent value of <1e-04,
288 statistically significant results were observed. GO analysis indicated a possible upregulation of
289 genes in lung tissue and downregulation of genes in adipose tissue while adjusting for Khoe-
290 San ancestry (Fig S9 and S10). Multiple transcription factors were identified while adjusting
291 for Southeast Asian ancestry. This suggests that Southeast Asian ancestry may have a different
292 biological pathway that drives the development of TB in healthy individuals compared to the
293 other four ancestries in this study. Comparable results were observed between TB-T2D and
294 T2D patients, and TB patients and healthy controls, with genes clustering together in the IFN
295 alpha-beta signalling pathway and NOD-like signalling pathway in both comparisons. This
296 could indicate that both pathways contribute to TB development in T2D patients and healthy
297 controls.

298

299 Interestingly, some eGenes overlapped in the GO analysis for both phenotypes (TB patients
300 compared to healthy controls and TB-T2D patients compared to T2D) and clustered in the same
301 genetic regions (Fig 2). *FAM20C* and *PRKAR1B* are both located on chromosome 7p22,
302 *ARID3A* and *ABCA7* overlap on chromosome 19p13 and *NLRP6* and *IFITM3* overlap on
303 chromosome 11p15. This may indicate genetic regions of interest in the context of TB-T2D
304 comorbidity.

305

306

307 **Fig 2.** GO analysis of common pathways across significant eGenes for both phenotypes (TB
308 patients compared to healthy controls and TB-T2D patients compared to T2D). The proportion
309 of significant eGenes overlapping between the two phenotypes on similar genetic regions are
310 showcased on the far left, with their corresponding overlapping eGenes on the far-right hand
311 side. The enrichment p-value are indicated in the middle, with chromosome 7p22 and
312 chromosome 19p13 with the strongest enrichment p-value for overlapping eGenes.

313

314 **Discussion**

315 Given the absence of TB-T2D comorbidity studies investigating complex multi-way admixed
316 South African populations, this study aimed to identify ancestry-specific eQTLs that contribute
317 to the progression of TB in healthy individuals and T2D patients. Due to the complex multi-
318 way admixed nature of the South African populations, this study used two ancestry adjustment
319 methods (GlobalAA and LocalAA). To our knowledge, this is the first study to link ancestry-
320 specific genetic variants responsible for gene expression in TB, T2D, and TB-T2D patients.

321

322 An eQTL (rs4464850) affecting the expression of *PRKAR1B*, was identified when comparing
323 TB patients with healthy controls while adjusting for Bantu-speaking African ancestry.
324 Interestingly, when comparing TB-T2D patients with T2D patients, an eQTL (rs117842122)
325 was identified using LocalAA while adjusting for Khoe-San ancestry. *PRKAR1B* encodes for
326 an important protein kinase regulating the subunit of cyclic AMP-dependent protein kinase A
327 (PKA). *PRKAR1B* is mostly responsible for the cyclic adenosine monophosphate (cAMP)-
328 dependent protein kinase (PKA) signalling pathway which is key in regulating energy balance,
329 glucose homeostasis, and lipid metabolism [16]. A decrease in PKA activity indicated
330 improved lipid profiles in a cohort of obese and overweight African American youths and
331 suggests that an increase in PKA activity may contribute to obesity and insulin resistance [16].
332 This implies that the upregulation of *PRKAR1B* increases PKA signalling molecules and other
333 proteins regulated by the cAMP signalling pathway and may be associated with T2D and other
334 obesity-related comorbidities in this cohort of African ancestry origin. Notably, only African
335 ancestry was associated with this eGene (*PRKAR1B*) and both eQTLs (rs117842122 and
336 rs4464850) affecting the expression of *PRKAR1B*, would have been missed if only GlobalAA
337 was used in statistical analysis.

338

339 A similar trend was observed for the eGene, *ARID3A*. Two eQTLs (rs12459238 and rs321909)
340 affecting the expression of *ARID3A*, were identified when comparing TB patients with healthy
341 controls while adjusting for East Asian ancestry. Similar to *PRKAR1B*, when comparing TB-
342 T2D with T2D patients, an eQTL (rs56369375) of Khoe-San ancestry origin was identified
343 using LocalAA while adjusting for Khoe-San ancestry. *ARID3A* is a potential biomarker for
344 TB diagnosis and treatment response in peripheral blood of TB patients [17]. In addition,
345 *ARID3A* plays an important role in immune responses against intracellular pathogens by
346 controlling cell cycle progression via the RB1/E2F1 pathway and is essential for the
347 development of B-cells. Since both eGenes (*PRKAR1B* and *ARID3A*) were identified in both
348 phenotypes, it suggests that these two eGenes contribute to TB progression in both T2D
349 patients and healthy controls.

350

351 eQTLs affecting the expression of *PGAP6*, *NLRP6* and *IFITM3*, were identified when
352 comparing TB-T2D and T2D patients while adjusting for Khoe-San ancestry. *IFITM3* forms
353 part of a four-gene signature that is able to distinguish active TB patients from healthy controls
354 [18] and is also one of the seventeen TB biomarkers in UK and Indian populations [19].
355 *IFITM3*, localized on chromosome 11p15, is a genetic region that has previously been linked
356 to TB susceptibility[20,21], and paediatric TB patients of Han Chinese origin [22,23]. *PGAP6*
357 is upregulated in gestational diabetes patients and is inversely correlated with gene expression
358 in type 1 diabetes [24]. *NLRP6* mediates inflammasome activation in response to various
359 pathogen-associated signals, as part of the sensor component of the *NLRP6* inflammasome
360 [25–27].

361

362 Inflammasomes play a critical role in innate immunity and inflammation by assembling in the
363 cytosol and acting as a recognition receptor to bind pathogens and other damage-associated
364 signals [26,28]. Interestingly, the dysregulation of inflammasomes has been found to be
365 involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis,
366 atherosclerosis, T2D and obesity [29]. When pro-inflammatory macrophages infiltrate the
367 pancreatic islets of T2D patients, it drives the production of IL-1beta via the *NLRP3*
368 inflammasome [30]. Beta-cell proliferation is initially favoured by low concentrations of IL-
369 1beta, however, chronically elevated levels of IL-1beta may lead to beta-cell failure [31]. In
370 contrast, administration of an IL-1 receptor antagonist, improves glucose tolerance, beta-cell
371 function, and systematic inflammation in humans. Moreover, metabolites produced by
372 intestinal microbiota may drive the development of insulin resistance in obesity and T2D by

373 initiating an inflammatory response via *NLRP6* [31]. Henao-Mejia *et al.* confirmed the
374 observation that dysbiosis of the microbiota is linked to metabolic diseases in *NLRP6* mutant
375 mice [32]. Furthermore, *NLRP6* mutant mice have enhanced activation of MAPK and NF- κ B
376 signaling via the activation of Toll-like receptors (TLR) and therefore an increased number of
377 immune cells in circulation [33].

