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Abstract  34 

The validation of genome-wide association signals for tuberculosis (TB) susceptibility and the 35 

development of type 2 diabetes (T2D) across diverse populations remain problematic. The 36 

ancestry-specific variants (coding and non-coding) that contribute to previously identified 37 

differentially expressed genes (DEG) in patients with TB, T2D and comorbid TB-T2D, remain 38 

unknown. Identifying ancestry-specific expression quantitative trait loci (eQTLs) can aid in 39 

distinguishing the most probable disease-causing variants for population-specific therapeutic 40 

interventions. Therefore, this study conducted cis-eQTL mapping in TB, T2D and TB-T2D 41 

patients to identify variants associated with DEG. Both genotyping (Infinium H3A array with 42 

~2.3 M markers) and RNA sequencing data of 96 complex multi-way admixed South Africans 43 

were used for this purpose. Importantly, both global-and local ancestry adjustment were 44 

included in statistical analysis to account for complex admixture. Unique gene-variant pairs 45 

were associated with TB-T2D on chromosome 7p22 whilst adjusting for Bantu-speaking 46 

African ancestry (PRKAR1B:rs4464850; P=7.68e-07) and Khoe-San ancestry 47 

(PRKAR1B:rs117842122; P=3.66e-07). In addition, IFITM3 (a biomarker for the development 48 

of TB) was associated with three SNPs (rs11025530, rs3808990, and rs10896664) on 49 

chromosome 11p15 while adjusting for Khoe-San ancestry. Our results also indicated that the 50 

upregulation of the NLRP6 inflammasome is strongly associated with people with TB-T2D 51 

while adjusting for Khoe-San ancestry. Three African-specific eGenes (NLRP6, IFITM3 and 52 

PRKAR1B) would have been missed if local ancestry adjustment was not conducted. This study 53 

determined a list of ancestry-specific eQTLs in TB-T2D patients that could potentially guide 54 

the search for new therapeutic targets for TB-T2D in African populations.  55 

 56 

Author Summary  57 

The limitation of genome-wide association study (GWAS) is that the particular biological 58 

pathway impacted by a variant might not be evident. eQTL mapping can be conducted to 59 

determine the impact that a genetic variant might have on the expression of a specific gene in 60 

a biological pathway. In this study the use of cis-eQTL mapping was explored to elucidate the 61 

underlying genetic variants that regulate gene expression between TB-T2D and T2D patients, 62 

and between TB patients and healthy controls with multi-way genetic admixture from South 63 

Africa. Using RNA sequencing data and newly genotyped dataset of 96 individuals (Illumina 64 

Infinium H3Africa array with ~2.5 M markers), we were able to identify ancestry-specific 65 

eQTLs. eQTLs of indigenous Khoe-San ancestral origin were identified in genetic regions 66 
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previously implicated in TB and T2D in African populations. If local ancestry was not 67 

incorporated in the cis-eQTL mapping analysis these important African-specific eQTLs would 68 

have been missed. Our results provide a list of possible ancestry-specific causal variants 69 

associated with TB-T2 comorbidity that could guide the search for new therapeutic targets for 70 

African-specific populations. Including populations with complex ancestry and admixture in 71 

genetic studies is necessary to improve the quality of genetic research in sub-Saharan African 72 

groups.   73 

 74 

Introduction  75 

The dual burden of tuberculosis (TB) and type 2 diabetes (T2D) is a global health problem [1]. 76 

Worldwide, an estimated 10 million cases of TB, caused by Mycobacterium tuberculosis 77 

(M.tb), were reported in 2020 [2]. The World Health Organisation (WHO) estimated that 78 

African countries accounted for 25% of the estimated 10 million cases of TB, with South Africa 79 

at the epicentre of the TB epidemic. More than 15% of all TB patients are estimated to have 80 

diabetes which equates to approximately 1.5 million people who require directed therapy and 81 

follow-up treatments to manage both diseases [3]. Currently, there is a lack of multidisciplinary 82 

approaches to develop therapeutic interventions for infectious and non-communicable diseases 83 

in Africa.  84 

 85 

Over the past decade, the diabetes prevalence has increased in low- and middle-income 86 

countries, where the TB epidemic is also gaining pace at an alarming rate [3–6]. Almost 80% 87 

of individuals with T2D in sub-Saharan Africa are undiagnosed and may pose a substantial 88 

threat to TB control efforts [7]. According to the International Diabetes Federation (IDF), the 89 

diabetes prevalence in Africa is expected to increase by 48% (28 million people) in 2030 and 90 

by 129% (55 million people) in 2045, the highest predicted increase of all the IDF Regions [3].  91 

Furthermore, the corona virus disease-19 (COVID-19) pandemic has adversely affected the 92 

global efforts to control both TB and T2D, most notably in low-and middle-income countries 93 

with populations of diverse ancestry and admixture.  94 

 95 

The co-epidemic of TB and T2D is not confined to South Africa or the African continent. South 96 

India (54%), some Pacific Islands (40%), South Korea (26.5%), Texas-Mexico (25%), and 97 

Ethiopia (15.8%) also suffer from larger numbers of diabetes-associated TB [3]. Moreover, 98 

clinical characteristics of TB-T2D vary considerably between countries, for example, the 99 
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median glycated haemoglobin (HbA1c) among TB-T2D patients in Indonesia is 11.3%, in Peru 100 

10.6%, in South Africa 10.1% and in Romania 7.4% [4].There are thus clear epidemiological 101 

and population-specific genetic disease risk factors contributing to TB-T2D comorbidity.  102 

 103 

Distinct differentially expressed gene (DEG) profiles were identified in blood to determine the 104 

underlying immunological mechanisms that contribute to TB-T2D comorbidity [8]. RNA 105 

sequencing of whole blood identified a reduced type 1 interferon response in both TB-T2D 106 

patients and TB patients with intermediate hyperglycaemia compared to TB-only patients. 107 