378

379 *NLRP6* is a negative regulator of inflammatory signaling and NF- κ B signaling in response to
380 bacterial pathogens in myeloid cells ⁷. Therefore, *NLRP6* expression may prevent clearance of
381 both gram-positive and gram-negative bacterial pathogens. Inflammasome inhibitors that
382 target the polymorphisms of *NLRP6* in TB-T2D patients may provide new means of therapeutic
383 interventions for patients with Khoe-San ancestry and may help alleviate the dual burden of
384 both diseases.

385

386 Interestingly, both *NLRP6* and *IFITM3* are located on chromosome 11p15. This region was
387 associated with multiple facets of innate and adaptive immune responses. The *IRF7* gene is
388 located in this region and was associated with developing severe TB [34]. Chromosome 11 was
389 identified in a meta-analysis and a trans-ethnic fine-mapping study to be associated with TB
390 and includes the involvement of the WT1 signalling pathway [20,35]. Interestingly, the
391 *KCNQ1* gene cluster maps within the 11p15.5 imprinted domain and variants intronic to
392 *KCNQ1* influence diabetes susceptibility which is maternally inherited during early
393 development [36]. Furthermore, *KCNQ1* has been established as a candidate susceptibility
394 gene for T2D and influences the K 7.1 voltage-gated potassium channel subunit located in
395 human beta cells [37]. This evidence points to the involvement of chromosome 11p15 in the
396 development of T2D in individuals of Khoe-San ancestry origin.

397

398 An eQTL (rs2571075) affecting the expression of *ABCA7*, was identified when comparing TB-
399 T2D with T2D patients while adjusting for East Asian ancestry. *ABCA7* plays a role in multiple
400 biological processes such as lipid homeostasis, macrophage-mediated phagocytosis, binds
401 APOA1, apolipoprotein-mediated phospholipid efflux from cells and possibly mediates
402 cholesterol efflux [38–41]. The impact on TB or T2D remains unclear, however, it is involved
403 in the phagocytosis of apoptotic cells by macrophages. Macrophage phagocytosis is stimulated
404 by APOA1 or APOA2 upon the stabilization of *ABCA7* [42].

405

406 The eGenes that overlapped in certain genetic regions were previously associated with TB
407 susceptibility. Two eGenes (*FAM20C* and *PKRA1B*), are both located on chromosome 7p22.
408 This region is associated with TB susceptibility in a Ugandan population [43]. Likewise,
409 *ARID3A* and *ABCA7* are located on chromosome 19p13. This region was associated with TB
410 susceptibility and linked with the *CD209* gene. This gene – coding for Dendritic Cell-Specific
411 ICAM3-Grabbing Non-integrin (DC-SIGN), is one of the major receptors for *M.tb* on human
412 dendritic cells. A relatively large number of studies evaluated the association between *CD209*
413 polymorphisms (-336A/G, -871A/G) and TB risk, but the results have been inconsistent due to
414 limited sample sizes and different studies populations [44,45].

415

416 It has been hypothesized that the inclusion of local ancestry in eQTL mapping increases the
417 power to identify novel ancestry-specific eQTLs [46,47]. Most of the eGenes and the eQTLs
418 with their corresponding assigned ancestry would not have been identified if LocalAA was not
419 used. Furthermore, the eQTL (rs12531478) of Khoe-San ancestry origin, affecting the
420 expression of *FAM20C*, was only elucidated once applying LocalAA. This indicates that
421 important indigenous African-specific genetic variants could be missed when only global
422 ancestry is used to account for population structure in complex admixed South African
423 individuals.

424

425 Given our modest sample size, findings should be validated in ethnically similar cohorts.
426 Furthermore, whole-genome sequencing could help identify structural variants (small
427 insertions, deletions (indels), and larger structural variations, such as duplications, inversions,
428 and translocations involved in TB-T2D comorbidity. Additionally, future studies should
429 investigate the possible role of methylation (ATAC sequencing) on the DEG, since multiple
430 mechanisms (not only genetic variants) could influence gene expression. *cis*-eQTLs only
431 identify nearby variants located near DEG (1Mb upstream or downstream). Although the extent
432 of involvement of *trans*-eQTLs is still uncertain [9,48], it would still be worthwhile to
433 investigate. In addition, genes that are located near GWAS-significant hits from previous
434 studies that are also identified to be eGenes may be candidate causal genes. Therefore, the
435 different lead variants identified for each ancestry for the same eGenes should be included in
436 future studies to compare it to previous GWAS hits for TB and T2D. This will assist with the
437 prioritization of GWAS hits for inclusion in follow-up functional studies. Together, gene-
438 variant pairs can give supporting evidence (genetic information) for GWAS hits.

439

440 In conclusion, incorporating local ancestry in *cis*-eQTL mapping enabled the identification of
441 ancestry-specific eQTLs between TB-T2D and T2D patients, as well as between TB patients
442 and healthy controls. Furthermore, a list of possible candidate disease-causing variants was
443 identified between TB-T2D and T2D patients, as well as between TB patients and healthy
444 controls which could be functionally validated. This could facilitate the early identification of
445 T2D patients at risk of developing TB and may improve the health of complex multi-way
446 admixed South Africans.

447

448 **Material and methods**

449 **Ethics Approval and sample collection**

450 Sample collection (protocol number N13/05/064) and the research presented here (S20/02/041)
451 were both approved by the Health Research Ethics Committee (HREC) of the Faculty of
452 Medicine and Health Sciences, Stellenbosch University. The research was conducted
453 according to the principles expressed in the Declaration of Helsinki (2013). Written informed
454 consent was obtained from all study participants before recruitment and blood collection.

455

456 Healthy controls, T2D patients without TB as well as TB patients with and without T2D were
457 recruited between December 2013 and February 2016 from communities located in the
458 Northern Suburbs of Cape Town, South Africa as part of the TANDEM study [4]. TB patients
459 were either bacteriologically confirmed (culture positive) or diagnosed by GeneXpert. All
460 participants were between the age of 18 and 70 years and tested negative for HIV. Participants
461 were excluded from the study if they were already on TB medication, receiving steroids
462 therapy, had other serious conditions including cancer, were pregnant, or using excessive
463 amounts of alcohol or illicit drugs. Gestational or steroid-induced diabetes was also excluded.
464 Participants were classified into different groups based on reference laboratory HbA1c levels.
465 Healthy controls (n=23) and TB patients without T2D (TB only; n=10) had an Hb1Ac <5.7%
466 mmol/L. PreT2D (n=6) and TB patients with intermediate hyperglycaemia (TB-IH; n=19) had
467 an Hb1Ac of 5.7% to < 6.5% mmol/L, T2D patients (n=28), including TB patients with T2D
468 (TB-T2D; n=10) had an Hb1Ac \geq 6.5 mmol/L.

469

470

471

472

473 **Genotype data**

474 DNA was extracted for 96 individuals using the Qiagen Blood Midi kit (Qiagen, Germany) as
475 recommended by the manufacturer. RNA sequencing data of the same 96 study participants
476 were also available [8]. Genotype data was generated for all individuals using the Illumina
477 Infinium Human, Hereditary and Health (H3Africa) Consortium Array v2 (comprising ~2.3
478 million markers) at the Centre for Proteomic and Genomic Research, South Africa. The
479 H3Africa array was designed to efficiently capture and characterise the genetic diversity in
480 Africa [49]. GenomeStudio v2.04 (Illumina, Miami, United States) was used to calculate
481 intensity scores and call common variants ($MAF \geq 5\%$) [50]. The software *zCall* was used to
482 recall variants ($MAF > 1\%$ and $< 5\%$) [51]. Variants called by GenomeStudio were exported
483 as PLINK formatted files for downstream data analysis.

484

485 **Quality control and imputation of genotype data**

486 Quality control of the raw genotype data was done using a reproducible snakemake pipeline
487 (https://github.com/hennlab/snake-SNP_QC) to filter out low-quality samples and SNPs [52].

488 Quality control and filtering parameters applied to the raw genotypes are indicated in Fig S1.

489

490 GenomeHarmonizer version 3 [53] was used to align the data to the 1000 Genomes Phase 3
491 reference panel (Human genome build 37) [54], to update SNP IDs and remove any variants,
492 not in the reference panel. A minimum linkage disequilibrium (LD) of 0.3 with at least three
493 flanking variants was required for strand alignment. A secondary minor allele frequency
494 (MAF) alignment was also used at a threshold of 5%. Finally, the minimum posterior
495 probability to call genotypes in the input data was left at the default value of 0.4.

496

497 After filtering and quality control of the genotypic data, it was converted from a PLINK file
498 format to Variant Call Format (VCF) using PLINK v2.0 [55]. The Sanger Imputation Server
499 was used for phasing, using SHAPEIT2 [56], followed by imputation using the Positional
500 Burrows-Wheeler Transformation (PBWT) algorithm and the African Genome Resource Panel
501 [57]. VCF files were downloaded from the online server after imputation and converted to
502 PLINK ped/map files using a genotyping threshold of 0.7 (PLINK command: `-vcf-min-gp`
503 command and `-output-missing-genotype N`).

504

505 The *UCSC liftOver* was used to convert the phased, imputed H3Africa genetic data from
506 reference genome Human genome build 37 (hg19) to Human genome build 38 (hg38) to ensure
507 compatibility with the gene expression data required to conduct the eQTL mapping [58]. After
508 performing the imputation, phasing, quality control and filtering, the final dataset comprised
509 of 4 224 844 variants and 96 individuals (summarized in Table S1 and Fig S2).

510

511 **Global Ancestry Inference**

512 The genotype data was merged with the appropriate source populations (summarized in Table
513 S2) using PLINK v2.0 [55], to generate input files required for global and local ancestry
514 inference. After merging, all individuals missing more than 10% of the genotypes were
515 removed, SNPs with more than 3% missing data were excluded and a Hardy-Weinberg
516 Equilibrium (HWE) filter of 0.01 was used. The software KING was used to determine
517 relatedness between individuals up to 2nd degree relatedness [59].

518

519 The software ADMIXTURE was used to investigate the population structure of the cohort and
520 to determine the correct number of contributing ancestries [60,61]. Each SNP in LD was
521 defined as $r^2 > 0.1$ within a 50-SNP sliding window (advanced by 10 SNPs at a time) and was
522 removed for the purpose of computational efficiency. A total of 273,175 autosomal markers
523 remained after LD pruning. Global ancestry was inferred in an unsupervised manner for K=3-
524 8, where K represents the number of contributing ancestral populations. After establishing the
525 correct K number of contributing ancestries through cross-validation, the software RFMix was
526 used to infer global ancestry proportions for downstream statistical analysis (see specific
527 parameters below), since ADMIXTURE is not as accurate as haplotype-based analyses [62].

528

529 **Local Ancestry Inference**

530 The software RFMix was used to infer local ancestry [63]. Default parameters were used,
531 except for the number of generations since admixture, which was set to 15, consistent with
532 previous studies [13]. A total of 4,230,650 autosomal variants were included. For each
533 individual, consecutive phased alleles with the local ancestry assignment were collapsed into
534 BED files of haplotype blocks. These local ancestry BED files were then used to count the
535 number of African, Khoe-San, European, Southeast Asian, and East Asian alleles at each SNP.

536

537

538 Gene expression data

539 Venous blood was collected using PAXgene Blood RNA tubes (PreAnalytiX). Sample
540 collection occurred at TB diagnosis (baseline) before TB treatment commenced. Total RNA
541 was extracted using the PAXgene Blood miRNA kit (Qiagen, Germany) with the semi-
542 automated QIAcube (Qiagen, Germany) [8]. RNA sequencing was conducted using the
543 NextSeq500 High Output kit v2 (Illumina) for 75 cycles. The polyA tail library preparation
544 method was used and single-end read sequencing was conducted (n=103) [8].