Nonetheless, the focus of the study was to identify biomarkers based on DEG between TB-108 

T2D compared to TB, T2D and healthy controls for diagnostic purposes. Thus, the contribution 109 

of ancestry-specific genetic variants (coding or non-coding) to the DEG in TB-T2D patients 110 

compared to TB, T2D, and healthy controls remains unknown.   111 

 112 

A multi-omics approach, such as Expression Quantitative Trait Loci (eQTL) mapping, can 113 

provide important information regarding the underlying biological mechanisms of genetic 114 

variants (coding or non-coding variants) by linking these to DEG [9]. eQTLs are genetic 115 

variants that are associated with gene expression, either located within a short distance (1 Mega 116 

base pairs) on either side of a gene’s transcription starting site (TSS) (cis-eQTLs) or located at 117 

longer distances (5 Mega base pairs) (trans-eQTLs) [10]. This enables the identification of 118 

interindividual regulatory candidate variants of transcription and improves our understanding 119 

of the effects of genetic polymorphisms on tissue-specific variability in physiological processes 120 

[11]. Consequently, eQTL data can be used to model regulatory networks and provide a better 121 

understanding of the underlying phenotypic variation.  122 

 123 
The major goal of identifying eQTLs is to reduce the number of candidate causal variants for 124 

follow-up verification by functional assays [9]. Once identified, eQTLs can provide invaluable 125 

genomic information to enhance the power of future GWAS and assist in identifying the most 126 

probable disease-causing variants associated with TB-T2D [12]. Currently, the lack of eQTL 127 

mapping studies in populations with southern African ancestry hinders the progress of 128 

comparative analysis between South African and other populations in terms of differences in 129 

genetic architecture underlying gene expression variation [10].  130 

 131 

Given the complex nature of both TB and T2D (onset of disease, progression, and treatment 132 

variability), cis-eQTL mapping was done on samples from South African patients to identify 133 
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the most probable candidate population-specific causal variants in TB-T2D compared to T2D-134 

only, and in TB-only patients compared to healthy individuals. This was done to understand 135 

the genetic risk factors contributing to TB development in T2D patients and healthy controls. 136 

Two ancestry adjustment methods, namely Global Ancestry Adjustment (GlobalAA) and Local 137 

Ancestry Adjustment (LocalAA), were used. The unique genetic diversity and admixture 138 

present in populations in South Africa facilitated the study of ancestry-specific eQTLs. This 139 

involves five ancestries from various continents, with differential exposure to M.tb throughout 140 

history, contributing to the genomic architecture in the country  [13].  141 

 142 

Results  143 

Population structure and ancestry inference of study population 144 

The summary statistics and distributions of the age, sex, body mass index (BMI), and HbA1c 145 

for each ancestry are summarized in the supplementary materials (Table S3, Fig S3-5). As 146 

expected, there was a significant difference in HbA1c levels between T2D patients and TB-147 

T2D patients compared to no T2D (P value = 4.17e-06).  148 

 149 

Cross validation was conducted to identify the correct number of contributing ancestral 150 

populations (K=3-8) of the admixed population, before inferring global and local ancestry. The 151 

estimations indicated that K=5 had the lowest cross validation error (k=0.419, Table S4) and 152 

thus represented the most likely number of contributing ancestral populations in the cohort. Fig 153 

1 represents the global ancestry proportions of all 96 admixed individuals included in the 154 

statistical analysis. For more refined global ancestry proportions, RFMix was used to infer local 155 

and in turn global ancestry. Bantu-speaking African ancestry contributed ~40.7% of the 156 

average global ancestry, indigenous Khoe-San ~30.8%, European ancestry ~19.8%, Southeast 157 

Asian ancestry ~6.9% and East Asian ancestry ~1.9% (Fig 1). In addition to estimating global 158 

ancestry using RFMix, local ancestry estimation was conducted, which involves the inference 159 

of ancestry at each genomic locus. The local ancestry represented in karyograms indicates the 160 

ancestry of each genomic region from chromosome 1 to 22 (Fig S8). Noticeably, the local 161 

ancestry patterns appear to be highly heterogeneous, which is in line with previous studies 162 

[13,14]. The successful inference of both global and local ancestry allowed the efficient 163 

inclusion of this covariate in the subsequent statistical models. 164 

 165 

 166 
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 167 

 168 

 169 

 170 

Fig 1. RFMix analysis results using K=5 clusters to infer global ancestry proportions for all 96 admixed 171 

South African individuals (SA). The average proportion of Southeast Asian (Malaysian in purple), 172 

African (Luhya and Eson in red), East Asian (Chinese in orange), European (England in green), and 173 

Khoe-San (Nama in blue) genetic ancestry were 6.9%, 40.7%, 1.9%, 19.8%, and 30.8%, respectively. 174 

Displayed populations from left to right on the x-axis: admixed South African individuals from this 175 

study (n=96), Khoe-San ancestry (Nama gathered from the European Genome-Phenome archive), 176 

Northern and Western European ancestry (GBR from the 1000GP phase 3), East Asian ancestry (CHB 177 

from the 1000GP phase 3), Western African ancestry (LWK and MSL from the 1000GP phase 3), and 178 

Southeast Asian ancestry (Malaysian from Wong et al.’s 2013 study). 179 

 180 

DEGs amongst TB-T2D-, T2D- and TB patients and healthy 181 

controls  182 

In total, 1,581 DEGs were identified when comparing TB-T2D and T2D patients. 178 DEGs 183 

were identified between TB patients and healthy controls (Table S5). When quantifying the 184 

number of DEGs it became apparent that individuals with preT2D (no TB) had no distinct 185 

phenotype compared to T2D patients and healthy controls (Tables S5). For this reason, as well 186 

as the low sample number, individuals with preT2D were excluded from the eQTL analysis. 187 