545

546 Quality control, filtering and trimming of raw reads were conducted with HTStream v1.3.1
547 (Releases s4hts/HTStream). Raw RNA sequencing reads were mapped to the human reference
548 genome (release GRCh38) using STAR v2.5.3a with default parameters [64]. Gene-level
549 quantification was performed with STAR Aligner using the GENCODE v34 annotation file
550 and a subsequent counting table was generated and used as input for DEG identification.
551 Quantified gene expression (TPM and raw counts) was filtered and normalized using the R-
552 package edgeR, limma and voom packages.

553

554 Cis-eQTL mapping with LocalAA and GlobalAA

555 An approach similar to that of Zhong *et al.* (2018) and Gay *et al.* (2019) was used to
556 incorporate both global and local ancestry whilst conducting *cis*-eQTL mapping in a multi-way
557 admixed South African population. This method allows for the identification of associations
558 between variants and gene expression for each contributing ancestral population [46,65].
559 Genome-wide *cis*-eQTL mapping was performed on 96 individuals and 4,230,650 autosomal
560 variants. All analyses were performed independently for each of the five contributing ancestries
561 (Bantu-speaking African, Khoe-San, European, Southeast Asian and East Asian). The
562 normalized gene expression files were used to calculate 15 hidden confounders with PEER
563 [66]. Additional sample-level covariates (age, gender and HbA1c) were also included in the
564 association analysis.

565

566 The following linear regression model was fitted for each gene-variant pair (gene g , variant v):

$$567 G = \beta V + \sum_{i=1}^k \alpha_i c_i + \sum_{i=1}^k \gamma_i a_i + e$$

568

569 G represents the differential gene expression of gene g across all 96 admixed individuals.

570 V represents the additive effect of alleles at variant v (coded as 0,1 or 2).
571 β represents the effect size of the alleles of variant v on gene g expression.
572 α_i represents the biological or technical covariate C_i on gene g expression. This includes age,
573 gender, HbA1c and the PEER hidden confounding factors.
574 γ_i represents the effect of the ancestry covariate α_i on gene g expression.
575 e represents the residual.
576

577 Two iterations of this regression were performed for each gene-variant pair.

- 578 1. **Global Ancestry Adjustment (GlobalAA):** Adjusting for global ancestry proportions
579 a_i represents the global ancestry proportions of each admixed individual.
- 580 2. **Local Ancestry Adjustment (LocalAA):** Adjusting for local ancestry, in which the
581 number of alleles at variant v were assigned to a specific ancestry of interest (1 =
582 ancestry of interest; 0 = other ancestries)

583

584 If any of the 4,230,650 filtered variants were located within one mega base of the transcription
585 start site, they were included in the association analysis with the gene expression. The $lm()$
586 function in R was used for all regressions performed. An additive genetic effect on gene
587 expression was assumed. The significance of an association was taken to be the two-sided P
588 value corresponding to the t -statistic of the β coefficient estimate. Additionally, the most
589 significant lead eQTLs were identified for each gene, independently for each ancestry
590 adjustment method. To approximate a 5% False Discovery Rate (FDR), a nominal P value of
591 1e-6 to identify significant associations was applied [46]. To discern which biological functions
592 are shared amongst the significant eGenes, gene ontology (GO) and Kyoto Encyclopedia of
593 Genes and Genomes (KEGG) pathway enrichment analyses were done for each ancestry
594 separately. The web-based software g:Profiler was used for this purpose and the default option
595 g:SCS method in g:Profiler was used for multiple testing corrections. Pathways with an
596 adjusted P value < 0.05 were reported [67]. Fig S2 summarizes the analysis pipeline used for
597 *cis*-eQTL mapping.

598

599

600

601

602 Acknowledgments

603 We acknowledge the Centre for High Performance Computing (CHPC), South Africa, for
604 providing computational resources to this research project. The authors thank the clinical staff
605 and the patients at the 4 study sites, as well as Bahram Sanjabi, Desiree Brandenburg-Weening,
606 and Pieter van der Vlies for assistance with the RNA-seq.

607 **Members of the TANDEM (Concurrent Tuberculosis and Diabetes Mellitus;unravellingg
608 the causal link, and improving care) Consortium.** The TANDEM partners and collaborators
609 include: H. Dockrell, J. Cliff, C. Eckold, D. Moore, U. Griffiths, and Y. Laurence (London
610 School of Hygiene and Tropical Medicine, London, United Kingdom); R. Aarnouste, M.
611 Netea; R. van Crevel, C. Ruesen, and E. Lachmandas (Radboud University Medical Center,
612 Nijmegen, The Netherlands); S. Kaufmann, M. Beigier, and R. Golinski (Max Planck Institute
613 for Infection Biology, Berlin, Germany); S. Joosten, T. Ottenhoff, F. Vrieling, and M. Haks
614 (Leiden University Medical Center, Leiden, The Netherlands); G. Walzl, K. Ronacher, S.
615 Malherbe, L. Kleynhans, B. Smith, K. Stanley, G. van der Spuy, A. Loxton, N. Chegou, M.
616 Bosman, L. Thiart, C. Wagman, H. Tshivhula, M. Selamolela, N. Prins, W. du Plessis, I. van
617 Rensburg, and L. du Toit (Stellenbosch University, Cape Town, South Africa); J. Critchley, S.
618 Kerry-Barnard, F. Pearson, and D. Grint (St George's, University of London, London, United
619 Kingdom); S. McAllister, P. Hill, and A. Verrall (University of Otago, Dunedin, New Zealand);
620 M. Ioana, A. Riza, R. Cioboata, M. Dudau, F. Nitu, I. Bazavan, M. Olteanu, C. Editoiu, A.
621 Florescu, M. Mota, S. G. Popa, A. Firantescu, A. Popa, I. Gheonea, S. Bicuti, A. Lepadat, I.
622 Vladu, D. Clenciu, M. Bicu, C. Streba, A. Demetrian, M. Ciurea, A. Cimpoeru, A. Ciocoiu, S.
623 Dorobantu, R. Plesea, E. L. Popescu, M. Cucu, I. Streata, F. Burada, S. Serban-Sosoi, N.
624 Panduru, and E. Nicoli (University of Craiova, Craiova, Romania); M. Ciontea, I. Capitanescu,
625 M. Olaru, T. Tataru, M. Papurica, I. Valutanu, V. Dubreu, and L. Stamatoiu (Pneumoftisiology
626 Hospital, Gorj, Romania); V. Kumar and C. Wijmenga (University of Groningen, Groningen,
627 The Netherlands); C. Ugarte-Gil, J. Coronel, S. Lopez, R. Limascca, K. Villaizan, B. Castro,
628 J. Flores, and W. Solano (Universidad Peruana Cayetano, Lima, Peru); B. Alisjahbana, R.
629 Ruslami, N. Soetedjo, P. Santoso, L. Chadir, R. Koesoemadinata, N. Susilawati, J. Annisa, R.
630 Livia, V. Yunivita, A. Soeroto, H. Permana, S. Imaculata, Y. Gunawan, N. Dewi, and L.
631 Apriani (Universitas Padjadjaran, Bandung, Indonesia).