Since we were interested in investigating the genetic risk factors (identified through DEG) 188 

contributing to TB development in T2D patients and healthy controls, TB-IH patients were 189 

excluded from the analysis. Furthermore, DEG analysis of TB-IH patients compared to healthy 190 

controls, preT2D and T2D only, were previously reported (Table S5) [8].   191 

 192 

Although different DEGs analysis methods (edgeR, limma and voom in R versus DESeq2) 193 

were used, this study validated the results on the same cohort as presented in Eckold et al. More 194 

specifically, overlapping DEGs (across the two studies) include, BATF2, SOC3, Septin 4, 195 
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ANKRD22, C1QA, B, C and GBP5 when comparing TB patients and healthy controls (Table 196 

S6 and S7).  197 

Ancestry-specific eQTLs identified between TB patients and 198 

healthy controls 199 

The eGenes (of which gene expression is associated with at least one genetic variant) and the 200 

eQTLs with the corresponding assigned ancestry for each statistical analysis are shown in 201 

Table 1. In total, five significant eGenes (P value<1e-06) were identified. Two of these were 202 

identified using LocalAA and three with GlobalAA. Notably, one eGene of Khoe-San origin 203 

(ENSG00000269981.1) was identified using GlobalAA. This eGene is located on chromosome 204 

1 and has one transcript which is a splice variant, with no known biological function. Four 205 

eQTLs were associated with this eGene (rs2088212; rs2088210; rs10916169; rs903697) and 206 

appear to be in linkage with each other (Table 1).  207 

 208 

Using LocalAA, the eGene protein Kinase cAMP-Dependent Type I Regulatory Subunit Beta 209 

(PRKAR1B) was identified. An eQTL (rs4464850) was identified to affect the expression of 210 

PRKAR1B when comparing TB patients and healthy controls whilst adjusting for Bantu-211 

speaking African ancestry. Interestingly, an eQTL (rs117842122) affecting the expression of 212 

PRKAR1B was also identified whilst adjusting for Khoe-San ancestry, when comparing TB-213 

T2D to T2D patients. This suggests that this eGene may be implicated in TB progression in 214 

T2D patients and healthy controls whilst adjusting for Bantu-speaking African ancestry and 215 

Khoe-San ancestry.  216 

 217 

Although there are examples where one genetic variant affects the expression of a gene, 218 

previous studies suggest that it is more likely that multiple variants affect the expression of a 219 

gene [15]. In support of this, our data shows that two eQTLs (rs321909 and rs12459238) both 220 

appear to affect the expression of ARID3A (AT-Rich Interaction Domain 3A) while adjusting 221 

for East Asian ancestry (Table 2). In addition, ARID3A was also identified when comparing 222 

TB-T2D to T2D patients while adjusting for Khoe-San ancestry. This suggests that this eGene 223 

may be implicated in TB progression in both T2D patients and healthy controls. All gene-224 

variant pairs identified with a P value threshold of < 1e-04 are summarized in table S8 for TB 225 

patients compared to healthy controls. 226 

 227 
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Common pathways across eGenes were investigated using GO analysis. When only including 228 

eGenes with a P value <1e-06, no statistically significant (FDR corrected < 0.05) GO results 229 

were observed. However, when decreasing the cut-off to a less stringent value of <1e-04, 230 
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Table 1. Unique eGenes significantly associated (P value <1e-06) with TB patients compared to healthy controls for each ancestry using GlobalAA 231 
and LocalAA. 232 

eGene SNP ID P value Gene Location Ancestry Method 

RBCK1 rs6041222 1.680e-07 20:12223190 
Bantu-speaking African; East Asian; European; 

Southeast Asian 
GlobalAA 

ARID3A rs321909 7.776e-08 19:52799034 
Bantu-speaking African; East Asian; European; 

Southeast Asian 
GlobalAA 

ENSG00000269981.1 rs2088212 7.196e-07 1:227763544 All ancestries GlobalAA 

ENSG00000269981.1 rs2088210 7.196e-07 1:227763840 All ancestries GlobalAA 

ENSG00000269981.1 rs10916169 7.196e-07 1:227764857 All ancestries GlobalAA 

ENSG00000269981.1 rs903697 7.196e-07 1:227766845 All ancestries GlobalAA 

PRKAR1B rs4464850 7.679e-07 7:62169785 Bantu-speaking African LocalAA 

MRPL28 rs79630695 7.884e-07 16:78831326 
Bantu-speaking African; East Asian; European; 

Southeast Asian 
LocalAA 

 233 

 234 

 235 

 236 

Table 2. Differential lead SNPs (P value <1e-06) for the same eGene for TB patients compared to healthy controls using GlobalAA and LocalAA. 237 
eGene ID SNP ID P value Gene Location Ancestral Origin Method 

SLC6A12 rs17009851 2.341e-07 12:83084188 Bantu-speaking African; European ; East Asian ; Southeast Asian  GlobalAA 
ARID3A rs321909 7.776e-08 19:52799034 East Asian GlobalAA 
SLC6A12 rs17010578 1.460e-08 12:83457942 Bantu-speaking African; European ; East Asian ; Southeast Asian  LocalAA 
ARID3A rs12459238 2.447e-07 19:16593359 East Asian LocalAA 

 238 

 239 

 240 
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statistically significant results were observed. Similar results were obtained previously by 241 

Eckold et al., with genes involved in the type 1 interferon (IFN) signalling pathway, cellular 242 

response to type 1 IFN and the IFN-alpha/beta signalling pathways between TB patients and 243 

healthy controls while adjusting for Khoe-San ancestry (Table S10). In addition, a NOD-like 244 

receptor signalling pathway was identified between TB patients and healthy controls while 245 

adjusting for Khoe-San ancestry (Table S10).   246 

 247 

Ancestry-specific eQTLs identified between TB-T2D and T2D 248 

patients 249 

The eGenes and the eQTLs with the corresponding assigned ancestry for each statistical 250 

analysis is shown in Table 3. In total, four significant (P value <1e-06) eGenes were identified 251 

using LocalAA. Three eGenes were identified while adjusting for of Khoe-San ancestry and 252 

one while adjusting for East Asian ancestry. An eQTL (rs346066) of Khoe-San ancestry origin, 253 

affecting the expression of a long non-coding RNA (LINC01002) was identified while 254 

adjusting for Khoe-San ancestry. Two eGenes (PRKAR1B and ARID3A), were identified 255 

between TB-T2D and T2D patients as well as TB patients and healthy controls while adjusting 256 

for Khoe-San ancestry, but were associated with different eQTLs (rs117842122 and 257 

rs56369375). Importantly, both eGenes would have been missed if LocalAA was not used. An 258 

eQTL (rs2571075) affecting the expression of the ATP Binding Cassette Subfamily A Member 259 

7 (ABCA7) was identified while adjusting for East Asian ancestry.  260 

 261 

Multiple eQTLs affecting the expression of Golgi-associated secretory casein pathway kinase 262 

(FAM20C), were identified (Table 4). An additional eQTL (rs12531478) affecting the 263 

expression of FAM20C was identified using LocalAA while adjusting for Bantu-speaking 264 

African, East Asian and Khoe-San ancestry. Interestingly, Khoe-San ancestry seems to be 265 

associated with FAM20C when using LocalAA, but not GlobalAA. Two eQTLs (rs35219837 266 

and rs1186214) affecting the expression of Post-Glycosylphosphatidylinositol Attachment to 267 

Protein 6 (PGAP6), were identified when comparing TB-T2D and T2D patients while adjusting 268 

for Khoe-San ancestry. Three eQTLs (rs11025530, rs3808990 and rs10896664) affecting the 269 

expression of NOD-like receptor family Pyrin Domain Containing 6 protein (NLRP6), were 270 

identified when comparing TB-T2D and T2D patients while adjusting for Khoe-San ancestry. 271 

Three eQTLs (rs55970487, rs77247842 and rs12282149) affecting the expression of the IFN-272 

induced transmembrane protein 3 (IFITM3), were identified when analysing TB-T2D and T2D273 
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Table 3. Unique eGenes significantly associated (P value <1e-06) with TB-T2D patients compared to T2D patients for each ancestry using 274 
GlobalAA and LocalAA. 275 

Gene SNP ID P value Gene Location Ancestral Origin Method 

LINC01002 LncRNA rs346066 9.523e-07 19:44217836 Khoe-San LocalAA 
PRKAR1B rs117842122 3.655e-07 7:76842468 Khoe-San LocalAA 
ARID3A rs56369375  7.489e-07 19:52770105 Khoe-San LocalAA 
ABCA7 rs2571075 6.980e-07 19:44873148 East  Asian LocalAA 

 276 
Table 4. Differential lead SNPs (P value <1e-06) for the same eGene for TB patients compared to healthy controls using GlobalAA and LocalAA. 277 

Gene ID SNP ID P value Gene Location Ancestral Origin Method 

FAM20C rs11763876 7.169e-09 7:7249747 Bantu-speaking African ; East Asian  GlobalAA 
FAM20C rs78423890 7.169e-09 7:17071336 Bantu-speaking African ; East Asian  GlobalAA 
FAM20C rs57549526 7.169e-09 7:30198960 Bantu-speaking African ; East Asian  GlobalAA 
FAM20C rs62460527 7.169e-09 7:44908078 Bantu-speaking African ; East Asian  GlobalAA 
FAM20C rs183319053 7.169e-09 7:44910466 Bantu-speaking African ; East Asian  GlobalAA 
FAM20C rs12616494 7.169e-09 7:44910682 Bantu-speaking African ; East Asian  GlobalAA 
FAM20C rs188203968 7.169e-09 7:44911023 Bantu-speaking African ; East Asian  GlobalAA 
FAM20C rs62460528 7.169e-09 7:44912066 Bantu-speaking African ; East Asian  GlobalAA 
FAM20C rs115428191 7.169e-09 7:54748201 Bantu-speaking African ; East Asian  GlobalAA 
FAM20C rs57549526 4.107e-09 7:30198960 Khoe-San GlobalAA 
MRPL28 rs759202 3.817e-08 16:5114437 Khoe-San GlobalAA 
PGAP6 rs35219837 1.355e-07 16:84193640 Khoe-San GlobalAA 
NLRP6 rs11025530 6.415e-07 11:20383324 Khoe-San GlobalAA 
NLRP6 rs3808990 6.415e-07 11:20384800 Khoe-San GlobalAA 
IFITM3 rs12282149 8.072e-07 11:88092069 Khoe-San GlobalAA 

FAM20C rs12531478 2.266e-09 7:15239894 Bantu-speaking African     LocalAA 
FAM20C rs12531478 1.242e-09 7:15239894 East Asian LocalAA 
FAM20C rs12531478 1.237e-09 7:15239894 Khoe-San LocalAA 
MRPL28 rs113496159 9.156e-07 16:76054857 Khoe-San LocalAA 
MRPL28 rs17677328 9.156e-07 16:76055758 Khoe-San LocalAA 
PGAP6 rs11862144 8.888e-08 16:54507876 Khoe-San LocalAA 
NLRP6 rs10896664 5.175e-08 11:57707387 Khoe-San LocalAA 
IFITM3 rs77247842 3.150e-07 11:83811362 Khoe-San LocalAA 
IFITM3 rs55970487 3.150e-07 11:83816191 Khoe-San LocalAA 

278 
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patients while adjusting for Khoe-San ancestry. Three eQTLs (rs759202, rs113496159 and 279 

rs17677328) affecting the expression of mitochondrial ribosomal protein L28 located 280 

(MRPL28), were also identified when comparing these two patient groups while adjusting for 281 