632

633 **Author contributions**

634 YS conceived and designed and conducted analysis and wrote the paper. LK provided DNA
635 samples for genotyping and critically assessed manuscript and analysis. CU and MM critically
636 assessed the analysis and manuscript. CE, JMC, STM KR, VK, CW, HMD, RvC, and GW
637 established sample bank and reviewed manuscript.

638

639 **References**

- 640 1. Ngo MD, Bartlett S, Ronacher K. Diabetes-Associated Susceptibility to Tuberculosis:
641 Contribution of Hyperglycemia vs. Dyslipidemia. *Microorganisms*. 2021;9: 2282.
642 doi:10.3390/microorganisms9112282
- 643 2. Global Tuberculosis Report 2021. [cited 22 Nov 2021]. Available:
644 <https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021>
645
- 646 3. Home, Resources, diabetes L with, Acknowledgement, FAQs, Contact, et al. IDF
647 Diabetes Atlas | Tenth Edition. [cited 19 Jan 2022]. Available: <https://diabetesatlas.org/>
- 648 4. Ugarte-Gil C, Alisjahbana B, Ronacher K, Riza AL, Koesoemadinata RC, Malherbe ST,
649 et al. Diabetes Mellitus Among Pulmonary Tuberculosis Patients From 4 Tuberculosis-
650 endemic Countries: The TANDEM Study. *Clin Infect Dis*. 2019 [cited 18 Sep 2019].
651 doi:10.1093/cid/ciz284
- 652 5. Tenaye L, Mengiste B, Baraki N, Mulu E. Diabetes Mellitus among Adult Tuberculosis
653 Patients Attending Tuberculosis Clinics in Eastern Ethiopia. In: BioMed Research
654 International [Internet]. 2019 [cited 15 Jan 2020]. doi:10.1155/2019/7640836
- 655 6. Lutfiana NC, van Boven JFM, Masoom Zubair MA, Pena MJ, Alffenaar JC. Diabetes
656 mellitus comorbidity in patients enrolled in tuberculosis drug efficacy trials around the
657 world: A systematic review. *Br J Clin Pharmacol*. 2019;85: 1407–1417.
658 doi:10.1111/bcp.13935
- 659 7. Pheiffer C, Pillay-van Wyk V, Joubert JD, Levitt N, Nglazi MD, Bradshaw D. The
660 prevalence of type 2 diabetes in South Africa: a systematic review protocol. *BMJ Open*.
661 2018;8: e021029. doi:10.1136/bmjopen-2017-021029
- 662 8. Eckold C, Kumar V, Weiner J, Alisjahbana B, Riza A-L, Ronacher K, et al. Impact of
663 Intermediate Hyperglycemia and Diabetes on Immune Dysfunction in Tuberculosis.
664 *Clinical Infectious Diseases*. 2021;72: 69–78. doi:10.1093/cid/ciaa751
- 665 9. Westra H-J, Franke L. From genome to function by studying eQTLs. *Biochim Biophys
666 Acta*. 2014;1842: 1896–1902. doi:10.1016/j.bbadi.2014.04.024
- 667 10. Shang L, Smith JA, Zhao W, Kho M, Turner ST, Mosley TH, et al. Genetic Architecture
668 of Gene Expression in European and African Americans: An eQTL Mapping Study in

669 GENOA. *The American Journal of Human Genetics*. 2020;106: 496–512.
670 doi:10.1016/j.ajhg.2020.03.002

671 11. Gay NR, Gloudemans M, Antonio ML, Balliu B, Park Y, Martin AR, et al. Impact of
672 admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx. *bioRxiv*.
673 2019; 836825. doi:10.1101/836825

674 12. HU Y-J, SUN W, TZENG J-Y, PEROU CM. Proper Use of Allele-Specific Expression
675 Improves Statistical Power for cis-eQTL Mapping with RNA-Seq Data. *J Am Stat
676 Assoc*. 2015;110: 962–974. doi:10.1080/01621459.2015.1038449

677 13. Uren C, Kim M, Martin AR, Bobo D, Gignoux CR, van Helden PD, et al. Fine-Scale
678 Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries.
679 *Genetics*. 2016;204: 303–314. doi:10.1534/genetics.116.187369

680 14. Swart Y, Uren C, van Helden PD, Hoal EG, Möller M. Local Ancestry Adjusted Allelic
681 Association Analysis Robustly Captures Tuberculosis Susceptibility Loci. *Frontiers in
682 Genetics*. 2021;12: 2043. doi:10.3389/fgene.2021.716558

683 15. Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG. Common
684 genetic variants account for differences in gene expression among ethnic groups. *Nat
685 Genet*. 2007;39: 226–231. doi:10.1038/ng1955

686 16. Bloyd M, Settas N, Faucz FR, Sinaii N, Bathon K, Iben J, et al. The PRKAR1B p.R115K
687 Variant is Associated with Lipoprotein Profile in African American Youth with
688 Metabolic Challenges. *J Endocr Soc*. 2021;5: bvab071. doi:10.1210/jendso/bvab071

689 17. Xie L, Chao X, Teng T, Li Q, Xie J. Identification of Potential Biomarkers and Related
690 Transcription Factors in Peripheral Blood of Tuberculosis Patients. *Int J Environ Res
691 Public Health*. 2020;17: 6993. doi:10.3390/ijerph17196993

692 18. Suliman S, Thompson E, Sutherland J, Weiner Rd J, Ota MOC, Shankar S, et al. Four-
693 gene Pan-African Blood Signature Predicts Progression to Tuberculosis. *Am J Respir
694 Crit Care Med*. 2018. doi:10.1164/rccm.201711-2340OC