Khoe-San ancestry. All gene-variant pairs identified with a P value threshold of <1e-04 are 282 

summarized in table S9 for TB-T2D vs T2D patients.  283 

 284 

Common pathways across eGenes were investigated using GO analysis. When only including 285 

eGenes with a P value <1e-06, no statistically significant (FDR corrected < 0.05) GO results 286 

were observed. However, when decreasing the cut-off to a less stringent value of <1e-04, 287 

statistically significant results were observed. GO analysis indicated a possible upregulation of 288 

genes in lung tissue and downregulation of genes in adipose tissue while adjusting for Khoe-289 

San ancestry (Fig S9 and S10). Multiple transcription factors were identified while adjusting 290 

for Southeast Asian ancestry. This suggests that Southeast Asian ancestry may have a different 291 

biological pathway that drives the development of TB in healthy individuals compared to the 292 

other four ancestries in this study. Comparable results were observed between TB-T2D and 293 

T2D patients, and TB patients and healthy controls, with genes clustering together in the IFN 294 

alpha-beta signalling pathway and NOD-like signalling pathway in both comparisons. This 295 

could indicate that both pathways contribute to TB development in T2D patients and healthy 296 

controls.  297 

 298 

Interestingly, some eGenes overlapped in the GO analysis for both phenotypes (TB patients 299 

compared to healthy controls and TB-T2D patients compared to T2D) and clustered in the same 300 

genetic regions (Fig 2). FAM20C and PRKAR1B are both located on chromosome 7p22, 301 

ARID3A and ABCA7 overlap on chromosome 19p13 and NLRP6 and IFITM3 overlap on 302 

chromosome 11p15. This may indicate genetic regions of interest in the context of TB-T2D 303 

comorbidity.  304 

 305 

 306 
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Fig 2. GO analysis of common pathways across significant eGenes for both phenotypes (TB 307 

patients compared to healthy controls and TB-T2D patients compared to T2D). The proportion 308 

of significant eGenes overlapping between the two phenotypes on similar genetic regions are 309 

showcased on the far left, with their corresponding overlapping eGenes on the far-right hand 310 

side. The enrichment p-value are indicated in the middle, with chromosome 7p22 and 311 

chromosome 19p13 with the strongest enrichment p-value for overlapping eGenes.  312 

 313 

Discussion  314 

Given the absence of TB-T2D comorbidity studies investigating complex multi-way admixed 315 

South African populations, this study aimed to identify ancestry-specific eQTLs that contribute 316 

to the progression of TB in healthy individuals and T2D patients. Due to the complex multi-317 

way admixed nature of the South African populations, this study used two ancestry adjustment 318 

methods (GlobalAA and LocalAA). To our knowledge, this is the first study to link ancestry-319 

specific genetic variants responsible for gene expression in TB, T2D, and TB-T2D patients.  320 

 321 

An eQTL (rs4464850) affecting the expression of PRKAR1B, was identified when comparing 322 

TB patients with healthy controls while adjusting for Bantu-speaking African ancestry. 323 

Interestingly, when comparing TB-T2D patients with T2D patients, an eQTL (rs117842122) 324 

was identified using LocalAA while adjusting for Khoe-San ancestry. PRKAR1B encodes for 325 

an important protein kinase regulating the subunit of cyclic AMP-dependent protein kinase A 326 

(PKA). PRKAR1B is mostly responsible for the cyclic adenosine monophosphate (cAMP)-327 

dependent protein kinase (PKA) signalling pathway which is key in regulating energy balance, 328 

glucose homeostasis, and lipid metabolism [16]. A decrease in PKA activity indicated 329 

improved lipid profiles in a cohort of obese and overweight African American youths and 330 

suggests that an increase in PKA activity may contribute to obesity and insulin resistance [16]. 331 

This implies that the upregulation of PRKAR1B increases PKA signalling molecules and other 332 

proteins regulated by the cAMP signalling pathway and may be associated with T2D and other 333 

obesity-related comorbidities in this cohort of African ancestry origin. Notably, only African 334 

ancestry was associated with this eGene (PRKAR1B) and both eQTLs (rs117842122 and 335 

rs4464850) affecting the expression of PRKAR1B, would have been missed if only GlobalAA 336 

was used in statistical analysis.  337 

 338 
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A similar trend was observed for the eGene, ARID3A. Two eQTLs (rs12459238 and rs321909) 339 

affecting the expression of ARID3A, were identified when comparing TB patients with healthy 340 

controls while adjusting for East Asian ancestry. Similar to PRKAR1B, when comparing TB-341 

T2D with T2D patients, an eQTL (rs56369375) of Khoe-San ancestry origin was identified 342 

using LocalAA while adjusting for Khoe-San ancestry. ARID3A is a potential biomarker for 343 

TB diagnosis and treatment response in peripheral blood of TB patients [17]. In addition, 344 

ARID3A plays an important role in immune responses against intracellular pathogens by 345 

controlling cell cycle progression via the RB1/E2F1 pathway and is essential for the 346 

development of B-cells. Since both eGenes (PRKAR1B and ARID3A) were identified in both 347 

phenotypes, it suggests that these two eGenes contribute to TB progression in both T2D 348 

patients and healthy controls.  349 

 350 

eQTLs affecting the expression of PGAP6, NLRP6 and IFITM3, were identified when 351 

comparing TB-T2D and T2D patients while adjusting for Khoe-San ancestry. IFITM3 forms 352 

part of a four-gene signature that is able to distinguish active TB patients from healthy controls 353 

[18] and is also one of the seventeen TB biomarkers in UK and Indian populations [19]. 354 

IFITM3, localized on chromosome 11p15, is a genetic region that has previously been linked 355 

to TB susceptibility[20,21], and paediatric TB patients of Han Chinese origin [22,23]. PGAP6 356 

is upregulated in gestational diabetes patients and is inversely correlated with gene expression 357 

in type 1 diabetes [24]. NLRP6 mediates inflammasome activation in response to various 358 

pathogen-associated signals, as part of the sensor component of the NLRP6 inflammasome 359 

[25–27].   360 

 361 

Inflammasomes play a critical role in innate immunity and inflammation by assembling in the 362 

cytosol and acting as a recognition receptor to bind pathogens and other damage-associated 363 

signals [26,28]. Interestingly, the dysregulation of inflammasomes has been found to be 364 

involved in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis, 365 

atherosclerosis, T2D and obesity [29]. When pro-inflammatory macrophages infiltrate the 366 

pancreatic islets of T2D patients, it drives the production of IL-1beta via the NLRP3 367 

inflammasome [30]. Beta-cell proliferation is initially favoured by low concentrations of IL-368 

1beta, however, chronically elevated levels of IL-1beta may lead to beta-cell failure [31]. In 369 

contrast, administration of an IL-1 receptor antagonist, improves glucose tolerance, beta-cell 370 

function, and systematic inflammation in humans. Moreover, metabolites produced by 371 

intestinal microbiota may drive the development of insulin resistance in obesity and T2D by 372 
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initiating an inflammatory response via NLRP6 [31]. Henao-Mejia et al. confirmed the 373 

observation that dysbiosis of the microbiota is linked to metabolic diseases in NLRP6 mutant 374 

mice [32]. Furthermore, NLRP6 mutant mice have enhanced activation of MAPK and NF-kB 375 

signaling via the activation of Toll-like receptors (TLR) and therefore an increased number of 376 

immune cells in circulation [33].  377 

 378 

NLRP6 is a negative regulator of inflammatory signaling and NF-kB signaling in response to 379 

bacterial pathogens in myeloid cells 7. Therefore, NLRP6 expression may prevent clearance of 380 

both gram-positive and gram-negative bacterial pathogens. Inflammasome inhibitors that 381 

target the polymorphisms of NLRP6 in TB-T2D patients may provide new means of therapeutic 382 

interventions for patients with Khoe-San ancestry and may help alleviate the dual burden of 383 

both diseases.  384 

 385 

Interestingly, both NLRP6 and IFITM3 are located on chromosome 11p15. This region was 386 

associated with multiple facets of innate and adaptive immune responses. The IRF7 gene is 387 

located in this region and was associated with developing severe TB [34]. Chromosome 11 was 388 

identified in a meta-analysis and a trans-ethnic fine-mapping study to be associated with TB 389 

and includes the involvement of the WT1 signalling pathway [20,35]. Interestingly, the 390 

KCNQ1 gene cluster maps within the 11p15.5 imprinted domain and variants intronic to 391 

KCNQ1 influence diabetes susceptibility which is maternally inherited during early 392 

development [36]. Furthermore, KNCNQ1 has been established as a candidate susceptibility 393 

gene for T2D and influences the K 7.1 voltage-gated potassium channel subunit located in 394 

human beta cells [37]. This evidence points to the involvement of chromosome 11p15 in the 395 

development of T2D in individuals of Khoe-San ancestry origin.  396 

 397 

An eQTL (rs2571075) affecting the expression of ABCA7, was identified when comparing TB-398 

T2D with T2D patients while adjusting for East Asian ancestry. ABCA7 plays a role in multiple 399 

biological processes such as lipid homeostasis, macrophage-mediated phagocytosis, binds 400 

APOA1, apolipoprotein-mediated phospholipid efflux from cells and possibly mediates 401 

cholesterol efflux [38–41]. The impact on TB or T2D remains unclear, however, it is involved 402 

in the phagocytosis of apoptotic cells by macrophages. Macrophage phagocytosis is stimulated 403 

by APOA1 or APOA2 upon the stabilization of ABCA7 [42].  404 

 405 
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The eGenes that overlapped in certain genetic regions were previously associated with TB 406 

susceptibility. Two eGenes (FAM20C and PKRA1B), are both located on chromosome 7p22. 407 

This region is associated with TB susceptibility in a Ugandan population [43]. Likewise, 408 

ARID3A and ABCA7 are located on chromosome 19p13. This region was associated with TB 409 

susceptibility and linked with the CD209 gene. This gene – coding for Dendritic Cell-Specific 410 

ICAM3-Grabbing Non-integrin (DC-SIGN), is one of the major receptors for M.tb on human 411 

dendritic cells. A relatively large number of studies evaluated the association between CD209 412 

polymorphisms (-336A/G, -871A/G) and TB risk, but the results have been inconsistent due to 413 

limited sample sizes and different studies populations [44,45].  414 

 415 

It has been hypothesized that the inclusion of local ancestry in eQTL mapping increases the 416 

power to identify novel ancestry-specific eQTLs [46,47]. Most of the eGenes and the eQTLs 417 

with their corresponding assigned ancestry would not have been identified if LocalAA was not 418 

used. Furthermore, the eQTL (rs12531478) of Khoe-San ancestry origin, affecting the 419 

expression of FAM20C, was only elucidated once applying LocalAA. This indicates that 420 

important indigenous African-specific genetic variants could be missed when only global 421 

ancestry is used to account for population structure in complex admixed South African 422 

individuals.  423 

 424 

Given our modest sample size, findings should be validated in ethnically similar cohorts. 425 

Furthermore, whole-genome sequencing could help identify structural variants (small 426 

insertions, deletions (indels), and larger structural variations, such as duplications, inversions, 427 

and translocations involved in TB-T2D comorbidity. Additionally, future studies should 428 

investigate the possible role of methylation (ATAC sequencing) on the DEG, since multiple 429 

mechanisms (not only genetic variants) could influence gene expression. cis-eQTLs only 430 

identify nearby variants located near DEG (1Mb upstream or downstream). Although the extent 431 

of involvement of trans-eQTLs is still uncertain [9,48], it would still be worthwhile to 432 

investigate. In addition, genes that are located near GWAS-significant hits from previous 433 

studies that are also identified to be eGenes may be candidate causal genes. Therefore, the 434 

different lead variants identified for each ancestry for the same eGenes should be included in 435 

future studies to compare it to previous GWAS hits for TB and T2D. This will assist with the 436 

prioritization of GWAS hits for inclusion in follow-up functional studies. Together, gene-437 

variant pairs can give supporting evidence (genetic information) for GWAS hits. 438 