695 19. Perumal P, Abdullatif MB, Garlant HN, Honeyborne I, Lipman M, McHugh TD, et al.
696 Validation of Differentially Expressed Immune Biomarkers in Latent and Active
697 Tuberculosis by Real-Time PCR. *Front Immunol*. 2020;11: 612564.
698 doi:10.3389/fimmu.2020.612564

699 20. Chimusa ER, Zaitlen N, Daya M, Möller M, van Helden PD, Mulder NJ, et al. Genome-
700 wide association study of ancestry-specific TB risk in the South African Coloured
701 population. *Hum Mol Genet*. 2014;23: 796–809. doi:10.1093/hmg/ddt462

702 21. Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, Sahiratmadja E, et al.
703 Common variants at 11p13 are associated with susceptibility to tuberculosis. *Nat Genet*.
704 2012;44: 257–259. doi:10.1038/ng.1080

705 22. Chen C, Zhao Q, Shao Y, Li Y, Song H, Li G, et al. A Common Variant of ASAP1 Is
706 Associated with Tuberculosis Susceptibility in the Han Chinese Population. In: *Disease
707 Markers [Internet]*. 2019 [cited 3 May 2019]. doi:10.1155/2019/7945429

708 23. Shen C, Wu X, Jiao W, Sun L, Feng W, Xiao J, et al. A functional promoter
709 polymorphism of IFITM3 is associated with susceptibility to pediatric tuberculosis in
710 Han Chinese population. *PLoS One*. 2013;8: e67816. doi:10.1371/journal.pone.0067816

711 24. Starskaia I, Laajala E, Grönroos T, Härkönen T, Junttila S, Kattelus R, et al. Early DNA
712 methylation changes in children developing beta cell autoimmunity at a young age.
713 *Diabetologia*. 2022;65: 844–860. doi:10.1007/s00125-022-05657-x

714 25. Hara H, Seregin SS, Yang D, Fukase K, Chamaillard M, Alnemri ES, et al. The NLRP6
715 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen
716 Infection. *Cell*. 2018;175: 1651-1664.e14. doi:10.1016/j.cell.2018.09.047

717 26. Shen C, Lu A, Xie WJ, Ruan J, Negro R, Egelman EH, et al. Molecular mechanism for
718 NLRP6 inflammasome assembly and activation. *Proc Natl Acad Sci U S A*. 2019;116:
719 2052–2057. doi:10.1073/pnas.1817221116

720 27. Tian XX, Li R, Liu C, Liu F, Yang LJ, Wang SP, et al. NLRP6-caspase 4 inflammasome
721 activation in response to cariogenic bacterial lipoteichoic acid in human dental pulp
722 inflammation. *Int Endod J*. 2021;54: 916–925. doi:10.1111/iej.13469

723 28. Ghimire L, Paudel S, Jin L, Jeyaseelan S. The NLRP6 inflammasome in health and
724 disease. *Mucosal Immunol*. 2020;13: 388–398. doi:10.1038/s41385-020-0256-z

725 29. Wawrocki S, Druszczyńska M. Inflammasomes in *Mycobacterium tuberculosis*-Driven
726 Immunity. *Can J Infect Dis Med Microbiol*. 2017;2017: 2309478.
727 doi:10.1155/2017/2309478

728 30. Zhong Y, Kinio A, Saleh M. Functions of NOD-Like Receptors in Human Diseases.
729 *Frontiers in Immunology*. 2013;4. Available:
730 <https://www.frontiersin.org/article/10.3389/fimmu.2013.00333>

731 31. Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte
732 DH, et al. Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type
733 2 Diabetes. *Front Immunol*. 2020;11: 571731. doi:10.3389/fimmu.2020.571731

734 32. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-
735 mediated dysbiosis regulates progression of NAFLD and obesity. *Nature*. 2012;482:
736 179–185. doi:10.1038/nature10809

737 33. Anand PK, Malireddi RKS, Lukens JR, Vogel P, Bertin J, Lamkanfi M, et al. NLRP6
738 negatively regulates innate immunity and host defence against bacterial pathogens.
739 *Nature*. 2012;488: 389–393. doi:10.1038/nature11250

740 34. Cubillos-Angulo JM, Arriaga MB, Melo MGM, Silva EC, Alvarado-Arnez LE, de
741 Almeida AS, et al. Polymorphisms in interferon pathway genes and risk of
742 *Mycobacterium tuberculosis* infection in contacts of tuberculosis cases in Brazil.
743 *International Journal of Infectious Diseases*. 2020;92: 21–28.
744 doi:10.1016/j.ijid.2019.12.013

745 35. Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, Sahiratmadja E, et al.
746 Common variants at 11p13 are associated with susceptibility to tuberculosis. *Nat Genet*.
747 2012;44: 257–259. doi:10.1038/ng.1080

748 36. Travers ME, Mackay DJG, Dekker Nitert M, Morris AP, Lindgren CM, Berry A, et al.
749 Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the
750 KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets. *Diabetes*.
751 2013;62: 987–992. doi:10.2337/db12-0819

752 37. Asahara S, Etoh H, Inoue H, Teruyama K, Shibutani Y, Ihara Y, et al. Paternal allelic
753 mutation at the *Kcnq1* locus reduces pancreatic β -cell mass by epigenetic modification
754 of *Cdkn1c*. *Proceedings of the National Academy of Sciences*. 2015;112: 8332–8337.
755 doi:10.1073/pnas.1422104112

756 38. Abe-Dohmae S, Ikeda Y, Matsuo M, Hayashi M, Okuhira K, Ueda K, et al. Human
757 ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and
758 phospholipid to generate high density lipoprotein. *J Biol Chem*. 2004;279: 604–611.
759 doi:10.1074/jbc.M309888200

760 39. Ikeda F, Deribe YL, Skåland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, et al.
761 SHARPIN forms a linear ubiquitin ligase complex regulating NF- κ B activity and
762 apoptosis. *Nature*. 2011;471: 637–641. doi:10.1038/nature09814

763 40. Kielar D, Kaminski WE, Liebisch G, Piehler A, Wenzel JJ, Möhle C, et al. Adenosine
764 triphosphate binding cassette (ABC) transporters are expressed and regulated during
765 terminal keratinocyte differentiation: a potential role for ABCA7 in epidermal lipid
766 reorganization. *J Invest Dermatol*. 2003;121: 465–474. doi:10.1046/j.1523-
767 1747.2003.12404.x