 439 
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In conclusion, incorporating local ancestry in cis-eQTL mapping enabled the identification of 440 

ancestry-specific eQTLs between TB-T2D and T2D patients, as well as between TB patients 441 

and healthy controls. Furthermore, a list of possible candidate disease-causing variants was 442 

identified between TB-T2D and T2D patients, as well as between TB patients and healthy 443 

controls which could be functionally validated. This could facilitate the early identification of 444 

T2D patients at risk of developing TB and may improve the health of complex multi-way 445 

admixed South Africans. 446 

 447 

Material and methods  448 

Ethics Approval and sample collection 449 

Sample collection (protocol number N13/05/064) and the research presented here (S20/02/041) 450 

were both approved by the Health Research Ethics Committee (HREC) of the Faculty of 451 

Medicine and Health Sciences, Stellenbosch University. The research was conducted 452 

according to the principles expressed in the Declaration of Helsinki (2013). Written informed 453 

consent was obtained from all study participants before recruitment and blood collection.  454 

 455 

Healthy controls, T2D patients without TB as well as TB patients with and without T2D were 456 

recruited between December 2013 and February 2016 from communities located in the 457 

Northern Suburbs of Cape Town, South Africa as part of the TANDEM study [4]. TB patients 458 

were either bacteriologically confirmed (culture positive) or diagnosed by GeneXpert. All 459 

participants were between the age of 18 and 70 years and tested negative for HIV. Participants 460 

were excluded from the study if they were already on TB medication, receiving steroids 461 

therapy, had other serious conditions including cancer, were pregnant, or using excessive 462 

amounts of alcohol or illicit drugs. Gestational or steroid-induced diabetes was also excluded. 463 

Participants were classified into different groups based on reference laboratory HbA1c levels. 464 

Healthy controls (n=23) and TB patients without T2D (TB only; n=10) had an Hb1Ac <5.7% 465 

mmol/L. PreT2D (n=6) and TB patients with intermediate hyperglycaemia (TB-IH; n=19) had 466 

an Hb1Ac of 5.7% to < 6.5% mmol/L, T2D patients (n=28), including TB patients with T2D 467 

(TB-T2D; n=10) had an Hb1Ac ≥ 6.5 mmol/L.  468 

 469 

 470 

 471 

 472 
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Genotype data  473 

DNA was extracted for 96 individuals using the Qiagen Blood Midi kit (Qiagen, Germany) as 474 

recommended by the manufacturer. RNA sequencing data of the same 96 study participants 475 

were also available [8]. Genotype data was generated for all individuals using the Illumina 476 

Infinium Human, Hereditary and Health (H3Africa) Consortium Array v2 (comprising ~2.3 477 

million markers) at the Centre for Proteomic and Genomic Research, South Africa. The 478 

H3Africa array was designed to efficiently capture and characterise the genetic diversity in 479 

Africa [49]. GenomeStudio v2.04 (Illumina, Miami, United States) was used to calculate 480 

intensity scores and call common variants (MAF ≥ 5%) [50]. The software zCall was used to 481 

recall variants (MAF > 1% and < 5%) [51]. Variants called by GenomeStudio were exported 482 

as PLINK formatted files for downstream data analysis.  483 

 484 

Quality control and imputation of genotype data  485 

Quality control of the raw genotype data was done using a reproducible snakemake pipeline 486 

(https://github.com/hennlab/snake-SNP_QC) to filter out low-quality samples and SNPs [52]. 487 

Quality control and filtering parameters applied to the raw genotypes are indicated in Fig S1. 488 

 489 

GenomeHarmonizer version 3 [53] was used to align the data to the 1000 Genomes Phase 3 490 

reference panel (Human genome build 37) [54], to update SNP IDs and remove any variants, 491 

not in the reference panel. A minimum linkage disequilibrium (LD) of 0.3 with at least three 492 

flanking variants was required for strand alignment. A secondary minor allele frequency 493 

(MAF) alignment was also used at a threshold of 5%. Finally, the minimum posterior 494 

probability to call genotypes in the input data was left at the default value of 0.4. 495 

 496 

After filtering and quality control of the genotypic data, it was converted from a PLINK file 497 

format to Variant Call Format (VCF) using PLINK v2.0 [55]. The Sanger Imputation Server 498 

was used for phasing, using SHAPEIT2 [56], followed by imputation using the Positional 499 

Burrows-Wheeler Transformation (PBWT) algorithm and the African Genome Resource Panel 500 

[57]. VCF files were downloaded from the online server after imputation and converted to 501 

PLINK ped/map files using a genotyping threshold of 0.7 (PLINK command: -vcf-min-gp 502 

command and -output-missing-genotype N).  503 

 504 
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The UCSC liftOver was used to convert the phased, imputed H3Africa genetic data from 505 

reference genome Human genome build 37 (hg19) to Human genome build 38 (hg38) to ensure 506 

compatibility with the gene expression data required to conduct the eQTL mapping [58]. After 507 

performing the imputation, phasing, quality control and filtering, the final dataset comprised 508 

of 4 224 844 variants and 96 individuals (summarized in Table S1 and Fig S2).  509 

 510 

Global Ancestry Inference  511 

The genotype data was merged with the appropriate source populations (summarized in Table 512 

S2) using PLINK v2.0 [55], to generate input files required for global and local ancestry 513 

inference. After merging, all individuals missing more than 10% of the genotypes were 514 

removed, SNPs with more than 3% missing data were excluded and a Hardy-Weinberg 515 

Equilibrium (HWE) filter of 0.01 was used. The software KING was used to determine 516 

relatedness between individuals up to 2nd degree relatedness [59].   517 

 518 

The software ADMIXTURE was used to investigate the population structure of the cohort and 519 

to determine the correct number of contributing ancestries [60,61]. Each SNP in LD was 520 

defined as �2 > 0.1 within a 50-SNP sliding window (advanced by 10 SNPs at a time) and was 521 

removed for the purpose of computational efficiency. A total of 273,175 autosomal markers 522 

remained after LD pruning. Global ancestry was inferred in an unsupervised manner for K=3-523 

8, where K represents the number of contributing ancestral populations. After establishing the 524 

correct K number of contributing ancestries through cross-validation, the software RFMix was 525 

used to infer global ancestry proportions for downstream statistical analysis (see specific 526 

parameters below), since ADMIXTURE is not as accurate as haplotype-based analyses [62].   527 

 528 

Local Ancestry Inference  529 

The software RFMix was used to infer local ancestry [63]. Default parameters were used, 530 

except for the number of generations since admixture, which was set to 15, consistent with 531 

previous studies [13]. A total of 4,230,650 autosomal variants were included. For each 532 

individual, consecutive phased alleles with the local ancestry assignment were collapsed into 533 

BED files of haplotype blocks. These local ancestry BED files were then used to count the 534 

number of African, Khoe-San, European, Southeast Asian, and East Asian alleles at each SNP.  535 

 536 

 537 
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Gene expression data  538 

Venous blood was collected using PAXgene Blood RNA tubes (PreAnalytiX). Sample 539 

collection occurred at TB diagnosis (baseline) before TB treatment commenced. Total RNA 540 

was extracted using the PAXgene Blood miRNA kit (Qiagen, Germany) with the semi-541 

automated QIAcube (Qiagen, Germany) [8]. RNA sequencing was conducted using the 542 

NextSeq500 High Output kit v2 (Illumina) for 75 cycles. The polyA tail library preparation 543 

method was used and single-end read sequencing was conducted (n=103) [8].  544 

 545 

Quality control, filtering and trimming of raw reads were conducted with HTStream v1.3.1 546 

(Releases s4hts/HTStream). Raw RNA sequencing reads were mapped to the human reference 547 

genome (release GRCh38) using STAR v2.5.3a with default parameters [64]. Gene-level 548 

quantification was performed with STAR Aligner using the GENCODE v34 annotation file 549 

and a subsequent counting table was generated and used as input for DEG identification. 550 

Quantified gene expression (TPM and raw counts) was filtered and normalized using the R-551 

package edgeR, limma and voom packages.  552 

 553 

Cis-eQTL mapping with LocalAA and GlobalAA 554 

An approach similar to that of  Zhong et al. (2018) and Gay et al. (2019) was used to 555 

incorporate both global and local ancestry whilst conducting cis-eQTL mapping in a multi-way 556 

admixed South African population. This method allows for the identification of associations 557 

between variants and gene expression for each contributing ancestral population [46,65]. 558 

Genome-wide cis-eQTL mapping was performed on 96 individuals and 4,230,650 autosomal 559 

variants. All analyses were performed independently for each of the five contributing ancestries 560 

(Bantu-speaking African, Khoe-San, European, Southeast Asian and East Asian). The 561 

normalized gene expression files were used to calculate 15 hidden confounders with PEER 562 

[66]. Additional sample-level covariates (age, gender and HbA1c) were also included in the 563 

association analysis. 564 

 565 

The following linear regression model was fitted for each gene-variant pair (gene g, variant v): 566 

� =  Ā� + ∑ ÿ��
�=1 �� +  ∑ ā����

�=1 + � 567 

 568 
G represents the differential gene expression of gene g across all 96 admixed individuals.  569 
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V represents the additive effect of alleles at variant v (coded as 0,1 or 2). 570 Ā represents the effect size of the alleles of variant v on gene g expression.  571 ÿ� represents the biological or technical covariate �� on gene g expression. This includes age, 572 

gender, HbA1c and the PEER hidden confounding factors.  573 ā�  represents the effect of the ancestry covariate ÿ� on gene g expression.  574 

e represents the residual.  575 

 576 

Two iterations of this regression were performed for each gene-variant pair.  577 

1. Global Ancestry Adjustment (GlobalAA): Adjusting for global ancestry proportions 578 �� represents the global ancestry proportions of each admixed individual. 579 

2. Local Ancestry Adjustment (LocalAA): Adjusting for local ancestry, in which the 580 

number of alleles at variant v were assigned to a specific ancestry of interest (1 = 581 

ancestry of interest; 0 = other ancestries) 582 

 583 

If any of the 4,230,650 filtered variants were located within one mega base of the transcription 584 

start site, they were included in the association analysis with the gene expression. The lm() 585 

function in R was used for all regressions performed. An additive genetic effect on gene 586 

expression was assumed. The significance of an association was taken to be the two-sided P 587 

value corresponding to the t-statistic of the Ā coefficient estimate. Additionally, the most 588 

significant lead eQTLs were identified for each gene, independently for each ancestry 589 

adjustment method. To approximate a 5% False Discovery Rate (FDR), a nominal P value of 590 

1e-6 to identify significant associations was applied [46]. To discern which biological functions 591 

are shared amongst the significant eGenes, gene ontology (GO) and Kyoto Encyclopedia of 592 

Genes and Genomes (KEGG) pathway enrichment analyses were done for each ancestry 593 

separately. The web-based software g:Profiler was used for this purpose and the default option 594 

g:SCS method in g:Profiler was used for multiple testing corrections. Pathways with an 595 

adjusted P value < 0.05 were reported [67]. Fig S2 summarizes the analysis pipeline used for 596 

cis-eQTL mapping.  597 

 598 

 599 

 600 

 601 
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 867 
S9 Fig. Gene Ontology analysis. Gene ontology analysis revealed general tissue types in 868 
which DEG would most likely occur while adjusting for Khoe-San ancestry only in TB-T2D 869 
comorbid patients compared to T2D.  870 
 871 
S10 Fig. Gene ontology analysis. Gene ontology analysis revealed general tissue types where 872 
DEG were mostly up-or-down regulated in TB-T2D comorbid patients compared to T2D in 873 
Khoe-San individuals using GlobalAA.  874 
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