768 41. Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W, et al.
769 ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates
770 cellular phospholipid but not cholesterol efflux. *J Biol Chem*. 2003;278: 42906–42912.
771 doi:10.1074/jbc.M307831200

772 42. Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE. ATP-binding
773 cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing.
774 *J Biol Chem*. 2015;290: 24152–24165. doi:10.1074/jbc.M115.655076

775 43. Stein CM, Zalwango S, Malone LL, Won S, Mayanja-Kizza H, Mugerwa RD, et al.
776 Genome Scan of *M. tuberculosis* Infection and Disease in Ugandans. *PLOS ONE*.
777 2008;3: e4094. doi:10.1371/journal.pone.0004094

778 44. Chang K, Deng S, Lu W, Wang F, Jia S, Li F, et al. Association between CD209 -
779 336A/G and -871A/G Polymorphisms and Susceptibility of Tuberculosis: A Meta-
780 Analysis. *PLOS ONE*. 2012;7: e41519. doi:10.1371/journal.pone.0041519

781 45. Naderi M, Hashemi M, Taheri M, Pesarakli H, Eskandari-Nasab E, Bahari G. CD209
782 promoter -336 A/G (rs4804803) polymorphism is associated with susceptibility to
783 pulmonary tuberculosis in Zahedan, southeast Iran. *Journal of Microbiology,
784 Immunology and Infection*. 2014;47: 171–175. doi:10.1016/j.jmii.2013.03.013

785 46. Gay NR, Gloudemans M, Antonio ML, Abell NS, Balliu B, Park Y, et al. Impact of
786 admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx. *Genome
787 Biology*. 2020;21: 233. doi:10.1186/s13059-020-02113-0

788 47. Zhong Y, Perera MA, Gamazon ER. On Using Local Ancestry to Characterize the
789 Genetic Architecture of Human Traits: Genetic Regulation of Gene Expression in
790 Multiethnic or Admixed Populations. *The American Journal of Human Genetics*.
791 2019;104: 1097–1115. doi:10.1016/j.ajhg.2019.04.009

792 48. Price AL, Patterson N, Hancks DC, Myers S, Reich D, Cheung VG, et al. Effects of cis
793 and trans Genetic Ancestry on Gene Expression in African Americans. *PLOS Genetics*.
794 2008;4: e1000294. doi:10.1371/journal.pgen.1000294

795 49. H3Africa: current perspectives. 24 Oct 2019 [cited 24 Oct 2019]. Available:
796 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903476/>

797 50. Zhao S, Jing W, Samuels DC, Sheng Q, Shyr Y, Guo Y. Strategies for processing and
798 quality control of Illumina genotyping arrays. *Brief Bioinform*. 2017;19: 765–775.
799 doi:10.1093/bib/bbx012

800 51. Goldstein JI, Crenshaw A, Carey J, Grant GB, Maguire J, Fromer M, et al. zCall: a rare
801 variant caller for array-based genotyping: genetics and population analysis.
802 *Bioinformatics*. 2012;28: 2543–2545. doi:10.1093/bioinformatics/bts479

803 52. Henn Lab SNP-QC pipeline Steps. Henn Lab; 2021. Available:
804 https://github.com/hennlab/snake-SNP_QC

805 53. Deelen P, Bonder MJ, van der Velde KJ, Westra H-J, Winder E, Hendriksen D, et al.
806 Genotype harmonizer: automatic strand alignment and format conversion for genotype
807 data integration. *BMC Res Notes*. 2014;7: 901. doi:10.1186/1756-0500-7-901

808 54. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An
809 integrated map of structural variation in 2,504 human genomes. *Nature*. 2015;526: 75–
810 81. doi:10.1038/nature15394

811 55. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a
812 tool set for whole-genome association and population-based linkage analyses. *Am J*
813 *Hum Genet*. 2007;81: 559–575. doi:10.1086/519795

814 56. Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands
815 of genomes. *Nature Methods*. 2012;9: 179–181. doi:10.1038/nmeth.1785

816 57. Durbin R. Efficient haplotype matching and storage using the positional Burrows–
817 Wheeler transform (PBWT). *Bioinformatics*. 2014;30: 1266–1272.
818 doi:10.1093/bioinformatics/btu014

819 58. Kuhn RM, Haussler D, Kent WJ. The UCSC genome browser and associated tools. *Brief*
820 *Bioinform*. 2013;14: 144–161. doi:10.1093/bib/bbs038

821 59. Conomos MP, Reiner AP, Weir BS, Thornton TA. Model-free Estimation of Recent
822 Genetic Relatedness. *The American Journal of Human Genetics*. 2016;98: 127–148.
823 doi:10.1016/j.ajhg.2015.11.022

824 60. Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual
825 ancestry estimation. *BMC Bioinformatics*. 2011;12: 246. doi:10.1186/1471-2105-12-
826 246

827 61. Zhou Y, Qiu H, Xu S. Modeling Continuous Admixture Using Admixture-Induced
828 Linkage Disequilibrium. *Sci Rep.* 2017;7. doi:10.1038/srep43054

829 62. Uren C, Hoal EG, Möller M. Putting RFMix and ADMIXTURE to the test in a complex
830 admixed population. *BMC Genetics.* 2020;21: 40. doi:10.1186/s12863-020-00845-3

831 63. Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling
832 approach for rapid and robust local-ancestry inference. *Am J Hum Genet.* 2013;93:
833 278–288. doi:10.1016/j.ajhg.2013.06.020

834 64. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
835 universal RNA-seq aligner. *Bioinformatics.* 2013;29: 15–21.
836 doi:10.1093/bioinformatics/bts635

837 65. Zhong Y, Perera MA, Gamazon ER. On Using Local Ancestry to Characterize the
838 Genetic Architecture of Human Phenotypes: Genetic Regulation of Gene Expression in
839 Multiethnic or Admixed Populations as a Model. *bioRxiv.* 2018 [cited 18 Feb 2019].
840 doi:10.1101/483107

841 66. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of
842 expression residuals (PEER) to obtain increased power and interpretability of gene
843 expression analyses. *Nat Protoc.* 2012;7: 500–507. doi:10.1038/nprot.2011.457

844 67. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web
845 server for functional enrichment analysis and conversions of gene lists (2019 update).
846 *Nucleic Acids Research.* 2019;47: W191–W198. doi:10.1093/nar/gkz369

847

848 Supporting Information

849

850 **S1 Fig.** Flow diagram of quality control and filtering parameters applied to raw genotypic
851 data.

852

853 **S2 Fig.** Flow diagram of the data analysis pipeline used for *cis*-eQTL mapping.

854

855 **S3 Fig.** Distribution of age for all phenotypes.

856

857 **S4 Fig.** Distribution of BMI for all phenotypes.

858

859 **S5 Fig.** Distribution of HbA1c between all phenotypes.

860

861 **S6 Fig.** Ancestry proportions between TB-T2D and T2D patients.

862

863 **S7 Fig.** Ancestry proportions between TB patients and healthy controls.

864

865 **S8 Fig.** Karyograms representing four individuals' local ancestry at each genomic region
866 from chromosome 1 to 22.

867

868 **S9 Fig. Gene Ontology analysis.** Gene ontology analysis revealed general tissue types in
869 which DEG would most likely occur while adjusting for Khoe-San ancestry only in TB-T2D
870 comorbid patients compared to T2D.

871

872 **S10 Fig. Gene ontology analysis.** Gene ontology analysis revealed general tissue types where
873 DEG were mostly up-or-down regulated in TB-T2D comorbid patients compared to T2D in
874 Khoe-San individuals using GlobalAA.

875

876

877 **S1 Table.** Quality control filtering parameters and the total number of variants and/or
878 individuals removed by the filtering command.

879 **S2 Table.** Ancestral populations included in analysis for ancestry inference.

880

881 **S3 Table.** Summary statistics of age, gender, HbA1c, BMI and ancestry proportions.

882

883 **S4 Table.** Cross validation error values for K=3-8 ancestral populations

884

885 **S5 Table.** Total number of DEG identified for each comparison. Highlighted in green is the
886 two comparisons used for *cis*-eQTL mapping.

887

888 **S6 Table.** Top DEG between TB patients and healthy controls. Highlighted genes are the same
889 DEG as previously identified in Eckold *et al.*

890

891 **S8 Table.** Differential lead SNPs (<1e-04) for the same eGene for TB-T2D patients compared
892 to T2D patients for all ancestries.

893

894 **S9 Table.** Differential lead SNPs (<1e-04) for the same eGene for TB patients compared to
895 Healthy controls for all ancestries.

896

897 **S10 Table.** GO between TB patients and Healthy controls of Khoe-San ancestry origin.

898

899 **S11 Table.** GO between TB patients and Healthy controls of Southeast Asian ancestry origin.

900

901

902

K = 5

1/1 runs

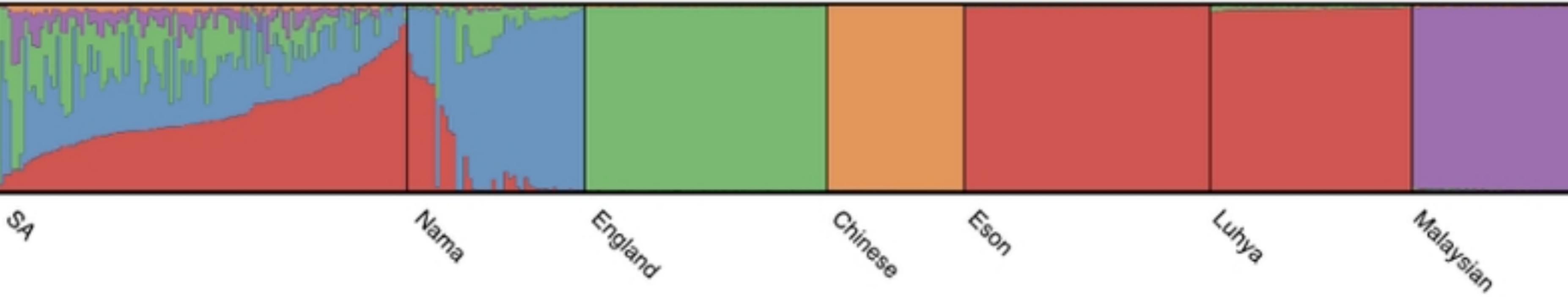


Fig 1

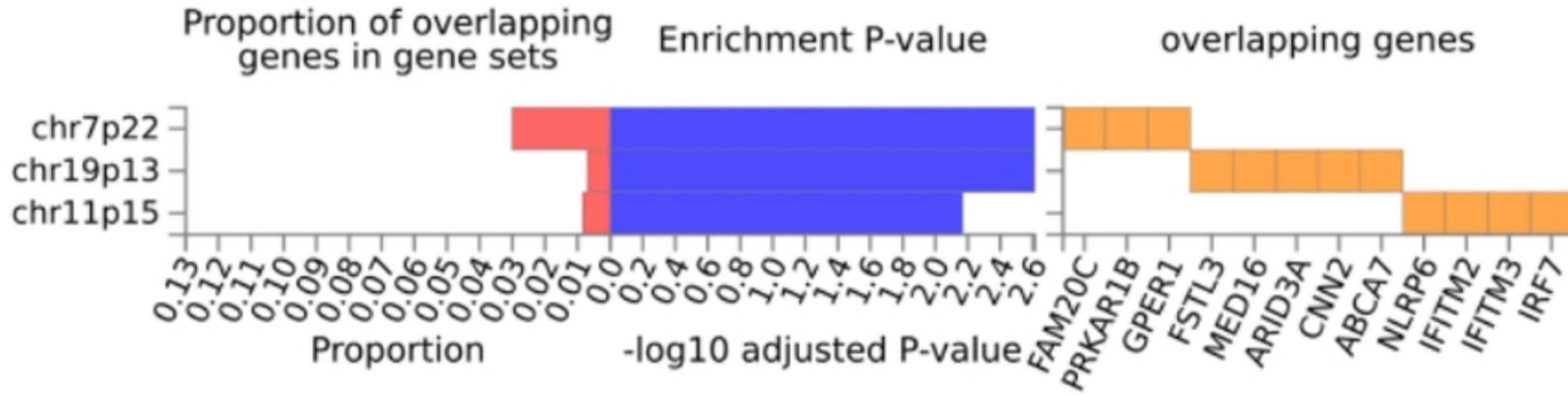


Fig 2